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D-Pruner: Filter-Based Pruning Method for Deep
Convolutional Neural Network

Loc N. Huynh, Youngki Lee, Rajesh Krishna Balan
Singapore Management University
{nlhuynh.2014, youngkilee, rajesh}@smu.edu.sg

ABSTRACT

The emergence of augmented reality devices such as Google Glass
and Microsoft Hololens has opened up a new class of vision sensing
applications. Those applications often require the ability to con-
tinuously capture and analyze contextual information from video
streams. They often adopt various deep learning algorithms such as
convolutional neural networks (CNN) to achieve high recognition
accuracy while facing severe challenges to run computationally in-
tensive deep learning algorithms on resource-constrained mobile
devices. In this paper, we propose and explore a new class of com-
pression technique called D-Pruner to efficiently prune redundant
parameters within a CNN model to run the model efficiently on mo-
bile devices. D-Pruner removes redundancy by embedding a small
additional network. This network evaluates the importance of fil-
ters and removes them during the fine-tuning phase to efficiently
reduce the size of the model while maintaining the accuracy of the
original model. We evaluated D-Pruner on various datasets such
as CIFAR-10 and CIFAR-100 and showed that D-Pruner could re-
duce a significant amount of parameters up to 4.4 times on many
existing models while maintaining accuracy drop less than 1%.

Keywords

Continuous Vision, Deep Learning, Compression;

1. INTRODUCTION

The appearance of augmented reality devices such as Google
Glass and Microsoft Hololens has been opening up various new
vision sensing applications. The core function of these applica-
tions is to continuously capture contexts of users and surroundings
from streaming video data and enable situational interactions with
users. For example, a virtual assistant system for dementia patients
identifies objects and people near to the patient and provide the pa-
tient with the intelligent guidance in real-time [2]. Recently, deep
learning algorithms such as a convolutional neural networks (CNN)
have been actively adopted for various computer vision tasks such
as image recognition, object detection, and identification tasks to
achieve higher recognition accuracy [7} 20} 22].
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The key challenge to enable continuous vision applications is to

run the state-of-the-art CNN models efficiently on resource-constrained
mobile devices. Recent CNN models such as VGG-16 [20]], ResNet [7]],

and Inception [22]] often require a huge amount of computational
resources regarding CPU/GPU cycles or memory usage, making
their execution slow on mobile devices. For instance, VGG-16 and
ResNet-152 require 15.3 GLOPS and 11.6 GLOPS to recognize a
single image, which often takes at least hundreds of milliseconds
on the commodity smartphones [9} |10} |14]]. To address this prob-
lem, cloud offloading is often considered. However, the offloading
approach has critical privacy concerns as it may expose a massive
volume of private images and videos of users to the cloud.

Previous works [1}, 5, |6 |11, [24] have shown that CNNs usu-
ally have a lot of redundancy in terms of filters and parameters.
The problem is further aggravated since developers often leverage
transfer learning [19] to fine-tune the state-of-the-art models on
new datasets to increase recognition accuracy. For example, the
first 13 convolutional layers in VGG-16 can be used to provide ro-
bust features for a variety of new tasks such as classifying different
types of fruits or animals which are not available in the ImageNet
dataset [4]]. Developers can attach a few additional layers on top of
the existing 13 layers to fine-tune the network on new datasets. In
many cases, if we don’t process it carefully, transfer learning makes
the model unnecessarily large and redundant to run on mobile de-
vices.

Compression of the neural networks has been actively studied for
efficient execution of deep neural networks. Some works [1, 5] fo-
cus on approximating each layer separately via factorization tech-
niques and fine-tune the whole network to restore accuracy. How-
ever, without global knowledge about relationships between lower
and upper filters, independent pruning of filters might lead to signif-
icant loss in recognition accuracy. Other works [0] remove param-
eters based on their magnitudes during end-to-end fine-tuning. Un-
fortunately, the weight matrices become sparse and make it hard to
leverage highly optimized libraries such as OpenBlas/ClBlast [[18|
23| to perform inference efficiently on mobile devices. Recently,
Yao et al. proposed DeeploT system that used Recurrent Neural
Network (RNN) to compress the models. However, RNN is prone
to gradient vanishing problem and may not work well with very
deep networks.

