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Abstract

The problem of understanding when individual actions of interacting agents display to

a coordinated collective behavior has receiving a considerable attention in many research

fields. Especially in control engineering, distributed applications in cooperative environ-

ments are achieving resounding success, due to the large number of relevant applications,

such as formation control, attitude synchronization tasksand cooperative applications in

large-scale systems.

Although those problems have been extensively studied in Literature, the most of classic

approaches use to consider the unrealistic scenario in which networks always consist of

identical, linear, time-invariant entities. It’s clear that this assumption strongly approximates

the effective behavior of a network. In fact agents can be subjected to parameter uncertainties,

unmodeled dynamics or simply characterized by proper nonlinear dynamics.

Therefore, motivated by those practical problems, the present Thesis proposes various

approaches for dealing with the problem of observation and control in both the framework

of multi-agents and complex interconnected systems. The main contributions of this Thesis

consist on the development of several algorithms based on concepts of discontinuous sliding-

mode control. This techniques can be employed for solving infinite-time problems of robust

state estimation and consensus-based synchronization in network of heterogenous nonlinear

systems subjected to unknown but bounded disturbances and sudden topological changes.

Both directed and undirected topologies have been taken into account. It is worth to men-

tion also the extension of the consensus problem to networksof agents governed by a class

parabolic partial differential equation, for which, for the first time, a boundary-based robust

local interaction protocol has been presented.
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Introduction

This introductory Chapter is intended to present the motivations behind the development

of this Thesis along with a brief description of the Thesis’ structure. Finally, a list of the

Author’s publications derived from the present work are listed.

Motivations

The problem of understanding when individual actions of interacting agents display to

a coordinated collective behavior has receiving a considerably attention in many research

fields, starting from system biology [Rosenfeld, 2013] up to engineering science like com-

puter graphics [Yang et al., 2003] or sensors network [Schenato & Fiorentin, 2009]. Espe-

cially in control engineering, distributed applications in cooperative environments are achiev-

ing resounding success, due to the large number of relevant applications, such as formation

control [Fax & Murray, 2004, Ren, 2007], attitude synchronization tasks [Fadakar et al.,

2013] and cooperative applications in large-scale systems [Pilloni et al., 2013a].

There are many reasons for the current intensity of interestin coordination applications,

but certainly the winning one comes from the flexibility, scalability and reconfigurability to

sudden environmental changes [Raudys & Mitasiunas, 2007]. Infact this paradigm uses to

model each entity of the network as a smart, active autonomous system, capable of interact-

ing with other agents in order to satisfy its design objectives.

One of the key components of this research area is to gain a better understanding of how

the underlying connection topology directly affects certain properties of the entire system

[Chang et al., 2003].

An overview of the recent research trends in cooperative control and multi-agent sys-

tems (MAS) can be found in [Zampieri, 2008, Garin & Schenato, 2011]. The reader is re-

ferred to [Ren et al., 2007a, Olfati-Saber et al., 2007] for a tutorial overview of information

in cooperative consensus-based control.
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Although those problems have been extensively studied in Literature, the most of classic

approaches use to consider the unrealistic scenario in which networks always consist of

identical, linear, time-invariant entities [Olfati-Saber et al., 2007, Šiljak, 1991, Ren & Beard,

2008, Ni et al., 2013].

It’s clear that this assumption strongly approximates the effective behavior of a network

[Wang & Wen, 2008]. In fact agents can be subjected to parameter uncertainties, unmodeled

dynamics or simply characterized by proper nonlinear dynamics [Pilloni et al., 2013a, Ed-

wards & Menon, 2008].

Therefore, motivated by those practical problems, the present Thesis proposes various

approaches for dealing with the problem of observation and control in both the framework

of multi-agents systems (MAS) and complex interconnected systems. The main contribu-

tions of this Thesis consist on the development of several algorithms based on concepts

of discontinuous sliding-mode-based control [Utkin & Guldner, 1999, Orlov, 2008, Bar-

tolini et al., 2003, Pisano & Usai, 2011]. These approaches can be employed for solving

in finite-time problems of robust state estimation [Pilloni et al., 2013a, Edwards & Menon,

2008] and consensus-based synchronization [Franceschelli et al., 2013b, Franceschelli et al.,

2013a, Franceschelli et al., 2012a] in network of heterogenous nonlinear systems subjected

to unknown but bounded disturbances and sudden topologicalchanges. Both directed and

undirected topologies have been taken into account.

In particular with regards to the problem of robust state estimation in connected sys-

tems, it is worth to mention the work [Pilloni et al., 2013a] in which a new approach for

designing strong observers which result totally independent to the network configuration or

to the number of nodes is presented; whereas with regards to the problem of consensus-based

network synchronization, in [Franceschelli et al., 2013b] and [Pilloni et al., 2013b] respec-

tively, two novel local interaction protocols for network consisting of first and second order

perturbed dynamics are discussed.

It is worth to mention also the extension of the consensus problem to networks of agents

governed by a class parabolic partial differential equation, for which, for the first time, a

boundary-based robust local interaction protocol has beenpresented [Pilloni et al., 2014b].
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Thesis’ Overview

The Thesis is organized into two distinct parts. The first one, namelyState of the Art

which provide a brief summary of the necessary theoretical notions useful for understanding

the remainder the Thesis, and the second one, namelyAuthor’s contributionin which all the

Author’s works, developed during this research, are deeplydiscussed. A brief overview of

each Chapter of the Thesis is reported below.

Part I . State of the Art:

• Chapter 1. Digraph and Matrices: This Chapter provides some notions

on graph theory along with some mandatory results about connectivity

properties of directed graphs. Furthermore the relations between graphs

and non-negative matrices are taken into account;

• Chapter 2. Mathematical modeling of Complex Systems: This Chap-

ter provided some preliminary notion of the mathematical modelization of

connected systems. Particular emphasis has been given to the modeliza-

tion of distributed systems and Large-scale Dynamical Networks. Finally

concepts of decision-making in the framework of multi-agents systems has

been discussed;

• Chapter 3. Strong observability of MIMO Systems: Since, every com-

plex system can be represented as an interconnection of subsystems or

equivalently with a multi-input-multi-output (MIMO) representation, in

this Chapter some theoretical definition on strong observability are pro-

vided;

• Chapter 4. Sliding Mode Control: Due to the extensively use of Sliding

Mode concepts in all the Author’s contributions presented in this Thesis,

this Chapter provides a brief survey on Sliding Mode Control(SMC) The-

ory with particular emphasis to the so-called High Order Sliding Modes

algorithms.

Part II . State of the Art:

• Chapter 5. Chattering adjustment and Tuning of the Super-Twisting

Algorithm : Based on the works [Pilloni et al., 2012a, Pilloni et al., 2012b],

the present Chapter illustrates a systematic procedure fortuning the param-

eters of the Super-Twisting HOSM Algorithm when unmodeled parasitic
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dynamics appears in the plant model. For example when actuators dynam-

ics are neglected. Although the topic of this Chapter is not strictly related to

the framework of distributed systems, it is reasonable thinking that when

discontinuous control action are applied for controlling real network of

systems, due to the unavoidable presence of parasitic dynamics, complex

phenomenon such us chattering can appear. This Chapter is based on the

Author’s work [Pilloni et al., 2012a, Pilloni et al., 2012b];

• Chapter 6. Decentralized Estimation in Complex Network: Based on

the work [Pilloni et al., 2013a], this Chapter provides a new approach for

designing local robust observers for a network of perturbed, diffusively

coupled heterogeneous MIMO systems. Worth of noting that the proposed

approach result inherently robust and totally independentto the network

configuration or to the number of nodes;

• Chapter 7. Sliding Mode Strong Observer as a tool for FDI: An ap-

plication to Induction Motor : Strictly related to the task of designing

strong observers in MIMO systems, in this Chapter High-Order Sliding

Mode observers are employed as a tool for detecting certain abnormal op-

erating conditions in squirrel cage induction motors (SCIMs). The Chapter

is based on the works [Pilloni et al., 2013c, Pilloni et al., 2012c, Pilloni

et al., 2012d]. Through the Chapter the effectiveness of proposed scheme

has been theoretically demontrated and verified by by real tests carried out

using measurements taken from intentionally damaged commercial three-

phase motors;

• Chapter 8. Robust Consensus Algorithms for First-integrator Dynam-

ics: Based on the work [Franceschelli et al., 2013b], in this Chapter is pro-

posed a novel decentralized consensus algorithm for a network of continuous-

time integrators subject to persistent disturbances and communication changes.

Notice that, although the network during its evolution is not always con-

nected, it is proved that under certain restrictions on the directed switching

policy, after a finite transient time, the agents achieve an approximated con-

sensus condition by attenuating the destabilizing effect of the disturbances.

A Lyapunov-based analysis confirm the effectiveness of the suggested al-

gorithm;

• Chapter 9. Robust Consensus Algorithms for Double-integrator Dy-

namics: Based on the work [Pilloni et al., 2013b], in this Chapter a novel
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robust local interaction rule for achieving finite-time consensus in a net-

work of double integrators agents affected by bounded disturbances is pre-

sented. Agents’ are supposed to interact through an indirected, static and

connected, communication topology. A Lyapunov-Based analysis confirm

the effectiveness of the proposed and provides a very simpletuning rules

for achieving the complete disturbance rejection. The proposed algorithm

is then presented as a valiant solution for solving problem of distributed

leader-tracking in multi-robot networks [Pilloni et al., 2014a, Pilloni et al.,

2014c];

• Chapter 10. Robust Consensus Algorithms in Infinite-Dimensional Net-

worked Systems: Based on the work [Pilloni et al., 2013b], in this Chap-

ter is considered the problem of driving a group of perturbedinfinite-

dimensional agents communicating through an undirected topology to-

wards a common temperature’s consensus value. Performances of the pro-

posed local interaction rule in terms of robustness and rateof convergence

are investigate by Lyapunov-Based approach from which simple tuning

rules for achieving the consensus condition are developed;

• Chapter 11. In this Chapter, a summary of the main part of the text along

with deductions and personal opinions about the developed work are pro-

vided. Furthermore, some comments and recommendations about the po-

tential future research directions of those topics are discussed.
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Part I

State of the Art



Chapter 1

Digraph and Matrices

In this Chapter basic definitions about graph theory along with some mandatory results

about connectivity properties of directed graphs, following the treatments in the literature,

see for example [Godsil et al., 2001, Lin, 2006, Diestel, 1997, Biggs, 1993], will be dis-

cussed. Furthermore the relations between graphs and non-negative matrices will be taken

into account. For rigor in presentation, the applicabilityof those concepts in the real world

will be postponed in the reminder of the thesis.

1.1 Notions of graphs

1.1.1 Directed Graph

A directed graph (or justdigraph) of ordern is a pairG(V,E), whereV is a set ofn

elements calledvertices(or nodes) andE ⊆ V ×V is a set of ordered pairs of nodes called

edges(or arcs). In Figure1.1 few examples of directed graph are shown. It is common to

refer toV andE as thevertex-setandedge-set, respectively. Forvi , v j ∈ V, the ordered pair

(vi,v j) denotes an edge fromvi to v j , wherevi is calledtail andv j headof the considered

edge.

Figure 1.1: Digraphs.
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Figure 1.2: An undirected digraphs and bidirectional digraph.

As a definition, aloop is an edge whose vertices are the same node and an edge is said

to bemultiple if there is another edge with the same vertices.

A digraph is said to besimpleif it has not multiple edges or loops. As a consequence the

digraph in Figure1.1.(a) is simple; the digraph in Figure1.1.(b) has multiple arcs, namely,

(v3,v1); and the digraph in Figure1.1.(c) has a loop, namely,(v2,v2). In the following,simple

digraphG = (V,E) will be considered.

It should be clear that the local structure of a digraph is described by the neighborhoods

and the degrees of its nodes.

Starting from this point, for a digraphG(V,E), it can be defined the following notation:

N+
i =

{

v j ∈ V/{vi} :
(

vi ,v j
)

∈ E
}

⊆ V , N−
i =

{

j ∈ V/{i} :
(

v j ,vi
)

∈ E
}

⊆V

(1.1)

where the setsN+
i andN−

i are known respectively as theout-neighborhoodandin-neigh-

borhoodof the nodevi . As a consequence, the vertices belonging toN+
i orN−

i respectively,

can be called the out-neighbors and in-neighbors ofvi .

It can be also defined theout-degree d+i and thein-degree d−i of a nodevi the cardi-

nality of the corresponding neighbor-set. For example, it is trivial to note that the nodev1 in

Figure1.1.(a) has respectively:

N+
1 = {v2,v3} , N−

1 = {v4} , d+
i = 2 , d−

i = 1 (1.2)

1.1.2 Undirected Graph

An undirected graph (or symmetric digraphs)G = (V,E) can be considered as a special

class of digraph where the edge setE ⊆ V ×V consists of unordered pairs of nodes. This

means that if(vi ,v j) ∈ E, then also its complementary(v j ,vi) belongs toE.

Hence problems that can be formulated for both directed and undirected graphs are often

easier for the latter. Notice that an undirected graph can beeasily treats as a bidirectional

digraph by replacing each edge(vi,v j) ∈ E with the pair of edges(vi ,v j) and (v j ,vi). A

simple example is shown in Figure1.2.
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1.1.3 Weighted graphs

A weighted graphG = (V,E) is a digraph with a label (weight) associates to every

edge. Weights are usually positive real numbers, but in someapplication the can be complex.

It is worth to mentioning that, weights do not change the topological structure of graphs, but

affect just the algebraic properties of graphs.

1.2 Notions of connectedness

Let us now review some basic connectivity notions for directed graphs. The reader is

referred to the related literature for a more comprehensiveaccount of the following notion

[Godsil et al., 2001, Lin, 2006, Diestel, 1997, Bullo et al., 2009]:

• A walk in a digraphG(V,E) is an alternating sequence

W : v1e1v2e2 · · ·ek−1vk

of nodesvi such that each edgesei = (vi ,vi+1) belongs toE for everyi =

1,2, . . .k−1;

• The length of a walkis the number of its arcs. Hence the walkW above

has lengthk−1;

• A semiwalkin a digraphG(V,E) is an alternating sequence

W̄ : v1e1v2e2 · · ·ek−1vk

of nodesvi such that each edgesei = (vi ,vi+1) or ei = (vi +1,vi) belongs

to E for everyi = 1,2, . . .k−1;

• A path in a digraphG(V,E) is a particular class ofwalk such that all the

nodes inW are distinct;

• A cyclein a digraphG(V,E) is a particular class ofwalk such that all the

nodesv1, . . . ,vk−1 ∈W are distinct andv1 = vk. A digraph without cycles

is said to beacyclic;

• A successorof a vertexvi ∈ V is any other nodev j ∈ V/{vi} that can be

reached with a directed path starting atvi ;

• A predecessorof a vertexvi ∈ V is any other nodev j ∈ V/{vi} such that

a directed path exists starting at it and reachingv j ;
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• A directed tree (orrooted tree) is an acyclic digraph where there exists a

vertexvi ∈ V, called root, such that any other vertex inG(V,E) can be

reached by one and only one directed path starting at the root;

• A directed spanning tree (orspanning tree), is a spanning tree in which

no two arcs share their tails. Each vertex is the tail of exactly one arc of

the directed spanning tree except for a special vertexvr calledroot of the

spanning tree.

It is worth to mention that, if a digraphG(V,E) is not acyclic, theperiod dof G(V,E)

can be evaluated as the greatest common divisor of all the lengths of cycles inG(V,E). The

digraph is said to bed-periodicif d > 1 and aperiodic ifd = 1.

As a consequence, for each nodevi ∈ G, it can be defined its period as follows

di = g.c.dmk
i ∈Si

{

mk
i

}

(1.3)

whereSi is the set of all the lengths of cycles inG(V,E), mi
k, of walks fromvi to itself.

After having introduced the previous instrumental concepts, the following notions of

connectedness for a digraph can be defined.

Definition 1.1. Reachability: A node vi ∈V is said to bereachablefrom another node vj ∈V

vi → v j (1.4)

if and only if exist a walkW from vj to vi ; if not vi is said to be not reachable from vj

(vi 9 v j ). A node vi is always reachable from itself by a trivial walk of length k= 0. �

Definition 1.2. Global Reachability: A node vi ∈ V is said to be globally reachable if and

only if it is reachable from every node of the digraphG(V,E). �

Definition 1.3. Center Node: A node vi ∈V is called a center node of the digraphG(V,E)

if from it every node vj ∈V is reachable. �

Definition 1.4. Fully Connectedness: A digraphG(V,E) is said to be fully connected if for

every pair of nodes vi and vj ∈ V exist a bidirectional edge which from vi to vj and vj to vi .

�

Definition 1.5. Unilaterally Connectedness: A digraphG(V,E) is said to be unilaterally

connected if for every two nodes vi and vj ∈ V at least one of them is reachable from the

other. �

Definition 1.6. Quasi-Strongly Connectedness: A digraph G(V,E) is said to be quasi-

strongly connected if for every two nodes vi and vj ∈V there is a node vk ∈V from which vi

and vj are reachable. �
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Figure 1.3: Digraphs with different connectedness properties.

Definition 1.7. Weakly connectedness: A digraphG(V,E) is said to be weakly connected if

every pair of nodes vi and vj ∈V are connected by a semiwalk (disregarding the orientation

of each arc). �

Definition 1.8. Disconnectedness: A digraphG(V,E) is said to be disconnected if it is not

even weakly connected. �

In Figure1.3some digraphs with different connectedness properties areshown. In par-

ticular, it results respectively in (a) a fully connected digraph, (b) a strongly connected di-

graph, (c) an unilaterally connected digraph, (d) a quasi-strongly connected digraph, (e) a

weakly connected digraph, (f) a disconnected digraph.

By the previous definitions, it should be clear that those kinds of connectedness prop-

erties tends to overlap. Indeed, for example, every fully connected digraph is strongly con-

nected; every strongly connected digraph is also unilaterally connected; every unilaterally

connected digraph is quasi-strongly connected and concluding every quasi-strongly con-

nected digraph is weakly connected, but the converses of these statements are not true in

general.

Furthermore, it is worth to pointing out that for an undirected graph, the first four kinds

of connectedness properties, respectively,strongly connected, unilaterally connected, quasi-

strongly connected, andweakly connected, are equivalent. In the contest of undirected graphs

it is common referring to these properties asconnected.

1.3 Graph Theory and Matrices

In this section the relations between digraphs and matricesare discussed. In particular

it will be shown how all the topological information associated to a graph and discussed in

the sections above can be easily encoded in term of AdjacencyMatrix, Degree Matrix and

Laplacian Matrix.
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1.3.1 Adjacency Matrices and digraphs

The Adjacency Matrix associated to a digraphG(V,E) is ann×nbinary matrix denoted

asA= [ai j ] where each entry is defined as follows:

ai j :

{

1 if
(

vi ,v j
)

∈ E

0 otherwise
(1.5)

It should be clear that this matrix is able to give information about the topological structure

of the associated digraphG(V,E). For the undirected case,A is always symmetric. Since by

definition (1.5) all the entries ofA are nonnegative, it belongs to the class ofnon-negative

matrices. Among the multiple information encoded inA, hereinafter some of them are listed:

• the sum of the entries in the rowi of A is equal to thein-degree d−i of vi ;

• the sum of the entries in columnj of A is equal to theout-degree d+i of v j .

Theorem 1.1. See Gershgorin Theorem [Bhatia, 1997]. Every eigenvalue ofA lies in a

Gershgorin disc. �

Theorem 1.2.See [Berman & Plemmons, 1979]. An n×n nonnegative matrixA is said to

be irreducible if and only ifG(V,E) is strongly connected. �

Definition 1.9. A matrixA is irreducible if it does not exist a permutation matrix P such

that

P TAP =

[

B11 B12

0 B22

]

(1.6)

withB11 andB22 square nonsingular matrices. �

1.4 The Laplacian Matrix

In this section the well-known Laplacian Matrix is presented. The Laplacian belongs a

special class of Metzler matrices where their row-sums are equal to zero.

Definition 1.10. [Lin, 2006] A square real matrixA whose off-diagonal entries are nonneg-

ative is called a Metzler matrix. �

Given a digraphG(V,E), let D be the so-calleddegree matrix ofG, i.e., a diagonal

matrix with the in-degree of each node along its diagonal. The Laplacian of the digraph

G(V,G) is a square matrix defined as follows:

L=
[

Li j
]

=D−A (1.7)
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with

Li j :=











d−
i if i = j

−1 if
(

vi ,v j
)

∈ E

0 otherwise

(1.8)

It is worth to mention that according to Gershgorin theorem [Olfati-Saber et al., 2007],

all eigenvalues ofL are located in a circle centered in the complex plane atdm+ j0 with a

radiusdm = maxvi∈V d−
i , i.e., the maximum degree of a graph. Furthermore for undirected

graphs,L is symmetric and positive semi-definite [Garin & Schenato, 2011, Olfati-Saber

et al., 2007] with real eigenvalues ordered sequentially as follows:

0= λ1 ≤ ·· · ≤ λn ≤ 2 ·dm (1.9)

Theorem 1.3. See [Lin, 2006]. The zero eigenvalue ofL has algebraic multiplicity one if

and only if the corresponding digraphG has a directed spanning-tree. �

Some important features ofL appears in the undirected framework. For example, ifG

is connected, all row and column sums ofL are zero

L ·1N = 0N , 1
T
N ·L= 0

T
N (1.10)

and thus the column vector1N = col(1, . . . ,1) ∈RN and its transpose1T
N are respectively the

left and right eigenvectors associated with the zero eigenvalueλ1 = 0.

In addition if λ2 6= 0, the next useful property holds [Horn & Johnson, 1990]

‖Lδ‖1 ≥ ‖Lδ‖2 =
√

δ TL2δ ≥ λ2 · ‖δ‖2 (1.11)

whereλ2 is the smallest nonzero eigenvalue ofL, known asalgebraic connectivity[Pereira,

2011], andδ ∈R
N is any vector with zero column sum1T

N ·δ = 0. It is worth mentioning that

the magnitude ofλ2 reflects information about how well connected the overall graph is, and

has been used in analyzing the robustness and synchronizability of networks [Olfati-Saber &

Murray, 2004].

Remark 1.1. The algebraic connectivity of a graphG with n vertices is greater than0 if

and only ifG is connected. Furthermore the algebraic connectivity of a connected network

always satisfies the next constraint [Fax & Murray, 2004]:

0< λ2 ≤ n (1.12)

In particular λ2 = n is the graph is fully connected. �
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1.5 Conclusion

In this Chapter a brief overview on Graphs Theory with particular emphasis to directed

and undirected graph and their connectedness properties has been presented. Concepts these,

that will be extensively used in the rest of the thesis. Furthermore it has been shown how

all the topological information associated to a graph couldbe easily encoded in term of

Adjacency Matrix, Degree Matrix or by the Laplacian Matrix.



Chapter 2

Mathematical modeling of Complex
Systems

In this Chapter a survey of the existing literature related to the mathematical modeling

of connected systems from the point of view of dynamical systems, which means differential

equations, is presented.

In particular, it will be shown how different classes of dynamical problems could be

easily represented and well described by combing the notions of Graph Theory discussed in

Chapter1 along with the well-known concept of System Theory [Khalil, 2002].

In particular, throughout the Chapter, three main section are included. The first one

presents how complex systems, not necessarily distributedin space, can be represented as an

interconnection of subsystems, in order to reduce the complexity of the system. In particular,

each subsystem may be identified as a physical entity, or alsoas a purely mathematical par-

tition of the whole system dynamics, independently from theothers and then the complexity

of the overall problem is simplified by using a decentralizedapproach.

Section 2, is inspired to the fact that many real-world complex networks are neither

completely regular nor completely random; examples are Internet [Siganos et al., 2003],

metabolic networks [Jeong et al., 2000] or social networks [Wasserman, 1994, Barabâsi et al.,

2002]. Therefore, in this section some notion of Large-Scale Systems and possible models

that can capture how this complex networks can evolve in timeis presented.

Last but not least, in the third section, due to the strictly connections between net-

worked system and multi-agent systems, some concepts aboutdecision-making for network

of dynamical systems are introduced with particular emphases to the so-calledconsensus

problems.
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2.1 Graph Theory and Dynamical Systems

2.1.1 Modeling Dynamical Systems as digraphs

Let us consider a linear dynamic system described by the equations

Σ :

{

ẋ(t) = Ax(t)+Bu(t)

y(t) = Cx(t)
(2.1)

wherex(t)∈Rn is the state,u(t)∈Rm is the input, andy(t)∈Rp is the output vector ofΣ at

timet ∈R andA= [ai j ],B = [bi j ], andC = [ci j ] are constant matrices of proper dimension.

As shown in [Šiljak, 1991], the structure ofΣ can be represented by means of the con-

cepts of Graph Theory. In particular, recalling the concepts provided in Section1.3.1, it can

be defined the so-calledadjacency matrixassociated to a dynamical systems as follows:

Definition 2.1. The adjacency matrixA= [ai j ] associated to the dynamical systemΣ in (2.1)

is a square binary matrix defined as follows:

A=







Ā B̄ 0

0̄ 0̄ 0

C̄ 0̄ 0






∈ R

(n+m+p)×(n+m+p) (2.2)

where0̄ are matrices of zero-entries and the sub-matricesĀ= [āi j ], B̄ = [b̄i j ], C̄ = [c̄i j ] of

A are Boolean representations of the original system matricesA, B, C with entries defined

as follows:

āi j :

{

1 , ai j 6= 0

0 , ai j = 0
, b̄i j :

{

1 , bi j 6= 0

0 , bi j = 0
, c̄i j :

{

1 , ci j 6= 0

0 , ci j = 0
(2.3)

�

Obviously as shown in the previous Chapter, at each adjacency matrix is associated a

directed graph. Therefore, recalling Definition2.1, the following statement can be formu-

lated:

Definition 2.2. The directed graph (digraph)G = (V,E) of a systemΣ has the vertex set

V = X ∪U ∪Y, where U= {ul ,u2, . . . ,um}, X = {xl ,x2, . . . ,xn}, and Y= {yl ,y2, . . . ,yp}
are nonempty sets of input, state, and output vertices ofV andE is the edge set defined as

follows: (v j ,vi) ∈ E if and only ifai j = 1. �

It is worth to mentioning that, since there are no connections among inputs, outputs and

between inputs and outputs in (2.1), then the digraphG of Σ contains only the edges(u j ,xi),

(x j ,xi), and(x j ,yi), which reflects the basic assumption about the systemΣ (2.1).
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Figure 2.1: Pendulum.

Remark 2.1. It is worth to note that, this conversion of matrix’s entriesto binary values

makes the adjacency matrixA an useful modeling tool for study the qualitative properties

of the systemΣ, independently to the specific numerical values of the matrices representative

of the system dynamic. Indeed, in this way it is possible to handle, for example, parameter

uncertainties caused by modeling errors or operating failures in the system.

Furthermore, the adjacency matrixA give us also qualitative information regarding the

structural properties of the systemΣ in terms of graph representation. The reader is referred

to Chapter1 for a tutorial overview of information in Graph Theory. �

To illustrate how graphs can be associated to dynamical systems, in the following it is

presented the following illustrative example [Šiljak, 1991].

