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Abstract—The paper proposes a framework for modeling and
«] analysis of the dynamics of supply, demand, and clearing peces
in power system with real-time retail pricing and information
- asymmetry. _Real-time retail pric_in_g is _characterized by pasing
o~ on the real-time wholesale electricity prices to the end caumers,
and is shown to create a closed-loop feedback system betwetre
¢ physical layer and the market layer of the power system. In tie
absence of a carefully designed control law, such direct fdback
) between the two layers could increase volatility and lower e
system’s robustness to uncertainty in demand and generatio A
[~ new notion of generalized price-elasticityis introduced, and it is
shown that price volatility can be characterized in terms of the
—system’s maximal relative price elasticitydefined as the maximal
ratio of the generalized price-elasticity of consumers tohat of the
U) nroducers. As this ratio increases, the system becomes movelatile,
. and eventually, unstable. As new demand response technoleg
(/) and distributed storage increase the price-elasticity of dmand, the
Q) architecture under examination is likely to lead to increagd volatility
—and possibly instability. This highlights the need for assssing
architecture systematically and in advance, in order to opmally
strike the trade-offs between volatility, economic efficiacy, and
system reliability.

Index Terms—Real-Time Pricing, Volatility, Lyapunov Analysis.
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F! I. INTRODUCTION

O HE increasing demand for energy along with growing e

vironmental concerns have led to a national agenda
engineering a modern power grid with the capacity to integr

. . the renewable energy resources at large scale. In this igarad

— shift, demand response and dynamic pricing are often predras
means of mitigating the uncertainties of the renewable gdioa
« and improving the system’s efficiency with respect to ecoico

(O and environmental metrics. The idea is to allow the consam

to reactin their own monetary or environmental interdst
the wholesale market conditions, possibly the real-timieast
However, this real-time or near real-time coupling betwsapply

and demand creates new challenges for power system operal

The source of a most significant challenge is the informati

Indeed, real-time pricing under information asymmetryuioes
additional uncertainties due to the uncertainty in consumbav-
ior, preferences, private valuation for electricity, amtisequently,
unpredictable reactions to real-time prices.

The existing body of literature on dynamic pricing in commu

nication or transportation networks is extensive. Seerstaince

This work was supported by Siemens AG under "Advanced CbMethods
for Complex Networked Systems”: Siemens - MIT cooperation.

The authors are with the Laboratory for Information and Bieci Systems
(LIDS), Department of Electrical Engineering and Compugsience, Mas-
sachusetts Institute of Technology, Cambridge, MA.

E-mails: {mardavij, dahleh, mittgr@mit.edu.

[11], [6], [14] and the references therein. However, thecHje
characteristics of power systems which can be attributed to
uncertainty in consumer behavior, the close coupling ard re
time interaction of economics and physics, and the reltgtahd
operational requirements that supply must match demand at a
times raise very unique challenges that need to be addressed
Various forms of dynamic retail pricing of electricity habeen
advocated in economic and engineering texts[ In [5], Bdegms
et. al. study both the theoretical and the practical imfitices of
different dynamic pricing schemes such@stical Peak Pricing
Time-of-Use PricingandReal-Time Pricing They argue in favor
of real-time pricing, characterized by passing on a pribat t
best reflects the wholesale market prices, to the end consume
They conclude that real-time pricing delivers the most fiene
in the sense of reducing the peak demand and flattening tke loa
curve. In [10], Hogan identifies dynamic pricing, partialjaeal-
time pricing as a priority for implementation of demand r@sge
in organized wholesale energy markets. Similar conclissiane
reached in a study conducted by Energy Futures Austialia [8]
The appeal of dynamic retail pricing is not limited to thetaral
research and academic studies, and real-world implememsat
are emerging at a rapid pace. For instance, Californiat®’sta
Public Utility Commission has enacted a series of new energy
egulations which set a deadline of 2011 for the state iaslito
rropose a newlynamic pricingrate structure, specifically defined
s an electric rate structure that reflects the actual walgles
market conditions, such as critical peak pricing or realeti
pricing [24]. In this paper, we show that directly linkingeth
consumer prices to the wholesale market prices createssa-clo

rT\oop feedback system with the Locational Marginal Prices as
%he state variables. We observe that such feedback meatsanis

may increase volatility and decrease the market's robasthe
uncertainty in demand and generation. We introduce a natfon

ﬁeneralizecbrice—elasticity, and show that price volatility can be

perbounded by a function of the system’s Maximal Relative
ice-Elasticity (MRPE), defined as the maximal ratio of the

t(%?l‘eralized price-elasticity of consumers to the genardlprice-

elasticity of producers. As this ratio increases, the systeay
become more volatile, eventually becoming unstable as tRE#
exceeds one.

While the system can be stabilized and volatility can be
reduced in many different ways, e.g., via static or dynamic
controllers regulating the interaction of wholesale méskand
retail consumers, different pricing mechanisms pose wffe
consequences on competing factors of interest such aslitglat
operational reliability, economic efficiency, and envinoental
efficiency. The intended message is that the design of a real-
time pricing mechanism must take system stability issués in
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consideration, and that successful design and implenentaf time is a discrete variable, this notation would not be ceatl
such a mechanism entails careful analysis of consumer mhawith derivative with respect to time. Finally, for a meadueaset
in response to price signals, and the trade-offs betweatiMty, X C R, puy, (X) is the Lebesgue measure &f
reliability, and economic or environmental efficiency. ] o

Prior research relevant to stability of power markets h&s Basic Definitions
appeared in several papers by Alvarado [1], [3] on dynamicl) Volatility:
modeling and stability, Watts and Alvaradgd [4] on the infloen  Definition 1: Scaled Incremental Mean Volatility (IMV):
of future markets on price stability, and Nutaro and Propmszu Given a signalk : Z — R, and a functionp : R — R™, the
[15] on the impact of market clearing time and price signatscaled incremental mean volatilitpeasure of: (-) is defined
delay on power market stability. The model adopted in th&s

paper differs from those of [1]/[3],]4], and _[15] in that we > T _
analyze the global properties of the full non-linear modsl a Ve (h) = Jim TZ”p(h (t+1) = p (@) (1)

opposed to the first-order linear differential equationamixed where, to simplify the notation, the dependence of the su

in these papers. _In a_ddition, the price updates in our PaRLr o norm used iX1) is dropped from the notafidn(h).
occur at discrete time intervals and are an outcome of malrgin To quantify volatility for fast-decaying signals with zer

cost pricing in the wholesale market by an Independent BYStemall scaled IMV, e.g., state variables of a strictly staale

Qp(jezrator I(ItS g)llwrt"?ht IS colrgstlste;t tvf\]nth the %urrznh_&mt' tonomous system, we will use the notion of scakmpregate
in deregulated electricity markets. Furthermore, beydabikty, volatility, defined as follows.

