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Abstract

The problem of understanding when individual actions ofiatting agents display to
a coordinated collective behavior has receiving a conalierattention in many research
fields. Especially in control engineering, distributed leggiions in cooperative environ-
ments are achieving resounding success, due to the largbemwhrelevant applications,
such as formation control, attitude synchronization teemkd cooperative applications in
large-scale systems.

Although those problems have been extensively studied@rature, the most of classic
approaches use to consider the unrealistic scenario inhwietworks always consist of
identical, linear, time-invariant entities. It's cleaattthis assumption strongly approximates
the effective behavior of a network. In fact agents can bgsitdd to parameter uncertainties,
unmodeled dynamics or simply characterized by proper nealidynamics.

Therefore, motivated by those practical problems, thegme§hesis proposes various
approaches for dealing with the problem of observation amdrol in both the framework
of multi-agents and complex interconnected systems. The owatributions of this Thesis
consist on the development of several algorithms basedmrepds of discontinuous sliding-
mode control. This techniques can be employed for solvirigpite-time problems of robust
state estimation and consensus-based synchronizati@uork of heterogenous nonlinear
systems subjected to unknown but bounded disturbancesualiers topological changes.
Both directed and undirected topologies have been takeraittount. It is worth to men-
tion also the extension of the consensus problem to netwadregents governed by a class
parabolic partial differential equation, for which, fortfirst time, a boundary-based robust
local interaction protocol has been presented.
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Introduction

This introductory Chapter is intended to present the mbotwa behind the development
of this Thesis along with a brief description of the Thestsusture. Finally, a list of the
Author’s publications derived from the present work aréelis

Motivations

The problem of understanding when individual actions ofiatting agents display to
a coordinated collective behavior has receiving a conalagrattention in many research
fields, starting from system biologyrRpsenfeld, 201]3up to engineering science like com-
puter graphicsYang et al., 200Bor sensors networkgchenato & Fiorentin, 20Q9Espe-
cially in control engineering, distributed applicationboperative environments are achiev-
ing resounding success, due to the large number of releppfitations, such as formation
control [Fax & Murray, 2004 Ren, 2007, attitude synchronization task&ddakar et al.,
2013 and cooperative applications in large-scale systdpipi et al., 2013h

There are many reasons for the current intensity of inténesiordination applications,
but certainly the winning one comes from the flexibility, lstality and reconfigurability to
sudden environmental changéaudys & Mitasiunas, 20Q.7Infact this paradigm uses to
model each entity of the network as a smart, active autonsragsiem, capable of interact-
ing with other agents in order to satisfy its design objexdiv

One of the key components of this research area is to gairiex beterstanding of how
the underlying connection topology directly affects certaroperties of the entire system
[Chang et al., 2003

An overview of the recent research trends in cooperativéraband multi-agent sys-
tems (MAS) can be found inZampieri, 2008 Garin & Schenato, 20]1The reader is re-
ferred to Ren et al., 2007, lfati-Saber et al., 20Q7or a tutorial overview of information

in cooperative consensus-based control.
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Although those problems have been extensively studiedarature, the most of classic
approaches use to consider the unrealistic scenario inhwietworks always consist of
identical, linear, time-invariant entitie®[fati-Saber et al., 20QBiljak, 1991 Ren & Beard,
2008 Ni et al., 2013.

It's clear that this assumption strongly approximates tfextve behavior of a network
[Wang & Wen, 2008 In fact agents can be subjected to parameter uncertsjntenodeled
dynamics or simply characterized by proper nonlinear dyosifilloni et al., 2013aEd-
wards & Menon, 200B

Therefore, motivated by those practical problems, thegmte§hesis proposes various
approaches for dealing with the problem of observation amdrol in both the framework
of multi-agents systems (MAS) and complex interconnectiediesns. The main contribu-
tions of this Thesis consist on the development of sevegirdhms based on concepts
of discontinuous sliding-mode-based controlt§in & Guldner, 1999 Orlov, 2008 Bar-
tolini et al., 2003 Pisano & Usai, 201]1 These approaches can be employed for solving
in finite-time problems of robust state estimatiéhlloni et al., 2013aEdwards & Menon,
2008 and consensus-based synchronizatinapceschelli et al., 2013Branceschelli et al.,
2013a Franceschelli et al., 201Pa network of heterogenous nonlinear systems subjected
to unknown but bounded disturbances and sudden topologhealges. Both directed and
undirected topologies have been taken into account.

In particular with regards to the problem of robust staténesion in connected sys-
tems, it is worth to mention the worlP[lloni et al., 2013hin which a new approach for
designing strong observers which result totally indepantiethe network configuration or
to the number of nodes is presented; whereas with regarlds fwoblem of consensus-based
network synchronization, inrdranceschelli et al., 2018land [Pilloni et al., 2013brespec-
tively, two novel local interaction protocols for networgrsisting of first and second order
perturbed dynamics are discussed.

It is worth to mention also the extension of the consensuslipnoto networks of agents
governed by a class parabolic partial differential equatfor which, for the first time, a
boundary-based robust local interaction protocol has peesentedRilloni et al., 2014h
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Thesis’ Overview

The Thesis is organized into two distinct parts. The first, oraanelyState of the Art
which provide a brief summary of the necessary theoretictibns useful for understanding
the remainder the Thesis, and the second one, nafghor’s contributionin which all the
Author’s works, developed during this research, are dedjglgussed. A brief overview of
each Chapter of the Thesis is reported below.

Part |. State of the Art;

» Chapter 1. Digraph and Matrices: This Chapter provides some notions
on graph theory along with some mandatory results about exgivity
properties of directed graphs. Furthermore the relaticrtesdien graphs
and non-negative matrices are taken into account;

» Chapter 2. Mathematical modeling of Complex SystemsThis Chap-
ter provided some preliminary notion of the mathematicatlelization of
connected systems. Particular emphasis has been givee tadteliza-
tion of distributed systems and Large-scale Dynamical Meta. Finally
concepts of decision-making in the framework of multi-agesystems has
been discussed;

« Chapter 3. Strong observability of MIMO Systems. Since, every com-
plex system can be represented as an interconnection ojstabss or
equivalently with a multi-input-multi-output (MIMO) repsentation, in
this Chapter some theoretical definition on strong obsértyalre pro-
vided;

» Chapter 4. Sliding Mode Control: Due to the extensively use of Sliding
Mode concepts in all the Author’s contributions presentethis Thesis,
this Chapter provides a brief survey on Sliding Mode ContsdC) The-
ory with particular emphasis to the so-called High OrdediBly Modes
algorithms.

Part Il . State of the Art:

e Chapter 5. Chattering adjustment and Tuning of the Super-Twisting
Algorithm : Based on the work$Jilloni et al., 2012g@Pilloni et al., 2012k
the present Chapter illustrates a systematic proceduteriorg the param-
eters of the Super-Twisting HOSM Algorithm when unmodeladagitic
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dynamics appears in the plant model. For example when actudynam-
ics are neglected. Although the topic of this Chapter is trattly related to
the framework of distributed systems, it is reasonablekihmpthat when
discontinuous control action are applied for controllireglrnetwork of
systems, due to the unavoidable presence of parasitic dggaoomplex
phenomenon such us chattering can appear. This Chaptesead ba the
Author’s work [Pilloni et al., 2012aPilloni et al., 2012k

» Chapter 6. Decentralized Estimation in Complex Network Based on
the work [Pilloni et al., 2013§ this Chapter provides a new approach for
designing local robust observers for a network of perturloifusively
coupled heterogeneous MIMO systems. Worth of noting treptioposed
approach result inherently robust and totally indepentnie network
configuration or to the number of nodes;

« Chapter 7. Sliding Mode Strong Observer as a tool for FDI: An ap-
plication to Induction Motor : Strictly related to the task of designing
strong observers in MIMO systems, in this Chapter High-©O$leing
Mode observers are employed as a tool for detecting certaiaranal op-
erating conditions in squirrel cage induction motors (S€JM he Chapter
is based on the workgP[lloni et al., 2013¢Pilloni et al., 2012¢Pilloni
et al., 2012¢l Through the Chapter the effectiveness of proposed scheme
has been theoretically demontrated and verified by by retd tarried out
using measurements taken from intentionally damaged cooiah¢éhree-
phase motors;

» Chapter 8. Robust Consensus Algorithms for First-integrator Dynam-
ics: Based on the workHranceschelli et al., 201Rbn this Chapter is pro-
posed a novel decentralized consensus algorithm for a netfoontinuous-
time integrators subject to persistent disturbances amshamication changes.
Notice that, although the network during its evolution ig abwvays con-
nected, it is proved that under certain restrictions on thexted switching
policy, after afinite transient time, the agents achievepmaimated con-
sensus condition by attenuating the destabilizing effetteodisturbances.
A Lyapunov-based analysis confirm the effectiveness of tiggested al-
gorithm;

» Chapter 9. Robust Consensus Algorithms for Double-integrator Dy-
namics Based on the workHilloni et al., 2013k in this Chapter a novel
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robust local interaction rule for achieving finite-time sensus in a net-
work of double integrators agents affected by bounded diances is pre-
sented. Agents’ are supposed to interact through an irtdafestatic and
connected, communication topology. A Lyapunov-Basedyamtonfirm
the effectiveness of the proposed and provides a very sitaplag rules
for achieving the complete disturbance rejection. The pseg algorithm
is then presented as a valiant solution for solving problémistributed
leader-tracking in multi-robot network®{lloni et al., 2014@Pilloni et al.,
20144;

» Chapter 10. Robust Consensus Algorithms in Infinite-Dimensional Net-
worked Systems Based on the workHilloni et al., 2013} in this Chap-
ter is considered the problem of driving a group of perturbgthite-
dimensional agents communicating through an undirectpdlogy to-
wards a common temperature’s consensus value. Perforsahttee pro-
posed local interaction rule in terms of robustness andafatenvergence
are investigate by Lyapunov-Based approach from which lgrmyming
rules for achieving the consensus condition are developed;

e Chapter 11. In this Chapter, a summary of the main part of the text along
with deductions and personal opinions about the developll are pro-
vided. Furthermore, some comments and recommendations tit@opo-
tential future research directions of those topics areudised.
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Chapter 1

Digraph and Matrices

In this Chapter basic definitions about graph theory alorth s@ame mandatory results
about connectivity properties of directed graphs, follogvthe treatments in the literature,
see for exampleGodsil et al., 200,LLin, 2006 Diestel, 1997 Biggs, 1993, will be dis-
cussed. Furthermore the relations between graphs andegative matrices will be taken
into account. For rigor in presentation, the applicabitifthose concepts in the real world
will be postponed in the reminder of the thesis.

1.1 Notions of graphs

1.1.1 Directed Graph

A directed graph (or justligraph) of ordern is a pairG(V, £), whereV is a set ofn
elements calledertices(or nodes) an& C VY x V is a set of ordered pairs of nodes called
edges(or arcs). In Figurel.1 few examples of directed graph are shown. It is common to
refer toV and€ as thevertex-setandedge-setrespectively. Fov;, v; € V, the ordered pair
(vi,vj) denotes an edge from to vj, wherey; is calledtail andv; headof the considered
edge.

Uy U Uy (D) Usg Un

(a) (b) (c)

Figure 1.1: Digraphs.
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(5] Vg Uy (3] Uy U3
@ @ ® o-—0-—+0

Figure 1.2: An undirected digraphs and bidirectional dity-a

As a definition, doopis an edge whose vertices are the same node and an edge is said
to bemultipleif there is another edge with the same vertices.

A digraph is said to beimpleif it has not multiple edges or loops. As a consequence the
digraph in Figurel.l.(a) is simple; the digraph in Figutiel(b) has multiple arcs, namely,
(v3,v1); and the digraph in Figure 1.(c) has a loop, namelgs, v»). In the following,simple
digraphG = (V, €) will be considered.

It should be clear that the local structure of a digraph i€deed by the neighborhoods
and the degrees of its nodes.

Starting from this point, for a digrapfi(V, £), it can be defined the following notation:

./\/i+:{VjEV/{Vi}Z(Vi,Vj)ES}QV ; ./\/f:{jEV/{i}:(vj,vi)eS}gV
(1.1)
where the setd/;" andA/;~ are known respectively as tlwit-neighborhoodndin-neigh-

borhoodof the nodey;. As a consequence, the vertices belonginy/{o or N~ respectively,

can be called the out-neighbors and in-neighbong.of

It can be also defined theut-degree @ and thein-degree @ of a nodey; the cardi-
nality of the corresponding neighbor-set. For examples, itivial to note that the node in
Figurel.1l.(a) has respectively:

Nf_:{VZ,Vg} , Nl_:{V4} , di+:2 , d =1 1.2

1.1.2 Undirected Graph

An undirected graph (or symmetric digrapkisy= (V, €) can be considered as a special
class of digraph where the edge €eC V x V consists of unordered pairs of nodes. This
means that ifvi,vj) € €, then also its complementafy;, Vi) belongs tcf.

Hence problems that can be formulated for both directed adatected graphs are often
easier for the latter. Notice that an undirected graph caeasdy treats as a bidirectional
digraph by replacing each edda,vj) € £ with the pair of edgegvi,vj) and (vj,vi). A
simple example is shown in Figuie2.
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1.1.3 Weighted graphs

A weighted graphg = (V,€) is a digraph with a labelweigh) associates to every
edge. Weights are usually positive real numbers, but in sspppécation the can be complex.
It is worth to mentioning that, weights do not change the togical structure of graphs, but
affect just the algebraic properties of graphs.

1.2 Notions of connectedness

Let us now review some basic connectivity notions for dedographs. The reader is
referred to the related literature for a more comprehersbe®unt of the following notion
[Godsil et al., 200,1Lin, 2006 Diestel, 1997Bullo et al., 2009

» A walkin a digraphG(V, £) is an alternating sequence

W I VieVvo€r - 61V

of nodesy; such that each edges= (vj,Vvi+1) belongs to€ for everyi =
1,2,... k-1,

» Thelength of a walkis the number of its arcs. Hence the wMK above
has lengthk — 1;

» A semiwalkin a digraphG(V, £) is an alternating sequence

W vievse; - &—1Vk
of nodesy; such that each edges= (vi,vi+1) ore = (v +1,v;) belongs
to & foreveryi=1,2,...k—1;

* A pathin a digraphG (V, €) is a particular class ofalk such that all the
nodes inW are distinct;

* A cyclein a digraphG (V, £) is a particular class ofalk such that all the
nodesvy,...,Vk_1 € W are distinct and; = v. A digraph without cycles
is said to beacyclic

* A successopf a vertexv; € V is any other node; € V/{v;} that can be
reached with a directed path starting/at

A predecessoof a vertexv; € V is any other node; € V/{vi} such that
a directed path exists starting at it and reaching
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» A directed tree (orooted tre¢ is an acyclic digraph where there exists a
vertexv; € V, calledroot, such that any other vertex G(V, ) can be
reached by one and only one directed path starting at the root

» A directed spanning tree (@panning treg is a spanning tree in which
no two arcs share their tails. Each vertex is the tail of dyamte arc of
the directed spanning tree except for a special vertealledroot of the
spanning tree

It is worth to mention that, if a digrapé(V, £) is not acyclic, theperiod dof G(V, £)
can be evaluated as the greatest common divisor of all tlgHermf cycles inG(V, £). The
digraph is said to bd-periodicif d > 1 and aperiodic il = 1.

As a consequence, for each nogle G, it can be defined its period as follows

di = g.Ches {mik} (1.3)

whereS; is the set of all the lengths of cycles¢n(V, €), n’{< of walks fromy; to itself.

After having introduced the previous instrumental consgtite following notions of
connectedness for a digraph can be defined.

Definition 1.1. Reachability: Anode y < V is said to baeachablérom another nodejv V
Vi = Vj (1.4)

if and only if exist a walky from v, to u; if not v; is said to be not reachable from v
(vi = Vvj). A node vis always reachable from itself by a trivial walk of lengthk=l0. [
Definition 1.2. Global Reachability: A node y € V is said to be globally reachable if and
only if it is reachable from every node of the digra@fiv, £). [
Definition 1.3. Center Node: A node y € V is called a center node of the digragh V, £)

if from it every node yc V is reachable. |
Definition 1.4. Fully Connectedness: A digraphG (V. €) is said to be fully connected if for
every pair of nodesj\and v; € V exist a bidirectional edge which fromto v; and v to v.

|

Definition 1.5. Unilaterally Connectedness: A digraphG(V, ) is said to be unilaterally
connected if for every two nodesand v € V at least one of them is reachable from the
other. u
Definition 1.6. Quasi-Strongly Connectedness: A digraph G(V,€) is said to be quasi-
strongly connected if for every two nodeswad v € V there is a nodewe V from which y
and v are reachable. u
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(d) () (f)

Figure 1.3: Digraphs with different connectedness progert

Definition 1.7. Weakly connectedness: A digraphG(V, €) is said to be weakly connected if
every pair of nodesj\and v, € V are connected by a semiwalk (disregarding the orientation
of each arc). [

Definition 1.8. Disconnectedness: A digraphG(V, ) is said to be disconnected if it is not
even weakly connected. [ |

In Figure1.3some digraphs with different connectedness propertiestenen. In par-
ticular, it results respectively in (a) a fully connectedrdiph, (b) a strongly connected di-
graph, (c) an unilaterally connected digraph, (d) a quengly connected digraph, (e) a
weakly connected digraph, (f) a disconnected digraph.

By the previous definitions, it should be clear that thosel&iaf connectedness prop-
erties tends to overlap. Indeed, for example, every fullynaxted digraph is strongly con-
nected; every strongly connected digraph is also unildyecannected; every unilaterally
connected digraph is quasi-strongly connected and comgjuevery quasi-strongly con-
nected digraph is weakly connected, but the converses eéth@tements are not true in
general.

Furthermore, it is worth to pointing out that for an undieztgraph, the first four kinds
of connectedness properties, respectiva@ilgngly connectedinilaterally connectedquasi-
strongly connectedandweakly connectedire equivalent. In the contest of undirected graphs
it is common referring to these propertiescasinected

1.3 Graph Theory and Matrices

In this section the relations between digraphs and matapesliscussed. In particular
it will be shown how all the topological information assdei to a graph and discussed in
the sections above can be easily encoded in term of Adjaddiatyx, Degree Matrix and
Laplacian Matrix.
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1.3.1 Adjacency Matrices and digraphs

The Adjacency Matrix associated to a digraptV, £€) is ann x n binary matrix denoted
asA = [a;] where each entry is defined as follows:

1 if (w,v)€E

o 1.5
A { 0 otherwise (19)

It should be clear that this matrix is able to give informatabout the topological structure

of the associated digragh(V, £). For the undirected casél is always symmetric. Since by

definition (L.5) all the entries ofA are nonnegative, it belongs to the classoh-negative
matrices Among the multiple information encoded.i, hereinafter some of them are listed:

* the sum of the entries in the ravef A is equal to then-degree ¢ of v; ;

« the sum of the entries in colunjrof A is equal to theut-degree ¢ of v;.

Theorem 1.1. See Gershgorin Theorem [Bhatia, 1997]. Every eigenvalue ofd lies in a
Gershgorin disc. [ ]

Theorem 1.2. See [Berman & Plemmons, 1979]. An nx n nonnegative matri4 is said to
be irreducible if and only itG (V, £) is strongly connected. [ |

Definition 1.9. A matrix.A is irreducible if it does not exist a permutation matrix P Buc
that

B, B
PTAp= |71 712 (1.6)
0 B22
with B1; and By, square nonsingular matrices. [ |

1.4 The Laplacian Matrix

In this section the well-known Laplacian Matrix is preseht€he Laplacian belongs a
special class of Metzler matrices where their row-sums qoalgo zero.
Definition 1.10. [Lin, 2006] A square real matrix4 whose off-diagonal entries are nonneg-
ative is called a Metzler matrix. [ |

Given a digraphg(V, £), let D be the so-calledlegree matrix ofG, i.e., a diagonal
matrix with the in-degree of each node along its diagonak Thplacian of the digraph
G(V,G) is a square matrix defined as follows:

L=[%]=D-A (1.7)



1.4. The Laplacian Matrix 15

with
d- if 1=]
Li=9 -1 if (wv)) €€ (1.8)
0 otherwise

It is worth to mention that according to Gershgorin theor@tidti-Saber et al., 2097
all eigenvalues oL are located in a circle centered in the complex plangat jO with a
radiusdm = max,cyp d; -, i.e., the maximum degree of a graph. Furthermore for untiice
graphs,C is symmetric and positive semi-definit€drin & Schenato, 201 lfati-Saber
et al., 2007 with real eigenvalues ordered sequentially as follows:

0=A1<- <A <20 (1.9)

Theorem 1.3. See [Lin, 2006]. The zero eigenvalue @ has algebraic multiplicity one if
and only if the corresponding digragh has a directed spanning-tree. [ |

Some important features @f appears in the undirected framework. For exampl§, if
is connected, all row and column sumsfre zero

L-In=0y , 15-£L=0{ (1.10)

and thus the column vectag = col(1,...,1) ¢ RN and its transposb{, are respectively the
left and right eigenvectors associated with the zero eigleA; = O.

In addition if A2 # 0, the next useful property holdslprn & Johnson, 1990
I£3]l1 > [|£8]]2 = VETL2E > Az-[|0]]2 (1.11)

whereA; is the smallest nonzero eigenvaluedfknown asalgebraic connectivityPereira,

2011, andd € RN is any vector with zero column sul; - & = 0. It is worth mentioning that
the magnitude oA, reflects information about how well connected the overapgris, and
has been used in analyzing the robustness and synchrdiyzabnetworks [Olfati-Saber &

Murray, 2004.

Remark 1.1. The algebraic connectivity of a graph with n vertices is greater thaf if
and only ifG is connected. Furthermore the algebraic connectivity obarected network
always satisfies the next constraifax & Murray, 2004:

0<XA<n (1.12)

In particular A, = n is the graph is fully connected. [ |
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1.5 Conclusion

In this Chapter a brief overview on Graphs Theory with paitic emphasis to directed
and undirected graph and their connectedness propersdselea presented. Concepts these,
that will be extensively used in the rest of the thesis. Famtiore it has been shown how
all the topological information associated to a graph cduddeasily encoded in term of
Adjacency Matrix, Degree Matrix or by the Laplacian Matrix.



Chapter 2

Mathematical modeling of Complex
Systems

In this Chapter a survey of the existing literature relatethe mathematical modeling
of connected systems from the point of view of dynamicaleyst, which means differential
equations, is presented.

In particular, it will be shown how different classes of dymaal problems could be
easily represented and well described by combing the nebbGraph Theory discussed in
Chapterl along with the well-known concept of System Theadhflil, 2003.

In particular, throughout the Chapter, three main secti@niacluded. The first one
presents how complex systems, not necessarily distribatgaace, can be represented as an
interconnection of subsystems, in order to reduce the cexitplof the system. In particular,
each subsystem may be identified as a physical entity, oraalsgpurely mathematical par-
tition of the whole system dynamics, independently fromdtieers and then the complexity
of the overall problem is simplified by using a decentraliapgroach.

Section 2, is inspired to the fact that many real-world carpietworks are neither
completely regular nor completely random; examples arerhet [Siganos et al., 2003
metabolic networksJeong et al., 20Q@r social networks\Vasserman, 1998arabasi et al.,
2003. Therefore, in this section some notion of Large-Scalet&ys and possible models
that can capture how this complex networks can evolve in tihpeesented.

Last but not least, in the third section, due to the strictyrections between net-
worked system and multi-agent systems, some concepts dboigsion-making for network
of dynamical systems are introduced with particular emefds the so-calledonsensus
problems
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2.1 Graph Theory and Dynamical Systems

2.1.1 Modeling Dynamical Systems as digraphs

Let us consider a linear dynamic system described by thetiegsa
s z(t) = Az(t)+ Bul(t) 2.1)
yt) = Cux(t)
wherez(t) € R"is the stateu(t) € R™is the input, andy(t) € RP is the output vector af at
timet € R andA = [a], B = [bj;], andC = [cjj] are constant matrices of proper dimension.

As shown in Biljak, 1991, the structure o can be represented by means of the con-
cepts of Graph Theory. In particular, recalling the consggovided in Sectio.3.], it can
be defined the so-calleatljacency matrixassociated to a dynamical systems as follows:

Definition 2.1. The adjacency matriX = [&;] associated to the dynamical syst&rim (2.1)
is a square binary matrix defined as follows:

A B0
A=1| 01010 | e RO+MPx(+mp) (2.2)
C_: 6 | 0

where0 are matrices of zero-entries and the sub-matrides- ENF B= [b_ij], C = Cij] of
A are Boolean representations of the original system masriéeB, C with entries defined
as follows:
RS R SIS T PR e
[ |

Obviously as shown in the previous Chapter, at each adjgaeatrix is associated a
directed graph. Therefore, recalling Definiti@ri, the following statement can be formu-
lated:

Definition 2.2. The directed graph (digraphg = (V, £) of a systenk has the vertex set
VY =XUUUY, where U= {u,Up,...,Un}, X = {X,X2,..., %}, and Y= {y},¥2,...,Yp}
are nonempty sets of input, state, and output verticd3 ahd £ is the edge set defined as
follows: (vj,vi) € € if and only ifg; = 1. [ |

It is worth to mentioning that, since there are no connestemnong inputs, outputs and
between inputs and outputs in.{), then the digrapliy of > contains only the edgésij, ),
(Xj,%i), and(x;,yi), which reflects the basic assumption about the sy&i¢m1).



2.1. Graph Theory and Dynamical Systems 19

| <+
Figure 2.1: Pendulum.

Remark 2.1. It is worth to note that, this conversion of matrix’'s entriesbinary values

makes the adjacency matrid an useful modeling tool for study the qualitative propestie
of the systema, independently to the specific numerical values of the wedniepresentative
of the system dynamic. Indeed, in this way it is possible tallea for example, parameter

uncertainties caused by modeling errors or operating faiéin the system.

Furthermore, the adjacency matri# give us also qualitative information regarding the
structural properties of the systednin terms of graph representation. The reader is referred
to Chapterl for a tutorial overview of information in Graph Theory. [ |

To illustrate how graphs can be associated to dynamicakssstin the following it is

presented the following illustrative exampgiljak, 1991.

Example 2.1. Consider linearized model of a frictionless pendulum showFigure 2.1
ml-0+mg-6=u (2.4)

where 8(t) is the angular position of the bod at timef(t) is its second derivative, | is
the length of the rod (supposed to be rigid and without mass),m is the mass of the bob
subject to a force (input) (). Definedz = [x1,%]T = [0, 6] as state vector, the following
linearized representation for the pendulum’s dynamic itssu

. [o 1 0
T e o T amn)

Yy = :1 O}a:

(2.5)

Then substituting the dynamic’s matrices of sysgerf) in the adjacency matrix definition

(2.2) the next interconnection matrix takes place:
[0 110 0]
| |
1 0:1.0
A= | Z-oiTi (2.6)
0 000
1 0:0

- -
1 0
b

0 0




2.1. Graph Theory and Dynamical Systems 20

u O P

)

Figure 2.2: Directed graph associated to the pendulumrsyste

where dashed lines delineate the matricksB, and C. As a conclusion in Figur€.2 is
reported the digraph o corresponding to the matri¢2.6). [ |

Notice that the properties of a systenestablished by its interconnection matgikor
digraphgG are at the same time valid for systestaucturally equivalento 2.

Definition 2.3. Two system&; and 2, are said to be structurally equivalent if there exist
nonsingular permutation matrices s, and R such that:

Ao =PaAIPl ., By=PRsBiR} , Co=RCiRL (2.7)

Remark 2.2. An interesting aspect of structural modeling of complexesys is that the bi-
nary nature of the interconnection matrices allows to folaelwell-posed numerical prob-
lem and robust with respect to parameter variations. [ |

2.1.2 Input and Output Reachability

As well-known, the existence of control laws for a dynamisteyn depend crucially
upon the well-known fundamental properties of completetrathiability and osservability
[Khalil, 2003. Complete controllability means that any initial stateaofiven dynamical
system can be transferred to the zero state by a suitable fBfandard test for analyze this
property is to check the rank of the so-called controll&pinatrix, defined as follows:

C=|B AB A?B ... A"™!B| , rank{C}=n (2.8)

which must be equal to the order of the system.

With the same spirit, a system is said to completely obséevhlny state of the system
can be determined in from subsequent inputs and outputsd&t test for analyze this
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property is to check the rank of the so-called observahitigitrix, defined as follows:
T
Oo=|cT (cA)T (CcAY)T ... (CAn—l)T] . rank{O}=n  (2.9)

which must be equal to the order of the system. Anyway in systef large dimensions,
computing the rank conditions can be an hard task due nuah&gtestHansen, 1998For
these reasons, as shown 8ilfak, 1997 controllability and observability properties can also
be established by studying problems of input reachability autput reachability respec-
tively, in a digraph, or more formally by binary computatsoamlone by using the adjacency
matrix defined in2.2).

In order to evaluate input and output reachability of a gisgstent, recalling Barnes
& Harary, 1983, it results that the reachability matriR = [rjj] of a digraphG(V,€) is
defined as follows:

1 if Vi hable f i (v i
i { , if vj isreachable fromv; (vi = vj) (2.10)

0 , Vi=»yj
To determine the reachability matrix for a given digraphgching [Siljak, 1991, it results:
R=AVA>V...vAS (2.11)

whereAX = A1 A A with v and A respectively the OR and AND boolean operators and
S=n+m+p.

A more efficient Boolean-type algorithm for computing thetrixeexponentiation ofA
was proposed by Warshall ilMarshall, 196P, where:

c R(+M+p)x(n+mi-p) (2.12)

from which, combining with?.11) one gets the reachability matrix as:

F GO
R=[(0 0 0 (2.13)
H 6 0

where the binary matrice8’, G, H, and @ have proper dimensions according ©12).
From .13, the following result is obvious:

Theorem 2.1. A systenk is input reachable if and only if matri& has no zero rows, and it
is output reachable if and only if matrid has no zero columns. [ |
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Figure 2.3: Input and output unreachable digraph.

It is worth to note that the system is said to input-output reachablé and only if
matrix € has neither zero rows nor zero columns. Which means thaethef sutputy is a
reachable from set of inpuit, andU is an antecedent set ot

The following example illustrate the application of Theorg. L

Example 2.2. Consider the digraph in Figur2.3, which is clearly input and ouput unreach-
able because there are mirected walksrom u to % or x4, and at the same manner vy is
unreachable from xand ». Computing the adjacency matrix of digraph in Figwe3, it
results

(2.14)

(2.15)

which, as discussed in Theoréhi confirms thaiG (V,U) is unreachable. [
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2.2 Scale-free dynamical networks

In this Section inspired to the fact that many real-world pter networks are neither
completely regular nor completely random, some notion afjeeScale Systems and a pos-
sible model that can capture how this complex networks catvevn time is presented.