Example 2.1.Consider linearized model of a frictionless pendulum shownin Figure2.1

ml · θ̈ +mg·θ = u (2.4)

whereθ(t) is the angular position of the bod at time t,θ̈(t) is its second derivative, l is

the length of the rod (supposed to be rigid and without mass),and m is the mass of the bob

subject to a force (input) u(t). Definedx = [x1,x2]
T = [θ , θ̇ ]T as state vector, the following

linearized representation for the pendulum’s dynamic results:

Σ :























ẋ =

[

0 1

−g/l 0

]

x+

[

0

1/(m· l)

]

u

y =
[

1 0
]

x

(2.5)

Then substituting the dynamic’s matrices of system(2.5) in the adjacency matrix definition

(2.2) the next interconnection matrix takes place:

A=













0 1 0 0

1 0 1 0

0 0 0 0

1 0 0 0













(2.6)
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Figure 2.2: Directed graph associated to the pendulum system.

where dashed lines delineate the matricesĀ, B̄, andC̄. As a conclusion in Figure2.2 is

reported the digraph ofΣ corresponding to the matrix(2.6). �

Notice that the properties of a systemΣ established by its interconnection matrixA or

digraphG are at the same time valid for systemsstructurally equivalentto Σ.

Definition 2.3. Two systemsΣ1 and Σ2 are said to be structurally equivalent if there exist

nonsingular permutation matrices PA, PB, and PC such that:

Ā2 = PAĀ1PT
A , B̄2 = PBB̄1PT

B , C̄2 = PCC̄1PT
C (2.7)

�

Remark 2.2. An interesting aspect of structural modeling of complex systems is that the bi-

nary nature of the interconnection matrices allows to formulate well-posed numerical prob-

lem and robust with respect to parameter variations. �

2.1.2 Input and Output Reachability

As well-known, the existence of control laws for a dynamic system depend crucially

upon the well-known fundamental properties of complete controllability and osservability

[Khalil, 2002]. Complete controllability means that any initial state ofa given dynamical

system can be transferred to the zero state by a suitable input. Standard test for analyze this

property is to check the rank of the so-called controllability matrix, defined as follows:

C =
[

B AB A2B · · · An−1B
]

, rank{C}= n (2.8)

which must be equal to the order of the system.

With the same spirit, a system is said to completely observable if any state of the system

can be determined in from subsequent inputs and outputs. Standard test for analyze this
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property is to check the rank of the so-called observabilitymatrix, defined as follows:

O =
[

CT (CA)T (CA2)T · · · (CAn−1)T
]T

, rank{O}= n (2.9)

which must be equal to the order of the system. Anyway in systems of large dimensions,

computing the rank conditions can be an hard task due numerical issues [Hansen, 1998].For

these reasons, as shown in [Šiljak, 1991] controllability and observability properties can also

be established by studying problems of input reachability and output reachability respec-

tively, in a digraph, or more formally by binary computations alone by using the adjacency

matrix defined in (2.2).

In order to evaluate input and output reachability of a givensystemΣ, recalling [Barnes

& Harary, 1983], it results that the reachability matrixR = [r i j ] of a digraphG(V,E) is

defined as follows:

r i j :

{

1 , if vi is reachable fromv j (vi → v j)

0 , vi 9 v j
(2.10)

To determine the reachability matrix for a given digraph, byciting [Šiljak, 1991], it results:

R=A∨A2∨· · ·∨As (2.11)

whereAk =Ak−1∧A with ∨ and∧ respectively the OR and AND boolean operators and

s= n+m+ p.

A more efficient Boolean-type algorithm for computing the matrix exponentiation ofA

was proposed by Warshall in [Warshall, 1962], where:

Ak =







Āk Āk−1B̄ 0

0̄ 0̄ 0

C̄Āk−1 C̄Āk−2B̄ 0






∈ R

(n+m+p)×(n+m+p) (2.12)

from which, combining with (2.11) one gets the reachability matrix as:

R=







F G 0

0 0 0

H θ 0






(2.13)

where the binary matricesF , G, H, andθ have proper dimensions according to (2.12).

From (2.13), the following result is obvious:

Theorem 2.1.A systemΣ is input reachable if and only if matrixG has no zero rows, and it

is output reachable if and only if matrixH has no zero columns. �
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Figure 2.3: Input and output unreachable digraph.

It is worth to note that the system is said to beinput-output reachableif and only if

matrixθ has neither zero rows nor zero columns. Which means that the set of outputY is a

reachable from set of inputU , andU is an antecedent set ofY.

The following example illustrate the application of Theorem 2.1.

Example 2.2.Consider the digraph in Figure2.3, which is clearly input and ouput unreach-

able because there are nodirected walksfrom u to x3 or x4, and at the same manner y is

unreachable from x1 and x2. Computing the adjacency matrix of digraph in Figure2.3, it

results

A=





















0 1 0 1 0 0

1 1 0 1 0 0

0 0 0 1 0 0

0 0 1 1 0 0

0 0 0 0 0 0

0 0 1 0 0 0





















(2.14)

then by(2.13) and (2.12), the corresponding reachability matrix is:

R=





















1 1 1 1 1 0

1 1 1 1 1 0

0 0 1 1 0 0

0 0 1 1 0 0

0 0 0 0 0 0

0 0 1 1 0 0





















(2.15)

which, as discussed in Theorem2.1confirms thatG(V,U) is unreachable. �
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2.2 Scale-free dynamical networks

In this Section inspired to the fact that many real-world complex networks are neither

completely regular nor completely random, some notion of Large-Scale Systems and a pos-

sible model that can capture how this complex networks can evolve in time is presented.

2.2.1 Complex network Preliminaries

Complex networks are usually characterized by several distinctive properties including

complexity, topological structure, dynamical evolution,time-varying coupling strengths and

interactions between nodes. Traditionally, the first modelof networks was proposed in [Erdős

& Rényi, 1960], also known as Erdos-Rènyi model (or just ER-Model). In that model each

pair of elements was randomly connected with the same probability. As an example, let

G(V,E) be a digraph onn vertices andM = card{E} edges, pursuant to the ER-Model, all

graphs withn nodes andM edges have equal probability to exist. Formally this probability

results equal to:

pM · (1− p)(
n
2)−M (2.16)

where the probabilityp can be thought of as a weighting function; asp increases from 0 to

1, the model becomes more and more likely to include graphs with more edges and less and

less likely to include graphs with fewer edges. In particular, the casep= 0.5 corresponds to

the case where all graphs onn vertices are chosen with equal probability.

However in the real world, connectivity between each element is neither completely

regular nor completely random. Therefore, thanks to Watts and Strogatzs (WS-Model) a

more realistic representation has been given. In particular, the Watts-Strogatz model is still a

random graph generation model, but concepts asshort average path lengths, high clustering

anddegree distributionhave been introduced [Watts & Strogatz, 1998].

The main difference between the ER-Model is that the degree distribution converges is

a power law instead of a Poisson distribution. As a limitation, the WR-model produces an un-

realistic degree distribution in contrast with real networks that are often scale-free networks

and inhomogeneous in degree [Barrat & Weigt, 2000]. Indeed, the WR-Model produces a lo-

cally clustered network, and the random links dramaticallyreduce theaverage path lengths1.

1Average path length is a concept in network topology that is defined as the average number of steps along
the shortest paths for all possible pairs of network nodes. It is a measure of the efficiency of information or
mass transport on a network.
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In particular, letn be the desired number of nodes,d the average-degree of a node,

andβ a parameter satisfying 0≤ β ≤ 1 with n ≫ K ≫ ln(N) ≫ 1, whereN is the desired

number of nodes andK the mean degree (assumed to be an even integer). The algorithm

starts generating an underlying regular lattice structurewith (nd)/2 arcs and then randomly,

introduces about(βnd)/2 non-lattice edges.

Finally, another significant development in the field of complex networks has been pro-

posed by Barabàsi and Albert in [Barabási et al., 1999]. They observed that a number of

large-scale and complex networks arescale-free2 [Albert & Barabási, 2000]. The Barabàsi-

Albert (BA-Model) is an algorithm for generating random scale-free networks using a pref-

erential attachment mechanism. Thanks to this more sophisticated approach for modeling

complex systems topologies, systems like Internet [Siganos et al., 2003], metabolic networks

[Jeong et al., 2000] or social networks [Wasserman, 1994, Barabâsi et al., 2002] have been

modeled.

2.2.2 The scale-free network model

The Barabàsi-Albert Model incorporates two important general concepts:

• growth: which means that the number of nodes in the network can increases

over time;

• preferential attachment: which means that the more connected node is,

likely, the one who will receive a new links.

As a consequence, nodes with higher degree have stronger ability to grab links added

to the network. Intuitively, the preferential attachment can be understood as follows: for

example, thinking in terms of social networks, it’s common to have that more popular people

have more chance to known new people with respect to an anonymous person, i.e.the rich

get richerphenomenon.

Starting for these two ingredients, Barabasi and Albert proposed a simple scale-free

model which, starting withm0 nodes, at every time step, a new node is introduced. Each new

node is connected tom≤ m0 existing nodes with a probability that is proportional to the

number of links that the existing nodes already have. More formally

pi =
di

∑ j d j
(2.17)

2A scale-freenetwork is inhomogeneous in nature, which means that most nodes have very few connections
and a few nodes have many connections.
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wheredi is the degree of nodevi and the summation is made over all the pre-existing nodes

v j (i.e. the denominator results in the current number of edgesin the network).

It has been shown that, for a large time constant, the degree distribution resulting from

the BA-Model is scale-free. In particular, the probabilitythat a network’node is connected to

k other nodes decays as a power-law

P(k) = 2 · m2

k3 (2.18)

More recently the BA-Model has been improved by the authors in order to taking into

account the additions of new nodes, new links, and the rewiring of links (see [Albert &

Barabási, 2000]).

2.2.3 Scale-free Dynamical Network Model

During the decades a great deal of attention has been paid to networks of coupled dy-

namical systems, in particular from the nonlinear dynamicscommunity. Reasons are that,

those networks can exhibit many complex and interesting dynamical phenomena, such as

Turing patterns, auto-waves, spiral waves, andspatiotemporal chaos[Wang & Chen, 2003].

For the same reason, many scientists have started to consider the synchronization phe-

nomenon in large-scale networks of coupled chaotic oscillators [Chua, 1998, Wang & Chen,

2002a, Edwards & Menon, 2008, Pilloni et al., 2013a] due to the fact that they allow to focus

on the complexity caused by the nonlinear dynamics of each nodes without worrying about

additional complexity in the network topologies.

A common accepted representation of a dynamical network consisting ofN heteroge-

nous, dynamical, linearly and diffusively coupled nodes (e.g., a chaotic system), has been

shown in [Wang & Chen, 2002a], where the state equations of the network are described by

ẋi(t) = fi(xi)+c·
N

∑
j=1

Li j Γx j , i = 1, . . . ,N (2.19)

with xi ∈ Rni is the state vector ofi-th node,c∈ R+ represents the coupling strength, and

Γi j ∈ R
ni×nj is a binary matrix of suitable dimensions which represents the node-to-node

coupling configuration among thei-th and j-th node. The entries ofΓi j are nonzero if and

only if a communication channel among different states of neighbors nodes exist. Whereas

Li j represents the(i, j) entry of the Laplacian Matrix associated to the actual configuration

of the network at timet.
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It is worth to noticed how those network configuration results to be described by a

switching topology characterized by a time-varying graphĜ(t)(V,E(t)⊆ E), whereE(t) is

the subset of active edges at timet, whereasE is the set of the whole available communication

edges inG(V,E).

Furthermore, with reference to the synchronization phenomenon in large-scale net-

works; under the assumption that each heterogeneous node has the same dimensionni =

n j = n; it results that a dynamical network (2.19) is said to be (asymptotically) synchronized

if

x1(t) = x2(t) = · · ·= xN(t) = s(t) , as t → ∞ (2.20)

wheres(t) ∈ R
n can be, for example, an equilibrium point, a defined periodicorbit, or a

chaotic attractor, depending on the interest of the study.

As proved in [Lago-Fernández et al., 2000, Wang & Chen, 2002b], a connected network,

in the sense that there are no isolated clusters of nodes (seeSection1.2), can achieve state

synchronization (2.20) with exponential rate if

c>

∣

∣

∣

∣

d̄
λ2

∣

∣

∣

∣

(2.21)

whered̄ < 0 is a constant determined by the dynamics of an isolated nodeand the inner

linking structural matrixΓ. More preciselyd̄ depends by the Lyapunov exponents of the

network [Li & Chen, 2003]. Whereasλ2 is thealgebraic connectivityof the Laplacian Matrix

of the network, which gives information about the connectedness of the network.

Remark 2.3. Notice that, since the algebraic connectivity for a connected network satisfy

the next constraint:

0< λ2 ≤ N (2.22)

this implies that for any given and fixed nonzero coupling strength c, the network will syn-

chronize as long as its size increase. As a limit case, supposed the network fully connected

(λ2 = N) and N large enough (i.e N→ ∞); by (2.21) it is possible to note that for any given

and fixed nonzero coupling strength c≥ ε > 0, the network can achieve synchronization for

sufficiently large networks. �

In literature, different control strategies are taken intoaccount to realize control and

synchronization of complex dynamical networks. Among the varius aproaches pinning con-

trol have received many attention because it is easily achieve synchronization by controlling

just a part of the nodes instead of all nodes in the network [Wang & Wen, 2008].

It is worth to mentions that the only commonly accepted requirements for achieving the
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synchronization of a complex network is that it has a directed spanning tree interaction graph

[Wu, 2008].

2.3 Consensus Problem and Cooperative Control

2.3.1 Cooperative Control Preliminaries

Control applications in distributed and cooperative environments are studied with grow-

ing interest in recent years. The success of this paradigm can be attributed to the fact that

many complex systems are naturally represented by a networkof interacting subsystems or

“agents". Transportation networks, power grids, networksof mobile robots and localization

systems are just few examples of engineering applications of networked systems [Zampieri,

2008, Pilloni et al., 2013a, Frew et al., 2005a]. The winning features of networked structured

applications comes from their reduced cost, flexibility, scalability/reconfigurability and ro-

bustness to failures. An overview of the recent research trends in cooperative control can be

found in [Zampieri, 2008, Ren et al., 2007a, Garin & Schenato, 2011, Ren & Beard, 2008]

In particular,Multi-Agent Systemsdeal with the analysis of how distributed interaction

architectures affect the achievement of a collective behavior through only local interaction

[Cao & Ren, 2012]. A crucial problem in cooperative control is to achieve a distributed

agreement on parts of the networked system’s state (i.e. barycenter, average phase, a common

attitude) exploiting only local interaction and information exchange.

This problem, known to asconsensus, has been widely studied in literature especially

with reference to single and double integrators agents’ dynamics [Cao & Ren, 2012, Bullo

et al., 2009, Olfati-Saber & Murray, 2004, Ren & Beard, 2008, Olfati-Saber & Shamma,

2005, Fax & Murray, 2004, Pilloni et al., 2013b, Cortes, 2008]. Anyway, althought in practi-

cal application disturbances and unmodeled dynamic are unavoidable, in much of the current

literature on cooperative control, the consensus problem is often studied in the presence of

identical homogeneous agents and/or under the assumption of full and reliable communica-

tion [Ren & Beard, 2008].

In the following a brief literature review on consensus algorithms on network of multi-

agent systems is provided.
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2.3.2 Multi-Agents Systems

A networked multi-agent system can be thought as a collection of individual, but cou-

pled, dynamical systems. Where the coupling structure can be static or dynamic when com-

munications links are established or dropped over time. Some common feature of every

Multi-Agents Systems are:

• local interaction: agents can interact each other only using relative infor-

mation from their neighbors;

• lack of a common reference frame in both space, time or states;

• complete absence of a centralized supervisor;

• scalability, which means that when the network’s size changes, the local

strategy remain the same for every agent and the same group behavior still

emerges.

After those considerations, it is now possible to present how to model a multi-agent

system. Since multi-agent system are described by a finite number of entities operating over

a network, by using concept of Graph Theory, the network topology can be represented

as a digraphG(V,E) whereV = {1,2, . . . ,N} is the set of agents, represented by nodes

in the graph andE ⊆ V ×V is the set of edges. An edge(i, j) exists if agenti interacts

with agentj. The neighborhood of each agenti is defined asN−
i = { j ∈V/{i} : (i, j) ∈ E}

which represents the set of agents which directly interact with it. Furthermore, as discussed

in Section1.4, topological information associated to a graphG can be encoded by the well-

knownLaplacian MatrixL= [Li j ]∈RN×N defined, accordingly with the previous treatment

as follows:

Li j :=











∣

∣N−
i

∣

∣ if i = j

−1 if (i, j) ∈ E

0 otherwise

(2.23)

where|N−
i | is the cardinality of thei-th agent’s neighbor set. Whereas the agent’s dynamic

is generally described as follows:

ẋi = fi(xi,ui) (2.24)

wherexi ∈ Rn is the agent’s state andui ∈ Rm is the vector of inputs. Whereas the local

interaction protocol for agenti can be defined, accordingly to the considered task as follows:

ui = u
(

x j : j ∈N−
i

)

(2.25)

Therefore, a typical autonomous multi-agent system is thuscompletely defined by the

network topologyG, the agents’ dynamics and the defined local interaction protocol.
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2.3.3 Fundamental Consensus Algorithms

Consensus algorithms have a historical perspective in [Borkar & Varaiya, 1982, Chat-

terjee & Seneta, 1977, DeGroot, 1974], and, as discussed in the previous section, they have

been recently brought up again in the context of cooperativecontrol. The basic idea incon-

sensusis to impose, using information coming from the agent’s neighborhoods, a similar

dynamics to all the agents operating over a network. More formally, a consensus problem

can be defined as follows:

Definition 2.4. Consider a multi-agent system defined by the network topologyG(V,E) and

the agents’ dynamicsxi = f(x,ui) withxi ∈Rn. A consensus problem consists in the design

of a local interaction protocolu(x j : j ∈N−
i ) such that:

∀ i, j ∈V, lim
t→∞

‖xi −x j‖= 0 (2.26)

�

In the following subsections several frameworks for modeling multi-agent systems will

be presented, each differing in interaction protocols adopted, agents model and network

topology.

First-Order Consensus Algorithm

The most common continuous-time consensus algorithm [Fax & Murray, 2004, Jad-

babaie et al., 2003, Olfati-Saber & Murray, 2004, Lin et al., 2004] assume that each agent is

a single continuous-time integrator with dynamics:

ẋi(t) = ui(t) , xi ,ui ∈ R (2.27)

with local interaction protocol defined as follows

ui(t) =− ∑
j∈N−

i

(

xi(t)−x j(t)
)

(2.28)

From (2.28), it is easy to see that the information statexi(t) of agenti is driven toward

the information states of its neighbors. By substituting (2.28) into (2.27), the resulting global

system dynamics can be rewritten at the network level in the following compact form:

ẋ(t) =−L ·x(t) (2.29)

with x= [x1,x2, . . . ,xn] ∈ RN andL defined as in (2.23).
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At this point, a critical question is to understand if the network is really converging

towards a common consensus value or not.

A well-known approach adopted to deal with this problem in network of simple inte-

grator is to study the convergence to zero of the so-calleddisagreement vector dynamics

[Olfati-Saber et al., 2007] defined as follows:

δ̇ (t) =−L ·δ(t) , with δ (t) = x(t)− 1
T
N ·1N

N
·x(t) (2.30)

In particular, for the case of an undirected connected topology (λ2 > 0), recalling the Lapla-

cian’s property reported in (1.11)

‖Lδ (t)‖2
2 = δ (t)TL2δ (t)≥ λ2 · ‖δ (t)‖2

2 (2.31)

it is easy to show that the annihilation of the disagreement vector implies the convergence

towards a common value of the agents dynamics by the following simple Lyapunov-Based

analysis. Let’s consider the following sum-of-squares positive definite function:

V(t) =
1
2
δ(t)TLδ(t) (2.32)

DifferentiatingV(t), it results:

V̇(t) =−δ(t)TL2δ(t)≤−λ2‖δ (t)‖2
2 (2.33)

which implies the exponential convergence to zero of the disagreement vector dynamics and

then the achievement of the consensus condition (2.26).

Whereas if the consensus problem (2.29) for a network with a directed topology is

considered, the proof is slightly different but the only requirement is that the network has a

directed spanning tree. The proof follows from [Olfati-Saber et al., 2007] and can be derived

as next.

Since the graph is supposed to has a directed spanning tree,G has a single null eigen-

value to which corresponds the right eigenvector1N = col(1, . . . ,1) ∈ RN, therefore the

dynamic (2.29) is marginally stable and converges inside an invariant subspace defined as

follows:

S =
{

x ∈ R
N : x= α ·1N with α ∈ R

}

(2.34)

Let ηT be a left-eigenvector ofL corresponding to the zero eigenvalue. Defined a new vari-

abley = ηT ·x, it results:

ẏ = ηT ẋ= ηTLx= 0 ⇒ y(t) = y(0) ∀ t ≥ 0 (2.35)
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which implies

lim
t→∞

y(t) = y(0) = ηTx(0) = ηTx(0) = ηTα1N ⇒ α =
ηT ·x(0)
ηT ·1N

(2.36)

Hence, the agents’ state converges toward the weighted average of their initial condition:

lim
t→∞

x(t) =

(

ηT ·x(0)
ηT ·1N

)

1N (2.37)

As shown in [Ren & Beard, 2005], the previous treatment can be easily extended also

for directed switching topology under the same assumption that each network’s configuration

always has a directed spanning tree.

Analogous consideration can be extended when communication among agents occurs

at discrete instants. In such case the network’s dynamics can be represented as follows:

x [k+1] =D [k] ·x [k] (2.38)

whereD = [di j ] ∈ RN×N is a row-stocastic matrix at the discrete-time indexk such that

di j [k] > 0 if (i, j) ∈ E anddi j [k] = 0 otherwise. At discrete-time a slightly similar stability

analysis can proof the convergence towards a consensus value of dynamic (2.38). Anyway,

since in this thesis only continuous-time algorithm will bediscussed, the readers is refereed

to [Olfati-Saber et al., 2007, Ren & Beard, 2008] for further details.

Second-Order Consensus Algorithm

The single-integrator consensus algorithm in (2.29) has been also extended to double-

integrator dynamics (see for example [Hargrove et al., 2000, Ren & Atkins, 2007, Pilloni

et al., 2013b] and references therein) for modeling more naturally the evolution of physical

phenomena, such as for example, formation control and flocking which can be controlled

through gentle maneuvers with a decoupled double-integrator model.

For double-integrator dynamics, the classic consensus algorithm is given by

ẍi(t) =−
N

∑
j=1

[(

xi(t)−x j(t)
)

+ γ ·
(

ẋi(t)− ẋ j(t)
)]

(2.39)

whereγ > 0 denotes the coupling strength between the information state derivatives and

bothxi andẋi are transmitted between team members. In [Ren & Atkins, 2007] it has been

proved that the achievement of consensus, in the general directed framework, must requires a

directed spanning tree andγ must be sufficiently large. See [Ren et al., 2007b] for extension

to higher-order dynamics.
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2.3.4 Nonlinear Consensus Algorithms

In this Subsection some notion about nonlinearities in consensus problems will be ad-

dressed along with some motivations about this reasonable extension.

As well-known real systems are not modeled in general by simple LTI systems. Let’s try

to think about a simple pendulum, or for example to the dynamic of a cart; or with reference

to a multi-agent scenario, the realistic case in which disturbances in the communication

protocol appears, or when the objective task is to reach a formation by maneuvering a group

of robot with strongly nonlinear dynamics.

Well, in these cases every consensus protocol discussed above can not achieve good

performance in terms of consensus due to the fact that concepts like robustness or disturbance

rejection are not taken into account. Due to this practical necessity, recently a new area in

the field of network coordination was born: the area of nonlinear robust consensus.

In literature examples of consensus of agents with nonlinearities have already been

treated. A classical example is the synchronization of coupled Kuramoto oscillators [Ku-

ramoto, 2003]. The Kuramoto model describes the dynamics of a set ofN phase oscillators

with dynamic defined as follows:

θ̇i(t) = ωi(t)+k
N

∑
j=1

sin
(

θ j(t)−θi(t)
)

(2.40)

whereθi(t) is the oscillator’s phase,ωi(t) the natural frequencies andk is the coupling

strength. Synchronization of coupled oscillators with other nonlinear dynamics is also stud-

ied in the literature. As an example, consider a network ofN vehicles with information

dynamics given by

ẋi(t) = fi(xi, t)+ γ ·
N

∑
j=1

(

x j(t)−xi(t)
)

(2.41)

wherexi ∈Rn andγ > 0 denotes the global coupling strength parameter. Therefore, although

nonlinearities in general could complicate the agents dynamics and sometimes give arise un-

desired complex phenomenon such as limit-cycles or instability, they are able, if properly

injected in the consensus algorithm, to introduce properties in terms of robustness or dis-

turbance rejection impossible to achieve in the linear framework, even in the presence of a

non-persistent spanning-tree network topology (see Chapter8).

In the reminder of the Thesis, in particular in Chapters8, 9 and10 some of the re-

cent improvement in the field of robust consensus will be addressed with reference to dis-

continuous sliding-mode-based consensus algorithm in both both the finite and infinite di-
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mensional space agents’ framework (see also [Franceschelli et al., 2013b, Pilloni et al.,

2013b, Demetriou, 2009]).

2.4 Conclusion

In this Chapter a survey of the existing literature related to the mathematical modeling

of connected systems from the point of view of dynamical systems has been presented.

In particular, throughout the Chapter the following problems: first how to model a com-

plex systems, not necessarily distributed in space, as interconnected subsystems, in order to

reduce the complexity of the whole dynamics have been treated. Secondly, inspired to the

fact that many real-world complex networks are neither completely regular nor completely

random, notions of Large-Scale Dynamical Network are presented. Last but not least, in the

third part of the Chapter, due to the strictly connections between networked systems and

multi-agent systems, concepts of decision-making for network of dynamical systems have

been introduced with particular emphases to the so-calledconsensus problems.



Chapter 3

Strong observability of MIMO Systems

The task of reconstructing the state of a large-scale systemor more generally of a com-

plex system has been largely studied in the last decades [Šiljak, 1991, Stankovic et al.,

2009, Stankovic et al., 2011, Edwards & Menon, 2008, Pillosu et al., 2011, Pilloni et al.,

2013a, Trentelman et al., 2001, Fridman et al., 2007b]

Since, as shown in Chapter2, every complex system can be represented as an inter-

connection of subsystems or equivalently with a multi-input-multi-output (MIMO) repre-

sentation, in the following some notions of observability for this class of systems will be

discussed in order to provide to the reader the necessary notion for understanding the treat-

ment presented in Chapter6 where a new approach for state estimation and unknown input

reconstruction of a class of connected heterogeneous LTI MIMO systems is presented.

The Chapter is organized as follows. After a very short introduction about the problem

of Strong Observabilityin Section3.1, in Section3.2 the main notions of Strong Observ-

ability in the framework of MIMO LTI systems are discussed. In particular, firstly standard

condition for evaluating the strong observability properties of a MIMO system has been

presented, then in the second and third part of the section some recent development of the

Author [Pilloni et al., 2013a] for evaluating those properties for non-square MIMO systems

are provided.

