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ABSTRACT: In the present work, a novel triptycene-based 9)(\\\9}“
imine-linked covalent organic polymer (TP-COP) was
designed and synthesized via room-temperature, solvent-free
mechanochemical grinding. The as-synthesized TP-COP
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material was fully characterized by Fourier transform infrared O oY) ’
spectroscopy, solid-state NMR, field emission scanning ‘ N Mechanochemical ). <
. . . P Synthesls (RT) e} ’
electron microscopy (FESEM), high-resolution transmission , ; o el o
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electron microscopy (HRTEM), Brunauer—Emmett—Teller °"°O‘"°
method, thermogravimetric analysis, diffuse reflectance spec- C
troscopy (DRS), and electron paramagnetic resonance (EPR). i S
The HRTEM image of TP-COP clearly indicates the presence ' E s
of graphene-like layered morphology (exfoliated layers). The P owdy

DRS study reveals that TP-COP exhibited a low optical band

gap value of 2.49 eV, implying its semiconducting nature. Further, the EPR study confirmed the semiconducting behavior of
TP-COP through the generation of free radicals. These findings suggest that TP-COP could be used as an efficient photocatayst
for the degradation of organic dye (RhB) under solar irradiation. Moreover, TP-COP showed excellent reusability in degrading
dye (RhB) without obvious performance decay.

rganic dyes have caused severe environmental pollution features such as unique ordered structures, relatively large
due to their poor biodegradation. Hence, removal of dye surface area, high chemical and thermal stabilities. Recently,
molecules from industry effluent is highly significant for COPs have been intensively investigated as promising
environmental protection.lf4 In this context, photocatalysis, as materials for gas storage and separation, heterogeneous
a green approach has been explored for the degradation of catalysis, proton conductivity, optoelectronics and energy
organic dyes.””” Thus, the development of novel photo- applications.”' —** Interestingly, 2D COPs whose solid-state

catalysts is emerging as a fertile research area to solve
environmental issues such as water and air pollution.

In recent years, porous materials such as metal organic
frameworks (MOFs)," ™" porous coordination polymers
(PCPs),'*"> porous carbons,'®'” covalent triazine-based
frameworks (CTFs),'® and covalent organic polymers
(COPs) ' have extensively been studied for various potential
applications. Interestingly, porous carbons, CTFs, and COPs
which are linked by strong covalent linkages have been
considered as more promising materials than MOFs and PCPs

assembly is driven by electron-rich organic building blocks can
exhibit 7— stacking induced high charge carrier mobilities,
thus making COPs promising photofunctional materials.*"**
Recently, COPs have been explored as photocatalysts for
visible light driven hydrogen evolution from water.’”**
Although several reports on COPs as photocatalysts toward
visible light driven hydrogen evolution have already been
made, very few studies have shown the utility of COPs as
photocatalysts for the degradation of organic dye pollu-

due to their high hydrothermal stability. In particular, among tants.”* "7
these covalent linked porous materials, COPs with two- or
three-dimensional (2D or 3D) network structures that are Received: February 2, 2019
composed of suitably designed molecular building blocks via Revised: ~ March 4, 2019
covalent linkages to each other demonstrate outstanding Published: April 1, 2019
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Figure 1. (a) Schematic representation of the mechanochemical synthesis of TP-COP. (b) Optical images of product formation at different time

intervals during mechanochemical grinding.

Over the past decade, the syntheses of imine-linked and
other nitrogen-containing COPs have been explored through
the condensation of aryl amine and aldehydes under suitable
solvothermal conditions.'*%*' 7333738 Furthermore, a mecha-
nochemical approach, which seems to be a promising
alternative to the conventional solvothermal methodology,
has been efficiently employed to obtain porous organic
materials (POMs) such as polymers of intrinsic microporosity
(PIMs), CTFs, COPs, and hydrogen bonded organic frame-
works (HOFs).””~* In this context, Banerjee et al. explored a
simple, solvent-free, room-temperature mechanochemical
synthetic route for the construction of imine-linked 2D
COPs.*' However, to the best of our knowledge, mechano-
chemically synthesized triptycene-based imine-linked 2D COP
as an eflicient photocatalyst has not been reported to date.

In this work, we report for the first time the rapid, room-
temperature, solvent-free mechanochemical synthesis of a
triptycene-based imine-linked covalent organic polymer, TP-
COP, by manual grinding of the monomers (triaminotripty-
cene and terepthaldehyde) in a mortar and pestle (Figure 1).
The initial formation of TP-COP was identified by a visual
color change and Fourier transform infrared (FTIR) spectra.
Interestingly, the synthesized TP-COP material was found to
exhibit graphene-like layered morphology (exfoliated layers)
which is highly advantageous for the photocatalytic degrada-
tion of organic dyes. The optical band gap of TP-COP
calculated from DRS implies its semiconducting nature.
Further, an electron paramagnetic resonance (EPR) study
confirmed the semiconducting behavior of TP-COP through
the generation of free radical. Noticeably, the TP-COP was
found to act as an efficient photocatalyst toward the
decomposition of organic dye (RhB) under sunlight.
Importantly, TP-COP showed excellent reusability in degrad-
ing dye without obvious performance decay.

