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Abstract—We discuss numerical modeling attacks on several
proposed Strong Physical Unclonable Functions (PUFs). Given
a set of challenge-response pairs (CRPs) of a Strong PUF, the
goal of our attacks is to construct a computer algorithm which
behaves indistinguishably from the original PUF on almost all
CRPs. If successful, this algorithm can subsequently impersonate
the Strong PUF, and can be cloned and distributed arbitrarily.
It breaks the security of any applications that rest on the Strong
PUF’s unpredictability and physical unclonability. Our method
is less relevant for other PUF types such as Weak PUFs; see
Section I-B for a detailed discussion of this topic.

The Strong PUFs that we could attack successfully include
standard Arbiter PUFs of essentially arbitrary sizes, and XOR
Arbiter PUFs, Lightweight Secure PUFs, and Feed-Forward
Arbiter PUFs up to certain sizes and complexities. We also
investigate the hardness of certain Ring Oscillator PUF architec-
tures in typical Strong PUF applications. Our attacks are based
upon various machine learning techniques, including a specially
tailored variant of Logistic Regression and Evolution Strategies.

Our results are mostly obtained on CRPs from numerical
simulations that use established digital models of the respective
PUFs. For a subset of the considered PUFs — namely standard
Arbiter PUFs and XOR Arbiter PUFs — we also lead proofs of
concept on silicon data from both FPGAs and ASICs. Over four
million silicon CRPs are used in this process. The performance
on silicon CRPs is very close to simulated CRPs, confirming a
conjecture from earlier versions of this work. Our findings lead
to new design requirements for secure electrical Strong PUFs,
and will be useful to PUF designers and attackers alike.

Index Terms—Physical Unclonable Functions, Machine Learn-
ing, Cryptanalysis, Physical Cryptography

I. INTRODUCTION

A. Motivation and Background

Electronic devices are now pervasive in our everyday life.
This makes them an accessible target for adversaries, leading
to a host of security and privacy issues. Classical cryptography
offers several measures against these problems, but they all rest
on the concept of a secret binary key: It is assumed that the

Ulrich Rührmair is with the Technische Universität München, Arcisstr. 21,
80333 München, Germany. E-mail: ruehrmair@in.tum.de

Jan Sölter is with the Technische Universität München, Germany, and the
Freie Universität Berlin, Germany.

Frank Sehnke, Ahmed Mahmoud, Vera Stoyanova are with the Technische
Universität München, Germany.

Jürgen Schmidhuber is with the Technische Universität München, Germany,
and the University of Lugano, SUPSI, and IDSIA, all Switzerland.

Gideon Dror is with the Academic College of Tel-Aviv-Yaffo, Israel, and
Yahoo research, Israel.

Xiaolin Xu and Wayne Burleson are with the University of Massachusetts
Amherst, USA.

Srinivas Devadas is with the Massachusetts Institute of Technology, USA.

devices can contain a piece of information that is, and remains,
unknown to the adversary. Unfortunately, it can be difficult
to uphold this requirement in practice. Physical attacks such
as invasive, semi-invasive, or side-channel attacks, as well as
software attacks like API-attacks and viruses, can lead to key
exposure and full security breaks. The fact that the devices
should be inexpensive, mobile, and cross-linked aggravates the
problem.

The described situation was one motivation that led to the
development of Physical Unclonable Functions (PUFs). A
PUF is a (partly) disordered physical system P that can be
challenged with so-called external stimuli or challenges Ci,
upon which it reacts with corresponding responses termed
RCi . Contrary to standard digital systems, a PUF’s responses
shall depend on the nanoscale structural disorder present in the
PUF. This disorder cannot be cloned or reproduced exactly,
not even by its original manufacturer, and is unique to each
PUF. As PUF responses can be noisy, suitable error correction
techniques like fuzzy extractors [13] may be applied in prac-
tice to obtain stable outputs R′

Ci
. Assuming successful error

compensation, any PUF P can be regarded as an individual
function FP that maps challenges Ci to (stable) responses R′

Ci

(compare [41]).
Due to its complex and disordered structure, a PUF can

avoid some of the shortcomings associated with digital keys.
For example, it is usually harder to read out, predict, or derive
its responses than to obtain the values of digital keys stored in
non-volatile memory. This fact has been exploited for various
PUF-based security protocols. Prominent examples include
schemes for identification and authentication [34], [15], key
exchange or digital rights management purposes [16].

B. Modeling Attacks and Different PUF Types
There are several subtypes of PUFs, each with its own

applications and security features. Three established types,
which must explicitly be distinguished in this paper, are Strong
PUFs [34], [15] 1 Controlled PUFs [16], and Weak PUFs
[18], [20], also called Physically Obfuscated Keys (POKs)
[14]. 2 For an exact differentiation, we refer the reader to

1Strong PUFs have sometimes also been referred to as Physical Random
Functions [14].

2We would like to stress that the term “Weak PUF” and “Strong PUF”
are not to be understood in any pejorative or judgemental sense. They are
not meant to indicate that one PUF-type would be superior or inferior to
another. We merely follow a terminology that had originally been introduced
by Guajardo, Kumar, Schrijen and Tuyls [18], and which has later been
developed further by Rührmair et al. in [42], [37], [41], [38].
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earlier versions of this work [41], or a recent survey article by
Rührmair, Devadas and Koushanfar [38]. We stress that the
attacks presented in this paper do not apply to all of these
three types in the same manner, as detailed below.

In general, modeling attacks on PUFs presume that an
adversary Eve has, in one way or the other, collected a subset
of all CRPs of the PUF. She then tries to derive a numer-
ical model from this data, i.e., a computer algorithm which
correctly predicts the PUF’s responses to arbitrary challenges
with high probability. Machine learning (ML) techniques are
a natural and powerful tool for this task [14], [24], [31],
[26], [45]. How the required CRPs can be collected, and how
relevant our modeling attacks are in practice, very strongly
depends on the considered type of PUF, however.

1) Strong PUFs: Strong PUFs are PUFs with very many
possible challenges and a complex input-output relation [41],
[38], [37]. They are the PUF class for which our modeling
attacks have been designed originally, and to which they
are best applicable. The reason is that Strong PUFs usually
have no protection mechanisms that restrict Eve applying
challenges or in reading out their responses [38], [37], [41].
Their responses are usually not post-processed on chip in a
protected environment [34], [46], [27], [17], [23], [25]. Most
electrical Strong PUFs further operate at frequencies of a few
MHz [23]. Therefore even short physical access periods enable
Eve to read-out and collect many CRPs. Another potential
CRP source is simple protocol eavesdropping, for example
on standard Strong PUF-based identification protocols, where
the CRPs are sent in the clear [34]. Please note that both
eavesdropping on responses as well as physical access to the
PUF is part of the established, general attack model for PUFs.

Once a predictive model for a Strong PUF has been derived,
the two main security features of a Strong PUF no longer hold:
The PUF is no longer unpredictable for parties that are not in
physical possession of the PUF; and the physical unclonability
of the PUF is overcome by the fact that the digital simulation
algorithm can be cloned and distributed arbitrarily. Any Strong
PUF protocol which is built on these two features is then no
longer secure. This includes any standard, widespread Strong
PUF protocols known to the authors. 3

For example, if Eve can use her intermediate physical access
in a PUF-based key exchange protocol [11], [4] to derive a
predictive model of the PUF, she can later predict the key that
was exchanged between the honest parties. A similar effect
occurs in 1-out-of-2 oblivious transfer (OT) protocols [36], [4]:
If the OT-receiver can derive a numerical model of the PUF
before he physically transfers the PUF to the OT-sender, he can
later break the security of the sender, and learn both transfered
bits b0 and b1. Also in the CRP-based, standard identification

3One sole potential exception are a few recent bit commitment protocols
for PUFs that were explicitly designed for the so-called “bad PUF model”
or the “malicious PUF model”. They promise to uphold security even if one
or all used PUFs are not unpredictable (see partly van Dijk and Rührmair
[12] and mainly Damgard and Scafuro [8]). At least some of these protocols
are relatively non-standard in a number of aspects, however, such as the
assumed input/output lengths of the used PUFs. Asides from these two special
protocols, all other practically relevant, widespread Strong PUF schemes
straightforwardly break down if the main security feature of the Strong PUF
is violated by a modeling attack, namely their unpredictability.

protocols for Strong PUFs [33], [34], a numerical model can
be used to impersonate the original PUF.

Concerning applications where the form factor of the PUF
may play a role, such as smartcards, we stress that the very
simple additive simulation models derived in this paper can be
implemented in similar environments as the original PUFs, and
with a relatively small number of gates. An active fraudster
can come so close to the original form factor in a newly set-
up, malicious smartcard hardware that the difference is very
difficult to notice in practice.

2) Controlled PUFs: Controlled PUFs are a second PUF-
type, which consists of an underlying Strong PUF with a
surrounding control logic [41], [38]. The challenge-response
interface of the Strong PUF is not directly accessible, but
is protected by the logic. Any challenges applied to the
Controlled PUF are pre-processed by the logic before they are
input to the Strong PUF, and any responses of the Strong PUF
are postprocessed by the logic before they are being output by
the Controlled PUF. Both the pre- and post-processing step can
add significantly to the security of a Controlled PUF [16].