3.1 Introduction

Observation of system states in the presence of unknown inputs, as well as to deter-

mine observability and detectability properties of a system in order to assess the possibility

of constructing observers, are some of the most important problems in the modern control
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theory [Fridman et al., 2007b]. For linear and nonlinear systems this task can be solved by

well-known techniques, for the case without perturbations. However, in presence of unknown

inputs and/or nonvanishing perturbations this study has still some obscure points [Fridman

et al., 2007b, Pilloni et al., 2013a].

In the following, some literature results regarding structural conditions [Trentelman

et al., 2001, Hautus, 1983, Molinari, 1976, Fridman et al., 2007b] and the more recent devel-

opment of the Author [Pilloni et al., 2013a] for evaluating those properties in both the linear

and nonlinear framework are provided.

3.2 Notion of Strong Observability for LTI MIMO Systems

3.2.1 State of Art of Strong Observability in MIMO LTI System s

Consider a LTI systemΣ:

ẋ(t) =Ax(t)+Df(t) (3.1)

y(t) =Cx(t) (3.2)

wherex ∈ Rn, y ∈ Rp, u ∈ Rm andf ∈ Rq are vectors which represent the state, the output

and the unknown input.

Conditions for observability and detectability of LTI systems with unknown inputs are

studied in literature, for example, in [Trentelman et al., 2001, Hautus, 1983, Molinari, 1976].

Hereinafter, some necessary and sufficient conditions for strong observability and strong

detectability are recalled.

Definition 3.1. s0 ∈C is called an Invariant Zero of the triplet(A,D,C) if rank{R(s0)}<
n+ rank{D}, whereR is the Rosembrock matrix ofΣ.

R(s) =

(

sI−A −D

C 0

)

(3.3)

�

Definition 3.2. Σ is called (strongly) observable if for any initial conditionx(0) andf = 0

(any inputf ), the following holds:y (t,x(0))≡ 0 for all t ≥ 0 impliesx≡ 0. The following

statements are equivalent (see [Trentelman et al., 2001]):

i) Σ is strongly observable;
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ii) The triple (A,C,D) has no invariant zeros;

iii) The Smith form ofR, RS is equal to the constant matrix

RS(s) =

(

I(n+q) 0

0 0

)

(3.4)

�

Definition 3.3. The system is strongly detectable, if for anyf(t) andx(0) it follows from

y(t)≡ 0 with ∀t ≥ 0 thatx→ 0 with t → ∞ [Hautus, 1983]. The following statements are

equivalent:

i) Σ is strongly observable;

ii) The systemΣ is minimum phase (i.e. the invariant zeroes of the triple

(A,C,D) satisfyR(s)< 0).

�

Note that in the absence of the unknown input (D = 0) the notions of strong observ-

ability coincide with the concept of observability. Thus, letO be the observability matrix of

the generic systemΣ

O =













C

CA
...

CAn−1













∈ R
n·p×n (3.5)

then the system is observable if and only ifno = rank{O}= n. In this case any spectrum can
be assigned to the matrixA−LC, by choosing an appropriate matrixL.

In [Fridman et al., 2007b] conditions necessary for strong observability with respect to
the unknown inputf , under the assumption thatq= p, has been given.

Let ci andd j be the rows ofC and the columns ofD. The outputy = Cx is said to
have vector relative degreer = (r1, . . . , rp) with respect to the unknown inputf if

ciA
lD = 0(1×q)

ciA
ri−1D 6= 0(1×q)

with

{

i = 1,2, . . . , p

l = 0,1, . . . , r i −2
(3.6)

and

det(Q) 6= 0 with Q=







c1A
r1−1d1 · · · c1A

r1−1dq
...

...

cpA
rp−1d1 · · · cpA

rp−1dq






(3.7)

The following lemma asserts the strongly observability properties for the systems (3.1)-(3.2):
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Lemma 3.1. Let the outputy ofΣ have vector relative degreer . Then the vectors

c1, . . . ,c1A
r1−1, . . . ,cp, . . . ,cpA

rp−1 (3.8)

are linearly independent. The system is strongly observable if the total relative degree of the
system̄r = ∑k rk with k= 1, . . . , p is equal to no = n. �

Remark 3.1. Generalizing Lemma3.1 to the the case of rectangular systems when (q< p),
it is obvious thatc1, . . . ,c1A

r1−1, . . . , cp, . . . ,cpA
rp−1 can not be linearly independent even

if the system is strongly observable. This assertion can be easily proved applying the same
procedure shown in [Fridman et al., 2007b] becauseQ is a non-square matrix. �

Currently the concept of strong observability with respectto the unknown input for non-
square LTI systems (q< p) is not well defined and remains an open problem in the field of
estimation and control.

In the next subsection I revert to the concept ofobservability indicesin order to define a
possible approach for non-square systems. The following treatment is based on the Author’s
work [Pilloni et al., 2013a].

3.2.2 Strong Observability Conditions for Non-Square LTI MIMO Sys-
tems

Consider the systemΣ in (3.1)-(3.2), the concept ofobservability indexfor each i-th
output of the system are first introduced:

Definition 3.4. The maximum numbervi of successive linearly independent derivatives of
the i-th output ofΣ, which represents the number of system state which can be reconstructed
from yi , is called theobservability indexfor the i-th output. �

The setV = {v1, . . . ,vp} is called theobservability indices of the pair(A,C). It is
obvious that each vi can not be greater then the order of the systemn. Then, recalling the
definition of relative degreer i of the i-th output of the system with respect to an unknown
inputf in (3.6), it can be asserted that if the following lemma holds, the systemΣ is strongly
observable and then the unknown input reconstruction (UIR)is practicable.

Lemma 3.2. The systemΣ is strongly observable if it is possible to define a set of posi-
tive integersU := {µ1, . . . ,µh} with h≤ p, in which each of element is associated with one
output’s component, such that the following conditions aresatisfied:

{

µi ≤ vi

µi ≤ r i
, µ1+µ2+ · · ·+µh = n with i = 1,2, . . . ,h (3.9)

det{M} 6= 0, M =



















M1
...

Mi
...

Mh



















, Mi =

















ci

ciA

ciA
2

...

ciA
µi−1

















∈ R
µi×n (3.10)

�
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Proof. Suppose the pair(A,C) is observable,O has n linearly independent rows. After
choosing a setU which satisfies the conditions (3.22)-(3.23), it is obvious that the matrixM
is full-rank because it is obtained combining linear independent block likeci ,ciA, . . . ,ciA

µi−1

linearly independent each other. Then, applying the following bijection mappingx=Mxo

the following canonical observable representation is obtained:

ẋo = Aoxo+Dof

yo = Coxo
(3.11)

where

Ao =







A11 · · · A1h
...

. . .
...

Ah1 · · · Ahh






, Co =







c11 · · · c1h
...

. . .
...

ch1 · · · chh






(3.12)

Aii =













0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

aii ,1 aii ,2 · · · aii ,µi













, Ai j =













0 · · · 0
...

...

0 · · · 0

ai j ,1 · · · ai j ,µ j













(3.13)

Do =MD =







δ1
...

δh






, δi =













0
...

0

ciA
µi−1D













∈ R
µi×q (3.14)

cii =
(

1 0 · · · 0
)

∈ R
1×µi , ci j =

(

0 · · · 0
)

∈ R
1×µ j (3.15)

Note that the previous mapping emphasized the strong observability property ofΣ. It is easy
to see that the conditiony ≡ 0 impliesx = 0 for any unknown inputf . Note that ifµi is
chosen lower than ri the entriesciA

µi−1D in δi are zero, thenf has no effect on the linear
combinationMi obtained by the i-th component ofy. �

Corollary 3.1. If Lemma3.2is satisfied and

rank
{

(

DTD
)−1

DTM−1T
}

= q (3.16)

with T = diag
(

t1, . . . ,ti , . . . ,th

)

andti =
(

0 · · · 0 1
)T

∈ Rµi×1, it is possible to recon-

struct completely the unknown vectorf = [ f1, . . . , fq]T by a suitable robust observer. �

Proof. Consider the system (3.11) and the following observer:

˙̂xo = Aox̂o+Tζ

ŷo = Cox̂o
(3.17)

wherex̂o, ŷo andζ represent the estimated states, the observed output of the node and the
injection term. If condition (3.16) holds, it is obvious that the mappingx=Mxo implies
that the matrixrank{Do}= rank{D}= q. Leteo = x̂o−xo be the state observation error,
its dynamic takes the following form:

ėo = Aoeo+Tζ−Dof (3.18)
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LetF = [F1, . . . ,Fq]
T be a constant vector which constitutes an upper bound on the inputf

so that| fi | < Fi , then it can be designed an algorithm which drives to zero theobservation
error dynamic(e, ė)→ (0,0), and then reconstructsf as follows:

f =D+
o Tζ =D+M−1Tζ (3.19)

where the index+ indicates the Moore-Penrose pseudo-inverse of the matrix.It is obvious
that by construction, the solution of system(3.18)-(3.19) gives an unique solution with re-
spect to the unknown inputf if and only if the condition (3.16) is satisfied. �

Remark 3.2. Consider the observer structure (3.17). Applying the inverse mappingxo =
M−1x, it can be obtained a completely equivalent representationfor the observer (3.17)
which dispenses with the need to work in a transformed domain. �

3.2.3 Extension for a generic Non-Square MIMO Nonlinear Systems

It is worth to note that, following from the result discussedabove, a more generic treat-
ment for Non-Square MIMO Nonlinear System can be easily derived by recalling concepts
of Lie Algebrasfor understanding the structure of nonlinear partial differential equations
useful for generating integrable equations (see i.e. [Slotine et al., 1991]). In particular the
following Non-Square MIMO Nonlinear System defined as follows

ΣNL :

{

ẋ = g(x)+f

y = h(x)
(3.20)

wherex∈Rn is the state vector,y= [y1, . . . ,yp]
T ∈Rp the output vector,g(x) is the nominal

autonomous dynamics andf is an unknown vector function.

Then, under the assumption that the autonomous system dynamics ofΣNL issufficiently
smooth and observable, by analogous consideration as the one for the linear case, it can be
defined anon-singular state-dependent matrix (i.e.it has n independent rows) which has
the same meaning of the Observability Matrix in (3.5). For the nonlinear caseO(x) can be
defined as follows:

O(x) =





















∂L0
gh(x)

∂x
∂L1

gh(x)

∂x
∂L2

gh(x)

∂x
...

∂Ln−1
g h(x)

∂x





















∈ R
p·n×n (3.21)

After those considerations, the extension of Lemma3.2 for the nonlinear case of the
previous treatment can be presented. Let’s defined, according to Lemma3.2, the positive
integers vi andr i as the maximum number of successive linearly independent derivatives of
the i-th output ofΣNL and the relative degree of the i-th output of the system with respect
to the unknown input vectorf , respectively. A nonlinear systemΣNL is said to be strongly
Observable is the following Lemma is satisfied:
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Lemma 3.3. The nonlinear systemΣNL is strongly observable if it is possible to define a set
of positive integersU := {µ1, . . . ,µh} with h≤ p, in which each element is associated with
one output’s component, such that the following conditionsare satisfied:

{

µi ≤ vi

µi ≤ r i
, µ1+µ2+ · · ·+µh = n with i = 1,2, . . . ,h (3.22)

det{M} 6= 0, M =



















M1
...

Mi
...

Mh



















, Mi =





















∂L0
gyi(x)

∂x
∂L1

gyi(x)

∂x
∂L2

gyi(x)

∂x
...

∂L
µi−1
g yi(x)

∂x





















∈ R
µi×n (3.23)

�

Since this extension straight derives from an analogous treatment as the one presented in
Proof3.2.2, and because in rest of the Thesis only systems in aLuré Formwill be considered,
for the sake of brevity, the previous Lemma is provided without any proof.

3.3 Conclusion

Since, as shown in Chapter2, every complex system can be represented as an intercon-
nection of subsystems or equivalently with a multi-input-multi-output (MIMO) representa-
tion in this Chapter some notion of observability in MIMO systems has been presented in
order to provide to the reader the necessary notion for understanding the treatment presented
in Chapter6 where a new approach for state estimation and unknown input reconstruction of
a class of connected heterogeneous LTI MIMO systems is presented.

In particular, some literature results and the recent Author’s work presented in [Pilloni
et al., 2013a], for evaluating the strong observability properties of MIMO System subjected
to unknown input and achieve the complete unknown input reconstruction has been dis-
cussed.



Chapter 4

Sliding Mode Control

Due to the extensively use of Sliding Mode concepts in the second part of this Thesis
(see PartII ), in which all the Author’s contributions related to this work are presented, in this
Chapter a brief survey on Sliding Mode Control (SMC) Theory,to provide to the reader the
necessary notions for understanding the treatment presented in the remainder of the Thesis
is presented.

This Chapter is organized as follows: starting from a general case of sliding mode in dy-
namical systems with discontinuous right-hand side, the classic approaches to sliding mode
control systems are considered. Then, Higher-Order Sliding Modes are presented as a tool to
remove discontinuity from the control action, and to deal with higher relative degree systems.

Furthermore some techniques for chattering analysis are discussed with particular em-
phasis to theDescribing Functionapproach [Vander Velde, 1968]. As a conclusion a proce-
dure for chattering attenuation by choosing properly the control parameters is considered for
a particular class of second order sliding mode (2-SM) control algorithm.

4.1 Introduction

The control of dynamical systems in the presence of parameter uncertainties or un-
modeled dynamics is a common problem to deal with in real applications. For these rea-
son the problem of controlling uncertain systems has attracted great interest in the research
community [Corless & Leitmann, 1981, Oh & Khalil, 1997, Young et al., 1996, Bartolini
et al., 2003]. Among existing methodologies, one of the most renowned, due to its high sim-
plicity it is for sure the sliding mode control (SMC) technique [Utkin, 1992, Slotine et al.,
1991, Edwards & Spurgeon, 1998] which is a special class of variable-structure systems
(VSSs) [Emelyanov, 1959, Utkin, 1977].

The main idea behinds SMC techniques is to design a sliding surface under onto the
controlled system trajectories are constrained, by applying a discontinuous control action.
The latter forces the system toslidealong the designed surface on which the behavior of the
system is the expected one [Utkin, 1992]. Notice that, in order to guarantee the control aims
the control must be designed with a sufficient authority to dominate the uncertainties and
the disturbances acting on the system. In particular the control action must promptly react
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to any deviation, from the prescribed behavior and then, steer the system back to the sliding
surface. The main advantage of this approach is that the sliding behavior does not depend to
model uncertainties or disturbances if thecontrol strengthis larger enough to dominate all
the system’s uncertainties [Bartolini et al., 1999, Bartolini et al., 2003, Slotine et al., 1991].

Although the claimed robustness properties, real SMC implementation has a major
drawback. Indeed, theoretically, the control action should switch with infinite frequency to
provide total uncertainty’s rejection, but due to the limited bandwidth of real control devices
(i.e. electronic converters) which perform a finite switching frequency, high-frequency com-
ponents appear in the control signal, which, propagating along the control loop, may excite
parasitic resonant modes of the plant (i.e. unmodeled dynamics). Therefore, at steady-state
the system trajectory rapidly oscillates around the sliding surface [Bartolini, 1989]. This
phenomenon is known aschattering[Boiko et al., 2006, Pilloni et al., 2012a].

Chattering, along with the necessity of discontinuous control action, constitute two
of the main criticisms of Variable Structure Systems (VSS) with sliding modes, and these
drawbacks are much more evident when dealing with mechanical systems in which, rapidly
changing in the control actions can induce fatigue and damaging in a short time [Utkin &
Guldner, 1999].

The most common approach to avoid chattering is to approximate the sign function of
the discontinuous control by the saturation function. Anyway in this case, the system motion
is confined within a boundary layer of the sliding manifold, the robustness’ the properties
are not preserved and oscillation can appear as well.

More recently a different approach to avoid chattering has been developed. The idea
is to augment the controlled system dynamics, by adding integrators at the input side, so
as to obtain a higher-order system in which the actual control signal and its derivatives ex-
plicitly appear. If the discontinuous signal coincides with the highest derivative of the actual
plant control, the latter results to be continuous with a smoothness degree depending on
the considered derivative order. This procedure refers to higher order SM (HOSM) [Levant,
1993a, Bartolini et al., 1998a] and will be shortly discussed in the following along with some
approaches for chattering analysis.

Finally, it is worth to mention that those phenomenon are less significant in software-
based applications such as for example estimation problems, in which chattering can be
filtered and then neglected without significant loss in performance. For these reasons, SMC
algorithm in the last decades, has also found a rich soil in the area of robust state-estimation
and fault detection isolation (see for example [Spurgeon, 2008] and references therein). In
the following a brief overview of all the aspects cited abovewill be provided.

4.2 Sliding modes in discontinuous control systems

Consider a general nonlinear dynamic defined as follows:

ẋ(t) = f(x(t),u(t), t) (4.1)

wherex ∈ Rn is the state vector,u ∈ Rq is the control input vector,t is time, andf : Rn×
Rq×R+ →Rn is a vector field in the state space. Assume that the state space is divided into
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2q subspacesSk with k= 1,2, . . . ,2q, by the guard

G= {x : σ(x) = 0} (4.2)

whereσ : Rn → Rq is a sufficiently smooth vector function. Itsε-vicinity is defined as fol-
lows

Vε = {x ∈ R
n : ‖σ(x)‖ ≤ ε; ε > 0} (4.3)

Define the control vector by a state feedback law such that

u(t) = uk(x) if x ∈ Sk with k∈ {1,2, . . . ,2q} (4.4)

then the following theorem holds:

Theorem 4.1. Consider the nonlinear dynamics(4.1) and letJσ
x (x(t)) = ∂σ(x)/∂x be

the Jacobian Matrix ofσ with respect tox; if a proper ε defining(4.3) exists such that the
control vector(4.4) satisfies the conditions:

sign(Jσ
x (x(t)) ·f(x(t),u(t), t))=−sign(σ) ∀ x ∈Vε (4.5)

then the guardG in (4.3) is an invariant set in the state space and a sliding mode occurs on
it.

�

Proof. Consider the q-dimensional vector

s= σ(x) (4.6)

usually namedsliding variables vector, and define the positive definite function

V(s) =
1
2
· ‖s‖2

2 (4.7)

The total time derivative of V is

V̇(s) = sT ṡ= sT ·diag{sign(ṡi)} · |ṡ| (4.8)

Taking into account the implicit function theorem,(4.1), (4.4) and(4.5) then(4.8) results into

V̇(s) =−sT ·diag{sign(si)} · |ṡ|=−|s|T · |ṡ| (4.9)

Therefore V(s) is a Lyapunov function and the origin of the q-dimensional space of variables
s is an asymptotically stable equilibrium point.

�

Remark 4.1. Notice that, as discussed in [Utkin, 1992], from a geometrical point of view,
condition(4.5) implies that within the neighborhoodVε e ofG the vector field defining the
state dynamics(4.1) is always directed towardsG itself. Furthermore, if the magnitude of
the control vectoru components is sufficiently large so that

|si| ≥ η with i = 1,2, . . . ,q (4.10)

condition(4.9) satisfies the classical well-known reaching condition

1
2

d
dt
st ·s≤−η |s| , η > 0 (4.11)
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As a consequence, the invariant setG is reached in a finite time

Tr = t0+
|s(t0)|

η
(4.12)

wheres(t0), with |s(t0)| = ξ (ε) < ε is known as the sliding variables vector at initial time
t0.

�

Remark 4.2. From the definition of controlu in (4.4), and taking into account condition
(4.5), it is apparent that the vector fieldf defining the system dynamics(4.1) is discontinuous
across the boundaries of the guardG. Therefore, functionf(x(t),u(t), t)has to be Lebesgue
integrable on time and solution of(4.1) exists in the Filippov sense [Filippov, 1988]. Control
u switches at infinite frequency when the system performs a sliding mode onG, which is
usually named sliding surface [Utkin, 1992].

�

Following from those considerations, it is interesting to analyze the state trajectory
when system (4.1) is constrained onG. A simple approach to the problem is to consider
the variables defined by (4.6) as the output of the dynamical system (4.1), in which function
s : Rn → Rq represents the so-called output transformation. In classic sliding mode con-
trol usually condition (4.5) is assured by a proper choice of the control variablesu so that
matrix ∂ ṡ/∂u has full rank inVε . Then the overall system dynamics can be split into the
input-output dynamics

ṡ= Jσ
x (x(t),u(t), t)= φ (x(t),u(t), t) (4.13)

and the internal dynamics
ẇ = ψ (x(t),u(t), t) (4.14)

wherew ∈ Rn−q is named internal state andψ : Rn×R+ → Rn−q is a sufficiently smooth
vector function. The relationship between the vector statex and the new state variabless and
w is defined by a diffeomorphismΦ : Rn →Rn preserving the origin and defined as follows
in a vicinity of the guardG [Isidori, 1995, Slotine et al., 1991]:

[

sT ,wT]T = Φ(x) : Φ(0) = 0 ∀ x ∈ Vε (4.15)

From this statement, it can be presented the following result [Pisano & Usai, 2011]:

Theorem 4.2.Assume that the diffeomorphic transformation(4.15) holds in the vicinityVε
of the sliding manifold. Then system(4.1), (4.6) is stabilizable if a unique controlu exists
such that conditions of Theorem4.1 are satisfied, the internal dynamics(4.14) is Bounded-
Input Bounded-State (BIBS) stable and the zero dynamics

ẇ = ψ (w(t),0, t) (4.16)

is stable in the Lyapunov sense.

�

Proof. The proof straightforwardly derives from results of Theorem 4.1 and the stability of
the internal dynamics when the system is constrained ontoG.
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�

When the state is constrained onto the sliding surfaceG, the system behavior is com-
pletely defined by the zero dynamics (4.16) [Isidori, 1995], taking into account the invertible
relationship (4.15). That is, only a reduced order dynamics has to be consideredduring the
sliding motion [Utkin, 1992]. This order reductionproperty is a peculiar phenomenon in
variable structure systems with sliding modes.

4.3 First Order Sliding Mode

Finding a feedback control (4.4) such that Theorem4.1holds is quite hard in the general
case. Therefore, Sliding Mode Control (SMC) of uncertain systems usually refers to systems
whose dynamics is affine with respect to control [Edwards & Spurgeon, 1998][Utkin, 1992]
as follows:

ẋ(t) =A(x(t), t)+B(x(t), t)u(t) (4.17)

whereA : Rn×R+ → Rn is a vector field in the state space, possibly uncertain, andB is a
n×q matrix of functionsbi j (x(t), t) : Rn×R+ → R.

When the SMC approach is implemented, the first step of the design procedure is to
define a proper system outputs, as in (4.6), such that the resulting internal dynamics is
BIBS stable and, possibly, its zero dynamics is asymptotically stable. Then the controlu is
designed such that|s| goes to zero in a finite time in spite of possible uncertainties.

Theorem 4.3.Consider system(4.17), (4.6). Assume that the corresponding internal dynam-
ics is BIBS stable, that the norm of its uncertain drift termA(x(t), t) is upper bounded by a
known function F: Rn → R+, such that

‖A(x(t), t)‖≤ F(x) (4.18)

and that the known square matrixG(x, t) = Jσ
x (x) ·B(x, t) ∈ R

q×q is non singular∀ x ∈
Vε , uniformly in time. Then, the setG in (4.2) is made finite time stable by means of the
control law

u(t) =−(F(x)‖Jσ
x ‖+η) · [G(x)]−1sign(s) with η > 0 (4.19)

�

Proof. The input-output dynamics of system(4.17), (4.6) is

ṡ(t) = Jσ
x (x) ·A(x, t)+G(x, t)u(t) (4.20)

Consider the positive definite function(4.7). Considering the time derivative of V along the
trajectories of system(4.20), and taking into account(4.19), (4.8) yields

V̇(s) = sT · (Jσ
x (x) ·A(x, t)− (F(x)‖Jσ

x ‖+η) ·sign(s)) =

=−η ·sT sign(s) =−η · ‖s‖1 <−η‖s‖2 < 0 (4.21)

�

Notice that, when the matrix control gainB(x, t) is uncertain, a similar theorem can be
proved if some condition aboutB is met.
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Figure 4.1: Filippov’s continuation method.

Theorem 4.4. Consider system(4.17), (4.6) and satisfying(4.18). Assume that the corre-
sponding internal dynamics is BIBS stable, that the uncertain gain matrixB(x, t) and the
guardG are such that the square matrixG(x, t) = Jσ

x (x) ·B(x, t) is positive definite and a
known boundΛm > 0 exists such that

Λm ≤ min
{

λG
i (x, t); i = 1,2, . . . ,q

}

∀ x ∈Vε , ∀ t ∈ R
+ (4.22)

whereλG
i (x, t) with i = 1,2, . . . ,q are the eigenvalues of matrixG(x, t). Then, the guardG

in (4.2) is made finite time stable by means of the control law

u(t) =−F(x)‖Jσ
x (x)‖+η
Λm

· s

‖s‖2
with η > 0 (4.23)

�

Proof. The proof follows the same steps than previous Theorem4.3. Define function V(s) as
in (4.7) and consider(4.20) and (4.23) into its time derivative(4.8). By (4.22) it results

V̇(s) = sT ·
(

Jσ
x (x) ·A(x, t)− F(x)‖Jσ

x (x)‖+η
Λm

G(x, t)
s

‖s‖2

)

≤

≤− η
Λm‖s‖2

·sTG(x, t)s≤−η‖s‖2 < 0 (4.24)

�

Notice that to overcome the presence of uncertain terms in the system model the con-
trol’s magnitude must be sufficiently large. The positive parameterη > 0 is a design param-
eter which guarantees the above mentioned reaching condition. In literature, several design
methods can be found [Utkin, 1992, Edwards & Spurgeon, 1998, Young et al., 1996, Bar-
tolini et al., 2008].

4.3.1 Filippov Continuation and Equivalent Control

When the system exhibits a sliding-mode behavior, the discontinuous control (4.19), or
(4.23), undergoes infinite-frequency switchings. The effect of the discontinuous and infinite-
frequency switching control on the system dynamics is the same as that of the continuous
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control which allows the state trajectory to remain on the sliding surface [Slotine et al.,
1991, Filippov, 1988, Utkin, 1992]. Considering the non linear system (4.1) with a scalar
input (for exampleq= 1), in [Filippov, ] it was shown that such a continuous dynamics is a
convex combination of the two vector fields

f1 = f(x,u1, t) , f2 = f(x,u2, t) (4.25)

defined on partitionS1 andS2, such that:

ẋ(t) = f0(x, t) (4.26)

with

f0 = α ·f1+(1−α) ·f2 with α =
∇σ ·f2

∇σ · (f2−f1)
σ = 0 (4.27)

The above approach to regularize differential equations with discontinuous right-hand side is
called the Filippov’s continuation method. A geometrical representation of this continuation
is shown in Figure4.1 where the discontinuity surface is defined byσ = 0 and the vector
fields forS1 (i.e. σ > 0 ) andS2 (i.e. σ < 0) aref1 andf2, respectively.