In a typical synthesis, triaminotriptycene (1 mmol) and
terephthaldehyde (1.5 mmol) were placed in a mortar and
ground using a pestle at room temperature; after 15 min, a
light-yellow powder (a mixture of oligomers and starting
materials) was obtained (Figure 1). Over the next 30 min of
grinding, a powdered material with a deep-yellow color was
obtained, indicating the complete TP-COP formation as there
was no change in color upon further grinding. The details of

the experimental procedure are provided in Supporting
Information.

The formation of TP-COP was confirmed by solid-state *C
cross-polarization magic angle spinning (CP-MAS) nuclear
magnetic resonance (NMR) and FTIR results, as depicted in
Figure 2 and Figure S1. The *C CP/MAS NMR spectrum of
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Figure 2. 1BC CP/MAS solid-state NMR spectrum of the covalent
organic polymer TP-COP.

TP-COP displayed six kinds of carbon signals with chemical
shifts of 52, 115, 125, 130, 145, and 158 ppm, respectively.
Importantly, the peak at 52 ppm could be assigned to the
methylidyne bridge carbon (a), while the aromatic carbons of
triptycene unit (h, ¢, g d, f and b) appeared at 115, 125, 130,
and 145 ppm, respectively.’** In addition, peak (e) at 158
ppm confirms the formation of the imine bond (Figure 2).2°
As shown in Figure S1, the disappearance of N—H stretching
bands in FTIR spectra of TP-COP compared with that of its
precursor monomer (TP-NH,) demonstrated the formation of
C=N bonds (Schiff-base). On the other hand, CH=0
stretching band also vanished in FTIR spectra of TP-COP
compared with that of its precursor monomer (terephthalde-
hyde), further confirming the formation of C=N bonds in TP-
COP.

Field emission scanning electron microscopy (FESEM) and
transmission electron microscopy (TEM) images were
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Figure 3. (a) High-resolution TEM image of TP-COP; inset showing the corresponding SAED pattern of TP-COP. (b) Powder X-ray diffraction

(PXRD) patterns of TP-COP.
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Figure 4. (a) UV—vis DRS spectrum of TP-COP. Inset shows the energy band gap value computed from Tauc’s relation. (b) EPR spectrum of TP-

COP.

employed to investigate the structural morphologies of the TP-
COP, as shown in Figure S2 and Figure 3. FESEM image of
TP-COP reveals the formation of sphere-like aggregated
particles with a diameter range of 100—200 nm (Figure S2).
Further, a low-resolution TEM image of TP-COP indicates the
presence of an exfoliated 2D-sheet-like structure (Figure S3a).
This finding clearly infers that the strong mechanical force
facilitates the exfoliation of 2D sheets of TP-COP.*"*
Notably, the high-resolution TEM image clearly indicates the
presence of a layered structure of 2D polymer (TP-COP) with
low-range order, in accordance with PXRD results (Figure 3b).
Additionally, the existence of graphitic-like layers with a
spacing of around 0.45—0.46 nm, which is slightly higher than
that of graphitic materials (dyy, &~ 0.38 nm), further implies the
exfoliation of 2D layers (Figure 3a)."” In order to understand
the crystallinity of the as-prepared 2D TP-COP material, a
powder X-ray diffraction (PXRD) pattern was determined as
shown in Figure 3b. The PXRD pattern exhibits two broad
diffraction peaks at around 19.5° and 43.5° corresponding to
the (002) and (101) planes of graphitic-like materials,
respectively (Figure 3b)."” The appearance of broad peaks
indicates the low-range crystallinity of the TP-COP material
owing to the random displacement of the 2D layers (ie.,
exfoliation), which may hinder the pore accessibility.
Importantly, the calculated d spacing for the (002) plane is
found to be ~4.54 A, which is slightly higher than that of
graphitic materials (dgg, &~ 3.8 A) implying the formation of a
more exfoliated structure of the TP-COP material.*'

2527

To investigate the specific surface area (SSA) and porosity
of covalent organic polymer (TP-COP), the N, sorption
isotherm and the pore size distribution (PSD) were analyzed
by Brunauer—Emmett—Teller (BET) and Barrett—Joyner—
Halenda (BJH) methods, respectively (Figure S4). The BET
surface area of TP-COP was determined to be 57.98 cm® g7,
and the total pore volume was 0.12 cm® g~'. The PSD curve
for TP-COP reveals that micropores and small-sized
mesopores were found at 1.76, 2.44, and 4.79 nm. Despite
the presence of both micro- and mesopores in TP-COP, the
BET surface area is low owing to the irregular stacking via
mechanochemical grinding, which further supports the PXRD
finding."'

