
Singapore Management University
Institutional Knowledge at Singapore Management University

Research Collection School Of Information Systems School of Information Systems

7-2018

Efficient representative subset selection over sliding
windows
Yanhao WANG
National University of Singapore

Yuchen LI
Singapore Management University, yuchenli@smu.edu.sg

Kian-Lee TAN
National University of Singapore

DOI: https://doi.org/10.1109/TKDE.2018.2854182

Follow this and additional works at: https://ink.library.smu.edu.sg/sis_research
Part of the Databases and Information Systems Commons, and the Theory and Algorithms

Commons

This Journal Article is brought to you for free and open access by the School of Information Systems at Institutional Knowledge at Singapore
Management University. It has been accepted for inclusion in Research Collection School Of Information Systems by an authorized administrator of
Institutional Knowledge at Singapore Management University. For more information, please email libIR@smu.edu.sg.

Citation
WANG, Yanhao; LI, Yuchen; and TAN, Kian-Lee. Efficient representative subset selection over sliding windows. (2018). IEEE
Transactions on Knowledge and Data Engineering. 1-14. Research Collection School Of Information Systems.
Available at: https://ink.library.smu.edu.sg/sis_research/4092

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Knowledge at Singapore Management University

https://core.ac.uk/display/200254579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ink.library.smu.edu.sg/?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4092&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4092&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ink.library.smu.edu.sg/sis?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4092&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1109/TKDE.2018.2854182
https://ink.library.smu.edu.sg/sis_research?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4092&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4092&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4092&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fsis_research%2F4092&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libIR@smu.edu.sg

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854182, IEEE
Transactions on Knowledge and Data Engineering

1

Efficient Representative Subset Selection over
Sliding Windows

Yanhao Wang, Yuchen Li∗, and Kian-Lee Tan

Abstract—Representative subset selection (RSS) is an important tool for users to draw insights from massive datasets. Existing
literature models RSS as the submodular maximization problem to capture the “diminishing returns” property of the representativeness
of selected subsets, but often only has a single constraint (e.g., cardinality), which limits its applications in many real-world problems.
To capture the data recency issue and support different types of constraints, we formulate dynamic RSS in data streams as maximizing
submodular functions subject to general d-knapsack constraints (SMDK) over sliding windows. We propose a KNAPWINDOW framework
(KW) for SMDK. KW utilizes the KNAPSTREAM algorithm (KS) for SMDK in append-only streams as a subroutine. It maintains a
sequence of checkpoints and KS instances over the sliding window. Theoretically, KW is 1−ε

1+d
-approximate for SMDK. Furthermore, we

propose a KNAPWINDOWPLUS framework (KW+) to improve upon KW. KW+ builds an index SUBKNAPCHK to manage the
checkpoints and KS instances. SUBKNAPCHK deletes a checkpoint whenever it can be approximated by its successors. By keeping
much fewer checkpoints, KW+ achieves higher efficiency than KW while still guaranteeing a 1−ε′

2+2d
-approximate solution for SMDK.

Finally, we evaluate the efficiency and solution quality of KW and KW+ in real-world datasets. The experimental results demonstrate
that KW achieves more than two orders of magnitude speedups over the batch baseline and preserves high-quality solutions for SMDK
over sliding windows. KW+ further runs 5-10 times faster than KW while providing solutions with equivalent or even better utilities.

Index Terms—Data summarization, sliding window, data stream, submodular maximization, approximation algorithm

F

1 INTRODUCTION

IN THE big data era, a vast amount of data is being con-
tinuously generated by various applications, e.g., social

media, network traffic, sensors, etc. An imperative task
is to extract useful information from massive datasets. A
compelling approach is representative subset selection [2]–[11]
(RSS): extracting a concise subset of representative elements
from the source dataset. RSS is often formulated as selecting
a subset of elements to maximize a utility function that
quantifies the representativeness subject to some constraints.
The utility functions are often chosen to be submodular to
capture the “diminishing returns” property of representa-
tiveness [2], [6], [8], [12]–[14], i.e., adding more elements
decreases the marginal representativeness. A number of
constraints are used to restrict the selected subset in various
ways. For example, a common approach to scaling kernel
methods in nonparametric learning is active set selection [2],
[6] that extracts a subset S with the maximum information
entropy as representatives. It restricts the size of S to k (a.k.a
cardinality constraint) so that at most k elements are se-
lected for kernel training to reduce the computational costs
while still retaining model quality. As another example,
social data summarization [8], [12] selects a subset S to best
preserve the information in a collection of social posts. To
restrict the summary size, two constraints are imposed: the
number of selected posts in S, as well as their total length,
is bounded. Additionally, the influence scores are also mod-

A preliminary version [1] of this article appeared in Proc. ICDE 2018.

• Y. Wang and K. Tan are with the School of Computing, National
University of Singapore, Singapore 117417. E-mail: {yanhao90,tankl}
@comp.nus.edu.sg

• Y. Li is with the School of Information Systems, Singapore Management
University, Singapore 178902. E-mail: yuchenli@smu.edu.sg

∗ Yuchen Li is the corresponding author.

eled as constraints so that more influential elements could
be included in the summary [13].

In many cases, data is generated rapidly and only
available as a stream [15]–[19]. To address the requirement
for summarizing such datasets in real-time, RSS over data
streams [2], [6], [12], [20] has been extensively studied in
recent years. However, there are two major drawbacks that
limit the deployment of existing approaches to many real-
world applications. First, most of the streaming RSS algo-
rithms only work with cardinality constraints, i.e., selecting
a set of k elements as representatives, and cannot support
more complex constraints. As aforementioned, a number of
RSS problems consider more general multi-knapsack (a.k.a.
d-knapsack) constraints beyond cardinality [3], [11], [13],
[21]. However, the algorithms that only support cardinal-
ity constraints cannot provide solutions with any quality
assurances in more general cases. Second, existing methods
are developed for the append-only setting where elements
are only inserted into but never deleted from the stream
and thus the freshness of solutions is ignored. Data streams
are highly dynamic and keep evolving over time, where
recent elements are more important than earlier ones. The
sliding window [22] model that only considers the W most
recent elements is a natural way to capture such an essence.
Although a number of RSS algorithms have been developed
for append-only streams, RSS over sliding windows is still
largely unexplored and, to the best of our knowledge, only
one existing method [23] is proposed. It is not surprising
that the method is also specific for cardinality constraints.

To address the limitations of existing methods, it requires
general RSS frameworks that (i) support different types of
submodular utility functions, (ii) work with more than one
knapsack constraint, and (iii) extract a subset of representa-

Published in IEEE Transactions on
Knowledge and Data Engineering,
2018 July,
DOI: 10.1109/TKDE.2018.2854182

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854182, IEEE
Transactions on Knowledge and Data Engineering

2

tive elements over a sliding window efficiently.
In this paper, we formulate dynamic RSS in data streams

as maximizing submodular functions with d-knapsack con-
straints (SMDK) over sliding windows. As SMDK is NP-
hard, we focus on designing efficient approximation al-
gorithms for SMDK. First, we devise the KNAPSTREAM
algorithm (KS) for SMDK in append-only streams. KS
needs a single pass over a stream and provides a 1−ε

1+d -
approximate solution for SMDK. It improves the state-of-
the-art approximation factor of 1

1+2d − ε for SMDK in
append-only streams [13]. Then, we propose two novel
frameworks, namely KNAPWINDOW (KW) and KNAPWIN-
DOWPLUS (KW+), for SMDK over sliding windows. Both
frameworks adapt KS for the sliding window model by
maintaining a sequence of KS instances starting at differ-
ent timestamps (a.k.a checkpoints) over the sliding window.
Specifically, KW maintains O(

√
W) checkpoints over a size-

W sliding window. The interval between any neighboring
checkpoints of KW is always equal. The approximation
factor of KW for SMDK is the same as KS, i.e., 1−ε

1+d . Further-
more, KW+ is proposed to build an index SUBKNAPCHK to
manage the checkpoints based on their achieved utilities.
SUBKNAPCHK deletes a checkpoint whenever it can be
approximated by its successors. Theoretically, the number of
checkpoints in KW+ is independent ofW and logarithmic to
the range of the utility function. Since KW+ maintains much
fewer checkpoints, it achieves higher efficiency than KW.
Nevertheless, KW+ can still guarantee 1−ε′

2+2d -approximation
solutions for SMDK over sliding windows.

Finally, we evaluate the efficiency and effectiveness of
KW and KW+ with two real-world applications: social stream
summarization and active set selection. The experimental re-
sults show that KW achieves more than two orders of mag-
nitude speedup over the batch baseline and preserves high-
quality solutions for SMDK over sliding windows. KW+

further runs 5–10 times faster than KW while providing
solutions with equivalent or even better utilities.

Our main contributions are summarized as follows.
• We formulate dynamic RSS as maximizing submodular

functions with d-knapsack constraints (SMDK) over
sliding windows.

• We propose a novel 1−ε
1+d -approximation KW framework

for SMDK over sliding windows.
• We devise KW+ to improve upon KW. Although the

approximation factor of KW+ drops to 1−ε′
2+2d , KW+

has much higher efficiency than KW while providing
solutions with equivalent or better quality.

• We demonstrate the efficiency and solution quality of
KW and KW+ for real-world applications.

The remaining of this paper is organized as follows. Sec-
tion 2 defines dynamic RSS as SMDK over sliding windows.
Section 3 gives two examples of modeling real-world RSS
applications as SMDK. Section 4 and Section 5 present the
KW and KW+ frameworks respectively. Section 6 reports
the experimental results. Section 7 reviews the related work.
Finally, Section 8 concludes the whole paper.

2 PROBLEM FORMULATION

In this section, we first introduce data streams and the slid-
ing window model. Next, we give the notions of submodular

functions and knapsack constraints. Then, we formally define
the representative subset selection (RSS) problem as submod-
ular maximization with a d-knapsack constraint (SMDK) in
the sliding window model. Finally, we show the challenges
of SMDK over sliding windows.

Data Stream & Sliding Window. A data stream com-
prises an unbounded sequence of elements V = 〈v1, v2, . . .〉
and vt ∈ V is the t-th element of the stream. The elements
in V arrive one at a time in an arbitrary order. Only one
pass over the stream is permitted and the elements must
be processed in the arrival order. Specifically, we focus
on the sliding window model for data streams. Let W be
the size of the sliding window. At any time t, the active
window At is a subsequence that always contains the W
most recent elements (a.k.a. active elements) in the stream1,
i.e., At = 〈vt′ , . . . , vt〉 where t′ = max(1, t−W + 1).

RSS over Sliding Windows. RSS selects a set of rep-
resentative elements from the ground set according to a
utility function with some budget constraint. In this paper,
we target the class of nonnegative monotone submodular utility
functions adopted in a wide range of RSS problems [2], [5],
[6], [8], [9], [12], [23].

Given a ground set of elements V , we consider a set
function f : 2V → R≥0 that maps any subset of elements to
a nonnegative utility value. For a set of elements S ⊆ V and
an element v ∈ V \ S, the marginal gain of f(·) is defined
by ∆f (v|S) , f(S ∪ {v}) − f(S). Then, the monotonicity
and submodularity of f(·) can be defined according to its
marginal gain.

Definition 1 (Monotonicity & Submodularity). A set function
f(·) is monotone iff ∆f (v|S) ≥ 0 for any S ⊆ V and v ∈ V \S.
f(·) is submodular iff ∆f (v|S) ≥ ∆f (v|S′) for any S ⊆ S′ ⊆
V and v ∈ V \ S′.

