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Abstract—Indoor maps, as crucial prerequisites for many
indoor localization and navigation systems, are sometimes in-
accessible. The absence of an indoor map database and the high
cost of manually constructing an indoor map produce a need for
an inexpensive and efficient way to dynamically construct indoor
maps. The ubiquity of sensor-equipped mobile devices enables us
to crowdsource user trajectories, out of which indoor digital maps
can be automatically constructed at low costs. Similar to other
crowdsourced data, the collected user trajectories are often noisy
and of low fidelity, which poses a challenge to the accurate map
construction. To alleviate this problem, we propose CIMLoc - a
crowdsourcing indoor map construction system for localization.
The system is evaluated with real-world trajectories collected
from different mobile devices. We quantify the construction
errors by computing the localization errors achieved with the
constructed map and the real map. Experimental results reveal
that CIMLoc is able to construct accurate maps that significantly
improve localization results. We believe that CIMLoc provides an
effective solution to the indoor localization problems where the
indoor maps are unavailable.

I. INTRODUCTION

Indoor maps have indispensable uses in indoor localization
and navigation, e.g. the location services in a shopping mall
and the navigation services in a museum. Although many
existing works on localization and navigation [1] [2] are
based on the assumption of map availability, indoor maps
are often unlikely to be available due to privacy issues.
Manually constructing an indoor map through site surveys is
both expensive and time-consuming. Furthermore, a map so
generated is vulnerable to the external environment changes.
The existing works on indoor map construction are confined
by either impractical assumptions or excessive infrastructure
requirements. Therefore, a practical and inexpensive way to
dynamically construct an indoor digital map is of great value
and necessity.

Crowdsourcing is a low-cost and efficient way to extract
useful information from data acquired from crowd participants.
The crowdsourcing concept has been successfully applied
to OpenStreetMap to collaboratively construct outdoor maps.
Unlike outdoor map construction that can utilize Global Po-
sitioning System (GPS) locations, indoor map construction
has to rely on some other position or trajectory providers.
A qualified candidate for this may be the commercially avail-
able mobile devices equipped with various sensors (including

accelerometer, magnetometer, and gyroscope) and communi-
cation modules (such as Wi-Fi and 3G modules).

In this paper, we propose CIMLoc - a Crowdsourcing
Indoor digital Map construction system for Localization that
constructs indoor maps based on crowdsourced user trajec-
tories, and performs localization and navigation for the users.
CIMLoc comprises three subsystems: (i) Dead Reckoning Sub-
system (DRS) that obtains dead reckoning (DR) trajectories
from the mobile devices of participating pedestrians; (ii) Map
Construction Subsystem (MCS) that constructs the indoor map
based on a trajectory partitioning and clustering algorithm [3];
and (iii) Localization and Navigation Subsystem (LNS) that
allows users to check their current locations and navigate
themselves to their desired destinations via the shortest paths.

CIMLoc assumes that the mobile device can obtain one
location fix region at an entrance, which serves as an anchor
point to relate the trajectories for map construction. Note
that an accurate location fix point is not required; only an
approximation region will suffice for CIMLoc to correctly
construct the map. This location region may be provided by
the loss of GPS signals as the user moves indoors, overhearing
of broadcast beacons from existing Wi-Fi routers, overhearing
of Bluetooth beacons, or identification of QR codes at known
locations. Given the ubiquity of these providers and the limited
number of entrances in a building, we believe that this is a
reasonable assumption.

The four main contributions of our work can be summarized
as follows. First, to the best of our knowledge, CIMLoc is the
first indoor map construction system that handles the real-
world scenario, where crowdsourced DR trajectories can be
low-quality. Second, we do not make simplifying assumptions
on the layout of the indoor environment as some previous
works did. Besides the straight and width-fixed corridors, our
system is also able to reconstruct curved and width-varying
corridors. Third, our constructed map is a digital map (a
collection of points) that possesses two major advantages over
a traditional map: firstly, it can be directly utilized for digital
uses, such as localization, without any human intervention;
secondly, its visualization (image form) can be infinitely
zoomed without losing any fidelity, similar to Scalable Vector
Graphics (SVG). Finally, we show through implementation
and evaluation on mobile Android devices that CIMLoc can
construct indoor maps with small margins of errors.