For any adversary that is restricted to non-invasive CRP
measurement, Controlled PUFs successfully disable modeling
attacks if the control logic uses a secure one-way hash over
the outputs of the underlying Strong PUF. We note that this
requires internal error correction of the Strong PUF outputs
inside the Controlled PUF, since they are inherently noisy
[16]. Furthermore, it introduces a new, additional presumption,
namely the security of the applied one-way hash function.

Successful application of our techniques to a Controlled
PUF only becomes possible if Eve can probe the internal,
digital response signals of the underlying Strong PUF on their
way to the control logic. Even though this is a significant
assumption, probing digital signals is still easier than mea-
suring continuous analog parameters within the underlying
Strong PUF, for example determining its delay values. Note
again that physical access to the PUF is part of the natural
attack model on PUFs, as mentioned above. If a Controlled
PUF has been modeled, the same effects for protocols resting
on their unpredictability and physical unclonability apply that
have been described in the last Section I-B1.

3) Weak PUFs: Weak PUFs (or POKs) are PUFs with few,
fixed challenges, in the extreme case with just one challenge
[41], [38]. It is usually assumed that their response(s) re-
main inside the PUF-carrying hardware, for example for the
derivation of a secret key, and are not easily accessible for
external parties. Weak PUFs are the PUF class that is the least
susceptible to the presented modeling attacks.

We stress that our attacks only apply to them under rel-
atively rare and special circumstances: namely if a Strong
PUF, embedded in some hardware system and with a not
publicly accessible CRP interface, is used to implement the
Weak PUF. This method has been suggested in [14], [46].
Thereby only a few (of the very many possible) challenges
of the Strong PUF are used for internal key derivation. Our
attacks make sense in this context only in the special case
that the Strong PUF challenges C∗

i that are used in the key
derivation process are not yet fixed in the hardware at the
time of fabrication, but are selected later on. For one reason
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or another, the adversary may learn about these challenges at
a point in time that lies after his point of physical access to
the PUF. In this case, machine learning and modeling of the
Strong PUF can help the adversary to derive the key, even
though the points in time where he has access to the PUF
and where he learns the challenges C∗

i strictly differ. In order
to make our ML methods applicable in this case, one must
assume that the adversary was able to collect many CRPs
of the Strong PUF, for example by physically probing the
internal digital response signals of the Strong PUF to randomly
injected challenges, or by malware that abuses internal access
to the underlying Strong PUF’s interface. We comment that the
latter scenarios obviously represent very strong attack models.
Under comparable circumstances also many standard Weak
PUFs and other secret key based architectures break down.

In any other cases than the above, our modeling attacks
will not be relevant for Weak PUFs. This means that they
are not applicable to the majority of current Weak PUF
implementations, including the Coating PUF [47], SRAM PUF
[18], Butterfly PUF [22], and similar architectures.

We conclude by the remark that this should not lead to
the impression that Weak PUFs are necessarily more secure
than other PUFs. Other attack strategies can be applied to
them, including invasive, side-channel and virus attacks, but
they are not the topic of this paper. For example, probing the
output of the SRAM cell prior to storing the value in a register
can break the security of the cryptographic protocol that uses
these outputs as a key. Also physical cloning strategies for
certain Weak PUFs have been reported recently [19]. Finally,
we comment that attacking a Controlled PUF via collecting
CRPs from the underlying Strong PUF requires substantially
more signal probing than breaking a Weak PUF that possesses
just one challenge.

C. Related Work

This article is an extended journal version of Rührmair et
al. [41] from CCS’10. Early work on PUF modeling attacks,
such as [17], [24], [31], [26], described successful attacks on
standard Arbiter PUFs and on Feed-Forward Arbiter PUFs
with one loop. But these approaches did not generalize to
Feed-Forward Arbiter PUFs with more than two loops. The
XOR Arbiter PUF, Lightweight PUF, Feed-Forward Arbiter
PUF with more than two Feed-Forward Loops, and Ring
Oscillator PUF had not been cryptanalyzed until the first
version of this work [41]. Further, no scalability analyses of
the required CRPs and computation times had been performed
in any earlier works. In comparison to the first version of
this article [41], the main novelty is that results on a very
large database of silicon CRPs from ASICs and FPGAs have
been added. The new result settles an open question from
the first version of this work [41], showing that our findings
on numerically simulated CRPs carry over with very little
performance loss to the silicon case.

Since the publication of the earlier version of this article
[41], some works have addressed the problem of the ML-
susceptibility of Strong PUFs. For example, Majzoobi et al.
[30] describe an approach to improve the resilience of PUFs

against modeling attacks in identification protocols by certain
hardware and protocol measures, assuming a Controlled PUF
environment. Under the assumptions that the internal digital
signals can be probed, however, similar attacks apply to this
construction as described in this paper (compare Section I-B).
Furthermore, Yu et al. [49] have described the use of PUFs
for internal key derivation in the context of machine learning.
Again, this paper is besides the focus of this work, which
concentrates on Strong PUFs (compare Section I-B).

D. Organization of the Paper

The paper is organized as follows. We describe the method-
ology of our ML experiments in Section II. In Sections III
to VII, we present our ML results for various Strong PUF
candidates on simulated, noise-free CRP data. These sections
deal with Arbiter PUFs, XOR Arbiter PUFs, Lightweight
Arbiter PUFs, Feed-Forward Arbiter PUFs and Ring Oscillator
PUFs, in sequence. Section VIII deals with the effect of
randomly injected noise in the simulated CRP data. Section IX
carries our a very detailed proof of concept for silicon data
from FPGA and ASICs. We conclude with a summary and
discussion of our results in Section X.

II. METHODOLOGY SECTION

A. Employed Machine Learning Methods

We evaluated various machine techniques prior to our
experiments, including Support Vector Machines (SVMs), Lo-
gistic Regression (LR), Evolution Strategies (ES), and briefly
also Neural Nets and Sequence Learning. The approaches in
the following two sections performed best and are applied
throughout the paper.

1) Logistic Regression: Logistic Regression (LR) is a well-
investigated supervised machine learning framework, which
has been described, for example, in [2]. In its application to
PUFs with single-bit outputs, each challenge C = b1 · · · bk is
assigned a probability p (C, t | w⃗) that it generates a output t ∈
{−1, 1} (for technical reasons, one makes the convention that
t ∈ {−1, 1} instead of {0, 1}). The vector w⃗ thereby encodes
the relevant internal parameters, for example the particular
runtime delays, of the individual PUF. The probability is given
by the logistic sigmoid acting on a function f(w⃗) parametrized
by the vector w⃗ as p (C, t | w⃗) = σ(tf) = (1 + e−tf )−1.
Thereby f determines through f = 0 a decision boundary of
equal output probabilities. For a given training set M of CRPs
the boundary is positioned by choosing the parameter vector
w⃗ in such a way that the likelihood of observing this set is
maximal, respectively the negative log-likelihood is minimal:

ˆ⃗w = argminw⃗ l(M, w⃗)

= argminw⃗

∑
(C, t)∈M

−ln (σ (tf(w⃗, C))) (1)

As there is no analytical solution to determine the optimal
parameter vector ˆ⃗w, it has to be optimized iteratively, e.g.,
using the gradient information

∇l(M, w⃗) =
∑

(C, t)∈M

t(σ(tf(w⃗, C))− 1)∇f(w⃗, C) (2)
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From the different optimization methods which we tested
in our ML experiments (standard gradient descent, iterative
reweighted least squares, RProp [2] [35]), RProp gradient
descent performed best. Logistic regression has the asset that
the examined problems need not be (approximately) linearly
separable in feature space, as is required for successful ap-
plication of SVMs, but merely differentiable. As a supervised
method, it makes more efficient use of the CRP information
than reinforcement learning or evolutionary methods [2]. Fur-
thermore, LR is to the knowledge of the authors the only
method that can be applied directly to the model of an Arb-
PUF and XOR Arb-PUF. Other methods like SVM and Neural
Networks build their own intrinsic models.

In our ML experiments, we used an implementation of
LR with RProp programmed in our group. The iteration is
continued until we reach a point of convergence, i.e., until
the averaged prediction rate of two consecutive blocks of
five consecutive iterations does not increase anymore for the
first time. If the reached performance after convergence on
the training set is not sufficient, the process is started anew.
After convergence to a good solution on the training set, the
prediction error is evaluated on the test set.

2) Evolution Strategies: Evolution Strategies (ES) [1], [44]
belong to an ML subfield known as population-based heuris-
tics. They are inspired by the evolutionary adaptation of a
population of individuals to certain environmental conditions.
In our case, one individual in the population is given by a
concrete instantiation of the runtime delays in a PUF, i.e., by a
concrete instantiation of the vector w⃗ appearing in Eqns. 1 and
2. The environmental fitness of the individual is determined
by how well it (re-)produces the correct CRPs of the target
PUF on a fixed training set of CRPs. ES runs through several
evolutionary cycles or so-called generations. With a growing
number of generations, the challenge-response behavior of
the best individuals in the population better and better ap-
proximates the target PUF. ES is a randomized method that
neither requires an (approximately) linearly separable problem
(like Support Vector Machines), nor a differentiable model
(such as LR with gradient descent); a merely parameterizable
model suffices. Since all known electrical PUFs are easily
parameterizable, ES is a very well-suited attack method.

We employed an in-house implementation of ES that is
available from our machine learning library PyBrain [43].
The meta-parameters in all applications of ES throughout
this paper are (6,36)-selection and a global mutation operator
with τ = 1√

n
. We furthermore used a technique called Lazy

Evaluation (LE). LE means that not all CRPs of the training
set are used to evaluate an individual’s environmental fitness;
instead, only a randomly chosen subset is used for evaluation,
that changes in every generation. In this paper, we always used
subsets of size 2,000 CRPs.