Extending those concepts to a generic control vectoru ∈Rq the continuous vector field
f0 allowing the continuation of the state trajectory onG is still a convex combination of the
2q vector fieldsfk = f(x,uk, t) with k= 1,2, . . . ,2q as in (4.26) where:

f0 =
2q

∑
k=1

αk ·fk with
2q

∑
k=1

αk = 1 (4.28)

As a remark, if the discontinuous right-hand-side of the differential equation defining the
system dynamics satisfies some geometric conditions, the Filippov’s continuation method
can be unambiguously defined onG [Bartolini et al., 2004]. Furthermore, recently explicit
formulas for the computation of coefficientsαk has been presented [Dieci & Lopez, 2009].
Those concepts are discussed with greater length in [Utkin, 1992]. Anyway the most in-
tuitively and appealing approach capable to descried the behavior of the system along the
sliding surface is the the method ofequivalent controlproposed in [Utkin, 1977]. In a few
words, the equivalent control is the control action necessary to maintain an ideal sliding
motion by nullifyingṡ; more formally:

ẋ(t) = f(x,ueq, t) (4.29)

ṡ=
∂

∂x
σ
(

x,ueq, t
)

·f(x,ueq, t) = 0 (4.30)

With reference to affine systems in (4.17), by nullifying (4.20), the equivalent control takes
the following expression

ueq(t) =− [G(x, t)]−1Jσ
x (x) ·A(x, t) (4.31)

Remark 4.3. It is worth to underline how the equivalent control approachand the Filippov’s
continuation method give the same results only for affine scalar control [Utkin, 1992] and for
a limited class of nonlinear systems[Bartolini & Zolezzi, 1985]. More recently in [Levaggi &
Villa, 2007, Bartolini et al., 2007b] has been proposed regularization approaches for wider
classes of nonlinear systems. �
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Notice that the non-singularity condition for theq-dimensional square matrixG(x, t)
implies that the sliding variable vectors has relative degree vectorr = (1, . . . ,1) with respect
to the control inputu (see i.e. Equation (6.5) in Chapter3). In other words, this means that
u explicitly appears at the first derivative ofs. This condition can be thought as a kind of
controllability condition [Slotine et al., 1991, Pisano & Usai, 2011].

It is worth to mention that if such a condition is not satisfied, then the control input
u could have relative degree higher than one. In literature, it is common to referred to this
kind of sliding mode algorithm to as Higher Order Sliding Mode (HOSM) [Emelyanov,
1959, Fridman & Levant, 1996, Levant, 1993a, Bartolini et al., 1998a, Bartolini et al., 2008].
In the next section those algorithm will be briefly discussed.

4.4 Higher-order sliding mode control

With reference to HOSM, a second order sliding mode (2-SM) appears when the differ-
ential inclusionV(x, t) defining the closed loop dynamics (4.1),(4.4) belongs to the tangen-
tial space of the sliding manifoldG defined accordingly to (4.2) as follows [Levant, 1993a]:

G2 = {x : σ̇(x) = σ(x) = 0} (4.32)

Therefore, extending this definition anr-SM behavior appears when the closed loop dynamic
are confined to the following manifold

Gr =

{

x :
dr−1

dt
σ(x) = · · ·= σ̇(x) = σ(x) = 0

}

(4.33)

whereσ : Rn →Rq is, again, a sufficiently smooth vector function andr represents the order
of the so-called sliding set. The following definition can benow presented:

Definition 4.1. [Levant, 1993a] Let the r-sliding set(4.33) be non-empty and assume that it
is locally an integral set in Filippov’s sense. Then the corresponding motion satisfying(4.33)
is called r-SM with respect to the constraint functionσ. �

Remark 4.4. Notice that HOSMC are difficult to design with respect to a general nonlin-
ear systems(4.1) because extends the sliding manifold(4.2) by using(4.33) for a generic
order r is not a trivial task, because, supposed q control variables available (i.e.u ∈ Rq), it
should results that condition(4.5) should be guaranteed with respect to the whole resulting
rq variablesσ , σ̇ , . . . ,σ r , which is impossible for a generic scenario. �

An affine time-independent structure for the nonlinear dynamics can be obtained by
considering an augmented dynamics in which the control input u is part of an augmented
vector state and its time derivativev = u̇ is the actual control to be designed:






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



·v (4.34)

in which ∂f/∂u is a full-rank matrix [Levant, 1993a]. Thus, when HOSM algorithms are
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considered, it is common to to refer to affine stationary nonlinear systems as

ẋ(t) = f(x)+g(x) ·u(t) (4.35)

wherex ∈ Rn is the state vector (possibly augmented),u ∈ Rq is the control input, possibly
the time derivative of the plant input,f : Rn → Rn andg : Rn → Rn×Rq are sufficiently
smooth vector fields and matrix, respectively, in the state space.

Remark 4.5. For many years the possibility of considering the time derivative of the plant
input as the discontinuous control variable, given by the implementation of second-order
sliding mode control systems, was considered an eligible approach to eliminate the chat-
tering phenomenon in real control systems, since the plant input results to be continuous
[Emelyanov, 1959, Levant, 1993a, Bartolini et al., 1998b]. Anyway, recently, it was proven
that chattering in real applications can not be removed but only attenuated because it is asso-
ciated to both nonideal/unmodeled actuator’s dynamics andmeasurement devices that cause
finite frequency switchings of the control command [Fridman, 2003, Boiko et al., 2004, Boiko
et al., 2006, Pilloni et al., 2012a, Lee & Utkin, 2007]. �

Proposition 4.1. Given the system dynamics(4.35), a r-SMC on the manifold(4.2) can be
designed if n= rq, LgLk

fσ = 0 ∀ k= 1,2, . . . , r −2) and LgLr−1
f σ has full rank. �

As discussend in [Pisano & Usai, 2011], the simplest way to implement a high order
sliding mode algorithms is to consider a proper linear combination of the functions defining
Gr as the output for system (4.35) by resorting to the so-called Dynamical sliding mode
control [Sira-Ramírez, 1993].

Theorem 4.5. [Pisano & Usai, 2011] Consider system(4.35) and the set(4.2). Define the
system output as

s= σ r−1+
r−2

∑
i=0

ciσ (i) (4.36)

where ci ∈ R+ are proper coefficients such that the polynomial P(p) = pr−1+∑r−2
i=0 ci pi is

Hurwitz. If the corresponding internal dynamics is BIBS stable and the system dynamics
fulfill the following conditions:

‖Lk
gσ‖ ≤ Λk(x) k= 1,2, . . . , r

LgLk
fσ = 0 k= 0,1,2, . . . , r −2 (4.37)

0< Λm ≤ min
{

λi

[

LgLr−1
f σ

]

(x, t); i = 1, . . . ,q
}

∀x ∈Vε , ∀t

whereΛk(x) : Rn → R
+ with k= 1,2, . . . , r are sufficiently smooth positive functions, and

Λm is a constant lower bound for the eigenvalues of the matrix LgLr−1
f σ , then the control

law

u(t) =−Λr(x)+∑r−2
i=0 ciΛi+1(x)+ν

Λm
· s

‖s‖s
(4.38)

with ν > 0, makes the integral manifold(4.33) asymptotically stable, and a rth-order sliding
mode on the manifoldG in (4.2) is established asymptotically. �

Proof. Conditions(4.37) and (4.37) fulfill Theorem4.4 and therefores = 0 is achieved
in a finite time Tr . From that time instant on the internal dynamics of variables σ (k) with
k= 0,1, . . . , r −1, is characterized by a linear dynamics whose stable modes are defined by
the Hurwitz polynomial P(p), and thereforeσ (k) → 0 ∀k= 0,1, . . . , r −1, asymptotically.�
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Notice that the above HOSM algorithm is, practically, an extension of classical first-
order sliding mode. Indeed the system state is forced onto a linear manifold in a new space
defined by the variables and theirr −1 time derivatives, and on such a manifold the origin
is reached asymptotically.

4.4.1 Second-order sliding mode control

In the following a brief presentation of the most used 2-SMC algorithms [Levant,
1993a], [Bartolini et al., 1999] respectively: the Generalized Sub-Optimal [Bartolini et al.,
1999] and the Super-Twisting [Levant, 1993a] algorithm is provided. For the sake of brevity
only the tuning rules will be provided without any proof. Thereader is referred to [Pisano &
Usai, 2011] and reference therein for further details.

4.4.2 The Generalized Sub-Optimal controller

Both thetwisting[Levant, 1993a] and thesub-optimalalgorithm [Bartolini et al., 1998b]
can deal with relative-degree two constraint variables. They are, both, special cases of the
general algorithm [Bartolini et al., 2003]

u(t) =−α(t)U sign(s−βsM) (4.39)

with

α(t) =

{

1 , if (s−sM)sM ≥ 0

α∗ , if (s−sM)sM < 0
β ∈ [0,1) (4.40)

whereU is the minimum control magnitude,α∗ is called themodulation factor, β is the
anticipation factor, andsM is the value of the sliding variables corresponding to the most
recent local minimum, maximum or horizontal flex point (i.e., the value of s at the last time
instanttM,k at which ṡ= 0 occurs).sM can be evaluated either by checking sign(ṡ) or, by
inspection of the past values ofs(t), or, approximately, by inspection of the first-difference
of s(t); in last two cases no information about ˙s is needed.U , α∗, andβ are the controller
parameters, that must be tuned to assure the finite time convergence onto the sliding setG2
in (4.32).

Theorem 4.6.Consider system(4.35) and define its output as(4.6) with q= 1. If the system
dynamics fulfill the following conditions:

‖Λ2
fσ‖ ≤ Λ

Lgσ = 0 ∀x ∈Vε ∀t

0< Γm ≤ LgLfσ ≤ ΓM

(4.41)

whereΛ, Γm, ΓM are known positive constants, then the control law(4.39)-(4.40) with

U ≥ Λ
Γm

, α∗ ∈ [1,+∞)∩
(

2Λ+(1−β )ΓMU
(1+β )ΓmU

,+∞
)

(4.42)

guarantees the finite time stability of the integral manifold (4.32), and a2nd-order sliding
mode is established onG. �
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Notice that by settingβ = 0 the control law (4.39)-(4.40) causes the system to have the
same trajectories of the well known twisting algorithm [Levant, 1993a] defined as follows:

u(t) =−α1sign(s)−α2sign(ṡ) (4.43)

with α2 =U andα1 = α∗U . The convergence conditions for this 2-SMC are easily obtained
by settingβ = 0 in (4.42) and

U >
Λ

Γm
, α∗ ≥ 2Λ+ΓMU

ΓmU
(4.44)

Whereas, by settingβ = 0.5 the Sub-Optimal SMC algorithm takes place [Bartolini
et al., 2003].

4.4.3 The Super-Twisting controller

The so-called Super-Twisting algorithm is conceptually different from the other 2-SMC
algorithms, for two reasons: first, it depends only on the actual value of the sliding variable,
while the others have more information demand. Second, it iseffective only for chattering
attenuation purposes as far as relative degree one constraints are dealt with. It is defined by
the following dynamic controller [Levant, 1993a]:

u(t) = v(t)−λ |s(t)|
1
2 sign(s(t))

v̇(t) = −α sign(s(t))
(4.45)

whereu(t) ∈ R is the input of system (4.35) with q= 1 ands(t) ∈ R is the sliding variable
(i.e., the system output) (4.6) measuring the distance of the system from the sliding surface
G in (4.2).

Theorem 4.7. Consider system(4.35), define its output as(4.6) with q= 1 and assume
that its trajectories are infinitely extendible in time for any bounded feedback control. If the
system dynamics fulfill the following conditions:

∣

∣

∣
L2
fσ +

(

LfLgσ +LgLfσ
)

u+L2
gσu2

∣

∣

∣
≤ Λ

0< Γm ≤ Lgσ ≤ ΓM

∀x ∈Vε , ∀t (4.46)

whereΛ, Γm, ΓM are known positive constants, then the control law(4.45) with

α > Λ
Γm

λ 2 > 2αΓM+Λ
Γm

(4.47)

guarantees the finite time stability of the integral manifold (4.32), and a2nd-order sliding
mode is established onG. �

4.4.4 Arbitrary order sliding mode controllers

Consider the problem of finite time stabilization of arth-order sliding mode for system
(4.35) satisfying Proposition4.1with q= 1. Because of the difficulties in definingr-sliding
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controllers withr = 3 only recently some results are available for this case [Levant, 2005,
Bartolini et al., 2002, Bartolini et al., 2007a, Kryachkov et al., 2010]. Worth of noting the
work of Levant [Levant, 2005] where arbitrary order sliding mode controllers have been
developed. The key idea was to recursively built, a r-order controller which embed its(r−1)-
order one. The requirement of this approach if the availability of the sliding variable and its
time derivatives up to the(r −1)th order.

Let mbe the least common multiple of 1,2, . . . , r and define the following quantities

Ni,r =

(

i−1

∑
k=0

∣

∣

∣
s(k)
∣

∣

∣

m
r−k

)
r−i
m

with i = 1,2, . . . , r −1 (4.48)

and
{

φ0,r = s

φi,r = s(i)+βiNi,r sign(φi−1,r) with i = 1,2, . . . , r −1
(4.49)

The following Theorem provide conditions for achieving finite-time stability for an arbitrary
relative degree system as in (4.35).

Theorem 4.8. [Levant, 2005] Consider system(4.35) (4.6), with q= 1, and assume that its
trajectories are infinitely extendible in time for any Lebesgue-measurable bounded feedback
control. Then, if the following conditions hold for some constantsΛr , Λm andΛM

‖Λr
fσ‖ ≤ Λr

LgLk
fσ = 0 k= 1,2, . . . , r −2

0< Γm ≤ LgLr−1
f σ ≤ ΓM ∀x ∈Vε ,∀t

(4.50)

then, with properly chosen positive parametersβ1,β2, . . . ,βr−1, α, the controller

u=−α ·sign
(

φr−1,r(s, ṡ, . . . ,s
(r−1))

)

(4.51)

whereφr−1,r is defined in(4.48) and (4.49), makes the integral set(4.33) finite time stable
and a r-sliding mode on the manifoldG in (4.2) is established. �

Proof. See [Levant, 2005]. �

The above Theorem determines a controller family (4.51) applicable to all systems
of the type (4.35) (4.6) , with q = 1 and relative degreer, satisfying (4.50). Parameters
β1,β2, . . . ,βr−1 affect the reaching time and are to be chosen sufficiently large in index or-
der. Such a parametersβi can be preliminarily chosen for eachr in advance, while parameter
α must be chosen specifically on the knowledge, or estimation,of the boundsΛr , Γm andΓM

of the uncertain dynamics. The controller performance is insensitive to any system perturba-
tion preserving these bounds. For complexness, in the following few examples of arbitrary
order sliding controllers up to orderr = 3 are provided:

r = 1 u=−α ·sign(s) (4.52)

r = 2 u=−α ·sign
(

ṡ+ |s| 1
2 sign(s)

)

(4.53)

r = 3 u=−α ·sign

(

s̈+2
(

|ṡ|3+ |s|2
)

1
6 sign(s)

)

(4.54)
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4.5 Chattering Analysis in High-Order Sliding Mode

As well known, the main drawbacks of classical first-order Sliding Modes (1-SM) are
principally related to the so-called chattering effect [Utkin & Guldner, 1999, Boiko, 2003].
The main cause of chattering has been identified as the presence of unmodeled parasitic
dynamics in the switching devices [Gonçalves et al., 2001, Boiko, 2009]

Three main approaches to counteract the chattering phenomenon in SMC systems were
proposed in the mid-eighties:

• the use of a continuous approximation of the relay [Burton & Zinober,
1986];

• the use of an asymptotic state-observer to confine chattering in the observer
dynamics bypassing the plant [Bondarev & Utkin, 1985];

• the use of higher-order sliding mode control algorithms [Emelyanov, 1959]

The main drawbacks of the continuous approximations and of the observed-based ap-
proach are the deterioration of accuracy and system robustness [Boiko et al., 2006]. In recent
papers [Fridman, 2003, Boiko, 2003, Boiko et al., 2006, Boiko et al., 2004, Pilloni et al.,
2012a] it has been shown that even the 2-SM algorithms suffer from chattering if parasitic
dynamics are present increasing the system relative degree. In literature there are two main
approaches to chattering analysis: the time-domain analysis of the system dynamics or the
use of frequency-domain techniques. Preliminary results regarding the time-domain analysis
of chattering in 2-SMC systems were presented in [Boiko et al., 2006].

Anyway, when linear plants are considered frequency-domain techniques can be used to
assess the existence and stability of periodic solutions. The Tsypkin locus method [Tsypkin,
1984] and the recently proposedLocus of a Perturbed Relay System(LPRS) [Boiko, 2009]
provides exact values of the amplitude and frequency of chattering. An approximate analysis
method based on the Describing Function (DF) technique could be useful whenever the
low-pass filtering condition is satisfied [Atherton, 1975]. The DF method has already been
used to estimate the frequency and the amplitude of the periodic motions in the 1-SMC
systems [Shtessel & Lee, 1996]. The results obtained via the use of exact frequency-domain
techniques feature a satisfactory correspondence with those obtained via the approximate DF
method [Boiko, 2003].

With the aim to support the treatment presented in Chapter5, in which a systematic DF-
based tuning procedure for mitigate the unavoidable oscillations in control loop controlled
by the Super-Twisting Algorithm when the overall relative degree of the plant is greater
than one; in the following some notes about the analysis in the frequency domain of the
well known generalized sub-optimal 2-SMC algorithm [Bartolini et al., 1998a] are provided.
Notice that, in order to take into account both the Twisting,the Sub-Optimal and even the
classical first order SM the generalized sub-optimal 2-SMC algorithm in (4.39) has been
considered.
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Figure 4.2: DF-analysis in the complex plane.

4.5.1 Describing-function analysis of the generalized sub-optimal algo-
rithm

A way for evaluating self-sustained oscillation in SISO control loops controlled by the
GSO algorithm (4.39) when the overall relative degree of the plant plus the actuator is three
or more is presented in [Boiko et al., 2006]. The idea is to study the solution of the so-called
Harmonic Balance[Vander Velde, 1968] presented below:

1+N(ay) ·W( jω) = 0 (4.55)

whereW( jω) = Y( jω)/U( jω) is the transfer function of the plant, supposed to be stable
andN(ay) is the DF of the GSO algorithm withay defined as the amplitude of the periodic
motion.

The DF of the GSO algorithm is [Boiko et al., 2006] :

N(ay) =
2U
πay

[

(α∗+1)
√

1−β 2+ j · [(α∗+1)+β (α∗+1)]

]

(4.56)

As known, a periodic solution can appear if the negative reciprocal of the DF (4.56) in-
tersects the Nyquist plot of the plant’s harmonic responseW( jω). Therefore by substituting
(4.56) into (4.55), and separating the resulting complex equation in its magnitude and phase,
the following well-posed system takes place:

M = |W( jΩ)|= πay

2
√

2U
√

α∗(1+β )+(1−β )
(4.57)

ψ = atan

(

(α∗−1)+β (α∗+1)

(α∗+1)
√

1−β 2

)

(4.58)

from which it is possible evaluate the amplitudeay and the frequencyΩ of the chattering.
The resulting locus in the Nyquist Plane described by the system of equations (4.57)-(4.58)
is depicted in Figure4.2, whereM andψ are respectively the magnitude and the phase of
the plant’s transfer functionW( jΩ) at the frequency of the steady-state periodic motionΩ.
As shows in Figure4.2 periodic oscillations can occur only if the overall relative degree of
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Figure 4.3: Level sets of (continuous lines) andMU/ay (dotted lines) in the(β ,α∗) plane.

the plant is three or more. Indeed only in this case the−N(ay)
−1 in (4.56) andW( jω) can

present an intersection.

As discussed in [Boiko et al., 2006], equations (4.57)-(4.58) can be also employed to
impose some prescribed constraints on the amplitudeay and the frequencyΩ of the steady-
state periodic oscillation by choosing properly the parameter of the GSOα∗ and β (see
(4.35)). Notice that the direct use for design of the nonlinear formulas (4.57)-(4.58) can be
avoided by using the chart depicted in Figure4.3 and by applying the following three-step
tuning procedure:

Procedure 4.1.

A. Letω1 ≤ Ω ≤ ω2 be the desired range for the periodic solution frequency;
B. Evaluateψ1 =−π −arg{W( jω1} andψ2 =−π −arg{W( jω2};
C. Identify in the table reported in Fig. 4 proper values for the parametersα∗

andβ such thatψ1 ≤ ψ ≤ ψ2 while maximizing MU/ay.

Notice that, maximizingMU/ay means minimizing the oscillation amplitudeay, is
achieved by increasingβ [Boiko et al., 2006].

4.6 Conclusion

In this Chapter a brief survey on Sliding Mode Control (SMC) Theory based on the
work [Pisano & Usai, 2011] has been provided. Throughout the Chapter the basic notionon
Sliding Modes Control Theory in dynamical systems with discontinuous right-hand side has
been discussed with particular emphasis to the problem of robust stabilization of perturbed
nonlinear systems. In particular, notion on Filippov Continuation and Equivalent Control
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and Chattering Analysis have been introduced in order to provide to the reader the necessary
notion for understanding the treatment presented in the following Chapters. Furthermore the
main Higher-Order Sliding Modes algorithm such as the Super-Twisting [Levant, 1993a], the
Twisting [Levant, 1993a, Orlov, 2008], Suboptimal [Bartolini et al., 1998b] and the Arbitrary
order sliding mode algorithm [Levant, 2005] are presented.
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Chapter 5

Chattering adjustment and Tuning of the
Super-Twisting Algorithm

As discuss in Chapter4 the chattering phenomenon is one of the main drawbacks in the
area of sliding mode control and discontinuous-based control [Slotine et al., 1991].

Due to the extensively use of High Order Sliding Mode in all the reminder of the Thesis,
the purpose of the present Chapter is to illustrate a systematic procedure for tuning the pa-
rameters of the Super-Twisting Algorithm when the plant’s relative degree is higher than one,
for example due to the presence of unmodeled parasitic dynamics [Pilloni et al., 2012a, Pil-
loni et al., 2012b]. Indeed in that case self-sustained periodic oscillationtakes place in the
feedback loop. Notice that the topic of this Chapter is not strictly related to the framework of
distributed systems. Anyway, it is reasonable thinking that when discontinuous control ac-
tion are applied for controlling real network of systems, due to the unavoidable presence of
parasitic dynamics and the coupling among the systems operating over a network, complex
phenomenon such us chattering can appear [Ameri & Boiko, 2013].

The proposed methodology is based on the Describing Function (DF) and requires only
the prior knowledge of the plant’s Harmonic Response (magnitude and phase) at the de-
sired chattering frequency. In the following, it will be theoretically illustrated and verified by
means of, both, simulative results and experiments carriedout by making references to a DC
motor.

5.1 Introduction

The main drawbacks of classical relay-based SMC (also called “first-order" SMC, or
1-SMC) are principally related to the so-called chatteringeffect [Utkin & Guldner, 1999],
i.e. undesired high-frequency steady-state vibrations affecting the variables of the plant. To
mitigate the chattering effect, a possible solution is the use of higher-order sliding mode con-
trol algorithms (HOSM) [Bartolini et al., 1998b, Levant, 2003], a set of advanced algorithms
that constitute the core of modern SMC theory [Bartolini et al., 2008].

In the literature there are two main approaches to chattering analysis that provide an
exact solution in terms of magnitude and frequency of the periodic oscillation:
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• time-domain analysis by Poincare Maps (see [Gonçalves et al., 2001]);
• frequency domain techniques as Tsypikin Locus (see [Tsypkin, 1984]),

and LPRS Method (see [Boiko, 2009]).

Anyway, all these approaches require lengthy computations. Therefore, the application
of approximate analysis methods has been found useful whenever the plant under analysis
fulfill the filtering hypothesis [Atherton, 1975]. Under this hypothesis, the Described Func-
tion (DF) method is a well-established approach. In fact it has already been used to analyze
periodic motions for both 1-SMC [Shtessel & Lee, 1996] and second order SMC (2-SMC)
systems [Boiko et al., 2005, Boiko et al., 2004, Boiko et al., 2006], and the results obtained
via the use of exact techniques often feature a satisfactorysimilarity with those obtained via
the approximate DF method [Boiko, 2003].

In this Chapter the attention has been focused on one of the most popular second or-
der sliding mode algorithms known as Super-Twisting algorithm (STW) [Levant, 1993a].
Among the reasons for the popularity of the STW algorithm, its similarity with the conven-
tional PI and the fact that it gives rise to a continuous control law are worth to mention.
Whenever applied to linear plants with relative greater than one, STW controlled systems al-
ways exhibit chattering [Boiko et al., 2005] in the form of periodic oscillations of the output
variable.

In the following a DF-based procedure for selecting the algorithm parameters in order
to assign prescribed values to the frequency and amplitude of chattering is presented. The
ability to affect the frequency of the residual steady stateoscillations may be useful, for
example, to mitigate resonant behaviors.

This Chapter is organized as follows sections: Section5.2and5.3present the STW al-
gorithm and recall its DF-Based analysis [Boiko et al., 2005]. Section5.4states the problem
under investigation and presents the tuning procedure for setting the parameters of the STW
algorithm in order to assign prescribed amplitude and frequency to the periodic chattering
motion. In Sections5.5and5.6the proposed tuning procedure is verified by means of simu-
lations and experimental tests. Section5.7 provides some concluding remarks and hints for
next research.

5.2 Motivations

Conventional Proportional-Integral (PI) controllers areundoubtedly the most employed
controllers in industry. Main advantages of classical PIs are their simplicity, satisfactory
performance for “slow" processes, and the availability of effective automatic tuning rules,
such as the Ziegler-Nichols or Astrom-Hagglund methods [Astrom & Hagglund, 2005]. In-
ternal model principle establishes their capability of providing the asymptotic rejection of
constant disturbances and zero steady-state error for constant set-point signals. However, PI
controllers may behave unsatisfactorily in presence of strong nonlinearity effects (i.e. fric-
tion, hysteresis, backlash) and/or rapidly varying set-point and disturbance signals.

Here performances of linear systems controlled by means of anonlinear version of a
PI known as “Super-Twisting" (STW) Algorithm (see [Levant, 1993a]) will be investigated.



5.2. Motivations 60

Figure 5.1: Block diagram of a linear plant with the Super-Twisting Algorithm.

Figure 5.2: Architecture Comparison between linear (left)and nonlinear PI.

The considered controller is described as follows

u(t) = u1(t)+u2(t) , (5.1)

u̇1 =−γ sign(σ) , u1(0) = 0 , (5.2)

u2 =−λ | σ | 1
2 sign(σ) , (5.3)

whereλ , γ are positive design parameters. As known this algorithm belongs to the family of,
so-called,Second Order Sliding Modecontrollers. A block scheme representing its structure
is depicted in Figure5.1. As we can see, the similarity between the classical PI controller
and the STW algorithm (5.1)-(5.3) are evident (see Figure5.2) in that they both possess a
static component (a constant proportional gain, for the PI,and a nonlinear gain with infinite
slope at the origin for the nonlinear PI) and an integral action (error integration for the PI,
and integration of the sign of the error variable for the nonlinear PI).