The rest of the paper is organized as follows. Section II dis-
cusses related work in the literature. Section III describes the
CIMLoc system in detail. Performance evaluation of CIMLoc
is presented in Section IV. Section V concludes the paper with
suggestions for future work.

II. RELATED WORK

A. Dead Reckoning (DR)

DR, as a fundamental module of a localization or navigation
system, updates the current location by adding a displacement
vector to the previous location. The three major challenges that
lie in DR are the intrinsic sensor noise from the inexpensive
sensors, the unpredictable magnetic field distortion caused by
indoor metallic infrastructure, and the DR error accumulation
nature. Independent DR without external infrastructure aids is
only accurate for a short term, and the DR error accumulates
to an unacceptable extent easily in practice [2]. Consequently,
a DR system is usually aided by some external infrastructure
to achieve a satisfactory level of accuracy. Wi-Fi fingerprint-
ing [2], identifiable signatures [4], and map constraints [1]
have been proposed to ameliorate the error accumulation
situation.

B. Clustering and Trajectory Analysis

Clustering is an effective way to mine out the common
features hidden behind a huge data set. Density-based spatial
clustering of applications with noise (DBSCAN) [5] is a
density-based clustering algorithm that is able to identify and
exclude noise during clustering. Its immunity to noise is of
great value, especially when noisy data, such as crowdsourced
data, are to be dealt with.

Based on DBSCAN, [3] proposed a partition-and-group
framework that first partitions trajectories into line segments
with Minimum Description Length (MDL) principle, and then
performs DBSCAN to those line segments. [3] is able to dis-
cover common subtrajectories, which improves the utilization
ratio of crowdsourced data.

C. Crowdsourcing Indoor Map Construction

[6] hypothesizes that the walking always starts and ends at
the same location. [7] requires users to carry an additional
Arduino proximity sensor, and not to take another step until
the servomotor finishes one full sweep. [8] assumes that users
walk in a straight line in a corridor and that the corridors are
perpendicular to each other, and therefore will not suffice for
generic indoor environments that may have curved corridors.

Walkie-Markie [9] applies the spring relaxation concept
treating the encountered Wi-Fi landmarks as nodes and the
user trajectories as springs. As more user trajectories are
collected, the node positions are adjusted accordingly so as to
achieve the minimum system potential energy. CrowdInside [4]
uses identifiable acceleration patterns of the elevators, escala-
tors, and stairs to correct DR, and hence constructs the map.
This approach will fail in the cases where the users mainly
stay on the same floor, e.g. a promotion fair located in an
exhibition hall and a one-floor office such as our testbed.
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III. PROPOSED SYSTEM

A. System Overview

CIMLoc consists of three subsystems, i.e. Dead Reckoning
Subsystem (DRS), Map Construction Subsystem (MCS), and
Localization and Navigation Subsystem (LNS). As shown
in the system architecture (Figure 1), MCS and LNS are
implemented on a central server, whereas DRS is implemented
on the mobile devices. The central server crowdsources the
estimated trajectories from the mobile devices, constructs the
digital map, and notifies the mobile devices of their locations
on the constructed map.

DRS The magnetometer, gyroscope, and accelerometer of
the mobile device report the magnetic field �B, rotation rate �ω,
and acceleration �a to the DR algorithm. The step detection
algorithm detects the occurrence of each step. The stride
length (SL) and heading direction (HD) estimation algorithms
characterize each step as a step vector [l, θ]T , in which l is the
SL, and θ is the HD. Given an initial location estimate (x0, y0),
the series of location coordinates of n such detected steps,
{(x0, y0), (x1, y1), . . . , (xn, yn)}, is defined as a trajectory tr
in this paper. m such trajectories constitute a trajectory set
T = {tr1, tr2, . . . , trm}, which is the input of MCS and LNS.

MCS MCS first partitions the trajectories into segments,
and then clusters them into a cluster set C. For each cluster
in C, a representative trajectory is generated. The represen-
tative trajectory set is denoted by R. Meanwhile, the cluster
connectivity is inferred from C, and stored as a connectivity
lookup table denoted by X . Given X , representatives in R can
be connected, and their intersections can also be found. The
connected representatives form the corridor skeleton R′, and
serve as the input of the subsequent sliding window block to
generate the smooth corridor walls W . The output of MCS is
the constructed digital map characterized by X , R′, and W .