Additionally, for investigating the thermal stability of the
TP-COP material, thermogravimetric analysis (TGA) under
nitrogen atmosphere was performed. Notably, the as-
synthesized TP-COP showed almost no weight loss even up
to 420 °C, indicating its excellent thermal stability (Figure SS).
Such promising thermal stability is highly beneficial for realistic
application toward the exploration of photocatalysis under
harsh conditions.

The solid-state diffuse reflectance spectrum (DRS) revealed
that TP-COP material absorbs light in the visible region and
shows absorption profiles with an absorption edge at ~508 nm
(Figure 4a), thereby suggesting an optical band gap of ~2.49
eV as determined by the Tauc’s plot. The optical band gap of
TP-COP is lower than that of ZnO (~3.45 eV), the most
commonly used photocatalyst. Such low optical band gap is
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Figure S. (a) UV-spectra of (pH 4.6, 10 ppm) Rh B dye at 4,,,, 552 nm, (b) UV—vis absorbance spectra of Rh B dye at natural pH (4.6), catalyst
dose (1 g/L), and dye concentration (10 ppm) under sunlight measured at different time intervals. (c) Plot of In(C,/C,) versus time (min)
showing kinetics of photocatalytic reaction (d) % degradation efficiency of observed recyclability.

highly desirable for charge transfer interactions which may lead
to the generation of free radicals.*** Therefore, the EPR
spectrum was recorded for TP-COP at room temperature for
identifying the generation of charge carriers with unpaired
electrons (free radicals).” Figure 4b reveals that TP-COP
exhibits a sharp radical signal at around g = 1.99 in X-band
EPR at room temperature. These findings indicate that the
synthesized material has ample potential to be a promising
photocatayst for the degradation of recalcitrant and hazardous
organic contaminants under solar irradiation.

The photocataytic performance of the sample was evaluated
by monitoring the degradation of rhodamine B (RhB) dye
under solar light irradiation. RhB dye is a basic red dye of
xanthene family; it is highly water-soluble dye and is widely
utilized as a fluorescent tracer, colorant in textile industries,
and in food stuffs in numerous ways. Keeping in mind its
toxicological and hazardous effects, it becomes a matter of
significant concern to remove RhB from wastewater using
appropriate and advanced technologies. The photocatalytic
degradation of RhB dye was carried out under sunlight
irradiation for about 160 min using TP-COP. The UV—vis
absorbance spectra of RhB dye and its photocatalytic
degradation at different intervals is shown in Figure Sa)b,
and it could be estimated from the graph that the absorbance
of dye (10 ppm) at A, (552 nm) was found to be
continuously decreasing. Within the course of 160 min of
photocatalytic reaction under solar light illumination, 95% dye
degradation was observed at a natural pH of 4.6 with a catalyst
dose of 1 g/L. The kinetic model of photocatalytic reaction

2528

was also estimated by using the Langmuir—Hinshelwood
kinetics model equated below: In(Cy/C,) = kt, where C, and C,
are the concentrations of RhB dye at t = 0 and ¢ minutes of
photocataytic reaction, k is the slope of the linear curve
representing rate constant of the reaction, and ¢ is the time of
the reaction in minutes. Figure Sc shows the Langmuir—
Hinshelwood kinetics model showing pseudo-first-order
reaction kinetics. The curve linearly fitted with a correlation
constant (R*) 0.99709 with a reaction rate constant to be
0.01163 min™". Further, the recyclability of the prepared TP-
COP catalyst was also investigated by conducting photo-
catalytic experiments under similar conditions. The photo-
degradation efficiency observed for RhB dye after the second,
third, and forth cycle was about 93%, 91%, and 85%
respectively, which inferred that the prepared TP-COP catalyst
possessed significant photocatalytic properties even after the
fourth cycle, as shown in Figure 5d. In order to compare the
photocatalytic dye degradation of our newly designed
mechanochemically synthesized TP-COP with the reported
COPs, Table S1 presents the comparative findings.

In summary, we for the first time have designed and
mechanochemically synthesized a triptycene-based imine-
linked covalent organic polymer (TP-COP) at room temper-
ature. The as-synthesized TP-COP exhibited a graphene-like
layered structure with high thermal stability. Notably, DRS and
EPR studies reveal the semiconducting nature of TP-COP
material through the presence of a low optical band gap (~2.49
eV) as well as the generation of free radical. The TP-COP
material was found to exhibit excellent photocatalytic activities
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for the degradation of basic dye (RhB) under sunlight
irradiation. Moreover, TP-COP showed remarkable reusability
in degrading basic dye (RhB) without obvious performance
decay. We anticipate that our findings will provide significant
insight toward the development of other semiconducting
covalent organic polymers as photocatalysts.
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