In this paper, we propose a general technique called D-Pruner
to reduce the memory footprint and computational cost of many
existing and transferred CNN models. D-Pruner automatically fig-
ures out redundant filters in convolutional layers and removes them
to make the model smaller in terms of memory and computational
requirements. Its key idea is to embed a small network called mask-
ing layer into every convolution layer to score how effectively each
filter contributes to the outcome. Masking layers removes only low
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scored filters and fine-tune the network to keep the accuracy while
pruning out the unnecessary filters. By learning the extended net-
work end-to-end, D-Pruner can figure out the relationship between
filters and make a better pruning decision.

We conducted several experiments on two different datasets (CIFAR-

10 and CIFAR-100 [12]) to evaluate D-Pruner. Our results show
that D-Pruner can compress existing models to be 4.4 x and 2.76 x
smaller in terms on memory footprint, 4.57x and 2.9x better in
term of computational cost on CIFAR-10 and CIFAR-100 respec-
tively. In our latency tests, pruned models on CIFAR-10 and CIFAR-
100 achieve the speedup of 1.85x and 1.61x on Samsung Galaxy
S7 device. Furthermore, D-Pruner achieves 8% smaller in size with
accuracy of 90.48% comparing to pruned VGGNet with accuracy
of 90.5% as proposed in DeeploT [24] on CIFAR-10. We believe
that mobile developers would be beneficial from D-Pruner to build
small and efficient CNN models for many vision sensing tasks.
The contribution of our paper can be summarized as follows:

e We propose D-Pruner , a simple but effective compression
technique to remove redundancy within existing and trans-
ferred CNN models. D-Pruner introduces a novel concept of
the masking block to figure out redundant filters which have
low impacts on final accuracy.

e We leverage the knowledge from the training set to effec-
tively remove only a subset of redundant filters to maintain
accuracy at the highest level.

e We conducted intensive experiments using two different datasets

on two network architectures to demonstrate the usefulness
of D-Pruner. Our results on CIFAR-10 and CIFAR-100 [12]
show that D-Pruner can compress existing models to be 4.4 x
and 2.76x smaller in terms on memory footprint, 4.57 x and
2.9 better in term of computational cost on CIFAR-10 and
CIFAR-100 respectively. In our latency evaluation, pruned
models on CIFAR-10 and CIFAR-100 achieve the speedup
of 1.85x and 1.61 x on Samsung Galaxy S7 device.

2. RELATED WORK

Mobile Deep Learning: There has been many prior works to
migrate deep learning models onto mobile devices. DeepEar |15]]
was the first framework to support running deep neural network
models on mobile CPUs and DSPs for audio sensing tasks. After-
wards, many other frameworks such as DeepX [14], DeepSense [9|
and DeepMon [10] have been proposed with various optimizations
for mobile vision applications. However, those focus primarily on
optimizing the processing pipeline to make existing models run
faster and more energy-efficient. For instance, DeepX tries to split
computations between CPUs and low power DSPs to reduce energy
consumption. DeepSense and DeepMon take another approach by
doing low-level optimizations to utilize the powerful mobile GPUs
to execute computations in parallel. Unlike those systems, D-Pruner
focuses on optimizing the models to be smaller in terms of memory
footprint and computational cost so that they can be run efficiently
on any systems above.

Compression Techniques: General optimizations to compress
deep learning models are widely studied for both servers and mo-
bile devices. Denton et al. used matrix factorization to approximate
the weights within CNN [5] to reduce its parameters. Similarly,
Lane et el. also used matrix factorization to reduce the number of
operations within dense layers to improve inference time [1f]. In
those approaches, each layer is approximated separately and com-
bined for final fine-tuning step. However, there is no global in-
formation sharing between approximations to make sure that in-
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Figure 1: Convolutional Neural Network Architecture

formation loss in the first layer will have no effect on second layer.
Hence, accuracy drop would be significant if we prune large amount
of parameters. Han et al. proposed a method to prune network
connection based on magnitude of parameters during fine-tuning
phase [6]. However, weights matrix becomes sparse after pruning
process and makes it hard to leverage optimized library to execute
inference step efficiently.

Yao et al. proposed Deeplot system that leverages recurrent neu-
ral network (RNN) to learn the relationship between parameters
across many layers and prune the redundancy automatically [24].
However, RNN is prone to gradient vanishing problem and may not
work well if the input sequence is too large. In this case, DeeploT
may not work well with state-of-the-art models such as ResNet or
Inception network. D-Pruner shares the similar concept by learn-
ing global relationship end-to-end and automatically pruning un-
necessary parameters. However, D-Pruner solves the potential of
gradient vanishing problem by integrating a novel masking blocks
directly to CNN model and fine-tune the whole network without
any needs of RNN.