we are interested in providing a characterization of theaatp Definition 2: Scaled Incremental Aggregate Volatility
of uncertainty in consumer behavior on price volatility ate (IAV): Given a signah : Z — R’, and a functiorp : R! —s R™

system’s VObPS”?eSS to u_ncertalnt_les. the p-scaled incremental aggregate volatilitgeasure of: (+) is
The organization of this paper is as follows. In Secfidn II W8efined as

present some preliminary concepts and definitions. In Gedill oo
we present a mathematical model for the dynamic evolution of V, (h) = Z lp(h(t+1))=p(h(®)]. (2)
supply, demand, and clearing prices under real-time pricgec- =0

tion [Vl contains the main theoretical contributions of thaper: |n particular, we will be interested in tHeg-scaled incremental
CharaCteriZing VOlatlllty in terms of the market's maximalative V0|at|||ty as a metric for quantifying V0|at|||ty of pricaupp|y’ or
elasticity and uncertainty in consumer behavior. In Secli® demand in electricity markets.
we qualitatively discuss our results, compare with somehef t Remark 1:The notions of incremental volatility presented in
results in the literature, and point to some important daest Definitions[1 and2 accentuate the fast time scale, i.e., figsh
regarding the trade-offs arising due to uncertainty in gath@n quency characteristics of the signal of interest. Roughse&ing,
and quantifying the value of information. Numerical sintidas the scaled IMV or IAV are measures of the mean deviations of
are presented in SectidnJVI. Finally, we offer some closinge signal from itsmoving averageln contrast, sample variance
remarks and further directions for future research in 8e&dlll  or CV (coefficient of variation, i.e., the ratio of standamation
to mean) provide a measure of the mean deviations of the
Il. PRELIMINARIES signal from its average, without necessarily emphasizieghigh-
. frequency characteristics. A slowly-varying signal withlage
A. Notation . ;
dynamic range may have a large sample variance or CV, but a
The set of positive real numbers (integers) is denotedky small IMV, and thus will be considered less volatile than stfa
(Z+), and nonnegative real numbers (integers)iby (Z.). The varying signal with a large scaled IMV. Since we are intezst
class of real-valued functions with a continuouth derivative on in studying the fast dynamics of spot prices in electricityrkets
X C Ris denoted by" X. For a vectow € R!, v, denotes thé-  and the associated stability/reliability threats, thdestaMV and
th element ofv, and||v[|,, denotes the standard p-norfp|[, %" 1AV as defined above are more appropriate measures of vatil
! P\ /P . than variance or CV.
(Zi:l [0l ) . Also, we will use|v]| to denote any p-norm 2) Stability: The notion of stability used in this paper is the
when therle is no ambiguity. The space Rf-valued functions standard notion of asymptotic stability. Consider the eyst
h:Z — R' of finite p-norm p(t41) = (2 (1) 3)

o0 9] l

p_ p_ T where (-) is an arbitrary map from a domaili c R™ to R".
”th B Z In (t)”p N Z Z IR (1) The equgli)brium:‘c € X of [@) is stable in the sense of Lyapunov
if all trajectories that start sufficiently close foremain arbitrarily
is denoted by, (Z) or simply £, when there is no ambiguity. close to it, i.e., for every > 0, there existsy > 0 such that
For a differentiable functiorf : R" — R™, we usef to denote B B
the Jacobian matrix of. When f is a scalar function of a single lz(0) =z <é=llz(t) —z]| <e, V20
variable, f simply denotes the derivative of with respect to The equilibrium isglobally asymptotically stablig it is Lyapunov
its argument:f (z) = df (z) /dz. Since throughout the paperstable and for all: (0) € X : limy_,oo z () = Z.

t=—o00 t=—00 1=1
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C. Market Structure a) Heterogeneous Consumers with Uncertain Value Func-

We begin with developing an electricity market model Witﬁiqns:_We will .consider two models of heterogenous consumers
three participants: 1. The suppliers, 2. The consumers,?andw'th time-varying value functions to represent the undstyain
An Independent System Operator (ISO). The suppliers and fsumer behavior. , o
consumers are price-taking, profit-maximizing agents. T3@® — Multiplicative Pgrtur_batmn Model The uncertainty in
is an independent, profit-neutral player in charge of ciegri CONSuUmer's value function is modeled as

the market, that is, matching supply and demand subjecteo th . x ,

network constraints with the objective of maximizing thecisb 0 (@, 1) = a; () vo (W) ’ jeb ©6)

welfare. Below, we describe the characteristics of the gaigyn _ _

more detail. wherew, : R4 — R is a nominal value function and; : Z; —
1) The Consumers and the Producetset D = {1,...,n,} R+ isanexogenous signal or disturbance. Given a prige > 0,

andS = {1,...,n,} denote the sets of consumers and producétgder the multiplicative perturbation modgl (6) we have

respectively. Each consumgre D is associated with a value d; (0 t) = a; ()51 (A (1) @)

functionv; : R, — R, which can be thought of as the monetary

value that consumej derives from consuming units of the Thus, the same prica may induce different consumptions at

resource, electricity in this case. Similarly, each pragucs S, different times, depending on the type and composition ef th

is associated with a function; : R, — R, representing the load.

monetary cost of production of the resource. — Additive Perturbation Model The uncertainty in con-
Assumption I:For all i € S, the cost functions:; (-) are in sumer’s value function is modeled as

C?%(0,0), strictly increasing, and strictly convex. For glle D, R _

the value functions; (-) are inC2(0, o), strictly increasing, and vj (2,1) = vo (z —u; (1)), JeD, (8)

strictly concave. whereu; : Z, — Ry is exogenous. Thus, given a prigét) > 0,

Letd; : Ry = Ry, j e D ands; : Ry = Ry, 0 € Sbe hqer the additive perturbation modEl (8), the demand fanct
demand and supply functions mapping price to consumptiain gg

production, respectively. In the framework adopted in ffaper, . 1
the producers and consumers are price-taking, utilitytmeng dj (A 8) = u; (8) +057 (A (1)) ©)
agents. Therefore, letting be the price per unit of electricity, we — Aggregation of Several ConsumersThe aggregate re-
have sponse of several consumers (or producers) to a price signal
. may be modeled as the response of a single representating age
dj (A) = arg fé%)i vj (@) = Az, jeb, ) although explicit formula for the utility of the represetiNa agent
— max {0, {z | &, (z) = A}} may sometimes be too complicated to fihd|[18], [9]. For theecas
’ J of N identical consumers with value functions=v,, j € D,
and it can be verified that the aggregate demand is equivaleriteto t
demand of a representative consumer with value functioh [18
s; (\) = arg m%x Az — ¢ (), ieS. (5) -
reR L —
v (z) = Nv, (N) (10)

=max{0,{z | ¢ () = \}}

] ) ) ) . Suppose now, that the consumer behavior can be modeled via
For the sake of convenience in notation and in order to avoid U@_G)_ Let

necessary technicalities, unless stated otherwise, weasglme N .
ZjZl a? ( ) )

in the remainder of this paper thét (\) = 1’;;1 (\) is the demand a(t)=

function, ands; (\) = c'i_l (\) is the supply function. This can

and suppose that there exists a nominal valgesuch that
be mathematically justified by assuming tha0) = oo, and PP ue

¢(0) =0, or thatX € [¢(0),0(0)] . alt)=ap+Aa(t)=ag(l1+46())
Definition 3: The social welfareS is the aggregate benefit ofwhere§ (t) = Aa (t) /ao satisfies|d (t)| < 1. Definev (z) =
the producers and the consumers: agv, (z/ay) . It can be then verified that the aggregate demand
can be modeled as the response of a representative agent with
S=3 (v (ds) = Ndj) =Y (Nisi — ci (1) value function
jeD i€S 3 (1) = & (t) v (_96 )
If A\; =\ = A, V4,7, we say that\ is a uniform market clearing a (1)
price, and in this case, we have: o _ x
= (@ +aalt)vo | 22 A7 H
X

§=3 vy (d) ~ Y ei(s0) :(1+§(t))v(1+5(t)) (12)

jeD i€S
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The aggregate response is then given by
d(A(t),t) = (1+3(1) " (A (1)) (12)

Similarly, under the additive perturbation model the aggte
behavior can be represented by

capacity markets, whether they are stabilizing or desting,
does not fall within the scope of this paper. The interestediers
may consult [[3], [[1F] for an analysis of dynamic pricing in
electricity networks with transmission line and generatpacity
constraints.