Intuitively, monotonicity means adding more elements
does not decrease the utility value. Submodularity captures
the “diminishing returns” property that the marginal gain
of adding any new element decreases as a set grows larger.

To handle various types of linear budget constraints in
real-world problems, we adopt the general d-knapsack con-
straint [3], [11], [13], [21]. Specifically, a knapsack is defined
by a cost function c : V → R+ that assigns a positive cost to
each element in the ground set V . Let c(v) denote the cost
of v ∈ V . The cost c(S) of a set S ⊆ V is the sum of the
costs of its members, i.e., c(S) =

∑
v∈S c(v). Given a budget

b, we say S satisfies the knapsack constraint iff c(S) ≤ b.
W.l.o.g., we normalize the budget to b = 1 and the cost of
any element to c(v) ∈ (0, 1]. Then, a d-knapsack constraint
ξ is defined by d cost functions c1(·), . . . , cd(·). Formally, we
define ξ = {S ⊆ V : cj(S) ≤ 1,∀j ∈ [d]}. We say a set S
satisfies the d-knapsack constraint iff S ∈ ξ.

Given the above definitions, we can formulate RSS as an
optimization problem of maximizing a monotone submod-
ular utility function f(·) subject to a d-knapsack constraint
ξ (SMDK) over the active window At. At every time t, RSS
returns a subset of elements St that (1) only contains active

1. We only discuss the sequence-based sliding window in this paper.
Nevertheless, the proposed algorithms can naturally support the time-
based sliding window.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854182, IEEE
Transactions on Knowledge and Data Engineering

3

TABLE 1
Frequently used notations

Notation Description
V, vt V is an unbounded stream of elements; vt ∈ V is the t-th element in the stream.
d, ξ d is the dimension of the knapsack constraint; ξ is the family of sets defined by the d-knapsack constraint.

cj(v), ctj cj(v) is the cost of v in the j-th knapsack; ctj is the cost of vt in the j-th knapsack.
γt, δt γt = min∀j∈[d] ctj and δt = max∀j∈[d] ctj are the minimum and maximum costs of vt in all d knapsacks.
γ, δ γ = min∀t,∀j ctj and δ = max∀t,∀j ctj are the lower and upper bounds for the costs of any elements in the stream.

f(·),∆f (·|·) f(·) is a monotone submodular utility function; ∆f (·|·) is the marginal gain defined on f(·).
W W is the size of the sliding window.
At At = 〈vt′ , . . . , vt〉 is the active window at time t where t′ = max{1, t−W + 1}.

S∗t , OPTt S∗t is the optimal solution for SMDK w.r.t. the active window At at time t; OPTt = f(S∗t) denotes the optimal utility value.
St St denotes an approximate solution for SMDK w.r.t. At at time t.

Xt, xi Xt = 〈x1, . . . , xs〉 is the sequence of s checkpoints at time t maintained by KW and KW+; xi is the i-th checkpoint in Xt.
S∗x,y , Sx,y S∗x,y and Sx,y are the optimal solution and an approximate solution for SMDK w.r.t. a substream Vx,y = 〈vx, . . . , vy〉.

{ , } 0.5 0.5

{ , } 0.2 0.5

{ , , } 0.8 0.7

{ , } 0.4 0.1

{ , , } 0.3 0.5

For active window :

= { , }

OPT = = 4

For active window :

= { , }

OPT = = 4

Fig. 1. Toy example of SMDK over sliding windows. We highlight two
active windows A4, A5 and show their optimal solutions and utilities.

elements, (2) satisfies the d-knapsack constraint ξ, and (3)
maximizes the utility function f(·). Formally,

max
St⊆At

f(St) s.t. St ∈ ξ (1)

We use S∗t = argmaxSt⊆At:St∈ξ f(St) to denote the optimal
solution of SMDK at time t.

Example 1. A toy example of SMDK over sliding windows
is given in Figure 1. We consider one of the simplest SMDK
problems: budgeted maximum coverage (BMC) [24]. Given a
domain of items W = {w1, . . . , w5}, we have a sequence of
sets T = 〈T1, . . . , T5〉 where each set T ∈ T is a subset of W
associated with two costs c1 and c2. Let the window size be 4. The
objective of BMC is to select a set of sets S∗t from 4 most recent
sets such that the number of items covered by S∗t is maximized
while S∗t satisfies the 2-knapsack constraint defined by c1 and c2.
In Figure 1, we highlight two active windows A4 and A5 at time
4 and 5 respectively. Then, we give the optimal solutions S∗4 and
S∗5 and their utilities for BMC at time 4 and 5.

Challenges of SMDK over Sliding Windows. SMDK is
NP-hard. According to the definition of the d-knapsack con-
straint, the cardinality constraint with budget k is a special
case of a 1-knapsack constraint when c(v) = 1

k ,∀v ∈ V .
Because maximizing a submodular function with a cardi-
nality constraint is NP-hard [25], [26], SMDK is NP-hard
as well. Due to the submodularity of the utility function, a
naı̈ve approach to SMDK over sliding windows is storing
the active window At and rerunning a batch algorithm for
SMDK on At from scratch for every window slide. Typical
batch algorithms for SMDK are COSTEFFECTGREEDY [3],
[27] (CEG), an extension of the classic greedy algorithm [25],
and CONTINUOUSGREEDY [28], [29] (CONTG) which is
based on the multi-linear relaxation technique. From the
theoretical perspective, the approximation ratio of CEG for
SMDK depends on the dimension of knapsacks d while
CONTG can achieve a constant approximation (e.g., 1− 1

e−ε)

independent of d. But CONTG suffers from extremely high
time complexity (e.g.,O(W d·ε−4

) [28], see Table 4) and is not
practical even for very small W . In practice, we implement
CEG as the batch baseline. CEG returns near-optimal solu-
tions for SMDK empirically when the cost distribution is not
extremely adversary [13], [27]. Nevertheless, for SMDK over
sliding windows, CEG still needs to scan the active elements
for multiple passes and incurs heavy computational costs.
Hence, our challenge is to design efficient frameworks to
continuously maintain the solutions for SMDK over sliding
windows when new elements arrive rapidly, while guaran-
teeing a constant approximation ratio w.r.t. a fixed d.

Before moving on to the subsequent sections, we sum-
marize the frequently used notations in Table 1.

3 APPLICATIONS

In this section, we give two examples of RSS applications
and describe how they are modeled as SMDK over sliding
windows. The experiments for both applications in real-
world datasets will be reported in Section 6. Note that many
more RSS problems can also be modeled as SMDK (see
Section 7), which could potentially benefit from this work.

3.1 Social Stream Summarization
Massive data is continuously generated as a stream by hun-
dreds of millions of users on social platforms, e.g., Twitter.
Social stream summarization aims to retain a small portion of
representative elements from a user-generated stream. One
common approach is topic-preserving summarization [8],
[12] that selects a subset of posts that best preserve latent top-
ics in the stream. We focus on topic-preserving summariza-
tion in the sliding window model to capture the evolving
nature of social streams, i.e., topics under discussion change
over time [12]. We consider a collection of social posts V
is available as a stream in ascending order of timestamp.
A social post v ∈ V is represented as a bag of l words
{w1, . . . , wl} drawing from the vocabulary W . The utility
f(S) for a set of elements S is computed by summing up
the weights of words in S where the weight of a word w is
acquired based on its information entropy [8]. Specifically,

f(S) =
∑
w∈W

max
v∈S

n(v, w) · p(w) · log
1

p(w)
(2)

where n(v, w) is the frequency of word w in element v,
p(w) =

∑
v∈V n(v,w)∑

v∈V
∑
w∈W n(v,w) is the probability of generating

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854182, IEEE
Transactions on Knowledge and Data Engineering

4

a word w from the topic model. f(S) has been proved to be
monotone and submodular [8]. Furthermore, the represen-
tatives should satisfy the following 3-knapsack constraint.
First, a uniform cost c1(v) is assigned to each element v ∈ V ,
i.e., c1(v) = 1

k , to bound the size of the representative set
within k [8], [12]. Second, a cost c2(v) is assigned to the
length l of element v since users prefer shorter summaries
to longer ones [3], [21]. For normalization, we compute the
average number of words l in one element and assign c2(v)
as follows: given an element v of l words, c2(v) = 1

k ·
l
l
.

For example, when l = 5, k = 10, an element v with
l = 10 words has a cost c2(v) = 0.2. Third, a cost c3(v)
is assigned according to social influence [8], [13]. Let fl(v)
denote the number of followers of the user who posts v.
We consider c3(v) = min(δ, 1

k ·
log(1+fl(v))

log(1+fl)
) where fl is

the average number of followers of each user and δ is the
upper-bound cost. We assign lower costs to the elements
posted by more influential users so that the summary could
include more influential elements. The upper-bound cost δ
is assigned to elements posted by users with very few (e.g.,
0 or 1) followers for normalization. To sum up, the social
stream summarization is modeled as maximizing f(·) in
Equation 2 with a 3-knapsack constraint defined by c1(·),
c2(·), and c3(·) over the active window At.

3.2 Active Set Selection

Active set selection [2], [6] is a common approach to scaling
kernel methods to massive datasets. It aims to select a small
subset of elements with the maximal information entropy
from the source dataset. In some sites like Yahoo!, weblogs
are continuously generated by users as a stream. Given a
stream of weblogs V , each record v ∈ V is modeled as a
multi-dimensional feature vector. The representativeness of
a set of vectors S is measured by the Informative Vector
Machine [30] (IVM):

f(S) =
1

2
log det(I + σ−2KS,S) (3)

where KS,S is an |S| × |S| kernel matrix indexed by S
and σ > 0 is a regularization parameter. For each pair of
elements vi, vj ∈ S, the (i, j)-th entry Ki,j of K represents
the similarity between vi and vj measured via a symmetric
positive definite kernel function. We adopt the squared
exponential kernel embedded in the Euclidean space, i.e.,
Ki,j = exp(−‖vi−vj‖

2
2

h2). It has been proved that f(·) in
Equation 3 is a monotone submodular function [2]. Further-
more, other than assigning a fixed cost to each feature vector,
existing methods also use different schemes to assign costs,
e.g., generating from a Gamma distribution or marginal-
dependent costs [31]. Thus, we consider a more general case:
each feature vector v is associated with a cost c(v) drawing
from an arbitrary distribution D within range (0, 1). The
objective is to select a subset S of feature vectors such that
f(S) in Equation 3 is maximized subject to a 1-knapsack
constraint defined by c(·) over the active window At.

4 THE KNAPWINDOW FRAMEWORK

In this section, we propose the KNAPWINDOW (KW) frame-
work for SMDK over sliding windows. The architecture

… …

Sliding Window

Instances

Thresholds

Candidates

Solution max

S1 S2 Sm-1 Sm

…

……
KnapStream

Time

x1

x2

x3

x4

vmax

H(x2)

H(x3)

H(x4)

H(x1)

Fig. 2. An illustration of the KNAPWINDOW framework.

of KW is illustrated in Figure 2. KW always stores all
active elements in At at any time t. Then, KW adapts the
KNAPSTREAM (KS) algorithm that provides an approxima-
tion solution for SMDK in append-only streams to work in
the sliding model in the following manner. It maintains a
sequence of checkpoints Xt = 〈x1, . . . , xs〉 ⊆ [t′, t] over the
active window At. The interval between any neighboring
checkpoints xi and xi+1 is equal (e.g., the interval is 3 in
Figure 2). For each checkpoint xi, a KS instance H(xi) is
maintained by processing an append-only stream from vxi
to vt. To retrieve the solution for SMDK at time t, KW
always uses the result from H(x1) corresponding to x1.
H(x1) first post-processes the active elements before vx1

(e.g., the solid red ones in Figure 2) and uses the result after
post-processing as the final solution.