2.2.1 Complex network Preliminaries

Complex networks are usually characterized by severahdiste properties including
complexity, topological structure, dynamical evolutiime-varying coupling strengths and
interactions between nodes. Traditionally, the first modaktworks was proposed i&fdds
& Rényi, 1960, also known as Erdos-Rényi model (or just ER-Model). Irt tin@del each
pair of elements was randomly connected with the same pildgals an example, let
G(V, &) be a digraph om vertices andV = card{ £} edges, pursuant to the ER-Model, all
graphs withn nodes andv edges have equal probability to exist. Formally this praligb
results equal to:

M. (1-p M (2.16)

where the probabilityp can be thought of as a weighting function;@screases from 0 to
1, the model becomes more and more likely to include graptismore edges and less and
less likely to include graphs with fewer edges. In particulae casg = 0.5 corresponds to
the case where all graphs amwvertices are chosen with equal probability.

However in the real world, connectivity between each eldnm®meither completely
regular nor completely random. Therefore, thanks to Waits &trogatzs (WS-Model) a
more realistic representation has been given. In particine Watts-Strogatz model is still a
random graph generation model, but conceptshast average path lengthkigh clustering
anddegree distributiomave been introduced\Jatts & Strogatz, 1998

The main difference between the ER-Model is that the degsgglilition converges is
a power law instead of a Poisson distribution. As a limitatibe WR-model produces an un-
realistic degree distribution in contrast with real netkgothat are often scale-free networks
and inhomogeneous in degrékafrat & Weigt, 200( Indeed, the WR-Model produces a lo-
cally clustered network, and the random links dramaticatjuce theverage path lengths

LAverage path length is a concept in network topology thaefingd as the average number of steps along
the shortest paths for all possible pairs of network nodes.d measure of the efficiency of information or
mass transport on a network.
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In particular, letn be the desired number of nodesthe average-degree of a node,
andf a parameter satisfying@ < 1 with n>> K > In(N) > 1, whereN is the desired
number of nodes anl the mean degree (assumed to be an even integer). The atgorith
starts generating an underlying regular lattice struotitie (nd) /2 arcs and then randomly,
introduces aboutBnd)/2 non-lattice edges.

Finally, another significant development in the field of coexmetworks has been pro-
posed by Barabasi and Albert iBgrabasi et al., 1999They observed that a number of
large-scale and complex networks armle-freé [Albert & Barabasi, 200D The Barabasi-
Albert (BA-Model) is an algorithm for generating random lgcliee networks using a pref-
erential attachment mechanism. Thanks to this more sogdiistl approach for modeling
complex systems topologies, systems like InterBegdnos et al., 20Q3metabolic networks
[Jeong et al., 20Q®r social networks\Vasserman, 1998Barabasi et al., 20Q02have been
modeled.

2.2.2 The scale-free network model

The Barabasi-Albert Model incorporates two important gaheoncepts:

» growth which means that the number of nodes in the network canasere
over time;

« preferential attachmentwhich means that the more connected node is,
likely, the one who will receive a new links.

As a consequence, nodes with higher degree have strondjéy abgrab links added
to the network. Intuitively, the preferential attachmeahde understood as follows: for
example, thinking in terms of social networks, it's commoméave that more popular people
have more chance to known new people with respect to an araurs/person, i.ethe rich
get richerphenomenon.

Starting for these two ingredients, Barabasi and Alberppsed a simple scale-free
model which, starting witlng nodes, at every time step, a new node is introduced. Each new
node is connected tm < my existing nodes with a probability that is proportional te th
number of links that the existing nodes already have. Moma &y
4
DI

2A scale-freenetwork is inhomogeneous in nature, which means that maksioave very few connections
and a few nodes have many connections.

Pi (2.17)
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whered; is the degree of node and the summation is made over all the pre-existing nodes
vj (i.e. the denominator results in the current number of edytse network).

It has been shown that, for a large time constant, the degs&édtion resulting from
the BA-Model is scale-free. In particular, the probabititat a network’node is connected to
k other nodes decays as a power-law

P
P(K) =23 (2.18)
More recently the BA-Model has been improved by the authoder to taking into

account the additions of new nodes, new links, and the negviof links (see Albert &
Barabasi, 2000.

2.2.3 Scale-free Dynamical Network Model

During the decades a great deal of attention has been pa&twmrks of coupled dy-
namical systems, in particular from the nonlinear dynamsm&imunity. Reasons are that,
those networks can exhibit many complex and interestingaohyoal phenomena, such as
Turing patternsauto-wavesspiral wavesandspatiotemporal chagdVang & Chen, 2008

For the same reason, many scientists have started to cotisgdgynchronization phe-
nomenon in large-scale networks of coupled chaotic osar#dChua, 1998Wang & Chen,
20023 Edwards & Menon, 200&illoni et al., 2013hdue to the fact that they allow to focus
on the complexity caused by the nonlinear dynamics of eadeswithout worrying about
additional complexity in the network topologies.

A common accepted representation of a dynamical networkistimg ofN heteroge-
nous, dynamical, linearly and diffusively coupled nodeg.(ea chaotic system), has been
shown in Wang & Chen, 200Jawhere the state equations of the network are described by

N
d:i(t):fi(a:i)—I-C-Zo?ﬁjr:I:j , 1=1...,N (2.19)
=1

with zj € R" is the state vector dfth node,c € R represents the coupling strength, and
Ijj € R"" is a binary matrix of suitable dimensions which represehésnbde-to-node
coupling configuration among theth and j-th node. The entries dfjj are nonzero if and
only if a communication channel among different states afmgors nodes exist. Whereas
4 represents thé, j) entry of the Laplacian Matrix associated to the actual coméiion

of the network at time.
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It is worth to noticed how those network configuration resuti be described by a
switching topology characterized by a time-varying gréih)(V, £(t) C €), where€(t) is
the subset of active edges at timevhereas is the set of the whole available communication
edgesing(V,€).

Furthermore, with reference to the synchronization phesran in large-scale net-
works; under the assumption that each heterogeneous nsdiidi@ame dimensiom =
nj = n; it results that a dynamical networR.(L9 is said to be (asymptotically) synchronized
if
zit)=x2(t)=---=an(t)=s(t) , as t— o (2.20)
wheres(t) € R" can be, for example, an equilibrium point, a defined periadiit, or a
chaotic attractor, depending on the interest of the study.

As proved in Lago-Fernandez et al., 200ang & Chen, 200Zpa connected network,
in the sense that there are no isolated clusters of nodeSés®i®nl.2), can achieve state
synchronization4.20) with exponential rate if

c> (2.21)

A2
whered < 0 is a constant determined by the dynamics of an isolated andehe inner
linking structural matrix”. More preciselyd_depends by the Lyapunov exponents of the
network [Li & Chen, 2003. Whereas\; is thealgebraic connectivitpf the Laplacian Matrix

of the network, which gives information about the connecésd of the network.

Remark 2.3. Notice that, since the algebraic connectivity for a conedatetwork satisfy
the next constraint:
0<A2<N (2.22)

this implies that for any given and fixed nonzero couplingrggth c, the network will syn-
chronize as long as its size increase. As a limit case, sugapthee network fully connected
(A2 =N) and N large enough (i.e N> «); by (2.2]) it is possible to note that for any given
and fixed nonzero coupling strengtt»ce > 0, the network can achieve synchronization for
sufficiently large networks. [ |

In literature, different control strategies are taken iatmount to realize control and
synchronization of complex dynamical networks. Among thgus aproaches pinning con-
trol have received many attention because it is easily aetggnchronization by controlling
just a part of the nodes instead of all nodes in the netwaidg & Wen, 2008

It is worth to mentions that the only commonly accepted rezaents for achieving the
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synchronization of a complex network is that it has a dirdsiganning tree interaction graph
[Wu, 2008.

2.3 Consensus Problem and Cooperative Control

2.3.1 Cooperative Control Preliminaries

Control applications in distributed and cooperative emwments are studied with grow-
ing interest in recent years. The success of this paradignbeaattributed to the fact that
many complex systems are naturally represented by a newvankeracting subsystems or
“agents". Transportation networks, power grids, netwarksiobile robots and localization
systems are just few examples of engineering applicatibnstovorked systemsZampieri,
2008 Pilloni et al., 2013aFrew et al., 2005aThe winning features of networked structured
applications comes from their reduced cost, flexibilityalability/reconfigurability and ro-
bustness to failures. An overview of the recent researctus @ cooperative control can be
found in [Zampieri, 2008Ren et al., 2007,a&arin & Schenato, 201 Ren & Beard, 200B

In particular,Multi-Agent Systemdeal with the analysis of how distributed interaction
architectures affect the achievement of a collective behakirough only local interaction
[Cao & Ren, 201R A crucial problem in cooperative control is to achieve atdbuted
agreement on parts of the networked system'’s state (i.gcéater, average phase, acommon
attitude) exploiting only local interaction and informatiexchange.

This problem, known to asonsensushas been widely studied in literature especially
with reference to single and double integrators agentsadyos [Cao & Ren, 2012Bullo
et al., 2009 Olfati-Saber & Murray, 2004Ren & Beard, 20080lfati-Saber & Shamma,
2005 Fax & Murray, 2004 Pilloni et al., 2013bCortes, 200B Anyway, althought in practi-
cal application disturbances and unmodeled dynamic aneoigteble, in much of the current
literature on cooperative control, the consensus probseaiten studied in the presence of
identical homogeneous agents and/or under the assumbtioth @nd reliable communica-
tion [Ren & Beard, 200B

In the following a brief literature review on consensus ailipons on network of multi-
agent systems is provided.



2.3. Consensus Problem and Cooperative Control 28

2.3.2 Multi-Agents Systems

A networked multi-agent system can be thought as a colledfondividual, but cou-
pled, dynamical systems. Where the coupling structure eastdiic or dynamic when com-
munications links are established or dropped over time.&oammon feature of every
Multi-Agents Systems are:

« local interaction: agents can interact each other onlggustlative infor-
mation from their neighbors;

* lack of a common reference frame in both space, time orsstate

» complete absence of a centralized supervisor;

« scalability, which means that when the network’s size geanthe local
strategy remain the same for every agent and the same grbapibestill

emerges.

After those considerations, it is now possible to presemt tomodel a multi-agent
system. Since multi-agent system are described by a finitdruof entities operating over
a network, by using concept of Graph Theory, the network ltgpocan be represented
as a digraphg (V,€) whereV = {1,2,...,N} is the set of agents, represented by nodes
in the graph an€ C V x V is the set of edges. An eddg j) exists if ageni interacts
with agentj. The neighborhood of each agéns defined asV;” ={j e V/{i}: (i,j) € €}
which represents the set of agents which directly interattt v Furthermore, as discussed
in Sectionl.4, topological information associated to a grapltan be encoded by the well-
knownLaplacian MatrixC =[] € RN*N defined, accordingly with the previous treatment

as follows:
N[ i
L = -1 if (i,j)eé& (2.23)
0 otherwise

where| ;™| is the cardinality of the-th agent’s neighbor set. Whereas the agent’s dynamic
is generally described as follows:
xi = fi(xi, ui) (2.24)

wherez; € R" is the agent’s state ang € R™ is the vector of inputs. Whereas the local
interaction protocol for agemican be defined, accordingly to the considered task as fallows

uj = u(:vj s E./\fi_) (2.25)

Therefore, a typical autonomous multi-agent system is tionspletely defined by the
network topologyg, the agents’ dynamics and the defined local interactioropodt
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2.3.3 Fundamental Consensus Algorithms

Consensus algorithms have a historical perspectivBankfar & Varaiya, 1982Chat-
terjee & Seneta, 197DeGroot, 1974t and, as discussed in the previous section, they have
been recently brought up again in the context of cooperatiwerol. The basic idea ioon-
sensuss to impose, using information coming from the agent’s hbmyhoods, a similar
dynamics to all the agents operating over a network. Mormé&tlly, a consensus problem
can be defined as follows:

Definition 2.4. Consider a multi-agent system defined by the network top&o¥y, £) and
the agents’ dynamics; = f(x,u;) withz; € R". A consensus problem consists in the design
of a local interaction protocok(x; : j € ") such that:

Y oi,jev, lim|zi—zj|=0 (2.26)
t—o0
[ |

In the following subsections several frameworks for maughulti-agent systems will
be presented, each differing in interaction protocols éethpagents model and network
topology.

First-Order Consensus Algorithm

The most common continuous-time consensus algorithax [& Murray, 2004 Jad-
babaie et al., 20Q®lfati-Saber & Murray, 2004Lin et al., 2004 assume that each agent is
a single continuous-time integrator with dynamics:

X{t)=u) , xucR (2.27)
with local interaction protocol defined as follows

L) =— 3 (%) -x(t) (2.28)
JeN

From (.29, it is easy to see that the information stat@) of agent is driven toward
the information states of its neighbors. By substitutida@ g into (2.27), the resulting global
system dynamics can be rewritten at the network level inaleviing compact form:

&(t) = —L-x(t) (2.29)

with & = [x1,%p,...,%)] € RN and £ defined as inZ.23.
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At this point, a critical question is to understand if thewerk is really converging

towards a common consensus value or not.

A well-known approach adopted to deal with this problem itwaek of simple inte-
grator is to study the convergence to zero of the so-caliedgreement vector dynamics
[Olfati-Saber et al., 20Qdefined as follows:

_In

St)=—L-5(t) , with 5(t)==x(t) N

x(t) (2.30)

In particular, for the case of an undirected connected tapof{A, > 0), recalling the Lapla-
cian’s property reported in(11)

I£8M)z = 8(t)T£25(t) > A2- [ 8(1)I3 (2.31)

it is easy to show that the annihilation of the disagreementor implies the convergence
towards a common value of the agents dynamics by the follpwimple Lyapunov-Based
analysis. Let’s consider the following sum-of-squarestp@sdefinite function:

V(t) = %5(0%5(0 (2.32)
DifferentiatingV (t), it results:
V(t) = —6(1)TL28(t) < —A2||8(t)]I5 (2.33)

which implies the exponential convergence to zero of thagisement vector dynamics and
then the achievement of the consensus condittarq.

Whereas if the consensus probleth2d for a network with a directed topology is
considered, the proof is slightly different but the onlyuggment is that the network has a
directed spanning tree. The proof follows fro@lfati-Saber et al., 20d’/and can be derived
as next.

Since the graph is supposed to has a directed spanningtiess a single null eigen-
value to which corresponds the right eigenvedaqr= col(1,...,1) € RN, therefore the
dynamic @.29 is marginally stable and converges inside an invariansgabe defined as
follows:

S={zeRY : z=a-1y with aeR} (2.34)

Letn" be a left-eigenvector of corresponding to the zero eigenvalue. Defined a new vari-
abley =n' -z, it results:

y=n"&=n"Lx=0 = yt)=y0) V t>0 (2.35)
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which implies

im y() = y(0) = 1"2(0) = 1Te(0) = nTaly - a- 120

t—o0 r’T ‘1N (2'36)

Hence, the agents’ state converges toward the weightedgaef their initial condition:

-
. _(n’-=(0)
t“ﬂlw(t) = < 71y 1N (2.37)

As shown in Ren & Beard, 200p the previous treatment can be easily extended also
for directed switching topology under the same assumphiabgach network’s configuration
always has a directed spanning tree.

Analogous consideration can be extended when commumicatitong agents occurs
at discrete instants. In such case the network’s dynamicbeaepresented as follows:

zk+1 =D z[K (2.38)

where D = [dij] € RN*N is a row-stocastic matrix at the discrete-time indesuch that
dij[k] > O if (i, j) € £ anddij k] = O otherwise. At discrete-time a slightly similar stability
analysis can proof the convergence towards a consensues afatlynamic 2.39. Anyway,
since in this thesis only continuous-time algorithm willdiecussed, the readers is refereed
to [Olfati-Saber et al., 20QRen & Beard, 200Bfor further details.

Second-Order Consensus Algorithm

The single-integrator consensus algorithmar2Q) has been also extended to double-
integrator dynamics (see for examplegrgrove et al., 20Q(Ren & Atkins, 2007 Pilloni
et al., 2013pand references therein) for modeling more naturally thawdion of physical
phenomena, such as for example, formation control and figckihich can be controlled
through gentle maneuvers with a decoupled double-integnaddel.

For double-integrator dynamics, the classic consensusitig is given by

N
A= 3 [0 - xi(0) + - (5(0) ~5(0)] (2.39)
=

wherey > 0 denotes the coupling strength between the informatice starivatives and
bothx; andx; are transmitted between team membersRar| & Atkins, 2007 it has been
proved that the achievement of consensus, in the geneealed framework, must requires a
directed spanning tree andnust be sufficiently large. SeRén et al., 2007]dor extension
to higher-order dynamics.
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2.3.4 Nonlinear Consensus Algorithms

In this Subsection some notion about nonlinearities in ensgs problems will be ad-
dressed along with some motivations about this reasonatdeson.

As well-known real systems are not modeled in general by letdfd systems. Let’s try
to think about a simple pendulum, or for example to the dymarha cart; or with reference
to a multi-agent scenario, the realistic case in which digtoces in the communication
protocol appears, or when the objective task is to reachnadtion by maneuvering a group
of robot with strongly nonlinear dynamics.

Well, in these cases every consensus protocol discusse® aha not achieve good
performance in terms of consensus due to the fact that ctaldeprobustness or disturbance
rejection are not taken into account. Due to this practieglessity, recently a new area in
the field of network coordination was born: the area of nadirobust consensus.

In literature examples of consensus of agents with nonfies have already been
treated. A classical example is the synchronization of xliKuramoto oscillatorsqu-
ramoto, 2008 The Kuramoto model describes the dynamics of a s&t phase oscillators
with dynamic defined as follows:

6 (t) = m(t)-i-k% sin(8(t) — 6i(t)) (2.40)
=1

where 6;(t) is the oscillator's phaseq (t) the natural frequencies aridis the coupling
strength. Synchronization of coupled oscillators withesthonlinear dynamics is also stud-
ied in the literature. As an example, consider a networlNofehicles with information
dynamics given by

N
i(t) = fi(zi,)+y: Y (2j(t) —xi(t)) (2.41)
=1

wherez; € R" andy > 0 denotes the global coupling strength parameter. Thergdtthough
nonlinearities in general could complicate the agents ohyosand sometimes give arise un-
desired complex phenomenon such as limit-cycles or ingialthey are able, if properly
injected in the consensus algorithm, to introduce progerfin terms of robustness or dis-
turbance rejection impossible to achieve in the linear &éaork, even in the presence of a
non-persistent spanning-tree network topology (see @nh&pt

In the reminder of the Thesis, in particular in Chaptgr® and 10 some of the re-
cent improvement in the field of robust consensus will be esiird with reference to dis-
continuous sliding-mode-based consensus algorithm in both the finite and infinite di-
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mensional space agents’ framework (see als@rjceschelli et al., 2013Rilloni et al.,
2013k Demetriou, 200p.

2.4 Conclusion

In this Chapter a survey of the existing literature relatethe mathematical modeling
of connected systems from the point of view of dynamicaleyst has been presented.

In particular, throughout the Chapter the following prabge first how to model a com-
plex systems, not necessarily distributed in space, ascorieected subsystems, in order to
reduce the complexity of the whole dynamics have been tle&econdly, inspired to the
fact that many real-world complex networks are neither detepy regular nor completely
random, notions of Large-Scale Dynamical Network are prieske Last but not least, in the
third part of the Chapter, due to the strictly connectionsveen networked systems and
multi-agent systems, concepts of decision-making for ngtvef dynamical systems have
been introduced with particular emphases to the so-catledensus problems



Chapter 3

Strong observability of MIMO Systems

The task of reconstructing the state of a large-scale systenore generally of a com-
plex system has been largely studied in the last deca$igial, 1991 Stankovic et al.,
2009 Stankovic et al., 2011Edwards & Menon, 2008Pillosu et al., 201 1Pilloni et al.,
2013a Trentelman et al., 200Fridman et al., 2007b

Since, as shown in Chaptér every complex system can be represented as an inter-
connection of subsystems or equivalently with a multi-tapwlti-output (MIMO) repre-
sentation, in the following some notions of observability this class of systems will be
discussed in order to provide to the reader the necessapnrfot understanding the treat-
ment presented in Chaptémwhere a new approach for state estimation and unknown input
reconstruction of a class of connected heterogeneous LM®Asystems is presented.

The Chapter is organized as follows. After a very short hiiction about the problem
of Strong Observabilityn Section3.1, in Section3.2 the main notions of Strong Observ-
ability in the framework of MIMO LTI systems are discusseu plarticular, firstly standard
condition for evaluating the strong observability propstof a MIMO system has been
presented, then in the second and third part of the sectime secent development of the
Author [Pilloni et al., 2013hfor evaluating those properties for non-square MIMO syste
are provided.

3.1 Introduction

Observation of system states in the presence of unknowrisnps well as to deter-
mine observability and detectability properties of a sysite order to assess the possibility
of constructing observers, are some of the most importatilems in the modern control
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theory [Fridman et al., 2007bFor linear and nonlinear systems this task can be solved by
well-known techniques, for the case without perturbatidtvever, in presence of unknown
inputs and/or nonvanishing perturbations this study hdseme obscure pointsHridman

et al., 2007bPilloni et al., 2013h

In the following, some literature results regarding stowat conditions Trentelman
et al., 2001 Hautus, 1983Molinari, 1976 Fridman et al., 2007@and the more recent devel-
opment of the AuthorRilloni et al., 2013hfor evaluating those properties in both the linear
and nonlinear framework are provided.

3.2 Notion of Strong Observability for LTI MIMO Systems

3.2.1 State of Art of Strong Observability in MIMO LTI System s

Consider a LTI systenx:

e.
—~
—+
~—
I

Az(t)+Df(t) (3.1)
y(t) = Ca(t) (3.2)

wherex € R", y € RP, u € R™ and f € R? are vectors which represent the state, the output
and the unknown input.

Conditions for observability and detectability of LTI sgets with unknown inputs are
studied in literature, for example, ifffentelman et al., 20QHautus, 1983Molinari, 19749.
Hereinafter, some necessary and sufficient conditionstfong observability and strong
detectability are recalled.

Definition 3.1. 55 € C is called an Invariant Zero of the triplétA, D, C) if rank{ R (s)} <
n—+rank{D}, whereR is the Rosembrock matrix &f.

R@z(“;A'jj @3

Definition 3.2. X is called (strongly) observable if for any initial conditia:(0) and f =0
(any inputf), the following holdsy (t,z(0)) = 0for allt > 0impliesz = 0. The following
statements are equivalent (séleégntelman et al., 20QX

i) X is strongly observable;
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ii) The triple (A,C, D) has no invariant zeros;

iii) The Smith form ofR, Rgsis equal to the constant matrix

Rs(s) - <I<”O+q> g) (3.4)

Definition 3.3. The system is strongly detectable, if for gfft) and x(0) it follows from
y(t) = 0 with Vt > O thatx — 0 with t — o [Hautus, 1988 The following statements are
equivalent:

1) X is strongly observable;
i) The systen® is minimum phase (i.e. the invariant zeroes of the triple
(A,C, D) satisfyr(s) < 0).

Note that in the absence of the unknown inplX £ 0) the notions of strong observ-
ability coincide with the concept of observability. Thust © be the observability matrix of

the generic systerk
C
CA
0= . e R"P" (3.5)

ca

then the system is observable if and onlgjf=rank{ O} = n. In this case any spectrum can
be assigned to the matrid — LC, by choosing an appropriate matix

In [Fridman et al., 2007kconditions necessary for strong observability with respe
the unknown inpuyf, under the assumption that= p, has been given.

Let ¢j andd;j be the rows ofC and the columns oD. The outputy = Cz is said to
have vector relative degree= (r1,...,rp) with respect to the unknown inpytif

GA'D = 0. with i = 1,2,....p 3.6)
GATID # 04 = 0,1,....r—2
and
ClAr171d1 ClArlfldq
det(Q)#0 with Q= : ; (3.7)

CpArp71d1 s CpArpildq
The following lemma asserts the strongly observabilitypemies for the system8 (1)-(3.2):
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Lemma 3.1. Let the outpuy of X have vector relative degrae Then the vectors
c,...,ct AV ep, .., CpATPT! (3.8)

are linearly independent. The system is strongly obseeviélbhe total relative degree of the
systent =y rewithk=1,...,pisequal tog=n. [ |
Remark 3.1. Generalizing Lemma.1to the the case of rectangular systems whes (g),

it is obvious thatcy,...,c1A" Y, ..., ¢p,...,cpA™ ! can not be linearly independent even
if the system is strongly observable. This assertion caralsdyeproved applying the same
procedure shown infridman et al., 2007pbecauseR is a non-square matrix. [ |

Currently the concept of strong observability with resge¢he unknown input for non-
square LTI systemg(< p) is not well defined and remains an open problem in the field of
estimation and control.

In the next subsection | revert to the concepbbs$ervability indicesn order to define a
possible approach for non-square systems. The followeagrnent is based on the Author’s
work [Pilloni et al., 2013a

3.2.2 Strong Observability Conditions for Non-Square LTI MIMO Sys-
tems

Consider the syster® in (3.1)-(3.2), the concept obbservability indexXor each i-th
output of the system are first introduced:

Definition 3.4. The maximum numbet of successive linearly independent derivatives of
the i-th output o2, which represents the number of system state which can bastacted
fromy, is called theobservability indexor the i-th output. [ |

The setV = {vy,...,vp} is called theobservability indices of the paifA,C). It is
obvious that eachjwcan not be greater then the order of the systerfihen, recalling the
definition of relative degreg of the i-th output of the system with respect to an unknown
input f in (3.6), it can be asserted that if the following lemma holds, tretesyX: is strongly
observable and then the unknown input reconstruction (i#Rjacticable.

Lemma 3.2. The systenX is strongly observable if it is possible to define a set of posi
tive integerdd := {1, .., un} with h < p, in which each of element is associated with one
output’s component, such that the following conditionssatsfied:

K <V . .
, Mi+MHo+---+Uy=n with i=12...h (3.9)
Hi <1
Ml Cj
: cGA
det{M}#0, M= | M |, Mi=| cA* | cRW" (3.10)
My, ciAH!
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Proof. Suppose the paifA,C) is observable® has n linearly independent rows. After
choosing a sa4 which satisfies the condition3.¢2-(3.23), it is obvious that the matrid/

is full-rank because it is obtained combining linear indegent block likesj, ¢ A, ..., ¢ A¥
linearly independent each other. Then, applying the falhgwbijection mappinge = M xq
the following canonical observable representation is aied:

To = Aoxo+ Dof

(3.11)
Yo = Coxo
where
An - Agp c11 -+ Cih
Ao = R , Co=1| ¢+ . (3.12)
Any - Apn Ch1 ' Chh
0 1 0 0 0
Ai=| A= : (3.13)
o o0 ... 1 0O ... 0
i1 Qi2 - Qi &j1 - Qi
0
01 _
Do=MD=|:]|, 6= c:) € RHxa (3.14)
0
h ciAY D
ci=(10 - 0)eR™, c=(0 - 0)eR™ (3.15)

Note that the previous mapping emphasized the strong cdisiéity property ofX. It is easy
to see that the conditiog = 0 impliesx = 0 for any unknown inpujf. Note that ify; is
chosen lower than;ithe entriescj A* 1D in §; are zero, thenf has no effect on the linear
combinationM; obtained by the i-th component gf [ |

Corollary 3.1. If Lemma3.2is satisfied and

rank{ (DTD)_lDTM_lT} —q (3.16)

-
with T = diag(tl,...,ti,...,th> andt; = <O -+ 0 1) € RH~1 it is possible to recon-
struct completely the unknown vectpe= [f1,.. ., fq]T by a suitable robust observer. R
Proof. Consider the systen3(11) and the following observer:

Zo = Ao+ T¢

~ o (3.17)
Yo = Coo

wherez,, 9o and ( represent the estimated states, the observed output obtie and the
injection term. If condition.16) holds, it is obvious that the mapping= M x, implies
that the matrixank{ Do} = rank{ D} = q. Lete, = &, — o be the state observation error,
its dynamic takes the following form:

éo — Aoeo+TC - Dof (318)
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Let F' = [Fy,..., Fq]T be a constant vector which constitutes an upper bound omihet if
so that| fj| < K, then it can be designed an algorithm which drives to zercotheervation
error dynamic(e,e) — (0,0), and then reconstructg as follows:

f=D{T¢=D "M 1T¢ (3.19)

where the index- indicates the Moore-Penrose pseudo-inverse of the matnix.obvious
that by construction, the solution of syst€tnl19-(3.19 gives an unique solution with re-
spect to the unknown inpytif and only if the condition.16) is satisfied. [ |

Remark 3.2. Consider the observer structurg.(7). Applying the inverse mapping, =
M1z, it can be obtained a completely equivalent representafiorthe observer.17)
which dispenses with the need to work in a transformed domain [ |

3.2.3 Extension for a generic Non-Square MIMO Nonlinear Syems

It is worth to note that, following from the result discussdmbve, a more generic treat-
ment for Non-Square MIMO Nonlinear System can be easilyeédrby recalling concepts
of Lie Algebrasfor understanding the structure of nonlinear partial défgial equations
useful for generating integrable equations (see B&t[ne et al., 199]). In particular the
following Non-Square MIMO Nonlinear System defined as fato

. x = g(z)+f
SN {y _ hia) (3.20)

wherez € R"is the state vectoy = [y1,...,Yp|" € RP the output vectoig(z) is the nominal
autonomous dynamics anfis an unknown vector function.

Then, under the assumption that the autonomous system dysafy_is sufficiently
smooth and observableby analogous consideration as the one for the linear dasan be
defined anon-singular state-dependent matrix (i.#.has n independent rowsvhich has
the same meaning of the Observability Matrix #15). For the nonlinear cas®(x) can be

defined as follows:

OLOh(x)
103:
OLgh(x)
Jox

O(x)= | skl | e gprxn (3.21)

oLy h(x)
ox

After those considerations, the extension of Lentrafor the nonlinear case of the
previous treatment can be presented. Let’s defined, acgptdiLemma3.2, the positive
integers yandr; as the maximum number of successive linearly independeiviatiees of
the i-th output ofzy. and the relative degree of the i-th output of the system vatpect
to the unknown input vectof, respectively. A nonlinear systehy, is said to be strongly
Observable is the following Lemma is satisfied:
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Lemma 3.3. The nonlinear systefy is strongly observable if it is possible to define a set
of positive integerdf := {1,..., Uy} with h < p, in which each element is associated with
one output’s component, such that the following conditemessatisfied:

oLLyi(x)

Hi
Hi
Jx

det{M}#0, M= | M |, Mi=| 2@ | epun (3.23)

Vi

, Mit+U+--+up=n with i=12....h (3.22)

IA A

o0y (x)
g
M, ox

M, oLE (@)
ES

Since this extension straight derives from an analogoasitrent as the one presented in
Proof3.2.2 and because in rest of the Thesis only systemd. uré Formwill be considered,
for the sake of brevity, the previous Lemma is provided witheny proof.

3.3 Conclusion

Since, as shown in Chapt2revery complex system can be represented as an intercon-
nection of subsystems or equivalently with a multi-inputftroutput (MIMO) representa-
tion in this Chapter some notion of observability in MIMO s®1s has been presented in
order to provide to the reader the necessary notion for staleling the treatment presented
in Chapter6 where a new approach for state estimation and unknown iepotistruction of
a class of connected heterogeneous LTI MIMO systems is piede

In particular, some literature results and the recent Atdhwork presented inHilloni
et al., 2013§ for evaluating the strong observability properties ofN\ild System subjected
to unknown input and achieve the complete unknown inputrrsttaction has been dis-
cussed.