Under the above assumptions, the following problem charac-

( U((:)E’ t; =V ((x)_ u (tl))( o) 513; terizes the 1SO’s optimization problem:
dX@),t)=ult)+0 " (A (¢ 14

. . . max Z’Uj (dj) — ZCZ' (Sl)

wherew (-) is given by [I0) and. (t) = Y u; (¢). The interpre- ) =

tation of [13) and[(14) is that at any given timgthe demand (15)
comprises of an inelastic componen{t) which is exogenous sit. Zd' _ ZS'

and an elastic component ! () (¢)). Another interpretation is i ! = ’

thato—! () (t)) represents the demand of those consumers who
are subject to real-time pricing, and(t) represents the demand The following lemma which is adopted from [12], provides the
of the non-participating consumers. justification for defining the LMPs as the Lagrangian muiéps

2) The Independent System Operator (ISDhe ISO is a non- corresponding to the balance constraint(s).
for-profit entity whose primary function is to optimally nchtsup- Lemma 1l:Let d* = [d’{, e ,d;;d] , and s* = [51*, e aSZJ
ply and demand subject to network and operational consstairwhere d;*-, j € D andsf, i€ S, solve [I5). There exists
The constraints include power flow constraints (Kirchtofiws), a price \* € (0,00), such thatd* and s* solve [4) and[(b).
transmission line constraints, generator capacity caim$, local Furthermore,A\* is the Lagrangian multiplier corresponding to
and system-wide reserve capacity requirements and pgssible the balance constraint ifi {[15).
other constraints specific to the 1SO _[23], [21], [22]. Foalre Proof: The proof is based on Lagrangian duality and is
time market operation, the constraints are linearized rear omitted for brevity. The proof in([12] would be applicablerbe
steady-state operating point and the ISO optimizationlprobs with some minor adjustments. ]
reduced to a convexypically linearoptimization often referred  The implication of Lemmall is that by defining the market
to as theEconomic Dispatch Problem (EDP), or the Optimaprice to be the vector of Lagrangian multiplier correspoigdio
Power Flow ProblemA set of Locational Marginal Prices (LMP) the balance constraints, the system operator creates aetitig
emerge as the dual variables corresponding to the nodalrpowrvironment in which, the collective selfish behavior of the
balance constraints. These prices vary from location tation participants results in a system-wide optimal condition.
as they represent the marginal cost of supplying electricita a) Real-Time System Operation and Market Clearing:
particular location. We refer the interested reader td ,[#22], Consider the case of real-time market operation and assuate t
[21], and [17] for more details. However, we emphasize that t price-sensitive retail consumers do not bid in the reaktimarket.
spatial variation in the LMPs is a consequence of congestitmother words, they do not provide their value functionshe t
in the transmission lines. When there is sufficient transiois system operator (or any intermediary entity in charge of-rea
capacity in the network, a uniform price will materializer fine time pricing). Though, they may adjust their consumption in
entire system. With this observation in sight, and in order tesponse to a price signal, which is assumed in this paper, to
develop tractable models that effectively highlight thepamts of be the wholesale market clearing price. In this case, theadem
the behavior of producers and consumgrsantified through their is assumed to be inelastic over eagfort pricing interval, and
cost and value functiorsn system stability and price volatility, supply is matched to demand. Therefole] (15) reduces toimgeet
we will make the following assumptions: the fixed demand at minimum cost:

1) Resistive losses are negligible. .
2) The line capacities are high enough, so, congestion will n i Zci(si)
occur. _ . res (16)
3) There are no generator capacity constraints. st ZS' _ Z‘Z'
4) The system always has sufficient reserve capacity and the = ‘ ey ’

marginal cost of reserve is the same as the marginal cost

of generation. wheredj is the predicted demand of consumeor the next time

Under the first two assumptions, the network parameters Iperiod. We assume that the system operator solvds (16) &nd se
come irrelevant in the supply-demand optimal matching jerob the price to the marginal cost of production at the minimurstco
The third and fourth assumptions are made in the interest saflution. The discrepancy between scheduled generatibiclfvis
keeping the development in this paper focused. They couttjual to the predicted demand) and actual demand is contpdnsa
otherwise, be relaxed at the expense of a somewhat morer@t/olthrough reserves with the same marginal costs. Thus, weneill
technical analysis. The last assumption also implies tlealovnot include reserve parameters and equations explicitly imibdel.
differentiate between actual generation and reserve. fotlgh More details regarding a dynamic extensions of this model ar
investigation of the effects of network constraints anderes presented in the next Subsection.
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D) = ) this interval:

st+1) =

\ d - d(t) = _d;(t) =Y v (A(t). (17)
At+1) = —-c(z) o jeD jeD

Since v; () is known only to consumey, at time ¢, only an
estimate ofi (¢) is available to the ISCbased on which, the price
A(t) is calculated The price (¢) is therefore, the marginal cost
of predicted supply to meet the predicted demand for the time
tervalt, t+1]. We assume that the ISO’s predicted demand/supply
d(t) = Qroiiox v(@) = At)z[=— for each time interval ahead is based on the actual demaea at t
previous intervalss, ;1 = d(t+1) = ¢(d(t), - ,d(t—T)),

T € Z. The following equations describe the dynamics of the

Fig. 1. Exanté Priced Supply/Demand Feedback market:
STt + 1)) =8(t+1) =d(t+1) (18)
icS
I1l. DYNAMIC MODELS OFSUPPLY-DEMAND UNDER Cz(tJr D=¢(d(t), - ,d(t—T)) (19)
INFORMATION ASYMMETRY T
In this section, we develop dynamical system models for the Z i;;l ANt—=k)=d(t—k), Yk <T (20)
interaction of wholesale supply and retail demand in eieitgr jeD

markets with information asymmetry. In this context, “asgetry | vorq [20) follows from [(A7), andh\ (t +1) in (@8) is the
of information” refers to the architecture of the infornatilayer Lagrangian multiplier associat'ed with the balance coirgtra
of the market, in which, the market operator has full infotioa optimization problem[{I6) solved at time+ 1, i.e., with

about the cost of supplying the resource (e.g., through tieeso i
- ) : Yiepdi=d(t+1).

of the producers), but has no information abwatuation of the z
resource by the demand side.

The real-time market is cleared at discrete time ir;{taeervalﬂ; a .
the prices are calculated and announced for each interVak
practice of defining the clearing price corresponding toheac ¢d(t), - ,d(t-T)) = Zakd(t —k), ar € R, (21)
pricing interval based on the predicted demand at the bagjnn k=0
of the interval is called exanté pricing. As opposed to,tkls When¢ (-) is of the form [21), equation§ {118)20) result in:
post pricing refers to the practice of defining the clearimige T
for each pricing interval based on the materialized congiamp Z éi_l A(t+1)) = Zo‘k Z {)j—l (A (t—k)) (22)
at the end of the interval. In ex-post pricing the demand Igestt ies k=0  jeD
to some price uncertainty as the actual price will be rewkafter

consumption has materialized. In exanté pricing withoupest system operators are variations of thersistence modakhich

adjustments, the entity in charge of real-time pricing ades corresponds to the special case where the predicted demand f

rice uncertainty, as it will have to reimburse the generator . .
P @/ . . 9eneratory o next time step is assumed to be equal to the demand at the
based on the actual marginal cost of production, while it can

charge the demand only based on the exanté price. We wilepte previous t|r?_e step,8|.e¢ (d (t)ﬁ o ,d(t=T)) = d(t). In this
dynamic market models for both pricing schemes. These raod&f=c: €dqud iong (1:8)20) result in:

are consistent with the current practice of marginal cogtiny Z éi_l A(t+1)) = Z o7 (A (1)) . (23)
in wholesale electricity markets, with the additional feat that ics jeD

the retail consumers adjust their usage based on the neal-t
wholesale market price.