LNS LNS performs particle-filter-based localization and
routing-like navigation easily without any human intervention.
The particle filter (PF) for localization utilizes the physical
constraint that one cannot walk through the walls in estimating
the posterior probability distribution of the user’s location.



Navigation helps a user find the shortest path from the source
to destination.

B. Dead Reckoning Subsystem (DRS)

The algorithm for DRS is shown in Algorithm 1.
1) Step Detection: The acceleration signal is first passed to

a low-pass filter. Each step taken by a pedestrian corresponds
to a peak-valley (P-V) pair in the filtered acceleration mag-
nitude ‖�a‖ pattern [2]. Hence, detecting steps is essentially
monitoring the occurrences of valid P-V pairs iteratively
(Lines 2-4 in Algorithm 1). A valid P-V pair must have a
P-V magnitude difference larger than a threshold value ΔPV,
whose value can be determined by calibration. In addition,
the occurrence time difference between a valid peak and its
neighboring valley has to be greater than another threshold
value Δt = 250ms. The rationale behind the choice of 250ms
is that one can only take up to two steps (two peaks and two
valleys) per second during a normal-speed walking. Thus, any
P-V pair with a time interval smaller than 1 s

4 = 250ms is
unlikely to be valid.

2) Stride Length Estimation: Because each step may have
a different SL, we apply the SL estimation model from [10],
l = k · 4

√
p− v, where p is the peak acceleration value, v is the

valley acceleration value, and k is a user-specific coefficient.
Since ΔPV and k are user-specific, they can both be calibrated
by entering the walking distance after 10 steps.

3) Heading Direction Estimation: In this paper, we assume
that the users hold the mobile devices with the screen facing
up while trying to locate or navigate themselves. With this
device placement, HD is the azimuth, and the rotation rate
around z-axis ωz can be easily incorporated to assist the digital
compass to improve the HD estimation accuracy. The normal
earth magnetic field value is around 42.12 μT [11]. If ‖ �B‖
exceeds 50 μT, �B is deemed to be distorted, and thus, we
use the gyroscope alone to estimate the HD as θ = θg =
θ +

∫
ωz(t)dt, where θg denotes the HD estimate from the

gyroscope. Otherwise, we use the weighted average of the
two HD estimates, given by θ = α · θg + (1− α) · θc, where
α is the weighting constant, and θc is the HD estimate from
the digital compass.

C. Map Construction Subsystem (MCS)

Figure 2 shows an example of the map construction proce-
dure.

1) Partitioning and Clustering: MCS adopts a partition-
and-group framework similar to [3], which first partitions
the trajectories into line segments using MDL principle, and
then groups these line segments into different clusters using
DBSCAN [5]. One representative trajectory is generated for
each cluster by sweeping a line along the cluster direction.

In [3], the line segment distance for clustering is defined as
the simple sum of three basic distance components, namely
the perpendicular distance d⊥, parallel distance d‖, and angle
distance dθ. In contrast, in this paper, the distance between
line segments s1 and s2 is computed as a weighted sum

d(s1, s2) = w⊥ · d⊥(s1, s2) +w‖ · d‖(s1, s2) +wθ · dθ(s1, s2)

Algorithm 1 Dead Reckoning Subsystem (DRS)

INPUT: A location fix f = (x0, y0); flows of �a, �ω, �B
OUTPUT: A trajectory tr = {(x0, y0), (x1, y1), . . . , (xn, yn)}
ALGORITHM:

1: procedure GENERATETRAJECTORY
2: while new �a do
3: ‖�a‖ ← LPF

(√
a2
x + a2

y + a2
z

)
4: if detectPV(‖�a‖) is TRUE then � new step
5: l ← k · 4

√
p− v � SL l

6: θ ← estimateHD(�a, �ω, �B) � HD θ
7: tr.add

(
(xprev + l · sin θ, yprev + l · cos θ))

8: function ESTIMATEHD(�a, �ω, �B)
9: if ‖ �B‖ < 50 μT then � normal value 42.12 μT

10: α ← 0.99
11: �Exyz ← �Bxyz × �Gxyz

12: �Nxyz ← �Gxyz × �Exyz

13: θc ← arctan
(

Ey

Ny

)
� from digital compass

14: else � distorted
15: α ← 1
16: θg ← θ +

∫
ωz(t)dt, � from gyroscope

17: θ ← α · θg + (1− α) · θc
18: return θ

where w⊥ > w‖, wθ. This inequality is imposed because of
the following two reasons. First, two line segments may still
have a large d‖, even though they in fact lie in the same
corridor (cluster). Second, there exist parallel corridors that
make dθ ≈ 0 in many floor plans. Therefore, under the indoor
map context, d⊥ should carry a higher weight than d‖ and dθ
so that the clusters become more distinguishable.