Particularity of the STW controller is that it gives rise to acontinuousnon-smoothcon-
trol action which possesses significant robustness properties against nonlinearities, uncer-
tainties and disturbances. In recent years it has became themost studied SMC algorithm and
it has been applied to address control, estimation and faultdetection tasks for some classes
of linear and nonlinear processes (see [Fridman et al., 2007a, Fridman et al., 2008, Pilloni
et al., 2012c]).

Whenever applied to systems (possibly nonlinear) having relative degree one, the STW
algorithm provides:

• rejection of smooth disturbances of arbitrary shape;
• tracking of smooth references of arbitrary shape;
• finite-time convergence to the set-point.
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Figure 5.3: Decomposition of the arbitrary relative degreeplantW(s).

Although the STW algorithm guarantees the finite-time exactconvergence for a rather
limited class of plants having input-output relative degree one, it was proved its “practical
stability" for a wider class of arbitrary relative degree systems admitting a certain decom-
position (see [Levant & Fridman, 2010]). In particular, the following theorem holds once
the considered dynamics is formed by the cascade of a stable actuator, of arbitrary relative
degree, and a relative degree one dynamics.

Theorem 5.1.Consider a LTI plant W(s) =Y(s)/U(s), admitting the decomposition shown
in Figure 5.3, where H(s) = Z(s)/U(s) is an asymptotically stable dynamics with arbitrary
relative degree, with the positive coefficientµ scaling its poles as an equivalent time con-
stant, and G(s) is of relative degree one. Then, the feedback control systemin Figure 5.1
provides the following steady-state condition

|σ |< O(µ2) . (5.4)

�

Theorem5.1 follows from [Levant & Fridman, 2010], Lemma 1. The motion within
theO(µ2) boundary layer (5.4), established in Theorem5.1, proves to be periodic, thereby
amenable to be investigated by means of the DF concept (see, e.g. [Atherton, 1975]).

5.3 Super-Twisting Algorithm and its DF Analysis

Consider a linear SISO system, described by the following state-space representation
which comprises principal and parasitic dynamics:

{

ẋ(t) = Ax(t)+Bu(t), x ∈ Rn, u∈ R

y(t) = Cx(t), y∈ R
, (5.5)

whereA,B,C are matrices of appropriate dimensions,x is the state vector,u is the actuator
input, andy the plant output. Consider the plant description in the formof transfer function
as follows

W(s) =
Y(s)
U(s)

=C (sI−A)−1B . (5.6)

Assuming that the plant transfer function satisfies the filtering hypothesis property. Us-
ing the STW algorithm (5.1)-(5.3), the control system under analysis can be represented in
the form of the block diagram in Figure5.1 whereσ(t) = r(t)− y(t) is the error variable.
The DF of the nonlinear function (5.3) was derived in [Boiko et al., 2005] as follows:

N2(ay) =
2λ

π√ay

∫ π

0
(sinψ)

3
2dψ =

2λ
√πay

Γ(1.25)
Γ(1.75)

≈ 1.1128
λ

√
ay
, (5.7)
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whereay is the oscillation amplitude of the error variableσ , to be determined, andΓ(·) is the
Euler’s Gamma function. The DF of the nonlinear integral component (5.2) can be written
as follows:

N1(ay,ω) =
4γ

πay

1
jω

, (5.8)

which is the cascade connection of an ideal relay (with the DFequal to 4γ/πay (see [Ather-
ton, 1975])), and an integrator with the frequency response 1/ jω. Taking into account both
control components in (5.1), the DF of the STW algorithm (5.1)-(5.3) can be finally written
as

N(ay,ω) = N1(ay,ω)+N2(ay) =
4γ

πay

1
jω

+1.1128
λ

√
ay

. (5.9)

Let us note that the DF of the STW algorithm depends on, both, the amplitudeay and fre-
quencyω of the periodic solution.

In general, the parameters of the periodic limit cycle can beapproximately found via
the solution of the following complex equation

1+W ( jω) ·N(ay,ω) = 0 , (5.10)

so-called,harmonic balance[Atherton, 1975]. The harmonic balance equation (5.10) can be
rewritten as

W ( jω) =−N−1 (ay,ω) , (5.11)

and a periodic oscillation of frequencyΩ and amplitudeAy exists when an intersection be-
tween the Nyquist plot of the plantW( jω) and the negative reciprocal DFN−1(Ay,ω) occurs
at ω = Ω. Thus, the parameters of the limit cycle can be found via solution of (5.10) where
the DF is given by (5.9). The negative reciprocal of the DF (5.9) can be written in explicit
form as

− 1
N

=−
0.8986

√
ay

λ + j1.0282 γ
ωλ 2

1+ 1.3091
ay

( γ
ωλ
)2 . (5.12)

It is of interest to plot the negative reciprocal of the DF (5.12) in the complex plane. It
depends on the two variablesay andω; which are both nonnegative by construction. It is
clear from (5.12) that with positive gainsλ andγ the locus is entirely contained in the lower-
left quadrant of the complex plane when the variablesay andω vary from zero to infinity. In
Figure5.4, the curves obtained forλ = 0.6 andγ = 0.8, some valuesω = ωi , and by letting
ay to vary from 0 to∞ are displayed.

5.3.1 Existence of the Periodic Solution

DenotedAy andΩ the amplitude and the and the frequency of the periodic oscillation
which solves the harmonic balance, then (5.10) can be rewritten as

N (Ay,Ω) =W−1( jΩ) , (5.13)

which, considering (5.9), specializes to

4γ
πAy

1
jΩ

+1.1128
λ
√

Ay
=−W−1( jΩ) . (5.14)
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Figure 5.4: Plots of the negative reciprocal DF (5.12) for different values ofω.

Separating the complex equation (5.14) in its real and imaginary parts it yields














1.1128 λ√
Ay

=−ℜW−1( jΩ)

4γ
πΩ

1
Ay

= ℑW−1( jΩ)

. (5.15)

ObtainingAy from the first of (5.15) and substituting this value in the second equation of
(5.15), it yields

4γ
πΩ

1
ℑW−1( jΩ)

−
(

1.1128λ
−ℜW−1( jΩ)

)2

= 0 , (5.16)

which allows to compute the frequencyΩ. Solution of (5.16) cannot be derived in closed
form, and a numerical, or graphical, approach is mandatory.

Once obtainedΩ , the amplitude of the periodic solution can be expressed as

Ay =
4γ
πΩ

1
ℑW−1( jΩ)

. (5.17)

As noticed in [Boiko et al., 2005], a point of intersection between the Nyquist plot of
the plant and the negative reciprocal of the STW DF (5.9) always exists if the relative degree
of the plant transfer function is higher than one, and this point is located in the third quadrant
of the complex plane. From Figure5.4, it is also apparent that the frequency of the periodic
solution induced by the STW is always lower than the frequency of the periodic motion for
the system controlled by the conventional relay.

The orbital asymptotic stability of the periodic solution can be assessed using theLoeb
Criterion (see [Atherton, 1975, Vander Velde, 1968]), that is not mentioned here for the sake
of brevity.
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5.4 Problem Formulation and Proposed Tuning Procedure

5.4.1 Problem Formulation

Consider the feedback control system in Figure5.1, where the plant is modelled by an
unknown transfer functionW(s) having relative degree greater than one. Given the steady-
state performance requirements in terms of desired frequency Ωd and amplitudeAyd of the
chattering motion, tuning procedure, based on the DF method, devoted to derive constructive
controller tuning rules for the algorithm (5.1)-(5.3) will be defined.

To begin with, let us substitute (5.12) into (5.11) and rewrite the harmonic balance
equation as

W( jω) =−
c1

a1.5
y

λ

ay+c3
( γ

ωλ
)2 − j

c2
ayγ
ωλ 2

ay+c3
( γ

ωλ
)2 , (5.18)

with c1 = 0.8986,c2 = 1.0282,c3 = 1.3091. Let

K1(ω) =
γ
ω

, K2(ω) =
γ

ωλ
. (5.19)

Multiplying both sides of (5.18) by γ/ω, it results

K1(ω)W( jω) =−
c1a1.5

y K2(ω)

ay+c3K2
2 (ω)

− j
c2ayK2

2 (ω)

ay+c3K2
2 (ω)

. (5.20)

Once considered the design requirementsay = Ayd and ω = Ωd, separating the complex
equation (5.20) in its magnitude and phase as follows

K1(Ωd) |W ( jΩd)|=

√

√

√

√

c2
1A3

yd
K2(Ωd)+c2

2A2
yd

K2(Ωd)
(

Ayd +c3K2
2 (Ωd)

)2 (5.21)

arg{W ( jΩd)}= atan

{

c2K2(Ωd)

c1
√

Ayd

}

(5.22)

it results a well-posed system of equations, whereKd
1 = K1(Ωd) andKd

2 = K2(Ωd) are the
two unknowns. The magnitude and phase ofW ( jω) at the desired chattering frequencyΩd

can be identified by a simple test on the plant. Therefore, solving (5.21)-(5.22), and then
considering (5.19) with ω = Ωd, the controller parametersλ andγ that guarantee a steady-
state periodic motion with desired characteristics can be derived. Corresponding formulas
are















γ = ΩdKd
1

λ = γ
ΩdKd

2
=

Kd
1

Kd
2

(5.23)

Direct solution of the nonlinear equations (5.21)-(5.22) can be avoided. By following a
graphical approach it is convenient to refer to the curves inFigure5.5, where each curve rep-
resents a specific instance of the right-hand side of (5.20) in the complex plane, for different
values ofAyd , by lettingK2 to vary from 0 to∞. Drawing in the abacus a segment connecting
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Figure 5.5: Level sets of the right-hand of (5.20) for different values ofay.

the origin of the complex plane and the pointP of the curve associated toAyd, with phase
equal to arg{W( jΩd)} (see Figure5.8), the length of the segmentOP which corresponds to
the right-hand side of (5.21) can be easily extrapolated. Then, once knownOP, Kd

1 andKd
2

can be computed by the following relationship:



























Kd
1 =

√

√

√

√

c2
1A3

yd
K2(Ωd)+c2

2A2
yd

K2(Ωd)

(Ayd+c3K2
2(Ωd))

2

|W( jΩd)| = OP
|W( jΩd)|

Kd
2 =

c1
√

Ayd
c2

tan{arg{W ( jΩd)}}

(5.24)

Remark 5.1. It is important to underline that the intersection between the Nyquist plot of
W( jω) and−N−1(ay,ω) always lies in the lower-left quadrant of the complex plane,so the
desired frequency of chattering oscillationΩd must satisfy the sector condition

Ω1 < Ωd < Ω2 (5.25)

where
arg{W ( jΩ1)}=

π
2

, arg{W ( jΩ2)}= π (5.26)

�

Remark 5.2. The right-hand side of (5.20) is independent of the plant transfer function.
Therefore the set of curves in Figure5.5represents anabacus, independent of the plant, too,
hence very useful to simplify the solution of (5.20). �
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5.4.2 Proposed Tuning Procedure

Given alow-pass plant with relative degree greater than one, the proposed procedure
can be summarized as follows:

Procedure 5.1.

A. Let Ayd andΩd be the desired chattering characteristics;
B. Evaluate by an harmonic response test on the plant the quantities|W( jΩd)|

andarg{W( jΩd)} and check ifπ/2< arg{W( jΩd)}< π , otherwise chose
a different value forΩd and go back to step A;

C. Draw in the abacus a segment connecting the origin and the point P of the
curve ay = Ayd with phase equal toarg{W( jΩd)};

D. Use (5.23) to computeλ andγ.

5.5 Simulation Results

In order to outline the proposed methodology, consider the cascade connection of a
linear plantG(s) and a stable actuatorH(s), such that the relative degree ofW(s) = H(s) ·
G(s) is greater than one, i.e.:

G(s) = s+1
s2+s+1

, H(s) = 1
(µs+1)2 ,

W(s) = H(s) ·G(s) , µ = 1/50 .

(5.27)

Let us apply Procedure5.1to shape the steady-state permanent oscillation of the closed-loop
system with the STW algorithm.

A. Let Ayd = 0.05 andΩd = 25 rad/sec;
B. By frequency response test it results:

|W( jΩd)| ≈ 0.032 , arg{W( jΩd)} ≈ −143.14 deg ;

C. Drawing the segmentOP in the abacus until it intersects the curve associ-
ated toayd (see Figure5.8), it results

OP=
√

(−0.01882)2+(−0.01414)2 = 0.0235 ;

D. Using (5.24) and (5.19) obtain

λ = 5.0119 , γ = 18.3575 . (5.28)

In Figure5.6, some simulation results are shown. Signaly1(t) represents the closed-loop
unit-step response of the plant (5.27) with control parameters (5.28). Signaly2(t) represent
the output signal obtained using the reduced valueµ = 1/100 for the actuator time constant
parameter. The bottom left zoomed sub-plot confirms that thesteady-state chattering motion
fulfills the given specification of amplitude and frequency.The bottom right sub-plot shows
that the chattering amplitudeay is 4 times smaller, according to Theorem5.1. The achieved
results fully agree with the presented analysis.
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Figure 5.6: Step response of the plantW(s) in closed-loop with STW parametersλ = 5.0119,
γ = 18.3575.

5.6 Experimental Results

The proposed method has been experimentally tested with reference to the position
control of a commercial DC Motor. In Figure5.7the experimental setup is shown.

As first step (Step A), the desidered frequency and magnitudeof the periodic oscillation
were set as

Ayd = 0.05 , Ωd = 50 rad/sec . (5.29)

Then, by an harmonic test (Step B), the following values are obtained

|W( jΩd)| ≈ 0.0081 , arg{W( jΩd)} ≈ −138.7 deg . (5.30)

Afterwards, by the abacus in Figure5.8(Step C) results

OP=
√

(−0.0195)2+(−0.0171)2 = 0.0259 (5.31)

from which, (Step D) the designed gains for the nonlinear PI (5.1)-(5.3) are

λ = 18.64 , γ = 159.99 . (5.32)

In Figure5.9, the closed-loop unit-step response of the motor with control parameters
(5.32) is displayed. It can be checked that the actual amplitude and frequency of the oscilla-
tion closely match the desired ones. A second experiment hasbeen made by evaluating the
parameters giving rise to a periodic oscillations having the same frequencyΩd = 50 rad/sec
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Figure 5.7: Experimental set-up with FAULHABERr DC Micromotor Series 3557 024 CS.

Figure 5.8: Example of abacus utilization for the systemW(s) (5.27).

and a different, bigger, amplitudeAyd = 0.07. By repeating the suggested tuning procedure,
the next controller parameters were obtained

λ = 20.05 , γ = 223.99 . (5.33)

The results of the corresponding experiment are shown in theFigure5.10, which shows,
again, an almost perfect matching between the actual and expected characteristics of the
steady state oscillation.

5.7 Conclusions and Future Works

A describing function approach for tuning a feedback control system with a linear plant
driven by STW algorithm has been presented. It allows to shape the characteristics of the
chattering motion that occurs when the linear plant has a relative degree greater than one,
for example due to the presence of parasitic unmodeled dynamics. A constructive procedure
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Figure 5.9: Experimental step response of the DC-Motor in closed-loop withλ = 18.64,
γ = 159.99.

Figure 5.10: Experimental step response of the DC-Motor in closed-loop withλ = 20.05,
γ = 223.99.

for determining in advance the periodic solution parameters (frequency and amplitude) has
been developed and tested by means of both computer simulations and experiments. Among
some interesting directions for improving the present result, the analysis, and shaping, of the
transient oscillations is of special interest. The mathematical treatment presented in [Boiko,
2011] and thedynamic harmonic balanceconcept in particular, could be a possible starting
point to this end.



Chapter 6

Decentralized Estimation in Complex
Network

This Chapter considers the problem of state estimation and unknown input reconstruc-
tion of a class of connected heterogeneous perturbed LTI MIMO systems. Local high or-
der sliding mode observers at each node of the network are designed for this purpose. The
proposed method, under some network structural conditions, is inherently robust, nonlinear
and totally independent of the time-varying network topology. Knowledge of the number
of nodes that belong to the network is not required. At the supervisory level, decentralized
control signals are computed based on the state estimates inorder to operate the network-
ing synchronization. By mean of simulation, the effectiveness of the proposal procedure is
shown.

6.1 Introduction

Control applications in distributed and cooperative environments has been a subject
growing interest in the last decades becoming one of the mostimportant research fields in the
control and decision theory (see [Šiljak, 1991]). Analysis and control of complex behaviors
in large networks attracted the attention of researcher from different fields; an overview of
the problems related to networks of dynamic systems is givenin [Newman et al., 2006], and
contribution in synchronization of networks and in cooperative control can be found in [Wu,
2007].

Complex networks are usually characterized by several distinctive properties including
complexity, topological structure, dynamical evolution,time-varying coupling strengths and
interactions between nodes. The first model of networks was proposed in [Erdős & Rényi,
1960] (ER-Model). In that model each pair of elements was randomly connected with the
same probability. However in the real world, connectivity between each element is neither
completely regular nor completely random. Thanks to Watts and Strogatzs (WS-Model) a
more realistic representation has been given (see [Watts & Strogatz, 1998]). Another sig-
nificant recent discovery in the field of complex networks is the observation that a number
of large-scale and complex networks are scale-free, that is, their connectivity distributions
have the power-law form (see [Barabási et al., 1999]). In this work, a scale-free dynamical
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network representation, consistent with [Wang & Chen, 2002a], will be utilized.

The motivation for the present work is to increase the level of autonomy for a class
of scale-free networks composed of heterogeneous systems created to perform synchroniza-
tion on a common reference trajectory. Network of mobile robots, unmanned aerial vehicle,
satellites and localization systems are just some examplesof cooperative systems (see [Frew
et al., 2005b]). It is noteworthy that in autonomous application, the agents are often mon-
itored at a supervisory level, and in most cases a supervisory level node use to drive the
systems (see [Frew et al., 2005b, Edwards & Menon, 2008]).

A great deal of attention has been paid to the problem of decentralized state-space es-
timation in complex networks. Motivated by a large amount ofimportant practical prob-
lems, the estimation of uncertain systems has become an important area of research. Such
problem arises in systems subject to disturbances or with inaccessible or unmeasurable in-
puts and in many applications such as fault detection isolation [Pilloni et al., 2012c, Pilloni
et al., 2013c, Floquet et al., 2004, Edwards et al., 2000, Spurgeon, 2008, Fridman et al.,
2008, Davila et al., 2009]. In the literature several approaches to deal with this class of prob-
lem has been proposed (see [Edwards & Menon, 2008, Stankovic et al., 2009, Pillosu et al.,
2011])), however, recently, sliding mode control (SMC) theory has been further extended in
the area of networked systems (see [Yan et al., 2006]). The main features of SMC are insen-
sitivity to external disturbances, high accuracy and finitetime convergence, which make it
one of the useful tools in robust state estimation. The main drawbacks of classical SMC are
principally related to the so-called chattering effect butthis could be not a dramatic drawback
in observation problems implemented in digital devices. High-order sliding modes (HOSM)
have been suggested both to deal with high relative degree systems and to attenuate this phe-
nomena whilst maintaining the mentioned robustness properties (see [Levant, 1993a, Levant,
2005, Bartolini et al., 2003]). Furthermore the combination of HOSM control algorithmsand
sliding mode differentiators ([Levant, 1998]) produces effective observers (see [Davila et al.,
2009]).

In this Chapter, network structural conditions for designing local nonlinear observers
independent from any topological changing are provided. Complete finite-time state esti-
mation and the unknown input reconstruction of each system operating over a network are
fulfilled. The estimated state variables of each node are then used to synchronize the whole
network. The Chapter is organized as follows; in Section6.2a brief description of scale-free
system is presented; Section6.3provides a reminder of the concepts of strong observability,
and an approach based on theobservability indicesis presented; in Section6.4 conditions
for the design of a decentralized observer are given. The proposed framework is verified
by means of simulations in Section6.5. Section6.6provides some concluding remarks and
hints for further research.

6.2 The Scale-Free Dynamical Network Model

Many real-world networks are scale-free. The main featuresof a scale-free network are
"growth" and "preferential attachment". These refer to networks continuously evolving by
the insertion/removal of nodes and changing interconnection. Such topological changes can
be described using graph theory and the notationG = {G1, ...,GM}, where eachGi represents
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an interaction topology for a particular time period. For the graphG the adjacency matrix
A[G](t) = [ai j (t)] is a binary matrix whose entries depend on the current graphGi at time
t, the entryai j (t) = 1 if the i-th and j-th node are adjacent at timet, and zero otherwise.
Let ∆[G](t) = [δi j (t)] be a diagonal matrix which represents the in-degree matrix for the
considered graphGi at time t, δii (t) is the input-degree of the i-th vertex. The Laplacian
matrix ofG, L[G] = [Li j ] is defined as the difference∆[G]−A[G].

Suppose that the scale-free network consists ofN heterogenous, dynamical, linearly and
diffusively coupled nodes. According to [Wang & Chen, 2002a, Edwards & Menon, 2008],
each nodeΣi of the graphG can be described as follow:

ẋi =Aixi +Biui +Difi −c(t)
N

∑
j=1

Li j Γi j x j (6.1)

yi =Cixi (6.2)

wherexi = [xi,1 . . .xi,ni ]
T ∈ Rni andyi = [yi,1 . . .yi,pi ]

T ∈ Rpi represent the ni-dimensional
state and output vectors of the i-th node of the network. Functionsui(xi) ∈ Rmi andfi ∈ Rqi

represent respectively the control inputs and the unknown inputs of the i-th node. For the
sake of simplicity it is assumedqi = 1. The unknown term is assumed to satisfy certain
sectors bounds which will be defined later. The termc(t) is the time varying coupling strength
between nodes and it is assumed to be for simplicity identical for all links between the
nodes. The matricesAi ,Bi , Ci , Di describe the dynamics of nodei and are assumed to be
of appropiate dimensions.Γi j ∈ R

ni×nj is a binary matrix and represents the node-to-node
coupling configuration among the i-th and j-th node. The entries of Γi j are nonzero if a
communication channel among different states of neighborsnodes exist.

Assumption 6.1.Each nodeΣi is assumed to be observable. �

Assumption 6.2. For achieving network synchronization, it is assumed each pair (Ai ,Bi)
to be controllable. �

6.3 Strong Observability and Unknown Input Reconstruc-
tion

Consider a LTI systemΣ:

ẋ=Ax+Df (6.3)

y =Cx (6.4)

wherex∈Rn,y ∈Rp andf ∈Rq represent the state, the output and the unknown input vector
of Σ. Generic well-known strong observability conditions for LTI systems with unknown
inputsf based on the study of the invariant zeros of the triple(A,D,C) are summarized in
[Trentelman et al., 2001].

Whereas in [Fridman et al., 2007b] necessary conditions for strong observability with
respect to the unknown inputf , under the assumption thatq= p, has been given.

In particular, letci andd j be the rows ofC and the columns ofD. The output vector
y = Cx is said to have vector relative degreer = (r1, . . . , rp) with respect to the unknown
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inputf if the following conditions hold:

ciA
lD = 0(1×q)

ciA
ri−1D 6= 0(1×q)

with

{

i = 1,2, . . . , p

l = 0,1, . . . , r i −2
(6.5)

det(Q) 6= 0 with Q=





c1A
r1−1d1 · · · c1A

r1−1dq

...
...

cpA
rp−1d1 · · · cpA

rp−1dq



 (6.6)

The next lemma gives sufficient conditions for guarantee that the system (6.3)-(6.4) is strong
observable:

Lemma 6.1. Let the outputy ofΣ have vector relative degreer . Then the vectors

c1, . . . ,c1A
r1−1, . . . ,cp, . . . ,cpA

rp−1 (6.7)

are linearly independent.Σ is strongly observable if the total relative degree of the system
r̄ = ∑p

k=1 rk is equal to n. �

Remark 6.1. Generalizing Lemma6.1 to the the case of rectangular systems (q< p), it
is obvious thatc1, . . . ,c1A

r1−1, . . . , cp, . . . ,cpA
rp−1 can not be linearly independent even if

the system is strongly observable. This assertion can be easily proved applying the same
procedure shown in [Fridman et al., 2007b] becauseQ is a non-square matrix. �

Currently checking the strong observability property of a non-square LTI systems (q<
p) by means of the relative degree vector is not a completely established matter. In the rest
of this section, in order to define a possible approach for such class of systems, the concept
of observability indexis recalled.

Consider the system in (6.3)-(6.4), the observability index for the i-th output ofΣ can
be defined as follows:

Definition 6.1. The maximum number (vi) of successive linearly independent derivatives of
the i-th output ofΣ, it is called theobservability indexand represents the number of system
state which can be reconstructed from yi . �

The setV := {v1, . . . ,vp} is called theobservability indices of the pair(A,C). It is
obvious that each entryvi can not be greater then the order of the systemn. Recalling the
definition of relative degreer i of the i-th output of the system with respect to an unknown
inputf in (6.5), it can be asserted that if the following lemma holds, the systemΣ is strongly
observable and unknown input reconstruction (UIR) is practicable.

Lemma 6.2. The systemΣ is strongly observable if it is possible to define a set of positive
integersU := {µ1, . . . ,µh} with h≤ p, in which each element is associated with one output’s
component, such that the following conditions are satisfied:

{

µi ≤ vi

µi ≤ r i
,

µ1+µ2+ · · ·+µh = n

with i = 1,2, . . . ,h
(6.8)

det{M} 6= 0, M =













M1

...

Mi

...

Mh













, Mi =











ci

ciA

ciA
2

...

ciA
µi−1











∈ R
µi×n (6.9)

�
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Proof. Suppose the pair(A,C) is observable,O has n linearly independent rows. After
choosing a setU which satisfies the conditions (6.8)-(6.9), it is obvious that the matrixM is
full-rank because it is obtained combining linear independent block likeci ,ciA, . . . ,ciA

µi−1

linearly independent each other. Then, applying the following bijection mappingx=Mxo

the following canonical observable representation is obtained:

ẋo = Aoxo+Dof

yo = Coxo
(6.10)

where

Ao =





A11 · · · A1h

...
. . .

...

Ah1 · · · Ahh



 , Co =





c11 · · · c1h

...
. . .

...

ch1 · · · chh



 (6.11)

Aii =







0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

aii ,1 aii ,2 · · · aii ,µi






, Ai j =







0 · · · 0
...

...

0 · · · 0

ai j ,1 · · · ai j ,µ j






(6.12)

Do =MD =





δ1

...

δh



 , δi =







0
...