B. Employed Computational Resources

We used three hardware systems to carry out our exper-
iments: A stand-alone, consumer INTEL Quadcore Q9300,
and a comparable consumer AMD Quadcore, both worth less
than 1,000 Euros. Thirdly, a 30-node cluster of AMD Opteron

Quadcores, which represents a worth of around 30,000 Euros.
To ensure ease of comparison, all computation times given by
us in this paper are calculated for one core of one processor
of the corresponding hardware. If k cores are used in parallel,
the computation times can be reduced roughly by a factor of
1/k, since our ML algorithms parallelize straightforwardly.

C. PUF Descriptions and Models

1) Arbiter PUFs: Arbiter PUFs (Arb-PUFs) were first
introduced in [17] [23] [46]. It has become standard to describe
the functionality of Arb-PUFs via an additive linear delay
model [24] [27] [26]. The overall delays of the signals are
modeled as the sum of the delays in the stages. In this model,
one can express the final delay difference ∆ between the upper
and the lower path in a k-bit Arb-PUF as ∆ = w⃗T Φ⃗, where
w⃗ and Φ⃗ are of dimension k + 1. The parameter vector w⃗
encodes the delays for the subcomponents in the Arb-PUF
stages, whereas the feature vector Φ⃗ is solely a function of
the applied k−bit challenge C [24] [27] [26].

The output t of an Arb-PUF is then determined by the
sign of the final delay difference ∆. We make the technical
convention of saying that t = −1 when the Arb-PUF output
is actually 0, and t = 1 when the Arb-PUF output is 1:

t = sgn(∆) = sgn(w⃗T Φ⃗). (3)

Eqn. 3 shows that the vector w⃗ via w⃗T Φ⃗ = 0 determines a
separating hyperplane in the space of all feature vectors Φ⃗.
Any challenges C that have their feature vector located on
the one side of that plane give response t = −1, those with
feature vectors on the other side t = 1. Determination of this
hyperplane allows prediction of the PUF.

2) XOR Arbiter PUFs: One possibility to strengthen the
resilience of arbiter architectures against machine learning,
which has been suggested in [46], is to employ l individual
Arb-PUFs in parallel, each with k stages (i.e., each with
bitlength k). The same challenge C is applied to all of them,
and their individual outputs ti are XORed in order to produce
a global response tXOR. We denote such an architecture as l-
XOR Arb-PUF (with the 1-XOR Arbiter PUF being identical
to the standard Arbiter PUF).

A formal model for XOR Arb-PUFs can be derived as
follows. Making the convention ti ∈ {−1, 1} as done earlier,
it holds that tXOR =

∏l
i=1 ti. This leads with equation (3) to

a parametric model of an l-XOR Arb-PUF, where w⃗i and Φ⃗i

denote the parameter and feature vector, respectively, for the
i-th Arb PUF:

tXOR =

l∏
i=1

sgn(w⃗T
i Φ⃗i) = sgn(

l∏
i=1

w⃗T
i Φ⃗i) (4)

= sgn
( l⊗

i=1

w⃗T
i︸ ︷︷ ︸

w⃗XOR

l⊗
i=1

Φ⃗i︸ ︷︷ ︸
Φ⃗XOR

)
= sgn(w⃗T

XORΦ⃗XOR)(5)

While (4) gives a non-linear decision boundary with l(k +
1) parameters, (5) defines a linear decision boundary by a
separating hyperplane w⃗XOR which is of dimension (k+1)l.
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3) Lightweight Secure PUFs: Another type of PUF, which
we term Lightweight Secure PUF or Lightweight PUF for
short, has been introduced in [27]. At its heart are l individual
standard Arb-PUFs arranged in parallel, each with k stages
(i.e., with bitlength k), which produce l individual outputs
r1, . . . , rl. These individual outputs are XORed to produce a
multi-bit response o1, ..., om of the Lightweight PUF. Another
difference to the XOR Arb-PUFs lies in the l inputs C1, . . . , Cl

which are applied to the l individual Arb-PUFs. Contrary to
XOR Arb-PUFs, it does not hold that C1 = C2 = . . . =
Cl = C, but a more complicated input mapping that derives
the individual inputs Ci from the global input C is applied.
We refer the reader to [27] for further details.

In order to predict the whole output of the Lightweight
PUF, one can apply similar models and ML techniques as
in the last section to predict its single output bits oj . While
the probability to predict the full output of course decreases
exponentially in the misclassification rate of a single bit,
the stability of the full output of the Lightweight PUF also
decreases exponentially in the same parameters. It therefore
seems fair to attack it in the described manner; in any case,
our results challenge the bit security of the Lightweight PUF.

4) Feed Forward Arbiter PUFs: Feed Forward Arbiter
PUFs (FF Arb-PUFs) were introduced in [17] [23] [24] and
further discussed in [26]. Some of their multiplexers are not
switched in dependence of an external challenge bit, but as
a function of the delay differences accumulated in earlier
parts of the circuit. Additional arbiter components evaluate
these delay differences, and their output bit is fed into said
multiplexers in a “feed-forward loop” (FF-loop). We note that
an FF Arb-PUF with k-bit challenges C = b1 · · · bk (i.e., with
bitlength k) and l loops has s = k + l multiplexers or stages.

The described dependency makes natural architecture mod-
els of FF Arb-PUFs no longer differentiable. Consequently, FF
Arb-PUFs cannot be attacked generically with ML methods
that require linearly separable or differentiable models (like
SVMs or LR), even though such models can be found in spe-
cial cases, for example for small numbers of non-overlapping
loops.

The number of loops as well as the starting and end point
of the FF-loops are variable design parameters, and a host of
different architectures for an FF Arb-PUF with a moderate
or even large number of loops are possible. We conducted
first experiments with equally distributed loops that do not
overlap (this is the original design suggested in [23]), finding
that it was relatively simple to learn. The architecture we
eventually investigated in this paper was more resilient to
modeling. It consists of loops that are distributed at equal
distances over the structure, and which just overlap each other:
If the starting point of loop m lies in between stages n and
n + 1, then the previous loop m − 1 has its end point in the
immediately following stage n+1. This seemed a natural and
straightforward architectural choice; future experiments will
have to determine whether this is indeed the optimal (i.e.,
most secure) architecture.

5) Ring Oscillator PUFs: Ring Oscillator PUFs (RO-PUFs)
were discussed in [46], though oscillating loops were proposed
in the original silicon PUF paper [15]. While [46] describes the

use of Ring Oscillator PUFs in the context of Controlled PUFs
and limited-count authentication, it is worth analyzing them as
candidate Strong PUFs. A RO-PUF consists of k identically
designed ring oscillators, each of which has its own, unique
frequency caused by manufacturing variations. The input of a
RO-PUF consists of a tuple (i, j), which selects two of the
k oscillators. Their frequencies are compared, and the output
of the RO-PUF is “0” if the former oscillates faster than the
latter, and “1” else. A ring oscillator can be modeled in a
straightforward fashion by a tuple of frequencies (f1, . . . , fk).
Its output on input (i, j) is “0” if fi > fj , and “1” else.

D. Numeric CRP Generation, Prediction Error, and Number
of CRPs

Given a PUF-architecture that should be examined, the
challenge-response pairs (CRPs) that we used in our ML
experiments were generated in the following fashion: (i) The
delay values for this PUF architecture were chosen pseudo-
randomly according to a standard normal distribution. We
sometimes refer to this as choosing a certain PUF instance
in the paper. (ii) If a response of this PUF instance to
a given challenge is needed, the above delays of the two
electrical signal paths are simply added up and compared. This
methodology follows the well-established linear additive delay
model for PUFs [9], [24], [23], [17], [31], [26]. In case of the
RO PUF, the frequencies fi were simply chosen at random
according to a normal distribution.

We use the following definitions throughout the paper: The
prediction error ϵ is the ratio of incorrect responses of the
trained ML algorithm when evaluated on the test set. For all
applications of LR, the test set each time consisted of 10,000
randomly chosen CRPs. For all applications of ES (i.e., for the
Feed-Forward Arbiter PUF), the test set each time consisted
of 8, 000 randomly chosen CRPs. The prediction rate is 1− ϵ.

NCRP (or simply “CRPs”) denotes the number of CRPs
employed by the attacker in his respective attack, for example
in order to achieve a certain prediction rate. This nomenclature
holds throughout the whole paper. Nevertheless, one subtle
difference should be made explicit: In all applications of LR
(i.e., in Sections III to V), NCRP is equal to the size of the
training set of the ML algorithm, as one would usually expect.
In the applications of ES (i.e., in Section VI), however, the
situation is more involved. The attacker needs a test set himself
in order to determine which of his many random runs was the
best. The value NCRP given in the tables and formulas of
Section VI hence reflects the sum of the sizes of the training
set and the test set employed by the attacker.

E. FPGA CRP Collection

To obtain CRP data from FPGAs, ten independent instances
of Arb-PUFs have been implemented on Spartan-6 FPGAs.
The Arb-PUFs were composed of 64 pairs of multiplexers
(MUXs) and a D flip-flop based arbiter, and were implemented
in Verilog. In order to balance FPGA routing asymmetries,
which would otherwise dominate the effect of manufacturing
variations, a lookup table (LUT) based Programmable Delay
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Line (PDL) has been implemented, as suggested by Majzoobi
et al. [28], [29].