DBSCAN is suitable for our problem, because the density
concept of DBSCAN effectively excludes noise, the severely
drifted trajectories, during the clustering (from Figure 2a
to 2b). Current values of the DBSCAN parameters ε and
MinLns are respectively set as 1m and 3 so that the drifted
trajectories are excluded, and all the clusters are correctly
distinguished.

2) Cluster Connectivity: The partitioning points of a tra-
jectory obtained by MDL principle are essentially its turning
points. A turning point means a transition from one cluster
(corridor) to another, which implies that these two corridors
are connected. Thus, any partitioning point from one cluster
falling into another signals the positive connectivity between
these clusters. Therefore, the convex hull q enclosing all the
partitioning points is found for every cluster (Figure 2c). Then,
the connectivity between two clusters ci and cj can be easily
determined by checking whether any partitioning point of ci
or cj falls into qj or qi, respectively. The cluster connectivity
X is stored as a lookup table.

3) Corridor Generation: Incorporating the connectivity
information X , we find the intersections and connect the
representatives in set R into the connected representative set
R′, which forms the skeleton of the corridors. The corridor
boundaries W , i.e. the walls, are estimated by an averaging
window sliding along each r′ ∈ R′. The final constructed
digital map M containing the corridor connectivity X , corridor
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Fig. 2. An Example of the Indoor Map Construction Procedure

skeleton R′, and corridor walls W is stored in point form as
a tiny (12 kB) text file, which can be easily visualized as in
Figure 2d.

4) Auxiliary Histogram Algorithm: A crowdsourcing sys-
tem can perform poorly in its startup phase when the collected
data are still sparse. To make the digital map available for
localization services as soon as possible, we design a best-
effort auxiliary algorithm based on the two-dimensional (2D)
histogram for the system startup phase.

We first divide the 2D plane into 1m×1m cells. Once
a trajectory point falls into a cell, its cell count increments
by one. The cell size 1m×1m is derived from the fact
that the average human SL is between 0.6m and 0.9m. On
the one hand, a value larger than 1m will lead to double
counting, if two consecutive short steps remain in the same
cell. On the other hand, a value smaller than 1m will lead to
missed counting, if a long step skips over the cell. Although
the histogram method suffers from the drifted trajectories, it
provides a best-effort and efficient way of map generation
when the trajectories are sparse in the startup phase.

D. Localization and Navigation Subsystem (LNS)

Since X is already available and the edge costs (distances
between two adjacent intersections in this case) are also
easy to find, a simple routing algorithm, such as Dijkstra’s
algorithm, will suffice for navigation. Hence, we will omit the
discussions on the navigation function, and mainly focus on
the localization function.

The algorithm for LNS is shown in Algorithm 2. Note that
the starting point (x0, y0) as an input is optional for LNS
to locate the user. However, in this case where the starting
location is not given, the time needed for the particles to
converge depends on the trajectory that the user takes.

PF updates the posterior distribution estimates of the current
location by observing the physical constraints imposed by the
walls. Let pji and wj

i denote the location coordinates and
the weight of the ith particle upon jth step, respectively.
PF uses Np weighted particles {pji , wj

i }, i = 1, 2, . . . , Np to
approximate the conditional pdf of the location upon jth step
as

f
(
pj | z0:j) ≈

Np∑
i=1

wj
i δ(p

j − pji )

where δ(·) is the Dirac delta function, and z0:j denotes all the
observations until the jth step [2].