3. CONVOLUTIONAL NEURAL NETWORK

Since AlexNet architecture was proposed in 2012 [13|], there
have been many significant changes in the first network architec-
ture (Figure[I) to improve the capabilities of CNN on many com-
puter vision tasks. One interesting change is the replacement of
fully connected layers or dense layers by [1x 1] convolutional layer
and global average pooling in many state-of-the-art models such as
ResNet [[7], Inception network [22]. As dense layers consume the
most parameters in CNN [9]], this change significantly reduces the
size (or memory footprint) of state-of-the-art models. However, as
modern networks still rely heavily on convolutional layers to ex-
tract meaningful visual features, high computational cost is still an
open problem [9].

There are two widely used methods to reduce computational cost
in CNN. The first method is to use factorization techniques such as
SVD (singular-value decomposition) to approximate the weights
matrices during inference step to reduce the total processing oper-
ations. However, this approach tends to have high accuracy loss on
very deep networks [/1}[14]. The second method is to prune the re-
dundant filters to achieve simpler but more efficient CNNs. As the
computational cost is proportional to the number of filters, pruning
unnecessary filters will result in improving both training and in-
ference time. Many works have shown potential results using this
approach [[11}[24].

D-Pruner follows the latter approach by recognizing redundancy
automatically during fine-tuning process. D-Pruner is designed as
a general technique to compress any modern CNN models to be
smaller and less resource-consuming to work efficiently on both
servers and mobile devices.

4. D-PRUNER ALGORITHM

In this section, we first introduce briefly how the technique works.
Secondly, we provide details about our novel masking block to
determine removable filters. Finally, we show how the training



process takes place to prune unnecessary parameters based on the
knowledge from masking blocks.

The algorithm works in multiple pruning iterations. In each it-
eration, we first expand all convolutional layers with extra layers
called masking blocks to score how much each filter impacts on
final accuracy. Each masking blocks will output a set of candidate
filters to be removed for each particular image input. In order to
prune only filters that have little impacts on the outcome, we lever-
age the all training images to collect the probability to be removed
of each filter. We only remove those with high probability of being
removed (e.g. over 95% on training set). We then fine-tune the new
network to recover original accuracy and achieve a smaller model.
Finally, we repeat the pruning process again until it converges (e.g.
accuracy drop is above certain threshold.).

4.1 Masking Block

The goal of masking block is to determine removable filters dur-
ing the pruning process. For example, fine-tuning ImageNet mod-
els such as VGG-16 or ResNet to detect multiple types of fruits
might contain a lot of redundant filters to recognize animals, which
can be removed to make the model smaller and simpler. By at-
taching masking block to convolutional layer, it will inspect the
output of every filter and score how effectively they affect the fi-
nal outcome. Hence, unnecessary filters may be removed if they
have no or little impact on the final accuracy. Furthermore, mask-
ing block incurs very small computational overhead and should be
easily fine-tuned.

e Secondly, we predict which filters should be removed within
the final network architecture. As the masking block outputs
a set of removable filters for every single image input, one fil-
ter can be removed for a particular input but can be preserved
for another. We collect the removal distribution of each fil-
ter on the all training images and only remove the filters that
have removable probability higher than predefined threshold
(e.g. 95%) (line 6-14). For instance, the first convolutional
layer of VGG-16 has 64 filters. If we use K=10 filters, during
the training phase, masking block will automatically zero-out
all the output of 10 filters with lowest scores on each training
image. Only 54 remaining filters will contribute to the final
output. However, masking block does not always produce
the same 10 filters for every training image. In order to make
correct pruning decision, we use all training images to col-
lect the probability to be removed of all 64 filters and remove
only those have higher than a threshold 7.

e Finally, we build a new network by removing masking blocks
and removed filers from previous step (line 15). We transfer
the learned parameters to the new network and fine-tune it
for few epochs to recover original accuracy (line 16-17).

e We update the new model if validation accuracy is within
affordable range (line 18-21) and repeat the pruning process
until we satisfy with the result or final accuracy drops below
a certain threshold (line 3).