The scheme of KS to maintain a solution for SMDK over
an append-only stream is also illustrated in Figure 2. First,
KS approximates the optimal utility OPT for SMDK by a
sequence of estimations. Then, KS maintains a candidate for
each estimation with a unique threshold derived from the
estimation. Whenever receiving a new element, KS checks
whether it can be included into each candidate indepen-
dently according to the threshold. Finally, KS selects the
candidate with the maximum utility among all candidates
as the solution for its processed substream.

Next, Section 4.1 will present the KNAPSTREAM algo-
rithm for SMDK in append-only streams. Then, Section 4.2
will introduce how the KNAPWINDOW algorithm adapts
KNAPSTREAM for the sliding window model. Finally, Sec-
tion 4.3 will analyze both algorithms theoretically.

4.1 The KnapStream Algorithm
In this subsection, we propose the KNAPSTREAM (KS) algo-
rithm to maintain a solution for SMDK w.r.t. an append-only
stream Vx,y = 〈vx, . . . , vy〉 from time x to y. KS follows the
threshold-based framework [6], [32] for streaming submod-
ular maximization. Its mechanism depends on estimating
the optimal utility value OPT for SMDK w.r.t. Vx,y . Although
OPT cannot be exactly determined unless P=NP, KS tracks
the lower and upper bounds for OPT from the observed
elements online and maintains a sequence of candidates
with different estimations for OPT in the range. Each can-
didate derives a unique threshold for the marginal gain
according to its estimation for OPT. When a new element

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854182, IEEE
Transactions on Knowledge and Data Engineering

5

Algorithm 1 KNAPSTREAM

Input: A stream Vx,y = 〈vx, . . . , vy〉, a parameter λ
Output: The solution Sx,y for SMDK w.r.t. Vx,y

1: Φ = 〈(1 + λ)l|l ∈ Z〉
2: for all φ ∈ Φ do Sφ ← ∅
3: Initialize m,M ← 0 and vmax ← nil
4: for t← x, . . . , y do
5: if f({vt}) > f({vmax}) then vmax ← vt
6: δt = max∀j∈[d] ctj , γt = min∀j∈[d] ctj
7: if f({vt})

γt
> M then

8: M ← f({vt})
γt

,m← f({vt})
9: Φt = 〈(1 + λ)l|l ∈ Z,m ≤ (1 + λ)l ≤M · (1 + d)〉

10: Delete Sφ if φ /∈ Φt
11: for all φ ∈ Φt do
12: if ∆f (vt|Sφ) ≥ δt·φ

1+d
∧ Sφ ∪ {vt} ∈ ξ then

13: Sφ ← Sφ ∪ {vt}
14: Smax ← argmaxφ∈Φ f(Sφ)
15: return Sx,y ← argmax(f(Smax), f({vmax}))

arrives, a candidate decides whether to include it based
on the marginal gain of adding it into the candidate and
the candidate’s threshold. After processing the stream, the
candidate with the maximum utility is used as the solution.

Although having a similar scheme, the algorithms in [6]
and [32] only work with one cardinality constraint, whereas
KS is different from them in two aspects to achieve an ap-
proximation guarantee for general d-knapsack constraints:
(1) the criterion for the inclusion of an element considers
not only its marginal gain but also its costs, i.e., it checks the
cost-effectiveness of adding the element in each knapsack
and includes it only when its cost-effectiveness reaches the
threshold in d knapsacks; (2) the singleton element with the
maximum self-utility is also a candidate solution.

The pseudo-code of KS is presented in Algorithm 1.
Three auxiliary variables are maintained by KS (Lines 5–
8): vmax stores the element with the maximum self-utility;
M and m track the upper and lower bounds for OPT.
Specifically, M is the maximum cost-effectiveness any ob-
served element can achieve and m is the corresponding self-
utility. We will explain why they are the upper and lower
bounds for OPT in the proof of Theorem 1. The sequence of
estimations Φ = 〈(1 +λ)l|l ∈ Z,m ≤ (1 +λ)l ≤M · (1 +d)〉
and corresponding candidates are updated based on the up-
to-date m and M (Lines 9–10). Then, given an element vt,
each candidate checks whether to include it independently.
For each φ ∈ Φt, if the marginal gain ∆f (vt|Sφ) of adding
vt to Sφ reaches δt·φ

1+d where δt = max∀j∈[d] ctj and the d-
knapsack constraint is still satisfied after adding vt, vt will
be included into Sφ (Lines 11–13). Finally, after processing
every element in the stream, it first finds Smax with the
maximum utility among the candidates and then compares
the utility of Smax with that of {vmax}. The one with the
higher utility is returned as the solution Sx,y for SMDK
w.r.t. the stream Vx,y (Lines 14 and 15).

4.2 The KnapWindow Algorithm

In this subsection, we present the KNAPWINDOW (KW)
algorithm. It adapts KS for SMDK in the sliding win-
dow model by maintaining a sequence of checkpoints and
corresponding KS instances over the sliding window. At

Algorithm 2 KNAPWINDOW

Input: A stream V = 〈v1, v2, . . .〉, the window size W , the
interval L for neighboring checkpoints

Output: The solution St for SMDK at time t
1: Initialize s← 0, X0 ← ∅
2: for t← 1, 2, . . . do
3: if t ∈ {x|x = j · L, j ∈ N} then
4: s← s+ 1, xs ← t, and Xt ← Xt−L ◦ 〈xs〉
5: Initiate a KS instance H(xs)

6: while t > W ∧ x1 < t′ do
7: Xt ← Xt \ 〈x1〉, terminate H(x1)
8: Shift the remaining checkpoints, s← s− 1

9: for i← 1, . . . , s do
10: H(xi) processes vt according to Algorithm 1
11: // The post-processing procedure at time t
12: H(x1) processes each element from vt′ to vx1−1 accord-

ing to Algorithm 1
13: return St ← the solution of H(x1)

any time t, KW maintains a sequence of s checkpoints
Xt = 〈x1, . . . , xs〉 ⊆ [t′, t]. The interval between any neigh-
boring checkpoints in Xt is always equal. Given the interval
L ∈ Z+, KW only creates a new checkpoint and initiates a
new KS instance for every L elements. For each checkpoint
xi, a KS instance H(xi) is maintained by processing a
substream from element vxi to the up-to-date element vt.
Whenever the first checkpoint x1 expires from the sliding
window (x1 < t′ where t′ = max(1, t −W + 1)), it will be
deleted from Xt. The corresponding KS instance H(x1) will
be terminated as well. To provide the solution for SMDK
w.r.t. At, it uses the result from H(x1). But it is noted that
the elements from vt′ to vx1−1 have not been processed by
H(x1) yet. Therefore, it feeds the unprocessed elements to
H(x1) before returning the final solution.

The pseudo-code of KW is presented in Algorithm 2.
The sequence of checkpoints is initialized to X0 = ∅. A
checkpoint xs = t is created and appended to the end of
Xt at time t = L, 2L, A KS instance H(xs) is initiated
accordingly (Lines 3–5). Then, it deletes the expired check-
points from Xt (Lines 6–8). Subsequently, each checkpoint
processes vt and updates the result independently. This
procedure follows Lines 6–13 of Algorithm 1. To provide
the solution St for SMDK at time t, H(x1) post-processes
the elements from vt′ to vx1−1 (Line 12). Finally, the solution
of H(x1) after post-processing is returned as St (Line 13).

4.3 Theoretical Analysis
In this subsection, we analyze the approximation ratios and
complexities of KS and KW. In the theoretical analysis, we
assume the cost of any element is bounded by γ and δ,
i.e., 0 < γ ≤ ctj ≤ δ ≤ 1 for all t, j. It is noted that the
algorithms do not need to know γ and δ in advance.

The roadmap of our analysis is as follows. First of all,
we present the approximation ratio of KS. We first show
that if we knew the optimal utility OPT for SMDK w.r.t. Vx,y
in advance, the candidate whose estimation is the closest to
OPT would be a (1−λ)(1−δ)

1+d approximate solution (Lemma 1).
However, the approximation ratio depends on δ and may
degrade arbitrarily when δ increases. Therefore, we further
show that if the singleton element with the maximum self-
utility is also considered as a candidate solution (Line 14 of

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854182, IEEE
Transactions on Knowledge and Data Engineering

6

Algorithm 1), there is a lower bound for the approximation
ratio regardless of δ (Lemma 2). Then, as OPT is unknown
unless P=NP, we analyze how KS can track the lower and
upper bounds for OPT and how many different estimations
are required to guarantee that at least one of them approx-
imates OPT within a bounded error ratio (Theorem 1). As
KS maintains one candidate for each OPT estimation, we
can get its time and space complexity accordingly. After
providing the theoretical results for KS, we extend these
results to KW. Specifically, KW retains the approximation
ratio of KS because it is guaranteed that the solution of
KW is returned only after processing all active elements
(Theorem 2). Finally, we analyze the complexity of KW.

Lemma 1. Assuming there exists φ ∈ Φ such that (1−λ)OPT ≤
φ ≤ OPT where OPT is the optimal utility of SMDK w.r.t. Vx,y ,
Sφ satisfies that f(Sφ) ≥ (1−λ)(1−δ)

1+d · OPT.

Proof. Let si be the i-th element added to Sφ, Siφ be
{s1, . . . , si} for i ∈ [0, |Sφ|] with S0

φ = ∅, bj = cj(Sφ)
for j ∈ [d] be the cost of Sφ in the j-th knapsack, and
b = maxj∈[d] bj be the maximal cost of Sφ among d
knapsacks. According to Line 12 in Algorithm 1, we have
∆f (si|Si−1

φ) ≥ cj(si)·φ
1+d for j ∈ [d]. It holds that:

f(Sφ) =
∑|Sφ|
i=1 ∆f (si|Si−1

φ) ≥ φ
1+d · cj(Sφ) = φ

1+d · bj

Therefore, f(Sφ) ≥ φ
1+d · b.

Next, we discuss two cases separately as follows.
Case 1. When b ≥ (1− δ), we have:

f(Sφ) ≥ b·φ
1+d ≥

(1−δ)·φ
1+d ≥ (1−λ)(1−δ)

1+d · OPT

Case 2. When b < (1−δ), we have ∀v ∈ V \Sφ, Sφ∪{v} ∈
ξ. Let S∗ be the optimal solution for V and a be an element
in S∗ \ Sφ. Since a is not added to Sφ, there must exist
µ(a) ∈ [d] such that ∆f (a|S′φ) <

cµ(a)(a)·φ
1+d , where S′φ ⊆

Sφ is the subset of Sφ when a is processed. We consider
S∗j = {a|a ∈ S∗ \ Sφ ∧ µ(a) = j} for j ∈ [d]. Due to the
submodularity of f(·), we acquire:

f(Sφ ∪ S∗j)− f(Sφ) ≤
∑
a∈S∗j

∆f (a|Sφ) <
φ·cj(S∗j)

1+d ≤ φ
1+d

Then, because S∗ \ Sφ = ∪dj=1S
∗
j , we have:

f(S∗ ∪ Sφ)− f(Sφ) ≤
∑d
j=1 f(Sφ ∪ S∗j)− f(Sφ) < dφ

1+d

Finally, we get f(Sφ) > OPT− d
1+dOPT ≥

1
1+d · OPT.