The prediction steg (19) may be carried through by resorting
to linear auto-regressive models, in which case, we willehav

Some of the popular forecasting models currently in use by th

it all the producers can be aggregated into one represeatati
producer agent with a convex cost functier-), and all the
consumers can be aggregated into one representative censum
A. Price Dynamics under ExamtPricing agent with a concave value functian(-), then [22) and[(23)

Let A (¢) denote the exanté price corresponding to the consunﬁﬁguce' respectively, 1o :

tion of one unit of electricity in the time intervadl, ¢ + 1] . Let ANE41) = ¢ <ZT ot (- k:))> (24)

d(t) = > ,epdj (t) be the actual aggregate consumption during k=0
1In most regions of the United States, such as New Englandfo@aa, or and
’ ) Cfe ]
PJM, the real-time market is operated in five-minute intistva A (t + 1) =c (U ()\ (t))) : (25)

2In this paper we combine the role of the 1ISO and that of anyeitiicharge . . .
of real-time pricing in the retail market. Whether in praetithis will be the case More details on the construction of the representative igen

or not, has no influence on the intended message and thesréisaitwe deliver. mode can be found in [18].
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Remark 3:It is also possible to consider dynamic models aris-

Ag =t} ing from exanté pricing complemented with ex-post adjwstts,
M) = ix ele) — see for instance [19].
s(t)

C. Demand Dynamics under Ex&nbr Ex-post Pricing

We could alternatively write dynamical system equations fo
the evolution of demand. Under exanté pricing we will have:

AMt+1)=\(t)
_d(t+ 1)=arg maxv(z)-A(t + 1)z 0 (dj (t+1)) =ci(si(t) Vie$, jeD (30)
s =0 (3, A d-T)).
Fig. 2. Ex-post Priced Supply/Demand Feedback i€s (31)
whereas, under ex-post pricing we will have:
B. Price Dynamics under Ex-post Pricing b (dy (t+1)) = s (& (55 (8)) -+ ¢ (85 (£ —T))) (32)
Under ex-post pricing, the price charged for consumption of .

one unit of electricity during the intervad, ¢ + 1] is declared at Z s; (t) = Z d (t). (33)
time ¢ + 1, when the total consumption has materialized. In order i€s jeD

to decide on the amount to consume during each time inter\/@ : :
suming representative agent mod @) and
ahead, a prediction of the ex-post price is needed. We ass ce rgespzctively to g 4is] (B0 (2p-@3)

that \; (t + 1), consumer’s predicted price, is a function of the
ex-post prices of the previous intervals. Therefore, v(d(t+1)=¢(p(d(t), - ,d(t=T)) (34)

A+ =¢; A({),--- , At -T)) (26) and
W=t (Varn) @ B(d(E+1) =@ @E(d (1), é(d(=T)).  (35)
jeD Under the persistence model for prediction we have:
Yot =d(t+1) (28) o(d(t+1))=éd®) (36)

ics
o . - In the sequel, we will develop a theoretical framework that
By combining [26)-(28) we obtain: is convenient for analysis of dynamical systems describgd b
26;1 A(t+1)) = Z 1};1 (¢ (A(t),---, A (t=T))) (29) ?mplicit equations._ Such systems ari_se in many applicatighich
incorporate real-time optimization in a feedback loop,esal/
instances of which were developed in this section. As we will
It is observed that when the consumers use the p@ge, this framework is extremely useful for studying theatyits
sistence model for predicting future prices, i.e., Whegf electricity markets, robustness to disturbances, pstesility,
¢ (A(t), -+, A(t=T)) = A(t), Vj, then the price dynamics ang volatility under real-time pricing.
(29) becomes identical to the case with exanté priding, (&h
the difference that the price uncertainty and the assatias&s
are bore by the consumer. In general, however, the pricerdigsa
would depend on how each individual consumer predicts tie Stability Analysis

ex-post price. This additional layer of dependency on COT8U |, yis section we present several stability criteria based

behgvior sugg_ests_ thaF more compli_cated market (.)u.tgorm#:s VY_'yapunov techniqgues and examine stability properties & th
multiple, possibly inefficient equilibria could materizdi in ex- clearing price dynamics formulated in Sectfof III.

post-priced retail markets. Theorem 1:Let S be a discrete-time dynamical system de-
Remark 2:Equation [[(2B) assumes that the generators WelBribed by the state-space equation
dispatched optimally, which is ideal but unlikely in praeti

In this paper, we do not model the intricacies arising from th S oz(t+1) =Y(x()
discrepancy between exanté dispatch (which is the acispdtth
schedule based on prediction, and hence, not necessatiityadp
and ex-post dispatch (which characterizes how the gensrator some function) : R, — R,. Then,S is stable if there exists
should have been ideally dispatched). Although the se#titma pair of continuously differentiable functionsg : R, — R
of these discrepancies is important in practice, such ldetan satisfying

be safely ignored without affecting the core of our framekwor gz (t+1))=f(x(t) (38)

€S jeD

IV. THEORETICAL FRAMEWORK

37)
o € Xo C Ry
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and

(i): o =wf{0] [f@)]<03@] vaf<1 (39)

(i):  pe{e| f(@)=g(@)}) =0 (40)
and either:

(i) g(2)>0, ¥z, and lim {f (z) - g (x)} <0 (41)
or

(iil):  g(x) <0, ¥z, and lim {f (z) - g (x)} >0 (42)

Before we proceed with proving Theordrh 1, we present the

domain ofy is R . Furthermore, as long g5(z (t)) < g (z (¢)),
the sequencéy (x (t))} decreases strictly. Therefore, 141) implies
that

Vog:IMER, N€Zy 1 g(x(t) <M, Vt>N. (49)

It follows from (49), monotonicity and continuity of (-) that the
sequencez (t)} is bounded from above too (similar arguments
prove boundedness dfr (t)} when [42) holds). Hence, either
lim; oo (t) = 0, or {z(t)} has a subsequende: (¢;)} which
converges to a limit* € R,.. In the latter case we have

Jim V(e ()Him V(@ () = i {f (2 (8)) = g (2 (6)))

= [f (@) — g (z)]

following lemma, which will be used several times in this pap If g (z*) = g (¢ (z*)) thenc = | f (z*) — g (¥ (z*))]| = 0 (due to
Lemma 2:Let X be a subset oR. Suppose that there exists a
continuously differentiable functiorf : X — R, a continuously B8)). If g (z*) # g (¢ (z*)) then

differentiable monotonic functiog : X — R, and a constant

6 € [0, 00) satisfying

f@)|<0li@)], veex (43)
Then
If (@)= f W <0lg(x) —g W), Vr,yeX (44)
Furthermore, if[(4D) is satisfied, then
f@) = fWl<lg@) —gW@l, Ve,yeX, z#y (45
Proof: We have
Ve,yeX, v #£y:
@ - fwis|[ i)
<o\ [“laar| = 0lg () -9 )] 0)

where the inequality if{46) follows frorh (43) and the suhssu
equality follows from [41l). Proof ofl (45) is similar, excefbtat
under the assumptions of the lemma, the non-strict inetyuali
(48) can be replaced with a strict inequality.

We will now present the proof of Theoremh 1.