Our masking block is inspired by SE block in Squeeze-and-Excitation Algorithm 1 Pruning Algorithm

network [8]] which is used to measure the importance of each filter
within a single convolutional layer. We leverage SE block and add
masking function in order to filter out top-K unimportant filters.

Masking block as shown in Figure[2]consists of an average pool-
ing followed by 2 dense layers and a softmax layer to compute the
score of each particular filter. Afterwards, the masking layer takes
the scores, a maximum number of filters K to be removed and out-
puts the binary masks which zero out top-K lowest scores. At the
end, we multiply the masks and previous output of convolutional
layer to remove all unnecessary outputs corresponding to removed
filters. Hence, only remaining output will contribute to the final
outcome during fine-tuning process.

Masking block

Avg.
Pooling

Masking

Conv

E
153

Figure 2: Masking Block
4.2 Pruning Method

The pruning process consists four main stages as described in
Algorithm ]
e Firstly, we attach masking blocks to original network as shown
in Figure 2] and fine-tune the network on training set (line 4).
We fix the original network and train only the masking blocks
for first few epochs and then fine-tune the whole network for
few more epochs afterwards. (line 5)

1
2
3
4

e ® N & »n

21
22

Data: Network O, Dataset D, const K, theshold 7, epochs N
Result: Network P

acc < acc(0)

P < Network O

while acc > expected_accuracy do

P’ < Network P + {masking blocks}
Finetune P’ on D for N epochs
R+ {}
for ¥ masking block [ in P’ do
forV filter fin [ do
Pry < P(mask(f) == 11D)
if Pry < T then
| R+ RU{f}
end
end
end
P” + Network P - R
Transfer learned paraemters from P’ to P”
Finetune P” on D for N epochs
if acc(P”) > acc then
acc < acc(P")
P« P
end
end

5. EXPERIMENTS
5.1 Experiment Setup

Datasets. We evaluated D-Pruner by compressing existing mod-
els on two datasets: CIFAR-10 and CIFAR-100 [12]. Each dataset
consists of 60.000 32x32 color images (50.000 images for train-
ing and 10.000 images for validation). CIFAR-10 and CIFAR-100
contains images in 10 and 100 classes respectively.



CIFAR-10 CIFAR-100
ALL-CNN-C | ALL-CNN-C(*) | Impr. NIN NIN(*) Impr. | ALL-CNN-C | ALL-CNN-C(*) | Impr.
Accuracy(%) 90.19 89.34 -0.85 89.39 88.83 -0.44 61.71 61.08 -0.63
# Parameters 1.3M 310K 4.4x% 966K 348K 2.77x 1.3M 501K 2.76x
# Mul-Add Operations 281M 61M 4.57x 222M 132M 1.68 x 282M 97TM 2.9x%
Latency(ms) 211(%8) 113(+14) 1.85x | 185(£25) | 131(£11) | 1.41x 208(+11) 129(+14) 1.61x

(*): pruned model
Impr.: Improvement
Table 1: Overall Performance of D-Pruner
CIFAR-10
ALL-CNN-C | ALL-CNN-C(*) | ALL-CNN-C(**) | VGGNET | VGGNET-DEEPIOT
Accuracy(%) 90.19 90.48 89.34 90.5 90.5
Number of Parameters 1.3M 664K 310K 29.7M 724K

(*): Pruned model at 4th iteration (**): Final pruned model

Table 2: Comparison with DeeploT

Filter Shape
Type / Stride - Activation | ALL-CNN-C NIN
Convl /sl - ReLU 3x3%x3%96 5x5%x3x192
Conv2 /sl - ReLU 3x3%x96x96 1x1x192x160
Conv3/s2 - ReLU 3%x3%x96x96 1x1x160x96
Conv4 /sl - ReLU 3x3x96x192 5%x5x96x192
Conv5 /sl - ReLU 3x3%x192%x192 | 1x1x192x192
Conv6 /s2 - ReLU 3x3x192x192 | 1x1x192x192
Conv7 /sl - ReLU 3x3x192x192 | 3x3x192x192
Conv8 /sl - ReLU 1x1x192%x192 | 1x1x192x192
Conv9 /sl - ReLU 1x1x192x10 1x1x192x10
Global Average Pool / s1