Considering both cases, we conclude the proof.

Lemma 1 has proved that KS achieves a good approxi-
mation ratio when δ is small. Next, we further analyze the
case where δ > 0.5 and prove that the approximation ratio
has a lower bound regardless of δ.

Lemma 2. When δ > 0.5, it satisfies that at least one of f(Sφ)

and f({vmax}) is greater than 0.5(1−λ)
1+d · OPT.

Proof. Lemma 2 naturally follows when b ≥ 0.5 (Case 1 of
Lemma 1) or for all a ∈ S∗ \ Sφ, a is excluded from Sφ
because its marginal gain does not reach the threshold in
some knapsack (Case 2 of Lemma 1).

Thus, we only need to consider the following case:
there exists some elements whose marginal gains reach
the threshold in all knapsacks but are excluded from Sφ

because including them into Sφ violates the d-knapsack
constraint. Assuming a is such an element for Sφ, we have
∆f (a|S′φ) ≥ cj(a)·φ

1+d and cj(S′φ) + cj(a) > 1 for some j ∈ [d].
In this case, we have:

f(S′φ ∪ {a}) ≥
φ

1+d ·
(
cj(S

′
φ) + cj(a)

)
> φ

1+d

Due to the monotonicity and submodularity of f(·), we get:

φ
1+d ≤ f(S′φ ∪{a}) ≤ f(S′φ) + f({a}) ≤ f(Sφ) + f({vmax})

Therefore, at least one of f(Sφ) and f({vmax}) is greater
than 0.5φ

1+d · OPT and we conclude the proof.

Given Lemmas 1 and 2, we prove that KS achieves
an approximation factor of (1−δ)(1−λ)

1+d (when δ ≤ 0.5) or
0.5(1−λ)

1+d (when δ > 0.5).

Theorem 1. The solution Sx,y returned by Algorithm 1 satisfies
f(Sx,y) ≥ 1−ε

1+d · f(S∗x,y) where S∗x,y is the optimal solution for
SMDK w.r.t. Vx,y and ε = min(δ + λ, 0.5 + λ).

Proof. By Lemmas 1 and 2, we can say Theorem 1 naturally
holds if there exists at least one φ ∈ Φ such that (1−λ)OPT ≤
φ ≤ OPT. First, we show m and M are the lower and upper
bounds for OPT. It is easy to see m ≤ OPT as m ≤ f({vmax})
and {v} ∈ ξ for any v ∈ V .M maintains the maximum cost-
effectiveness among all elements. We have M ≥ f({vi})

cij
,

∀i ∈ [x, y] and ∀j ∈ [d]. Let S∗x,y = {a1, . . . , a|S∗|} be the
optimal solution for Vx,y . As f(·) is monotone submodular,

OPT ≤
∑|S∗x,y|
i=1 f({ai}) ≤ cj(S∗)M for j ∈ [d]. As cj(S∗x,y) ≤

1, we have M ≥ OPT. KS estimates OPT by a sequence 〈(1 +
λ)l|l ∈ Z,m ≤ (1 + λ)l ≤ M(1 + d)〉. Then, there exists
at least one estimation φ such that φ ≤ OPT ≤ (1 + λ)φ.
Equivalently, (1−λ)OPT ≤ φ ≤ OPT. Therefore, we conclude
the proof by combining this result with Lemma 1 and 2.

The Complexity of KS. As only one pass over the stream
is permitted, to avoid missing elements with marginal gains
of greater than M

1+d , KS maintains the candidates for esti-
mations within an increased range [m, (1 + d)M] instead of
[m,M]. Then, because m

M ≤ γ (Line 8 of Algorithm 1), the
number of candidates in KS is bounded by dlog1+λ γ

−1(1 +

d)e. Thus, we have KS maintains O(log(d·γ−1)
ε) candidates.

For each candidate, one function call is required to evaluate
whether to add a new element. Thus, the time complexity
to update one element is O(log(d·γ−1)

ε). Finally, at most γ−1

elements can be maintained in each candidate. Otherwise,
the d-knapsack constraint must not be satisfied. Therefore,
the number of elements stored is O(log(d·γ−1)

γ·ε).
Next, we present the approximation factor of KW.

Theorem 2. The solution St returned by Algorithm 2 satisfies
f(St) ≥ 1−ε

1+d · OPTt where OPTt is the optimal utility for SMDK
w.r.t. At at time t and ε = min(δ + λ, 0.5 + λ).

It is obvious that H(x1) must have processed every
element in At after post-processing. As the approximation
ratio of KS is order-independent, i.e., no assumption is made
for the arrival order of elements, Theorem 2 holds.

The Complexity of KW. KW maintains s = dWL e
checkpoints for At and thus updates the KS instances for
an element in O(s·log(d·γ−1)

λ) time. In addition, it takes

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854182, IEEE
Transactions on Knowledge and Data Engineering

7

H(x1)

H(xi)

H(xi+1)

H(xi+2)

H(xs)

……

… … … … … … … …

Sliding WindowTime

SubKnapChk

……

H(x2)

Candidates

Buffers

……

……

KnapStream

&

Buffers

……

……

x1

x2

xi

xi+1

xi+2

xs

Fig. 3. An illustration of the KNAPWINDOWPLUS framework

O(L·log(d·γ−1)
λ) time for post-processing. The time complex-

ity of KW is O((s+L)·log(d·γ−1)
λ). When s = L =

√
W , it be-

comes O(
√
W ·log(d·γ−1)

λ). Finally, because all active elements
must be stored, the space complexity of KW is O(W).

5 THE KNAPWINDOWPLUS FRAMEWORK

Although KW can provide approximation solutions for
SMDK with a theoretical bound, it still suffers from two
drawbacks that limit its application for a large window size
W . First, KW cannot handle the case when the window does
not fit in the main memory. Second, asO(

√
W) KS instances

are maintained for a size-W sliding window, the efficiency
of KW degrades with increasing W . To improve upon KW,
we further propose the KNAPWINDOWPLUS framework
(KW+) in this section.

The architecture of KW+ is illustrated in Figure 3. The
basic idea of KW+ is similar to KW: it also keeps the
sequence of checkpoints Xt = 〈x1, . . . , xs〉 and maintains
a KS instance to process a substream from vxi to vt at time t
in each checkpoint xi ∈ Xt. However, KW+ is substantially
different from KW in the following four aspects. First, KW+

does not store the entire active window but only keeps the
elements within each KS instance. The number of elements
kept by KW+ is empirically much smaller than W . Sec-
ond, KW+ builds an index SUBKNAPCHK for checkpoint
maintenance. Instead of maintaining a sequence of check-
points with equal interval, KW+ creates a checkpoint and
the corresponding KS instance for every arrival element.
Then, SUBKNAPCHK manages the checkpoints based on
their utilities and deletes a checkpoint whenever it can be
approximated by its successors. By using SUBKNAPCHK,
the number of checkpoints in KW+ is independent of W .
Third, KW+ will keep one expired checkpoint (i.e., x1)
when t > W . It tracks the optimal utility OPTt for SMDK
w.r.t. At to guarantee the theoretical soundness of the so-
lutions. Fourth, KW+ maintains a buffer with tunable size
along with each candidate of the KS instances. In the post-
processing procedure, the elements in buffers are added into
the candidates to improve the utilities of solutions.

Next, Section 5.1 will introduce the KW+ algorithm.
Then, Section 5.2 will provide a theoretical analysis for

KW+. Finally, Section 5.3 will discuss how to adapt KW
and KW+ to the scenario where the sliding window shifts
for more than one element at a time.

5.1 The KnapWindowPlus Algorithm

In this subsection, we describe the KNAPWINDOWPLUS al-
gorithm (KW+) in detail. We first present a novel index Sub-
modular Knapsack Checkpoints (SUBKNAPCHK) to maintain
a sequence of checkpoints and corresponding KS instances
over the sliding window. Then, we show the procedures for
buffer maintenance and post-processing.

Submodular Knapsack Checkpoints. At time t, an index
Submodular Knapsack Checkpoints (SUBKNAPCHK) comprises
a sequence of s checkpoints Xt = 〈x1, . . . , xs〉 where x1 <
. . . < xs = t. For each checkpoint xi, a KS instance H(xi) is
maintained.H(xi) processes a substream from vxi to vt and
will be terminated when xi is deleted from SUBKNAPCHK.
When t > W , the first checkpoint x1 expires (i.e., x1 < t′)
but is not deleted from SUBKNAPCHK immediately. It is
maintained to track the upper bound for the optimal utility
OPTt of SMDK w.r.t.At. However, the result ofH(x1) cannot
be used as the solution at time t in this case because it
may contain expired elements. SUBKNAPCHK restricts the
number of expired checkpoints to at most 1. Therefore, x2

must not expire and the result of H(x2) is returned as the
solution for SMDK w.r.t. At when t > W .

The idea of maintaining a sequence of checkpoints over
sliding windows is inspired by smooth histograms [33]. How-
ever, according to the analysis in [23], the method in [33]
cannot be directly applied to SMDK because it requires
an append-only streaming algorithm with at least 0.8-
approximation for each checkpoint. Unfortunately, [25], [26]
show that there is no polynomial algorithm for SMDK
that can achieve an approximation ratio of better than
1 − 1

e ≈ 0.63 unless P=NP. Therefore, we devise a novel
strategy to maintain an adequate sequence of checkpoints so
that (1) the number of checkpoints is as few as possible for
high efficiency; (2) the utilities of the solutions still achieve
a bounded approximation ratio to the optimal one.

Towards both objectives, we propose the following strat-
egy to maintain the checkpoints in SUBKNAPCHK: (1) create
a checkpoint and a KS instance for each arrival element;
(2) delete a checkpoint and terminate its KS instance once
it can be approximated by any successive checkpoint. Let
f [xi, t] denote the utility of the solution returned by H(xi)
at time t. Given three neighboring checkpoints xi, xi+1, xi+2

(i ∈ [1, s − 2]) and a parameter β > 0, if f [xi+2, t] ≥
(1− β)f [xi, t], we consider the second checkpoint xi+1 can
be approximated by the third one xi+2. In this case, xi+1 will
be deleted from SUBKNAPCHK. We will formally analyze
the soundness of such a strategy in Section 5.2.

Buffer Maintenance and Post-Processing. To further
improve the empirical performance of KW+, we maintain
buffers along with the candidates in KS instances and use
these buffers for post-processing before returning the final
solution. The reasons why the buffers and post-processing
are essential are as follows. First, by using SUBKNAPCHK,
the solutions of H(x2) are always used for At when t > W .
As it is common that x2 � t′, all elements between vt′ and
vx2−1 are missing from the solutions of H(x2). Second, the

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854182, IEEE
Transactions on Knowledge and Data Engineering

8

candidates with high thresholds in KS instances are hard
to be filled, even if more elements could still be added
without violating the d-knapsack constraint. Therefore, we
maintain the buffers for post-processing to improve the
solution quality of KW+.