Chapter 4

Sliding Mode Control

Due to the extensively use of Sliding Mode concepts in thesegart of this Thesis
(see Partl), in which all the Author’s contributions related to this tkare presented, in this
Chapter a brief survey on Sliding Mode Control (SMC) Thetwoyprovide to the reader the
necessary notions for understanding the treatment pexs@nthe remainder of the Thesis
is presented.

This Chapter is organized as follows: starting from a gdrearse of sliding mode in dy-
namical systems with discontinuous right-hand side, taesit approaches to sliding mode
control systems are considered. Then, Higher-Order $jiindes are presented as a tool to
remove discontinuity from the control action, and to dedahwigher relative degree systems.

Furthermore some techniques for chattering analysis amusised with particular em-
phasis to théescribing FunctiorapproachYander Velde, 1968 As a conclusion a proce-
dure for chattering attenuation by choosing properly therd parameters is considered for
a particular class of second order sliding mode (2-SM) abadgorithm.

4.1 Introduction

The control of dynamical systems in the presence of paranueteertainties or un-
modeled dynamics is a common problem to deal with in realiegipbns. For these rea-
son the problem of controlling uncertain systems has a#dagreat interest in the research
community [Corless & Leitmann, 19810h & Khalil, 1997, Young et al., 1996Bartolini
et al., 2003 Among existing methodologies, one of the most renownead,td its high sim-
plicity it is for sure the sliding mode control (SMC) techaig[Utkin, 1992 Slotine et al.,
1991, Edwards & Spurgeon, 1998vhich is a special class of variable-structure systems
(VSSs) Emelyanov, 1959Utkin, 1977.

The main idea behinds SMC techniques is to design a slidirfgciunder onto the
controlled system trajectories are constrained, by apglg discontinuous control action.
The latter forces the systemstdealong the designed surface on which the behavior of the
system is the expected ondtkin, 1993. Notice that, in order to guarantee the control aims
the control must be designed with a sufficient authority tonghate the uncertainties and
the disturbances acting on the system. In particular thér@loaction must promptly react
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to any deviation, from the prescribed behavior and themr $kee system back to the sliding
surface. The main advantage of this approach is that theglisehavior does not depend to
model uncertainties or disturbances if tt@ntrol strengthis larger enough to dominate all
the system'’s uncertaintieBértolini et al., 1999Bartolini et al., 2003Slotine et al., 199]L

Although the claimed robustness properties, real SMC implgation has a major
drawback. Indeed, theoretically, the control action st@awitch with infinite frequency to
provide total uncertainty’s rejection, but due to the lieditbandwidth of real control devices
(i.e. electronic converters) which perform a finite switahfrequency, high-frequency com-
ponents appear in the control signal, which, propagatiaggthe control loop, may excite
parasitic resonant modes of the plant (i.e. unmodeled digsnT herefore, at steady-state
the system trajectory rapidly oscillates around the sydsarface Bartolini, 1989. This
phenomenon is known afattering[Boiko et al., 2006Pilloni et al., 2012

Chattering, along with the necessity of discontinuous @rdction, constitute two
of the main criticisms of Variable Structure Systems (VS&hwliding modes, and these
drawbacks are much more evident when dealing with mechiasystems in which, rapidly
changing in the control actions can induce fatigue and damgag a short time [Jtkin &
Guldner, 1999

The most common approach to avoid chattering is to appraeithe sign function of
the discontinuous control by the saturation function. Aaywn this case, the system motion
is confined within a boundary layer of the sliding manifolde trobustness’ the properties
are not preserved and oscillation can appear as well.

More recently a different approach to avoid chattering hesnbdeveloped. The idea
is to augment the controlled system dynamics, by addingyiaters at the input side, so
as to obtain a higher-order system in which the actual cbsignal and its derivatives ex-
plicitly appear. If the discontinuous signal coincideshithie highest derivative of the actual
plant control, the latter results to be continuous with a stinoess degree depending on
the considered derivative order. This procedure refersgioen order SM (HOSM)l[evant,
1993aBartolini et al., 1998pand will be shortly discussed in the following along withmse
approaches for chattering analysis.

Finally, it is worth to mention that those phenomenon ars ggnificant in software-
based applications such as for example estimation problemshich chattering can be
filtered and then neglected without significant loss in penfance. For these reasons, SMC
algorithm in the last decades, has also found a rich soileratiea of robust state-estimation
and fault detection isolation (see for exampBp{irgeon, 2008and references therein). In
the following a brief overview of all the aspects cited abowikbe provided.

4.2 Sliding modes in discontinuous control systems

Consider a general nonlinear dynamic defined as follows:

o(t) = f(x(t), u(t),t) (4.1)

wherex € R" is the state vectow, € RY is the control input vectot, is time, andf : R" x
R9x RT — R"is a vector field in the state space. Assume that the state spdivided into
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29 subspace§, withk=1,2,...,29, by the guard
={x : o(x)=0} (4.2)

whereo : R" — R%is a sufficiently smooth vector function. lgsvicinity is defined as fol-
lows
Ve={xcR" : |o=x)|<e €>0} (4.3)

Define the control vector by a state feedback law such that
ult)=ux(z) if xzeS with ke{1,2,...,29 (4.4)

then the following theorem holds:

Theorem 4.1. Consider the nonlinear dynamigg.1) and letJZ (x(t)) = do(x)/dx be
the Jacobian Matrix obr with respect tar; if a proper € defining(4.3) exists such that the
control vector(4.4) satisfies the conditions:

sign(JZ (x(t)) - f(x(t),u(t),t))=—sign(o) V xzeV; (4.5)

then the guardb in (4.3) is an invariant set in the state space and a sliding mode acoar
it.

|
Proof. Consider the g-dimensional vector
s=0(x) (4.6)
usually namedliding variables vectgoiand define the positive definite function
V(s)= 3 lsl}3 (4.7)
The total time derivative of V is
V(s)=s's=s'-diag{signsi)}-|s| (4.8)

Taking into account the implicit function theoref@,1), (4.4) and(4.5) then(4.9) results into
V(s) =—s' -diag{sign(si)}-|s| = —[s|" -|3] (4.9)

Therefore \(s) is a Lyapunov function and the origin of the g-dimensionakspof variables
s is an asymptotically stable equilibrium point.

[
Remark 4.1. Notice that, as discussed itufkin, 1993, from a geometrical point of view,
condition(4.5) implies that within the neighborhoad; e of & the vector field defining the
state dynamic¢4.1) is always directed toward® itself. Furthermore, if the magnitude of
the control vector: components is sufficiently large so that

Is|>n with i=12...,q (4.10)
condition(4.9) satisfies the classical well-known reaching condition

1d ,
—_—§ts<— 411
2dtS 8— r"s|7 r’>0 ( )
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As a consequence, the invariant gets reached in a finite time

|s(to)]|

Tr=to+ (4.12)
wheres(tp), with |s(tg)| = £(€) < € is known as the sliding variables vector at initial time
to.

Remark 4.2. From the definition of controls in (4.4), and taking into account condition
(4.5), itis apparent that the vector fielfl defining the system dynamigsl) is discontinuous
across the boundaries of the guatd Therefore, functiorf (x(t), u(t),t) has to be Lebesgue
integrable on time and solution @ft.1) exists in the Filippov sensé&ilippov, 198§. Control

u switches at infinite frequency when the system performsdaglimode or®, which is
usually named sliding surfacéJfkin, 1993.

Following from those considerations, it is interesting twalgze the state trajectory
when system4.1) is constrained or®. A simple approach to the problem is to consider
the variables defined by 4.6) as the output of the dynamical systednl]), in which function
s : R" — RY represents the so-called output transformation. In aaslgling mode con-
trol usually condition 4.5) is assured by a proper choice of the control varialdeso that
matrix ds/dwu has full rank inUe. Then the overall system dynamics can be split into the
input-output dynamics

5= J2 (@(t), ult).t) = p(2(t),u(t).t) (4.13)
and the internal dynamics
w = ((t), u(t),t) (4.14)

wherew € R"9 is named internal state anl: R" x RT™ — R"9 is a sufficiently smooth
vector function. The relationship between the vector stadad the new state variablesand

w is defined by a diffeomorphisid : R" — R" preserving the origin and defined as follows
in a vicinity of the guard® [Isidori, 1995 Slotine et al., 199L

sSTw ] =d@) : ®0)=0 V zcV (4.15)

From this statement, it can be presented the following t¢Bidano & Usai, 2011

Theorem 4.2. Assume that the diffeomorphic transformat{@ri5 holds in the vicinityJ,
of the sliding manifold. Then systgeh 1), (4.6) is stabilizable if a unique contrak exists
such that conditions of Theore#nl are satisfied, the internal dynami¢$.14) is Bounded-
Input Bounded-State (BIBS) stable and the zero dynamics

w = (w(t),0,1) (4.16)
is stable in the Lyapunov sense.

Proof. The proof straightforwardly derives from results of Theoré 1 and the stability of
the internal dynamics when the system is constrained énto
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When the state is constrained onto the sliding surtacéhe system behavior is com-
pletely defined by the zero dynamies 16 [Isidori, 1993, taking into account the invertible
relationship 4.15. That is, only a reduced order dynamics has to be consiaknedg the
sliding motion Utkin, 1997. This order reductionproperty is a peculiar phenomenon in
variable structure systems with sliding modes.

4.3 First Order Sliding Mode

Finding a feedback controll(4) such that Theorerh.1holds is quite hard in the general
case. Therefore, Sliding Mode Control (SMC) of uncertaistegns usually refers to systems
whose dynamics is affine with respect to contidijvards & Spurgeon, 19g&Jtkin, 1997
as follows:

x(t) = A(x(t),t) + B(x(t),t)u(t) (4.17)
whereA : R" x RT — R"is a vector field in the state space, possibly uncertain,Buisl a
n x g matrix of functiongb;j (z(t),t) : R" x R* — R.

When the SMC approach is implemented, the first step of thigulgsocedure is to
define a proper system outpsf as in ¢.6), such that the resulting internal dynamics is
BIBS stable and, possibly, its zero dynamics is asymptibyistable. Then the contrak is
designed such thag| goes to zero in a finite time in spite of possible uncertagntie

Theorem 4.3.Consider systerfi.17), (4.6). Assume that the corresponding internal dynam-
ics is BIBS stable, that the norm of its uncertain drift teAt(t),t) is upper bounded by a
known function E R" — R, such that

| A((t),t)]| < F(z) (4.18)

and that the known square mat@X(x,t) = JJ(x) - B(x,t) € R%9is non singulav x €
U¢, uniformly in time. Then, the sé in (4.2) is made finite time stable by means of the
control law

u(t) = — (F(@)|JZ| +n)-[G(x)] *sign(s) with n>0 (4.19)

|
Proof. The input-output dynamics of systéml?), (4.6) is

st)y=JI(x)  A(z,t) + G(x,t)u(t) (4.20)

Consider the positive definite functi¢h. 7). Considering the time derivative of V along the
trajectories of systertt.20), and taking into accoun.19, (4.9) yields

V(s)=s"(JI(z) A(z,t)— (F(z)||JZ||+n)-sign(s)) =
=—n-s'sign(s) =—n-||s|1 < —nlls|j2 <0 (4.21)
[ |

Notice that, when the matrix control galB\(x,t) is uncertain, a similar theorem can be
proved if some condition abou® is met.
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Figure 4.1: Filippov’s continuation method.

Theorem 4.4. Consider systenft.17), (4.6) and satisfying4.18. Assume that the corre-
sponding internal dynamics is BIBS stable, that the undergain matrix B(x,t) and the
guard® are such that the square mat®(x,t) = JJ(x) - B(x,t) is positive definite and a
known bound\,, > 0 exists such that

/\mgmin{)\iG(m,t);i:1,2,...,q} V xeW, VY teR* (4.22)

where)\iG(:n,t) withi=12,...,q are the eigenvalues of matr¥(x,t). Then, the guard
in (4.2) is made finite time stable by means of the control law

 F@)%@)]
e N

with n >0 (4.23)

Proof. The proof follows the same steps than previous Thedr@nDefine function Vs) as
in (4.7) and consideK4.20) and (4.23 into its time derivativé4.8). By (4.22) it results

V(s)—sT- (Jg<w> Azt) - F(w)”Jff)” Gy Hjﬂz) :
n

< — . 8TG(z,t)s < —nls|l2 <0 4.24
< psly ¢ G s < sl (4.2

Notice that to overcome the presence of uncertain termseisystem model the con-
trol's magnitude must be sufficiently large. The positivegmaeter > 0 is a design param-
eter which guarantees the above mentioned reaching conditi literature, several design
methods can be foundUfkin, 1992 Edwards & Spurgeon, 19980oung et al., 1996Bar-
tolini et al., 2008.

4.3.1 Filippov Continuation and Equivalent Control

When the system exhibits a sliding-mode behavior, the distoous control4.19), or
(4.23, undergoes infinite-frequency switchings. The effechefdiscontinuous and infinite-
frequency switching control on the system dynamics is timesas that of the continuous
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control which allows the state trajectory to remain on thdist) surface $lotine et al.,
1991, Filippov, 1988 Utkin, 1997. Considering the non linear system.{) with a scalar
input (for exampleg = 1), in [Filippov, ] it was shown that such a continuous dynamics is a
convex combination of the two vector fields

fi=f(zunt) . fo=f(z,uzt) (4.25)
defined on partitiors; andS,, such that:
z(t) = fo(z,t) (4.26)
with 9o £,

fo=a-fi+t(1-a)-fo with a= 0=0 (4.27)

Oo-(f2— f1)
The above approach to regularize differential equationis siscontinuous right-hand side is
called the Filippov’s continuation method. A geometriecgiresentation of this continuation
is shown in Figuret.1 where the discontinuity surface is defined &oy= 0 and the vector
fields forS, (i.e.0 > 0) andS, (i.e. 0 < 0) are f1 and f», respectively.

Extending those concepts to a generic control veatarRY the continuous vector field
fo allowing the continuation of the state trajectory ®ns still a convex combination of the
29 vector fieldsfy = f(x,uk,t) withk=1,2,...,29 as in @.26) where:

24 24
fo= Z k- fk with Z ag=1 (4.28)
k=1 k=1

As a remark, if the discontinuous right-hand-side of théedéntial equation defining the
system dynamics satisfies some geometric conditions, tigp&¥’'s continuation method
can be unambiguously defined én[Bartolini et al., 2004t Furthermore, recently explicit
formulas for the computation of coefficientg has been presenteDieci & Lopez, 2009.
Those concepts are discussed with greater lengtiJikiri, 1993. Anyway the most in-
tuitively and appealing approach capable to descried thawer of the system along the
sliding surface is the the method efuivalent controproposed in Utkin, 1977. In a few
words, the equivalent control is the control action neagsta maintain an ideal sliding
motion by nullifying s; more formally:

z(t) = f(, uegt) (4.29)

With reference to affine systems ih.{7), by nullifying (4.20), the equivalent control takes
the following expression

ueq(t) = — [G(z,1)] 1T (@) A(w,1) (4.31)

Remark 4.3. It is worth to underline how the equivalent control approactd the Filippov’s
continuation method give the same results only for affinscantrol [Utkin, 1993 and for

a limited class of nonlinear systengsrtolini & Zolezzi, 198% More recently in Levaggi &
Villa, 2007, Bartolini et al., 2007 has been proposed regularization approaches for wider
classes of nonlinear systems. [
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Notice that the non-singularity condition for tlgedimensional square matri& (x,t)
implies that the sliding variable vectsihas relative degree vector (1,...,1) with respect
to the control inputu (see i.e. Equatiors(5) in Chapter3). In other words, this means that
u explicitly appears at the first derivative ef This condition can be thought as a kind of
controllability condition Blotine et al., 1991Pisano & Usai, 201J1

It is worth to mention that if such a condition is not satisfiften the control input
u could have relative degree higher than one. In literatdiig,gommon to referred to this
kind of sliding mode algorithm to as Higher Order Sliding Mo(HOSM) [Emelyanov,
1959 Fridman & Levant, 1998 _evant, 1993aBartolini et al., 1998aBartolini et al., 2008
In the next section those algorithm will be briefly discussed

4.4 Higher-order sliding mode control

With reference to HOSM, a second order sliding mode (2-SNdeaps when the differ-
ential inclusionV (x,t) defining the closed loop dynamicé.{),(4.4) belongs to the tangen-
tial space of the sliding manifolé defined accordingly to4(2) as follows Levant, 1993h

Gy={x : o(x)=o0(x)=0} (4.32)

Therefore, extending this definition &¥8M behavior appears when the closed loop dynamic
are confined to the following manifold

r—1
Qir:{w ; ddt G(w):m:d(:c)za(:c):O} (4.33)

whereo : R" — RYis, again, a sufficiently smooth vector function angpresents the order
of the so-called sliding set. The following definition canrmv presented:

Definition 4.1. [Levant, 1993a] Let the r-sliding se{4.33 be non-empty and assume that it
is locally an integral set in Filippov’s sense. Then the esponding motion satisfyir{g.33
is called r-SM with respect to the constraint functien [ |

Remark 4.4. Notice that HOSMC are difficult to design with respect to aegahnonlin-
ear systemg$4.1) because extends the sliding manif¢fd2) by using(4.33 for a generic
order r is not a trivial task, because, supposed g controlatales available (i.eu € R9Y), it
should results that conditiof.5) should be guaranteed with respect to the whole resulting
rg variableso, g, ...,a", which is impossible for a generic scenario. [ |

An affine time-independent structure for the nonlinear dyica can be obtained by
considering an augmented dynamics in which the controltimpis part of an augmented
vector state and its time derivative= u is the actual control to be designed:

T T 0
z 1 0

- . 4.34
U 0 + 1 v (434
x dxirlf(w?u?t) +%f<w7u7t) I %f(w,u,t)

in which d f /0w is a full-rank matrix Levant, 1993h Thus, when HOSM algorithms are
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considered, it is common to to refer to affine stationary im@ar systems as

o(t) = f(x)+g(x) u(t) (4.35)

wherex € R" is the state vector (possibly augmentad); RY is the control input, possibly
the time derivative of the plant inpuf, : R" — R" andg : R" — R" x RY are sufficiently
smooth vector fields and matrix, respectively, in the stpses.

Remark 4.5. For many years the possibility of considering the time demixe of the plant
input as the discontinuous control variable, given by thelamentation of second-order
sliding mode control systems, was considered an eligibfgageh to eliminate the chat-
tering phenomenon in real control systems, since the plamiti results to be continuous
[Emelyanov, 1959 evant, 1993aBartolini et al., 1998 Anyway, recently, it was proven
that chattering in real applications can not be removed llyattenuated because it is asso-
ciated to both nonideal/unmodeled actuator’'s dynamicsrardsurement devices that cause
finite frequency switchings of the control commakddman, 2003Boiko et al., 2004Boiko

et al., 2006 Pilloni et al., 2012aLee & Utkin, 200T. |
Proposition 4.1. Given the system dynami¢s35, a r-SMC on the manifol@4.2) can be
designed if n=rq, LgL'}a =0vVk=1,2,...,r—2)and Lger*10 has full rank. [ |

As discussend inHisano & Usai, 201} the simplest way to implement a high order
sliding mode algorithms is to consider a proper linear coration of the functions defining
&, as the output for systemt (35 by resorting to the so-called Dynamical sliding mode
control [Sira-Ramirez, 1993
Theorem 4.5. [Pisano & Usai, 2011] Consider systert.35 and the se{4.2). Define the
system output as

r—2
s=0""14 Z)cia(i) (4.36)
=

where ¢ € R* are proper coefficients such that the polynomiappP= p'—* + z{;gci p'is
Hurwitz. If the corresponding internal dynamics is BIBShéaand the system dynamics
fulfill the following conditions:

ILsoll < Ak(x)  k=1.2,...r
Lgtko=0 k=0,12...,r-2 (4.37)
0<Amn< min{)\i [LQL;:la} (z,1);i = 1,...,q} Vo e Y, Wt

where/Ag(z) : R" — Rt with k= 1,2,...,r are sufficiently smooth positive functions, and

Am is a constant lower bound for the eigenvalues of the matgixrftla, then the control

law

N () + Zir;g Ci\it1(x)+v s
Am Islls

with v > 0, makes the integral manifold.33 asymptotically stable, and a rth-order sliding
mode on the manifolé in (4.2) is established asymptotically. [
Proof. Conditions(4.37) and (4.37) fulfill Theorem4.4 and therefores = 0 is achieved
in a finite time T. From that time instant on the internal dynamics of variabtek with
k=0,1,...,r—1, is characterized by a linear dynamics whose stable modeseiined by
the Hurwitz polynomial Pp), and therefores®) — 0 vk =0,1,...,r — 1, asymptoticallyll

u(t)=—

(4.38)
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Notice that the above HOSM algorithm is, practically, aneesion of classical first-
order sliding mode. Indeed the system state is forced onteearl manifold in a new space
defined by the variable and theirr — 1 time derivatives, and on such a manifold the origin
is reached asymptotically.

4.4.1 Second-order sliding mode control

In the following a brief presentation of the most used 2-SM@oathms [Levant,
19934, [Bartolini et al., 1999respectively: the Generalized Sub-Optim&h[tolini et al.,
1999 and the Super-Twistingevant, 1993palgorithm is provided. For the sake of brevity
only the tuning rules will be provided without any proof. Tieader is referred tdJisano &
Usai, 201] and reference therein for further details.

4.4.2 The Generalized Sub-Optimal controller

Both thetwisting[Levant, 1993pand thesub-optimahlgorithm Bartolini et al., 1998b
can deal with relative-degree two constraint variablesyTére, both, special cases of the
general algorithmBartolini et al., 2003

u(t) = —a(t)Usign(s— Bsw) (4.39)
with

a(t)=

{1 A (s=swm =0 g g g (4.40)

a* , if (s—su)su<O
whereU is the minimum control magnitudex* is called themodulation factoy 3 is the
anticipation factor andsy is the value of the sliding variabkecorresponding to the most
recent local minimum, maximum or horizontal flex point (i#e value of s at the last time
instantty x at whichs= 0 occurs).sy can be evaluated either by checking s&ror, by
inspection of the past values s(tt), or, approximately, by inspection of the first-difference
of s(t); in last two cases no information abaiis neededU, a*, andf3 are the controller
parameters, that must be tuned to assure the finite time igemnee onto the sliding sét,
in (4.32.

Theorem 4.6. Consider syster¥.35 and define its output g¢.6) with g= 1. If the system
dynamics fulfill the following conditions:

In2a] <A
L,o =0 Vo€ Ve W (4.41)
0<m<Lglpo<Tpm

whereA, 'y, 'y are known positive constants, then the control (@89-(4.40 with

2N+ (1—-pB)'yu oo)
(1+B)rmu

guarantees the finite time stability of the integral mardf¢t.32), and a2nd-order sliding
mode is established af. [

AN
['m

U > . a*€[l,+0)N ( (4.42)
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Notice that by settingg = 0 the control law 4.39-(4.40 causes the system to have the
same trajectories of the well known twisting algorithibeyant, 1993hdefined as follows:

u(t) = —aysign(s) — a2 sign(s) (4.43)

with a, =U andai = a*U. The convergence conditions for this 2-SMC are easily olethi
by setting8 =0 in (4.42 and
AN

U>— a*
Mm

_ 2A T .48)
M mU

Whereas, by setting = 0.5 the Sub-Optimal SMC algorithm takes pladaftolini
et al., 2003

4.4.3 The Super-Twisting controller

The so-called Super-Twisting algorithm is conceptualffedent from the other 2-SMC
algorithms, for two reasons: first, it depends only on theaotalue of the sliding variable,
while the others have more information demand. Second gfféstive only for chattering
attenuation purposes as far as relative degree one cartstaae dealt with. It is defined by
the following dynamic controllerljevant, 1993h

ut) = v(t)—A|s(t)|Zsign(s(t))
v(t) = —asign(s(t))

whereu(t) € R is the input of system¥(35 with g= 1 ands(t) € R is the sliding variable
(i.e., the system output}(6) measuring the distance of the system from the sliding sarfa
& in (4.2).

Theorem 4.7. Consider systeni4.35, define its output a$4.6) with q= 1 and assume
that its trajectories are infinitely extendible in time famabounded feedback control. If the
system dynamics fulfill the following conditions:

(4.45)

20+ (Lylyo+LyLs0) u+L2aw2| <A
0<Tm<Lyo<ly

Vo € Ve, Wt (4.46)

whereA, I'm, 'y are known positive constants, then the control ([@w5 with

a>L

A2 énarp,.mw\ (4.47)

guarantees the finite time stability of the integral marlf¢t.32), and a2nd-order sliding
mode is established ah. |

4.4.4 Arbitrary order sliding mode controllers

Consider the problem of finite time stabilization ofth-order sliding mode for system
(4.39 satisfying Propositiod.1 with g = 1. Because of the difficulties in definimgsliding
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controllers withr = 3 only recently some results are available for this casednt, 2005
Bartolini et al., 2002Bartolini et al., 2007aKryachkov et al., 2010 Worth of noting the
work of Levant Levant, 2005 where arbitrary order sliding mode controllers have been
developed. The key idea was to recursively built, a r-ordetroller which embed it&r — 1)-
order one. The requirement of this approach if the avaitsof the sliding variable and its
time derivatives up to thég — 1)th order.

Let mbe the least common multiple of2, ..., r and define the following quantities

r—i

i—1 m\ m
Nir= <Z )s(k) rk) with i=1,2,....r—1 (4.48)
K=o
and
¢b7r = S. | - | (4.49)
@r = sSU4BN;sign(@_1,) with i=12...r-1

The following Theorem provide conditions for achieving t@time stability for an arbitrary
relative degree system as i §5).

Theorem 4.8. [Levant, 2005] Consider syster(¥.39 (4.6), with q= 1, and assume that its
trajectories are infinitely extendible in time for any Leges-measurable bounded feedback
control. Then, if the following conditions hold for some stamts/A\,, Ay, and /Ay

[Npol] < A
Lgl_';a:o k=12..r—2 (4.50)
0< rmngL}*lang Va € g, Wt

then, with properly chosen positive parametgysBs, ..., 51, a, the controller

u=—a ~sign<gq_17r(s,$, . ,s(“l))> (4.51)
where@ 1, is defined in(4.48 and (4.49, makes the integral s¢t#.33 finite time stable
and a r-sliding mode on the manifol#l in (4.2) is established. |
Proof. See [Levant, 200h [ |

The above Theorem determines a controller familys{) applicable to all systems
of the type ¢.35 (4.6) , with g = 1 and relative degreg, satisfying ¢.50. Parameters
B1, B2, ..., Br—1 affect the reaching time and are to be chosen sufficienttjelar index or-
der. Such a parametescan be preliminarily chosen for eacln advance, while parameter
o must be chosen specifically on the knowledge, or estimaticthe boundg\;, 'y, andly
of the uncertain dynamics. The controller performancessmsitive to any system perturba-
tion preserving these bounds. For complexness, in thewoilpfew examples of arbitrary
order sliding controllers up to order= 3 are provided:

r=1 u=—a-sign(s) (4.52)
r=2 u= —a-sign<S+|s|%sign(s)) (4.53)

1

r=3 u:—a-sign(§+2(\$\3+\s|2)6sign(s)) (4.54)
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4.5 Chattering Analysis in High-Order Sliding Mode

As well known, the main drawbacks of classical first-ordedi8y Modes (1-SM) are
principally related to the so-called chattering effddtqin & Guldner, 1999 Boiko, 2003.
The main cause of chattering has been identified as the mesdrunmodeled parasitic
dynamics in the switching device&pncalves et al., 200Boiko, 2009

Three main approaches to counteract the chattering phermme SMC systems were
proposed in the mid-eighties:

* the use of a continuous approximation of the relBurfon & Zinober,
1984;

« the use of an asymptotic state-observer to confine chagtarithe observer
dynamics bypassing the plam@dndarev & Utkin, 198§

* the use of higher-order sliding mode control algorithiasiplyanov, 195p

The main drawbacks of the continuous approximations antdebbserved-based ap-
proach are the deterioration of accuracy and system roéssoiko et al., 2008 In recent
papers Fridman, 2003Boiko, 2003 Boiko et al., 2006 Boiko et al., 2004 Pilloni et al.,
20123 it has been shown that even the 2-SM algorithms suffer frbattering if parasitic
dynamics are present increasing the system relative degréeerature there are two main
approaches to chattering analysis: the time-domain aisabythe system dynamics or the
use of frequency-domain techniques. Preliminary resajanding the time-domain analysis
of chattering in 2-SMC systems were presentedioiko et al., 200&

Anyway, when linear plants are considered frequency-doneginniques can be used to
assess the existence and stability of periodic solutions. Tsypkin locus methodBypkin,
1984 and the recently proposdacus of a Perturbed Relay Syst¢bPRS) Boiko, 2009
provides exact values of the amplitude and frequency otehag). An approximate analysis
method based on the Describing Function (DF) techniquedcbal useful whenever the
low-pass filtering condition is satisfiedtherton, 1975 The DF method has already been
used to estimate the frequency and the amplitude of the gierraotions in the 1-SMC
systems$htessel & Lee, 1996The results obtained via the use of exact frequency-domai
techniques feature a satisfactory correspondence witietbbtained via the approximate DF
method Boiko, 2003.

With the aim to support the treatment presented in Ch&piarwhich a systematic DF-
based tuning procedure for mitigate the unavoidable @sighs in control loop controlled
by the Super-Twisting Algorithm when the overall relativegdee of the plant is greater
than one; in the following some notes about the analysis enftbquency domain of the
well known generalized sub-optimal 2-SMC algorithBaftolini et al., 1998kare provided.
Notice that, in order to take into account both the Twistithgy Sub-Optimal and even the
classical first order SM the generalized sub-optimal 2-SNgor&ghm in (4.39 has been
considered.
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Figure 4.2: DF-analysis in the complex plane.

4.5.1 Describing-function analysis of the generalized subptimal algo-
rithm

A way for evaluating self-sustained oscillation in SISO tohloops controlled by the
GSO algorithm 4.39 when the overall relative degree of the plant plus the d@otua three
or more is presented iBpiko et al., 2006 The idea is to study the solution of the so-called
Harmonic BalancgVander Velde, 1968resented below:

1+N(ay)-W(jw) =0 (4.55)

whereW(jw) = Y(jw)/U(jw) is the transfer function of the plant, supposed to be stable
andN(ay) is the DF of the GSO algorithm with, defined as the amplitude of the periodic
motion.

The DF of the GSO algorithm iBJpiko et al., 2008

N(ay) = % (@ + 1)\ /1- B2+ [(a"+1)+B(a” +1)] (4.56)

Yy

As known, a periodic solution can appear if the negativegorecial of the DF 4.56) in-
tersects the Nyquist plot of the plant’'s harmonic respdéew). Therefore by substituting
(4.56 into (4.55, and separating the resulting complex equation in its nage and phase,
the following well-posed system takes place:

_ i _ Ty
M=|W(jQ)| = N NGRS (4.57)
B (a*—1)+B(a*+1)
Y= atan( o 1)\/1—7[32 ) (4.58)

from which it is possible evaluate the amplitudeand the frequenc® of the chattering.
The resulting locus in the Nyquist Plane described by theegy®f equations4.57)-(4.59

is depicted in Figurel.2, whereM and g are respectively the magnitude and the phase of
the plant’s transfer functiow/(jQ) at the frequency of the steady-state periodic mofon
As shows in Figurel.2 periodic oscillations can occur only if the overall relatigegree of
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Figure 4.3: Level sets of (continuous lines) aviid /ay (dotted lines) in th¢3, a*) plane.

the plant is three or more. Indeed only in this case—tlmiay)*l in (4.56 andW(jw) can
present an intersection.