We collected 200,000 CRPs from each of our ten FPGA
Arb-PUFs instances, resulting in two million CRPs altogether.
For each CRP, majority voting over five repetitive measure-
ments of the response to the same challenge was performed
in order to determine the final response. For example, if the
five measurements resulted in three “0”s and two “1”s, the
final response was set to “0”. The challenges were generated
by a 64-bit pseudo-random number generator (PRNG), which
was based on a maximal-length linear feedback shift register
(LFSR). The chosen LFSR polynomial generated the maximal-
length sequence according to the formula

F = 1 +X1 +X3 +X4 +X64 (6)

where Xn denotes the corresponding 1-bit output from the nth
register. This PRNG is cryptographically weak, but it suffices
for our purpose of CRP collection, and operates simply and
quickly.

F. ASIC CRP Collection

To collect CRPs from ASICs, we built Arb-PUF circuits
with 45nm SOI CMOS ASICs. Our Arb-PUF circuits are
composed of 64 delay elements and an arbiter circuit element.
Each delay element consists of two multiplexers with their
inputs connected, leading to 64 pairs of MUXs altogether.
The challenge vectors are the select inputs to the MUX
pairs, which determine the paths taken by the top and bottom
signal, respectively. This leads to 64-bit challenges in our
implementation. A SR-latch is used as the arbiter to determine
which signal arrived first.

The challenges that we applied to our ASIC Arb-PUFs were
generated pseudo-randomly by the same LFSR as in the FPGA
case (see Section II-E). To minimize the number of signal IOs
on the ASIC PUF test chips, this LFSR was implemented on
chip. The LSFR circuit is provided with a “SET” signal and
a fixed initial seed, so that it can be reset to a known state
when necessary.

40 unpackaged chips of 45nm SOI CMOS technology
were taped out for post-silicon measurement. Each chip has
two symmetrically placed Arb-PUFs, resulting in 80 PUF
instances, 10 of which were used for data collection. To
capture the CRPs, we set up a post-silicon validation lab.
A microscope station is utilized to mount a 2-pin DC probe
and an 8-pin AC probe on the die. Tektronix AFG3252 and
Agilent 8251A systems were used to generate “CLK”, “SET”
and other signals. A PicoScope 5000 with 1GS/s sampling rate
is used to capture the response bits. In order to minimize mea-
surement errors, the majority response value of five repetitive
measurements was selected as the representative, just as in the
case of FPGAs. We captured 200,000 CRPs from each of the
ten used PUF instances, resulting in a total of two million
CRPs collected from ASICs.

G. PUF Noise and Our Evaluation Methodology

In practice, PUFs may be noisy; but the CRP simulation
models used in this paper originally do not incorporate noise.

We therefore investigate the ML hardness of the considered
Strong PUFs in three different manners.

(1): First, we evaluate the purely “logic” security of PUF
designs. Noise-free CRPs from simulations by the additive
linear delay model are used in this process. The resulting ML
rates indicate the intrinsic security of the considered design.

This security measure has several advantages: Firstly, it is
relatively simple to obtain, but still very accurate (see, e.g.,
Table XI). Secondly, it is independent of any specific PUF
implementation and its noise level, as well as of any particular
numeric error correction mechanism. Recall that both might
change for any new implementation, applications or protocols.
Furthermore, the evaluated “logic” security represents an upper
limit on a PUF’s ML-resilience, at the least in any applications
where perfect error correction or fuzzy extractors are utilized
to obtain stable responses, such as PUF-based key exchange
[11], [4] and oblivious transfer [36], [4] protocols. Finally, the
above approach allows a close evaluation of the behavior of
the prediction error as a function of the used number of CRPs,
the running times of the ML algorithms, the PUF input sizes,
and other architectural PUF parameters. Comparably detailed
ML experiments on silicon CRPs would require a practically
infeasible implementation effort.

One natural side effect of this method is that the obtained
prediction errors for the “logic” security of the PUF can lie
beyond the stability of a given silicon implementation. This
may seem paradoxical at first glance, but is a natural side
effect of our approach.

(2): Secondly, we evaluate the performance of ML algo-
rithms on artificially noisy data of the PUF. We do so in a
proof of concept for a selected number of architectures and ML
methods (see Section VIII). Thereby random noise is injected
into the digitally simulated CRP data by inverting a certain
percentage of all (single-bit) PUF outputs. The outputs to be
flipped are chosen uniformly at random.

This approach gives a general indication of the error-
tolerance of the ML algorithms. The uniform choice of flipped
responses is no optimal noise model from a circuit perspective.
But the approach realistically describes situations in which
the attacker is limited to eavesdropping a noisy channel for
collecting his PUF-CRPs. This situation practically occurs in
PUF protocol eavesdropping, or if malware transfers PUF
CRPs to the adversary. It also accurately models situations
where noisy and error-prone digital probing is used to collect
the PUF-CRPs (compare Section I-B).

In order to stay close to this attack model, the prediction
error is evaluated on a set of noise-free CRPs. This allows
us to better isolate and quantify the effect that noise has on
the prediction quality. Similar to above, this has the natural
consequence that the achieved prediction error can be smaller
than the injected noise level.

(3): Finally, we evaluate the feasibility of our attacks
on real, silicon systems, again in selected proof of concept
experiments (see Section IX). We assume that the adversary
has got physical access to the Strong PUF and its public CRP
interface, as it is common in the established PUF attack model.
He can thus repeat CRP measurements at will in order to gain
output stability, or put the PUF to chosen ambient conditions
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that ensure particular reliability.
We carried out our proof of concept attacks on Arbiter

PUFs and XOR Arbiter PUFs, both on FPGAs and ASICs
CRPs, keeping the PUF at the same room temperature and
using majority voting over several measurements (compare
Sections II-E and II-F). Again, this allowed us to derive
extremely acccurate models, whose predication rate (for these
fixed ambient conditions) is better than the general stability of
the PUF over the entire temperature range of its potential use.
The occurence of this phenomenon in real silicon systems
finally confirms its non-paradoxical nature.

The results we obtained throughout this paper in steps (1), (2)
and (3) are very close to each other. Among other things, our
work therefore establishes the high suitability of the “logic”
hardness of a PUF as a measure for the PUF’s general security,
at the least for our considered class of delay-based PUFs.

Closely related to the above discussion is the question when
a modeling attack on a PUF should be called successful in
practice. Given our above discussion, the following criteria
appear suggestive: If the security of a concrete PUF imple-
mentation is considered as in step (3), the attack should be
called successful if the achieved prediction rate is better than
the stability of this PUF within the temperature, voltage and
aging variations envisaged during its use. Dependent on the
exact attack model, the CRPs for the attack thereby may be
measured under ambient conditions controlled by the adver-
sary. For example, measures such as repeated measurements
and majority voting may be allowed to stabilize the output.

If the security of an abstract PUF design is evaluated, as
in steps (1) and (2), the attack can be called successful if
it significantly exceeds the realistic stability levels of cur-
rently existing implementations, even though this criterion is
somewhat vague. Another abstract criterion, which is sufficient
but not necessary, is the growth rate: If the preduction error
is related linearly or low-degree polynomially to the PUF’s
challenge length, its architectural parameters and the number
of CRPs used in the ML experiment, an abstract PUF design
should no longer be called secure.

III. ARBITER PUFS

We now start the results part of the paper by presenting our
findings for standard Arbiter PUFs on simulated, noise-free
data.

A. Machine Learning Results

To determine the separating hyperplane w⃗T Φ⃗ = 0, we
applied SVMs, LR and ES. LR achieved the best results, which
are shown in Table I. We chose three different prediction rates
as targets: 95% is roughly the environmental stability of a 64-
bit Arbiter PUF when exposed to a temperature variation of
45C and voltage variation of ±2% 4. The values 99% and
99.9%, respectively, represent benchmarks for optimized ML
results. All figures in Table I were obtained by averaging over

4The exact figures reported in [24] are: 4.57% CRP variation for a
temperature variation of 45C, and 2.16% for a voltage variation of ±2%.

ML Bit Prediction CRPs Training
Method Length Rate Time

LR 64
95% 640 0.01 sec
99% 2,555 0.13 sec

99.9% 18,050 0.60 sec

LR 128
95% 1,350 0.06 sec
99% 5,570 0.51 sec

99.9% 39,200 2.10 sec

TABLE I
LR ON ARBITER PUFS WITH 64 AND 128 STAGES (I.E., WITH BITLENGTH

64 AND 128), FOR NOISE-FREE, SIMULATED CRPS.

5 different training sets. Accuracies were estimated using test
sets of 10,000 CRPs.

B. Scalability

We also executed scalability experiments with LR, which
are displayed in Figure 1 and Figure 2. They show that the
relevant parameters – the required number of CRPs in the
training set and the computational complexity, i.e., the number
of basic operations – grow linearly or low-degree polynomially
in the misclassification rate ϵ and the length k of the Arb
PUF. Theoretical considerations (dimension of the feature
space, Vapnik-Chervonenkis dimension [3]) suggest that the
minimal number of CRPs NCRP that is necessary to model a
k-stage arbiter with a misclassification rate of ϵ should obey
the relation

NCRP = O (k/ϵ). (7)

This was confirmed by our experimental results.
In practical PUF applications, it is essential to know the

concrete number of CRPs that may become known before the
PUF-security breaks down. Assuming an approximate linear
functional dependency y = ax + c in the double logarithmic
plot of Figure 1 with a slope of a = −1, we obtained
the following empirical formula (8). It gives the approximate
number of CRPs NCRP that is required to learn a k-stage
arbiter PUF with error rate ϵ:

NCRP ≈ 0.5 · k + 1

ϵ
(8)

y = 0.5137 * x^(-1.0)

Fig. 1. Double logarithmic plot of misclassification rate ϵ on the ratio of
training CRPs NCRP and dim(Φ) = k + 1.
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Fig. 2. No. of iterations of the LR algorithm until “convergence” occurs (see
section II), plotted in dependence of the training set size NCRP .