Algorithm 2 Localization and Navigation Subsystem (LNS)
IMPORT: Digital Map M ; 2D Histogram H
INPUT: n Steps {[l1, θ1]T , . . . , [ln, θn]T }; Start (x0, y0) (optional)
OUTPUT: Estimated Location p̂j upon the jth step
ALGORITHM:

1: procedure LOCALIZATION

2: if (x0, y0) is given then � Step 1
3: P 0 ← {p0i = (x0, y0), w

0
i = 1

Np
}, i = 1, . . . , Np

4: else
5: P 0 ← {p0i , w0

i = 1
Np

| p0i ∼ U(M)}, i = 1, . . . , Np

6: for (j = 1; j ≤ n; j++) do
7: for all pj−1

i ∈ P j−1 do
8: θ ← θj + θv ∼ N (0, σ2

θ)
9: l ← lj + lv ∼ N (0, σ2

l )
10: pj−1

i ← (
xj−1
i + l · sin θ, yj−1

i + l · cos θ) � Step 2
11: if pj−1

i in inaccessible region then � Step 3
12: wj−1

i ← 0

13: if ∃ wj−1
i ∈ P j−1 such that wj−1

i 	= 0 then � Step 4
14: P j ← resample(P j−1)
15: else
16: P j ← P j−1

17: p̂j =
Np∑
i=1

wj
i · pji � Step 5

In detail, the procedure consists of five steps: initialization,
motion updates, measurement updates, resampling, and the
expectation computation, among which Step 1 runs only once,
and Steps 2-5 run iteratively every time a new step is taken.

First, depending on the availability of the starting position
(x0, y0), the particles are either all initialized to the starting
point or uniformly distributed over the accessible region on the
map (Lines 2-5 in Algorithm 2). Second, every particle updates
its location coordinates with a step vector [l, θ]T , which is
obtained by introducing zero-mean Gaussian noise into both
SL and HD of the new step (Lines 8-10 in Algorithm 2).
The proper variance values of the introduced Gaussian noise
can be estimated with data obtained from several straight
walking trials. Third, all the particles update their weights
by examining whether they have violated the wall constraints
imposed by either the histogram H in the startup phase or
the digital map M in the developed phase. If they do, their
weights are set to zero, leading to their eliminations in the
resampling step. Otherwise, their weights remain unchanged.
Fourth, PF resamples the particles in order to avoid particle



degeneracy. Finally, the location estimate is computed as the
expectation of the particles’ locations.

Note that in the startup phase when not all the corridors
are discovered, it is possible that all the particles carry a
zero weight. When this happens, they all survive and continue
propagating (Lines 15 and 16 of Algorithm 2). Because the
particle cloud is spread by a zero-mean Gaussian random
number, the location estimate p̂j will roughly follow the
DR trajectory. Once any particle gains a non-zero weight
by entering the accessible region, Line 13 in Algorithm 2
will be satisfied, causing all the other zero-weight particles
to be eliminated immediately. Then, PF restores to its normal
operating state, wherein not all particles are of zero weight.
With this design, LNS manages to provide services even with
sparse trajectories.

IV. EXPERIMENTAL RESULTS

We evaluate the performance of CIMLoc using Level 12
of our office building, as illustrated in Figure 3. The mobile

I2R
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Entrance 1
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89
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Fig. 3. Testbed - I2R Level 12 South. It contains both straight and curved
corridors. The two entrances are labeled in red. The green dots are the
waypoints for ground truth collection.

devices used in the experiments are HTC One X and Samsung
Galaxy S4.

Our full trajectory set for map construction contains 240
collected trajectories, which all start from either Entrance 1
region or Entrance 2 region, but may take randomly different
paths. They neither necessarily follow any waypoints nor
traverse one full round.

On the other hand, for localization error analysis, the
ground truth is collected as follows. In each trial, a pedestrian
starts from Waypoint 1 and traverses the corridors from
Waypoint 2 in sequence to Waypoint 10 for three rounds,
i.e. 2, 3, . . . , 10, 2, 3, . . . , 10, 2, 3, . . . , 10. Each trial is approx-
imately 300m in length. When the user passes a waypoint,
the “Stamp” button on the screen is pressed. Thus, each trial
contains 27 stamps for localization error computation. 17 of
such trials are collected.

Prior to the evaluations, we digitize Figure 3 by manually
entering all the necessary corridor wall coordinates into a
text file (same data structure as our constructed map). This
file serves as the real map to benchmark our constructed
map in terms of the localization error, which is defined as
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Fig. 4. AMLE vs. the Trajectory Quantity Available for Map Construction

the euclidean distance between an estimated location and its
corresponding waypoint.

A. Map Construction Performance

We study how the performance of CIMLoc evolves as the
trajectory quantity increases. Let Mn denote the map gener-
ated with n trajectories. MCS iteratively injects 25 random
trajectories out of the 240 trajectories to generate a map until
all the 240 trajectories are included in the map construc-
tion. After this process, a constructed map set composed of
M25,M50, . . . ,M225, and M240 is generated.