0

ciA
µi−1D






∈ R

µi×q (6.13)

cii = (1 0 · · · 0) ∈ R
1×µi , ci j = (0 · · · 0) ∈ R

1×µ j (6.14)

Note that the previous mapping emphasized the strong observability property ofΣ. Since the
conditiony ≡ 0 impliesx = 0 for any unknown inputf , if µi is chosen lower than ri the
entriesciA

µi−1D in δi are zero, thenf has no effect on the linear combinationMi obtained
by the i-th component ofy. �

Corollary 6.1. If Lemma6.2is satisfied and

rank
{

(

DTD
)−1

DTM−1T
}

= q (6.15)

with T = diag
(

t1, . . . ,ti , . . . ,th

)

andti =
(

0 · · · 0 1
)T

∈ Rµi×1, it is possible to recon-

struct completely the unknown vectorf = [ f1, . . . , fq]T by a suitable robust observer. �

Proof. Consider the system (6.10) and the following observer:

˙̂xo = Aox̂o+Tζ

ŷo = Cox̂o
(6.16)

wherex̂o, ŷo andζ represent the estimated states, the observed output and theinjection term.
If condition (6.15) holds, it is obvious that the mappingx=Mxo implies that the matrix
rank{Do} = rank{D} = q. Let eo = x̂o−xo be the state observation error, its dynamic
takes the following form:

ėo = Aoeo+Tζ−Dof (6.17)

LetF = [F1, . . . ,Fq]
T be a constant vector which constitutes an upper bound on the inputf

so that| fi | < Fi , then it can be designed an algorithm which drives to zero theobservation
error dynamic(e, ė)→ (0,0) , allowing us to reconstructf as follows:

f =D+
o Tζ =D+M−1Tζ (6.18)
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where the index+ indicates the Moore-Penrose pseudo-inverse of the matrix.It is obvious
that by construction, the solution of system (6.18) gives an unique solution with respect to
the unknown inputf if and only if the condition (6.15) is satisfied. �

Remark 6.2. Consider the observer structure (6.16). Applying the inverse mappingxo =
M−1x, it can be obtained a completely equivalent representationfor the observer (6.16)
which dispenses with the need to work in a transformed domain. In the rest of the Chapter
will be used this observer representation. �

6.4 Local Network Observer design

Consider the scale-free network ofN heterogeneous dynamical, coupled, nodes in (6.1)-
(6.2). Hereinafter is presented a framework for designing localnonlinear observers for the
complete finite-time state estimation and the UIR of each nodeΣi of the network. This is an
extension of the strategy for SISO systems presented in [Davila et al., 2009], for networks of
MIMO systems. Conditions to achieve this goal will be discussed below in details. Consider
the following observer structure:

˙̂xi = Aix̂i +Biui +Giζi (6.19)

ŷi = Cix̂i (6.20)

wherex̂i ∈ Rni and ŷi ∈ Rpi represent the estimated state and the observed output for the
nodeΣi . In order to capitalize on the advantages of the sliding modealgorithms, all the equa-
tions will be understood in a Filippov sense. Filippov’s solution coincides with the classical
one for ODEs with continuous right-hand side ([Filippov, 1960]). Gi and the injection term
ζi = [ζi,1, . . . ,ζi,h]∈Rhi will be designed in the sequel, in such a way that each component of
the node’s outputs has a suitable preassigned relative degree with respect to the associated in-
jection term. Observing the structure of the scale-free dynamical network in (6.1)-(6.2), due
to the presences of the coupling term related to the i-th nodewith its neighbors, Lemma6.2
is not applicable in the present form. Before presenting theconditions under which the state
estimation and the UIR are practicable, the concept of relative degree of the k-th output of
the i-th nodeyi,k with respect to the local unknown input signal (r i,k) and the coupling terms
with the j-th neighbor (wi,k) need to be defined. Letci,k be the k-th row of the output matrix
Ci , in accordance with the definition of relative degree in (6.5), for each output component
of Σi the following indices are defined:

ci,kA
l
iDi = 0(1×qi )

ci,kA
ri,k−1

i Di 6= 0(1×qi )

with

{

k = 1,2, . . . , pi

i = 1,2, . . . ,N

l = 0,1, . . . ,r i,k−2
(6.21)

ci,kA
l
iΓi j = 0(1×qi )

ci,kA
wi,k−1

i Γi j 6= 0(1×nj )

with
{

k = 1,2, . . . , pi

l = 0,1, . . . ,wi,k −2
(6.22)

Then in order to adapt Lemma6.2for the class of connected systems in (6.1)-(6.2), it can be
reformulated as follows:

Lemma 6.3. The scale-free network of N heterogeneous dynamical, coupled nodes in (6.1)-
(6.2) is strongly observable, if it is possible to find a set of integerUi := {µi,1, . . . ,µi,h} with
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h ≤ p in which each element is associated to one output’s component and such that the
following conditions are satisfied:

{

µi,k ≤ vi,k

µi,k ≤ min
{

r i,k,wi,k
} ,

µi,1+ · · ·+µi,hi = ni

with k= 1,2, . . . ,hi
(6.23)

det{Mi} 6= 0,Mi =













Mi,1

...

Mi,k

...

Mi,h













,Mi,k =











ci,k

ci,kAi

ci,kA
2
i

...

ci,kA
µi,k−1

i











(6.24)

�

Proof. The proof of this lemma can be obtained in a similar manner to Lemma6.2 by
inspection of the canonical observable representation obtained by the following mapping
xi =Mixo,i. �

In light of Lemma6.3, in the following it is analyzed how to design an observer which
allows to achieve the state space estimation for the complexnetwork in (6.1)-(6.2) and are
provided additional structural conditions for the UIR. Supposing Lemma6.3is satisfied. Let

Ti = diag
(

ti,1, . . . ,ti,k, . . . ,ti,hi

)

∈ Rni×hi be a block-diagonal matrix with each k-th block

designed as follows:

ti,k =
(

0 · · · 0 1
)T

∈ R
µi,k×1 (6.25)

The matrixGi in (6.19) can be selected as follows

MiGi = Ti →Gi =M−1
i Ti (6.26)

In light of (6.23)-(6.26), taking a generic observer output ˆyi,k and differentiating itµi,k times,
the following I/O dynamic results:

d
dt









ŷi,k

˙̂yi,k

...

ŷ
(µi,k−1)
i,k









=







ci,kAi

ci,kA
2
i

...

ci,kA
µi,k
i






x̂i +







ci,kBi

ci,kAiB1

...

ci,kA
µi,k−1

i Bi






ui +







0
...

0

1






ζi,k (6.27)

which can be rewritten as

˙̂yi,k =Mi,kAix̂i +Mi,kBiui + tkζi,k (6.28)

where the matrixMi,kAi takes the following form:

Mi,kAi =







0 1 · · · 0 0 · · · 0

0
...

...
...

...
...

0 0 · · · 1 0 · · · 0

∗ ∗ ·· · ∗ ∗ · · · ∗






∈ R

µi,k×ni (6.29)

It is easy to see that the k-th observer’s output ˆyi,k has relative degreeµi,k with respect to the
injection termζi,k. Let ei = x̂i −xi be the state error for the agentΣi, it can be defined the
output error dynamic for the k-th output ˆyi,k as follows:

ei,yk = ŷi,k−yi,k = ci,kei for k= 1,2, . . . ,h (6.30)
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Φi,k =
(

ϕi,k,1 · · · ϕi,k,µi,k

)T
=
(

ei,yk ėi,yk · · · e
(µi,k−1)

i,k

)T
(6.31)























ϕ̇i,k,1 = ϕi,k,2

ϕ̇i,k,2 = ϕi,k,3
...

...
...

ϕ̇i,k,µi,k = ϕ̃i,k,(µi,k+1)+ζi,k

(6.32)

with

ϕ̃i,k,(µi,k+1) = ci,kA
µi,k
i ei +̺i,kfi +

N

∑
j=1

ηi,k(t)x j (6.33)

̺i,k = ci,kA
µi,k−1

i Di (6.34)

ηi,k(t) = c(t)Li jci,kA
µi,k−1

i Γi j (6.35)

where the I/O dynamic (6.32) has the so-called Brunovsky chain-of-integrator canonical
form. Note that the presence of̺i,k andηi,k is strictly related to the choice of the differenti-
ation indexµi,k. The following cases list explain all the possible scenarios:

1) if µi,k = r i,k = wi,k, from (6.21)-(6.22), both terms̺ i,k andηi,k appear in
(6.33);

2) if µi,k = r i,k <wi,k,ηi,k = 0, thus only theUnknown Input Term̺ i,k appears
in (6.33);

3) if µi,k = wi,k < r i,k, ̺i,k = 0 thus only theDynamical Coupling Termηi,k

appears in (6.33);
4) if µi,k is smaller than bothr i,k andwi,k according to (6.21)-(6.22) these

terms are both̺ i,k andηi,k equal to zero.

Following similar reasoning, the complete observation error dynamicΦi = [Φi,1, . . . ,Φi,hi ]
T

can be obtained by putting in columns thehi Brunovsky canonical blocks (6.32) calculated
at the time. Note that each sub-dynamic has relative degreeµi,k. In order to estimate the
whole state space of each nodeΣi , a suitable injections signals able to drive to zero the error
ei = [ei,1, . . . ,ei,ni ]

T is needed. SinceΦi =Miei with Mi invertible, it is obvious thatΦi = 0

implies ei = 0. Thus if it is possibile to drive to zero all thehi sub-dynamics expressed
by (6.32), automatically the whole observation errorei goes to zero. Make the following
boundedness assumption:

Assumption 6.3.There are known constants Fi,k such that the functioñϕi,k,(µi,k+1) satisfies:

|ϕ̃i,k,(µi,k+1)|< Fi,k ∀ k= 1,2, . . . ,hi (6.36)

�

Under this assumption the finite-time convergence to zero ofΦi by a properly designed
HOSM can be guaranteed. The choice of the most suitable HOSM algorithm is strictly re-
lated to the relative degreeµi,k of each sub-block (6.32). Table6.1 shows the best choices
depending onµi,k. Note that the so-calledquasi-continuous arbitrary-order(QCAO) SMC
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is able to provide finite-time stabilization of arbitrary relative degree dynamics. For relative
degree one or two systems, the best choices are respectivelytheSuper-Twisting(STW) algo-
rithm and theGeneralized Sub-Optimalalgorithm (GSO). In particular STW gives rise to a
continuous control action which possesses significant robustness properties against nonlin-
earities and disturbances, whilst the GSO algorithm stabilizes second order dynamics without
any derivative estimation, simplifying the complexity of the algorithm (see [Bartolini et al.,
2003]). However the GSO has a discontinuous behavior, whereas the QCAO SMC has dis-
continuities only during the sliding motionϕi,k = ϕ̇i,k = · · ·= ϕµi,k−1

i,k (see [Levant, 2005]).

Taking into account the case list presented earlier, Corollary6.1can be adjusted in order
that UIR becomes practicable.

Corollary 6.2. If Lemma6.3is satisfied along with

rank
{

D+
i M

−1
i Ti

}

= qi (6.37)

whereTi = diag
(

ti,1, . . . ,ti,hi

)

, ti,k =
(

0, . . . ,0,1
)

∈ R
µi,k×1

MiDi =





δi,1

...

δi,h



 ,δi,k =
(

0

ci,kA
µi,k−1
i Di

)

∈ R
µi,k×ni (6.38)

and each sub-blockδi,k has its indexµi,k which satisfies

µi,k = r i,k < wi,k (6.39)

then it is possible to reconstruct completely the unknown vector fi = [ fi,1, . . . , fi,q]T by a
suitable robust observer. �

Proof. The proof of this corollary can be obtained similarly to Corollary 6.1 by inspection
of the following error dynamic:

ėi =Aiei +Giζi −Difi +c(t)
N

∑
i=1

Li jΓi jx j (6.40)

Since the error dynamic (6.40) can be driven to zero in finite time, once(ei , ėi) = (0,0) UIR
can be achieved as follows

fi =D+M−1Tiζi −c(t)
N

∑
i=1

Li jD
+
Γi jx j (6.41)

If the statex j is accessible only at the supervisory level, it would be impossible to locally re-
constructfi without the knowledge of the neighbors states. However, if both conditions (6.37)
and (6.39) hold,D+

Γi j = 0 and the complete information offi is contained inζi. UIR can
be obtained as the unique solution of the following equalitiesfi = (DTD)−1DTM−1Tiζi.
�

6.5 Numerical Example

6.5.1 Observer design

Before presenting results for a scale-free network, for thesake of completeness an ap-
plication of the design strategy shown in Lemma6.2 for an rectangual unstable system in
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Figure 6.1: Estimation errors and UIR after proper filtering.

form (6.3)-(6.4) is presented. The following matrices describes the system:

A=















0 −1 −1 0 0

1 0.2 0 0 0

0 0 −6 1 0

0 0 0 0 1

1 0 0 −1 −2















,D =















0 1 0

0 0 0

1 1 0

0 0 0

0 0 1















,C =











0 1 0 0 0

0 0 1 1 1

0 0 0 1 0

1 1 0 1 1











f =







f1
f2
f3






=







3(δ−2(t −3)−δ−2(t −4))

cos(2t)

cos2 (2t)−3(δ−2(t −3)−δ−2(t −4))







(6.42)

From Definition6.1the set of observability indices isV = {5,5,5,5}, while the vector rela-
tive degree isr = {2,1,2,1}. By means of Lemma6.2and Corollary6.1, the observer matri-
cesM andT can be easily derived by the following possible set of indicesU = {µi}i=1,...,4=
{2,1,1,1}. Then in order to reduce the need of sliding differentiatorsneeded for the injec-
tion termζ = [ζ1, . . . ,ζ4]

T , in accordance with Table6.1, STW and GSO algorithms for the
relative degree one and two dynamics, respectively are designed. For further details on these
algorithms refer to Chapter4 or references in Table6.1. In Figure6.1 the estimation errors
(upper plot) and the comparison between thef components and the reconstructed unknown
input vector (lower plot) as in (6.18) after proper low-pass Butterworth filtering are shown.

6.5.2 Observer design for agents networks

To demonstrate the theory developed in this Chapter, the time-varying networkG of
six heterogeneous chaotic circuits show in Figure6.2 is considered. In light of (6.1)-(6.2),
hereinafter the dynamics of each nodeΣi of the complex network are presented:

• NodesΣi with i = 1,2,3 and j = 1,2, . . . ,6 are represented by a Rössler
dynamic as follows:

Ai =

(

0 −1 −1

1 0.2 0

0 0 −6

)

,Di =

(

0

0

1

)

,Γi j =

(

1 · · · 1

0 · · · 0

0 · · · 0

)

(6.43)
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Table 6.1: Sliding mode and relative degree

Relative Degree HOSM Algorithm

1 Super-Twisting SMC ([Levant, 1993a])

2 Generalized Sub-Optimal SMC ([Bartolini et al., 2003])

≥ 2 Quasi-Continuous Arbitr. Order SMC ([Levant, 2005])

Bi = I3×3,Ci =
(

0 1 0

0 0 1

)

, fi(xi) = (0.2+xi,1xi,3) (6.44)

• NodesΣi with i = 4,5,6 and j = 1,2, . . . ,6 are represented by an Hyper-
chaotic Rössler dynamic as follows:

Ai =





0 −1 −1 0

1 0.25 0 1

0 0 0 0

0 0 −0.5 0.05



 ,Di =





0

0

1

0



 ,Γi j =





0 · · · 0

0 · · · 0

1 · · · 1

1 · · · 1



 (6.45)

Bi = I4×4,Ci =
(

1 0 0 0

0 1 0 0

)

, fi(xi) = (3+xi,1xi,3) (6.46)

Note that for both circuits, the coefficients are such that Rössler chaotic and hyper-chaotic
attractors dynamic are presented. A window of 100 seconds ofsimulation is considered. The
time varying coupling strength isc(t) = sin(2π50t).

Full static state error feedback synchronization

Consistent with [Suykens et al., 1999], the control strategy adopted in the supervisory
level for synchronization in the network is a full static feedback rule asui = Fi(z− x̂i),
wherez andx̂i are the master state vector and the estimated state of the i-th node.Fi has
been constructed with the intention to synchronize each node with the following unstable
limit cycle:































z1 = cos(ξ )(acos(ωt)+csin(2ωt))+

−sin(ξ )(bsin(ωt)+csin(2ωt))

z2 = 0.6 · [asin(ξ )cos(ωt)−bcos(ξ )sin(ωt)]+

+0.3 · [csin(ξ )cos(2ωt)−ccos(ξ )sin(2ωt)]

z3 = z3(0)exp−t −∫ t
o exp−(t−τ) z̃2dτ, z4 = 0

(6.47)

wherea = 2.6, b = 1.2, c = 0.2, ξ = π/18, ω = 1.7. Note that the fourth control involve
only the nodesΣ4, Σ5, Σ6.

State Estimation and Unknown Input Reconstruction

The objective is to demonstrate the robustness of the presented framework to time vary-
ing coupling strengths and varying network topologies at different time intervals (see Fig-
ure6.2). Note that it is not necessary to have any a prior knowledge of the number of nodes,
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Figure 6.2: Time-Varying network topology.

but only the knowledge of the matrixΓi j of each node part of the network or of a new
potential one.

Recalling Definition6.1, and the definitions of relative degree with respect to the un-
known input and the coupling terms with the j-th neighbor, (in (6.21) and (6.22)), and
Lemma6.3, the only combination of the designing indicesµi,k which satisfy for each node
conditions in (6.23) and (6.24), is the following one:

• for the first three nodesΣi with i = 1,2,3:
(

vi,1 = 3, r i,1 = 3,wi,1 = 2
)

7→ µi,1 = 2 (6.48)
(

vi,2 = 1, r i,2 = 1,wi,2 = ∞
)

7→ µi,2 = 1 (6.49)

• for the remaining nodesΣi with i = 4,5,6:
(

vi,1 = 3, r i,1 = 2,wi,1 = 2
)

7→ µi,1 = 2 (6.50)
(

vi,2 = 2, r i,2 = 3,wi,2 = 2
)

7→ µi,2 = 2 (6.51)

Thus from equations (6.24) and (6.26), the design matricesMi andGi for each observer
(6.19)-(6.20) can be derived. Then in accordance with Table6.1, and in light of (6.48)-(6.51),
the following sliding mode algorithms as injection terms has been chosen:

• for the first three nodesΣi with i = 1,2,3:

ζi =
(

ζi,1 ζi,2

)T
=
(

ζGSOi,1
ζSTWi,2

)T
(6.52)

• for the last three nodesΣi with i = 4,5,6:

ζi =
(

ζi,1 ζi,2

)T
=
(

ζGSOi,1
ζGSOi,2

)T
(6.53)
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Figure 6.3: State reconstruction process inΣ1 (top) andΣ4 (down).

whereζGSOi,k
andζSTWi,k

are

ζGSOi,k
=−Ui,ksign(ϕi,k,2−βi,kϕMi,k,2) (6.54)

ζSTWi,k
= ζi,k1 +ζi,k2 with

{

ζi,k1 =−λi,k1 | ϕi,k,1 |1/2 sign
(

ϕi,k,1
)

ζ̇i,k2 =−λi,k2sign(ϕi,k,1) , ζi,k2(0) = 0
(6.55)

whereUi,k > Fi,k is the control magnitude,βi,k = 0.5 the anticipation parameter,ϕMi,k,2 is
the "latest singular" point of the sliding surfaceϕi,k,2, while λi,k1 > 2

√

Fi,k andλi,k2 > Fi,k

are suitable constant gains. For further details on these algorithms refer to the references in
Table6.1. The good performances of the estimation process are shown in Figure6.3. The
actual and estimated states ofΣ1 andΣ4 are depicted. No synchronization has been applied
(ui = 0 ∀ i).

From Corollary6.2 and the chosen indices in (6.48)-(6.51), due to the structure of the
coupling matrixΓi j for the last three nodes it is possible to assert that UIR is practicable only
in Σ1, Σ2, Σ3, becauseµi,2 = r i,2 < wi,2 and rank{D+

i MiTi}= 1. However if the third row
of Γi j in (6.46) was all zero, takingµi,1 = µi,2 = 2 the UIR either for the last three nodes
would have been possible. Figure6.4 (top) shows the convergence of the six nodes to the
reference trajectory, whereas in the bottom, the UIR of the signal f1 obtained by means of
ζ1,2 = ζ STW1,2 is shown.

6.6 Conclusion

A new approach for designing HOSM observers based on the concept of observability
indices for rectangular MIMO systems affected by multiple unknown input signals has been
proposed. The framework has been extended to the problem of decentralized state estimation
and unknown input reconstruction from a class of connected heterogeneous systems. Con-
ditions for complete finite-time state estimation and the UIR in each system operating over
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Figure 6.4: Convergence to the references trajectory and UIR.

a network are fulfilled. The proposed framework is inherently robust and is totally indepen-
dent to the network configuration or to the number of nodes. Simulation results confirmed
the effectiveness of the presented methods.



Chapter 7

Sliding Mode Strong Observer as a tool
for FDI: An application to Induction
Motor

As mentioned in Chapter4 SMC algorithms has found a rich soil in the area of robust
state-estimation and fault detection and isolation. The reasons of this trend are multiples. The
first one is obviously related to their properties of robustness. An example has been shown in
Chapter6 where thanks to these properties tasks like complete state-estimation and unknown
input reconstruction have been easily achieved combining SMC algorithm along with suit-
able diffeomorphic transformation. The second one is that software-based applications due
to their high bandwidth suffer less from the chattering phenomenon [Spurgeon, 2008, Utkin
& Guldner, 1999].

In this Chapter, strictly related to the task of designing strong observers in MIMO sys-
tems (see Chapter4 and6), HOSM observers are employed as a tool for detecting certain
abnormal operating conditions in squirrel cage induction motors (SCIMs) [Pilloni et al.,
2013c, Pilloni et al., 2012c].

To justifying the presented treatment, a mathematical characterization of the faulty op-
erating mode in SCIM is derived in which rotor broken bars faults and the rotor eccentricity
are taken into account. The performances of the proposed scheme have been analyzed by
Lyapunov methods and verified by real implementation tests using measurements taken from
certain commercial three-phase SCIMs intentionally damaged in order to reproduce the fault
scenarios of concern.

7.1 Motivations

Nowadays three-phase Squirrel Cage Induction Motors (SCIMs) are used in a variety
of industrial applications due to their cheapness, ruggedness and low maintenance [Bonnett
& Albers, 2000a]. Voltage stresses, caused by the modern high frequency power converters,
along with the corrosive and dusty industry environments where motors operate can reduce
the motor lifetime considerably. The rotor has always been considered the Achilles heel
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of SCIMs. Infact, although the stator windings’ design has achieved remarkable improve-
ments in the last decades, cage rotor’s design has undergonelittle change [Bonnett & Albers,
2000a].

Technical surveys have shown that a remarkable percentage of total SCIM failures is
found in the rotor. Broken bars, end-ring faults, and eccentricity result the most common fail-
ures [Benbouzid & Kliman, 2003, Bonnett & Albers, 2000b, Bonnett & Soukup, 1986, Kli-
man et al., 1988, Puche-Panadero et al., 2009]. Anyway a prompt detection of these abnormal
conditions can avoid costly disservice, and potentially catastrophic breakdowns if the fault
remains undetected.

Even though temperature and vibration monitoring devices have been utilized for decades,
recent research efforts have been directed towards the inspection of the motor currents, which
is more convenient from the practical implementation pointof view. Up to nowMotor Cur-
rent Signature Analysis(MCSA) methods are the most popular approaches for SCIM diag-
nostics [El Hachemi Benbouzid, 2000]. When broken cage bars, end-ring faults, or abnormal
levels of eccentricity occur, asymmetry in the rotor air-gap appear and spurious harmonics
at well defined characteristic frequencies coming out in thestator current spectrum [Kli-
man et al., 1988, Puche-Panadero et al., 2009, El Hachemi Benbouzid, 2000, Didier et al.,
2006, Thomson & Fenger, 2001]. MCSA is an online diagnosis family of methods which
requires just the measurement of a single stator phase current and, at least under constant
load condition, allows to correctly classify simultaneousfailures. MCSA has the advantage
of dispensing with the knowledge of the electromechanical motor parameters, and it can be
inexpensively implemented by utilizing a current transformer or current clamp already in
place in most industrial applications. As a result, MCSA hasbecome the current standard
for online motor diagnosis [El Hachemi Benbouzid, 2000]. Modern MCSA methodologies
based on advanced processing techniques such as Hilbert, Wavelet transforms or Transient
MCSA (T-MCSA) are continuously developed to enhance the reliability of the diagnosis
process [Puche-Panadero et al., 2009].

There are, however, some inherent drawbacks of MCSA, such asits sensitivity to the
spectral leakage caused by the finite-time measurement window, the need for high frequency
resolution (i.e., small sampling intervals), and its sensitivity to varying load conditions and
to the presence of additional spurious harmonics caused by mechanical devices, such as
gearboxes, that can often overwhelm the frequency pattern associated to the fault [Puche–
Panadero et al., 2009, El Hachemi Benbouzid, 2000]. Furthermore MCSA methodologies
have to be periodically activated due to their inability to identify the occurrence of the faults.

In recent years model-based approach to fault detection andisolation (FDI) are receiv-
ing a growing interest [Simani et al., 2003, Petkovic M. & A., 2012, Orani et al., 2010]. For
these reasons a novel model-based approach for detecting the occurrence of incipient rotor
fault like broken bar fault or eccentricity conditions is here discussed.

Requirements of the proposed method are respectively measurement taken from: stator
currents, voltages, shaft speed, and a priory knowledge of the nominal motor’s electrome-
chanical parameters. Notice that to overcome the uncertainties in the load torque, strong
observation approach, robust to the presence of exogenous input terms, are employed.

The framework of design relies on the so-called high-order sliding mode observers
[Orani et al., 2010, Pisano & Usai, 2011, Pilloni et al., 2013a, Fridman et al., 2007a, Floquet
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et al., 2004, Pillosu et al., 2011, Bejarano & Pisano, 2011, Bejarano et al., 2011]. Suitable
residuals are computed and processed by a threshold based FDI logic for achieving a quick
and computationally simple detection of the faulty conditions. Once the occurrence of a fault
is detected, additional information about the nature of thefault occurred can be recovered by
performing a spectral analysis of the "faulty" residuals. The main advantage of the method,
as compared to the MCSA approaches, is that the need of continuous spectral or transform-
based analysis is dispensed with, which reduces the computational effort of the diagnosis
algorithm.

The Chapter is organized as follows. In Section7.2 a mathematical model of a SCIM
under faulty conditions is presented along with a brief description of the effects of each
faults in terms of characteristic frequencies. In Section7.3the proposed FDI observer is out-
lined. Convergence and estimation properties are demonstrated, then the suggested FDI logic
is illustrated. Section7.4 discusses some experimental results obtained, whilst Section 7.5
presents some concluding remarks and possible lines of investigation for future research.