We consider a buffer Bφ = ∅ is initialized when each
candidate Sφ in a KS instance H(xi) (i ∈ [1, s]) is created.
When processing an element vt, if adding vt to Sφ achieves
a marginal gain of slightly lower than the threshold, i.e.,
∆f (vt|Sφ) ≥ α· δt·φ1+d , vt will be added toBφ. Here, α ∈ (0, 1)
is used to control the lower bound for an element to be
added to Bφ. Furthermore, we restrict the buffer size to η.
When the number of elements inBφ exceeds η, we first drop
each element v if Sφ ∪ {v} /∈ ξ. Then, we drop the elements
with the least cost-effectivenesses w.r.t. Sφ until |Bφ| = η,
where the cost-effectiveness of element v is computed by
∆f (v|Sφ)
δ(v) , δ(v) = maxj∈[d] cj(v). Before returning the solu-

tion at time t, we perform the post-processing procedure
using buffers ofH(x1) andH(x2) (if t < W , only the buffers
of H(x1) is used). Specifically, for each candidate Sφ, we
run COSTEFFECTGREEDY [3] to add elements in buffers to
Sφ. After post-processing each candidate, we also return the
candidate with the maximum utility as the final solution.

Algorithmic Description. The pseudo-code of KW+

is presented in Algorithm 3. The maintenance of SUB-
KNAPCHK is shown in Lines 3–15. At time t, a new check-
point xs = t and a KS instance H(xs) are created for vt.
Then, if there is more than one expired checkpoint in SUB-
KNAPCHK, all except the last one will be deleted (Lines 6–8).
This guarantees that there is only one expired checkpoint in
Xt. Subsequently, for each checkpoint xi, H(xi) processes
vt and updates the candidates independently according to
Lines 6–13 of Algorithm 1. After updating the candidates of
H(xi) for vt, it performs the buffer maintenance procedure
as follows (Lines 25–31). If ∆f (vt|Sφ) ≥ α · δt·φ1+d , vt is added
to Bφ. When the number of elements in Bφ exceeds η, it first
drops any v ∈ Bφ if Sφ∪{v} /∈ ξ and then drops the element
v′ with the least cost-effectiveness in Bφ until |Bφ| = η.
Next, it maintains the checkpoints in SUBKNAPCHK. The
checkpoints that can be approximated by its successor are
identified and deleted from SUBKNAPCHK (Lines 13–15).
After the SUBKNAPCHK maintenance, for any x ∈ Xt, there
is at most one checkpoint x′ ∈ Xt such that x′ > x and
f [x′, t] ≥ (1 − β)f [x, t]. Finally, the post-processing proce-
dure is executed before returning the solution St for SMDK
w.r.t. At. When t < W , H(x1) will provide St. Each candi-
date Sφ in H(x1) considers Bφ for post-processing. Other-
wise, H(x2) will provide St. We first add the non-expired
elements in S′φ and B′φ of H(x1) to Bφ for post-processing.
Starting from Sφ, the post-processing procedure greedily
adds the element v∗ with the maximum cost-effectiveness
in Bφ to Sφ until none of the remaining elements in Bφ
can be included without violating the d-knapsack constraint
(Lines 32–35). After the post-processing, it also returns the
candidate with the maximum utility among the candidates
in H(x1) or H(x2) as the final solution St.

5.2 Theoretical Analysis

Next, we analyze the approximation ratio and complexity
of KW+. We first prove the properties of the checkpoints

Algorithm 3 KNAPWINDOWPLUS

Input: A stream V = 〈v1, v2, . . .〉, the window size W , the
buffer size η, the parameters α and β

Output: The solution St for SMDK at time t
1: Initialize s← 0, X0 ← ∅
2: for t← 1, 2, . . . do
3: s← s+ 1, xs ← t, and Xt ← Xt−1 ◦ 〈xs〉
4: Initiate a KS instance H(xs)
5: for all Sφ of H(xs) do Initialize a buffer Bφ ← ∅
6: while t > W ∧ x2 < t′ do
7: Xt ← Xt \ 〈x1〉, terminate H(x1)
8: Shift the remaining checkpoints, s← s− 1

9: for i← 1, . . . , s do
10: H(xi) processes vt according to Algorithm 1
11: // buffer maintenance
12: for all Sφ of H(xi) do BUFFER(Sφ, Bφ, vt)
13: while ∃i ∈ [1, s− 2] : f [xi+2, t] ≥ (1− β)f [xi, t] do
14: Xt ← Xt \ 〈xi+1〉, terminate H(xi+1)
15: Shift the remaining checkpoints, s← s− 1

16: // post-processing
17: if x1 ≥ t′ then
18: for all Sφ of H(x1) do COSTEFFECTGREEDY(Sφ, Bφ)
19: return St ← the result of H(x1)
20: else
21: for all Sφ of H(x2) do
22: Add each element v in S′φ and B′φ of H(x1) to Bφ

if v does not expire and Sφ ∪ {v} ∈ ξ
23: COSTEFFECTGREEDY(Sφ, Bφ)
24: return St ← the result of H(x2)

25: procedure BUFFER(Sφ, Bφ, vt)
26: if vt /∈ Sφ ∧∆f (vt|Sφ) ≥ α · δt·φ

1+d
then

27: Bφ ← Bφ ∪ {vt}
28: while |Bφ| > η do
29: for all v ∈ Bφ do Bφ ← Bφ \ {v} if Sφ ∪ {v} /∈ ξ
30: v′ ← argminv∈Bφ

∆f (v|Sφ)

δ(v)
, δ(v) = maxj∈[d] cj(v)

31: Bφ ← Bφ \ {v′}
32: procedure COSTEFFECTGREEDY(Sφ, Bφ)
33: while ∃v ∈ Bφ : Sφ ∪ {v} ∈ ξ do
34: v∗ ← argmaxv∈Bφ∧Sφ∪{v}∈ξ

∆f (v|Sφ)

δ(v)

35: Sφ ← Sφ ∪ {v∗}, Bφ ← Bφ \ {v∗}

in SUBKNAPCHK (Lemma 3). Based on the properties, we
prove the approximation ratio of KW+ (Theorem 3). Finally,
we analyze the number of checkpoints in SUBKNAPCHK,
calculate the cost of buffer maintenance and post-processing
for KW+, and acquire the complexity of KW+.

First of all, we prove the properties of the checkpoints in
SUBKNAPCHK.

Lemma 3. Given a parameter β ∈ (0, 1), each checkpoint xi ∈
Xt where i ∈ [1, s] maintained by SUBKNAPCHK at time t
satisfies one of the following properties:

1) if f [xi+1, t] ≥ (1−β)f [xi, t], f [xi+2, t] < (1−β)f [xi, t]
or xi+1 = xs.

2) if xi+1 6= xi + 1 and f [xi+1, t] < (1 − β)f [xi, t], there
exists some t′ < t such that f [xi+1, t

′] ≥ (1− β)f [xi, t
′].

3) xi+1 = xi + 1 and f [xi+1, t] < (1− β)f [xi, t].

Proof. We prove the lemma by induction on t. As the base
case, we first check the condition when t = 2 and X2 =
〈x1 = 1, x2 = 2〉. Then, Property (1) holds if f [x2, 2] ≥
(1− β)f [x1, 2]; otherwise, Property (3) holds.

Next, we assume Lemma 3 holds at time t and show that
it still holds after performing Lines 3–15 of Algorithm 3 at

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854182, IEEE
Transactions on Knowledge and Data Engineering

9

time t+ 1. Let xi be a checkpoint that is created before t+ 1
and not deleted during the maintenance at time t + 1 and
xi+1 be the checkpoint next to xi at time t. We discuss all
possible cases during the maintenance at time t+ 1.

Case 1. xi+1 6= xi + 1 and xi+1 is deleted from SUB-
KNAPCHK at time t+1. In this case, we have f [xi+2, t+1] ≥
(1−β)f [xi, t+1] (Line 13 of Algorithm 3). As xi+2 becomes
the successor of xi at time t+ 1, Property (1) holds.

Case 2. xi+1 6= xi + 1 and xi+1 is not deleted from
SUBKNAPCHK at time t + 1. In this case, we consider
xi+1 becomes the successor of xi at some time t′ ≤ t.
Then, it must hold that f [xi+1, t

′] ≥ (1 − β)f [xi, t
′]. Since

xi+1 is not deleted at time t + 1, either Property (1) (if
f [xi+1, t + 1] ≥ (1 − β)f [xi, t + 1]) or Property (2) (if
f [xi+1, t+ 1] < (1− β)f [xi, t+ 1]) holds.

Case 3. xi+1 = xi+1. No matter whether xi+1 is deleted
at time t + 1, Property (1) holds if f [xi+1, t + 1] ≥ (1 −
β)f [xi, t+ 1]; otherwise, Property (3) holds.

We show that the properties of SUBKNAPCHK still hold
at time t+1 in all possible cases and conclude the proof.

Given the properties of SUBKNAPCHK, we can analyze
the approximation ratio of St returned by Algorithm 3 for
SMDK w.r.t. At.

Theorem 3. The solution St returned by Algorithm 3 satisfies
that f(St) ≥ 1−ε′

2(1+d) · OPTt at any time t where ε′ = ε+ β.

Proof. We consider the first two checkpoints x1 and x2 of
SUBKNAPCHK at time t and assume that post-processing
does not change the solution St. If t ≤ W , x1 = 1 does not
expire and H(x1) are maintained over At = 〈v1, . . . , vt〉.
Thus, f(St) = f [x1, t] ≥ 1−ε

1+dOPTt for t ≤ W by Theorem 1.
Next, we consider t > W and x2 = x1 + 1. In this case,
x1 expires and x2 corresponds to the starting point of At.
Similarly, f(St) = f [x2, t] ≥ 1−ε

1+dOPTt.
Subsequently, we consider other cases for t > W .

We use OPTxy to denote the optimal utility of SMDK
w.r.t. 〈vx, . . . , vy〉.

Case 1. If f [x2, t] ≥ (1 − β)f [x1, t], f(St) = f [x2, t] ≥
(1− β)f [x1, t]. By Theorem 1, f [x1, t] ≥ 1−ε

1+dOPT
x1
t . As x1 <

t′, we have At ⊂ 〈vx1
, . . . , vt〉 and OPTt ≤ OPTx1

t . Finally,
we have f(St) ≥ (1−β)(1−ε)

1+d OPTt.
Case 2. If f [x2, t] < (1 − β)f [x1, t], we have f [x2, t

′] ≥
(1− β)f [x1, t

′] for some t′ < t. Let S∗x1,t denote the optimal
solution for 〈vx1 , . . . , vt〉. We can split S∗x1,t into two subsets
S1 and S2, where S1 = {vi|vi ∈ S∗x1,t ∧ i ∈ [x1, t

′]} and
S2 = {vi|vi ∈ S∗x1,t ∧ i ∈ [x2, t]}. Let OPT1 = f(S1) and
OPT2 = f(S2). For S∗x1,t = S1 ∪ S2 and the submodularity
of f(·), OPTx1

t ≤ OPT1 + OPT2. Then, as S1 ∈ ξ and S2 ∈ ξ, it
holds that OPT1 ≤ OPTx1

t′ and OPT2 ≤ OPTx2
t . In addition, for

any t1 < t2, the solution returned by KNAPSTREAM satisfies
that f [x, t1] ≤ f [x, t2]. As t > t′, we have:

f [x2, t] ≥ (1−β)(1−ε)
1+d · OPTx1

t′ ≥
(1−β)(1−ε)

1+d · OPT1

We also have:

f [x2, t] ≥ 1−ε
1+d · OPT

x2
t ≥ 1−ε

1+d · OPT2

Adding the above two inequalities, we prove:

f(St) = f [x2, t] ≥ (1−β)(1−ε)
2(1+d) · OPTt (4)

Finally, because the post-processing procedure must not
decrease the utility of any candidate, Equation 4 still holds
after post-processing. Thus, we conclude the proof by re-
placing λ and ε with ε′ in Equation 4.