As discussed inBoiko et al., 200§ equations 4.57)-(4.58 can be also employed to
impose some prescribed constraints on the ampligyaand the frequenc{ of the steady-
state periodic oscillation by choosing properly the par@mef the GSOa* and 3 (see
(4.39). Notice that the direct use for design of the nonlineamfolas ¢.57)-(4.58 can be
avoided by using the chart depicted in Figdr& and by applying the following three-step
tuning procedure:

Procedure 4.1.

A. Letwn < Q < wp be the desired range for the periodic solution frequency;

B. Evaluateyy = —mm—arg{W(jow} andyr = —mm—arg{W(jw,};

C. ldentify in the table reported in Fig. 4 proper values foetparameters *
andf such thatyy < ¢ < ¢ while maximizing MU ay.

Notice that, maximizing\ilU /ay means minimizing the oscillation amplitudg, is
achieved by increasing [Boiko et al., 200G

4.6 Conclusion

In this Chapter a brief survey on Sliding Mode Control (SMQ)ebry based on the
work [Pisano & Usai, 201]lhas been provided. Throughout the Chapter the basic notion
Sliding Modes Control Theory in dynamical systems with digtnuous right-hand side has
been discussed with particular emphasis to the problemhafstostabilization of perturbed
nonlinear systems. In particular, notion on Filippov Coottion and Equivalent Control
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and Chattering Analysis have been introduced in order teigedo the reader the necessary
notion for understanding the treatment presented in theviolg Chapters. Furthermore the
main Higher-Order Sliding Modes algorithm such as the SUpesting [Levant, 1993k the
Twisting [Levant, 1993g0rlov, 200§, Suboptimal Bartolini et al., 1998band the Arbitrary
order sliding mode algorithnmipvant, 200%are presented.
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Chapter 5

Chattering adjustment and Tuning of the
Super-Twisting Algorithm

As discuss in Chapterthe chattering phenomenon is one of the main drawbacks in the
area of sliding mode control and discontinuous-based obf&iotine et al., 1991

Due to the extensively use of High Order Sliding Mode in &l taminder of the Thesis,
the purpose of the present Chapter is to illustrate a systepracedure for tuning the pa-
rameters of the Super-Twisting Algorithm when the plarglative degree is higher than one,
for example due to the presence of unmodeled parasitic dgsdRilloni et al., 2012aPil-
loni et al., 2012h Indeed in that case self-sustained periodic oscillatakes place in the
feedback loop. Notice that the topic of this Chapter is ittty related to the framework of
distributed systems. Anyway, it is reasonable thinking thiaen discontinuous control ac-
tion are applied for controlling real network of systemse do the unavoidable presence of
parasitic dynamics and the coupling among the systems tipgi@ver a network, complex
phenomenon such us chattering can app&ardri & Boiko, 2013.

The proposed methodology is based on the Describing Fum@iB) and requires only
the prior knowledge of the plant’'s Harmonic Response (nmtagei and phase) at the de-
sired chattering frequency. In the following, it will be tretically illustrated and verified by
means of, both, simulative results and experiments caouedy making references to a DC
motor.

5.1 Introduction

The main drawbacks of classical relay-based SMC (alsodtéfiest-order" SMC, or
1-SMC) are principally related to the so-called chattemfigct [Utkin & Guldner, 1999,
I.e. undesired high-frequency steady-state vibratiofexahg the variables of the plant. To
mitigate the chattering effect, a possible solution is the af higher-order sliding mode con-
trol algorithms (HOSM) Bartolini et al., 1998bLevant, 200 a set of advanced algorithms
that constitute the core of modern SMC thedBgftolini et al., 2008

In the literature there are two main approaches to chatjeimalysis that provide an
exact solution in terms of magnitude and frequency of theoger oscillation:
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« time-domain analysis by Poincare Maps (s8efficalves et al., 20Q)
 frequency domain techniques as Tsypikin Locus (Sesy/pkin, 1989),
and LPRS Method (se®piko, 2009).

Anyway, all these approaches require lengthy computatibmsrefore, the application
of approximate analysis methods has been found useful whettge plant under analysis
fulfill the filtering hypothesis Atherton, 1975 Under this hypothesis, the Described Func-
tion (DF) method is a well-established approach. In facag blready been used to analyze
periodic motions for both 1-SMCShtessel & Lee, 199&nd second order SMC (2-SMC)
systemsBoiko et al., 2005Boiko et al., 2004Boiko et al., 200§ and the results obtained
via the use of exact techniques often feature a satisfastomjarity with those obtained via
the approximate DF metho@&piko, 2003.

In this Chapter the attention has been focused on one of tis¢ popular second or-
der sliding mode algorithms known as Super-Twisting alponi (STW) [Levant, 1993h
Among the reasons for the popularity of the STW algorithsisitilarity with the conven-
tional Pl and the fact that it gives rise to a continuous adriaw are worth to mention.
Whenever applied to linear plants with relative greatenthiae, STW controlled systems al-
ways exhibit chatteringgoiko et al., 200pin the form of periodic oscillations of the output
variable.

In the following a DF-based procedure for selecting the @allgon parameters in order
to assign prescribed values to the frequency and amplittidbaitering is presented. The
ability to affect the frequency of the residual steady staeillations may be useful, for
example, to mitigate resonant behaviors.

This Chapter is organized as follows sections: Secii@and5.3 present the STW al-
gorithm and recall its DF-Based analysBojko et al., 200% Section5.4 states the problem
under investigation and presents the tuning procedureefting the parameters of the STW
algorithm in order to assign prescribed amplitude and feegy to the periodic chattering
motion. In Section$.5and5.6the proposed tuning procedure is verified by means of simu-
lations and experimental tests. Secttoii provides some concluding remarks and hints for
next research.

5.2 Motivations

Conventional Proportional-Integral (PI) controllers areloubtedly the most employed
controllers in industry. Main advantages of classical Rks their simplicity, satisfactory
performance for “slow" processes, and the availability fféctive automatic tuning rules,
such as the Ziegler-Nichols or Astrom-Hagglund methddgrom & Hagglund, 200 In-
ternal model principle establishes their capability ofyydong the asymptotic rejection of
constant disturbances and zero steady-state error fotagurset-point signals. However, Pl
controllers may behave unsatisfactorily in presence aingtmonlinearity effects (i.e. fric-
tion, hysteresis, backlash) and/or rapidly varying setfpand disturbance signals.

Here performances of linear systems controlled by meansnoinéinear version of a
PI known as “Super-Twisting” (STW) Algorithm (seedvant, 1993p will be investigated.
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Figure 5.1: Block diagram of a linear plant with the Superiskimg Algorithm.
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Figure 5.2: Architecture Comparison between linear (l&figi nonlinear PI.

A

The considered controller is described as follows

u(t) = uy(t) +ua(t) , (5.1)
iy =—ysign(o) , w(0)=0, (5.2)
bhb=—-A |O \% sign(o) (5.3)

whereA, y are positive design parameters. As known this algorithrarig to the family of,
so-called Second Order Sliding Modmntrollers. A block scheme representing its structure
is depicted in Figur&.1l As we can see, the similarity between the classical Pl obetr
and the STW algorithm5(1)-(5.3) are evident (see Figuie?2) in that they both possess a
static component (a constant proportional gain, for theRd, a nonlinear gain with infinite
slope at the origin for the nonlinear PI) and an integralaacferror integration for the PlI,
and integration of the sign of the error variable for the nwedr PI).

Particularity of the STW controller is that it gives rise te@tinuoushon-smoottton-
trol action which possesses significant robustness priepeagainst nonlinearities, uncer-
tainties and disturbances. In recent years it has becamnmedbkestudied SMC algorithm and
it has been applied to address control, estimation and dietéiction tasks for some classes
of linear and nonlinear processes (seedman et al., 2007d&ridman et al., 2008Pilloni
etal., 2012p.

Whenever applied to systems (possibly nonlinear) havitagive degree one, the STW
algorithm provides:

* rejection of smooth disturbances of arbitrary shape;
« tracking of smooth references of arbitrary shape;
« finite-time convergence to the set-point.
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Figure 5.3: Decomposition of the arbitrary relative degremtW(s).

Although the STW algorithm guarantees the finite-time exacivergence for a rather
limited class of plants having input-output relative degome, it was proved its “practical
stability” for a wider class of arbitrary relative degreestgms admitting a certain decom-
position (seellevant & Fridman, 201]). In particular, the following theorem holds once
the considered dynamics is formed by the cascade of a stetlatar, of arbitrary relative
degree, and a relative degree one dynamics.

Theorem 5.1.Consider a LTI plant Ws) = Y(s) /U (s), admitting the decomposition shown
in Figure 5.3, where Hs) = Z(s)/U(s) is an asymptotically stable dynamics with arbitrary
relative degree, with the positive coefficigniscaling its poles as an equivalent time con-
stant, and Gs) is of relative degree one. Then, the feedback control systdfigure 5.1
provides the following steady-state condition

o] <O(u?) . (5.4)
[ |

Theorem5.1 follows from [Levant & Fridman, 201]) Lemma 1. The motion within
the O(u?) boundary layer.4), established in Theoref 1, proves to be periodic, thereby
amenable to be investigated by means of the DF concept (se@)\eherton, 197%).

5.3 Super-Twisting Algorithm and its DF Analysis

Consider a linear SISO system, described by the followiatestpace representation
which comprises principal and parasitic dynamics:

{ x(t) = Az(t)+But), =R, UuER (5.5)

yit) = C=(t), yeR ’

whereA, B, C are matrices of appropriate dimensiomss the state vectou is the actuator
input, andy the plant output. Consider the plant description in the fofrtransfer function

as follows
W(s) = Y(z)) —C(sI-A)'B . (5.6)

Assuming that the plant transfer function satisfies theriiitgehypothesis property. Us-
ing the STW algorithm%.1)-(5.3), the control system under analysis can be represented in

the form of the block diagram in Figu®1 wherea(t) = r(t) — y(t) is the error variable.
The DF of the nonlinear functiorb(3) was derived inBoiko et al., 200bas follows:

mos 20 [(125) A
/o(smt,u) W= g L1128 (5.7)

—~

C

N2 (ay) = /3
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whereay is the oscillation amplitude of the error varialateto be determined, arid(-) is the
Euler's Gamma function. The DF of the nonlinear integral poment £.2) can be written
as follows: av 1
4
Ni(ay, W) = —— 5.8
1( Yo ) 7Tay jw ) ( )
which is the cascade connection of an ideal relay (with theefial to 4/ may (see Ather-
ton, 1979)), and an integrator with the frequency respong@ad. Taking into account both
control components irg(1), the DF of the STW algorithmb(1)-(5.3) can be finally written

as
v 1 A
N (ay, w) = N1 (ay, w) + No (8) = — — +1.1128— . 5.9
(ay, w) = N1 (ay, w) (ay) Ty o & (5.9)
Let us note that the DF of the STW algorithm depends on, bbthamplitudeay and fre-
guencyw of the periodic solution.

In general, the parameters of the periodic limit cycle camjyeroximately found via
the solution of the following complex equation

1+W(jw)-N(ay,w) =0, (5.10)

so-calledharmonic balanc¢Atherton, 1975 The harmonic balance equatidn {0 can be
rewritten as
W(jw)=-N"*(ay,w) , (5.11)

and a periodic oscillation of frequen€y and amplitude?, exists when an intersection be-
tween the Nyquist plot of the plaw( jw) and the negative reciprocal DN 1(Ay, w) occurs
atw = Q. Thus, the parameters of the limit cycle can be found viateoiwf (5.10 where
the DF is given by %.9). The negative reciprocal of the DB.Q) can be written in explicit
form as
1 0.8986%Y +j1.0282.%,
=" 1+%(L)2 ) (5.12)

ay WA

It is of interest to plot the negative reciprocal of the DF=1Q) in the complex plane. It
depends on the two variableg and w; which are both nonnegative by construction. It is
clear from §.12) that with positive gaind andythe locus is entirely contained in the lower-
left quadrant of the complex plane when the variableandcw vary from zero to infinity. In
Figure5.4, the curves obtained for = 0.6 andy = 0.8, some values) = w, and by letting
ay to vary from 0 toeo are displayed.

5.3.1 Existence of the Periodic Solution

DenotedAy andQ the amplitude and the and the frequency of the periodiclasoih
which solves the harmonic balance, théril() can be rewritten as

N (A, Q) =W(jQ) , (5.13)
which, consideringq.9), specializes to

4y 1 + 1,1128/\— =-w1(jQ) . (5.14)

Ay |Q VA
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Figure 5.4: Plots of the negative reciprocal BF1(Q) for different values oto.

Separating the complex equatiédni4) in its real and imaginary parts it yields

111282 = —OW1(jQ

R (19Q)
(5.15)

4 1,

A =W H(jQ)

ObtainingAy from the first of £.15 and substituting this value in the second equation of

(5.19, ityields
4 1 111280 \?

mIW-1(jQ) (—DWl(jQ)) =0, (5-16)
which allows to compute the frequen€y. Solution of £.16) cannot be derived in closed
form, and a numerical, or graphical, approach is mandatory.

Once obtaine® , the amplitude of the periodic solution can be expressed as

_4y 1

A= o Tw i) (5.17)

As noticed in Boiko et al., 200§ a point of intersection between the Nyquist plot of
the plant and the negative reciprocal of the STW BE)always exists if the relative degree
of the plant transfer function is higher than one, and thiatde located in the third quadrant
of the complex plane. From Figuke4, it is also apparent that the frequency of the periodic
solution induced by the STW is always lower than the frequeari¢he periodic motion for
the system controlled by the conventional relay.

The orbital asymptotic stability of the periodic soluticainche assessed using thaeb
Criterion (see Atherton, 1975Vander Velde, 196§}, that is not mentioned here for the sake
of brevity.
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5.4 Problem Formulation and Proposed Tuning Procedure

5.4.1 Problem Formulation

Consider the feedback control system in Fighrg where the plant is modelled by an
unknown transfer functiow/(s) having relative degree greater than one. Given the steady-
state performance requirements in terms of desired freyu@gp and amplituded, of the
chattering motion, tuning procedure, based on the DF metlexited to derive constructive
controller tuning rules for the algorithns (1)-(5.3) will be defined.

To begin with, let us substitutés (12) into (5.11) and rewrite the harmonic balance
equation as
a&.s ayy
. Ci . G
W(Jw):_ A Y 5 w)\y 2 (5.18)
ay+cs(ar)”  y+cs(gy)

with ¢ = 0.8986,c, = 1.0282,c3 = 1.3091. Let

Ki(w) = Ke(w)=—"= . (5.19)
Multiplying both sides of .18 by y/w, it results
aa Ko (w) . crayK3(w)

Ki(w)W(jw) =

— — . 5.20
ay+C3K2(w) ~ay+c3K2(w) (5:20)

Once considered the design requirememts= Ay, and w = Qqg, separating the complex
equation $.20) in its magnitude and phase as follows

_ CZAS Ko (Qq) + C3AZ K2 (Qq)
K1 (Qqg) W (]Qq)| = 521
1(Qd) W (jQuq)] J (Ayy + K2 Q). (5.21)
: _ C2K2 (Qq)

it results a well-posed system of equations, whéfe= K; (Qq) andK$ = K, (Qq) are the
two unknowns. The magnitude and phas&\fjw) at the desired chattering frequen@y
can be identified by a simple test on the plant. Thereforejirspl(5.21)-(5.22), and then
considering $.19 with w = Qg, the controller parametess andy that guarantee a steady-
state periodic motion with desired characteristics candresed. Corresponding formulas
are

y = QgK{
(5.23)
A = y :K_f
QgK$ — K¢

Direct solution of the nonlinear equations.Z1)-(5.22 can be avoided. By following a
graphical approach it is convenient to refer to the curvésgare5.5, where each curve rep-
resents a specific instance of the right-hand sidé & in the complex plane, for different
values ofA,, by lettingK5 to vary from 0 too. Drawing in the abacus a segment connecting
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Figure 5.5: Level sets of the right-hand &6fZ0) for different values o#y.

the origin of the complex plane and the poihbf the curve associated #,,, with phase
equal to argW(jQq)} (see Figures.8), the length of the segme®P which corresponds to
the right-hand side of5(21) can be easily extrapolated. Then, once kn@w) Kf and Kg
can be computed by the following relationship:

cFAY Ka(Qqg)+CBA5, Ko (Qq)

Kd (Ayd+°3K§(Qd))2 G
1 - W(jQq)] — W(jQq)] (5.24)

K¢ = 2V anfarg{W (j0q)})

Remark 5.1. It is important to underline that the intersection betweba Nyquist plot of
W(jw) and—N~1(ay, w) always lies in the lower-left quadrant of the complex plastethe
desired frequency of chattering oscillati@y must satisfy the sector condition

Q1 <Qq<Qy (5.25)

where -
arg(W (jQ1)} = 5, arg{W (jQo)} =71 (5.26)
[

Remark 5.2. The right-hand side of5(20 is independent of the plant transfer function.
Therefore the set of curves in Figuses represents ambacusindependent of the plant, too,
hence very useful to simplify the solution 5f20). [ |
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5.4.2 Proposed Tuning Procedure

Given alow-pass plant with relative degree greater than ptie proposed procedure
can be summarized as follows:

Procedure 5.1.

A. Let A, andQq be the desired chattering characteristics;

B. Evaluate by an harmonic response test on the plant thetdjiesi\W (jQq) |
andarg{W(jQq)} and check ifrr/2 < arg{W(jQq)} < m, otherwise chose
a different value fo£4 and go back to step A;

C. Draw in the abacus a segment connecting the origin and o B of the
curve g = Ay, with phase equal targ{W(jQq)};

D. Use 6.23 to computel andy.

5.5 Simulation Results

In order to outline the proposed methodology, consider teeade connection of a
linear plantG(s) and a stable actuatét(s), such that the relative degree\&f(s) = H(s) -
G(s) is greater than one, i.e.:

G(s) = SZi._si]_ , H(g= (11511)2 )
(5.27)
W(s)=H(s)-G(s) , u=1/50.

Let us apply Procedure 1to shape the steady-state permanent oscillation of thedimop
system with the STW algorithm.

A. Let Ay, = 0.05 andQq = 25 rad/sec;
B. By frequency response test it results:

IW(jQq)| =~ 0.032 , arg{W(jQq)} ~ —14314 deg ;

C. Drawing the segmer@P in the abacus until it intersects the curve associ-
ated toay, (see Figuré.9), it results

OP= \/(~0.018822+ (~0.014142 = 0.0235 ;
D. Using (.24 and 6.19 obtain
A —50119, y= 183575, (5.28)

In Figure 5.6, some simulation results are shown. Sigpgl) represents the closed-loop
unit-step response of the pla®t27) with control parameter$(29. Signaly,(t) represent
the output signal obtained using the reduced value 1/100 for the actuator time constant
parameter. The bottom left zoomed sub-plot confirms thasti@dy-state chattering motion
fulfills the given specification of amplitude and frequernElge bottom right sub-plot shows
that the chattering amplituds is 4 times smaller, according to Theoréni. The achieved
results fully agree with the presented analysis.
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Figure 5.6: Step response of the plh(ts) in closed-loop with STW parameteks=5.0119,
y =18.3575.

5.6 Experimental Results

The proposed method has been experimentally tested wigherefe to the position
control of a commercial DC Motor. In Figufe7the experimental setup is shown.

As first step (Step A), the desidered frequency and magnitide periodic oscillation
were set as

Ay, =005 |, Qq =50rad'sec.

(5.29)
Then, by an harmonic test (Step B), the following values &taioed

[W(jQq)| =~ 0.0081, arg{W(jQq)} ~ —1387 deg. (5.30)
Afterwards, by the abacus in Figuse8 (Step C) results

OP= \/(~0.01952 + (~0.01712 = 0.0259

(5.31)
from which, (Step D) the designed gains for the nonlineabPl{(5.3) are
A =1864 , y=15999 . (5.32)
In Figure5.9, the closed-loop unit-step response of the motor with cbpi@rameters
(5.32 is displayed. It can be checked that the actual amplituderaguency of the oscilla-

tion closely match the desired ones. A second experimenibéas made by evaluating the
parameters giving rise to a periodic oscillations havirgggame frequend®y = 50 rad/sec
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Figure 5.8: Example of abacus utilization for the syswi(s) (5.27).

and a different, bigger, amplitudg, = 0.07. By repeating the suggested tuning procedure,
the next controller parameters were obtained

A =2005, y=22399 . (5.33)

The results of the corresponding experiment are shown iritpere 5.10, which shows,
again, an almost perfect matching between the actual aneceegb characteristics of the
steady state oscillation.

5.7 Conclusions and Future Works

A describing function approach for tuning a feedback cdrslystem with a linear plant
driven by STW algorithm has been presented. It allows to shiap characteristics of the
chattering motion that occurs when the linear plant hasativel degree greater than one,
for example due to the presence of parasitic unmodeled digsam constructive procedure
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Figure 5.9: Experimental step response of the DC-Motor asefi-loop withA = 18.64,
y = 15999.
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Figure 5.10: Experimental step response of the DC-Motolased-loop withA = 20.05,
y=22399.

for determining in advance the periodic solution paransefgequency and amplitude) has
been developed and tested by means of both computer siondathd experiments. Among
some interesting directions for improving the presentltethe analysis, and shaping, of the
transient oscillations is of special interest. The matherabireatment presented iBiko,

2017 and thedynamic harmonic balanceoncept in particular, could be a possible starting
point to this end.



Chapter 6

Decentralized Estimation in Complex
Network

This Chapter considers the problem of state estimation akdawn input reconstruc-
tion of a class of connected heterogeneous perturbed LTI ™Bystems. Local high or-
der sliding mode observers at each node of the network argragesfor this purpose. The
proposed method, under some network structural condijtisisherently robust, nonlinear
and totally independent of the time-varying network toggloKnowledge of the number
of nodes that belong to the network is not required. At theesuipory level, decentralized
control signals are computed based on the state estimateden to operate the network-
ing synchronization. By mean of simulation, the effectiss of the proposal procedure is
shown.

6.1 Introduction

Control applications in distributed and cooperative emwmnents has been a subject
growing interest in the last decades becoming one of the impsirtant research fields in the
control and decision theory (seSiljak, 1997). Analysis and control of complex behaviors
in large networks attracted the attention of researchen fdferent fields; an overview of
the problems related to networks of dynamic systems is giveiiewman et al., 20d6and
contribution in synchronization of networks and in coopigeacontrol can be found in/J/u,
2007.

Complex networks are usually characterized by severahdiste properties including
complexity, topological structure, dynamical evolutitime-varying coupling strengths and
interactions between nodes. The first model of networks waggsed in Erdds & Rényi,
196Q (ER-Model). In that model each pair of elements was rangarohnected with the
same probability. However in the real world, connectivigtween each element is neither
completely regular nor completely random. Thanks to Watts &trogatzs (WS-Model) a
more realistic representation has been given (¥¢&tf & Strogatz, 1993 Another sig-
nificant recent discovery in the field of complex networkshie bbservation that a number
of large-scale and complex networks are scale-free, th#ttes connectivity distributions
have the power-law form (se8§rabasi et al., 1999 In this work, a scale-free dynamical
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network representation, consistent withgng & Chen, 2003awill be utilized.

The motivation for the present work is to increase the le¥edudonomy for a class
of scale-free networks composed of heterogeneous systeated to perform synchroniza-
tion on a common reference trajectory. Network of mobileotsbunmanned aerial vehicle,
satellites and localization systems are just some exaroplasoperative systems (seeréw
et al., 2005P. It is noteworthy that in autonomous application, therggeare often mon-
itored at a supervisory level, and in most cases a supewlsgel node use to drive the
systems (sedjrew et al., 20050Edwards & Menon, 2003

A great deal of attention has been paid to the problem of detlezed state-space es-
timation in complex networks. Motivated by a large amouniroportant practical prob-
lems, the estimation of uncertain systems has become arrtamp@rea of research. Such
problem arises in systems subject to disturbances or wattcessible or unmeasurable in-
puts and in many applications such as fault detection isoigPilloni et al., 2012¢Pilloni
et al., 2013¢cFloquet et al., 2004Edwards et al., 20Q0purgeon, 2008Fridman et al.,
2008 Davila et al., 2008 In the literature several approaches to deal with thisct# prob-
lem has been proposed (ségljvards & Menon, 2008tankovic et al., 20Q®illosu et al.,
20171)), however, recently, sliding mode control (SMC) theogstbeen further extended in
the area of networked systems (s¥arj et al., 200p. The main features of SMC are insen-
sitivity to external disturbances, high accuracy and fititee convergence, which make it
one of the useful tools in robust state estimation. The meawhkacks of classical SMC are
principally related to the so-called chattering effectthig could be not a dramatic drawback
in observation problems implemented in digital deviceglHorder sliding modes (HOSM)
have been suggested both to deal with high relative degeterag and to attenuate this phe-
nomena whilst maintaining the mentioned robustness ptiegdseelLevant, 1993a_evant,
2005 Bartolini et al., 200p. Furthermore the combination of HOSM control algorithamsl
sliding mode differentiatorsijevant, 1998 produces effective observers (s&ajila et al.,
2009).

In this Chapter, network structural conditions for desmgniocal nonlinear observers
independent from any topological changing are providednflete finite-time state esti-
mation and the unknown input reconstruction of each systeenating over a network are
fulfilled. The estimated state variables of each node anme tised to synchronize the whole
network. The Chapter is organized as follows; in Sectidia brief description of scale-free
system is presented; Secti6rB provides a reminder of the concepts of strong observapility
and an approach based on thieservability indicess presented; in Sectiof.4 conditions
for the design of a decentralized observer are given. Thpgsed framework is verified
by means of simulations in Secti@nb. Section6.6 provides some concluding remarks and
hints for further research.

6.2 The Scale-Free Dynamical Network Model

Many real-world networks are scale-free. The main feataf@sscale-free network are
"growth" and "preferential attachment". These refer tovoeks continuously evolving by
the insertion/removal of nodes and changing interconaecguch topological changes can
be described using graph theory and the notafiea {¢1, ...,%v }, where eacly; represents
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an interaction topology for a particular time period. Foe tiraphG the adjacency matrix
A[G](t) = [a(t)] is a binary matrix whose entries depend on the current géasth time

t, the entrya;j(t) = 1 if the i-th and j-th node are adjacent at tifeand zero otherwise.
Let A[G](t) = [§j(t)] be a diagonal matrix which represents the in-degree matrixhie
considered grapl¥; at timet, &;(t) is the input-degree of the i-th vertex. The Laplacian
matrix of G, L[G] = [.%;] is defined as the differena&[G] — A[G].

Suppose that the scale-free network consisté leéterogenous, dynamical, linearly and
diffusively coupled nodes. According toMfang & Chen, 2002e&dwards & Menon, 2008
each node&;; of the graphG can be described as follow:

N
wi = Ajzi + Biui + Di fi —c(t) ) Zjj Tij x; (6.1)
=1

yi = Cizi (6.2)

wherezj = [xi71...xi7ni]T € R" andy; = [yi71...Yi,pi]T € RP represent thejrdimensional
state and output vectors of the i-th node of the network. fonsu;(xi) € R™ and f; € RS
represent respectively the control inputs and the unknaywats of the i-th node. For the
sake of simplicity it is assumeg@ = 1. The unknown term is assumed to satisfy certain
sectors bounds which will be defined later. The teftyis the time varying coupling strength
between nodes and it is assumed to be for simplicity ideinfaraall links between the
nodes. The matriced;,B;, C;j, D; describe the dynamics of nod@nd are assumed to be
of appropiate dimensiong’jj € R"*" is a binary matrix and represents the node-to-node
coupling configuration among the i-th and j-th node. Theiesatof I'jj are nonzero if a
communication channel among different states of neighbodes exist.

Assumption 6.1. Each node; is assumed to be observable. [ |
Assumption 6.2. For achieving network synchronization, it is assumed eaah A;, B;)
to be controllable. |

6.3 Strong Observability and Unknown Input Reconstruc-
tion

Consider a LTI systenx:

&=Ax+Df (6.3)
y=Cxz (6.4)

wherex € R", y € R? and f € R represent the state, the output and the unknown input vector
of 3. Generic well-known strong observability conditions foFllsystems with unknown
inputs f based on the study of the invariant zeros of the tripde D, C') are summarized in
[Trentelman et al., 20Q1

Whereas inffridman et al., 2007mecessary conditions for strong observability with
respect to the unknown inpyft, under the assumption that= p, has been given.

In particular, letc; andd; be the rows ofC' and the columns oD. The output vector
y = Cz is said to have vector relative degree- (ry,...,rp) with respect to the unknown
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input f if the following conditions hold:

GAD = Ouq oo [0 = 12..p 65)
GATD # Oug — 01,...r-2
c1A'tdy - C]_Arlfldq
det(Q)#0 with Q= : : (6.6)
cpAPMdy - cpAPTidy

The next lemma gives sufficient conditions for guarantetettieasystem®.3)-(6.4) is strong
observable:

Lemma 6.1. Let the outputy of 3 have vector relative degrae Then the vectors

c1,...,ct AV L ep, .., CpATPT! (6.7)
are linearly independentz is strongly observable if the total relative degree of thstem
r=3p ,rkisequal ton. u

Remark 6.1. Generalizing Lemm&.1 to the the case of rectangular systems<{@), it

is obvious thatey,...,c1A"?, ..., ¢p,...,cpAP ! can not be linearly independent even if
the system is strongly observable. This assertion can biéygasved applying the same
procedure shown infridman et al., 2007pbecauseR is a non-square matrix. [ |

Currently checking the strong observability property obam+square LTI systems| (<
p) by means of the relative degree vector is not a completégbéshed matter. In the rest
of this section, in order to define a possible approach foh sless of systems, the concept
of observability indexs recalled.

Consider the system i (3)-(6.4), the observability index for the i-th output &f can
be defined as follows:

Definition 6.1. The maximum number;{\of successive linearly independent derivatives of
the i-th output oY, it is called theobservability indexand represents the number of system
state which can be reconstructed from y [ |

The setV := {vi,...,vp} is called theobservability indices of the paifA,C). It is
obvious that each entry can not be greater then the order of the systerRecalling the
definition of relative degreg of the i-th output of the system with respect to an unknown
input f in (6.5), it can be asserted that if the following lemma holds, treteyn: is strongly
observable and unknown input reconstruction (UIR) is pcabte.