Softmax

Table 3: Network Architectures

Models. We trained the ALL-CNN-C model from which
achieves accuracy of 90.19% on CIFAR-10 and 61.71% on CIFAR-
100. In order to show the robustness of D-Pruner on variety of ar-
chitectures, we also trained NIN (network in network) model from
[16] which achieves accuracy of 89.39% on CIFAR-10 for further
evaluations. Unlike other models such as VGGNet that use
dense layers for classification, both networks in our evaluations use
only convolutional layers which results in fewer number of param-
eters while achieving similar accuracy. ALL-CNN-C and NIN uses
approximately about 281M and 222M Mul-Add operations respec-
tively. Network architectures of ALL-CNN-C and NIN models on
CIFAR-10 are shown in Table 3]

Training process. We used Keras (3] in D-Pruner’s implemen-
tation. For every pruning step, we tried to remove K = 20% of the
filters and fine-tuned the network for N = 35 epochs (10% of num-
ber of epochs we used to train original network). We used Nesterov
Gradient Descent for fine-tuning with learning rate, momen-
tum and decay set to 0.01, 0.9 and 0.000001 respectively. We also
used threshold 7 of 0.95 to determine which filter will be removed.
We repeated the pruning process for several iterations until there
was no filter to be removed or the expected accuracy loss was larger
than 1%.

Metrics. We use accuracy, number of parameters, amount of
mul-add operations and processing latency as our key performance
metrics. For latency evaluation, we evaluated pruned models us-
ing DeepMon framework and report the average latency on

Samsung Galaxy S7 (with Exynos 8890 processor and Mali-T880
GPU).

5.2 Overall Results

Overall, D-Pruner successfully compresses investigated models
to be much smaller and less computational consuming. Table [I]
shows the performance of pruned versions of ALL-CNN-C and
NIN models on both CIFAR-10 and CIFAR-100.

On CIFAR-10, D-Pruner easily compress both ALL-CNN-C and
NIN models to be 4.4 x and 2.77x smaller in memory footprint (in
terms of number of parameters). It also reduces 4.57x and 1.68 %
computational cost (in terms of the amount of require Mul-Add op-
erations) in ALL-CNN-C and NIN models respectively. We notice
that performance of D-Pruner on ALL-CNN-C model is signifi-
cantly higher than on NIN network due to several reasons. First,
original NIN model has 1.34x less number of parameters com-
paring to ALL-CNN-C model which makes reduction in memory
footprint seem to be lower. Second, NIN network leverages [1x1]
convolutional filter which results in significantly reduction in com-
putational cost, which explains why computation cost is reduced
only 1.68x while memory footprint is reduced 2.77x. In latency
evaluations, pruned models from ALL-CNN-C and NIN networks
improves inference time up to 1.85x and 1.41 x respectively.

Similarly, pruned version of ALL-CNN-C achieves 2.76 %, 2.9x
and 1.61 x reduction in memory footprint, computational cost and
inference time on CIFAR-100.

5.3 Performance Breakdown

Next, we investigate how D-Pruner affects the models during
each pruning iteration in terms of accuracy, amount of parame-
ters, number of Mul-Add operations and the amount of filters in
each convolutional layer using results from pruning ALL-CNN-C
model. In general, giving the expected accuracy drop, D-Pruner
gradually compresses the model by pruning unnecessary filters over
various iterations and makes it smaller in terms of memory foot-
print and computational cost while trying its best to maintain the
highest accuracy.

5.3.1 Impacts on Accuracy

We now investigate the impact of D-Pruner on the final accu-
racy. Figure [3]shows the accuracy of pruned models during mul-
tiple pruning iterations on both CIFAR-10 and CIFAR-100. We
achieve accuracy of 89.34% and 61.08% comparing to 90.19% and
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Figure 4: Parameters and Operations Reduction on CIFAR-10

61.71% from original models after 13 and 6 pruning iterations on
CIFAR-10 and CIFAR-100 respectively.

Firstly, we notice that it takes us 14 and 7 iterations to make the
accuracy loss above 1% threshold on CIFAR-10 and CIFAR-100.
This implies that the original models tend to have a lot of redun-
dancy and D-Pruner can effectively prune them without significant
loss in the final accuracy.

Secondly, we figure out that accuracy increases for the first few
iterations which indicates that the some redundancy negatively af-
fects the accuracy. Hence, D-Pruner can be used to slightly im-
prove accuracy by eliminating most negatively redundant parame-
ters.