The Complexity of KW+. According to Lemma 3,
either f [xi+1, t] or f [xi+2, t] is less that (1 − β)f [xi, t]

at any time t. Given θ = f [x1,t]
f [xs,t]

, the number of check-
points in SUBKNAPCHK is at most d 2 log θ

log(1−β)−1 e. There-
fore, the number of checkpoints is O(log θ

β). Accordingly,

KW+ performs O(log θ·log(d·γ−1)
ε′2) function calls to update

the candidates in the checkpoints for one element and
stores at most O(log θ·log(d·γ−1)

γ·ε′2) elements within the can-
didates. In practice, the buffer of each candidate is imple-
mented by a min-heap and the buffer size η = O(γ−1).
The complexity of adding an element to the buffer is
O(log γ−1) and dropping elements from the buffer is
O(γ−1). Thus, the amortized computational cost for buffer
maintenance is O(log θ·log(d·γ−1)

ε′2) and the total number of

elements in buffers isO(log θ·log(d·γ−1)
γ·ε′2). The post-processing

for one candidate handles O(γ−1) elements and runs
at most γ−1 iterations. Therefore, the post-processing re-
quires O(log(d·γ−1)

γ2·ε′) function calls. Generally, KW+ runs in

O
(log(d·γ−1)

ε′ · (γ−2 + log θ
ε′)

)
time to process one element and

stores O(log θ·log(d·γ−1)
γ·ε′2) elements in total.

5.3 Discussion
In practice, it is no need to update the solution for every
arrival element. The update is often performed in a batch
manner. Specifically, we consider the sliding window re-
ceives T new elements while the earliest T elements become
expired at time t. Both KW and KW+ can handle the
scenario with trivial adaptations. For KW, it also stores the
active elements in At and creates a checkpoint for every L
elements. The only difference is that the interval L becomes√
W · T while the number of checkpoints s decreases to√
W
T . For KW+, it creates one checkpoint at each time t

and updates existing checkpoints by processing a batch of
elements from vt−T+1 to vt collectively. In this way, the
total number of checkpoints created is dWT e. The number of
checkpoints in SUBKNAPCHK is determined by the utilities
and thus is not affected. In addition, any other theoretical
results, the buffer maintenance, and the post-processing
procedure are also not affected by these adaptations.

6 EXPERIMENTS

In this section, we report our experimental results for two
RSS applications (as presented in Section 3) in real-world
datasets. First, we introduce the experimental setup in Sec-
tion 6.1. Then, we evaluate the effectiveness and efficiency of
our proposed frameworks compared with several baselines
in Section 6.2.

6.1 Experimental Setup
Datasets. Two real-world datasets are used in our experi-
ments. First, we use the Twitter dataset for social stream sum-
marization (see Section 3.1). It is collected via the streaming

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854182, IEEE
Transactions on Knowledge and Data Engineering

10

TABLE 2
The parameters tested in the experiments

Parameter Values
d 1, 2, 3, 4, 5
c 0.02, 0.04, 0.06, 0.08, 0.1
W 100k, 200k, 300k, 400k, 500k
λ 0.05, 0.1, 0.15, 0.2, 0.25
β 0.05, 0.1, 0.15, 0.2, 0.25

API2 and contains 18, 770, 231 tweets and 8, 071, 484 words.
The average number of words in each tweet is l = 4.8 and
the average number of followers of each user is fl = 521.4.
In the experiments, we feed each tweet to the compared
approaches one by one in ascending order of timestamp.
Second, we use the Yahoo! Webscope dataset3 for active set
selection (see Section 3.2). It consists of 45, 811, 883 user
visits from the Featured Tab of the Today module on the
Yahoo! front page. Each user visit is a 5-dimensional feature
vector. We set h = 0.75 and σ = 1 in Equation 3 follow-
ing [6]. The costs are generated from a uniform distribution
U(0.02, 0.08). In the experiments, we feed all user visits to
the compared approaches one by one in the same order.

Additional constraints. To evaluate the compared ap-
proaches with varying the dimension of knapsacks, i.e., d,
we generate additional constraints by assigning random
costs to each element in both datasets. Specifically, we gener-
ate a 5-dimensional cost vector c(v) = {c1(v), . . . , c5(v)} for
each element v. And each cost is generated independently
from a uniform distribution U(0.02, 0.08). We set d to range
from 1 to 5 in the experiments and use the first d dimensions
of c(v) for the d-knapsack constraint.

Compared Approaches. The approaches compared in
our experiments are listed as follows.
• COSTEFFECTGREEDY (CEG). We implement the COST-

EFFECTGREEDY algorithm [27] as the batch baseline.
Since CEG is designed for submodular maximization
with a 1-knapsack constraint, we slightly adapt it for
SMDK: the cost-effectiveness of v w.r.t. S is computed
by ∆f (v|S)

δ(v) where δ(v) = maxj∈[d] c(v). To work in the
sliding window model, it stores the active elements in
At and recomputes the solution from scratch for each
window slide.

• STREAMING (STR). We implement the state-of-the-art
append-only streaming algorithm for SMDK [13] as a
baseline. To work in the sliding window model, it also
stores the active elements in At and recomputes the
solution from scratch for each window slide.

• WINDOW (WIN). We implement the state-of-the-art
algorithm for submodular maximization over sliding
windows [23] as a baseline. Since it only works with
one cardinality constraint, we cast the d-knapsack con-
straint to the cardinality constraint by setting the bud-
get k = 1

γ where γ is the average cost of elements.
When maintaining the solutions over sliding windows,
it only considers the marginal gains of elements and
treats the cost of any element as 1.

• KNAPWINDOW (KW). We implement the KNAPWIN-
DOW framework in Section 4.

2. http://twitter4j.org/en/index.html
3. http://webscope.sandbox.yahoo.com

(a) Twitter (b) Yahoo! Webscope

Fig. 4. The overall experimental results.

• KNAPWINDOWPLUS (KW+). We implement the KNAP-
WINDOWPLUS framework in Section 5. We set α = 0.5
and η = 20 for buffer maintenance.

Parameters. The parameters tested in our experiments
are listed in Table 2 with default values in bold. d is the
dimension of the knapsack constraint. We use d = 3 for
social stream summarization and d = 1 for active set
selection by default as introduced in Section 3; c is the
average cost of each element. For the Twitter dataset, we
set k = 1

c to assign the costs c1(v), c2(v), c3(v) accordingly
as introduced in Section 3.1. For the Yahoo! Webscope dataset,
the average of generated costs is c = 0.05. We scale the costs
linearly in the experiments for varying c. W is the size of
the sliding window. We set the number of elements for each
window slide to T = 0.01%·W . The interval for neighboring
checkpoints in KW is L =

√
W · T = 1% ·W (Section 5.3). λ

is the parameter used in KW, KW+, STR, and WIN for the
balance between the number of candidates maintained for
processing append-only streams and solution quality. β is
the parameter for KW+ to balance between the number of
checkpoints and solution quality.

Metrics. We consider the following metrics to evaluate
the compared approaches.
• CPU time is the average CPU time of an approach to

process one window slide. It is used to measure the
efficiency of compared approaches.

• Utility is the average utility value of the solution re-
turned by an approach for each window. It evaluates
the solution quality of compared approaches.

• #checkpoints and #elements are the average num-
bers of checkpoints and elements maintained by KW+,
which are used to measure its space usage.

Experimental Environment. All the above approaches
are implemented in Java 8 and the experiments are con-
ducted on a server running Ubuntu 16.04 with a 1.9GHz
Intel Xeon E7-4820 processor and 128 GB memory.

6.2 Experimental Results

Overall Results. In Figure 4, we present the CPU time and
utilities of compared approaches in the default setting. Al-
though CEG achieves the best utilities, it takes around 10s to
process each window slide, which is far lower than the rates
of real-world data streams. KW and KW+ run over two and
three orders of magnitude faster than CEG respectively and
can process each window slide within 100ms. Meanwhile,
the utilities of the solutions provided by KW and KW+ are
about 85% of those of CEG. Furthermore, KW+ significantly
improves the efficiency upon KW, achieving speedups of
at least 6x in both datasets. Compared with STR, KW and
KW+ run dozens of times faster while providing solutions

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854182, IEEE
Transactions on Knowledge and Data Engineering

11

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time (×107)

3

4

5

6

U
ti

li
ty

(a) Twitter

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time (×107)

3

4

5

6

7

8

U
ti

li
ty

(b) Yahoo! Webscope

CEG

KW

KW+

STR

WIN

Fig. 5. The utilities of compared approaches over time. Note that we retrieve the solutions of CEG and STR only at sampled timestamps. The
solutions of KW, KW+, and WIN are returned for every window slide.

1 2 3 4 5

d

101

102

103

104

C
P
U

 T
im

e
 (

m
s
)

(a) Twitter

1 2 3 4 5

d

101

102

103

104
C

P
U

 T
im

e
 (

m
s
)

(b) Yahoo! Webscope

1 2 3 4 5

d

5

6

7

8

9

U
ti

li
ty

(c) Twitter

1 2 3 4 5

d

4

5

6

7

8

U
ti

li
ty

(d) Yahoo! Webscope

CEG KW KW+ STR WIN

Fig. 6. The CPU time and utilities of compared approaches with varying the dimension d of the knapsack constraint.

0.05 0.10 0.15 0.20 0.25
λ

100

101

102

103

104

C
P
U

 T
im

e
 (

m
s
)

(a) Twitter

0.05 0.10 0.15 0.20 0.25
λ

101

102

103

104

C
P
U

 T
im

e
 (

m
s
)

(b) Yahoo! Webscope

0.05 0.10 0.15 0.20 0.25
λ

4.0

4.5

5.0

5.5

U
ti
li
ty

(c) Twitter

0.05 0.10 0.15 0.20 0.25
λ

4

5

6

7

8

U
ti
li
ty

(d) Yahoo! Webscope

Fig. 7. The CPU time and utilities of compared approaches with varying the parameter λ. Note that CEG is not affected by λ. We use horizontal
blue lines to represent the CPU time and utilities of CEG for ease of comparison.

0.05 0.10 0.15 0.20 0.25

β

100

101

102

103

104

C
P
U

 T
im

e
 (

m
s
)

(a) Twitter

0.05 0.10 0.15 0.20 0.25

β

101

102

103

104

C
P
U

 T
im

e
 (

m
s
)

(b) Yahoo! Webscope

0.05 0.10 0.15 0.20 0.25

β

4.0

4.5

5.0

5.5

U
ti
li
ty

(c) Twitter

0.05 0.10 0.15 0.20 0.25

β

4

5

6

7

8

U
ti
li
ty

(d) Yahoo! Webscope

Fig. 8. The CPU time and utilities of compared approaches with varying the parameter β. Note that CEG, KW, and STR are not affected by β. For
ease of comparison, we use horizontal blue, red, and green lines to represent the CPU time and utilities of CEG, KW, and STR respectively.

with similar utilities. Finally, we observe WIN runs faster
than other approaches but shows obviously inferior solution
quality. This is because WIN treats the costs of any element
equally and only considers marginal utility gains when
adding an element. As a result, the solutions of WIN contain
fewer elements than other approaches, which leads to both
higher efficiency and worse solution quality.