Lemma 6.2. The systenX is strongly observable if it is possible to define a set of tpaesi

integers := {1, ..., Un} with h< p, in which each element is associated with one output’s
component, such that the following conditions are satisfied

Hio < Vi 7 Hl‘!‘ﬂ2.+"‘+llh:n (6.8)
L < with i=1,2,...,h
M, ¢
: cA
det{ M}#0, M= |m |, Mi=| a4 | cRH" (6.9)
Mh cjAH—1
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Proof. Suppose the paifA,C) is observable® has n linearly independent rows. After
choosing a s which satisfies the condition§.g)-(6.9), it is obvious that the matrid/ is
full-rank because it is obtained combining linear indepemicblock likec, ¢ A, ..., c A"
linearly independent each other. Then, applying the falhgwbijection mappinge = M xq
the following canonical observable representation is aied:

To = Aoxo+Dof

(6.10)
Yo = Coxo
where
A - Agpg ci1 - cp
Ao= | =~ |, Co=1|: - (6.11)
Any -+ Am chi c Chh
0 1 0 0 0
Aj=|: + , Ajj = : : (6.12)
o 0 - 1 0o - 0
i1 @i2 o @iy &1 @ijy;
5 :
Do=MD=|":], o = : c R+~ (6.13)
on CiA‘?’lD
ci=( 0o - 0 eRYM, ¢j=(0 - 0)€R™ (6.14)

Note that the previous mapping emphasized the strong adisiity property ofX. Since the
conditiony = 0 impliesx = 0 for any unknown inpuff, if y; is chosen lower than; the
entriescj A* 1D in §;j are zero, thery has no effect on the linear combinatidd; obtained
by the i-th component af. [ |

Corollary 6.1. If Lemma6.2is satisfied and

rank{ (D" D) ' D'TM T} — g (6.15)

-
with T = diag(tl,...,ti,...,th> andt; = <O -+ 0 1) € RH*1 it is possible to recon-
struct completely the unknown vectpe= [f1,.. ., fq]T by a suitable robust observer. R
Proof. Consider the systens (10 and the following observer:

f.AUo = AOi‘O + TC

~ N (6.16)
Yo = Coo

wherez,, 9o and( represent the estimated states, the observed output ange¢icgon term.
If condition (6.15 holds, it is obvious that the mapping= Mz, implies that the matrix
rank{ Do} = rank{ D} = q. Lete, = &, — x, be the state observation error, its dynamic
takes the following form:

e = Aoeo+T(—Dof (6.17)

Let FF = [Fy,..., Fq]T be a constant vector which constitutes an upper bound oming if
so that|fi| < F, then it can be designed an algorithm which drives to zerootheervation
error dynamic(e,e) — (0,0) , allowing us to reconstrucf as follows:

f=D{T¢=D" M 1T¢ (6.18)
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where the index- indicates the Moore-Penrose pseudo-inverse of the matrix.obvious
that by construction, the solution of syste®nl@ gives an unique solution with respect to
the unknown inpuf if and only if the condition.19) is satisfied. [ |

Remark 6.2. Consider the observer structuré.( 6. Applying the inverse mapping, =
M1z, it can be obtained a completely equivalent representafiiorthe observer.16)
which dispenses with the need to work in a transformed doniaitne rest of the Chapter
will be used this observer representation. [ |

6.4 Local Network Observer design

Consider the scale-free networkheterogeneous dynamical, coupled, nodes if){
(6.2). Hereinafter is presented a framework for designing locallinear observers for the
complete finite-time state estimation and the UIR of eache®gdf the network. This is an
extension of the strategy for SISO systems presentddanifa et al., 2009 for networks of
MIMO systems. Conditions to achieve this goal will be digagbelow in details. Consider
the following observer structure:

& = AZi+ Bui+Gi (6.19)
Ui = Ci& (6.20)

wherez; € R" and g; € R represent the estimated state and the observed outputefor th
nodel;;. In order to capitalize on the advantages of the sliding nadglerithms, all the equa-
tions will be understood in a Filippov sense. Filippov'sig@n coincides with the classical
one for ODEs with continuous right-hand sid€i(jppov, 196Q). G; and the injection term
Gi=[Gi1,---, G nl € R% will be designed in the sequel, in such a way that each compafe
the node’s outputs has a suitable preassigned relativeelagth respect to the associated in-
jection term. Observing the structure of the scale-freeadyioal network in §.1)-(6.2), due

to the presences of the coupling term related to the i-th motkeits neighbors, Lemmaé.2

is not applicable in the present form. Before presentingtimalitions under which the state
estimation and the UIR are practicable, the concept ofivelategree of the k-th output of
the i-th nodey; x with respect to the local unknown input signakj and the coupling terms
with the j-th neighbor\; ) need to be defined. Lei « be the k-th row of the output matrix
Ci, in accordance with the definition of relative degreefrb), for each output component
of 3; the following indices are defined:

) A!D.:O - . k = 1,2,...,p
c'}li(k,{ ! a0 with i = 12..,N (6.21)
Ci,kAi " Dy # O(lxqi) I = 01,..rix—2
¢ kAT = 01,4 _ _ ,
e Y with {0 pReR (6.22)
cikA;" T 7é0(l><nj) = Dotk

Then in order to adapt Lemnta2for the class of connected systemsénlj-(6.2), it can be
reformulated as follows:

Lemma 6.3. The scale-free network of N heterogeneous dynamical, edugdes in.1)-
(6.2) is strongly observable, if it is possible to find a set ofgatef; := {1 1,. .., L n} With
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h < p in which each element is associated to one output’s conmara such that the
following conditions are satisfied:

Hik < Vi,!( , IJiz1+"'+IJi7hi =N (6.23)
Hixk < mln{ri7k,wi7k} with k=1,2,....h
Mia Cik
: cikAi
det{Mi} #0,M; = | My | , M= | A (6.24)
Mi‘h ci'kAi“iAk’l
n

Proof. The proof of this lemma can be obtained in a similar manner emina6.2 by
inspection of the canonical observable representatioraioled by the following mapping
i = Mizo|. u

In light of Lemma6.3, in the following it is analyzed how to design an observerchihi
allows to achieve the state space estimation for the conm@exork in 6.1)-(6.2) and are
provided additional structural conditions for the UIR. $oping Lemm&.3is satisfied. Let

T, = diag tLl,...,ti?k,...,ti’hi) € R"" be a block-diagonal matrix with each k-th block
designed as follows:

-
ti= (o 0 1) 00 (6.25)

The matrixG; in (6.19 can be selected as follows
MG =T, — G = M T, (6.26)

In light of (6.23-(6.26), taking a generic observer output and differentiating if; « times,
the following I/O dynamic results:

yi,k ci KA cikBi 0

d 9i.k ciKA? R cikAiB1 :
ail = | @i+ 5 uit| ik (6.27)

yi(,ii‘kil) Ci‘kAi“i'k Ci.kAiui'kilBi 1

which can be rewritten as
ik = M Aidi + M; xBiui + tdi (6.28)
where the matrixV7; A; takes the following form:
01 - 0]o0 -~ 0

M; Ai = € RHiw=M (6.29)

0o .o
00 - 1|0 - 0
* * *

*

It is easy to see that the k-th observer’s outpythas relative degreg,  with respect to the
injection term¢; . Let ej = & — i be the state error for the agest, it can be defined the
output error dynamic for the k-th outpytyas follows:

a,yk:yi,k_yi,kzci,kei for k= l,2,...,h (6.30)
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T T
: (1 k—1)
®ik= <¢i,k,1 ¢i7k,uiﬁk> = (ei,yk Gy " eiflkk ) (6.31)
i1 = Pik2
¢i’.k’2 B ¢i".(’3 (6.32)

Pk = Bikiupry +4ik

with \
ik (1) = cikA; " ei + oixfi + > mik(t)z; (6.33)
=
Oik= Ci,kAiui"kilDi (6.34)
Mix(t) = c(t).Ljei kAl T (6.35)

where the I/O dynamic6(32 has the so-called Brunovsky chain-of-integrator carainic
form. Note that the presence ofx andm; i is strictly related to the choice of the differenti-
ation indexg; k. The following cases list explain all the possible scersario

1) if tx = rix =Wk from (6.21)-(6.29, both termsg; x andn; x appear in
(6.33;

2) if Lk =ri k < Wk, M k = 0, thus only theJnknown Input Terng;  appears
in (6.33;

3) if Hikx = Wik < ik ik = 0 thus only theDynamical Coupling Termy; «
appears inq.33;

4) if i x is smaller than both; , andw; ¢ according to §.21)-(6.22 these
terms are botlp; x andn;  equal to zero.

Following similar reasoning, the complete observatiooredynamic®; = [®; 1,.. .,CDLhi]T
can be obtained by putting in columns theBrunovsky canonical blocks(32) calculated

at the time. Note that each sub-dynamic has relative degreeln order to estimate the
whole state space of each nalg a suitable injections signals able to drive to zero thererro
ei=[a1,. .., a}ni]T is needed. Sinc®; = Mie; with M invertible, it is obvious tha®; = 0
impliesej = 0. Thus if it is possibile to drive to zero all thg sub-dynamics expressed
by (6.32), automatically the whole observation eri@rgoes to zero. Make the following
boundedness assumption:

Assumption 6.3. There are known constantg#such that the functiorﬁi’k?(uiﬁl) satisfies:
|¢i,k,(ui,k+1)| <Fkx V k=1,2,....h (6.36)
[ |

Under this assumption the finite-time convergence to zem; &y a properly designed
HOSM can be guaranteed. The choice of the most suitable HO&ithm is strictly re-
lated to the relative degreg  of each sub-blockd.32). Table6.1 shows the best choices
depending ony; . Note that the so-calleguasi-continuous arbitrary-ordefQCAO) SMC
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is able to provide finite-time stabilization of arbitraryatve degree dynamics. For relative
degree one or two systems, the best choices are respecthie@yper-TwistingSTW) algo-
rithm and theGeneralized Sub-Optimalgorithm (GSO). In particular STW gives rise to a
continuous control action which possesses significantsioless properties against nonlin-
earities and disturbances, whilst the GSO algorithm stasisecond order dynamics without
any derivative estimation, simplifying the complexity bitalgorithm (seeHartolini et al.,
2003). However the GSO has a discontinuous behavior, whereaQ@AO SMC has dis-

continuities only during the sliding motiofy x = ¢ x = --- = ¢i“|i("‘71 (see [evant, 200%).

Taking into account the case list presented earlier, Camp#l. 1 can be adjusted in order
that UIR becomes practicable.

Corollary 6.2. If Lemma6.3is satisfied along with
rank{ D;' M; 'T;} = q (6.37)
whereT; = diag(thl, e ,ti,hi)’ tik= <O, ...,0, 1) c RHik<t

i1
MDl — 76i,k — (Ci kA.IJ?kle_> 6 R“i.kxni (638)
Sin o |

and each sub-block; x has its index;  which satisfies
Hik =Tik < Wk (6.39)

then it is possible to reconstruct completely the unknowatovef; = [fi1,..., fi7q]T by a
suitable robust observer. [ |

Proof. The proof of this corollary can be obtained similarly to Clhawny 6.1 by inspection
of the following error dynamic:

N
é; :Aiei-i'GiZi—Difi'i‘c(t).z\c%jrijiﬂj (6.40)

Since the error dynamid(40) can be driven to zero in finite time, ongg, ej) = (0,0) UIR
can be achieved as follows

N
fi=D"M g —c(t) ZofijDJTijwj (6.41)
i=
If the statexj is accessible only at the supervisory level, it would be issfiule to locally re-
constructf; without the knowledge of the neighbors states. Howevaestiif tonditions §.37)
and 6.39 hold, D*Tj; = 0 and the complete information ¢f is contained ing;. UIR can

be obtained as the unique solution of the following equedifi = (D" D)D" M 1Ti¢,.
|

6.5 Numerical Example

6.5.1 Observer design

Before presenting results for a scale-free network, forsélee of completeness an ap-
plication of the design strategy shown in Lem@a& for an rectangual unstable system in
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Figure 6.1: Estimation errors and UIR after proper filtering

form (6.3)-(6.4) is presented. The following matrices describes the system

-1 -1

0 0O ©O 0 1
1
1 02 0 0 O 0 0 O 80221
A= -6 1 D=|1 1 C =
1 1 1
1 0 0 -1 -2 0 0 0 (6'42)

(fl) ( 3(8a(t—3)— 3 5(t—4)) )

f=11f|= cos(2t)

f3 coF (2t) —3(8_2(t —3) — 5o(t—4))

From Definition6.1the set of observability indices ¥ = {5,5,5,5}, while the vector rela-
tive degree is = {2,1,2,1}. By means of Lemma&.2and Corollary6.1, the observer matri-
cesM andT can be easily derived by the following possible set of insii¢e= {1 }i—1 . 4=
{2,1,1,1}. Then in order to reduce the need of sliding differentiatesded for the injec-
tionterm¢ = [{4, .. .,Z4]T, in accordance with Table.1, STW and GSO algorithms for the
relative degree one and two dynamics, respectively arguegi For further details on these
algorithms refer to Chapter or references in Tablé.1. In Figure6.1the estimation errors

(upper plot) and the comparison between fheomponents and the reconstructed unknown
input vector (lower plot) as ing( 19 after proper low-pass Butterworth filtering are shown.

6.5.2 Observer design for agents networks

To demonstrate the theory developed in this Chapter, the-tianying networkG of
six heterogeneous chaaotic circuits show in Figbirzis considered. In light ofg.1)-(6.2),
hereinafter the dynamics of each nddeof the complex network are presented:

* NodesX; withi=1,2,3andj =1,2,...,6 are represented by a Rossler
dynamic as follows:

0 -1 -1 0 1 .01
Aj=|1 02 o|,Di=|o|,Ij=(0 - o0 (6.43)
0 0 -6 1 0 - 0
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Table 6.1: Sliding mode and relative degree

Relative Degree HOSM Algorithm
1 Super-Twisting SMC ([evant, 1993p
2 Generalized Sub-Optimal SMB@rtolini et al., 200
> 2 Quasi-Continuous Arbitr. Order SMCLgvant, 200}
Bi=Ts3,Ci= (g 5 9).fikx) = (02+%2%3) (6.44)

* Nodesy; withi=4,56 andj =1,2,...,6 are represented by an Hyper-
chaotic Rdssler dynamic as follows:

0o -1 -1 0 0 0 0
1 025 0 1 0 0 0
Ai=1yo o o o D=1 Tii=], 1 (6.45)
0 0 —-0.5 005 0 1 1
1 0 0 O
Bi =Ty, Ci= (5 5 o 0).fil@i) = (3+%2%3) (6.46)

Note that for both circuits, the coefficients are such thaddRér chaotic and hyper-chaotic
attractors dynamic are presented. A window of 100 secongsraflation is considered. The
time varying coupling strength it) = sin(2r50t).

Full static state error feedback synchronization

Consistent with $uykens et al., 1999the control strategy adopted in the supervisory
level for synchronization in the network is a full static #ack rule asuj = Fi(z — &),
wherez andz; are the master state vector and the estimated state of heoee.F; has
been constructed with the intention to synchronize eacle naith the following unstable
limit cycle:

(

z7 = cog¢)(acoqwt)+csin(2wt))+
—sin(&) (bsin(wt) 4 csin(2wt))

z = 0.6-]asin(&)cogwt) —bcog &) sin(wt)] + (6.47)
+0.3- [csin(&) cog2wt) — ccog &) sin(2wt )]

zz = z(0)expt— [lexp D2dr, 2 =0

\

wherea=2.6,b=12,¢c=0.2,{ = /18, w = 1.7. Note that the fourth control involve
only the nodeg,, X5, Y.

State Estimation and Unknown Input Reconstruction

The objective is to demonstrate the robustness of the prex&amework to time vary-
ing coupling strengths and varying network topologies #edént time intervals (see Fig-
ure6.2). Note that it is not necessary to have any a prior knowledglesonumber of nodes,
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Figure 6.2: Time-Varying network topology.

but only the knowledge of the matriK;; of each node part of the network or of a new
potential one.

Recalling Definition6.1, and the definitions of relative degree with respect to the un
known input and the coupling terms with the j-th neighbomn (6.21) and 6.22), and
Lemmaé.3, the only combination of the designing indicgs, which satisfy for each node
conditions in 6.23 and (.24), is the following one:

« for the first three nodeX; withi =1,2,3:

(le — 311 =3W= 2) - p1=2 (6.48)

(Vi,z =1ri2=1w= °°> = Hi2=1 (6.49)
« for the remaining nodeX; with i = 4,5, 6:

(Mi=3ri=2wi1=2) ~ Hi1=2 (6.50)

<Vi72 — 2N =3W= 2) = pi2=2 (6.51)

Thus from equations6(24) and 6.26), the design matricedZ; and G; for each observer
(6.19-(6.20 can be derived. Then in accordance with Teblg and in light of 6.48-(6.51),
the following sliding mode algorithms as injection terms lh@en chosen:

« for the first three nodeXx; withi = 1,2, 3:

T T
G = (Zi,l Zi,2> = (Zesq,l ZSTWL2> (6.52)
« for the last three nodes; with i = 4,5, 6:

G = (Zi,l Zi,Z)T = <Zesq_1 Zqu_2>T (6.53)
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Figure 6.3: State reconstruction proces&in(top) andX,4 (down).

where{s,, andlg,, are

Zquﬁk = _Ui,kSigr(¢i,k,2 - Bi,k‘pMi_’k’z) (654)
N : . ik, = —Aigy | Biga [¥2 sign(dix1)
ZS"'Wi,k o Z"kl T Z"kz Wlth{ ik = —/\i.kzsign(;i.k,l) » Gk (0) 1: 0 (6.55)

whereU; x > F is the control magnitude; x = 0.5 the anticipation parametepy,, , is

the "latest singular" point of the sliding surfagey 2, while A; x, > 2,/F x andA;x, > Fik

are suitable constant gains. For further details on thegwigims refer to the references in
Table6.1. The good performances of the estimation process are showigire6.3. The
actual and estimated statesX{ and3,4 are depicted. No synchronization has been applied
(uj=0Vi).

From Corollary6.2 and the chosen indices i6.4.9-(6.51), due to the structure of the
coupling matrixI'jj for the last three nodes it is possible to assert that UIRastprable only
in 31, 3o, X3, becauset o =ri > < w2 and ranl{Di*]\/[iTi} = 1. However if the third row
of T'jj in (6.46 was all zero, takingy 1 = i » = 2 the UIR either for the last three nodes
would have been possible. Figuset (top) shows the convergence of the six nodes to the
reference trajectory, whereas in the bottom, the UIR of thead f1 obtained by means of

5172 = ZSTWLZ is shown.

6.6 Conclusion

A new approach for designing HOSM observers based on theepbio€ observability
indices for rectangular MIMO systems affected by multiphxmiown input signals has been
proposed. The framework has been extended to the probleatehtralized state estimation
and unknown input reconstruction from a class of connectgdrbgeneous systems. Con-
ditions for complete finite-time state estimation and th& i each system operating over
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Figure 6.4: Convergence to the references trajectory aiRd Ul

a network are fulfilled. The proposed framework is inhesergbust and is totally indepen-
dent to the network configuration or to the number of nodaswé&ition results confirmed
the effectiveness of the presented methods.



Chapter 7

Sliding Mode Strong Observer as a tool
for FDI: An application to Induction
Motor

As mentioned in Chaptet SMC algorithms has found a rich soil in the area of robust
state-estimation and fault detection and isolation. Theaas of this trend are multiples. The
first one is obviously related to their properties of robess1 An example has been shown in
Chaptei6 where thanks to these properties tasks like complete stdieation and unknown
input reconstruction have been easily achieved combinM@ @lgorithm along with suit-
able diffeomorphic transformation. The second one is thetvare-based applications due
to their high bandwidth suffer less from the chattering mimaanon Spurgeon, 2008Jtkin
& Guldner, 1999.

In this Chapter, strictly related to the task of designingrsg observers in MIMO sys-
tems (see Chapterand6), HOSM observers are employed as a tool for detecting certai
abnormal operating conditions in squirrel cage inductiostars (SCIMs) Pilloni et al.,
2013¢ Pilloni et al., 2012¢

To justifying the presented treatment, a mathematicalagtarization of the faulty op-
erating mode in SCIM is derived in which rotor broken bardttaand the rotor eccentricity
are taken into account. The performances of the proposezirecihave been analyzed by
Lyapunov methods and verified by real implementation testsgumeasurements taken from
certain commercial three-phase SCIMs intentionally daedag order to reproduce the fault
scenarios of concern.

7.1 Motivations

Nowadays three-phase Squirrel Cage Induction Motors (STl used in a variety
of industrial applications due to their cheapness, ruggssliand low maintenancBgnnett
& Albers, 20004 Voltage stresses, caused by the modern high frequencgipomverters,
along with the corrosive and dusty industry environmentsnghmotors operate can reduce
the motor lifetime considerably. The rotor has always beemsitlered the Achilles heel
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of SCIMs. Infact, although the stator windings’ design hekieved remarkable improve-
ments in the last decades, cage rotor’s design has undditilenehange Bonnett & Albers,
20004.

Technical surveys have shown that a remarkable percenfagéabSCIM failures is
found in the rotor. Broken bars, end-ring faults, and eawatyt result the most common fail-
ures Benbouzid & Kliman, 2003Bonnett & Albers, 2000pBonnett & Soukup, 198&li-
man et al., 1988 uche-Panadero et al., 2Q08nyway a prompt detection of these abnormal
conditions can avoid costly disservice, and potentiallastophic breakdowns if the fault
remains undetected.

Even though temperature and vibration monitoring deviesgbeen utilized for decades,
recent research efforts have been directed towards thedtisp of the motor currents, which
is more convenient from the practical implementation poitiew. Up to nowMotor Cur-
rent Signature Analysi@MCSA) methods are the most popular approaches for SCIM-diag
nostics El Hachemi Benbouzid, 2000NVhen broken cage bars, end-ring faults, or abnormal
levels of eccentricity occur, asymmetry in the rotor aip@ggpear and spurious harmonics
at well defined characteristic frequencies coming out indtagor current spectrunK|i-
man et al., 1988Puche-Panadero et al., 2Q@ Hachemi Benbouzid, 200@idier et al.,
2006 Thomson & Fenger, 20Q1AMCSA is an online diagnosis family of methods which
requires just the measurement of a single stator phasentwane, at least under constant
load condition, allows to correctly classify simultanedaidures. MCSA has the advantage
of dispensing with the knowledge of the electromechaniaaiomparameters, and it can be
inexpensively implemented by utilizing a current transfer or current clamp already in
place in most industrial applications. As a result, MCSA hasome the current standard
for online motor diagnosisHl Hachemi Benbouzid, 2000Modern MCSA methodologies
based on advanced processing techniques such as Hilbemt)aaansforms or Transient
MCSA (T-MCSA) are continuously developed to enhance thebéity of the diagnosis
processPuche-Panadero et al., 2009

There are, however, some inherent drawbacks of MCSA, sudls asnsitivity to the
spectral leakage caused by the finite-time measuremenowirde need for high frequency
resolution (i.e., small sampling intervals), and its sewisy to varying load conditions and
to the presence of additional spurious harmonics causeddphamical devices, such as
gearboxes, that can often overwhelm the frequency patssocated to the faulFuche—
Panadero et al., 200€| Hachemi Benbouzid, 20Q00Furthermore MCSA methodologies
have to be periodically activated due to their inabilitydemtify the occurrence of the faults.

In recent years model-based approach to fault detectiomsatation (FDI) are receiv-
ing a growing interest§imani et al., 2003Petkovic M. & A., 2012 Orani et al., 201D For
these reasons a novel model-based approach for deteciragtiurrence of incipient rotor
fault like broken bar fault or eccentricity conditions isr@eliscussed.

Requirements of the proposed method are respectively mezasat taken from: stator
currents, voltages, shaft speed, and a priory knowledgheohominal motor’s electrome-
chanical parameters. Notice that to overcome the uncégsim the load torque, strong
observation approach, robust to the presence of exogenpusterms, are employed.

The framework of design relies on the so-called high-ordielingg mode observers
[Orani et al., 2010Pisano & Usai, 2011Pilloni et al., 2013aFridman et al., 2007 &loquet
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et al., 2004 Pillosu et al., 201,1Bejarano & Pisano, 201 Bejarano et al., 20]1Suitable
residuals are computed and processed by a threshold basédogifor achieving a quick
and computationally simple detection of the faulty corai. Once the occurrence of a fault
is detected, additional information about the nature ofdélaét occurred can be recovered by
performing a spectral analysis of the "faulty” residualse Thain advantage of the method,
as compared to the MCSA approaches, is that the need of consrspectral or transform-
based analysis is dispensed with, which reduces the cotignabeffort of the diagnosis
algorithm.

The Chapter is organized as follows. In Sectibf a mathematical model of a SCIM
under faulty conditions is presented along with a brief dpion of the effects of each
faults in terms of characteristic frequencies. In Secfidithe proposed FDI observer is out-
lined. Convergence and estimation properties are denated{rthen the suggested FDI logic
is illustrated. Sectior’.4 discusses some experimental results obtained, whilstoBett
presents some concluding remarks and possible lines dftigegion for future research.

7.2 Faulty SCIM Model

As it is well known, the equations representative of the mahii.e., healthy) operation
of a three-phase induction motor mathematical model (bath™l or Squirrel-Cage Rotor)
in (a, B) reference frame (or stator reference frame) are (see fongbegKrause & Thomas,
1965 Marino et al., 1998:

;

X1 = a1 (X3Xa — XoXs) — A1 +agTL
Xo = b1Xa — boXo + b3XiX3 + b4usa
X3 = b1X5 — boXz — bgX1Xo + b4U3B (7.1)

X4 = C1X2 — C2X4 — NpX1Xs5
X5 = C1X3 — CoX5 + NpX1X4

\

wherea;, by and¢; are coefficients dependent on the machine parameters wdiiehtie
following form:

a1 ngll__rm a = %

ag=—73 o=1- %

by = 2y b= LR (7.2)
bs = SE;T, bs =

C1= %Lm Cr = %

The state-space variablgswith i = 1,...,5 and the electromechanical parameters in
(7.1D-(7.2) are in Table7. 1 In order to find out a mathematical representation of thehimac
in faulty operating condition, in the following the main e¢ts of broken bar and eccentricity
faults, are briefly discussed.
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Table 7.1: Nomenclature of SCIM Model

State Variables:

Shaft speed X1 [rad/sec]
(a,pB) Stator Currents X2.3 [A]
(a,B) Rotor Fluxes X4,5 [Wh]
Input Signals:

(a,pB) Stator Voltage Supply Ug [V]
Load Torque T [N-m]
Model Parameters:

Pole pairs number Np -
Rotor and stator resistance Res [Q]
Rotor, stator and mutual inductancé, sm [H]
Viscous friction coefficient fy  [Kg-m?/s]
Rotor inertia J [Kg - m?]
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7.2.1 Air-Gap Eccentricity Fault

Eccentricity manifests in two different versions, referte as static and dynamic ec-
centricity. Static eccentricitytakes place when the angular position of the minimum radial
air-gap length is fixed in space. It can be caused by stater-@eality or incorrect posi-
tioning of the rotor in the stator. For these reasons an erfidevel of static eccentricity
always occurs due to manufacturing tolerances or specisigddeaturesDynamic eccen-
tricity corresponds to the case where the minimum air-gap revolubstiae rotor and is
a function of space and time. This can be caused by a non-ctitceuter rotor diameter
or rotor thermal bowing. Static and dynamic eccentricitperate an electromagnetic force
calledunbalanced magnetic pulUMP), respectively of "steady" and "rotating" type in the
two cases, that in some cases can bring rotor and stator tactdRuche-Panadero et al.,
2009 El Hachemi Benbouzid, 20Q0dThe air-gap eccentricity specified by manufacturers is
theradial air-gap eccentricity(static plus dynamic) and is normally given as a percentége o
the nominal air-gap length. Levels of air-gap eccentristpuld be kept within a maximum
of 10% in three-phase SCIMs to avoid their catastrophic dgn&tatic plus dynamic ec-
centricity is also known asiixed eccentricityThe sideband spurious frequencies associated
with the eccentricity are given by:

feccz‘fsik'fr‘, k:1,2,3... (73)

where fs and f, are the electrical and mechanical frequencies of the mackirom {.3) it
is clear that these specific sideband frequencies do nohdepethe machine parameters.

7.2.2 Broken Bars Fault

Breakages in the rotor cage introduce anomalies in theagamgagnetic field, and con-
sequently sideband harmonics appear in the stator curfBet®ouzid & Kliman, 2003
El Hachemi Benbouzid, 20Q0These harmonics of fault have well-defined frequencies lo
cated respectively at:

forp = fs-[1£2k-5, k=1,23... (7.4)

wheres=1— w /ws is themotor slip w = 2rtf, andws = 211fs represent respectively the
mechanical speed and the synchronous speed of magneticAigldugh broken bar faults
do not cause immediate disservice, they can imply seriateskary effects (i.e. overheating,
bar hitting, damaging of motor insulation and consequentig failure) and hence prompt
detection is mandatory.

7.2.3 Faulty machine model

From the above considerations regarding the considerddsieenarios, it is possible
to assert that the insertion of additional exogenous veldg , fsﬁ in the current equations
of (7.1) might be a reasonable approach for modeling faulty SCIMedi The following
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mathematical model intends to represefaalty SCIM

..
X1 = a1 (XaX4 — XoXs) — a2X1 + agTL

Xo = b1Xq — boXo + bgXxi X3 + by (Usa + fsa)
X3 = b1X5 — boXxg — b3XyXo + by (USB + st;) (7.5)

X4 = C1X3 — C2X4 — NpX1 X5
L X5 = C1X3 — CoXg + NpX1Xgq

where in absence of fault conditions, the additional estfig and fsﬁ are identically zero,
otherwise when some fault occurs they became nonzero aect e appropriate pattern
frequencies in the model. The load torgueébeing generally not available for measurements
in applications, itis deemed as an "unknown input” withia dibserver design problem using
the presented model.

It is worth noting by inspection of7(3) and (7.4) that an accurate estimation of the
speedw is a prerequisite for reliable MCSA diagnosis.

7.3 Second order sliding mode FDI observer for SCIMs

An algorithm for FDI in SCIMs, supported by the theory of mbdased FDI Fimani
et al., 2003 shall be presented hereinafter. Model-based FDI is bpittirua number of ide-
alized assumptions, one of which is that the mathematicdlingsed is a faithful replica of
the plant dynamics. This is, of course, unreasonable intipead=or these reasons a major
objective of model-based FDI is to maximize the fault detectoverage and at the same
time minimize the effect of modeling errors and disturba{&mani et al., 20013

The approach taken in this Chapter relies upon the use oistrobserver based on the
sliding mode theory. In particular, the desirable featuréhe sliding mode to reconstruct,
in some cases, the unknown inputs acting on the observeehsystexploited Bejarano &
Fridman, 2010 Itis clear that the fault signalf, andfsB contain useful information (symp-
toms) about the faults, and their estimation would be exttgraseful for FDI purposes. In
the following a scheme that can reconstruct both the unknexagenous fault signalf,
and fsl3 in (7.5 while mitigating the effect of modeling errors by relying ¢the inherent
robustness properties of sliding mode observers is devidee detection of faults will be
achieved by a non conventional, threshold based residaalaion procedure applied to the
reconstructed fault signals.