Our experiments also showed that the training time of the
ML algorithms, measured in terms of the number of basic
operations NBOP , grows slowly. It is determined by the
following two factors: (i) The evaluation of the current model’s
likelihood (Eqn. 1) and its gradient (Eqn. 2), and (ii) the
number of iterations of the optimization procedure before
convergence occurs (see section II-A1). The former is a sum
over a function of the feature vectors Φ⃗ for all NCRP , and
therefore has complexity O (k ·NCRP ). On the basis of the
data shown in Figure 2, we may further estimate that the
numbers of iterations increases proportional to the logarithm
of the number of CRPs NCRP . Together, this yields an overall
complexity of

NBOP = O

(
k2

ϵ
· log k

ϵ

)
. (9)

IV. XOR ARBITER PUFS

We continue by examining XOR Arbiter PUFs on simulated,
noise-free CRPs.

A. Machine Learning Results
In the application of SVMs and ES to XOR Arb-PUFs,

we were able to break small instances, for example XOR
Arb-PUFs with 2 or 3 XORs and 64 stages. LR significantly
outperformed the other two methods. The key observation is
that instead of determining the linear decision boundary (Eqn.
5), one can also specify the non-linear boundary (Eqn. 4). This
is done by setting the LR decision boundary f =

∏l
i=1 w⃗

T
i Φ⃗i.

The results are displayed in Table II.

B. Scalability
Figures 3 and 4 display the results of our scaling exper-

iments with LR. Again, the smallest number of CRPs in
the training set NCRP needed to achieve predictions with
a misclassification rate ϵ scales linearly with the number of
parameters of the problem (the product of the number of stages
k and the number of XORed Arb-PUFs l):

NCRP ∼ (k + 1) · l
ϵ

. (10)

But, in contrast to standard Arb-PUFs, optimizing the non-
linear decision boundary (4) on the training set now is a non-
convex problem, so that the LR algorithm is not guaranteed
to find (an attractor of) the global optimum in its first trial. It
needs to be iteratively restarted Ntrial times. Ntrial thereby
can be expected to not only depend on k and l, but also on
the size NCRP of the employed training set.

As is argued in greater detail in [45], the success rate (=
1/Ntrial) of finding (an attractor of) the global optimum is
determined by the ratio of dimensions of gradient information
(∝ NCRP as the gradient is a linear combination of the feature
vector) and the dimension dΦ in which the problem is linear
separable. The dimension dΦ is the number of independent
dimensions of Φ⃗XOR =

⊗l
i=1 Φ⃗i =

⊗l
i=1(Φ

1
i . . . ,Φ

k
i , 1)

T .
As the tensor product of several vectors consists of all possi-

ble products between their vector components, the independent
dimensions are given by the number of different products of
the form Φi1

1 ·Φi2
2 · . . .Φil

l for i1, i2, . . . , il ∈ {1, 2, . . . , k+1}
(where we say that Φk+1

i = 1 for all i = 1, . . . , l). For XOR
Arb-PUFs, we furthermore know that the same challenge is
applied to all l internal Arbiter PUFs, which tells us that Φi

j =
Φi

j′ = Φi for all j, j′ ∈ {1, . . . , l} and i ∈ {1, . . . , k + 1}.
Since a repetition of one component does not affect the product
regardless of its value (recall that Φr · Φr = ±1 · ±1 = 1),
the number of the above products can be obtained by counting
the unrepeated components. The number of different products
of the above form is therefore given as the number of l-tuples
without repetition, plus the number of (l − 2)-tuples without

ML Bit Pred. No. of CRPs Training
Method Length Rate XORs (×103) Time

LR 64 99%
4 12 3:42 min
5 80 2:08 hrs
6 200 31:01 hrs

LR 128 99%
4 24 2:52 hrs
5 500 16:36 hrs
6 — —

TABLE II
LR ON XOR ARBITER PUFS FOR NOISE-FREE, SIMULATED CRPS.

TRAINING TIMES ARE AVERAGED OVER DIFFERENT PUF-INSTANCES.
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LR on XOR Arbiter PUFs
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64 Bit, 4 XOR

128 Bit, 2 XOR

128 Bit, 3 XOR

Fig. 3. Double logarithmic plot of misclassification rate ϵ on the ratio of
training CRPs NCRP and problem size dim(Φ) = (k + 1) · l.
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LR on XOR Arbiter PUFs
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Fig. 4. Average rate of success of the LR algorithm plotted in dependence
of the ratio dΦ (see Eqn. (11)) to NCRP .

repetition (corresponding to all l-tuples with 1 repetition), plus
the number of (l − 4)-tuples without repetition (corresponding
to all l-tuples with 2 repetitions), etc.

Writing this down more formally, dΦ is given by

dΦ =

(
k + 1

l

)
+

(
k + 1

l − 2

)
+

(
k + 1

l − 4

)
+ . . .

k≫l
≈ (k + 1)l

l!
. (11)

The approximation applies when k is considerably larger than
l, which holds for the considered PUFs for stability reasons.
Following [45], this seems to lead to an expected number of
restarts Ntrial to obtain a valid decision boundary on the
training set (that is, a parameter set w⃗ that separates the
training set), of

Ntrial = O

(
dΦ

NCRP

)
= O

(
(k + 1)l

NCRP · l!

)
. (12)

Furthermore, each trial has the complexity

Ttrial = O ( (k + 1) · l ·NCRP ) . (13)

V. LIGHTWEIGHT SECURE PUFS

This section investigates the ML-resilience of LW PUFs on
simulated, noise-free CRPs.

A. Machine Learning Results

In order to test the influence of the specific input mapping
of the Lightweight PUF on its machine-learnability (see Sec.
II-C), we examined architectures with the following parame-
ters: variable l, m = 1, x = l, and arbitrary s. We focused on
LR right from the start, since this method was best in class
for XOR Arb-PUFs, and obtained the results shown in Table
III. The specific design of the LW PUF leads to significantly
increased training times and CRP requirements. Still, we were
able to predict single output bits for LW PUFs with up to 5
XORs with probabilities of 99%, both for bit lengths 64 and
128 bits.

Bit Pred. No. of CRPs Training
Length Rate XORs Time

64 99%
3 6,000 8.9 sec
4 12,000 1:28 hrs
5 300,000 13:06 hrs

128 99%
3 15,000 40 sec
4 500,000 59:42 min
5 106 267 days

TABLE III
LR ON LIGHTWEIGHT PUFS FOR NOISE-FREE, SIMULATED CRPS.

PREDICTION RATE REFERS TO SINGLE OUTPUT BITS. TRAINING TIMES
WERE AVERAGED OVER DIFFERENT PUF INSTANCES.

B. Scalability

Some theoretical consideration [45] shows the underlying
ML problem for the Lightweight PUF and the XOR Arb
PUF are similar with respect to the required CRPs, but
differ quantitatively in the resulting runtimes. The asymptotic
formula on NCRP given for the XOR Arb PUF (Eqn. 10)
analogously also holds for the Lightweight PUF. But due to the
influence of the special challenge mapping of the Lightweight
PUF, the number Ntrial has a growth rate that is different

from Eqn. 12. It seems to lie between O
( (k + 1)l

NCRP · l!
)
) and

the related expression O
( (k + 1)l

NCRP

)
[45]. While these two

formulas differ by factor of l!, we note that in our case k ≫ l,
and that l is comparatively small for stability reasons. Again,
all these considerations on NCRP and NTrial hold for the
prediction of single output bits of the Lightweight PUF.

These points were at least qualitatively confirmed by our
scalability experiments. We observed agreement with the
above discussion in that with the same ratio CRPs/dΦ the
LR algorithm will have a longer runtime for the Lightweight
PUF than for the XOR Arb-PUF. For example, while with a
training set size of 12, 000 for the 64-bit 4-XOR Arb-PUF on
average about 5 trials were sufficient, for the corresponding
Lightweight PUF 100 trials were necessary.

VI. FEED FORWARD ARBITER PUFS

We consider the case of FF Arb-PUFs on simulated, noise-
free CRPs in this section.

A. Machine Learning Results

Recall from Section II-C4 that FF Arb-PUFs with k-bit
challenges C = b1 · · · bk (i.e., with bitlength k) and l loops
have s = k + l multiplexers or stages. We experimented with
SVMs and LR on these PUFs, using different models and input
representations, but could only break special cases with small
numbers of non-overlapping FF loops, such as l = 1, 2. This
is in agreement with earlier results reported in [26].