7.2 Faulty SCIM Model

As it is well known, the equations representative of the nominal (i.e., healthy) operation
of a three-phase induction motor mathematical model (both Wound or Squirrel-Cage Rotor)
in (α,β ) reference frame (or stator reference frame) are (see for example [Krause & Thomas,
1965, Marino et al., 1993]):































ẋ1 = a1(x3x4−x2x5)−a2x1+a3TL

ẋ2 = b1x4−b2x2+b3x1x3+b4usα

ẋ3 = b1x5−b2x3−b3x1x2+b4usβ

ẋ4 = c1x2−c2x4−npx1x5

ẋ5 = c1x3−c2x5+npx1x4

(7.1)

whereai , bi and ci are coefficients dependent on the machine parameters which take the
following form:

a1 =
npLm
JLr

a3 =−1
J

b1 =
LmRr
σLsL2

r

b3 =
npLm
σLsLr

c1 =
Rr
Lr

Lm

a2 =
fv
J

σ = 1− L2
m

LrLs

b2 =
L2

mRr+L2
r Rs

σLsL2
r

b4 =
1

σLs

c2 =
Rr
Lr

(7.2)

The state-space variablesxi with i = 1, . . . ,5 and the electromechanical parameters in
(7.1)-(7.2) are in Table7.1. In order to find out a mathematical representation of the machine
in faulty operating condition, in the following the main effects of broken bar and eccentricity
faults, are briefly discussed.
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Table 7.1: Nomenclature of SCIM Model

State Variables:

Shaft speed x1 [rad/sec]

(α,β ) Stator Currents x2,3 [A]

(α,β ) Rotor Fluxes x4,5 [Wb]

Input Signals:

(α,β ) Stator Voltage Supply uα,β [V]

Load Torque TL [N ·m]

Model Parameters:

Pole pairs number np -

Rotor and stator resistance Rr,s [Ω]

Rotor, stator and mutual inductanceLr,s,m [H]

Viscous friction coefficient fv [Kg ·m2/s]

Rotor inertia J [Kg ·m2]
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7.2.1 Air-Gap Eccentricity Fault

Eccentricity manifests in two different versions, referred to as static and dynamic ec-
centricity.Static eccentricitytakes place when the angular position of the minimum radial
air-gap length is fixed in space. It can be caused by stator-core ovality or incorrect posi-
tioning of the rotor in the stator. For these reasons an inherent level of static eccentricity
always occurs due to manufacturing tolerances or specific design features.Dynamic eccen-
tricity corresponds to the case where the minimum air-gap revolves with the rotor and is
a function of space and time. This can be caused by a non-concentric outer rotor diameter
or rotor thermal bowing. Static and dynamic eccentricity generate an electromagnetic force
calledunbalanced magnetic pull(UMP), respectively of "steady" and "rotating" type in the
two cases, that in some cases can bring rotor and stator in contact [Puche-Panadero et al.,
2009, El Hachemi Benbouzid, 2000]. The air-gap eccentricity specified by manufacturers is
theradial air-gap eccentricity(static plus dynamic) and is normally given as a percentage of
the nominal air-gap length. Levels of air-gap eccentricityshould be kept within a maximum
of 10% in three-phase SCIMs to avoid their catastrophic damage. Static plus dynamic ec-
centricity is also known asmixed eccentricity. The sideband spurious frequencies associated
with the eccentricity are given by:

fecc= | fs±k · fr | , k= 1,2,3. . . (7.3)

where fs and fr are the electrical and mechanical frequencies of the machine. From (7.3) it
is clear that these specific sideband frequencies do not depend on the machine parameters.

7.2.2 Broken Bars Fault

Breakages in the rotor cage introduce anomalies in the air-gap magnetic field, and con-
sequently sideband harmonics appear in the stator currents[Benbouzid & Kliman, 2003,
El Hachemi Benbouzid, 2000]. These harmonics of fault have well-defined frequencies lo-
cated respectively at:

fbrb = fs · [1±2 k ·s] , k= 1,2,3. . . (7.4)

wheres= 1−ωr/ωs is themotor slip, ωr = 2π fr andωs = 2π fs represent respectively the
mechanical speed and the synchronous speed of magnetic field. Although broken bar faults
do not cause immediate disservice, they can imply serious secondary effects (i.e. overheating,
bar hitting, damaging of motor insulation and consequent winding failure) and hence prompt
detection is mandatory.

7.2.3 Faulty machine model

From the above considerations regarding the considered fault scenarios, it is possible
to assert that the insertion of additional exogenous voltages fsα , fsβ in the current equations
of (7.1) might be a reasonable approach for modeling faulty SCIM drives. The following
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mathematical model intends to represent aFaulty SCIM:































ẋ1 = a1(x3x4−x2x5)−a2x1+a3TL

ẋ2 = b1x4−b2x2+b3x1x3+b4(usα + fsα )

ẋ3 = b1x5−b2x3−b3x1x2+b4

(

usβ + fsβ

)

ẋ4 = c1x2−c2x4−npx1x5

ẋ5 = c1x3−c2x5+npx1x4

(7.5)

where in absence of fault conditions, the additional entries fsα and fsβ are identically zero,
otherwise when some fault occurs they became nonzero and inject the appropriate pattern
frequencies in the model. The load torqueTL being generally not available for measurements
in applications, it is deemed as an "unknown input" within the observer design problem using
the presented model.

It is worth noting by inspection of (7.3) and (7.4) that an accurate estimation of the
speedωr is a prerequisite for reliable MCSA diagnosis.

7.3 Second order sliding mode FDI observer for SCIMs

An algorithm for FDI in SCIMs, supported by the theory of model-based FDI [Simani
et al., 2003] shall be presented hereinafter. Model-based FDI is built upon a number of ide-
alized assumptions, one of which is that the mathematical model used is a faithful replica of
the plant dynamics. This is, of course, unreasonable in practice. For these reasons a major
objective of model-based FDI is to maximize the fault detection coverage and at the same
time minimize the effect of modeling errors and disturbances [Simani et al., 2003].

The approach taken in this Chapter relies upon the use of a robust observer based on the
sliding mode theory. In particular, the desirable feature of the sliding mode to reconstruct,
in some cases, the unknown inputs acting on the observed system is exploited [Bejarano &
Fridman, 2010]. It is clear that the fault signalsfsα and fsβ contain useful information (symp-
toms) about the faults, and their estimation would be extremely useful for FDI purposes. In
the following a scheme that can reconstruct both the unknownexogenous fault signalsfsα
and fsβ in (7.5) while mitigating the effect of modeling errors by relying on the inherent
robustness properties of sliding mode observers is devised. The detection of faults will be
achieved by a non conventional, threshold based residual evaluation procedure applied to the
reconstructed fault signals.

Hereinafter will be explored the two main stages of the FDI scheme design for the
considered case of study, respectivelyresidual generationandresidual evaluation.

7.3.1 Residual Generation

The aims ofresidual generationis to reconstruct fault symptoms using available inputs
and outputs token from the monitored system. The structure of the suggestedUnknown-Input
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Observer(UIO) is the following:






























˙̂x1 = a1(x3x̂4−x2x̂5)−a2x1+a3ν1

˙̂x2 = b1x̂4−b2x2+b3x1x̂5+b4(usα +ν2)
˙̂x3 = b1x̂5−b2x3−b3x1x̂4+b4

(

usβ +ν3
)

˙̂x4 = c1x2−c2x̂4−npx1x̂5

˙̂x5 = c1x3−c2x̂5+npx1x̂4

(7.6)

Note that the observer equations (7.6) represent a replica of the faulty motor model
(7.5) with suitable injection termsν1, ν2 andν3 in place of the unknown inputsfsα , fsβ and
TL. Shaft speedx1 and stator currents(x2,x3) are supposed to be available for measurements
whereas ˆxi with i = 1, . . . ,5 represent the estimated state variables. The observationerror
variables are defined as follow

ei(t) = x̂i(t)−xi(t) with i = 1, . . . ,5 , (7.7)

wheree1, e2 ande3 are accessible for measurements, whilee4 ande5 are unknown.

The assumption on the considered exogenous fault signals are specified as follows.

Assumption 1: Let Fs and FL be a-priory known constants, such that, at any t≥ 0, the
time derivatives of the unknown inputs fsα , fsβ and TL satisfy the next inequalities

∣

∣

∣

∣

d
dt

fsi (t)

∣

∣

∣

∣

i ∈{α,β}
≤ Fs ,

∣

∣

∣

∣

d
dt

TL(t)

∣

∣

∣

∣

≤ FL (7.8)

�

The observer injection terms are built according to the following algorithm:

νi (t) = νi1 (t)+νi2 (t) i = 1,2,3 (7.9)

whereνi1 andνi2 are defined as










νi1 (t) =−ki ·
√

| ei (t) | ·sign(ei (t))

ν̇i2 (t) =−wi ·sign(ei (t)) , νi2 (0) = 0

(7.10)

andki andwi are constants (see [Levant, 1993b]).

The next theorem sets the underlying tuning rules of the considered observer and estab-
lishes the associated convergence properties.

Theorem 1 Consider the faulty SCIM model (7.5) and letAssumption 1be satisfied.
Then, the observer (7.6), (7.9), (7.10) with the tuning parameters chosen according to

wi > Fi , k2
i > 4Fi ·

wi +Fi

wi −Fi
i = 1,2,3 , (7.11)

F1 = FL , F2 = F3 = Fs , (7.12)
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guarantees the achievement of the next condition starting from a finite moment T∗

ν1(t) = TL(t)+ξ1(t) (7.13)

ν2(t) = fsα (t)+ξ2(t) , t ≥ T∗ (7.14)

ν3(t) = fsβ (t)+ξ3(t) (7.15)

whereξ1(t), ξ2(t) andξ3(t) are exponentially vanishing signals. �

Proof of Theorem 1: The observation error dynamics can be easily obtained by (7.5)
and (7.6) as follows:

ė1 = a1x3e4−a1x2e5+a3(ν1−TL) (7.16)

ė2 = b1e4+b3x1e5+b4(ν2− fsα ) (7.17)

ė3 = b1e5−b3x1e4+b4(ν3− fsβ ) (7.18)

ė4 = −c2e4−npx1e5 (7.19)

ė5 = −c2e5+npx1e4 (7.20)

It is easy to see that the flux estimation errors(e4,e5) are decoupled from the other ones.
Introducing the next Lyapunov Function

V =
1
2
·
(

e2
4+e2

5

)

(7.21)

by trivial manipulations, its time derivative along the trajectories of (7.19)-(7.20) is

V̇ = e4ė4+e5ė5 =−c2 ·V (7.22)

which establish the exponential convergence to zero of the errors(e4,e5).

Consider now equation (7.16), rewriting it as follows

ż= K (φ (t)+u(t)− f (t)) (7.23)

with z(t) = e1(t), φ (t) = (a1x3e4−a1x2e5)/a3 is an exponentially vanishing term (as im-
plied by (7.21) and (7.22)), K = a3 is a positive constant,u(t) = ν1(t) is the adjustable
control input andf (t) = TL (t) is an uncertain term fulfilling the inequality

∣

∣

∣

∣

d
dt

f (t)

∣

∣

∣

∣

≤ FD . (7.24)

Taking into account the control algorithm (7.9)-(7.10), the control signalu(t) is taken
as

u(t) = u1(t)+u2(t) , (7.25)

{

u1(t) =−k
√

| z(t) | sign(z(t))

u̇2(t) =−w sign(z(t)) , u2(0) = 0
, (7.26)

wherek andw are chosen, in accordance with the tuning rules (7.11) and the assumption
(7.24), as follows

w> FD , k2 > 4FD · w+FD

w−FD
. (7.27)
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The control law (7.25)-(7.26) in question is known in the literature as the Super-Twisting
algorithm, and it belongs to the family of second order sliding mode controllers. Its stability
properties were analyzed, e.g., in [Levant, 1993b]. It was proven that bothz(t) andż(t) tend
to zero in finite time. In particular, once the following condition is achieved

ż(t) = 0, t ≥ T∗ (7.28)

sinceφ(t)→ 0 ast → ∞, it directly follows from (7.23) thatu(t) reconstructs the unknown
input f (t)with a convergence rate strictly related to the vanishing property ofφ(t). Similarly,
identical considerations might be derived for the equations (7.14) and (7.15). Theorem 1 is
proven. �

The injection signals(ν2,ν3) will be used as residuals in the next analysis, as they
provide asymptotically converging estimates of the fault signals ( fsα , fsβ ). Signalν1 repre-
sent an asymptotically exact estimation of the unknown loadtorqueTL, which may useful
in Direct Torque Control(DTC) applications (see for example [La et al., 2000, Youb &
Craciunescu, 2007]). The suggested FDI observer also provides an exponentially converging
estimate of the rotor flux components as well.

7.3.2 Residual Evaluation

Residual evaluation exploits the relations (7.14) and (7.15). The squared sum of the two
residuals is taken as a scalar measurement of the fault occurrence

r(t) = ν2
2(t)+ν2

3(t) . (7.29)

The simplest fault detection strategy could be sought as follows [Simani et al., 2003]:
{

i f r (t)≤ ε then machine is healthy

i f r (t)> ε then BBF or EF is active
(7.30)

whereε is a suitably chosen constant threshold. However, the aboveFDI logic would be
rather sensitive against the measurement noise. For this reason the next signal is considered

E(t) =

√

∫ t

t−∆T
r(τ)dτ , (7.31)

where∆T is the width of the receding horizon time window. The corresponding FDI logic
becomes:

{

i f E(t)≤ ε then machine is healthy

i f E(t)> ε then BBF or EF is active
(7.32)

Once the fault is detected, dedicated methods such as FFT andT-MCSA, or modern
approaches like Hilbert or Wavelet transform applied to theoutput-injection signalsν2 and
ν3, can be employed to classify the nature of occurred fault.
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Table 7.2: Siemens 1LA7090{ 2AA10 , 4AA10 } Ratings

Rated terminal supply voltage: 230 V−∆ 400 V−Y

Rated frequency/full-load speed: 50 Hz
1410 rpm

2860 rpm

Rated power :
1.5 kW cosφ = 0.85

1.1 kW cosφ = 0.80

Rated supply current with full load:
4.60 A−∆ 2.70 A−Y

5.65 A−∆ 3.25 A−Y

Figure 7.1: Experimental set-up (left) and a drilled rotor cage bar (right).

7.4 Experimental Results

The suggested methodology has been tested offline by using real measurements ac-
quired from several healthy and faulty commercial three-phase SCIMs intentionally dam-
aged in order to reproduce a broken bar fault and the two considered types of eccentricity.
The broken bar faulty machine has been realized by drilling asingle rotor bar (see right
picture in Figure7.1). The eccentricity faults have been reproduced by suitablehardware
modification. Respectively, it has been tested a machine with 0.2mm of static eccentricity,
and a second one with 0.07mm of dynamic eccentricity, too.

The left plot of Figure7.1depicts the structure of the experimental set-up, where a DC
motor is mechanically coupled to the SCIM under diagnosis inorder to apply a controlled
torque. The experimental tests have been performed using several commercial SCIM drives
in healthy and faulty condition. Two 2-pole drives for broken bar tests, and three 4-pole mo-
tors for eccentricity test fed, respectively, at(230V-∆, 50Hz) and(400V-Y, 50Hz). Rating
parameters of both SCIMs are reported in the Table7.2.

The electromechanical motor parameters needed for the observer implementation are
derived from the motor’s data sheet. After few trial and error tests, devoted to guarantee an
accurate convergence to zero of the measurable estimation errors e1,e2, ande3 in healthy
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Figure 7.2: Residuals and chosen threshold (upper plot) anddiagnosis signal (lower plot) for
the broken bar tests.

operating condition, the observer gains for both tests havebeen set as follows:

w1 = 14

k1 = 80
,

w2 = 22

k2 = 200
,

w3 = 22

k3 = 200
, (7.33)

A suitable value for the time window size∆T in (7.31) has been found as

∆T = 0.3 s . (7.34)

The choice of∆T turned out to be not critical, satisfactory performance hasbeen obtained
with different values as well.

The observer (7.6) has been activated at start-up whereas the residual evaluation logic
(7.31) is activated after 9 seconds, to let the machine reach the sinusoidal steady state under
the applied three-phase input voltage.

Figure7.2 and Figure7.3 show, respectively, theE(t) residual profiles obtained using
measurements from an healthy and a faulty motor. These figures show that the healthy and
faulty residuals are appreciably different, and a suitablethreshold valueε, to be used in the
fault detection logic (7.32) for achieving an accurate detection of the fault occurrence, can
be found.

Actually, to perform an affective tuning of the threshold few experiments with healthy
measurements are sufficient, by selecting the corresponding threshold sufficiently bigger
than the steady state values ofE(t). It is apparent from the Figure7.2 and Figure7.3 that
the faulty conditions are diagnosed almost instantaneously after that the FDI algorithm is
activated.

Finally, to validate the suggested faulty motor model (7.5), and to simultaneously show
the effectiveness of the observer (7.6) as well, the spectrum of a faulty stator current and one
of the associated injection signal, are compared.
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Figure 7.3: Residuals and chosen threshold (upper plot) anddiagnosis signal (lower plot) for
the eccentricity tests.

Figure 7.4: Comparison between the normalized spectra of the faulty motor stator currents
(left plot) and that of the observer injection signalν2 (right plot) for the broken bar test.

Figures7.4 and7.5 show that the normalized spectrum of a stator current (left side)
and the spectrum of an injection signal, e.g.ν2(t), (right side) contains the same frequencies
for broken bar and static eccentricity test respectively. The satisfactory performances of the
suggested FDI observer have been demonstrated in both the faulty scenarios investigated.
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Figure 7.5: Comparison between the normalized spectra of the faulty motor stator currents
(left plot) and that of the observer injection signalν2 (right plot) for the eccentricity test.

7.5 Conclusions and Future Works

This Chapter has explored a novel approach for fault detection in squirrel cage induction
motors based on second order sliding mode observers. The stability of proposed unknown
input observer has been theoretically proven. Its effectiveness in detecting the presence of
broken cage bars or eccentricity conditions has been experimentally tested by offline pro-
cessing of real motor data taken from several different commercial 1.1kW an 1.5kW drives.

The computational load of the method is limited, which makesits online implementa-
tion easily feasible with cheap hardware. The method has provided good performance with
real motor data, which certifies a certain degree of robustness. Noteworthy, the proposed ob-
server allows to reconstruct, both, the load torque and the direct and quadrature rotor fluxes.

Among the most interesting directions for next research, combination of the tested
methodology with modern classification approaches appearsparticularly promising.



Chapter 8

Robust Consensus Algorithms for
First-integrator Dynamics

In this Chapter is proposed a novel decentralized consensusalgorithm for a network of
continuous-time integrators subjected to persistent disturbances and communication changes.
Notice that, although the network during its evolution is not always connected, it is proved
that under certain restrictions on the directed switching policy, after a finite transient time,
the agents achieve an approximated consensus condition by attenuating the destabilizing
effect of the disturbances. A Lyapunov-based analysis confirm the effectiveness of the sug-
gested algorithm. To confirm the effectiveness of the proposed protocol, simulative results
are illustrated and discussed.

8.1 Introduction

The problem of reaching consensus, i.e., driving the state of a set of interconnected
dynamical systems towards the same value, has received muchattention due to its many ap-
plications in, both, the modeling of natural phenomena suchas flocking (see e.g. [Reynolds,
1987, Jadbabaie et al., 2003, Toner & Tu, 1998]) and in the solution of several control prob-
lems involving synchronization or agreement between dynamical systems (see [Olfati-Saber
et al., 2007, Ren & Beard, 2005, Dorfler & Bullo, 2010, Arcak, 2007]).

In this Chapter, it is discussed an approach to reach consensus in a network of interact-
ing agents whose dynamics are modeled by first order continuous time integrators subjected
to unknown-but-bounded persistent perturbations. The approach is based on a local interac-
tion rule which combines linear and nonlinear terms. The linear terms, as usual, feed each
agent with the difference between the current agent’s stateand the states of its neighbors,
while the nonlinear terms consider the sign of those differences yielding a discontinuous
local interaction rule involving sliding mode control concepts (see [Utkin, 1992]).

Discontinuous local interaction rules have been already exploited in the framework of
consensus or agreement algorithms to exploit the underlying finite-time convergence and
robustness against disturbances and unmodeled dynamics. Several examples of applications
to flocking or synchronization problems can be found in the literature (see e.g. [Gazi et al.,
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2007]). Discontinuous local interactions were studied in [Cortés, 2006a], within a general
framework of gradient flows, and several examples of discontinuous consensus protocols
were analyzed.

In [Khoo et al., 2009], a finite-time consensus algorithm is proposed to address the
leader-follower tracking problem in multi-robot systems with static topology but varying
leader. In [Wang & Xiao, 2010], [Menon & Edwards, 2010] and [Rao & Ghose, 2011],
finite-time consensus algorithms are provided for networksof unperturbed integrators by
exploiting discontinuous local interaction rules under time varying (both undirected and di-
rected) network topologies.

The consensus problem in presence of measurement errors is studied in [Garulli & Gi-
annitrapani, 2011], in a discrete-time setting, with reference to linear consensus protocols
with constant or vanishing weights. The authors derive explicit upper bounds to the maxi-
mum disagreement error as function of the bounds on the noisemagnitude and of the smallest
non-zero singular value of the network’s state update matrix.

In [Bauso et al., 2009] the authors suggest a class of non-linear continuous protocols that
are able to achieve the so-called “ε-consensus", namely an approximate agreement condition
where all agents converge towards a set, in spite of the presence of additive disturbances.
The work presented in this Chapter differs from the one in [Bauso et al., 2009] in that here
it is considered a discontinuous protocol, as opposed to continuous, that is able to achieve
almost complete disturbance rejection up to an arbitrarilysmall error if the network is always
connected.

An approach that shares some technical issues with the protocol proposed here, is the
continuous-time consensus problem in presence of quantization errors. In [Frasca, 2012] the
continuous-time consensus problem is studied in the case ofquantized information exchange
between agents, and this leads to an instance of discontinuous protocol where the effect of
quantization can be regarded as a disturbance.

The approach illustrated in this Chapter further differs from the above mentioned lit-
erature works in that, here the analysis of the practical stability and disturbance attenuation
properties of finite-time consensus under the effect of unknown perturbations and, addition-
ally, with a switching and directed communication topologyis addressed. Furthermore, the
finite time transient to reach consensus can be made arbitrarily small by properly selecting
the algorithm parameters. The disturbance rejection performance will primarily depend on
the time-varying network connectivity properties. To the best of my knowledge, the above
aspects were never simultaneously addressed and characterized in the existing literature.

The main result of the present work, outlined in Theorem8.1, consists in proposing
a feasible local interaction rule which provides finite timeconvergence of the network to a
condition of approximate agreement, by attenuating the effect of the disturbances. This result
is subjected to the requirement that the time varying graph defining the network switching
interaction topology has a directed spanning tree, at least, a certain “minimal percentage" of
time.

This Chapter generalizes the preliminary results presented in [Franceschelli et al., 2012a]
by extending the analysis to cover directed switching topologies that were not dealt with in
the original paper. The key factor enabling such an extension is a modification of the under-
lying Lyapunov analysis, which, in the present Chapter, involves a max function considering
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the maximal difference between the agents’ states. This newapproach considerably relaxes
the conservativism of the tuning inequalities guaranteeing convergence to the approximate
consensus condition using lower values of the control gains. Additionally, here are consid-
ered both continuous and discontinuous terms in the local interaction rule in such a way that
the convergence to consensus can be accelerated by increasing the weight of the linear con-
tinuous terms, rather than those of the nonlinear discontinuous terms, thereby mitigating the
chattering effect.

The structure of the Chapter is as follows. In Section8.2are recalled some basic defini-
tions and formulate the problem under investigation. In Section 8.3is described the proposed
local interaction rule and are investigated the associatedconvergence properties by stating the
main result. In Section8.4some simulation results are presented, and, finally, in Section 8.5
conclusions are drawn and possible future research directions are discussed.

8.2 Preliminaries and Problem Statement

Let us consider a network consisting ofN interacting agents whose communication
topology, is modeled by a directed graphG = (V,E), whereV = {1, . . . ,N} andE ⊆ V2

denote, respectively, the collection of agents and the edgeset. An edge, denoted as(i, j),
belongs toE if the agenti is able to obtain information from its neighborj. As a con-
sequence, the set of neighbors of the agenti is denoted byNi = { j ∈V/{i} : ( j, i) ∈ E}.
By assumption the presence of self-loops inG is not allowed.Each agent is modeled as a
continuous-time perturbed integrator

ẋi(t) = ϑi(t)+ui(t), xi(0) = xi0, i ∈V (8.1)

wherexi(t) ∈ R and xi0 are respectively the state of thei-th agent and its initial value,
ui(t) ∈ R is the local control input, andϑi(t) is a bounded unknown perturbation

The only assumption made on the unknown perturbationsϑi(t) is:

∃ Π ∈ R
+ : ∀ i ∈ V, |ϑi(t)| ≤ Π (8.2)

Assuming that at each time instant, only a subset of the available communication edges
in G is active for information exchange, it is defined̂G(t) = (V,E(t)) as a time-varying
graph representative of the active instantaneous topology, whereE(t) ⊆ E is the subset of
active edges at timet. Accordingly, it can be defined the instantaneous neighborsset of the
i-th agent as follows:

Ni(t) = { j ∈V : ( j, i) ∈ E(t)} ⊆Ni (8.3)

Let Γ andtr be two positive constants, the task of the present Chapter isto design a local
interaction ruleui(t), compatible withĜ(t), which can guarantee, under suitable assumptions
on the time-varying topology, the achievement of the nextpractical finite-time consensus
condition

∃ Γ, tr ∈ R
+ : ∀ t > tr , ∀ i, j ∈ V, |xi(t)−x j(t)| ≤ Γ (8.4)
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8.3 Main result and Convergence Analysis

The proposed local interaction protocol is defined as follows:

ui(t) = ui,1(t)+ui,2(t), i ∈V (8.5)

with
ui,1(t) =−λ1 ∑

k∈Ni(t)

(xi(t)−xk(t)) , (8.6)

ui,2(t) =−λ2 ∑
k∈Ni(t)

sign(xi(t)−xk(t)) , (8.7)

whereλ1 andλ2 are the nonnegative tuning constants of the algorithm and the sign(·) func-
tion is defined as follows

sign(S) =











1 if S> 0

0 if S= 0

−1 if S< 0

(8.8)

Let r ik(t) be a binary variable, representative of the presence or not of a directed com-
munication channel coming from agenti to agentk at timet, denoted as:

r ik(t) =

{

1 if k∈Ni(t)

0 otherwise
(8.9)

Then, it can be rewritten the linear and nonlinear control componentsui,1(t) andui,2(t)
in (8.6) and (8.7) as follows:

ui,1(t) =−λ1 ∑
k∈V,k6=i

r ik(t) · (xi(t)−xk(t)), λ1 ≥ 0. (8.10)

ui,2(t) =−λ2 ∑
k∈V,k6=i

r ik(t) ·sign(xi(t)−xk(t)), λ2 > 0. (8.11)

Remark 8.1. Due to the concurrent effect of the suggested discontinuouslocal interaction
rule (8.11), the switching network topologŷG(t), and the possibly discontinuous nature of
the external disturbances (supposed to be only uniformly bounded), the closed loop network
dynamics(8.1) will be discontinuous and the resulting solution notion needs to be discussed
and clarified. For a differential equation with discontinuous right-hand side, following [Fil-
ippov, 1988], the resulting solution in the so-called Filippov Sense can be understood as
the solution of an appropriate differential inclusion, whose existence is guaranteed (owing
on certain properties of the associated set-valued map) andfor which noticeable proper-
ties, such as absolute continuity, are in force. The reader is referred to [Cortes, 2008] for a
comprehensive account of the notions of solution for discontinuous dynamical systems.�

From now on the conditions under which the local interactionprotocol (8.5)-(8.7) can
achieve the approximate consensus conditions (8.4) are investigated. Define a set of error
variables for each edge in the network as follows

δi j (t) = xi(t)−x j(t) with (i, j) ∈ E. (8.12)
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Figure 8.1: Changes in network topology and communication constraints.