Hereinafter will be explored the two main stages of the FOiesoe design for the
considered case of study, respectivelsidual generatiomndresidual evaluation

7.3.1 Residual Generation

The aims ofresidual generatiofis to reconstruct fault symptoms using available inputs
and outputs token from the monitored system. The strucfufeesuggestednknown-Input
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Observer(UIO) is the following:

( A ~ ~
X1 = a1 (X3Xg4 — XoX5) — apXy + agvy

Ro = D1Ra — bpXo -+ D3XqRs + by (Usq + V)

%3 = b1R5 — boXg — bgXqRa + bg (Ugp + V3) (7.6)
R4 = C1Xp — CoRa — NpX1Ks

);(5 = C1X3 — CoX5 + NpX1X4

\

Note that the observer equations@) represent a replica of the faulty motor model
(7.5) with suitable injection termsg;, v, andvs in place of the unknown inputk,,, fsB and
T.. Shaft speed; and stator currentsc, x3) are supposed to be available for measurements
whereasx"with i = 1,...,5 represent the estimated state variables. The obsenetion
variables are defined as follow

e(t) =%(t)—x(t) with i=1,...,5, (7.7)
whereey, & andes are accessible for measurements, whilandes are unknown.

The assumption on the considered exogenous fault sigreatpacified as follows.

Assumption 1: Let ks and R be a-priory known constants, such that, at any 0, the
time derivatives of the unknown inpugg,,ffsﬁ and T_ satisfy the next inequalities

‘%fs (t)‘ g <k %TL(U) <k (7.8)
|
The observer injection terms are built according to theofeihg algorithm:
Vi (t) = vi, (1) +vi, (1) =123 (7.9)
wherev;, andv;, are defined as
viy (t) = —ki - /] & (1) - sign(e (1))
(7.10)

Vi, (t) = —wi - sign(ei (1)) , vi,(0) =0
andk; andw; are constants (sekdvant, 1993D.

The next theorem sets the underlying tuning rules of theidensd observer and estab-
lishes the associated convergence properties.

Theorem 1 Consider the faulty SCIM model .§) and letAssumption 1be satisfied.
Then, the observer7(6), (7.9), (7.10 with the tuning parameters chosen according to

w +F
W>F o, K> 4R M

=123, (7.11)

Fi=R , R=R=F, (7.12)
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guarantees the achievement of the next condition stantarg & finite moment T

vi(t) = TL(t)+&(t) (7.13)
Vo(t) = fe()+&2(t), t>T7 (7.14)
Vat) = fs,(t) +E(t) (7.15)
whereé;(t), &>(t) and &3(t) are exponentially vanishing signals. |

Proof of Theorem 1: The observation error dynamics can be easily obtained Iy (
and (7.6) as follows:

& a1X3€4 — arXoes +ag(vy — L) (7.16)
& = bieg+byxies+ba(vo—fs,) (7.17)
€3 = bies—bgxies+ba(vz—fs) (7.18)
& = —Co&4—NpXiEs (7.19)
€& = —C&5+NpX1€4 (7.20)

It is easy to see that the flux estimation err@s es) are decoupled from the other ones.
Introducing the next Lyapunov Function

vz%(é+%) (7.21)
by trivial manipulations, its time derivative along thejéetories of 7.19-(7.20 is
V=eé+6e85=—0C-V (7.22)
which establish the exponential convergence to zero ofrtoesg es, e5).
Consider now equatiory (16, rewriting it as follows
z=K(@(t)+u(t)—f (1)) (7.23)

with z(t) = e1 (t), @(t) = (arXses — a;Xe65) /az is an exponentially vanishing term (as im-
plied by (7.21) and (7.22), K = ag is a positive constany(t) = v4(t) is the adjustable
control input andf (t) = T, (t) is an uncertain term fulfilling the inequality

‘%f (t)‘ <Fp. (7.24)

Taking into account the control algorithri.@)-(7.10), the control signali(t) is taken
as
u(t) = (t) +uz(t) (7.25)

() = —k /T2(1) ] sign(z(t)) 7.26)
Uz (t) = —wsign(z(t)) , 1(0)=0 '

wherek andw are chosen, in accordance with the tuning ruléd1) and the assumption

(7.24), as follows

w—+ Fp

w>Fp , K>4Fp- .
W—FD

(7.27)
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The control law {.29-(7.26) in question is known in the literature as the Super-Twggtin
algorithm, and it belongs to the family of second order sigdmode controllers. Its stability
properties were analyzed, e.g., lreyant, 1993h It was proven that both(t) andZ(t) tend
to zero in finite time. In particular, once the following catnoh is achieved

2t)=0, t>T* (7.28)

since@(t) — 0 ast — oo, it directly follows from (7.23 thatu(t) reconstructs the unknown
input f (t) with a convergence rate strictly related to the vanishimgprty of@(t). Similarly,
identical considerations might be derived for the equati@gnl4) and (7.15. Theorem 1 is
proven. |

The injection signalgvy, v3) will be used as residuals in the next analysis, as they
provide asymptotically converging estimates of the faigihals (fs,, fs;). Signalv, repre-
sent an asymptotically exact estimation of the unknown koaqueT, , which may useful
in Direct Torque Control(DTC) applications (see for exampled et al., 2000 Youb &
Craciunescu, 20QY. The suggested FDI observer also provides an exponnt@iverging
estimate of the rotor flux components as well.

7.3.2 Residual Evaluation

Residual evaluation exploits the relatiodsl(4) and (7.15. The squared sum of the two
residuals is taken as a scalar measurement of the faultreccer

r(t) = va(t) + va(t) . (7.29)
The simplest fault detection strategy could be sought devisl[Simani et al., 2008

{ if rt)<e then machine is healthy (7.30)

if r(t)>e¢ then BBF or EF is active

wheree¢ is a suitably chosen constant threshold. However, the aB®ldogic would be
rather sensitive against the measurement noise. For tgsmehe next signal is considered

Et) =, //tiAT r(T)dt, (7.31)

whereAT is the width of the receding horizon time window. The coragging FDI logic
becomes:

{ if E(t)<e then machine is healthy (7.32)

if E(t)>e¢ then BBF or EF is active

Once the fault is detected, dedicated methods such as FFT-BI@SA, or modern
approaches like Hilbert or Wavelet transform applied todbgut-injection signals, and
v3, can be employed to classify the nature of occurred fault.
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Table 7.2: Siemens 1LA70902AA10, 4AA10 } Ratings

Rated terminal supply voltage: 230vA 400V-Y
141

Rated frequency/full-load speed: 50 Hz Orpm
2860 rpm

15kW  cosp=0.85

Rated power :
1.1kW  cosp=0.80

. 460A—-A 270A-Y
Rated supply current with full load:
565A-A 325A-Y

Siemens 1L7090 {2AA10,4AA10} Yokogawa DL759 Io

Intranet

— PC

Figure 7.1: Experimental set-up (left) and a drilled rotage bar (right).

7.4 Experimental Results

The suggested methodology has been tested offline by usahgneasurements ac-
quired from several healthy and faulty commercial threagehSCIMs intentionally dam-
aged in order to reproduce a broken bar fault and the two dereil types of eccentricity.
The broken bar faulty machine has been realized by drillirggngle rotor bar (see right
picture in Figure7.1). The eccentricity faults have been reproduced by suitahteware
modification. Respectively, it has been tested a machine @WRmm of static eccentricity,
and a second one with 0.07mm of dynamic eccentricity, too.

The left plot of Figurer.1depicts the structure of the experimental set-up, where a DC
motor is mechanically coupled to the SCIM under diagnosisrder to apply a controlled
torque. The experimental tests have been performed uswegadeommercial SCIM drives
in healthy and faulty condition. Two 2-pole drives for brokear tests, and three 4-pole mo-
tors for eccentricity test fed, respectively,(280V-A, 50Hz) and (400V-Y, 50Hz). Rating
parameters of both SCIMs are reported in the Tabke

The electromechanical motor parameters needed for theva@rsenplementation are
derived from the motor’s data sheet. After few trial and etests, devoted to guarantee an
accurate convergence to zero of the measurable estimations e;, e, andes in healthy
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Comparison between current's residuals for healthy and faulty machine
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Figure 7.2: Residuals and chosen threshold (upper plotiiEgphosis signal (lower plot) for
the broken bar tests.

operating condition, the observer gains for both tests baea set as follows:

w; =14 Wy = 22 W3 = 22

) ) ) (733)
ki =80 ko =200 k3 =200
A suitable value for the time window siZeT in (7.31) has been found as
AT =0.3s. (7.34)

The choice ofAT turned out to be not critical, satisfactory performance lesn obtained
with different values as well.

The observerq.6) has been activated at start-up whereas the residual &eallagic
(7.3]) is activated after 9 seconds, to let the machine reach tlussidal steady state under
the applied three-phase input voltage.

Figure7.2and Figure7.3 show, respectively, thE(t) residual profiles obtained using
measurements from an healthy and a faulty motor. These §gew that the healthy and
faulty residuals are appreciably different, and a suitéinleshold value, to be used in the
fault detection logic .32 for achieving an accurate detection of the fault occureelman
be found.

Actually, to perform an affective tuning of the thresholavfexperiments with healthy
measurements are sufficient, by selecting the correspgritireshold sufficiently bigger
than the steady state valueskift). It is apparent from the Figuré.2 and Figure7.3 that
the faulty conditions are diagnosed almost instantangafgtr that the FDI algorithm is
activated.

Finally, to validate the suggested faulty motor modeb), and to simultaneously show
the effectiveness of the observer) as well, the spectrum of a faulty stator current and one
of the associated injection signal, are compared.
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Comparison between current residual for healthy and faulty machine
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Figure 7.3: Residuals and chosen threshold (upper plotiiEgphosis signal (lower plot) for
the eccentricity tests.
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Figure 7.4: Comparison between the normalized spectraeofatlity motor stator currents
(left plot) and that of the observer injection sigwal(right plot) for the broken bar test.

Figures7.4 and 7.5 show that the normalized spectrum of a stator current (ld&)s
and the spectrum of an injection signal, exg(t), (right side) contains the same frequencies
for broken bar and static eccentricity test respectivehe $atisfactory performances of the
suggested FDI observer have been demonstrated in bothulyegaenarios investigated.
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Figure 7.5: Comparison between the normalized spectraeofaility motor stator currents
(left plot) and that of the observer injection sigwal(right plot) for the eccentricity test.

7.5 Conclusions and Future Works

This Chapter has explored a novel approach for fault deteatisquirrel cage induction
motors based on second order sliding mode observers. Thiéitgtaf proposed unknown
input observer has been theoretically proven. Its effecess in detecting the presence of
broken cage bars or eccentricity conditions has been erpatally tested by offline pro-
cessing of real motor data taken from several different cencral 1.1kW an 1.5kW drives.

The computational load of the method is limited, which makesnline implementa-
tion easily feasible with cheap hardware. The method hasged good performance with
real motor data, which certifies a certain degree of robgstrid¢oteworthy, the proposed ob-
server allows to reconstruct, both, the load torque and itleetcand quadrature rotor fluxes.

Among the most interesting directions for next researcimhgoation of the tested
methodology with modern classification approaches appeatgularly promising.



Chapter 8

Robust Consensus Algorithms for
First-integrator Dynamics

In this Chapter is proposed a novel decentralized consextigasthm for a network of
continuous-time integrators subjected to persistenithainces and communication changes.
Notice that, although the network during its evolution i¢ always connected, it is proved
that under certain restrictions on the directed switchialicy, after a finite transient time,
the agents achieve an approximated consensus conditiottdnuating the destabilizing
effect of the disturbances. A Lyapunov-based analysis wurthe effectiveness of the sug-
gested algorithm. To confirm the effectiveness of the predgmotocol, simulative results
are illustrated and discussed.

8.1 Introduction

The problem of reaching consensus, i.e., driving the sthte set of interconnected
dynamical systems towards the same value, has received aiteciion due to its many ap-
plications in, both, the modeling of natural phenomena ssctiocking (see e.gReynolds,
1987 Jadbabaie et al., 200Boner & Tu, 1998) and in the solution of several control prob-
lems involving synchronization or agreement between dyoalnsystems (see]Ifati-Saber
et al., 2007Ren & Beard, 2005Dorfler & Bullo, 201Q Arcak, 2007).

In this Chapter, it is discussed an approach to reach cons@msa network of interact-
ing agents whose dynamics are modeled by first order conigtiime integrators subjected
to unknown-but-bounded persistent perturbations. Thecagh is based on a local interac-
tion rule which combines linear and nonlinear terms. Thedmterms, as usual, feed each
agent with the difference between the current agent’s stadethe states of its neighbors,
while the nonlinear terms consider the sign of those diffees yielding a discontinuous
local interaction rule involving sliding mode control camts (seeltkin, 1997).

Discontinuous local interaction rules have been alreaghyoed in the framework of
consensus or agreement algorithms to exploit the underliymte-time convergence and
robustness against disturbances and unmodeled dynareieabexamples of applications
to flocking or synchronization problems can be found in therditure (see e.gGazi et al.,
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2007). Discontinuous local interactions were studied @oftés, 2006ja within a general
framework of gradient flows, and several examples of disnanus consensus protocols
were analyzed.

In [Khoo et al., 2009 a finite-time consensus algorithm is proposed to addtess t
leader-follower tracking problem in multi-robot systemghastatic topology but varying
leader. In Wang & Xiao, 201(, [Menon & Edwards, 201J0and [Rao & Ghose, 2011
finite-time consensus algorithms are provided for netwarkanperturbed integrators by
exploiting discontinuous local interaction rules underdivarying (both undirected and di-
rected) network topologies.

The consensus problem in presence of measurement errdusliscsin [Garulli & Gi-
annitrapani, 201]1 in a discrete-time setting, with reference to linear @rsis protocols
with constant or vanishing weights. The authors deriveiekplpper bounds to the maxi-
mum disagreement error as function of the bounds on the nagaitude and of the smallest
non-zero singular value of the network’s state update matri

In[Bauso et al., 2002he authors suggest a class of non-linear continuous gotsthat
are able to achieve the so-called¢onsensus”, namely an approximate agreement condition
where all agents converge towards a set, in spite of the peesaf additive disturbances.
The work presented in this Chapter differs from the oneBayso et al., 2009n that here
it is considered a discontinuous protocol, as opposed ttragyus, that is able to achieve
almost complete disturbance rejection up to an arbitraritall error if the network is always
connected.

An approach that shares some technical issues with thequigiooposed here, is the
continuous-time consensus problem in presence of quéintizarors. In Frasca, 2012he
continuous-time consensus problem is studied in the cageawitized information exchange
between agents, and this leads to an instance of disconsmuotocol where the effect of
guantization can be regarded as a disturbance.

The approach illustrated in this Chapter further diffeanirthe above mentioned lit-
erature works in that, here the analysis of the practicdlilgiaand disturbance attenuation
properties of finite-time consensus under the effect of omknperturbations and, addition-
ally, with a switching and directed communication topolegyaddressed. Furthermore, the
finite time transient to reach consensus can be made ailgisarall by properly selecting
the algorithm parameters. The disturbance rejection padace will primarily depend on
the time-varying network connectivity properties. To thesbof my knowledge, the above
aspects were never simultaneously addressed and charadterthe existing literature.

The main result of the present work, outlined in Theorém consists in proposing
a feasible local interaction rule which provides finite ticenvergence of the network to a
condition of approximate agreement, by attenuating thexetif the disturbances. This result
is subjected to the requirement that the time varying graginithg the network switching
interaction topology has a directed spanning tree, at,laasrtain “minimal percentage” of
time.

This Chapter generalizes the preliminary results presenfé&ranceschelli et al., 201Pa
by extending the analysis to cover directed switching tog@s that were not dealt with in
the original paper. The key factor enabling such an exterisia modification of the under-
lying Lyapunov analysis, which, in the present Chapteives a max function considering
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the maximal difference between the agents’ states. Thisapgroach considerably relaxes
the conservativism of the tuning inequalities guarantgeonvergence to the approximate
consensus condition using lower values of the control gaidslitionally, here are consid-
ered both continuous and discontinuous terms in the lotalantion rule in such a way that
the convergence to consensus can be accelerated by imgréfasiweight of the linear con-
tinuous terms, rather than those of the nonlinear discoatis terms, thereby mitigating the
chattering effect.

The structure of the Chapter is as follows. In Sectiohare recalled some basic defini-
tions and formulate the problem under investigation. Inti8ad.3is described the proposed
local interaction rule and are investigated the assoc@iadergence properties by stating the
main result. In Sectiof.4 some simulation results are presented, and, finally, in@est5
conclusions are drawn and possible future research directire discussed.

8.2 Preliminaries and Problem Statement

Let us consider a network consisting Nfinteracting agents whose communication
topology, is modeled by a directed gragh= (V, &), whereV = {1,...,N} and€ C V?
denote, respectively, the collection of agents and the sdgeAn edge, denoted &5 j),
belongs to€ if the agenti is able to obtain information from its neighbgr As a con-
sequence, the set of neighbors of the agastdenoted byV; = {j € V/{i}: (j,i) € €}.

By assumption the presence of self-loopgins not allowed.Each agent is modeled as a
continuous-time perturbed integrator

X(t) = 8i(t) +ui(t), x(0)=Xo, 1€V (8.1)

wherex;(t) € R andxjo are respectively the state of tiwth agent and its initial value,
ui(t) € R is the local control input, ant};(t) is a bounded unknown perturbation

The only assumption made on the unknown perturbati(ts is:

JNeR" :Viey, [&(t)<N (8.2)

Assuming that at each time instant, only a subset of theablaicommunication edges
in G is active for information exchange, it is definédt) = (V,£(t)) as a time-varying
graph representative of the active instantaneous topplelggreE(t) C £ is the subset of
active edges at time Accordingly, it can be defined the instantaneous neighbersf the
i-th agent as follows:

Ni)={jeV : (IheEM)} M (8.3)

Letl" andt, be two positive constants, the task of the present Chaptedissign a local
interaction rulay(t), compatible withG (t), which can guarantee, under suitable assumptions
on the time-varying topology, the achievement of the rgreictical finite-time consensus
condition

It eRT 1 VE>, Vi, jeV, [xt)—xt)<T (8.4)
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8.3 Main result and Convergence Analysis

The proposed local interaction protocol is defined as fatow

Ui(t) =uia(t) +uiz(t), i€V (8.5)
with
Ui1(t) = —A1 ; (X (t) = x(1)), (8.6)
keNi(t)
Ui2(t) = —A2 ; sign(xi(t) —x(t)), (8.7)
keNi(t)

whereA; andA; are the nonnegative tuning constants of the algorithm amgit{(-) func-
tion is defined as follows

1 if 6>0
sign(&) = 0 if 6=0 (8.8)
-1 if 6<0

Letrik(t) be a binary variable, representative of the presence orfreotivected com-
munication channel coming from agerib agenk at timet, denoted as:

rik(t):{ L ifke () (8.9)

0 otherwise

Then, it can be rewritten the linear and nonlinear contrahpgonentsy; 1(t) andu; »(t)
in (8.6) and @.7) as follows:

Uia(t) = —A1 Zk rik(t) - (% (1) =x(t)), A1 >0. (8.10)
keV ki

Ui2(t) = —A2 Z( Fik(t) - sign(xi(t) — x(t)), A2>0. (8.11)
ke Vke#i

Remark 8.1. Due to the concurrent effect of the suggested discontinlomas interaction
rule (8.11), the switching network topologg}(t), and the possibly discontinuous nature of
the external disturbances (supposed to be only uniformiyded), the closed loop network
dynamicg8.1) will be discontinuous and the resulting solution notiona®® be discussed
and clarified. For a differential equation with discontinueright-hand side, followingHil-
ippov, 1988, the resulting solution in the so-called Filippov Sensen ¢& understood as
the solution of an appropriate differential inclusion, végoexistence is guaranteed (owing
on certain properties of the associated set-valued map)fandvhich noticeable proper-
ties, such as absolute continuity, are in force. The readeeferred to Cortes, 2008for a
comprehensive account of the notions of solution for disooous dynamical systems.ll

From now on the conditions under which the local interacpastocol §.5)-(8.7) can
achieve the approximate consensus conditi@¥) @re investigated. Define a set of error
variables for each edge in the network as follows

&j(t) =x(t) —xj(t) with (i,j)€€. (8.12)
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Figure 8.1: Changes in network topology and communicatanstraints.

The dynamics 0§ (t) are easily obtained by differentiating.( 2, and considering the
closed loop dynamics of each agents

X =3 - Zk likGik — A2 Zk lik - SigN(Jik) (8.13)
ke V ki ke V ki
Trivial manipulations yield

ke ki KEV k]

(8.14)
—7\2[ Y Ticsigndk) — ¥ _rik'Sign(5ik)]

KV ki KEVk#]

The requirement concerning the switching communicatigolmgy is that the time
varying graphG(t) has a directed spanning-tree, at least, a certain “minim@entage” of
time. This is formalized by the next Assumption.

Assumption 8.1. There are positive constangsand T, withe < T, such that during the
receding horizon time interval (t) = (t,t+T), G(t) has a directed spanning tree along a
subintervalS(t) C Z(t), possibly formed by the union of disjoint subintervals, séhoverall

length is at least equal te. [

The meaning of AssumptioB.1is clarified by the Figure.1, namely the overall du-
ration of the disjoint grey subintervals during which thetamtaneous digrapﬁ(t) has a
directed spanning-tree should be not less than the corestalaw it is possible to state the
main result of the Chapter.

Theorem 8.1.Consider the agents’ dynamic3.{), which satisfiesq.2), and let Assumption
8.1be in force. Then, the discontinuous local interaction ride), (8.9)-(8.11) with tuning
parameters selected according to

2T -

MZ0 ., N> —+p*  p#O, (8.15)

provides the approximate consensus condittbd)(where

r=[2(T-¢+&-N, (8.16)
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whereé > 0is an arbitrary infinitesimally small positive parameterdatihe transient time t
is upper bounded as follows

T
<|— - i(0) — X; :
h_(ﬂﬂ)hg@gﬂmm>xmm| 8.17)
[
Proof. Consider
V() =1g(t)] (8.18)
as a candidate Lyapunov function, where
(i,)) = argma)fi,j)evxvmj )] (8.19)

in such a way that, without loss of generality, indexill correspond to an agent carry-
ing the maximal value at timeamong all the agents in the network, and, dually, ingexdl
correspond to an agent carrying the minimal value, i.e.

Xi(t) = supxn(t), Xj(t) = inf xn(t) (8.20)
hey hey

Let us preliminarily address the case< T. It is worth to emphasize that the chosen
Lyapunov function .18 is continuous at those time instants at which either j will
change its value. Clearly, the vanishingwit) implies the exact consensus condition among
the agents of the network, while small values¥it) correspond to a practical consensus
condition as in §.4). Note that the considered Lyapunov function is locallyddpitz and
it is not differentiable wher;j(t) = 0. Thus, the treatment refers for stability analysis to
the Lyapunov Generalized Theoreior non-smooth analysis reported iRgden & Sastry,
1987, which makes use of th€larke’s Generalized GradierfClarke, 1983 However, it
can be observed thd; (t) = 0 only when the exact consensus condition is in force, which
will bring some useful simplification in the stability analg.

In the remainder, the computation method illustrateddaden & Sastry, 19§7s re-
ferred to as, where a Lyapunov analysis based on an analsgousf-absolute-value Lya-
punov function was dealt with. All the necessary technieijustifying the correctness of
adopting the chain rule to compute the time derivativ® (), which exists almost every-
where in the form of a suitable set-valedmap, are not regdreee, and the reader is referred,
e.g., to Cortés, 2006aPaden & Sastry, 198Bhevitz & Paden, 1994vhere discontinuous
systems and non-smooth Lyapunov tools analogous to theskéd in the present analysis
were discussed in detail.

The time-derivative o¥ (t) along the solutions of the deviation error dynamigsi.{)
takes the following set-valued form
V(t) = SIGN(3; (1)) - & (t) =
=SIGN(G;) - (9 — )

— Al-SIGN(éj)kG‘;k#i ik - Oik

+A1.SIGN(&j)k€gk#j Fik - Ok (8.21)
- ;\z-sucsN(c;,-)ke vg@ Fik - SigN(Gik)

+2A2-SIGN(gj) 5 rjk-sign(dk)

eV k]
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where SIGNGg;(t)), the generalized gradient ¥f(t) (see Paden & Sastry, 198, is the
multi-valued function

1 it &(t)>0
SIGN(&(t)) ={ [-1,1] if &(t)=0 (8.22)
1 if &) <0

Note that by definition, and considering.20), as long asV(t) # 0, it results that
SIGN(g;(t)) = 1. Furthermore due to the uniform boundedness of the distod 8.2),
the next estimation is in force

|9 — 8] < 2 (8.23)

Thus, 8.21) can be manipulated so as to obtain

V(t)<2-M—A1 5 rig- Gkt
keV k£
+ A1 > .rjk-ék—i-
keV k7] (8.24)

—A2 Y rik-sign(dk)+
KeV ki

+A2 Y rjk-sign(dk)
KeV k4

Note that, in light of 8.20), irrespectively of the instantaneous current graph togy|
all the state-dependent feedback terms in the right hamddsi(8.24) are positive, i.e.

A1 Y Tk Ok+AL Y Mk Okt
keV ket KEV k]

—A2 3 rik-sign(dk)+ (8.25)
keV k#i

+A2 Y rjk-sign(k) <0
keV ks

The receding horizon time interval(t) = (t,t + T) is divided into the union between
subintervalS(t), along which the graph is guaranteed to has a directed Spmina@ie, and the
complementary interval (t) \ S(t) during which nothing can be said about the connectivity
properties of the switching graph. By virtue & 24) and 8.25 one can conclude that

V() <2-M, teZt)\S(t). (8.26)

It shall be noted that the pair,j) is not uniquely defined and there can be multiple
agents carrying the maximal or minimal valugsandx; at timet. At those time instants
wheng(t) has a directed spanning tree, however, at leastof the following conditions
holds:

1. among all agents carrying the maximal value, there isast lene of them
which admits, among its neighbors, one agent with statee\sthictly less
thanx;;
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2. among all agents carrying the minimal value, there isadtlene of them
which admits, among its neighbors, one agent with stateevattictly
greater tharx;;

Suppose “i" (resp., “|") is the agent for which the maximues(p., minimum) is achieved
at timet. If there are many such agents, we choose one, if any, whizte &in active edge
with a neighbor having state value strictly less (resp.agmg thanx; (resp.,x). If there
are still many of such agents we choose any one of those, buindao that until a new
agent holds the maximum (resp., minimum) value. As a coresecpiof the previous devel-
opments, at those time instants wh&(t) has a directed spanning tree there exists at least
an agent indek, k # i, k # J, which satisfies at least one of the following conditions:

Fii(t)
riic(t)

, 6k>0 (8.27)

, 0x<O0 (8.28)

=1
=1 J

When either of §.27) and §.29) is in force, it follows that the right hand side &i.24)
can be upper-estimated as follows. WhengweiS (t) andV (t) # 0

V(t)<2:-M—A, teS(t) (8.29)

By construction, the next relation holds:

Vt+T)-V({t)= [ V(1)dT + V(1) dr (8.30)
TALEAN

where the length of the subintervéi(t) is at leaste, then according to Assumption 1, it
follows that the length of the interval(t) \ S(t) will not exceed the value of — &.

Thus, in light of 8.26 and §.29), from (8.30) it yields:

V(E+T)=V(t) <&M —A) +(T—g)2-M=

(8.31)
= —€Ay+2T -
By plugging .15 into (8.31) one obtains the next condition
V(I+T)=V(t) < —pe (8.32)

which will be satisfied as long &5(1) #0V 1 € (t,t+T), thereby guaranteeing the existence
of a finite transient timé, such tha¥/ (t;) = 0. To evaluate an upper bound tpf denoted
Vi =V (KT), withk =0,1,2, ..., (8.32 can be expressed in the first-order finite difference
form as follows

Vier1 = Vi — p’e (8.33)

from which the following recursive solution is in force
Vi =V(0) — Kk - p’e (8.34)

Thereby, accordingly ta8(17), it can be readily concluded that
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We now prove that, at> t;, the Lyapunov functioW (t) undergoes bounded fluctua-
tions preserving the consensus accuracy establishegl#yafd 8.16). Define

Vs=supV(t) (8.36)
t>t
which sets the ultimate precision of the approximate cosigegondition. If, at any tim#
one has tha¥ (t') = 0 then along the time intervak (t’,t' +T) the Lyapunov functioW (t)
may deviate form zero, at most, by a quantityr 2- €)I1, which is obtained by integrating
(8.26 for a timeT — ¢ (the maximal consecutive time interval in which the graptiscon-
nected, according to the Assumption 1 starting from the r&tial condition. Thereby, the
domain
V() <2(T-—¢)n. (8.37)

is positively invariant at any > t;.

Now let us address the case in which= T, i.e. the time varying graph has a directed
spanning tree at all times. The previous analysis has shioatriliere exists a finite tinte,
satisfying 8.17), at which exact consensus is achievedM &) = 0. Unfortunatelyy/ (t) =0
cannot be an equilibrium statetat t, due to the fact that all the local control lawgt) are
identically zero wherV(t) = 0 (as a consequence of &l}’s in (8.12 being zero and in
view of the adopted definitior8(8) of the sign function) while the disturbancégt) are not.
On the other hand, an infinitesimal deviationvt) from zero will restore the convergence
features of the algorithm, steering immediatelt) back to zero. This phenomenon, local
instability of the ideal consensus conditigtit) = 0 when the disturbances are acting, can
be characterized by an infinitesimal increasé€ afs follows:

F<[2(T—¢)+¢&]N (8.38)
whereé is an arbitrarily small positive real number. Theor8rfiis proven. 0J

Remark 8.2. Note that the transient time, which satisf{@s35, can be made arbitrarily
small by taking the design parametgrin (8.15 large enough. It can be defined &
dependent majorant curve, illustrated in Figuie?, such that

V() <V(t) = max{V(O)—uze%JrF,F}, (8.39)

It is also worth to remark that th& tuning does not require the perfect knowledge of
the time varying network topology, and it can be carried outhe basis of an upper bound
to the noise magnitude and an upper bound to the fiatiothat sets the relative amount of
time during which the network has a directed spanning tree.

8.4 Numerical Simulations

To demonstrate the effectiveness of the proposed locabictien protocol, a network of
20 agents is considered, which interact through a randohdgen directed communication
network with switching topology. Each agent, modeled as3id)( has a randomly chosen
initial statex;p € [0,5]. The disturbances are selected according to

9i(t) =ni(t)+ o+ B -sin(20-t+q@), i=1,...,20 (8.40)
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V(0)

t, Time

Figure 8.2: Actual and majorant curves of V(t)

wheren;(t) is a bounded uniformly distributed random sigra@ljs a random constant, and
the pair§3;, @ are the characteristic parameter of the harmonic part afigtarbance. All the
underlying disturbance parameters have been randomlyenhossuch a way to guarantee
the bounddi(t)| <M =25Vi.

The communication topology is set by a randomly chosen tiarging graphg(t)
such that at mogt€| = 30 edges can be simultaneously active. The random edgéiselec
policy is implemented in such a way that the requirement afuisption 1 is met. The value
T = 0.01sis used in all tests while different choices fohave been considered for the sake
of comparison.

Four tests, using different values ®and of the control gain&;, A, have been consid-
ered, according to the next tabular representation.