The application of ES finally allowed us to tackle much
more complex FF-architectures with up to 8 FF-loops. In the
architectures examined by us, all loops have equal length, and
are distributed regularly over the PUF, with overlapping start-
and endpoints of successive loops, as described in Section II-C.
Table IV shows the results we obtained. The given prediction
rates are the best of 40 trials on one randomly chosen PUF-
instance of the respective length. The given CRP numbers are
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Bit FF- Pred. Rate CRPs Training
Length loops Best Run Time

64

6 97.72% 50,000 07:51 min
7 99.38% 50,000 47:07 min
8 99.50% 50,000 47:07 min
9 98.86% 50,000 47:07 min
10 97.86% 50,000 47:07 min

128

6 99.11% 50,000 3:15 hrs
7 97.43% 50,000 3:15 hrs
8 98.97% 50,000 3:15 hrs
9 98.78% 50,000 3:15 hrs
10 97.31% 50,000 3:15 hrs

TABLE IV
ES ON FEED-FORWARD ARBITER PUFS FOR NOISE-FREE, SIMULATED

CRPS. PREDICTION RATES ARE FOR THE BEST OF A TOTAL OF 40 TRIALS
ON A SINGLE, RANDOMLY CHOSEN PUF INSTANCE. TRAINING TIMES ARE
FOR A SINGLE TRIAL. WE APPLIED LAZY EVALUATION WITH 2,000 CRPS.

the sum of the training set and the test set employed by the
attacker; a fraction of 5/6 was used as the training set, 1/6 as
the test set (see Section II-D). We note for comparison that
in-silicon implementations of 64-bit FF Arb-PUFs with 7 FF-
loops are known to have an environmental stability of 90.16%
[24].

B. Scalability

We started by empirically investigating the CRP growth
as a function of the number of challenge bits, examining
architectures of varying bitlength that all have 6 FF-loops.
The loops are distributed as described in Section II-C. The
corresponding results are shown in Figure 5. Every data point
corresponds to the averaged prediction error of 10 trials on
the same, random PUF-instance.

Secondly, we investigated the CRP requirements as a func-
tion of a growing number of FF-loops, examining architectures
with 64 bits. The corresponding results are depicted in Figure
6. Again, each data point shows the averaged prediction error
of 10 trials on the same, random PUF instance.

In contrast to the Sections IV-B and V-B, it is now much
more difficult to derive reliable scalability formulas from this
data. The reasons are threefold. First, the structure of ES

Fig. 5. Results of 10 trials per data point with ES for different lengths of FF
Arbiter PUFs and the hyperbola fit.

Fig. 6. Results of 10 trials per data point with ES for different numbers of
FF-loops and the hyperbola fit.

provides less theoretical footing for formal derivations. Sec-
ond, the random nature of ES produces a very large variance
in the data points, making also clean empirical derivations
more difficult. Third, we observed an interesting effect when
comparing the performance of ES vs. SVM/LR on the Arb
PUF: While the supervised ML methods SVM and LR showed
a linear relationship between the prediction error ϵ and the
required CRPs even for very small ϵ, ES proved more CRP
hungry in these extreme regions for ϵ, clearly showing a
superlinear growth. The same effect can be expected for FF
architectures, meaning that one consistent formula for extreme
values of ϵ may be difficult to obtain.

It still seems somewhat suggestive from the data points in
Figures. 5 and 6 to conclude that the growth in CRPs is about
linear, and that the computation time grows polynomially. For
the reasons given above, however, we would like to remain
conservative, and present the upcoming empirical formulas
only in the status of a conjecture.

The data gathered in our experiments is best explained by
assuming a qualitative relation of the form

NCRP = O(s/ϵc) (14)

for some constant 0 < c < 1, where s is the number of stages
in the PUF. Concrete estimation from our data points leads to
an approximate formula of the form

NCRP ≈ 9 · s+ 1

ϵ3/4
. (15)

The computation time required by ES is determined by the
following factors: (i) The computation of the vector product
w⃗T Φ⃗, which grows linearly with s. (ii) The evolution applied
to this product, which is negligible compared to the other steps.
(iii) The number of iterations or “generations” in ES until
a small misclassification rate is achieved. We conjecture that
this grows linearly with the number of multiplexers s. (iv) The
number of CRPs that are used to evaluate the individuals per
iteration. If Eqn. 15 is valid, then NCRP is on the order of
O(s/ϵc).

Assuming the correctness of the conjectures made in this
derivation, this would lead to a polynomial growth of the
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computation time in terms of the relevant parameters k, l
and s. It could then be conjectured that the number of basic
computational operations NBOP obeys

NBOP = O(s3/ϵc) (16)

for some constant 0 < c < 1.

VII. RING OSCILLATOR PUFS

Ring Oscillator PUFs (RO PUFs) to some extent constitute
an exception within this paper. They are a relatively versatile
PUF structure, and have been suggested for uses in various
contexts and also under different specific designs. The majority
of these suggestions applies them the context of Weak PUFs
or Controlled PUFs, i.e., in applications where their CRP
interface is not publicly accessible for external parties. One
typical example would be their use within pseudo-random
digital number generators which employ the RO-responses as
a secret seed. We stress once more that our modeling attacks
apply in such application contexts either not at all, or only
under very rare and restricted circumstances; compare again
our discussion in Section I-B.

Still, in order to complete our picture on delay-based PUFs,
it seems worthwhile to clarify the security of the RO PUF
if it is used as Strong PUF, i.e, if its CRP interface can
be accessed without restrictions, or if its CRP are sent in
the clear in protocols and can be eavesdropped. The specific
type of ring oscillator PUF we analyse is taken from [46]: It
employs k ring oscillators overall. Two of them are selected
by a challenge, and their frequencies are compared in order to
produce a single output bit. This structure leads to k(k−1)/2
possible challenges.

There are several strategies to attack this particular type of
RO-PUF if it is used as a Strong PUF. A first, straightforward
attempt would be a simple collection or read out of all its
(quadratically many) k(k − 1)/2 CRPs.

A more interesting case is if Eve can choose the CRPs
adaptively. This case occurs if the CRP interface is public
and she has physical access to it. She can then improve
her attack, employing a standard sorting algorithm to obtain
the RO-PUF’s frequencies (f1, . . . , fk) in ascending order.
This strategy subsequently allows her to predict the outputs
without knowing the exact frequencies fi themselves. The
time and CRP complexities of the respective sorting algo-
rithms are well known [32]; for example, there are several
algorithms with average- and even worst-case CRP complexity
of NCRP = O(k · log k). Their running times are also low-
degree polynomial.

ML No. of Pred. Rate CRPs
Method Oscill. Average

QS
256 99% 99.9% 14,060 28,891
512 99% 99.9% 36,062 103,986
1024 99% 99.9% 83,941 345,834

TABLE V
QUICK SORT APPLIED TO THE RING OSCILLATOR PUF. THE GIVEN CRPS

ARE AVERAGED OVER 40 TRIALS.

Perhaps the most advanced case is when Eve cannot adap-
tively choose the CRPs, but is restricted to eavesdropped

CRPs Percentage of error-inflicted CRPs
(×103) 0% 2% 5% 10%

24

Best Pr. 98.76% 92.83% 88.05% —
Ave. Pr. 98.62% 91.37% 88.05% —
Suc. Tr. 0.6% 0.8% 0.2% 0.0%
Conv. 40.0% 25.0% 5.0% 0.0%

50

Best Pr. 99.49% 95.17% 92.67% 89.89%
Ave. Pr. 99.37% 94.39% 91.62% 88.20%
Suc. Tr. 12.4% 13.9% 10.0% 4.6%
Conv. 100.0% 62.5% 50.0% 20.0%

200

Best Pr. 99.88% 97.74% 96.01% 94.61%
Ave. Pr. 99.78% 97.34% 95.69% 93.75%
Suc. Tr. 100.0% 87.0% 87.0% 71.4%
Conv. 100.0% 100.0% 100.0% 100.0%

TABLE VI
LR ON 128-BIT, 4-XOR ARB PUFS WITH DIFFERENT LEVELS OF NOISE
IN THE TRAINING SET AND NOISE-FREE TEST SETS. WE SHOW THE BEST

AND AVERAGE PREDICTION RATES OF 40 RANDOMLY CHOSEN INSTANCES,
THE PERCENTAGE OF SUCCESSFUL TRIALS OVER THESE INSTANCES, AND

THE PERCENTAGE OF INSTANCES THAT CONVERGED TO A SUFFICIENT
OPTIMUM IN AT LEAST ONE TRIAL.

CRPs, which were chosen randomly by other parties. We
carried out experiments for this case, in which we applied
Quick Sort (QS) to randomly drawn CRPs. The results are
shown in Table V. The estimated required number of CRPs is
given by

NCRP ≈ k(k − 1)(1− 2ϵ)

2 + ϵ(k − 1)
, (17)

and the training times are low-degree polynomial. Among
other things, Eqn. 17 quantifies for how many runs RO-PUFs
can be used in identification protocols à la Pappu et al. [33],
[34], even under the assumption that the adversary is limited to
CRP eavesdropping and never can access the PUF physically.

VIII. RESULTS ON ERROR-INFLICTED CRPS

Having examined the performance of ML algorithms on
simulated, noise-free CRPs over the last sections, we now
investigate the effect of noise and errors in the CRPs. For
various noise levels, we choose an fraction of all CRPs
uniformly at random, and flip their single-bit responses. We
then run the ML algorithm on the noise-inflicted data, and
evaluate its performance on a noise-free training set. This
allows us to precisely pinpoint the effect of the erroneous
CRPs. For a further discussion on our methodology, please
see Section II-G. Our findings were that our ML algorithms
are very robust with respect to the examined error levels. This
again confirms the relevance and validity of the purely “logic”
ML hardness as a measure for PUF security; compare again
our discussion in Section II-G.