Finally, we also want to note that the pruning process converges
faster on CIFAR-100 than CIFAR-10. As we use same architec-
ture on both tasks, it is understandable that classifying 100 classes
requires more network capacity in terms of filters and parameters
than classifying 10 classes.

5.3.2  Impacts on Parameters and Operations

Next, we investigate on how many parameters and number of op-
erations D-Pruner can prune during each iteration. Figure@ shows
that both the number of parameters and operations gradually de-
crease during pruning process. At 13th iteration, we achieve 4.4 x
and 4.57x reduction in number of parameters and Mul-Add op-
erations on CIFAR-10. As D-Pruner’s optimization is to reduce
the number of filters during each pruning iteration, both parame-
ters and number of operations would always decrease during the
pruning process.

Similarly, we also see the same trend on CIFAR-100 dataset
which results in 2.76x and 2.9x improvement on model’s param-
eters and number of Mul-Add operations.

5.3.3 Impacts on Latency
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We also explore the performance of pruned models on existing
mobile deep learning frameworks. Figure [5] shows the latency per
pruning iteration on both datasets using DeepMon framework. We
achieve the speedup of 1.85x and 1.61 x on CIFAR-10 and CIFAR-
100 respectively.

However, we notice that the latency slowly decreases after 9th
iteration. One reason is that number of operations per layer become
too small to make DeepMon utilize GPU resources efficiently. How-
ever, batching multiple images as input could improve the average
inference time.

5.3.4  Impacts on Number of Filters

Finally, we investigate the reduction of filters during the prun-
ing process on CIFAR-10. We plot the amount of filters within
two first blocks in ANN-CNN-C model which consist the first 6
convolutional layers as shown in Figure[6} Each block consists of
3 convolutional layers which have 96 and 192 filters respectively.
Both blocks end with spatial dimension reduction using convolu-
tional layer with stride is set to 2 instead of using Max-Pooling.

Interestingly, two blocks share the same trend in filters reduction.
The first and last convolutional layers within the block stop reduc-
ing after a certain threshold while the middle layer keeps reducing
during pruning process. This shows some insights for us the build
better network architecture where last layer inside a block should
have few filters comparing to previous layers.

5.4 Comparisons with DeeploT

We compare our pruned models with compressed VGGNet from
DeeploT on CIFAR-10 dataset as shown in Table 2] At 4th
iteration, D-Pruner provides a model with 8% less parameters than
DeeploT’s model while achieving comparable accuracy (90.48% vs
90.5%), even though we start with less accurate model. If we are
willing to sacrifice 1.16% (comparing to DeeploT), we will achieve
2.33x smaller model.



We also notice that DeeploT leverages recurrent neural network
(RNN) to prune the parameters. However, RNN is prone to gradi-
ent vanishing problem and may not work well in very deep neural
network such as ResNet or Inception network. Instead, D-Pruner
’s masking blocks can be easily integrated into CNN and can be
trained at ease.

6. DISCUSSION

Even though D-Pruner produces good preliminary results, there
are still plenty of works that need to be done in the near future.

Number of Removable Filters: D-Pruner has to do pruning
in several iterations to search for desirable model. Unfortunately,
pruning steps might take long time to process. One approach to
solve that problem is to increase the amount of removable filters K
during each pruning process. However, if K is not chosen carefully,
target model will lack of parameters to learn meaningful features
which will result in great accuracy drop. An approach to automati-
cally determine the number K during fine-tuning process should be
taken in consideration to make D-Pruner work more efficiently.

Improving Accuracy: As CNN often has a lot of redundant pa-
rameters, some of them might have negative impact on the final
outcome or make the model unstable. During our evaluations, we
showed that accuracy can be improved by eliminating some param-
eters. This can be explored further to make pruned model not only
smaller but also more accurate.

7. CONCLUSION

In this paper, we propose D-Pruner , a simple and efficient com-
pression technique to simplify existing CNN models in order to
make them work more efficiently on mobile devices without loss in
accuracy. On CIFAR-10, our evaluations on existing CNN models
show that D-Pruner can reduce 4.4 in terms of memory footprint
and 4.57 x in terms of computational cost with less than 1% accu-
racy drop. Furthermore, compressed model runs 1.85x faster on
Samsung Galaxy S7 comparing to original model during our infer-
ence latency evaluations.
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