30, >0, s.t. |g (¥ (z)) —g(x)| > ¢, Vo € B(z*,0)
Define a functionr : B (z*,§) — R according to

[f (¢ (2)) = [ ()]
9 (¢ (2)) — g (z)]

Then it follows from[48 thatr (x) < 1 for all z € B(z*,4).
Furthermore, the function is continuous over the compatt se
B (z*, ) and achieves its supremumwhere7T < 1. Sincex (t;)
converges tac*, there exists € N, such thatr (t) € B (z*,6).
Then

Vet+1)—7V(x(¥))
=[f@t+1) - fz@)]-Tlg(@t+1)—g (@)

<0,

T.T

vt >t
SinceT < 1, this proves that = 0. Finally,
Jim f(z (1)) = lim g (z (1)) = g (z%)
=g~ (lim f (2 (1)) = Jim g7 o f (x (1) = lim = (1)

This completes the proof of convergence for all initial citiods.
Proof of Lyapunov stability is based on standard argumemts i

of TheorenilL The key idea of the proof is that the functiorProving stability of nonlinear systems (see, elg.! [13pilerusing

Viz)=I[f(z) —g ()| (47)

is strictly monotonically decreasing along the trajeasrof [3T).
From Lemmdll we have:

Vz(t+1) =V (z(t)
=[f@(t+1)—g@t+D)-|f(z®)—g @)
=[f@(E+1) = fl®)—lg@t+1)—g=®)

<0. (48)

the same Lyapunov function defined [n47). [ ]
Remark 4:The monotonicity conditions in[{41) of_(#2) in
Theorem[l can be relaxed at the expense of more involved
technicalities in both the statement of the theorem andritefp
As we will see, these assumptions are naturally satisfied in
applications of interest to this paper. Therefore, we woll bother
with the technicalities of removing the condition.
There are situations in which a natural decomposition of
discrete-time dynamical systems via functighand g satisfying
(38) is readily available. This is often the case for appiares that

Therefore {V (z (¢))} is a strictly decreasing bounded sequendavolve optimization in a feedback loop, many instances bich

and converges to a limit> 0. We show that > 0 is not possible.

appeared in sectidn]Il. For instance, for the price dynar{@),

Note that the sequender (¢)} is bounded from below since thewe havey = ¢ o ™!, and the decomposition is obtained with
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g=¢"1, andf = v~ !. However,f and g obtained in this way is the generalized price-elasticity of supply at priceNote that

may not readily satisfy{{39). We present the following ctanoés.

Corollary 1: Consider the systeni (B7) and suppose that cow-
Y y : R)+ N prsatisfying generalized price-elasticitgs the ratio of the generalized price-

@8) and [@D)- @2) are given. Then, the system s stable if thef@aStiCities:
existd < 1 and a strictly monotonic, continuously differentiable

tinuously differentiable functions, g

functionp : Ry — R satisfying

p(f (@) f(2)] <01p(g(x)) g ()]
for all z € R,.
Proof: If f and g satisfy [38), then so dpo f andpog

these notions depend on the exponénfor [ = 1, we obtain
e standard notions of elasticity. We define tharket’s relative

ep (A1)
s (A1)
The market’'s maximal relative price-elasticiMRPE) is defined
as

6?el ()‘a l) =

(54)

0 (1) = Asup |€Pe| (\, l)‘ . (55)

€R,
The notions of generalized demand-elasticity of price asideg

for anyp € C*(0, 00). Furthermore, under the assumptions of thalized supply-elasticity of price are defined analogously:

corollary,po f andpo g satisfy [39)-(42). The result then follows

from Theoreni1L. [

Corollary 2: Market Stability I
if there exists a strictly monotonic, continuously diffetiable
functionp : Ry — R satisfying

po o) 2 <ol on E2 ) 0
forall A € Ry.
Similarly, the system[(36) is stable if
b (¢ () é ()] < 01p (0 (x)) ()] (51)

for all x € R,

Proof: The statements follow from Corollaky 1 with= !
andg = ¢! for (&0), andf = ¢ andg = o for (&), and the
fact that under Assumption I, all of the conditions requiiad
Corollary[d are satisfied. [ |

Remark 5:By taking p (-) to be the identity function in[(0)

and [51), we obtain the following sufficient criteria for Isility

of (25) or (36):

|&(z)| < 00 (2)] (52)
of P ()| _ |2 ) s
<0 5 )

Although these conditions are very simple, they are gelyeral

harder to satisfy globally for typical supply and demandctions.

In the economics literaturelasticity is defined as a measure

The system[(25) is stable

.v (x)l, e (r) = xl'c(—x)l

o (z) ¢(x)

When [ = 1, these notions coincide with the Arrow-Pratt
coefficient of Risk Aversion (RA)L[2],[[16], and we will adopt
the same jargon in this paper. The marke¢kative generalized
risk aversion factoris defined as:

RA( ;_ S@D) i@ (o))
rel (Ial) — 4 = = .

€ (z,1) b (z) \ ¢(z)
Finally, the market's maximal relative risk-aversiofMRRA) is
defined as

eg (z,1) = o

€

0 (1) = sup [ @) (56)

reER

With a slight abuse of notation, when= 1, we write €}, ()
instead ofe}, (A, 1), and#* instead of9* (1), etc.

The following corollary relates the market’s stability teetmar-
ket's relative price-elasticityl, (A, 1), and relative risk-aversion
RA (1. |
€rel (xv ) . .

Corollary 3: Market Stability Il: The system[(23) is stable
if the market's MRPE is less than one for soing 0, that is:

HA>0: 6% (1) =sup |y (N 1)] <1
A

(57)

The system[(36) is stable if the market's MRRA is less than one
for somek > 0, that is:

A>0: n*()=-sup

R @) <1 (58)

Proof: The results are obtained by applying Corollady 2,

of how one variable responds to a change in another variible yjieria [50) and [{51), withp (z) = log(z) for I = 1, and
particular,price-elasticity of deman@ defined as the percentagep (2) = 2=+ for [ # 1. ’ -

change in the quantity demanded, resulting from one peagent  \yhen the cost and value functions are explicitly available,

change in the price, and is used as a measure of responsivengs ditions [G1) or[(58) are more convenient to check, wherea

or sensitivity of demand to variations in the pri¢&ice-elasticity \yhen explicit expressions are available for the supply a@rdahd

of supplyis defined analogously. In this paper, we generalize thgnctions, it is more convenient to work with {50) 6ri57).

standard definitions of elasticity as follows. Example 1:Consider [(Zb) withc(z) = 2°, and v (z) =
Definition 4: Generalized Elasticity: The quantity (z —u)"*, wherea,3 > 1 andu > 0 is a constant. First,

b A Loy (A) consider theu = 0 case. Then, we have

6D(A7l):(~1 ) ) aB—a
7L (A) o\ At+1) =8 (aA(t) ==

is the generalized price-elasticity of demand at pic&imilarly,

A\ et (A
D= <¢—1 (/\)> 8/\( :

>0

0(x) = alzTe @ (£)=(1-0a) a2z e

¢(w) =B, é(x) = B(B—1)a"?

>0
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It can be verified that there cannot exists a constant0, oc) for ~ which satisfy
which (52) is satisfied for alt € R, (equivalentlyg* (0) = o).

However by invoking [58) withk = 1, we have: ’8% ’ < Oy ‘fi (yr)|, VyeR" (60)
c_le@ @) (B-1) <1 where
.. . _ _1 n
[i(2)] |¢(z)]  (a—1)a S0 <1 (61)

Hence, the system is stable if

Then, there exists a constapt > 0, which depends only on the
first n 4 1 initial statesz (n), ..., x (0), such that the set
It can be shown that the condition is also necessary and Hteray n

. . ; . Qo= R|3zeR": - < 62
diverges for3 > 2 — a~!. Moreover, invoking [(Bl7) withl = 1 o=freR[3z€ lg (@) = f (z, 2)] < 70} (62)
yields exactly the same result, though, this need not be ake cis invariant under((39), i.e.,
in genera!. Conglder now the same system .\mtkt =2 and 2 (T =n), ez (T)€Q = z(t) €, Vt>T
u > 0. Simulations show that the system is not stable in the . o .
asymptotic sense for < 1/4. The following table summarizes Furthermore, wheri (61) holds with strict inequality, thecaled

f<2—at

the results of our analysis. IAV of z is bounded from above:
Table | §m7t+1 gz ()< ——  (63)
u=025|u=03|u=0.5 1-— 0
0* (1) = 2 2 2 Z
0 (1.5) = 1 0.872 0.595 Proof: For simplicity and convenience in notation, we prove
0*(2) =] 1.299 0.988 0.459 the theorem for the, = 1 case The proof for the general case is
entirely analogous. Define the functidn: R? — R, according

Thus, whenu = 1/4, the system is at least marginally stable
Furthermore, the above analysis highlights the importaridbe
notion of generalized elasticity introduced earlier (c&fidition
M), as6* (1) (which is associated with the traditional notion ot et

price elasticity) can be greater than one while the systestaisle Y=V (z(1),z(0))+|g(x (1)) — g (x(0))] (65)
and it's stability may be proven using the MRPE for sohie 0.