TESTL: &=T, M=0, A, =6
TEST2: €=05T, A1 =0, Ay=11
TEST3: €=0.1T, A =0, A;=51
TEST4: €=05T, A1 =5, Ay=11

The chosen control gains are always according to the desigualities .15. The
continuous time networkd(1) has been simulated numerically by using the Euler fixed-ste
solver with sampling timd = 10~. Figure 8.3 and Figures.4 display, respectively, the
time evolutions of the agents state variables, and of theesponding Lyapunov function
V(t), relative to the first three tests. It can be verified thatlitesits agents become synchro-
nized after a finite transient time. Particularly, Figuse4 shows the negative impact of an
increasing differenc& — € on the steady state accuracy, in accordance with condifio#s
and @.16).

With reference to TEST2 and TEST4, Figuse shows how the introduction of the
linear control component in the consensus protogd){(8.7) speeds up the achievement of
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Figure 8.3: Time evolution of the clock variables for TES3 {right).

consensus without causing chattering, as it would be thelmagcreasing the parameter
instead.

Figure8.6shows the Lyapunov function relative to an additional cositle test (TEST
5) where, under the same conditions of TEST 1, the exterméifpations have been re-
moved @;(t) = M = 0). A small residual synchronization error is still preseaven if the
achievement of a theoretically-exact consensus conditmuld be expected in this condi-
tion due to 8.16 . The source of this error is, however, of purely numericune and the
size of the residual set teds to zero while the sampling-Tigne progressively reduced.

8.5 Conclusion and Future Works

In this Chapter a distributed algorithm, based on the mixasaf continuous and dis-
continuous local interaction rules, is suggested to sdledihite-time consensus problem in
a network of continuous time integrators with additive dibances. It has been proven that
the network converges in finite time to an approximate cosisenondition. Numerical sim-
ulations have been provided to corroborate the analytsallts. Among the most interesting
directions for next research, more complex agent’s dynsiaie currently under investiga-
tion along with the possibility to consider more generaltsthing communication policy
are actually under investigation. Furthermore, disciiete implementation of the proposed
interaction rule is under study as well.
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Figure 8.4: Transient evolution (left) and steady stateisszy (right) of the Lyapunov func-
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Figure 8.5: Transient evolution of the agent states in TE®QTRTEST4.
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Figure 8.6: Transient evolution (left) and steady stateieszy (right) of the Lyapunov func-
tionV(t) in TEST 5.



Chapter 9

Robust Consensus Algorithms for
Double-integrator Dynamics

9.1 Introduction

This work focuses on a consensus algorithm for perturbetlldantegrator dynamics.
Since these systems are suitable to model networks of prass vehicles, they are of higher
interest as compared to the single integrator dynamics aldleet possible applications in
rendezvous, formation control, flocking and sensor neta/fiRen et al., 2007, eshpande
et al., 2011Ren, 20080lfati-Saber & Shamma, 20Q0&ortés, 2006fLi et al., 2013.

With reference to an undirected topology, asymptotic cosss for double integrators
dynamics is presented iRgn, 2008 Xie & Wang, 2007. In [Ren, 2008 several nonlinear
protocols have been presented, while Xig & Wang, 2007 linear interaction rules were
dealt with by including in the analysis the effect of measueat delays. Sufficient con-
ditions for achieving asymptotic consensus in presenceonfimear second-order agents’
dynamics is considered Yl et al., 201(. More recently, the finite-time consensus prob-
lem for a network of double integrators is studied @ap & Ren, 201Pfor an undirected
static topology and inQortés, 2006bfor an undirected static or switching topology using
non-smooth protocols. However, none of the above worksstatdte account the presence of
perturbation terms in the agents’ dynamics by studyingditidouble integrators only.

In [Franceschelli et al., 201BAnite time consensus with perturbation terms is investi-
gated in the case of single integrators with undirected anitising network topology.

Here, itis proposed a discontinuous consensus algorithatfoeving finite-time agree-
ment in a network of perturbed agents with a static and uagicecommunication graph
while completely rejecting the effect of the disturbancése class of perturbations consid-
ered in the present work only assume them to be bounded, initndg, by a-priori known
constants. Complete rejection of such a wide class of diahae was never achieved in the
existing literature quoted above. The proposed local attéwn rule can be thought as a dis-
tributed version of the well-knowmwisting Second Order Sliding Mode Algorithbrevant,
19933 Orlov, 2004 Bartolini et al., 200Bwith a non-trivial function of the neighbors states
used as sliding manifold. All significant robustness prtipsragainst uncertainties and dis-
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turbances typical of Variable Structure Control Theoryiakeerited Bartolini et al., 2008

The performance of the proposed protocol is investigateldyapunov-based analysis,
and simple tuning rules to adjust the algorithm parameterpeovided.

The Chapter is organized as follows: in Section 2 prelimesaof graph theory and
multi-agent systems are provided to clarify the notatiat thill be used in the Chapter. The
problem statement and the proposed local interaction relpr@sented in Section 3. Section
4 presents a constructive Lyapunov analysis which dematestthat the proposed discontin-
uous protocol solves the finite-time consensus problem fatavork of double integrators
affected by bounded unknown perturbations. To corrobdfrete¢heoretical results, simula-
tion results are shown in Section 5. Section 6 provides sanelading remarks and hints
for further investigation.

9.2 Preliminaries and Notation

With reference to a network dfl agents, the associated undirected communication
graphg = (V, €) is considered, wher® = {1,...,N} is the set of agents ar#2IC V? repre-
sent the set of edges. The set of neighbors ofthegent is defined a¥; = {j e V/{i} : (i,]) € £}.
Topological information associated with graghis encoded in théaplacian Matrix £ =
(%] € RN*N where

N =]
L = -1 if (i,j)eé& (9.1)
0 otherwise

and|A;~| is the cardinality of the i-th agent neighbor set.

For an undirected grapl is a symmetric and positive semi-definite matr&drin
& Schenato, 20110Ifati-Saber et al., 20Q7Godsil et al., 200L In addition, £ has real
eigenvalues that can be ordered sequentially as follow39< --- < Ay.

The null eigenvalud; has multiplicity equal to the number of connected compaoneht
G and the corresponding left and right eigenvectors are otisply 1y = col(1,...,1) € RN
and1[, where the expressiarol(.) denotes a column vector. Thus, the following identities
hold:
L-1y=0y , 15-L=0] (9.2)

In addition, the next property holdkiprn & Johnson, 1990
1£4]I1 > 1£4]|2 =1/{TL2L > A2+ || |2 (9.3)

whereA; is the smallest nonzero eigenvaluedfknown asalgebraic connectivityPereira,
2017, and¢ € RN is any vector such that],¢ = 0.
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9.3 Problem Statement

Let us consider a connected network consistinglgfgents where each agent is gov-
erned by the following perturbed double-integrator dyrami

ai (1) = Az () + B (U () +9 (1), eV, (9.4)

A:(O 1), B:<0), ©5)
00 1

wherez; = col(x 1,% 2) € R? represents the state of theh agentui(t) € R is the control
input, andd;(t) € R is an unknown perturbation which corrupts the agent’s dyosani
compact representation of the collective network dynammacsbe expressed as follows:

with

X =(Inxn®A) X+ (Inxn® B) (U +0) (9.6)
where denotes th&ronecker Productly«n € RN*N is the identity matrix of ordeN, and

X =col(xy,...,zN) €RN
U =col(uy,...,uy) €RN (9.7)

©=col(d4,...,9n) RN
Then, let

Z1 = COl(XL]_, .. .,XN7]_) € RN (9 8)
Zy =col(X12,...,XN2) € RN .

be two vectors which stack together, respectively, thetiposand velocity of each agents.
The collective dynamic9(6) can be expressed in the following regular form:

=2

- (9.9)
Z,=U+0

The next assumption has been done

Assumption 9.1.G is a connected undirected graph and the disturbance vé&gtsibounded
in accordance with:

FiOI<Mi<n with 1 =max{Mi} =[Ol <o (9.10)
IS
[

The objective of the present work is to present a novel discoaus local interaction
rule guaranteeing the achievement of the next finite-tinmseosus conditions:

121(t) —zj1(t)|=0

L t>T, T<oo, Vi, jeV 911
122(t) —Zj 2(t)] = O o V] (9.11)

The next local interaction rule is suggested:

ui (t) = —a-sign(LiZ1) —b-sign(LiZp), i€V (9.12)
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wherea andb are positive tuning constantg; is the i-th row of the Laplacian Matrix and
sign(-) is defined as follows:

1 if &>0
sign(&) =< [-1,1] if 6=0 (9.13)
-1 if 6<0

The proposed discontinuous protocol 1?2 can be thought as a distributed version of the
"Twisting" second order sliding mode algorithiogvant, 1993h where a non-trivial func-
tion of the neighbors states is used as sliding manifold.argaments of the sign functions
take the next explicit form:

LiZ= Z (Zi,k_zj,k)a ey, k=12 (9.14)
JeENM
Define
o (LZ) = col(sign(L1Zy),...,sign(LnZy)), k=1,2 (9.15)

the local interaction protocoB(12 can be rewritten at the network level in the following
compact form:
U(t)=-ao(LZ1)—b-o(LZ) (9.16)

Remark 9.1. Due to the proposed discontinuous local interaction ruled dhe possibly
discontinuous nature of the external disturbances (whrehomly supposed to be uniformly
bounded), the closed loop network dynamics will be disoaotis and the resulting solution
notion needs to be discussed and clarified. For a differémtipation with discontinuous
right-hand side, followingffilippov, ], the resulting solution in the so-calldélippov sense
as the solution of an appropriate differential inclusiorciensidered, the existence of which
is guaranteed (owing on certain properties of the assodiat-valued map) and for which
noticeable properties, such as absolute continuity, aréonge. The reader is referred to
[Cortes, 2008for a comprehensive account of the notions of solution fiecantinuous
dynamical systems. [ |

9.4 Convergence Analysis

In this section, the performance of protoc®l16) are investigated by means of Lyapunov-
Based Analysis. Simple tuning rules for the control gamsdb will be derived.

Common approach adopted to deal with the consensus problenetiwork of simple
integrator agents is to study the convergence to zero of isagement vector dynamics
[Franceschelli et al., 201Plwhich imply the convergence to the consensus vaﬁ}Jezl/N
of each agents. Since second-order agents are considexdal]owing disagreement vectors
take place:

In- 1]

(1) = Zu(t) -

Ze(t), k=12 (9.17)

The achievement of the consensus conditibf ) corresponds to the annihilation of vectors
d1(t) anddz(t) in finite time. It is worth noting that both the disagreemeattors satisfy the
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following conditions Plfati-Saber et al., 2097
10-0k=0, Lé=LZ k=12 (9.18)
along with the propertyq.3), which can be rewritten as:
O LO > Mal|ok]13, k=12 (9.19)

The dynamics ob; andd, can be easily derived by differentiating.{7) and considering
(9.9, (9.16 and Q.18 as follows:

‘?1 =02 . (9.20)
bp=—a -0 (L£81)—b-o (L) +O(t)+Q(t)- 1y
where T
d(t) = o(t) - 1NN1N®(t) (9.21)
Q) = a~1-|,\—|0'(£51)—i—b-11,\]0'(£52) (9.22)

N
The main result of the Chapter can be now presented.

Theorem 9.1. Consider the collective dynami€8.9) and let Assumptiof.1 be satisfied.
Consider the local interaction rul®.16) and let tuning parameters be selected according to

a>b+M, b>Tl. (9.23)
Then, the finite-time consensus propgeyi ]) is achieved. [ |

Proof: The proof is broken into three simple consecutive steps.

> Equi-uniform stability
Consider the following candidate Lyapunov function:

1
V(t)=a- ||£61||1+§-5§c52 (9.24)

The considered Lyapunov function is a locally Lipschitzdtion and it is not differ-
entiable when any entry of vectdld; is zero. Thus, the following treatment refers for sta-
bility analysis to the Lyapunov Generalized Theorem for-samooth analysis reported in
[Paden & Sastry, 198,7which makes use of Clarke’s generalized gradié€tiafke, 1983
and involves a set-valued form for the resulting Lyapunawfion time derivative. In the
remainder, the computation method illustratedadien & Sastry, 198,Avhere a Lyapunov
analysis involving an analogous sum-of-absolute-valuapiyov function term was dealt
with is considered. For the sake of brevity, here all the sgagy technicalities justifying
the correctness of adopting the chain rule to compute the demivativeV (t), which exists
almost everywhere in the form of an appropriate set valueg ana omitted. The reader is
referred to the works(Qortes, 2008Paden & Sastry, 198 Bhevitz & Paden, 1994vhere
discontinuous systems and non-smooth Lyapunov tools goafoto those involved in the
present analysis were discussed in detalil.
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The corresponding time derivative takes the form

V(t)=ad] Lo (L) + 8] LE: (9.25)

Considering 9.20 into (9.25, and taking into account th&(t) is a scalar and that
1),- £ = 0, the next simplification can be made after evaluatingritetderivative along the
trajectory of the perturbed dynami@.p0-(9.22

V(t) = adl Lo (L) —ad)Lo (L) —b-8) Lo (L)
+ SILOM)+Q()8I L1y
= —b-0)Lo (L) +61LO
= —b-||Ld|1 +6LO (9.26)

Applying the Hélder’s Inequalityand taking into accoun®B(10), the next estimation,
involving the last sign-undefined term in the right hand ©iti€9.26), can be made

163 £O] < | £85][1||©]|,, < M- [|1£82]11 (9.27)
on the basis of which it yields
V(t) < —(b—M)- £ (9.28)

It follows by (9.23 thatV(t) < 0, therefore the uncertain syste®.40-(9.22) is equi-
uniformly stable Drlov, 200§. Indeed, initializing the system in an arbitrarily vicipiof
the origin such tha¥(0) < Ry, the uncertain systen®(20-(9.22 cannot leave this vicin-
ity, regardless of whichever admissible uncertai@tyaffects the system. In other words,
inequality ©.28 guarantees the boundedness of the perturbed disagregewtot’s state
trajectories in9.20-(9.22.

> Global equi-uniform asymptotic stability

To begin with, let us note that by virtue d.¢8 all possible solutions 0f5(20-(9.22),
initialized attg € R within the invariant compact set

Dr={(61,62) e RN :V (61,65) <R} (9.29)
are a priori estimated by
sup V (81,02) <R (9.30)
tefto, o

which, considering the Lyapunov function definitighZ4), implies the following relations:
Icoill <R/a , §;L£8,<2R (9.31)
Furthermore, by virtue of9( 19, the following chain of inequalities holds:
28215 < 83 £82 < Anl|82]|3 (9.32)
which allows to manipulate)(31) as

[L61]l1 <R/a . [[d2]l2 < /2R/A2 (9.33)
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The idea behind the reminder of the proof is inspired by theekded Invariance Principle
[Orlov, 2008 and it is based on constructing a parameterized family cdlibyapunov func-
tionVr(d1,62), R> 0 such that eackir(d1,d2) is well posed on the corresponding compact
setDr and its time derivative, initialized withiPg is negative definite and yields the desired
stability and convergence properties. A parameterizeghigav functionvy(d1,92), R> 0
with the properties above, can be obtained by augmentingytapunov function 9.24) as
follows:

VR(t) =V (1) + kr-U(t) (9.34)

whereU (t) is the sign-indefinite function
U(t) = 8] L& (9.35)

andkg is a proper positive constant. By Young'’s inequality andrtgknto account .33,
then it follows that

Ut) = 6]L8>—3(|L)I3+102]13) >

(9.36)
> —1 (B o)1 +112113)
Taking into accountq.34), (9.36), and the left inequality in9.32), it follows that
KrR 1
Ve> |a———|-[|€dx]l1 + 5 A2 kr] - 623 (9.37)
2a 2
which, in accordance with the following restriction:
KR < min{z—gz , /\2} (9.38)

guarantees thafz(t) is not negative in spite of having added the sign indefiniteate (t).

In turns, by differentiatingq.35 along the trajectory of the uncertain dynamticZ0-
(9.22), it results:

U=20)Ld—a-||Ld1]1 —b-8] Lo (L) + 8] LO (9.39)
In the right hand side of9(39 there is a negative definite term (the second one) and
three positive or sign-indefinite terms. Bounds to the fadeestabilizing terms are now de-

rived. As for the first entry, by the Holder inequality and tiight inequality in ©.33), it
derives that

2R
102 £32| < [|£82]12|2]|2 < \ o, €020 (9.40)

As for the term—b- §] Lo (L£5,) one can exploit once more the Hélder inequality,
taking into account thato(L4d7)||. = 1. to assess that

Ib-8{ Lo (L£2)| < b||L1]|1]lo (£2) || < b||L1|1 (9.41)

The last term in the right hand side &f. 89 satisfies the inequality

161 LO] < [|L81]|11|8|o0 < M- || L4|1 (9.42)
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Therefore relationq.39 can be estimated as

U < \/55-1L02]1—a-[|£1lls +b- [ L)1+

(9.43)
11| L6811

Then, by combining 4.28 and .43, the time derivative of {.34 can be upper-
estimated as follows:

Vk Cr-[[Ldaf[1 —C2- [[£2]1 <

< —
- (9.44)
< —Cr- ([[L0a]]1+ [ £d2]1)
where
ClzKR(a—b—n) , CZZb—ﬂ—KR\/ZR/AZ (9.45)
CR= min{cl,cz} (9.46)
and with the coefficienkr subject to the next inequality which is stricter th&n3Q
KR<min{L§,A27,/%.(b_n)} (9.47)

The exponential convergence towards the manifbdd = L4, = 0, can be shown tak-
ing into account the following

VR <a-|| L)1+ 3|03 L3I2|+Kr-|8] L] <
Cr-[[Lo1][1+Co- [[L2]l1 < (9.48)

R ([£d1]l1 +[[£2]1)

_ 2R _ 1 /2R _ _
Ci1 =a+Kkr )\_2’0225 )\—Z,CR:maX{Cl,Cz} (9.49)

which can be derived applying the Holder Inequalities arasstuting the bounds ir(33),
along with ©.44) which leads to

with

VR(61,82) < —pr-VR(81,82) (9.50)
with
¢ Min{Kkr(a—b-M),b—T—Kry/2R/z |
PRS = = (9.51)
Cr max{a+ KR\/ZR/)\z, \/R/ZAz}

which implies the exponential decay\éf(t).

> Global equi-uniform finite-time stability

Consider the uncertain disagreement vector dynari@s)¢(9.22) rewritten in the fol-
lowing compact form:

§=®(8)+T(t) , J&=col(dy,d)ecRN (9.52)
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where ~
W(t) = col (0N, 0+ Q- 1n) = col (Y1, .., Pon) € R (9.53)
is an uncertain vector of uniformly bounded functions, adow to
0 i=1,...,N
(D] < Mj, Mj = ’ T 9.54
W] < M, M { N+a+b, i=N+1,...,2N (9:54)
and
®(§) = col(dy,—a-o(Ld)—b-o (L)) = (9.55)

col(gn...., ) € RN
Is a vector of piece-wise continuous functions.
Since the proof of finite-time convergence will be based @engiroperties of homoge-
neous systems, in the following it is introduced the defimitof local homogeneityand the
Quasi-homogeneity Principléoth taken fromQrlov, 2004, upon which the presented rea-

soning will rely on. Homogeneity concepts were applied foitdé-time stability analysis of
consensus protocols for first-order agents in, &\grig & Hong, 201

Definition 9.1. A piece-wise continuous vector field
Fft) =col(fy(x),..., fo(x)) e R" with xeR" (9.56)

is called locally homogeneous of degree=@® with respect to the dilation vector =
(ri,...,r), ri >0, ifforall € >0

fi (€"%q,...,€M%n, e7%) =¥ (z,t), i=1,...,n (9.57)

Theorem 9.2.[Orlov, 2004 Quasi-homogeneity Principle. The uncertain sys{@&ns?2) is
globally equi-uniformly finite-time stable if the follovgrronditions are satisfied:

1. Theright-hand side of9.52) consists of a locally homogeneous piece-wise
continuous functior®(4§) of degree g< 0 with respect to dilation- and

a piece-wise continuous functiai(t) whose componentg, i=1,....n
are locally uniformly bounded by constants MO0 within a homogeneity
ball;

2. M, =0whenever g-r; > 0;
3. The uncertain syste(d.52) is globally equi-uniformly asymptotically sta-
ble around the origin.

In accordance with the Definitiof.1, it is possible to observe tha(d) is locally
homogeneous of degree= —1 with respect to the dilation vecter= [r;] € R?N taking the
form

ri:{ ri=2, with i=1,...,N (9.58)

ri=1 with i=N+1...,2N
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Then, since systen®(52 is globally equi-uniformly asymptotically stable, anckttol-
lowing conditions hold:

g+r>0 Vi : Mj=0 = i=1...,N

9.59
g+r<0 Vi : M#0 = i=N+1,....2N ( )

all the conditions of Theorer.2 are satisfied, and the proposed local interaction &
guarantees the finite-time stability of systetn5?). As a consequence, the consensus prob-
lem (9.11) is solved in finite-time. The proof of Theore®nlis completed. O

Remark 9.2. It is worth to remark that protoco(9.12 can be extended to the task of
“distributed leader-trackirig[ Khoo et al., 200D for multi-robot networks(9.4) [Pilloni

et al., 2014aPilloni et al., 2014¢. Indeed, let agent + 1 be a autonomous leader with
bounded acceleration i.¢x; 2| < /A, able to communicate by with only a subset of follow-
ers (V/{1}); according togG, protocol(9.12) ensures the finite-time tracking of the leader
position by its followers, i.e.ijx—x x =0V i=2,...,N, k= 1,2. This can be proven by
non-smooth Lyapunov analysis considering the followingdadate Lyapunov function:

- 1 - -
V(t)=a- |1M51|yl+§~5;/\452 (9.60)

Where&k = X k — Xk is the distributed tracking error antM = L — diag{/lo1,...,¢n1},
with £+ the Laplacian associated to the subgrapGotomposed only by followers (see i.e.
[Khoo et al., 2009)).

The same results can be extended to the case of multi-diomahsiate trajectories for
each agent by exploiting straightforwardly the Kroneckeyduct. [ |

Remark 9.3. Remarkably, the proposed controller, can provide the gl@zhievement of
consensus by using a control authority that remains alwaysnided, thereby addressing
issues of actuator saturatioriRen, 2009Roy et al., 2004Ren, 2008 This is not the case,
e.g., with more classical consensus protocols, eithealif®en et al., 2007jcor nonlinear
[Cao & Ren, 201p which imply an unbounded control effort when the discrepabetween
agent’s initial conditions tends to infinity. [ |

Remark 9.4. Denotingd = col(d1,682) = [di] € R?N, as discussed in Section 3 a@dilov,
2004, an upper bound on the settling-time function after whikch hetwork of agents will
be synchronized (i.ed; = d> =0) is

T(to,6(t0)) < T(8(0), Er) + 15 (R ) s(¢) (9.61)
where
1(6(0),ER)= sup inf{T >0:4(t,tp,0(0)) € Er} (9.62)
6(7t06(0))
foralltoe R, t >t + T, and
s(¢) = supr (6(0),E%c) (9.63)

are respectively the reaching-time functions and its ugpmind. ki denotes an ellipsoid of

the form
2N o di 2
Er=<{d cR": Zl (ﬁ) <1 (9.64)
i=
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Figure 9.1: Communication topologies respectively fordbeond-order consensus task (left)
and the distributed-tracking task (right).

located within a homogeneity bajl > &R, andey < € is a positive constant called lower
estimate of the homogeneity parameteFor further details see (Prlov, 2004, Section 3).
n

9.5 Numerical Simulations

To demonstrate the efficacy of the proposed protocol conieenetwork on the left-
side of Figure9.1, consisting of 10 perturbed agents. Agents’ dynamics avemed by
equations 9.4)-(9.5). Disturbancesy;(t) are selected as harmonic signals with randomly
time-varying chosen coefficients guaranteeing that theeuppundrl in (9.10 is N = 2.
The initial states are chosen &s;(0) =i, X 2(0) = —=5.5+1i with i = 1,...,10. For the
computation of the control gains, according to the tunirlg (8.23, the valuesa = 15 and
b = 10 were chosen. The continuous time network dynanfic® fas been simulated by
using the Runge-Kutta 4-th order integration method withdistep size equal to 18s.

Figure9.2 shows the time evolutions of the disagreement vectars/). It can be seen
that consensus is achieved after a transient of about 4 decbigured.3 depicts a compar-
ison between the time evolution of the Lyapunov Functi®rs4) during three tests where
different control gain pairga, b) were adopted, according to the legend inserted in the plot.
Comparing those curves it is seen how higher values of thee@againsa andb can reduce
the settling time to reach consensus. Overall, the collectetwork’s dynamics behaves as
expected and the disturbance effect is rejected in the shasexact consensus is achieved
in spite of the presence of unknown perturbations corrgtiie agents’ dynamics.

With reference to the extension of the consensus proldeni)(to the task of distributed
leader-tracking for multi-robot perturbed networks as9), consider the right network
on Figure9.1l Let agent 1 to be a perturbed leader with a sinusoidal ne¢eré¢rajectory
X1,0 = 2sin(t) in Figure9.4it can be appreciated how after a transient finite-time dthfeers
reach the leader’s position in spite of the presence of umkrtaut bounded perturbations.

9.6 Conclusion and Future Works

This Chapter proposed a discontinuous distributed lodatagtion rule for achieving
finite-time consensus in a network of double integratorsieggaffected by bounded distur-
bances. Agents are supposed to interact through an inelifestatic and connected, com-
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Figure 9.2: Trajectories of the disagreement vecda(s) andd(t).
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Figure 9.3: Transient evolution of the Lyapunov Functi(t).

munication topology. A Lyapunov-Based analysis confirneetfiveness of the proposed al-
gorithm to solve the finite-time consensus problem and ples/a very simple set of tuning
rules for adjusting the algorithm parameters. Completeithance rejection has been pro-
vided. Numerical simulations confirm the theory developed.



9.6. Conclusion and Future Works 122

15

X,

0 5 10 15

X,(0)

Time [s]

Figure 9.4: Transient evolution of the state-space vectpits andXy(t) for the distributed
tracking task.



Chapter 10

Robust Consensus Algorithms in
Infinite-Dimensional Networked Systems

In this Chapter the problem of driving a group of perturbédthite-dimensional agents
communicating through an undirected topology towards anmsomtemperature’s consensus
value is considered. Since agents communicate by exchgogig information acquired at
the boundary of the spatial domain, the proposed conselgustam can be considered as
a boundary cooperative control. Each agent is modeled aodPdescribed by the well-
known heat diffusion equation, whereas perturbations appased to be only bounded in
derivative and acting at the boundary of each rod too. Padoces of the proposed local
interaction rule in terms of robustness and rate of converg@re investigate by Lyapunov-
Based approach from which simple tuning rules for achieWirgconsensus condition are
developed. Simulative results demonstrate the effeatisginf the suggested scheme.

10.1 Introduction

Although a lot of practical engineering applications irwed concepts of partial differ-
ential equations (PDEsKfstic & Smyshlyaev, 2008 the consensus problem for this class
of system or more generally for infinite dimensional systeas hot yet received the same
level of attention with respect to its finite-dimensionalinterpart Pemetriou, 201B Some
recent, but precursors works in this area are listed leina¢ et al., 2007Tricaud & Chen,
2009 Demetriou, 201pDemetriou, 200P These works treat different aspects of consensus
in the framework of PDEs. With regards to the existing litera in this area, Demetriou
has extensively studied the problem of designing adaptwvesensus filters for state esti-
mation in order to integrate local information coming frons@atial domain Demetriou,
2009 Demetriou, 201pDemetriou, 201R Whereas in Chao et al., 2007Tricaud & Chen,
2009 applications of consensus for controlling mobile actusiia diffusion processes are
discussed.

The aims of the present Chapter is to consider the problemnahsonization or con-
sensus of the states of systems governed by a class of par&®its. In particular, the
problem of driving the states of a group of perturbed infhdit@ensional agents commu-
nicating through an undirected topology towards a commarseonsus value is considered.
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In literature, one of the first attempts to tackle this prabis presented ingliman & Fer-
rari-Trecate, 2008 where starting from the classical finite-dimensional semsus theory
[Olfati-Saber & Murray, 200§ the authors provide conditions for achieving average- con
sensus in the framework of delayed MAS and patrtial diffeeeaquations. Afterwards in
[Galbusera et al., 200@ control scheme based on the wave equation for consenSMA$h
with double integrator dynamics is presented. More regeatkimilar statement to the one
here discussed can be found ibgmetriou, 201B where the consensus problem for a net-
work of agents modeled by parabolic PDEs communicating hynaiirected communication
topology is treated.

Nevertheless, all these works propose protocols in whielctintrol action acts in the
whole spatial domain of each agent, but it is commonly carsid to be more realistic to
have actuation and sensing nonintrusive (think, for examdla fluid flow where actuation
would normally be from the walls of the flow domairfstic & Smyshlyaev, 2008Pisano
& Orlov, 2017.

Therefore, in this Chapter the communication policy liditaly at the boundary of the
agents has been considered. This means that agents cangxahi@rmation acquired only
at the boundary of their domain. For this reasons, the pegbosnsensus algorithm can be
considered as loundary cooperative protocfKrstic & Smyshlyaev, 2008

Furthermore, in order to consider a more realistic scenaach agent is modeled as
1D rod, described by the well-known heat diffusion equapenturbed by some unknown
disturbances. The class of perturbations here considergdassume them, to be bounded
in derivative and acting at the boundary of each rod too.

The major contribution of this work is to enforce a robustrapyotic agreement amongst
the agent’s states and thus the nullification of their disagrent, only sharing information
captured at the boundary of each rod and even in presencetoflgaion or sensing distur-
bances.

The complete rejection of such a wide class of perturbatias firstly discussed in
[Pisano & Orlov, 201Pfor classic local boundary control but was never achievethe
framework of infinite-dimensional MAS. The protocol thativbe discussed later extends
the results obtained by the authors Ril[oni et al., 2013bin the finite-dimensional MAS
framework. A further novelty with respect t@illoni et al., 2013k is that this protocol is
born to be discontinuous, but by augmenting the system sfighats derivative and apply-
ing it to the augmented dynamic it result to be continuousther words, the discontinuous
protocol passing through a first-order dynamical filter i©ssthed-out, which implies a lot
of benefits but the most important is the attenuation of tresitsbe undesired phenomenon
known aschattering common in discontinuous control theory (s&aiko et al., 2008Pil-
loni et al., 2012hand references therein).

The Chapter is organized as follows: in Sectibh2 some useful norm’s properties
are reminded to provide the reader with necessary contekbaokground. The problem
statement and the proposed boundary consensus protocpresented in Sectiof0.3
Section10.4 discusses the performances of the proposed algorithmnmstef robustness
and rate of convergence by a Lyapunov-Based approach fraohwhmple tuning rules for
achieving the consensus condition are provided. To coretbdhe theoretical results, sim-
ulation results are shown in Sectid@d.5 Conclusion and hints for further investigation in
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Section10.6close the Chapter.