In Figure 5, we present the utilities of compared ap-
proaches from time t = W to the end of the stream t = n.
The solutions returned by CEG achieve the highest utilities
all the time. the solution utilities of KW, KW+, and STR
fluctuate over time and are generally close to each other. But
remember that KW+ takes much less CPU time than KW
while KW runs significantly faster than STR (as illustrated
in Figure 4). Also as expected, the solution quality of WIN
cannot match any other approaches.

To sum up, KW+ achieves the best balance between
efficiency and solution quality: compared with CEG, it runs
more than three orders of magnitude faster while providing
solutions with 85% average utility; it has much higher effi-
ciency than KW and STR but achieves equivalent solution

quality; it significantly improves the solution quality upon
WIN at a little expense of efficiency.

Effect of d. The CPU time and utilities of compared
approaches with varying d are shown in Figure 6. The CPU
time of CEG decreases when d increases. This is because the
average solution size becomes smaller when there are more
constraints. The CPU time of KW shows different trends
in both datasets: it decreases in the Yahoo! Webscope dataset
but keeps steady in the Twitter dataset when d becomes
larger. There are two observations behind such trends: First,
since KS maintains the candidates for estimations from m to
M(1 + d) (see Algorithm 1), a KS instance maintains more
candidates with increasing d. Second, the average solution
size decreases with d. In the Twitter dataset, the extra costs
for maintaining more candidates cancel out the benefits
of smaller solutions and thus the overall CPU time keeps
steady. However, in the Yahoo! Webscope dataset, the time
complexity of evaluating IVM in Equation 3 for a set S is
O(|S|3). As a result, the CPU time for each IVM evalua-
tion is very sensitive to |S|. Although more candidates are
maintained, the overall CPU time of KW still becomes much

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854182, IEEE
Transactions on Knowledge and Data Engineering

12

1 2 3 4 5

W (×105)

100

101

102

103

104
C

P
U

 T
im

e
 (

m
s
)

(a) Twitter

1 2 3 4 5

W (×105)

101

102

103

104

105

C
P
U

 T
im

e
 (

m
s
)

(b) Yahoo! Webscope

0.02 0.04 0.06 0.08 0.10

c

100

101

102

103

104

C
P
U

 T
im

e
 (

m
s
)

(c) Twitter

0.02 0.04 0.06 0.08 0.10

c

100

101

102

103

104

105

C
P
U

 T
im

e
 (

m
s
)

(d) Yahoo! Webscope

CEG KW KW+ STR WIN

Fig. 9. The CPU time of compared approaches with varying the window size W and the average cost c.

TABLE 3
The number of checkpoints and elements (including candidates and buffers) maintained by KW+.

Dataset Parameter W c
Value 100k 200k 300k 400k 500k 0.02 0.04 0.06 0.08 0.1

Twitter #checkpoints 4.89 4.49 4.32 4.34 4.27 4.44 4.49 4.15 4.42 4.68
#elements 3949.9 3770.4 3674.2 3725.3 3676.1 5489.4 3770.4 2843.4 2618.1 2509.5

Yahoo! Webscope #checkpoints 4.44 3.58 3.62 3.5 2.8 4.4 3.58 3.18 3.44 2.7
#elements 3258.6 2617.54 2735.38 2647.16 2019.9 6036.86 2617.54 1680.88 1454.92 908.16

lower. The CPU time of KW+ shows a similar trend to KW
in the Twitter dataset. But it keeps steady with increasing
d in the Yahoo! Webscope dataset. The reason behind such
an observation is, although the CPU time to update the
checkpoints decreases, the post-processing takes longer time
when d increases. The utilities of all compared approaches
decrease when d increases because of smaller solution sizes.
Compared with KW and STR, KW+ shows slightly better
solution quality for a larger d due to the benefits of post-
processing. In addition, the ratios between the utilities of
the solutions of STR, KW, and KW+ and those of CEG are
84%–90% and remain stable for different d.

Robustness against λ and β. The experimental results
of compared approaches with varying parameters λ are
shown in Figure 7. For all compared approaches except
CEG, the CPU time obviously drops with increasing λ. This
is because the number of candidates is inversely correlated
to λ. However, we observe that their utilities are rather
robust against λ and only slightly decrease for a larger
λ. The utility of KW+ in the Yahoo! Webscope dataset even
increases when λ = 0.15 thanks to the post-processing.

The experimental results of compared approaches with
varying parameters β are shown in Figure 8. Because the
number of checkpoints and KS instances in SUBKNAPCHK
is inversely correlated to β, the CPU time of KW+ decreases
when β increases. However, the robustness of KW+ against
β is worse than its robustness against λ. The utilities show
drastic drops when β = 0.2 or 0.25. As the intervals be-
tween the first two checkpoints increase with β, the errors of
using the results from the second checkpoint as the solutions
inevitably increase. Considering the results, we advise using
a small β so that KW+ can achieve good solution quality.

Scalability. In Figure 9, we present the CPU time of
compared approaches with varying W and c. The CPU time
to process each window slide increases with W . This is
because the number of elements processed for each window
slide is set to 0.01%·W which increases linearly withW . For
all compared approaches, it takes a longer CPU time when c
decreases because the solution size is inversely proportional
to c. In the Yahoo! Webscope dataset, the CPU time increases
drastically when c decreases because the time complexity of

the IVM function evaluation is O(|S|3). Thus, all compared
approaches spend much more CPU time for each evaluation
of f(S) when the solution size grows. Nevertheless, the
CPU time of KW+ and that of KW are within 100ms and
1s respectively in all parameter settings.

We list the number of checkpoints and the number of
elements in both candidates and buffers maintained by
KW+ with varying W and c in Table 3. First, because the
number of checkpoints and the number of elements are
independent of W and bounded by the ratio of the utilities
of the solutions provided by the first and last checkpoints,
both metrics hardly increases with W . In addition, the
number of elements in KW+ increases when c decreases
because each candidate maintains more elements. Generally,
KW+ only stores several thousand elements whenW ranges
from 100k to 500k. Taking W = 500k as an example,
KW+ merely stores 0.7% of the active elements. Therefore,
the space usage of KW+ is much smaller than KW, CEG,
and STR, which need to store the entire active window.
Furthermore, the number of elements maintained by KW+

does not increase with the window sizeW because the space
complexity of KW+ is independent of W . Hence, KW+ is
scalable for large window sizes.

7 RELATED WORK

Representative subset selection (RSS) is an important tool
to draw insights from massive datasets. Existing RSS tech-
niques can be categorized into four classes based on the
utility functions used to evaluate the representativeness: (1)
coverage-based RSS [3]–[5], [8], [12], [20], [21]; (2) entropy-
based RSS [2], [6], [7], [23]; (3) clustering-based RSS [2], [6],
[9], [10]; (4) diversity-aware RSS [3], [11], [21]. Coverage-
based approaches treat RSS as the maximum coverage prob-
lem [20] and its variants, e.g., budgeted coverage [3], [21],
weighted coverage [8], [12], and probabilistic coverage [5].
They consider all information in a dataset as a collection of
information units. The objective of RSS is to select a subset
of elements so as to maximally cover the information units
in the source dataset. Entropy-based RSS [2], [6], [7], [23]
(a.k.a. active set selection) aims to select a subset of elements
with the highest information entropy. Active set selection is

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854182, IEEE
Transactions on Knowledge and Data Engineering

13

TABLE 4
A theoretical comparison of existing submodular maximization algorithms. The algorithms proposed in this work are highlighted by ∗.

Algorithm Data model Constraint Approximation Time complexity
Sviridenko [34] batch 1-knapsack 1− 1

e
O(W 5)

Kulik et al. [28] batch d-knapsack 1− 1
e
− ε O(W d·ε−4

)

Badanidiyuru et al. [35] batch 1-knapsack 1− 1
e
− ε O(W 2 · (ε−1 · logW)ε

−8
)

Leskovec et al. [27] & Lin et al. [3] batch 1-knapsack 1
2

(1− 1
e

) O(γ−1 ·W)

Badanidiyuru et al. [6] & Kumar et al. [32] append-only stream cardinality 1
2
− ε O(log k

ε
)

Huang et al. [36] append-only stream 1-knapsack 4
11
− ε O((log γ−1

ε
)4)

Yu et al. [13] append-only stream d-knapsack 1
1+2d

− ε O(log γ−1

ε
)

Epasto et al. [23] sliding window cardinality 1
3
− ε O(

log2(k·θ)
ε2

)

KNAPSTREAM (KS)∗ append-only stream d-knapsack 1−ε
1+d

O(
log(d·γ−1)

ε
)

KNAPWINDOW (KW)∗ sliding window d-knapsack 1−ε
1+d

O(
√
W ·log(d·γ−1)

ε
)

KNAPWINDOWPLUS (KW+)∗ sliding window d-knapsack 1−ε′
2+2d

O(
log(d·γ−1)

ε′ · (γ−2 + log θ
ε′))

considered as a powerful tool for large-scale nonparametric
learning [2], [6]. Clustering-based RSS [2], [6], [9], [10] (a.k.a.
exemplar clustering) selects a subset of elements such that
the average distance from the remaining elements in the
dataset to their nearest neighbor in the selected subset is
minimized. Diversity-aware RSS [3], [11], [21] integrates a
coverage/clustering based utility function with a diversity
function to avoid including highly similar elements into the
selected subset. Generally, the utility functions used in the
aforementioned RSS problems are all submodular because
the representativeness naturally satisfies the “diminishing
returns” property. But most of them [3]–[5], [7]–[11], [21]
can only work in the batch setting and are very inefficient
to process data streams.

Recently, we have witnessed the growth of RSS studies in
the data stream model. RSS in append-only streams where
new elements arrive continuously but old ones never expire
is studied in [2], [6], [12], [20]. Mirzasoleiman et al. [37]
further propose a method for deletion-robust RSS where a
limited number of old elements can be deleted from the
stream. However, these techniques neither support general
constraints beyond cardinality nor consider the recency of
selected subsets. In many scenarios, data streams are highly
dynamic and evolve over time. Therefore, recent elements
are more important and interesting than earlier ones. The
sliding window [22] model is widely adopted in many data-
driven applications [38], [39] to capture the recency con-
straint. RSS over sliding windows is still largely unexplored
yet and, to the best of our knowledge, there is only one
existing method [23] for dynamic RSS over sliding windows.
But it is specific for the cardinality constraint. In this paper,
we propose more general frameworks for RSS than any
existing ones, which work with various submodular utility
functions, support d-knapsack constraints, and maintain the
representatives over sliding windows.