The preceding analysis is based on applying the results (}tprove thatQ)q is invariant under[{39), it is sufficient to show
Theoreni]L and Corollaiiy 3 to systems of the fofml (23) [(of (,36)3ﬁ
which correspond to the persistence prediction model, hdret V(@ (T+1),2(T)) <50, YT € 2y, (66)
it is demand prediction by the I1SO in the exanté pricing cas€ simplify the notation, defineAf, = f(z(t+1),z(t)) —
or price prediction by the consumers in the ex-post priciagec [ (z (¢),z (t —1)),andAg; = g (z (t +1))—g (z (¢)) . We have:
In the next section, we present a theorem that is applicable t
analysis under the generic prediction modEIS (26) (19). Vet+1),2(t) =V (z(t),z(t—-1))

%o
Viz,2)=lg(x) - f(z,2)] (64)

B. Invariance Analysis =lg(@(t+1)— f(z(t+1),z(t))
When functions of the forni{26) or (IL9) are used for predittio —lg (@) — f(x(t),z(t—1))]

of price or demand, the underlying dynamical system is ngéon
a scalar system. An immediate extension of Theofém 1 in its — @ (), et —1)) = fat+1),z (1))

full generality to the multidimensional case, while potsibaises —lg(z @) —gx(+1))
further complexities in both the proof and the applicatidrthe

theorem. In what follows we take the middle way: we present a < |f(@(t),z(t—=1))—f(z(t),z @)

theorem that exploits the structure of the dynamical systean +f(@®t),zt) = f(zt+1),z(t)] —|Ag]
arises from autoregressive prediction models to both mhke t

extension possible and to simplify the analysis. < 02|Agi—a| + (01 — 1) |Agi| (67)
Theorem 2:Let = : Z, — R, be a real-valued sequencewhere the first inequality is obtained by applying the triaiag
satisfying a state-space equation of the form: inequality, and[{67) follows froni_(60) and Lemina 2. By sumgnin

glx(t+ D) (@), z(t—1),-- ,z(t—n)) (59) up both sides of (67) from = 0 to ¢ = T" we obtain:
V(@(T+1),2(T) <V (x(1),2/(0))

(2 (0),...,x (n)EXo C R™1, .

for some continuously differentiable functioh : R"*! — R, + (01 + 62— 1) Z |Age| + 02 (|Ago| — |Agr|) (68)
and a continuously differentiable monotonic functignR — R t=1
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The inequality [(66) then follows froni (68) and {61). When)(61(71) near equilibrium is informative. Suppose tHatl (24)warges
holds with strict inequality,[(83) follows froni_(68) and nugga- to an equilibrium price\. Letting A\, = Ay 1 =+ = XA,y = A,
tivity of V (z (T + 1),z (T)) for all T € Z. This completes the we observe that the following condition is implied By {7 I32):

proof. u " _ _ n l
It follows from the proof of Theoreril2 that when the initial 3/ >0 : ’Zkzlak leh (A D] < | (A D) ‘Zkilak’ (73)
conditions are close to the equilibrium ¢f{59), it is suffici to o - ) o
satisfy conditions[{80)E(61) only locally, over a propedgfined Whereey, (X, 1) and e}, (A1) are generalized elasticities as de-
subset ofR™*1. This is summarized in the following corollary. fined in Definition[4, evaluated at the equilibrium. It can be
Corollary 4: Let z : Z, — R, be a real-valued sequenceshown that[(78) is equivalent tef, (X, 1) < 1, independently
satisfying [59), wheref and g are continuously differentiable of [. Furthermore, for a large class of cost and value functions,

functions. Let namely power functions of the form(z) = 2 andv (z) = at/e
~ . a, B > 1, the equilibrium relative elasticity (A) = €, (A, 1) is
Qo={(z,2) ERxR" 1 |g(z) — f (z,2)] <o} independent of the autoregressive coefficients k = 1, ..,n.
i ; Thus, if the closed-loop market is unstable under the perdis
where~y is given in -{(6b). If
L (€3) ) prediction model 4¢; = 1, ax = 0, k # 1), then global stability

. Wye Q cannot be verified for any linear auto-regressive model®@fdoim

(24) using [71)-f(72). Although this analysis is based oficant
criteria, it suggests that it may be difficult to globally lsteze
these systems via linear autoregressive prediction. thdeden-

sive simulations show that such models will not globallybgize

an unstable market, unless the MRPE is very close to one. For
vatlues of¢* > 1.05 global stabilization could not be achieved
ke . . D .

In our simulations. Local stabilization is, however, pbgsifor
moderate values of*, namely,6* < 3.

‘ 0

ot )] < o )

whered,,’s satisfy [61), therf), is invariant under{89). Further-
more, when[(6]1) holds with strict inequality, and the irliziation
vector zg = [z (n),...,z(0)]is an element of}y, then [€B)
holds.

Theoreni 2 and Corollafy 4 can be applied to analysis of mar
dynamics under the generic autoregressive prediction fadllat
were presented in Sectipnllll. This includes the generiadyical
system models that were developed for price dynamics unde@) Analysis of Dynamics of Markets with Exogenous Inputs:
exanté or ex-post pricing[((I18)=(20) ard(29)), as well las t
aggregate demand dynamical systefns (34) (35). The se
Qg or Qg being invariant implies that the difference between thes

[Lheorem 3:Let z : Z, — R andu : Z, — R be real-valued
quences which satisfy a state-space equation of the form:

predicted demand and the actual supply (possibly scalediog s gxt+1))f (@), u(t), ul)eU (74)
monotonic function, e.glpg (-)) remains bounded.
1) Analysis of Market Dynamics under Generic Autoregr&ssiv z (0Xo CR

Prediction Models:In this section we examine the impact of lin¢,, some continuously differentiable functioh: R? — R and
ear autoregressive prediction models on market stalflitypsider 5 continuously differentiable monotonic functign: R — R

the model[(24), repeated here for convenience: satisfying

-1 _\" —1 _

A+ =, T (A R) ‘aﬁf(x,u) <1, VzeR, uelU (75)
We apply Theorerh]2 (alternatively Corolldry 4) with u

and
N =p( (A 69
93 =2 () (©9) L jew|<oli@]. veer uev, ()

and Oz

f(/\t,...,)\t_n):p(zn aki/_l()\t_k)) (70) where

k=0

We examine[(89) (ZQ) with p (z) = log (z) andp (z) = z~*1, _
I # 1. Conditions [6D)-(@1) then imply that the following andx € (0,00), andé € [0, 1). Define

U={uelR:|u <k}

conditions are sufficient (for some> 0): 140
i G (0) = Ke—p- (77)
N 001 () 1-46
AP A=Ay Then, the set
~ < O | (N, 1) (71)
> et ()] Q)= {o:|1f (@) =g @]~ | < 6. 0), weU} (78)
n is invariant under[{44). Furthermore, tlgescaled IMV of z is
Zek <1 (72) bounded from above:
k=1

2K

T
= 1
Conditions [711)-H(72) are complicated and in general demand/, (z) = lim sz (x(t+1)—g(z() < (79)
t=1

. . e X . T— -
numerical computation for verification. However, examio@tof >~
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Proof: Define Corollary 5: Letz : Z, — R andu : Z, — R be real-valued
sequences satisfying (74). Fér< 1, define:
V() = sup {[If (r.0) g @) = 14|} ¢ 60). ;
0* =inflf:|— T, U <0|=—g(z ,
It is sufficient to show that there exists> 0, such that: { &vf( ) 6:69( )
V(e(t+1)—7V(z(t) <0, VteZ,. Ver(@),ueU}