A. LR on XOR Arbiter PUFs with Error-Inflicted CRPs

We started by investigating LR on XOR Arbiter PUFs. The
results are displayed in Tables VI and VII for various noise
levels. They show that LR can cope very well with errors,
provided that around three to four times more CRPs are used.
The required convergence times on error inflicted training sets
did not change substantially compared to error free training
sets of the same sizes.
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CRPs Percentage of error-inflicted CRPs
(×103) 0% 2% 5% 10%

500

Best Pr. 99.90% 97.55% 96.48% 93.12%
Ave. Pr. 99.84% 97.33% 95.84% 93.12%
Suc. Tr. 7.0% 2.9% 0.9% 0.7%
Conv. 20.0% 20.0% 10.0% 5.0%

TABLE VII
LR ON 128-BIT, 5-XOR ARB PUFS WITH DIFFERENT AMOUNTS OF

ERROR IN THE TRAINING SET. REST AS IN THE CAPTION OF TABLE VI.

Fig. 7. Graphical illustration of the effect of error on LR in the training set,
with chosen data points from Tables VI and VII.

B. ES on Feed-Forward Arbiter PUFs with Error-Inflicted
CRPs

In the same manner as above, we investigated the perfor-
mance of ES on FF Arb PUFs when it is run with error-
inflicted CRPs. The results are shown in Table VIII and
Figure 8. ES possesses an extremely high tolerance against
the inflicted errors; its performance is hardly changed at all.

IX. RESULTS ON SILICON CRPS

So far, all of our results were achieved on numerically simu-
lated CRPs. In any simulations of the Arbiter PUF variants, the
additive linear delay model has been used (see Section II-C).
Based on earlier experiments with silicon implementations
[24], [9], it had been conjectured in the first version of this
work that this model is accurate enough that our attacks
transfer well to the silicon case [41].

We are now able to conduct a detailed validation of this
conjecture, both for ASIC and FPGA implementations, in this
section. The two architectures we chose to investigate were

CRPs Percentage of error-inflicted CRPs
(×103) 0% 2% 5% 10%

50
Best Pr. 98.29% 97.78% 98.33% 97.68%
Ave. Pr. 89.94% 88.75% 89.09% 87.91%
Suc. Tr. 42.5% 37.5% 35.0% 32.5%

TABLE VIII
ES ON 64-BIT, 6 FF ARB PUFS WITH DIFFERENT LEVELS OF NOISE IN

THE TRAINING SET AND NOISE-FREE TEST SETS. WE SHOW THE BEST AND
AVERAGE PREDICTION RATES FROM OVER 40 INDEPENDENT TRIALS ON A
SINGLE, RANDOMLY CHOSEN PUF INSTANCE, AND THE PERCENTAGE OF

SUCCESSFUL TRIALS THAT CONVERGED TO 90% OR BETTER.

Fig. 8. Graphical illustration of the tolerance of ES to errors. We show the
best result of 40 independent trials on one randomly chosen PUF instance for
varying error levels in the training set. The results hardly differ.

Arbiter PUFs and XOR Arbiter PUFs. They are the two most
relevant designs in our context: For RO PUFs, the analytical
model, which simply assigns one frequency to each oscillator,
is very close to reality. FF Arb PUFs and and Lightweight
PUFs are also delay-based, therefore it can be assumed that
our results on (XOR) Arb PUFs transfer well to their case. In
our analysis, we used overall more than four million silicon
CRPs from FPGAs and ASICs (see Sections II-F and II-E).

For standard Arbiter PUFs, the CRP-stability of the used
FPGA systems (again under majority voting) was at 95.13%
under an artificially injected ±5% voltage variation. For
ASICs, this number was 96.82%. These figures also give us an
indication of the projected stability of the two systems under
varying temperature and aging, even though we did not execute
detailed studies on the latter two. Interestingly, our obtained
ML prediction rates exceeded these noise levels. The reason
is that we assumed realistically in our measurements that an
attacker with physical access could collect the CRPs at one
single, relatively stable temperature level, and could apply
majority voting to stabilize the responses (compare Section
II-G).

Overall, the findings detailed in the next subsections con-
firm that there is little perfomance loss of our method for
silicon CRPs. This establishes the good applicability of the
linear additive delay model in any future security analyses
of delay-based PUFs, and again confirms our paradigm that
the performance on noise-free, simulated CRPs is a very good
indicator for a delay-based PUF’s security. It turned out in this
context that FPGA-CRPs were slightly harder to learn than
the ASIC data. Two conceivable causes could be the slightly
higher noise levels of FPGAs (see above), and the insertion of
PDLs (Programmable Delay Lines) on FPGAs, which makes
the MUX structures more complicated.

A. Results on Silicon Arbiter PUFs

As described in detail in Sections II-E and II-F, we used
ten PUF-instances on FPGAs and ten on ASICs, and collected
200,000 CRPs of each of them, applying majority voting on
five responses for each challenge. Table IX gives the results of
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ML CRP Prediction CRPs Training
Method Source Rate Time

LR FPGA > 95% 650 0.12 sec
> 99% 6500 0.83 sec

LR ASIC > 95% 650 0.11 sec
> 99% 6500 0.76 sec

TABLE IX
LR ON ARB PUFS OF BITLENGTH 64 FOR FPGA AND ASIC DATA,

COLLECTED UNDER STABLE TEMPERATURE AND MAJORITY VOTING.

our LR algorithm on the FPGA and ASIC data, respectively.
They are very close to the earlier findings for synthetic CRPs
(see Section III and Table I). Only for very small prediction
errors slightly below 1%, the known small deviations from the
linear additive delay model, possible measurement errors, and
instabilities come into play and have a notable effect. This
makes it more difficult to achieve extremely low prediction
rates significantly below 1%; a strongly increasing amount of
CRP data is required for such low rates. Anyway, in practice a
prediction error of 1% or below is already sufficient to break
the system; compare the stability levels mentioned above.

1) Scalability: Similar to Section III-B, we conducted
scaling experiments on FPGA and ASIC data. We investigated
the relationship between the number of CRPs and prediction
rates, as well as the overall running time of our algorithm.
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Fig. 9. Performance of LR on FPGA and ASIC Arbiter PUFs for small
prediction errors. Each data point represents a single PUF instance.

Figure 9 depicts the results of our scaling experiments on
the required number of CRPs for FPGA and ASIC data. The
figure shows that the linear relation of Section III-B between
the number of CRPs and the prediction rate holds very well for
a prediction error of above 1%. In this regime, it is described
by exactly the same formula as in Section III-B:

NCRP ≈ 0.5 · k + 1

ϵ
. (18)

Below around 1%, a saturation effect occurs, however.
Reducing the prediction error further is still possible, but
increasingly requires more than a linear number of CRPs.
In this regime, the limits of the additive linear delay model
begin to show. Possible measurement errors and instabilities
contribute to this phenomenon, too.

Interestingly, this effect concerns FPGAs and ASICs in ex-
actly the same fashion. Among other things, this confirms that
Majzoobi et al.’s method of balancing the routing asymmetries
of FPGAs via look-up tables [28], [29] works very well (see
Section II-E).

The second aspect we investigated is the scaling of the
overall runtime of our algorithm. It is given in Figure 10. Our
results can be seen as confirmation that the basic relationship
given in Section IV-B still holds, and that the runtime scales
as

NBOP = O

(
k2

ϵ
· log k

ϵ

)
. (19)

Still, some differences between the silicon and simulated
CRPs regarding are observable; noise and deviations from the
perfect linear additive delay model have a stronger effect in the
XOR case than in the case of single Arb-PUFs, and increase
the training times.
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Fig. 10. Necessary trials for LR on FPGA and ASIC Arbiter PUFs.

B. Results on Silicon XOR Arbiter PUFs

We also investigated the case of XOR Arbiter PUFs for
FPGA and ASIC data. Our results are summarized in Table
X. Again, they are relatively close to our earlier findings of
Section IV-A. However, the small deviations from the linear
additive delay model now certainly have a stronger effect,
since we consider the XOR of several single Arbiter PUFs.
We were not able to learn 6-XOR Arb PUFs anymore with
the collected amount of data. Extrapolating from our previous
experience, we believe that about 700,000 CRPs would be
necessary to this end.

1) Scalability: We also conducted detailed scalability ex-
periments, following the methodology of Section IV-B. The
required number of CRPs vs. the achieved prediction error is
shown in Figure 11. It shows that for XOR Arb PUFs, the
saturation effect is similar to single Arbiter PUFs. The only
difference is that it already starts at slightly lower prediction
rates, and slowly increases with the number of XORs. Still,
the saturation is so mild that also prediction errors below 1%
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ML CRP Pred. No. of CRPs Training
Method Source Rate XORs (×103) Time

LR FPGA > 99%
3 19.5 51.5 sec
4 39 139 sec
5 78 39 min

LR ASIC > 99%
3 19.5 26 sec
4 39 63.5 sec
5 78 18:09 min

TABLE X
LR ON XOR ARB PUFS OF BITLENGTH 64 FOR FPGA AND ASIC DATA
(COLLECTED UNDER STABLE TEMPERATURE AND MAJORITY VOTING).
TRAINING TIMES ARE AVERAGED OVER DIFFERENT PUF-INSTANCES.

can be achieved, provided that a sufficient amount of CRPs is
used. Over 1%, the basic relationship

NCRP ∼ (k + 1) · l
ϵ

. (20)

appears to hold well, as discussed already in Section IV-B.
In terms of computation times, our findings are summarized

in Figure 12. It corresponds to Figure 4 in Section IV-B,
which used simulated CRPs. Again, our results at least quali-
tatively confirm the scaling behavior we earlier oberserved on
simulated data. Also for FPGA and ASIC data, the expected
number of restarts Ntrial to obtain a valid decision boundary
on the training set (that is, a parameter set w⃗ that separates
the training set), is given approximately by

Ntrial = O

(
dΦ

NCRP

)
= O

(
(k + 1)l

NCRP · l!