We define the average map localization error (AMLE) ēMn

of map Mn as:

ēMn =
1

Ntrials
·
Ntrials∑
j=1

⎛
⎝ 1

Nwaypoints
·
Nwaypoints∑
k=1

ej,kMn

⎞
⎠

where ej,kMn
denotes the localization error of the jth trial at

the kth waypoint when particle-filtered with map Mn. We
perform the PF-based localization to the stamped trajectory set
with both the real map and the constructed maps. The AMLE
together with its 95% confidence interval (CI) is plotted in
Figure 4. Note that x-axis values have no effects on the real
map curve.

Due to the trajectory sparsity during the startup phase (M25

and M50), CIMLoc utilizes the auxiliary histogram algorithm
to aid the PF-based localization. Figure 4 shows that the
AMLE CI starts at a relatively large value, ±0.8m, and
gradually shrinks to ±0.2m. This reflects that the system
performance fluctuates in the startup phase due to the tra-
jectory sparsity, but stabilizes soon (M75 onwards) as the
trajectory quantity increases. As the number of collected
trajectories increases beyond 75, the localization performances
delivered by the real-map-PF and the constructed-map-PF are
less than 0.4m in difference. This indicates that CIMLoc is
able to construct a digital map that performs as accurate
localization as the real map, implying the high conformity
of the constructed map with the real map.
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Fig. 5. AWLE without any Map, with the Constructed Map, and with the
Real Map vs. the Accumulated Walking Distance

TABLE I
AWLE PERCENTAGE REDUCTION

Distance (m) 85 125 180 227 260

Constructed Map 58.3% 51.1% 81.6% 81.5% 85.3%

Real Map 82.3% 51.8% 86.6% 88.0% 89.9%

B. Map-aided Localization Performance

We evaluate CIMLoc in its developed phase, when the
system stabilizes and constructs a complete map showing all
the corridors, as shown in Figure 2d. We define the average
waypoint localization error (AWLE) ēwi at waypoint wi as

ēwi =
1

Ntrials
·
Ntrials∑
j=1

ejwi

where ejwi
denotes the localization error of the jth trial at

waypoint wi. We perform the PF-based localization with the
constructed map and the real map. Figure 5 shows the AWLE
together with its CI for: (i) no map; (ii) the real map; and (iii)
the constructed map.

We observe that both the real map and the constructed
map are able to eliminate the DR cumulative errors, and
thus significantly reduce localization errors. Figure 5 illustrates
that the AWLE by DR alone climbs to 22m, when the user
has traveled for 300m. Note that a 22m localization error
in an indoor environment has nullified the localization result,
because such an error can lead to a totally different corridor
(e.g. from Cluster 2 to Cluster 3 in Figure 2b). On the contrary,
the PF-based localization with a digital map can successfully
mitigate DR error accumulations by constantly correcting the
DR trajectory with the map information.

To further quantify the improvements achieved by incor-
porating the constructed map information, we tabulate the
AWLE percentage reductions given by ēno map−ēmap

ēno map
in Table I.

Generally, the AWLE percentage reduction increases with the
accumulated walking distance. When the accumulated walking
distance reaches 260m, the percentage reduction is as high as
85.3%. We note that even at the start of the journey, when

the error accumulation is not that severe, a discernibly high
percentage reduction of 58.3% in AWLE can still be achieved.

To conclude, our proposed system in its developed phase
manages to construct an accurate indoor map, with which
the DR cumulative errors can be eliminated, and therefore,
accurate localization results can be consistently obtained.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose CIMLoc - a crowdsourcing
indoor digital map construction system for localization and
navigation. Experimental results reveal that CIMLoc is able to
construct the indoor digital map accurately and reduce the lo-
calization errors significantly by incorporating the constructed
map information into DR. More importantly, our system, as a
crowdsourcing system, utilizes the collected data wisely and
efficiently, which enables the system to provide the best-effort
services when the trajectories are sparse.

As part of future work, we intend to enable CIMLoc
to tolerate any arbitrary device orientation, as well as to
automatically determine the various parameters used in each
subsystem. Another possible improvement is to find a deter-
ministic algorithm that triggers the transition from the aux-
iliary histogram algorithm to the clustering-based algorithm.
These improvements will allow the system to be completely
independent of human intervention.
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