To simplify the notation, defindf, = f (z (t +1),u(t+1)) —

£z (), u(t)), and Ags = g (z (t+ 1)) — g (x (£)) . Then where(2 (0) is given in [Z8). The2 ( ) is invariant under (74)

if

V(@ (t+1) =7V (2 (1) =
— Furthermore,[(719) holds witd = 6*.
= t+1 — t+1))| —
SEB{‘ F@+1),v) =g @1l = ‘} Consider equation (74) dr (b9). When the functigrend f are
_ " _ AN p-scaled supply and demand functions, the minithahtisfying
TEEIU) {‘ f @ ®),) =g @®) = ‘} (Z8) or [60) will be the MRPE associated with the market msdel

+ ¢ (0) (T —1) (74) or [59). Wheng and f are p-scaled marginal value and
marginal cost functions respectively, the miniMaatisfying the
inequalities will be the MRRA associated with {74) brl(59) the

< sup {’ If(x(t+1),v)—f(x@t),u®)]—]|v| ‘} remainder of this section, we consider applications of Teen
veu [3 to the two time-varying models of consumer behaviot (14) an
—TIAg| + 75+ (0) (T —1) (80) (@)
a) Multiplicative Perturbation: Consider the multiplicative

erturbation model[(12). Under this model, the market dyinam
< sup f (x (t+1),0) = f (2(),¥)] P ta2) ¢

vel is given by
s {[If @00 =1 @@ u )= 1]} D) = (14550) 07 0 0), S0 € [-wd
—7|Age| + 7K+ (s (0) (T —1) (81) (86)
where thel /2 factor in front of § (¢) is simply a scaling factor.
SO-7)Ag|+(1+7)r+C(0) (T —1) (82) We invoke Theoreri]3 with
where [[80) follows from the choice of = u (t) and|u (t)| < &, g(A) =log (¢7' (V) (87)

(81) follows from the triangular inequality, and {82) folle from

(79)-[78) and Lemmia 2. The desired result follows from thet fa2Nd
that the right-hand side of (B2) will be non-positive for= 6 f(NG) =log(146/2)07 1 (N)
and ¢, (9) defined in [ZF). To prove[{79), let = 1 in (82) 0 — log (1+6/2) +log (5= () .

obtain
It can be verified thaf{{(15) an@ ([76) are satisfied as long &sl
Vz@+1)=V(@@®) <@ -1)]Ag|+2~  (83) andg* < 1, whered* is the MRPE defined i {5). Furthermore,
; ; . ¢ (6*) is the upperbound on the size of the invariant set, where
Summing both sides of (83) over dl= 0,1, .., T results in: C. (-) is defined in[[Z). In particular 2 — 1, small perturba-
T tions may induce extremely large fluctuations as measurécgby
V(x(T+1) <V (x(0)+(0-1)> |Ag|+2Tr (84) scaled IMV of supply. The theoretical upperbound i1 — 6*) .
t=1 When Corollary b is applicable, the size of the invariant ca
It follows from (84) and non-negativity o (z (T + 1)) + (. () be characterized by, (0*), wheref* is the market's local relative
that price-elasticity. Furthermore, volatility can be chaeaized by@*
T as well.
(1=0)) |Ag| <2Tk+V (z(0) + ¢ (). (85) b) Additive Perturbation: Under the additive perturbation
t=1 model [14), the market dynamics can be written as
The desired resul{{79) then follows immediately froml(84) b B 1 o
dividing by T and taking the limit a§" — oo. [ FAE+1) =uo + P B+ @), u(t) €[k, #]
The following corollary is a local variant of Theoremh 3, and (88)
is useful for scenarios in which, there exists no positivennar Whereu, > 1 is a shifting factor, and: < wo, so that the demand
6 < 1 such that[(76) is satisfied for all € R, whereas it might iS always at least/2. We invoke Theorerfi]3 witi (87) and

be possible to satisfy the inequality locally over a subsett t 1 4
contains2 (6). f (A u) =log <uo +guto (/\)>
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Then, under the above assumptios] (75) is satisfied. In i#asimAnd thelog-scaled 1AV of price is upperbounded B/ (1 — n*),
fashion to previous analyze$, (76) can be related to the etiarki.e.,

relative price-elasticity. In this case, the price-ekstiof demand > C
turns out to be: ; [log (A (t +1)) —log (A (1)) < 1— e (93)
() = of (\u) A o0t (N)
LW="xn ~ uo +u/24+071(A)  OA Remark 7:Generalized versions of the above corollaries can

The larger the minimum of the inelastic component (ig,— b€ formulated based of* (1) and 7" (), in which case the
1/2), the smaller the price-elasticity of the overall demand wiSc@lings of the signals need to be defined accordinglyngtti
be. Under the assumptions made above, there is always amonge(*) = z~'** for I # 1, the p;-scaled IMV of supply and price
minimal demandumis (t) = uo/2. Therefore, it is sufficient to Will be upperbounded byC'/ (1 -6~ (1)) and C/ (1 —n* (1))

verify (78) over) > ¢ (ug/2) instead of all > 0. In conclusion, respectivelyFurthermore, when the prices remain bounded within
(76) reduces to: an invariant set, e.g., when the conditions of Corollaly 4 or

. . Corollary[3 hold, one can replac® (1) and n* () with local
v~ (\) JOX 91 (N) JOX i . L L~ ~
> relative elasticity ratiog* () andn* (1) .

Let §* be the minimab satisfying [89). Similar to the case withp Robustness and Incremental L2-Gain
multiplicative uncertainty, in this case too, the uppentdon the
size of the invariant set is given ki, (6*), where(, (-) is given
in (Z7). Moreover, théog-scaled IMV of supply is upperbounde
by ug/(1 — 6*). ]
The analysis reconfirms the intuition that participation aof Yo @) —p @y —|lp(h)—p ()|, >0 (94)
small portion of the population in real-time pricing will hbave o ) . s
a severe destabilizing effect on the system, as satisfigayfor 'S satisfied for all input/output pains:, ») and (@ h) such that

E

The p-scaled incremental L2-gaiof a discrete-time dynamical
dsystem with input signal : Z — R and output signah : Z — R
is defined to be the minimat > 0 such that the inequality

larger values ofug is easier. System stability concerns should p(u) — p (@) € s
arise when a large portion of the population is exposed tb rea
time pricing. For systems with larger gains, it is generally expected that

Remark 6:1t can be proven that when (t) is a periodic relatively smalldeviations from a nominal input would stir
function with period7T and [76) is satisfied, then all solutiongelatively larger deviations from the nominal output signal

of (88) converge to a periodic trajectory with peridu This gain can be used as a metric for assessing the robust-
ness/sensitivity of the system to arbitrary external disnces.
C. Volatility It can be proven that for the market modell(86) (more gengrall

The following corollaries follow from Theoreni 2 afl 3, andh® market model(74) with multiplicative uncertainty)etiog-
explicitly relate the market’s MRPE and MRRA to volatility. ~ Scaled incremental L2-gain from the perturbatiég) to the

Corollary 6: Volatility I: Let#* < 1 andn* < 1 be the MRPE demand is upperbounded by/ (1 — 6*) . The gain froms (-) to
and MRRA associated with the market modell(74). Then, theifee supply is upperbounded by (1 — 6*) . These results—stated
exists a constan€’, depending on the size of the disturbancdere without proof—quantify the dependence of the closeg-|
only, such that théog-scaled IMV of supply is upperbounded bySyStem’s robustness, as measured by the incremental b2 @ai

C/(1-6%),ie., the markets maximal relative price-elasticity.
1 c
lim fZ‘lOg (é_l (/\ (t—i—l))) —log (é_l (/\ (t)))| < — V. DISCUSSION
T b3 _(90) Cho and Meynl[7] have investigated the problem of volatility