10.2 Mathematical Preliminaries and Notations

10.2.1 Useful Norm Properties

With reference to real spaces, let= col(xi,...,xn) be a column vector iRN the
LP-norm and the E-norm ofx are defined respectively as

lzllo=(xalP+---+ PP, p=1,2,... (10.1)
[l = lim [l]lp = max{|xl..., [xu} (10.2)

Let's considering -, L?- and L°-norm of any given vectag, the following inequality
is always satisfiedqhalil, 2002:

@]l < [l#]l2 < |21 (10.3)

Useful inequalities concerning the scalar product of twotees z andy € RN are,
respectively, the Hélder’s Inequality

1 1
2"y <lzlp-llylly , Z+==1 (10.4)
P 9
and straight from the Young's Inequality

p q
1 1
[zllp . l1ylla T4zt (10.5)

T ol <
’w y} p q P q

With reference to norms of regular quadratic forms, Mte RN*N be a symmetric
positive semi-definite matrix with ordered eigenvalyes: - -- < w, it yields:

villz)l5 < e’ Ma < |23 (10.6)

In the end, let ILI(O, 1), with =0,1,2,..., be the Sobolev Space of absolutely contin-

uous scalar functiong(¢) with square integrable derivative‘@(c) up to order, it can be
now presented the extension of the concept of norm for veeta) = col(z(¢),...,zn(¢))
of infinite dimensional functions as follows:

i
2

I
12l = ( J 1kzouz<k><f>u% df) (10.7)

where|| 20 (€)[|2 = (J& 20 ()T - 20 ()dp) 2 is the L2-norm of the k-th derivative of (€).
Throughout the Chapter it shall also utilize the standatdtmnH®(0, 1) = L2(0,1). Lastly,
generalizing Lemma 1 irHisano & Orlov, 201Pfor vectors of infinite dimensional functions
the following result yields:
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Lemma 10.1. Let w(¢) € HY(0,1) and w.(¢) its derivative with respect tq, then the
following upper-estimation holds:

lw()I5 < 2(lw(D)z+lwe(-)ll5) with T=0,1 (10.8)
u

10.3 Problem Statements

Let us to consider a connected networkMfagents. Each agent’s is modeled by a
thermally conducting rod spatially distributed on monaidnsional (1D) domain and whose
temperature field§' (¢,t) withi=1,... N, are functions of the normalized spatial variable
¢€(0,1) and timet e R,

The evolution of the agent’s temperature profile is goveimethe parabolic PDE com-
monly referred to as “Heat Equation”:

Q(¢,t)=0-Qc(ct) eV (10.9)

whereQi(¢,t) and Qicc(c,t) denote the temporal and the second-order spatial derstiv
and®@ refers to the “diffusivity coefficient” supposed to be ideatV i but unknown a priori.

Here, the realistic scenario that each agé&his“supposed to be perturbed at the bound-
ary by a sufficiently smooth thermal unknown inppt(t), and controlled by a matched
boundary controli () is investigatedPisano & Orlov, 2012Krstic & Smyshlyaev, 2008
It follows that the following Neumann-type boundary comatits (BCs) are considered:

QOt)=0 , QL) =u®)+y'() (10.10)
Whereas the initial conditions (ICs) are
Q'(¢,0) e H*(0,1) (10.11)

The class of boundary conditions under analysis are spetiji¢he next assumption.

Assumption 10.1. The initial temperatures @Qc¢,0) in (10.17) are consistent to the next
perturbed heat fluxes:

QL0,00=0 , Q.(L0)=¢'(0) VieV (10.12)

where the disturbance, supposed to be unknown, are oncegously differentiabley'(t) €
¢*(R), and there exist aa priori known positive constaiit such that

WO =[¢'t))= <N with M= maxT; < o (10.13)
e
n

Remark 10.1. It is worth mentioning that at the boundagy= 1, constraints(10.10 and
(10.12 implies that (0) = 0. Furthermore, by AssumptialD.1, the stability of the each
agent’s heat dynamics are studied in a proper Sobolev Spaeted asd?(0,1). As a con-
seguence, the domain of the infinitesimal operatotd ¢ in the boundary probler(iL0.9-
(10.19) is confined into a Sobolev Spadé(0,1). [
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The objective of the present work is to present a novel caotis local interaction
rule for achieving global asymptotic temperature synchaation in a network of thermal
spatially distributed process. More formally, the problstatement can be represented by
the following consensus conditio®[fati-Saber et al., 20Q7

lim [Q'(¢,t) Q' (¢.t)| =0, Vi,jeV (10.14)

It is worth to note that the proposed interaction rule candsenailated to a boundary
control [Krstic & Smyshlyaev, 200Bsuch that temperatures along the entire rod’s profiles
being actuated to steer towards a common temperature pofoeced by the network topol-
ogy even in presence of heterogeneous sufficiently smoatarpation at the boundary.

To achieve the control goal, the agents’ state is augmehtedgh adynamic input ex-
tensionby inserting an integrator at the agent inplit). It follows that the control derivative
ui(t) = u'(t) is then regarded to as a fictitious control variable retutmesuitable feedback
mechanism. Thus, the following boundary interaction protés suggested

U (t) = Oh (1) + Ub(t) + U(t), eV (10.15)
with
th(t) = —a-sign(-£'Q(L,t)) — b-sign(£'Q(1,1)) (10.16)
Up(t) =—Wi-.2'Q(L,t) —Wo- £'Qx(L,1) (10.17)
U5(t) = —Ws- Q(L,t) (10.18)

wherea, b, Wi, W, andW; are nonnegative tuning constants, the gipstands for the multi-
valued function such that

1 if 6>0
sign(&) =< [-1,1] if 6=0 (10.19)
-1 if 6<0

Whereas?' is the i-th row of the Laplacian Matrix an@(¢,t) € H*(0,1) x RN and
its time-derivative; (¢, t) are vector-valued function, which stack together, respelgt the
temperature and the heat flux of each rod

Q(6,t) =col (QH(c,),-.. V() (10.20)
(6, 1) =col (QH(e, 1), Q. ) (10.21)

For completeness, according &@1), an explicit representation of the sign’s arguments
are [Pilloni et al., 2013k

2Ly =y (QELH-Q@Ly), iev (10.22)
JEN
Zoan=y (dan-Q@ay), iev (10.23)

jeN”
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The proposed boundary dynamic protocobd (19 is composed by three components.
The contribution {0.19 can be thought as a distributed version of the “Twisting” $\ND
algorithm [Levant, 1993h where a non-trivial function of the boundary neighborates
(at¢ = 1) is used as sliding manifold.(0.23 (see i.e. Pilloni et al., 2013p, and two linear
parts, ((0.17, being a PD-based consensus algoritknapceschelli et al., 201 Bland lastly
(10.189 which has the only role to filter and then keep bounded thérabinputu' (t). Infact,
differentiating (L0.10 and substitutingX0.19, at the boundary of each rod it yields:

Ql(L,t) +Ws- QI(L,t) =t (t) + Uh(t) + Wi(t) Viey (10.24)

Remark 10.2. Note that, despite state derivative is normally not pemudiin the synthesis
task (i.e. it generally induces algebraic loops), its usedrees acceptable when dynamic
input extension is performed. Similar analysis is discdsagPisano & Orlov, 2012 As

a consequence, this statement can be viewed as a secorrczorgensus problenPjlloni

et al., 2013k In the following, it will be shown that the temperature'snsensug10.14
will be achieved asymptotically in terms of both agent'sgerature Q¢,t) and its time-
derivative, which physically corresponds to the heat flQ€sg,t). [ |

Remark 10.3. Since at the boundarg = 1, the proposed dynamic control input is gov-
erned by the ODK10.24 with discontinuous right-hand side, the solution of theuiesg
distributed parameter agent’s dynamic will be understaadhe so-calledrilippov Sense
[Filippov, ]. Extensions of the Filippov concepts towards infinite disienal setting can be
found in [Levaggi, 20020rlov, 2008, where as in the finite-dimensional scenario, a motion
along discontinuity manifolds, is referred to &iding Mode It is worth to note that the
existence of a solution for the class of equations undeneamsls always guaranteed (owing
on certain properties of the associated set-valued map)feord which noticeable proper-
ties, such as absolute continuity, are in force. The readeeferred to Cortes, 2008for a
comprehensive account of the notions of solution for disooous dynamical systems.ll

The present work focuses on the solution of the consensiseono(L0.14) for a net-
work of infinite-dimensional agents, whereas the rigoramadnstration of the well-posedness
of the network dynamic1(0.9-(10.17), (10.15-(10.1§ goes beyond the Chapter’'s aims.
Anyway the well-posedness of the system in question, utdeassumption imposed on the
ICs and BCs, can be verified in accordance with Theorem 3r8[8urtain & Zwart, 1995
by the taking into account that the consensus protobdl1-(10.18 is twice piece-wise
continuously differentiable along the state trajectofsee e.g.lPisano & Orlov, 201].

Let’s say that, designed the following column wise vectors
W =col (¢*(t),...,¢N) (10.25)
o (LQ) =col(sign(:Z1Q),...,sign(AQ)) (10.26)

and given the next representation, at the network levekh®wector of fictitious boundary
local interaction protocolsl(Q.195

U (1) =col (6(t),...,aN (1))
=-a U(L'«Q(lt)) b-o (LQ(L,t))+
W £QLE) — Wb £QU(L,) —Ws- Qu(L1) (1027)
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in the reminder, denote@(-,t) = Z;(-,t), andQ(-,t) = Z»(-,t), it is simply assumed the
following.

Assumption 10.2.The networked systefh0.9-(10.17), (10.19-(10.19 always possesses a
unique Filippov solution Z-,t) € H*(0,1) x RN and its time derivative Z-,t) € H?(0,1) x
RN verifies the following auxiliary boundary-valued problem:

Z1(6,t) = Z5(¢,1)

) (10.28)
Z5(G,t) = 0-Zpcc(G,1)
BCs: { 22600 =0 (10.29)
Zoc(1,1) =U (1) + W(t)
ICs: Z2(¢,0) = 0-Qcc(¢,0) € H3(0,1) x RN (10.30)
|

Notice that the auxiliary probleni(.29-(10.30 is obtained by differentiatinglQ.9-
(10.10 and (L0.19-(10.18 in the time variable, whereas the ICs are straight deriveih f
(10.9 and (L0.12.

As discussed inRisano & Orlov, 201R it should be pointed out that the solution’s
meaning of the auxiliary boundary-value problei®.29-(10.30 has to be viewed in the
mild sense (see e.gClrtain & Zwart, 1999. Furthermore, from Butkovskii, 1982, it
should be noted that the mild solution af0(29-(10.30 coincides to the corresponding
weak solution of the so-called standardizing PDE in distidns

Z1(G,t) = Z2(G,1)

. : : - (10.31)
Z5(6,t) = 8- Zp g+ 0+ (U(t) +W(1)) - 8(¢c 1)
subject to the following homogeneous BCs:
Z5c(0)=0n , Zp¢(Lt)=0n (10.32)

and to the same ICs irl(.30, whereé(c —1) is the Dirac’s sampling functiorat ¢ = 1.
It's worth to mentioning that, according t@fsano & Orlov, 201R Z(-,t) € L?(0,1) x RN
is a vector of continuous functions which solves the boupgaoblem (0.31)-(10.32 on
t € [0,7) € Rt in the weak sense (see Definition 1 iigano & Orlov, 201Pfor further
details).

10.4 Convergence Analysis

In this Section the performance of the proposed consenstsqad (10.195-(10.19 are
investigate by means of Lyapunov-Based Analysis, from tvisicnple tuning rules for the
control gains will be straightforward derived. ReferrimgRemark 1, this statement can be
viewed as a second order consensus probfeao [& Ren, 2012Pilloni et al., 2013h

As itis well-known in standard consensus thedyfti-Saber et al., 20(Q7the achieve-
ment of the consensus conditioh0(14 simply implies the annihilation of the so-called
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disagreement vector (see eRjloni et al., 2013p. Extending those concepts to infinite-
dimensional multi-agent systems, it can be straight ddrite following definition for the
infinite-dimensional disagreement vectors

In- 17
N

5k('7t): (INXN_ ) 'Zk<'7t):£C'Zk('7t) (10.33)

which obviously still preserve their own properti€lfati-Saber et al., 20Q7
100k ) =0, L-8(t)=L-Z(1), k=12 (10.34)

and following from 9.3, it even yields:
1
| 8E@0L6(E. 080 = - |80, k=1.2 (10.35)

In the remainder of the Chapter, it will be demonstrated ttl@eving of the consen-
sus condition 10.14 even in presence of disturbances acting at the boundargabf ed,
showing the exponential convergence to zero in the spZ¢@, 1) x RN of the disagreement
vector dynamic. To do this, manipulating the boundary pobl10.31)-(10.32 according
to (10.33, derives the followinglisagreement vector boundary-problem

% (¢G.t) = d2(¢,t) o 10.36

R(G,t) =08 cc(G,t) + 0L [U+W]-6(¢c—1) (10.36)

BCs 617C(O7t> - 627C(O7t> =0 (10.37)
O c(Lt)=0(1t)=0

ICs: &(¢,0)=0-LeZo(¢,0) € H3(0,1) x RN (10.38)

Theorem 10.1.Consider the perturbed collective infinite-dimensionaltiragents system
(10.9-(10.17 and let Assumptiof0.1and 10.2be satisfied, with the boundary local inter-
action protocol(10.19-(10.19 applied and tuning parameters selected according to

a>b+M, b>n, Wp>0 W>0 Ws3>0 (10.39)

then, the consensus conditigid. 14 is globally asymptotically achieved in the spac&(Bl 1).
|

Proof of Theorem 1: The proof has been broken into two simple consecutive steps.

> Equi-uniform stability
Consider as candidate Lyapunov function the following pesidefinite functional
1
V(01,&) =6a- || Loy (L,t)[]1 +56Wa - 1£31(1,1) 5+

11 T
+5 [ @@L A (10.40)
0
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computed on the solutior (-, t) of the boundary-valued probleri@.39-(10.39

Since (L0.40 is locally Lipschitz and not differentiable gt= 1 when any entry vec-
tor £1(1,t) is zero then, as mentioned in Remdrk 3 the following treatment refers for
stability analysis to the Lyapunov Generalized Theoremmtor-smooth analysis reported in
[Paden & Sastry, 198,7/which makes use of Clarke’s Generalized Gradi€iafke, 1983
and involves a set-valued form for the resulting Lyapunancfion time derivative. A similar
analysis to the one here presented, involving a sum-oftatesealue Lyapunov function, can
be found in Paden & Sastry, 198.7The reader is referred t®pden & Sastry, 198 Tlarke,
1983 Shevitz & Paden, 1994or a more detailed analysis of the correctness of adoptiag
chain rule to compute the time-derivative\oft) for non-smooth Lyapunov analysis.

By (10.39 itresults thatC - L = L, then the time derivative 0fi0.40 on the solution
of the boundary probleni(.39-(10.39 is

V(t) =0ad(1,t) Lo (LA (11)) + OWid(L,t)T L2 (1,t)+
+ [0 L8 g 0 -
—0ady(2,t) Lo (L (1,1)) 4+ OWi,(1,1)T £25(1,1)+
+ 9/0152(Z,t)T£527zz(1,t)d5+
+05&(1,) "L [U+W(1)] (10.41)
where the integral term in the right hand side D941 can be integrated by parts under the
homogeneous BC4.().37 and upper estimated as follows:
[ 800720842 1107 =
=0 [H(Lt) L& (1,t) — 5(0,t)T L& (0,1)] +
6 [ 60T LB (20 <

1
<=0 [ 5000 6e(80) = B2l G2l 1)} (1042

Then, replacing the closed-loop controllér0(27) into the latter term of 10.40), it
yields

0-&(L1)TL[U+W(1)] =—0a &({,1) Lo (LE(11))+

—0b- [ L&(1,1)]1 — OWL - &(1,1)TL25(1,1)+

— OV, - || L& (L,1)[|5— OW5- 82(1,1)T LE(L,1)+

+6-5(Z,1)TLW(t) (10.43)

Substituting {0.42 and (L0.43 into (10.47) and invoking théHdlder’s Inequality(10.4)
combined with 9.3), it can be demonstrated the boundedness of the solutioheoper-
turbedinfinite-dimensional disagreement vectooundary-valued probleni().39-(10.39
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as follows:
V(t) <=8 (b—[|%()]le) - [ £(L,1) 1+
—0X2- [|B2.c (-, 1) ][5 — OWoAZ - || B2(L,1) |5+
— WAz | &(L,1)]3 (10.44)
where gaind, W, andWs must be selected according to the next constraints:

b>[Ww=N , W>0 , W>0 (10.45)

From (1L0.49 it has been shown that, initializing the system in an aabiy vicinity
of the originV (¢, 0) < Ry, the uncertain systeni.39-(10.3§ cannot leave this vicinity,
regardless of whichever admissible uncertalfity) affects the network.

> Global equi-uniform asymptotic stability

To begin with, as discussed iPisano & Orlov, 201Pfor infinite dimensional sys-
tems, let us note that by virtue 0i@{.449 all possible solutions of the disagreement vector
boundary-problemi(0.36-(10.39, initialized attg € R™ within the invariant compact set

Dy ={(31(G,1), %(6,1)) € H(0,1) x L*(0,1) x RN
V (81,8) <R} (10.46)
there always remain confined
sup V (81,02) <R (20.47)

te|to,00]

By (10.40 combined with {0.47 and Q.3), the following upper-bounds can be easily
derived:

[1£61(1,t)]]1 <R/6a (10.48)
161(1,1)[|3 < 2R/6WiA, (10.49)
182(-,1)[[§ < 2R/Az (10.50)

Remark 10.4. The idea behind the reminder of the proof is inspired by thefded Invari-

ance Principle Prlov, 200§ and it is based on constructing a parameterized family oélo
Lyapunov function Méd1,d2), R> 0 such that, eachyd1, d2) is well posed on the corre-
sponding compact s@py; and its time derivative, initialized withi}, is negative definite
and yields the desired stability and convergence propertie [ |

A parameterized Lyapunov functidi(d1, d2), R > 0 with the properties above, can be
obtained by augmenting the Lyapunov functid @40 as follows:

VR(t) =V(t) + kr-V(t) (10.51)

whereV (t) is a sign-indefinite function defined below

— 1
V()= %9\/\/2 H£61(1,t)|!%+/0 a1(1,1)TL£&(Z,)dd (10.52)
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andkr is a proper small enough positive constant.

In order to demonstrate the positive definitiveness of timetional (L0.57), the lower
estimation ofV (t) is first computed. By the generalization for vectors of thein@s In-
equality in (L0.5, along with (L0.49, it simply results that the integral term i6@{.52 can
be lower bounded as follows

1 1
| 8107 £ 008 = =5 (ILa B+ |6.0]F) =

1

> -3 (g £+ 1301 (1053)

whereas by the Laplacian’s property ing), the lower bound of the second term aH(52
IS

1 1
5O+ [1£81(L,)]3 > 50WaAZ - [|&1(1,)]13 (10.54)

Therefore, combining resultd4@.53 and (L0.59, along with the lower estimation of
V(t), which can be easily computed by analogous consideratiobagositive definitiveness
of Vr(t) is guaranteed if and only if the positive constagtatisfies the following constraint:

Kr < min{Lﬁf2 , )\2} (10.55)
To confirm what has been already said, hereinafter the caelpler estimation of the
augmented functionl(.5J) is reported:

KrR
V() > |02 55 |- 1281101+

1
+5 (Ao —kr) [ & D)5+
20N (Wi + kW) - [B1(L 1) 3 (10.56)

where the restrictionl(0.55 confirms the positiveness bk(t).

In turns, reminding that - L¢ = £ and differentiating 10.5]) along the trajectories of
the uncertain boundary-problemd.39-(10.39, it results:

VR(t) =V (1) + KrBWs - (1,1) L2531 (1, 1)+
d 1
KR {/0 61(1,t)T£62(Z,t)dZ} —
=V (1) + Kr- OWL3(1,1) L2581, 1)+
+ KR /01 951(1,'[)1-£52755<Z,t)dz+
+ Kr- /01 05.(1,1)T L [U(t) + V(1) 5( — 1)dZ+

1
e [ &1L 0K (10.57)
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where due to the boundary conditiod$(37), the first integral in {0.57 has not contribution

/ (LT LS o ({10 =
=a(Lt)L- (%c(1,t)—»(0,t)) =0 (10.58)

Substituting £0.27) in the second integral term 0f(.57, it can be compute its upper-
estimation as follows:

9. /0151(1,t)T£ U() +P()] 8(Z —1)dZ =
=60-5(LY) LU +W(1)] =
= —ba- ”£51<17t)H1 —0b- 51<17t)£0-<£52(17t))+
— OW, - || £31(1,1)]|5 — WL - 31(1,1) T L£23(1,1)+
— W5 &1 (1,)TL&(1,t) 4+ 60- 81 (1,t) T LW(1) (10.59)

Following this line, by the Hoélder's Inequalityl(.4), also the magnitude of the last
integral term in the right-hand side df@.57 can be upper estimated as follows:
1
' | @107 £8(¢.06| <£e(10) 2+ E(-Dlo <
<[[&%( )]0 [[£(Lt)([1 (10.60)

where|| - |o represents the Hnorm defined as in1Q.7). Finally by the bounds1(0.59-
(10.60, the (L0.57 can be upper-estimated as

VR(t) < V(t) — krf (a—b— [W(t)[|w) - [| LE(L,1) 1+
— KROWAAS - [|31(L,1) |15+
+KRO - [|O2(-, 1) [lo[[ £82(1,1) |1+
+ KROWs - [81(1,1) T L 5(1,1)] (10.61)

from which, applying {0.4) and (L0.49 at the last term of0.61)

151(L,1) T LE&(L1)] < [|&r(L,1) || 1L£3(L,1)]|2 <

< |&(1,0)[]2]| £2(1,1)[[1 < ,/ ||L:62 (1,01 (10.62)
and substitutingi0.44 and (L0.50, it results:

VR(t) <= 8 (b= | ¥(t) o — kry/2R/A) - | £3(1,0) |1+
+ KrWs/ R/Ga)\?- 1£8(1,t)[|1+
—KkrB (a—b—[¥(O)]=) - [ £A(LD)]1+
— O(WoAZ +WaA2) - | B2(L,1) 13 — 822+ (|G (- 1) I+
— KrOWAAS - [|31(L,1)][5 (10.63)
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As closure, in light of Lemma0.1it is possible to write the next inequality

—a1-[|%(L,1)[15 - 02 82(- 15 < —call&(-, 1) 13 (10.64)
with
a; = O0(WeAZ+Wah2) | a2 =0, (10.65)

from which, by the next upper-estimation the negative diéfemess of\YR(t) and then, the
convergence towards the consensus conditidhl{) of the agent’s temperatures can be
demonstrated:

VR(t) < —c1-[|[LE(Lt) [ —C2- | LE&(LE) |1+
—cz- [|au(L )5 —Ca- |5, 1) 1§ (10.66)

with coefficientsc; € R™ with i = 1,...,4 defined as follows

1 =KrO (@a—b— || W) (10.67)
2 =6 (b— H(IJHOO—KR\/ZR/)\Z—KR\Ng\/R/Ga)\z) (10.68)
C3 =KROWLAZ (10.69)
Ca =min{6Az, OA2(WoA, +W5)} (10.70)

tuning parameter selected according16.89 and the constarkr stricter than

20°a° b1l } (10.71)

KR:m|n{ R » 2, \/2RA2+\/R/98)\27

To complete the proof and thus demonstrate the exponermtialydofVr(t) initialized
within any invariant seDy, defined as in10.46, the lower estimation o¥r(t) in (10.56
can be rewritten in the following form

VR(t) 2C1- [[LO(L Y]] +C3- | G(1,1) 13+

+Ca- 152, ) 13 (10.72)
with
c1 =0a— kr/20a (10.73)
C3 =(A2—kKR) /2 (10.74)
Cs =60 (WL + KRW.) /2 (10.75)

from which, it can be readily derived that

_ _ min{cy,Cy,C3,C4}
Vo(t) < —0n-Ve(t with = T minlc G o
R(t) < —pr-VR(t) PR =~ Min{er, 6z, 3}

(10.76)

It remains to note that, sindéx(t) > V(t) holds, then the functional (t) exponen-
tially decays too, which implies the synchronization of #gents’ temperatures and so, the
achievement of the consensus conditi@f.(4. The proof of Theoremi.0.1is nhow com-
pleted.
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Figure 10.1: Graph representatign= (V, £) of the network under test.

10.5 Simulation Results

To demonstrate the efficacy of the proposed consensus ptdidc195-(10.18 a con-
nected network oN = 10 rods, displayed in Figurg0.1has been considered. It is worth to
note that each agente V = {1,...,N}, needs to known the temperatures and their time-
derivatives, computed at the boundgry 1, just of the agents belonging to its neighbor set

N ={jeVv/{i}:(i,))e€rcv.

With regard to the agents dynamic, these are governed bydaedguation10.9),
with diffusivity parameter® = 1 and homogeneous Neumann-type BC’s aslin1Q. The
uncertain disturbance has been set as

@' (t)=sin(kmt) with K €[0,2]=N=|W¥(1)|.=2n
whereas the initial conditions tit= 0 are set to

Q'(¢,0) =10+K -cog4mc) with K = —45+i

For solving the networked boundary-problehd (9-(10.11), a standard finite-differenze
approximation method has been used. Each spatial dopjf, 1] has been discretized into
n = 30 uniformly spaced nodes. The resulting temporal dynaricaer 300 is then solved
by Runge-Kutta 4-th order with fixed step size equal to10

The consensus protocol’'s parameters have been selectextoandance with Theo-
rem10.1as next:
a=32 , b=16 , Wi=W=W3=5

The attainment of the temperature’s synchronization aed the achievement of the
consensus conditiori().149 can be appreciate respectively by Figafe2and Figurel0.3
where the spatiotemporal temperature distribution forSttle and 10-th agent are depicted.
In confirmation of what has been presented, according With7@, in Figure10.4and Fig-
ure 10.5is shown the exponential convergence to zero of the temperdistributed dis-
agreement vectod; (¢,t) which implies the achievement of conditiohO(14. More pre-
cisely Figure10.4 shows the spatiotemporal evolution &f(¢,t) € L?(0,1) x RN for the
whole spatial distribution, whereas Figure. 5shows the temporal evolution éf(¢,t) com-
puted at the boundaries= 1 and¢ = 0 and at the central node (node 15-th) corresponding
to ¢ =0.4828.

Overall, the collective network’s state evolution behaassxpected in the sense that
robust exponential consensus is achieved in spite of theepoe of unknown perturbation
acting at the boundary of each rod.
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10.5

Temperature

0.5

Time [sec] 0 o <[m]

Figure 10.2: Spatial distribution of temperature of thet RedQ®(¢,t).
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10.5

Temperature

0.5

Time [sec] 0 o <[]

Figure 10.3: Spatial distribution of temperature of theth®odQ°(¢, t).
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Time [sec]

Figure 10.4: Spatial distribution of temperature disagreet vectord; (¢,t) computed for
all the 30 discretization’s nodes.
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Figure 10.5: Temperature disagreement vedt0¢,t) behavior computed at boundaries-
1, ¢ =0 and in the middle node of the spatial discretizatfon 0.4828.

10.6 Conclusion

In this Chapter it has been considered the problem of driargyoup of perturbed
infinite-dimensional agents communicating through an tautiéd topology towards a com-
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mon temperature’s consensus value.

The major contribution of this work is to enforce a robustrapyotic agreement amongst
the agent’s states and thus the nullification of their disagrent, only sharing information
captured at the boundary of each rod and even in presencetaflgaion or sensing dis-
turbances. Among the most challenging directions for nesg@arches, further investigations
focused on relaxing the topological restrictions for diegctopologies, possibly switching
and the consideration of different classes of PDEs are ntaryda



Chapter 11

Conclusion

In this Thesis several approaches for dealing with the probf observation and con-
trol in both the framework of multi-agents and complex systdiave been presented. These
techniques, based on concepts of discontinuous slidinderand high-order sliding mode
control, have been employed for solving, in a finite-timakpems such as robust state esti-
mation, unknown input reconstruction and consensus-bagschronization. Both directed
and undirected topologies have been taken into account.

Those algorithms present improvements with respect to thie 8f the Art in the ex-
ploitation of new approaches for dealing with perturbed plax systems. Hereinafter a
summary of the main part of the Thesis along with some comsnantl hints about the
potential future research directions for the contributtbrach Chapter are discussed below:

* In Chapter5 it has been theoretically illustrated and experimentasted
a systematic procedure for tuning the parameters of therSuysting Al-
gorithm when unmodeled parasitic dynamics such as sensacguators
are taken into account in the control loop. It is worth to ni@emtas dis-
cussed in Ameri & Boiko, 2013, that the treatment here discussed was
probably one of the few works in literature which considds tkind of
problem. Infact, the vast majority of publications rela@dSTW control
loops consider only principal dynamics of relative degree.cAmong the
some interesting directions for improving the presentliethe analysis,
and shaping, of the transient oscillations is of speciaret;

* In Chapter6 a new approach for designing decentralized strong observer
has been presented. The approach illustrated defines enffyoconditions
for achieving the full state-estimation and unknown-inpadonstruction
in the framework of MIMO rectangular systems and then desigstrong
observers. The approach has been easily extend to netwigpkestorbed,
diffusively coupled heterogeneous dynamical systems.tiWof noting
that the proposed approach result inherently robust tarttiahces and to-
tally independent to the network configuration or to the nandf nodes.
An extension of this work might be the generalization to gengonlinear
systems;

* In Chapter7, strictly related to the task of designing strong obseruers
MIMO systems, HOSM observers are employed as a tool for tetgc
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certain abnormal operating conditions in squirrel cagauation motors
(SCIMs). Major contribution of this work is a novel mathemat char-
acterization of the faulty operating mode in SCIMs and thsigie of a
suitable observer capable of detecting rotor faults sudit@sen bar faults
and eccentricity conditions by relying on stator currend ahaft speed
measurements. Experiments carried out on commercial ndoit@s con-
firms the effectiveness of the proposed approach;

In Chapte8is proposed a novel decentralized consensus algorithnefer n
works of continuous-time integrators subjected to peraistlisturbances
and topological changes. This algorithm is superior in #rese that is able
to perform the achievement of the approximated consenswditam even
in presence of persistent disturbances and not permarcamthected com-
munication topologies. It results that under certain retsbtns on the di-
rected switching topology, after a finite transient times #gents achieve
consensus condition by attenuating the destabilizingcetié the distur-
bances. Among the most interesting directions for nextarese more
general switching communication policy are actually unidgestigation
along with the discrete-time implementation of the propbsgeraction
rule as well;

In Chapter9 a novel robust local interaction rule for achieving finited
consensus in a network of double integrators agents affdgtdoounded
disturbances is presented. It is worth to mention that inliteeature the
problem of consensus for second order agents was alwaysdrsady-
ing idealdouble integrators only, whereas here the perturbed cadadesn
solved. Further investigations will focus on relaxing tbpdlogical restric-
tion for directed, possibly switching topologies;

In Chapterl0it is considered the problem of driving a group of perturbed
infinite-dimensional agents communicating through an rautied topol-
ogy towards a common temperature’s consensus value. ltris waomen-
tion that the problem of achieving consensus by exchangihginforma-
tion acquired at the boundary of the spatial domain was niggated in
the literature. Among the most challenging directions fextrresearches,
further investigations focused on relaxing the topololieatrictions and
the consideration of different classes of PDEs are manglator
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