Submodular maximization (SM) has been extensively
studied in recent years. Due to its theoretical consequences,
SM is seen as a “silver bullet” for many different appli-
cations [13], [27], [39]–[41]. Here, we focus on reviewing
existing literature on SM that is closely related to our paper:
SMDK and SM in data streams. Sviridenko [34] and Kulik
et al. [28] first propose approximation algorithms for SM
subject to 1-knapsack and d-knapsack constraints respec-

tively. Both algorithms have high-order polynomial time
complexity and are not scalable to massive datasets. More
efficient algorithms for SM subject to 1-knapsack constraints
are proposed in [3], [27] and [35] respectively. These algo-
rithms cannot be applied to SMDK directly. Badanidiyuru
et al. [6] and Kumar et al. [32] propose the algorithms
for SM with cardinality constraints in append-only streams
with sublinear time complexity. Then, Huang et al. [36]
propose an algorithm for SM in append-only streams with
1-knapsack constraints. Yu et al. [13] propose an algorithm
for SMDK in append-only streams. More recently, there are a
few attempts at SM over sliding windows. Epasto et al. [23]
propose an algorithm for SM over sliding windows with
cardinality constraints. To the best of our knowledge, there
is no existing literature on SMDK over sliding windows yet.

We compare the above SM algorithms theoretically in Ta-
ble 4. We present their data models, supported constraints,
approximation factors, and time complexities respectively.
According to the results, our contributions in this paper
are two-fold: (1) KS improves the approximation factor of
SMDK in append-only streams from 1

1+2d − ε to 1−ε
1+d ; (2)

KW and KW+ are among the first algorithms for SMDK in
the sliding window model.

8 CONCLUSION

In this paper, we studied the representative subset selection
(RSS) problem in data streams. First of all, we formulated
dynamic RSS as maximizing a monotone submodular func-
tion subject to a d-knapsack constraint (SMDK) over sliding
windows. We then devised the KW framework for this prob-
lem. Theoretically, KW provided solutions for SMDK over
sliding windows with an approximation factor of 1−ε

1+d . Fur-
thermore, we proposed a more efficient 1−ε′

2+2d -approximation
KW+ framework for SMDK over sliding windows. The
experimental results demonstrated that KW and KW+ run
orders of magnitude faster than the batch baseline while
preserving high-quality solutions.

REFERENCES

[1] Y. Wang, Y. Li, and K.-L. Tan, “A sliding-window framework for
representative subset selection,” in ICDE, 2018, pp. 1268–1271.

[2] R. Gomes and A. Krause, “Budgeted nonparametric learning from
data streams,” in ICML, 2010, pp. 391–398.

1041-4347 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2018.2854182, IEEE
Transactions on Knowledge and Data Engineering

14

[3] H. Lin and J. A. Bilmes, “A class of submodular functions for
document summarization,” in ACL, 2011, pp. 510–520.

[4] K. Wei, Y. Liu, K. Kirchhoff, and J. A. Bilmes, “Using document
summarization techniques for speech data subset selection,” in
NAACL-HLT, 2013, pp. 721–726.

[5] J. Xu, D. V. Kalashnikov, and S. Mehrotra, “Efficient summariza-
tion framework for multi-attribute uncertain data,” in SIGMOD,
2014, pp. 421–432.

[6] A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and A. Krause,
“Streaming submodular maximization: massive data summariza-
tion on the fly,” in KDD, 2014, pp. 671–680.

[7] K. Wei, R. K. Iyer, and J. A. Bilmes, “Submodularity in data subset
selection and active learning,” in ICML, 2015, pp. 1954–1963.

[8] H. Zhuang, R. Rahman, X. Hu, T. Guo, P. Hui, and K. Aberer, “Data
summarization with social contexts,” in CIKM, 2016, pp. 397–406.

[9] E. M. Lindgren, S. Wu, and A. G. Dimakis, “Leveraging sparsity
for efficient submodular data summarization,” in NIPS, 2016, pp.
3414–3422.

[10] D. Malioutov, A. Kumar, and I. E.-H. Yen, “Large-scale submodu-
lar greedy exemplar selection with structured similarity matrices,”
in UAI, 2016.

[11] B. Mirzasoleiman, A. Badanidiyuru, and A. Karbasi, “Fast con-
strained submodular maximization: Personalized data summa-
rization,” in ICML, 2016, pp. 1358–1367.

[12] N. T. Tam, M. Weidlich, D. C. Thang, H. Yin, and N. Q. V. Hung,
“Retaining data from streams of social platforms with minimal
regret,” in IJCAI, 2017, pp. 2850–2856.

[13] Q. Yu, E. L. Xu, and S. Cui, “Submodular maximization with multi-
knapsack constraints and its applications in scientific literature
recommendations,” in GlobalSIP, 2016, pp. 1295–1299.

[14] Q. Fan, Y. Li, D. Zhang, and K.-L. Tan, “Discovering newsworthy
themes from sequenced data: A step towards computational jour-
nalism,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 7, pp. 1398–1411,
2017.

[15] Y. Li, D. Zhang, Z. Lan, and K.-L. Tan, “Context-aware adver-
tisement recommendation for high-speed social news feeding,” in
ICDE, 2016, pp. 505–516.

[16] W. Guo, Y. Li, M. Sha, and K.-L. Tan, “Parallel personalized
pagerank on dynamic graphs,” PVLDB, vol. 11, no. 1, pp. 93–106,
2017.

[17] M. Sha, Y. Li, B. He, and K.-L. Tan, “Accelerating dynamic graph
analytics on gpus,” PVLDB, vol. 11, no. 1, pp. 107–120, 2017.

[18] Y. Li, Z. Bao, G. Li, and K.-L. Tan, “Real time personalized search
on social networks,” in ICDE, 2015, pp. 639–650.

[19] D. Zhang, Y. Li, J. Fan, L. Gao, F. Shen, and H. T. Shen, “Processing
long queries against short text: Top-k advertisement matching in
news stream applications,” ACM Trans. Inf. Syst., vol. 35, no. 3, pp.
28:1–28:27, 2017.

[20] B. Saha and L. Getoor, “On maximum coverage in the streaming
model & application to multi-topic blog-watch,” in SDM, 2009, pp.
697–708.

[21] H. Lin and J. A. Bilmes, “Multi-document summarization via
budgeted maximization of submodular functions,” in NAACL-
HLT, 2010, pp. 912–920.

[22] M. Datar, A. Gionis, P. Indyk, and R. Motwani, “Maintaining
stream statistics over sliding windows,” SIAM J. Comput., vol. 31,
no. 6, pp. 1794–1813, 2002.

[23] A. Epasto, S. Lattanzi, S. Vassilvitskii, and M. Zadimoghaddam,
“Submodular optimization over sliding windows,” in WWW,
2017, pp. 421–430.

[24] S. Khuller, A. Moss, and J. Naor, “The budgeted maximum cover-
age problem,” Inf. Process. Lett., vol. 70, no. 1, pp. 39–45, 1999.

[25] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis
of approximations for maximizing submodular set functions - I,”
Math. Program., vol. 14, no. 1, pp. 265–294, 1978.

[26] U. Feige, “A threshold of ln n for approximating set cover,” J.
ACM, vol. 45, no. 4, pp. 634–652, 1998.

[27] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. M. Van Briesen,
and N. S. Glance, “Cost-effective outbreak detection in networks,”
in KDD, 2007, pp. 420–429.

[28] A. Kulik, H. Shachnai, and T. Tamir, “Maximizing submodular set
functions subject to multiple linear constraints,” in SODA, 2009,
pp. 545–554.

[29] M. Feldman, J. Naor, and R. Schwartz, “A unified continuous
greedy algorithm for submodular maximization,” in FOCS, 2011,
pp. 570–579.

[30] N. D. Lawrence, M. W. Seeger, and R. Herbrich, “Fast sparse
gaussian process methods: The informative vector machine,” in
NIPS, 2002, pp. 609–616.

[31] N. Cuong and H. Xu, “Adaptive maximization of pointwise sub-
modular functions with budget constraint,” in NIPS, 2016, pp.
1244–1252.

[32] R. Kumar, B. Moseley, S. Vassilvitskii, and A. Vattani, “Fast greedy
algorithms in mapreduce and streaming,” ACM Trans. Parallel
Comput., vol. 2, no. 3, pp. 14:1–14:22, 2015.

[33] V. Braverman and R. Ostrovsky, “Smooth histograms for sliding
windows,” in FOCS, 2007, pp. 283–293.

[34] M. Sviridenko, “A note on maximizing a submodular set function
subject to a knapsack constraint,” Oper. Res. Lett., vol. 32, no. 1, pp.
41–43, 2004.

[35] A. Badanidiyuru and J. Vondrák, “Fast algorithms for maximizing
submodular functions,” in SODA, 2014, pp. 1497–1514.

[36] C.-C. Huang, N. Kakimura, and Y. Yoshida, “Streaming algorithms
for maximizing monotone submodular functions under a knap-
sack constraint,” in APPROX-RANDOM, 2017, pp. 11:1–11:14.

[37] B. Mirzasoleiman, A. Karbasi, and A. Krause, “Deletion-robust
submodular maximization: Data summarization with ”the right
to be forgotten”,” in ICML, 2017, pp. 2449–2458.

[38] X. Wang, Y. Zhang, W. Zhang, X. Lin, and Z. Huang, “Skype:
Top-k spatial-keyword publish/subscribe over sliding window,”
PVLDB, vol. 9, no. 7, pp. 588–599, 2016.

[39] Y. Wang, Q. Fan, Y. Li, and K.-L. Tan, “Real-time influence max-
imization on dynamic social streams,” PVLDB, vol. 10, no. 7, pp.
805–816, 2017.

[40] Y. Li, J. Fan, D. Zhang, and K.-L. Tan, “Discovering your selling
points: Personalized social influential tags exploration,” in SIG-
MOD, 2017, pp. 619–634.

[41] Y. Li, J. Fan, Y. Wang, and K.-L. Tan, “Influence maximization on
social graphs: A survey,” IEEE Trans. Knowl. Data Eng., 2018.

Yanhao Wang is currently a PhD student at
the School of Computing, National University
of Singapore (NUS). He received the B.Eng.
and M.Eng. degrees in computer science from
Shandong University, Jinan, China and Ren-
min University of China, Beijing, China, in 2011
and 2014, respectively. His research interests
include data stream algorithms, social network
analytics and spatial-temporal databases.

Yuchen Li is an assistant professor at the
School of Information Systems, Singapore Man-
agement University (SMU). Before joining SMU,
he was a research fellow in the School of Com-
puting, National University of Singapore (NUS).
He received the double B.Sc. degrees in applied
math and computer science (both degrees with
first class honors) and the PhD degree in com-
puter science from NUS, in 2013 and 2016, re-
spectively. His research interests include graph
analytics and heterogeneous computing.

Kian-Lee Tan is a professor at the School
of Computing, National University of Singapore
(NUS). He received his PhD degree in com-
puter science in 1994 from NUS. His current
research interests include query processing and
optimization in multiprocessor and distributed
systems, database performance, data analytics,
and database security. He was a co-recipient of
Singapore’s President Science Award in 2011.
He is also a 2013 IEEE Technical Achievement
Award recipient. He is an associate editor of the

ACM Transactions on Database Systems (TODS) and the World Wide
Web Journal. He has also served in the editorial board of the Very
Large Data Base (VLDB) Journal (associate editor: 2007-2009; editor-
in-chief: 2009-2015) and the IEEE Transactions on Knowledge and Data
Engineering (2009-2013). Kian-Lee is a member of ACM and IEEE (and
IEEE CS).

	Singapore Management University
	Institutional Knowledge at Singapore Management University
	7-2018

	Efficient representative subset selection over sliding windows
	Yanhao WANG
	Yuchen LI
	Kian-Lee TAN
	Citation

	Efficient Representative Subset Selection over Sliding Windows