. . of power markets in a dynamic general equilibrium framework
And the* log—scaled IMVof price is upperbounded byTheir model can be viewed as a full-information model in vihic
C/(A-m), ie., the system operator has full information about the cost atdev
1L C functions of the producers and consumers. Market clearng i
A TZ [log (A (¢ +1)) —log (A ()] < 7— - (91) instantaneous and supply and demand are matched with no time
t=1 lag. The producer’s problem is, however, subject to supdyién
Corollary 7: Volatility 1I: Let * < 1 andn* < 1 be the OF &ramp constraint, i.e., a finite bound on the rate of charige

MRPE and MRRA associated with the market model (59) witpupply capacity. It is concluded that efficient equilibnia solatile
linear autoregressive prediction. Then, there exists asteon and volatility is attributed to the supply friction. In theriulation

C such that thelog-scaled 1AV of supply is upperbounded byof [7] the consumer’s problem is not subject to ramp constsai
C/(1—6%),ie., In our formulation, neither the consumer’s problem nor the

o producer’s is explicitly subject to ramp constraints, yéhes
Z |1Og (6-71 A\ (t + 1))) ~log (C-71 (\ (t)))‘ < ¢ (92 factors are shown _to con_tribute tq \_/olatility, namely, immtio_n
P 1-0 asymmetry and high price elasticity of demand. Interesting
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if we included ramp constraints in the consumer’s problem dtre for a24 hour period and prices are updated evenyinutes.
would have a stabilizing effect, as it would limit the con®ra The average demand in all simulations is approximatelgW
responsiveness to price signals and reduce her elasfidig. per five minutes for both open-loop and closed-loop marKets.
effect is implicitly and qualitatively captured in our framork metric for comparison in these simulation is the Relativiatitity
through the introduction of an inelastic component in thended, Ratio (RVR), defined as the ratio of tHeg-scaled IAV of the
which certainly limits the rate of change in the demand, araosed-loop market to thieg-scaled IAV of the open-loop market.
was shown to have a stabilizing effect. However, uncenainthe results of the first simulation are summarized in Fidgure 3
in the supply side, either in the available capacity or in thEhe prices are extremely volatile under real-time priciRyR
cost, works in the reverse direction: when supply is suffitje = 51.12) and the system is practically unstable.
volatile, a trade-off might exist and responsiveness anteased
elasticity of demand might be desirable, though this needset o0 ‘
guantified rigorously. The models developed in the paperato n
include uncertainty in generation, and this would be arr@siing renol, e (Open Loop Markeh
direction for future research.
The above discussion leads to another interesting question soool
"quantifying the value of information in closed-loop elgcity
markets”. Given the heterogeneous nature of consumers and
time-varying uncertainty in their preferences, needs, eaida-

Price under Open and Closed Loop Market Models
T T

1500 ‘

Price ($/MWh)

tions for electricity, learning their value functions anckgicting 10001
their response to a price signal in real-time appears to be a
difficult problem. Suppose that the consumers provide a-real sool- F w

time estimate of their inelastic and elastic consumptiorthi®
ISO. How valuable will this real-time information be and wha i e
would be its impact on volatility and reliability of the sgsh? Time (4R
Given the potentially significant costs and barriers asgediwith

obtaining such information in real-time, quantifying thalwe of Fig. 3. Simulation of a market with quadratic cost functiefir) = =3, value
information in this context seems an extremely importard arfnction v (z) = log («), and demand functior (¢) given in [98) with1 =
. . . X L ) . 0.075, p2 = 2.

timely question with potentially significant impact the hitecture

of future power grids.

The results of the second simulation are summarized in Eigur
V1. NUMERICAL SIMULATIONS 4. Based_ on the_ chogen pa_rameters, this_ market is Iesslqditaih
) ) _the one in the first simulation, yet, volatility of demandrieases
In this section we present the results of some numericglqer real-time pricing (RVR2:33). Since in this simulation the

simulation. For the purpose of simulations, we use the Wollg st is quadratic, the price (not shown) has a very similsepa
demand model:

D (t) — Mldl (t) + MQ (1 + 62 (t)) ,U—l (A (t)) (95) B Demand in Open and Closed Loop Market Models

T T
—— Demand (Real Time Pricing) Relative Volatility = 2.33
6.5/ | ——Demand(Open Loop Marke() i

whered; (t) is the exogenous, inelastic demand:
dq (t) = ap + a1 sin (t) + agsin (2t) + 01 (t)

andd; (t) ~ N (0,0.1%2) andd; (t) ~ N (0,0.01%) are random
disturbances. The parametgrsandyus are adjusted, on a case-to-
case basis, such that the average demand under real-tionegpri
(i.e., whenus > 0, u1 < 1) remains nearly equal to the average
demand in the open loop markets(= 0, u1 = 1), that is:

Demand (GW)

ST DY aw

This normalization, takes out the effect of higher or lowegrage ‘ i Time (4R) i ‘ *
demand on price and allows for a fair comparison of volatilit
of prices in open-loop and closed-loop markets. The folhmi i

. . . . - ig. 4. Simulation of a market with quadratic cost functiofz) = 3z2,
parameters are chosen for all simulations in this section: value functionv (z) = +/z, and demand functio (¢) in (@5) with u1 = 0.7,

po =3 x 103.
a0:4GW,a1:IGW,a2:1GW

This puts the peak of the inelastic deman@ &W and the valley  The third simulation is summarized in Figuté 4. For each
at2 GW, modulo the random disturbanége(¢) . All simulations value of u; € [0, 1] (with 0.05 increments), the expected RVR



LIDS REPORT, 2011

14

was calculated by taking the average RVR Ff randomized deeper understanding of consumer behavior in responseto re

simulations. The random parameters arét),
initial conditions. The experiment was repeated for fodfedént

02 (t), and the time prices, and a thorough understanding of the implicatiof
different market mechanisms and system architecturesesden

value functionsw (z) = x'/%, a = 4,4.5,5,5.5. It is observed before real-time pricing can be implemented in large-scale

that volatility increases with decreasinagor 1, both of which
increase the price-elasticity of demand.

(1]

Relative Volatility versus Penetration of Real-Time Pricing

a=4.0
—— a=45
— a=50
—— a=55

(2]
(3]
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Fig. 5. Simulation of a market with quadratic cost functiefx) = 322, value
functionv(z) = /¢, and demand functio® (¢) given in [35) withu1 € [0, 1],
andp2 adjusted accordingly to keep the total demand constante@singa or 11
increase the price-elasticity of the overall demand and:éeimcrease volatility.

El
[10]

[11]
VII. CONCLUSIONS ANDFUTURE WORK

We investigated the effects of real-time pricing on the isitgb (12]

and volatility of electricity markets, and showed that esipg the
retail consumers to the real-time wholesale market pricestes a
closed-loop feedback system which could be very volatilevan
unstable. When the system is stable, an upper bound onlitglatij; s
and robustness to external disturbances can be charactenz
terms of the market's relative price-elasticity, defined the

. . i g [16]
ratio of generalizedprice-elasticity of consumers to that of the
producers. As this ratio increases, the system may become nid7]
volatile, eventually becoming unstable when the ratio erse
one. As the penetration of new demand response technolmgikes
distributed storage within the power grid increases, scsdbe
price-elasticity of demand, and this is likely to increasdatility
and possibly destabilize the system under current market gig)
system operation practices. While the system can be stedbili
and volatility can be reduced in many different ways, e.ip, v
static or dynamic controllers regulating the interactiérwbole-
sale markets and retail consumers, different pricing meishas
pose different limitations on competing factors of intérds
light of this, systematic analysis of the implications offelient
pricing mechanisms, and quantifying the value of inforiati
and characterization of the fundamental trade-offs betwee&e
volatility and economic efficiency, as well as system raligb
and environmental efficiency are important directions diife
research. In summary, more sophisticated models of densnd,

[13]
[14]

(18]

[20]
[21]

[22]

[24]
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