)
. (21)

Furthermore, each trial again has the approximate complexity

Ttrial = O ( (k + 1) · l ·NCRP ) . (22)
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Fig. 11. Performance of LR on XOR Arbiter PUFs for FPGA and ASIC data
for small prediction errors.

X. SUMMARY

A. Summary

We investigated the resilience of several electrical Strong
PUF designs against modeling attacks. To that end, we applied
various machine learning techniques to challenge-response sets
from two sources: (i) Pseudo-random numeric simulations

which used an additive delay model, with and without arti-
ficially injected errors; and (ii) Silicon CRP data from FPGAs
and ASICs. The examined Strong PUFs included standard
Arbiter PUFs, XOR Arbiter PUFs, Lightweight Secure PUFs,
and Feed-Forward Arbiter PUFs. We also investigated the
hardness of certain Ring Oscillator (RO) PUF architectures
[46] if used in typical Strong PUF scenarios, i.e., under the
presumption that their CRP-interface is publicly accessible.
If nothing else, this gives us an indication for how many
runs these PUFs can be used securely within (limited count)
identification protocols à la Pappu et al. [33], [34]. Some of
our main results are summarized in Table XI.

We found that all examined Strong PUF candidates under
a certain size and architectural complexity could be ma-
chine learned with prediction rates above 99%. These rates
sometimes are above the practical silicon stability of the
examined PUFs. As explained in detail Section II-G, this is
not paradoxical, but a natural consequence of our evaluation
methology. For example, in silicon attacks an adversary can
put the PUFs to stable ambient conditions and apply majority
voting to get extremely stable CRP sets.

The attacks required a number of CRPs that grows only
linearly or log-linearly in the internal parameters of the
PUFs, such as their number of stages, XORs, feed-forward
loops, or ring oscillators. Apart from XOR Arbiter PUFs
and Lightweight PUFs (whose training times grew quasi-
exponentially in their number of XORs for large bitlengths
k and small to medium number of XORs l), the training times
of the applied machine learning algorithms are low-degree
polynomial, too.

We also executed a very detailed proof of concept for
silicon CRPs for the two most well-studied and commercially
most relevant [9], [10] electrical Strong PUF designs, Arbiter
PUFs and XOR Arbiter PUFs. In this process, more than four
million CRPs collected from ASICs and FPGAs were used.
The similarity of our results on similated and silicon data
settles a conjecture that had been posed in earlier versions
of this work [41]. It shows that the linear delay model is close
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Fig. 12. Average rate of success of the LR algorithm on XOR Arbiter PUFs
for FPGA and ASIC data, plotted in dependence of the ratio dΦ (see Eqn.
(11)) to NCRP .
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PUF-Type No. of XORs/ ML Bit CRP CRPs Training Prediction
FF-Loops/Ring Osc. Method Length Source (×103) Time Rate

Arbiter PUF — LR
128 Simulation 39.2 2.10 sec 99.9%
64 FPGA 6.5 0.83 sec 99%
64 ASIC 6.5 0.76 sec 99%

XOR Arbiter PUF 5 LR
128 Simulation 500 16:36 hrs 99%
64 FPGA 78 39 min 99%
64 ASIC 78 18:09 min 99%

Lightweight PUF 5 LR 128 Simulation 1000 267 days 99%
FF Arbiter PUF 8 ES 128 Simulation 50 3:15 hrs 99%

Ring Oscillator PUF à la [46] 1024 QS — Simulation 83.9 — 99%(if used as Strong PUF)

TABLE XI
SOME OF OUR MAIN RESULTS FOR SIMULATED, NOISE-FREE CRPS AND FOR SILICON CRPS FROM FPGAS AND ASICS. THE PREDICTION RATES AND
TRAINING TIMES ARE AVERAGED OVER SEVERAL INSTANCES. ALL PRESENTED TRAINING TIMES ARE CALCULATED AS IF THE ML EXPERIMENT WAS

RUN ON ONLY one single CORE OF one single PROCESSOR. USING k CORES WILL APPROXIMATELY REDUCE THEM BY 1/k.

to practice, and establishes its use in future security analyses
of any Arbiter PUF variants.

Our findings prohibit the use of the modeled architectures
up to a certain size and complexity in typical Strong PUF pro-
tocols whose security rests on the unpredictability or physical
unclonability of the Strong PUF, and where the adversary can
collect many CRPs via access to the Strong PUF’s interface or
by eavesdropping protocols. Under the assumption that digital
signals can be probed, our results also affect the applicability
of the examined Strong PUFs as building blocks in Controlled
PUFs, again up to a certain size and complexity. The security
of Weak PUFs is not strongly affected by our methods. As
discussed in detail in Section I-B, our attacks apply to this
PUF type only under the rare circumstance that a Strong
PUF is employed inside a hardware system as the Weak PUF,
using only few of the many possible challenges of this Strong
PUF. Most typical Weak PUFs, such as the SRAM PUF [18],
Butterfly PUF [22] or Coating PUF [47], remain unaffected
by our attacks.

B. Discussion

Two straightforward, but biased interpretations of our results
would be the following: (i) All Strong PUFs are insecure.
(ii) The long-term security of electrical Strong PUFs can be
restored trivially, for example by increasing the PUF’s size.
Both views are simplistic, and the truth is more involved.

Starting with (i), our current attacks are indeed sufficient to
break several delay-based PUF implementations. But there are
a number of ways how PUF designers can fight back in future
designs. First, increasing the bitlength k in an XOR Arbiter
PUF or Lightweight Secure PUF with l XORs increases
the effort of the presented attacks methods as a polynomial
function of k with exponent l (in approximation for large
k and small or medium l). At the same time, it does not
worsen the PUF’s stability [9]. For now, one could therefore
disable attacks through choosing a strongly increased value of
k and a value of l that corresponds to the stability limit of
such a construction. For example, an XOR Arbiter PUF with
8 XORs and bitlength of 512 is implementable by standard
fabrication processes [9], but is currently beyond the reach of
our attacks. Similar considerations hold for Lightweight PUFs
of these sizes. Secondly, new design elements may raise the

attacker’s complexity further, for example adding nonlinearity
(such as AND and OR gates that correspond to MAX and
MIN operators [24]). Combinations of Feed-Forward and
XOR architectures could be hard to machine learn too, partly
because they seem susceptible only to different and mutually-
exclusive ML techniques.

Moving away from delay-based PUFs, the exploitation of
the dynamic characteristics of current and voltage seems
promising, for example in analog circuits [7]. Also special
PUFs with a very high information content (so-called SHIC
PUFs [39], [40], [21]) could be an option, but only in such
applications where their slow read-out speed and their compar-
atively large area consumption are no too strong drawbacks.
Their promise is that they are naturally immune against
modeling attacks, since all of their CRPs are information-
theoretically independent. Finally, optical Strong PUFs, for
example systems based on light scattering and interference
phenomena [34], show strong potential in creating high input-
output complexity.

Regarding view (ii), PUFs are different from classical
cryptoschemes like RSA in the sense that increasing their
size often likewise decreases their input-output stability. For
example, raising the number of XORs in an XOR Arbiter
PUF and Lightweight PUF has an exponentially strong effect
both on the attacker’s complexity and on the instability of
the PUF. We are yet unable to find parameters that increase
the attacker’s effort exponentially while affecting the PUF’s
stability merely polynomially. Nevertheless, one practically
viable possibility is to increase the bitlength of XOR Arbiter
PUFs and Lightweight PUFs, as discussed above. Future work
will have to show whether the described large polynomial
growth of the latter method can persist in the long term, or
whether its high degree can be diminished by further analysis.

C. Future Work
The upcoming years will presumably witness strong com-

petition between codemakers and codebreakers in the area of
Strong PUFs. Similar to the design of classical cryptoprimi-
tives, for example stream ciphers, this process can be expected
to converge at some point to solutions that are resilient against
the known attacks. Some first attempts into this direction have
already been made in [49], [30], [5], [6], but we did not
analyze their viability in detail in this work.
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For PUF designers, it may be interesting to investigate some
of the concepts that we mentioned above. For PUF breakers, a
worthwhile starting point is to improve the attacks presented
in this paper through optimized implementations and new ML
methods. A performance comparison between our results and
earlier approaches that used SVMs and comparable techniques
[24], [31], illustrates the strong effect of the choice of the
right ML-algorithm (see Section I-C). Another, qualitatively
new path is to combine modeling attacks with information
obtained from direct physical PUF measurements or from side
channels. For example, applying the same challenge multiple
times gives an indication of the noise level of a response bit.
It enables conclusions about the absolute value of the final
runtime difference in the PUF. Such side channel information
can conceivably improve the success and convergence rates of
ML methods, though we have not exploited this in this paper.
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