The dynamics ofδi j (t) are easily obtained by differentiating (8.12), and considering the
closed loop dynamics of each agents

ẋi = ϑi −λ1 ∑
k∈V,k6=i

r ikδik −λ2 ∑
k∈V,k6=i

r ik ·sign(δik) (8.13)

Trivial manipulations yield

δ̇i j = ϑi −ϑ j −λ1

[

∑
k∈V ,k6=i

r ikδik − ∑
k∈V ,k6= j

r jkδ jk

]

+

−λ2

[

∑
k∈V ,k6=i

r ik ·sign(δik)− ∑
k∈V ,k6= j

r jk ·sign(δ jk)

] (8.14)

The requirement concerning the switching communication topology is that the time
varying graphĜ(t) has a directed spanning-tree, at least, a certain “minimal percentage" of
time. This is formalized by the next Assumption.

Assumption 8.1. There are positive constantsε and T, withε ≤ T, such that during the
receding horizon time intervalI(t) = (t, t+T), Ĝ(t) has a directed spanning tree along a
subintervalS(t)⊆ I(t), possibly formed by the union of disjoint subintervals, whose overall
length is at least equal toε. �

The meaning of Assumption8.1 is clarified by the Figure8.1, namely the overall du-
ration of the disjoint grey subintervals during which the instantaneous digrapĥG(t) has a
directed spanning-tree should be not less than the constantε. Now it is possible to state the
main result of the Chapter.

Theorem 8.1.Consider the agents’ dynamics (8.1), which satisfies (8.2), and let Assumption
8.1be in force. Then, the discontinuous local interaction rule(8.5), (8.9)-(8.11) with tuning
parameters selected according to

λ1 ≥ 0 , λ2 ≥
2T ·Π

ε
+µ2 , µ 6= 0, (8.15)

provides the approximate consensus condition (8.4) where

Γ = [2 · (T − ε)+ξ ] ·Π, (8.16)
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whereξ > 0 is an arbitrary infinitesimally small positive parameter and the transient time tr

is upper bounded as follows

tr ≤
(

T
εµ2

)

· max
i, j∈V×V

|xi(0)−x j(0)| (8.17)

�

Proof. Consider
V(t) = |δij (t)| (8.18)

as a candidate Lyapunov function, where

(i, j) = argmax(i, j)∈V×V |δi j (t)| (8.19)

in such a way that, without loss of generality, indexi will correspond to an agent carry-
ing the maximal value at timet among all the agents in the network, and, dually, indexj will
correspond to an agent carrying the minimal value, i.e.

xi(t) = sup
h∈V

xh(t), xj(t) = inf
h∈V

xh(t) (8.20)

Let us preliminarily address the caseε < T. It is worth to emphasize that the chosen
Lyapunov function (8.18) is continuous at those time instants at which eitheri or j will
change its value. Clearly, the vanishing ofV(t) implies the exact consensus condition among
the agents of the network, while small values forV(t) correspond to a practical consensus
condition as in (8.4). Note that the considered Lyapunov function is locally Lipschitz and
it is not differentiable whenδi j (t) = 0. Thus, the treatment refers for stability analysis to
the Lyapunov Generalized Theoremfor non-smooth analysis reported in [Paden & Sastry,
1987], which makes use of theClarke’s Generalized Gradient[Clarke, 1983]. However, it
can be observed thatδi j (t) = 0 only when the exact consensus condition is in force, which
will bring some useful simplification in the stability analysis.

In the remainder, the computation method illustrated in [Paden & Sastry, 1987] is re-
ferred to as, where a Lyapunov analysis based on an analogoussum-of-absolute-value Lya-
punov function was dealt with. All the necessary technicalities justifying the correctness of
adopting the chain rule to compute the time derivative ofV(t), which exists almost every-
where in the form of a suitable set-valedmap, are not reported here, and the reader is referred,
e.g., to [Cortés, 2006a, Paden & Sastry, 1987, Shevitz & Paden, 1994] where discontinuous
systems and non-smooth Lyapunov tools analogous to those involved in the present analysis
were discussed in detail.

The time-derivative ofV(t) along the solutions of the deviation error dynamics (8.14)
takes the following set-valued form

V̇(t) = SIGN(δij (t)) · δ̇ij (t) =

= SIGN(δij ) · (ϑi −ϑj)

−λ1 ·SIGN(δij ) ∑
k∈V ,k6=i

r ik ·δik

+λ1 ·SIGN(δij ) ∑
k∈V ,k6=j

r jk ·δjk

−λ2 ·SIGN(δij ) ∑
k∈V ,k6=i

r ik ·sign(δik)

+λ2 ·SIGN(δij ) ∑
k∈V ,k6=j

r jk ·sign(δjk)

(8.21)
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where SIGN(δij (t)), the generalized gradient ofV(t) (see [Paden & Sastry, 1987]), is the
multi-valued function

SIGN
(

δij (t)
)

=











1 if δij(t)> 0

[−1,1] if δij(t) = 0

−1 if δi j (t)< 0

(8.22)

Note that by definition, and considering (8.20), as long asV(t) 6= 0, it results that
SIGN(δij (t)) = 1. Furthermore due to the uniform boundedness of the disturbance (8.2),
the next estimation is in force

|ϑi −ϑj | ≤ 2Π (8.23)

Thus, (8.21) can be manipulated so as to obtain

V̇(t)≤ 2 ·Π−λ1 ∑
k∈V,k6=i

r ik ·δik+

+λ1 ∑
k∈V,k6=j

r jk ·δjk+

−λ2 ∑
k∈V,k6=i

r ik ·sign(δik)+

+λ2 ∑
k∈V,k6=j

r jk ·sign(δjk)

(8.24)

Note that, in light of (8.20), irrespectively of the instantaneous current graph topology,
all the state-dependent feedback terms in the right hand side of (8.24) are positive, i.e.

−λ1 ∑
k∈V,k6=i

r ik ·δik+λ1 ∑
k∈V,k6=j

r jk ·δjk+

−λ2 ∑
k∈V,k6=i

r ik ·sign(δik)+

+λ2 ∑
k∈V,k6=j

r jk ·sign(δjk)≤ 0

(8.25)

The receding horizon time intervalI(t) = (t, t+T) is divided into the union between
subintervalS(t), along which the graph is guaranteed to has a directed spanning-tree, and the
complementary intervalI(t)\S(t) during which nothing can be said about the connectivity
properties of the switching graph. By virtue of (8.24) and (8.25) one can conclude that

V̇(t)≤ 2 ·Π, t ∈ I(t)\S(t). (8.26)

It shall be noted that the pair(i, j) is not uniquely defined and there can be multiple
agents carrying the maximal or minimal valuesxi andxj at time t. At those time instants
whenĜ(t) has a directed spanning tree, however, at leastone of the following conditions
holds:

1. among all agents carrying the maximal value, there is at least one of them
which admits, among its neighbors, one agent with state value strictly less
thanxi ;
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2. among all agents carrying the minimal value, there is at least one of them
which admits, among its neighbors, one agent with state value strictly
greater thanxj ;

Suppose “i" (resp., “j") is the agent for which the maximum (resp., minimum) is achieved
at timet. If there are many such agents, we choose one, if any, which share an active edge
with a neighbor having state value strictly less (resp., greater) thanxi (resp.,xj). If there
are still many of such agents we choose any one of those, but commit to that until a new
agent holds the maximum (resp., minimum) value. As a consequence of the previous devel-
opments, at those time instants whenĜ(t) has a directed spanning tree there exists at least
an agent index̄k, k̄ 6= i, k̄ 6= j, which satisfies at least one of the following conditions:

r ik̄(t) = 1 , δik̄ > 0 (8.27)

r jk̄(t) = 1 , δjk̄ < 0 (8.28)

When either of (8.27) and (8.28) is in force, it follows that the right hand side of (8.24)
can be upper-estimated as follows. Whenevert ∈ S(t) andV(t) 6= 0

V̇(t)≤ 2 ·Π−λ2 t ∈ S(t) (8.29)

By construction, the next relation holds:

V(t +T)−V(t) =
∫

S(t)

V̇(τ) dτ +
∫

I(t)\S(t)

V̇(τ) dτ (8.30)

where the length of the subintervalS(t) is at leastε, then according to Assumption 1, it
follows that the length of the intervalI(t)\S(t) will not exceed the value ofT − ε.

Thus, in light of (8.26) and (8.29), from (8.30) it yields:

V(t +T)−V(t)≤ ε (2Π−λ2)+(T − ε)2 ·Π =

=−ελ2+2T ·Π
(8.31)

By plugging (8.15) into (8.31) one obtains the next condition

V(t+T)−V(t)≤−µ2ε (8.32)

which will be satisfied as long asV(τ) 6= 0∀ τ ∈ (t, t+T), thereby guaranteeing the existence
of a finite transient timetr such thatV(tr) = 0. To evaluate an upper bound oftr , denoted
Vκ =V(κT), with κ = 0,1,2, . . . , (8.32) can be expressed in the first-order finite difference
form as follows

Vκ+1 =Vκ −µ2ε (8.33)

from which the following recursive solution is in force

Vκ =V(0)−κ ·µ2ε (8.34)

Thereby, accordingly to (8.17), it can be readily concluded that

tr ≤ κT =
V(0)
εµ2 ·T =

(

T
εµ2

)

· max
i, j∈V×V

|xi(0)−x j(0)| (8.35)
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We now prove that, att ≥ tr , the Lyapunov functionV(t) undergoes bounded fluctua-
tions preserving the consensus accuracy established by (8.4) and (8.16). Define

VS= sup
t≥tr

V(t) (8.36)

which sets the ultimate precision of the approximate consensus condition. If, at any timet ′

one has thatV(t ′) = 0 then along the time intervalt ∈ (t ′, t ′+T) the Lyapunov functionV(t)
may deviate form zero, at most, by a quantity 2(T − ε)Π, which is obtained by integrating
(8.26) for a timeT − ε (the maximal consecutive time interval in which the graph isdiscon-
nected, according to the Assumption 1 starting from the zeroinitial condition. Thereby, the
domain

V(t)≤ 2(T − ε)Π. (8.37)

is positively invariant at anyt ≥ tr .

Now let us address the case in whichε = T, i.e. the time varying graph has a directed
spanning tree at all times. The previous analysis has shown that there exists a finite timetr ,
satisfying (8.17), at which exact consensus is achieved, i.e.V(tr)=0. Unfortunately,V(t)=0
cannot be an equilibrium state att ≥ tr due to the fact that all the local control lawsui(t) are
identically zero whenV(t) = 0 (as a consequence of allδi j ’s in (8.12) being zero and in
view of the adopted definition (8.8) of the sign function) while the disturbancesϑi(t) are not.
On the other hand, an infinitesimal deviation ofV(t) from zero will restore the convergence
features of the algorithm, steering immediatelyV(t) back to zero. This phenomenon, local
instability of the ideal consensus conditionV(t) = 0 when the disturbances are acting, can
be characterized by an infinitesimal increase ofΓ as follows:

Γ ≤ [2(T − ε)+ξ ]Π (8.38)

whereξ is an arbitrarily small positive real number. Theorem8.1is proven.

Remark 8.2. Note that the transient time, which satisfies(8.35), can be made arbitrarily
small by taking the design parameterµ in (8.15) large enough. It can be defined aµ-
dependent majorant curve, illustrated in Figure8.2, such that

V(t)≤ V̄(t) = max
{

V(0)−µ2ε
t
T
+Γ,Γ

}

, (8.39)

It is also worth to remark that theλ2 tuning does not require the perfect knowledge of
the time varying network topology, and it can be carried out on the basis of an upper bound
to the noise magnitude and an upper bound to the ratioT/ε that sets the relative amount of
time during which the network has a directed spanning tree.

8.4 Numerical Simulations

To demonstrate the effectiveness of the proposed local interaction protocol, a network of
20 agents is considered, which interact through a randomly chosen directed communication
network with switching topology. Each agent, modeled as in (8.1), has a randomly chosen
initial statexi0 ∈ [0,5]. The disturbances are selected according to

ϑi(t) = ηi(t)+αi +βi ·sin(20· t+φi), i = 1, . . . ,20 (8.40)
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Figure 8.2: Actual and majorant curves of V(t)

whereηi(t) is a bounded uniformly distributed random signal,αi is a random constant, and
the pairβi , φi are the characteristic parameter of the harmonic part of thedisturbance. All the
underlying disturbance parameters have been randomly chosen in such a way to guarantee
the bound|ϑi(t)| ≤ Π = 2.5 ∀ i.

The communication topology is set by a randomly chosen time-varying graphG(t)
such that at most|E| = 30 edges can be simultaneously active. The random edge selection
policy is implemented in such a way that the requirement of Assumption 1 is met. The value
T = 0.01s is used in all tests while different choices forε have been considered for the sake
of comparison.

Four tests, using different values ofε and of the control gainsλ1, λ2 have been consid-
ered, according to the next tabular representation.

TEST1 : ε = T, λ1 = 0, λ2 = 6

TEST2 : ε = 0.5T, λ1 = 0, λ2 = 11

TEST3 : ε = 0.1T, λ1 = 0, λ2 = 51

TEST4 : ε = 0.5T, λ1 = 5, λ2 = 11

The chosen control gains are always according to the design inequalities (8.15). The
continuous time network (8.1) has been simulated numerically by using the Euler fixed-step
solver with sampling timeTs = 10−4. Figure8.3 and Figure8.4 display, respectively, the
time evolutions of the agents state variables, and of the corresponding Lyapunov function
V(t), relative to the first three tests. It can be verified that in all tests agents become synchro-
nized after a finite transient time. Particularly, Figure8.4 shows the negative impact of an
increasing differenceT −ε on the steady state accuracy, in accordance with conditions(8.4)
and (8.16).

With reference to TEST2 and TEST4, Figure8.5 shows how the introduction of the
linear control component in the consensus protocol (8.5)-(8.7) speeds up the achievement of
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Figure 8.3: Time evolution of the clock variables for TEST1-3 (right).

consensus without causing chattering, as it would be the case by increasing the parameterλ2
instead.

Figure8.6shows the Lyapunov function relative to an additional conclusive test (TEST
5) where, under the same conditions of TEST 1, the external perturbations have been re-
moved (ϑi(t) = Π = 0). A small residual synchronization error is still present, even if the
achievement of a theoretically-exact consensus conditionwould be expected in this condi-
tion due to (8.16) . The source of this error is, however, of purely numerical nature and the
size of the residual set teds to zero while the sampling-timeTs is progressively reduced.

8.5 Conclusion and Future Works

In this Chapter a distributed algorithm, based on the mixed use of continuous and dis-
continuous local interaction rules, is suggested to solve the finite-time consensus problem in
a network of continuous time integrators with additive disturbances. It has been proven that
the network converges in finite time to an approximate consensus condition. Numerical sim-
ulations have been provided to corroborate the analytical results. Among the most interesting
directions for next research, more complex agent’s dynamics are currently under investiga-
tion along with the possibility to consider more general switching communication policy
are actually under investigation. Furthermore, discrete time implementation of the proposed
interaction rule is under study as well.
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Figure 8.4: Transient evolution (left) and steady state accuracy (right) of the Lyapunov func-
tionV(t).

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

X
(t

)

TEST2: ε=0.5T, ( λ
1
=0 , λ

2
=11 )

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Time [s]

X
(t

)

TEST4: ε=0.5T, ( λ
1
=5 , λ

2
=11 )

Figure 8.5: Transient evolution of the agent states in TEST2and TEST4.



8.5. Conclusion and Future Works 109

0 0.5 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time [s]

V
(t

)

0.6 0.65 0.7 0.75 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−3

Time [s]

V
(t

)

Figure 8.6: Transient evolution (left) and steady state accuracy (right) of the Lyapunov func-
tionV(t) in TEST 5.



Chapter 9

Robust Consensus Algorithms for
Double-integrator Dynamics

9.1 Introduction

This work focuses on a consensus algorithm for perturbed double integrator dynamics.
Since these systems are suitable to model networks of point-mass vehicles, they are of higher
interest as compared to the single integrator dynamics due to the possible applications in
rendezvous, formation control, flocking and sensor networks [Ren et al., 2007a, Deshpande
et al., 2011, Ren, 2008, Olfati-Saber & Shamma, 2005, Cortés, 2006b, Li et al., 2013].

With reference to an undirected topology, asymptotic consensus for double integrators
dynamics is presented in [Ren, 2008, Xie & Wang, 2007]. In [Ren, 2008] several nonlinear
protocols have been presented, while in [Xie & Wang, 2007] linear interaction rules were
dealt with by including in the analysis the effect of measurement delays. Sufficient con-
ditions for achieving asymptotic consensus in presence of nonlinear second-order agents’
dynamics is considered in [Yu et al., 2010]. More recently, the finite-time consensus prob-
lem for a network of double integrators is studied in [Cao & Ren, 2012] for an undirected
static topology and in [Cortés, 2006b] for an undirected static or switching topology using
non-smooth protocols. However, none of the above works takes into account the presence of
perturbation terms in the agents’ dynamics by studying “ideal" double integrators only.

In [Franceschelli et al., 2013a] finite time consensus with perturbation terms is investi-
gated in the case of single integrators with undirected and switching network topology.

Here, it is proposed a discontinuous consensus algorithm for achieving finite-time agree-
ment in a network of perturbed agents with a static and undirected communication graph
while completely rejecting the effect of the disturbances.The class of perturbations consid-
ered in the present work only assume them to be bounded, in magnitude, by a-priori known
constants. Complete rejection of such a wide class of disturbance was never achieved in the
existing literature quoted above. The proposed local interaction rule can be thought as a dis-
tributed version of the well-knownTwisting Second Order Sliding Mode Algorithm[Levant,
1993a, Orlov, 2004, Bartolini et al., 2003] with a non-trivial function of the neighbors states
used as sliding manifold. All significant robustness properties against uncertainties and dis-
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turbances typical of Variable Structure Control Theory areinherited [Bartolini et al., 2008].

The performance of the proposed protocol is investigated byLyapunov-based analysis,
and simple tuning rules to adjust the algorithm parameters are provided.

The Chapter is organized as follows: in Section 2 preliminaries of graph theory and
multi-agent systems are provided to clarify the notation that will be used in the Chapter. The
problem statement and the proposed local interaction rule are presented in Section 3. Section
4 presents a constructive Lyapunov analysis which demonstrates that the proposed discontin-
uous protocol solves the finite-time consensus problem for anetwork of double integrators
affected by bounded unknown perturbations. To corroboratethe theoretical results, simula-
tion results are shown in Section 5. Section 6 provides some concluding remarks and hints
for further investigation.

9.2 Preliminaries and Notation

With reference to a network ofN agents, the associated undirected communication
graphG = (V,E) is considered, whereV = {1, . . . ,N} is the set of agents andE ⊆V2 repre-
sent the set of edges. The set of neighbors of thei-th agent is defined asN−

i = { j ∈V/{i} : (i, j) ∈ E}.
Topological information associated with graphG is encoded in theLaplacian MatrixL =
[Li j ] ∈ RN×N where

Li j :=











∣

∣N−
i

∣

∣ if i = j

−1 if (i, j) ∈ E

0 otherwise

(9.1)

and|N−
i | is the cardinality of the i-th agent neighbor set.

For an undirected graph,L is a symmetric and positive semi-definite matrix [Garin
& Schenato, 2011, Olfati-Saber et al., 2007, Godsil et al., 2001]. In addition,L has real
eigenvalues that can be ordered sequentially as follows 0= λ1 ≤ ·· · ≤ λN.

The null eigenvalueλ1 has multiplicity equal to the number of connected components of
G and the corresponding left and right eigenvectors are respectively1N = col(1, . . . ,1)∈RN

and1T
N, where the expressioncol(.) denotes a column vector. Thus, the following identities

hold:
L ·1N = 0N , 1

T
N ·L= 0

T
N (9.2)

In addition, the next property holds [Horn & Johnson, 1990]

‖Lζ‖1 ≥ ‖Lζ‖2 =
√

ζ TL2ζ ≥ λ2 · ‖ζ‖2 (9.3)

whereλ2 is the smallest nonzero eigenvalue ofL, known asalgebraic connectivity[Pereira,
2011], andζ ∈ RN is any vector such that1T

Nζ = 0.
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9.3 Problem Statement

Let us consider a connected network consisting ofN agents where each agent is gov-
erned by the following perturbed double-integrator dynamics:

ẋi (t) =Axi (t)+B (ui (t)+ϑi (t)) , i ∈V , (9.4)

with

A=

(

0 1

0 0

)

, B =

(

0

1

)

, (9.5)

wherexi = col(xi,1,xi,2) ∈ R2 represents the state of thei-th agent,ui(t) ∈ R is the control
input, andϑi(t) ∈ R is an unknown perturbation which corrupts the agent’s dynamics. A
compact representation of the collective network dynamicscan be expressed as follows:

Ẋ = (IN×N ⊗A)X+(IN×N ⊗B)(U +Θ) (9.6)

where⊗ denotes theKronecker Product, IN×N ∈RN×N is the identity matrix of orderN, and

X = col(x1, . . . ,xN) ∈ R2N

U = col(u1, . . . ,uN) ∈ RN

Θ = col(ϑ1, . . . ,ϑN) ∈ RN

(9.7)

Then, let
Z1 = col(x1,1, . . . ,xN,1) ∈ RN

Z2 = col(x1,2, . . . ,xN,2) ∈ R
N (9.8)

be two vectors which stack together, respectively, the position and velocity of each agents.
The collective dynamics (9.6) can be expressed in the following regular form:

Ż1 = Z2

Ż2 =U +Θ
(9.9)

The next assumption has been done

Assumption 9.1.G is a connected undirected graph and the disturbance vectorΘ is bounded
in accordance with:

|ϑi(t)| ≤ Πi ≤ Π with Π = max
i∈V

{Πi}= ‖Θ‖∞ < ∞ (9.10)

�

The objective of the present work is to present a novel discontinuous local interaction
rule guaranteeing the achievement of the next finite-time consensus conditions:

|zi,1(t)−zj ,1(t)|= 0

|zi,2(t)−zj ,2(t)|= 0
, t ≥ T, T < ∞, ∀ i, j ∈ V (9.11)

The next local interaction rule is suggested:

ui (t) =−a ·sign(LiZ1)−b ·sign(LiZ2) , i ∈ V (9.12)
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wherea andb are positive tuning constants,Li is the i-th row of the Laplacian Matrix and
sign(·) is defined as follows:

sign(S) =











1 if S> 0

[−1,1] if S= 0

−1 if S< 0

(9.13)

The proposed discontinuous protocol in (9.12) can be thought as a distributed version of the
"Twisting" second order sliding mode algorithm [Levant, 1993a], where a non-trivial func-
tion of the neighbors states is used as sliding manifold. Thearguments of the sign functions
take the next explicit form:

LiZk = ∑
j∈N−

i

(

zi,k−zj ,k
)

, i ∈ V, k= 1,2 (9.14)

Define
σ (LZk) = col(sign(L1Zk) , . . . ,sign(LNZk)) , k= 1,2 (9.15)

the local interaction protocol (9.12) can be rewritten at the network level in the following
compact form:

U (t) =−a ·σ (LZ1)−b ·σ (LZ2) (9.16)

Remark 9.1. Due to the proposed discontinuous local interaction rule, and the possibly
discontinuous nature of the external disturbances (which are only supposed to be uniformly
bounded), the closed loop network dynamics will be discontinuous and the resulting solution
notion needs to be discussed and clarified. For a differential equation with discontinuous
right-hand side, following [Filippov, ], the resulting solution in the so-calledFilippov sense
as the solution of an appropriate differential inclusion isconsidered, the existence of which
is guaranteed (owing on certain properties of the associated set-valued map) and for which
noticeable properties, such as absolute continuity, are inforce. The reader is referred to
[Cortes, 2008] for a comprehensive account of the notions of solution for discontinuous
dynamical systems. �

9.4 Convergence Analysis

In this section, the performance of protocol (9.16) are investigated by means of Lyapunov-
Based Analysis. Simple tuning rules for the control gainsa andb will be derived.

Common approach adopted to deal with the consensus problem for network of simple
integrator agents is to study the convergence to zero of the disagreement vector dynamics
[Franceschelli et al., 2012b], which imply the convergence to the consensus value1

T
N ·Z1/N

of each agents. Since second-order agents are considered, the following disagreement vectors
take place:

δk(t) = Zk(t)−
1N ·1T

N

N
·Zk(t), k= 1,2 (9.17)

The achievement of the consensus condition (9.11) corresponds to the annihilation of vectors
δ1(t) andδ2(t) in finite time. It is worth noting that both the disagreement vectors satisfy the
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following conditions [Olfati-Saber et al., 2007]:

1
T
N ·δk = 0, Lδk =LZk k= 1,2 (9.18)

along with the property (9.3), which can be rewritten as:

δT
k Lδk ≥ λ2‖δk‖2

2, k= 1,2 (9.19)

The dynamics ofδ1 andδ2 can be easily derived by differentiating (9.17) and considering
(9.9), (9.16) and (9.18) as follows:

δ̇1 = δ2

δ̇2 =−a ·σ (Lδ1)−b ·σ (Lδ2)+ Θ̂(t)+Ω(t) ·1N
(9.20)

where

Θ̂(t) = Θ(t)− 1N ·1T
N

N
Θ(t) (9.21)

Ω(t) =
a ·1T

Nσ (Lδ1)+b ·1T
Nσ (Lδ2)

N
(9.22)

The main result of the Chapter can be now presented.

Theorem 9.1. Consider the collective dynamics(9.9) and let Assumption9.1 be satisfied.
Consider the local interaction rule(9.16) and let tuning parameters be selected according to

a> b+Π, b> Π. (9.23)

Then, the finite-time consensus property(9.11) is achieved. �

Proof: The proof is broken into three simple consecutive steps.

⊲ Equi-uniform stability

Consider the following candidate Lyapunov function:

V(t) = a · ‖Lδ1‖1+
1
2
·δT

2Lδ2 (9.24)

The considered Lyapunov function is a locally Lipschitz function and it is not differ-
entiable when any entry of vectorLδ1 is zero. Thus, the following treatment refers for sta-
bility analysis to the Lyapunov Generalized Theorem for non-smooth analysis reported in
[Paden & Sastry, 1987], which makes use of Clarke’s generalized gradient [Clarke, 1983]
and involves a set-valued form for the resulting Lyapunov function time derivative. In the
remainder, the computation method illustrated in [Paden & Sastry, 1987], where a Lyapunov
analysis involving an analogous sum-of-absolute-value Lyapunov function term was dealt
with is considered. For the sake of brevity, here all the necessary technicalities justifying
the correctness of adopting the chain rule to compute the time derivativeV(t), which exists
almost everywhere in the form of an appropriate set valued map are omitted. The reader is
referred to the works [Cortes, 2008, Paden & Sastry, 1987, Shevitz & Paden, 1994] where
discontinuous systems and non-smooth Lyapunov tools analogous to those involved in the
present analysis were discussed in detail.
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The corresponding time derivative takes the form

V̇(t) = aδ̇T
1Lσ (Lδ1)+δT

2Lδ̇2 (9.25)

Considering (9.20) into (9.25), and taking into account thatΩ(t) is a scalar and that
1

T
N ·L= 0 , the next simplification can be made after evaluating its time-derivative along the

trajectory of the perturbed dynamic (9.20)-(9.22)

V̇(t) = aδT
2Lσ (Lδ1)−aδT

2Lσ (Lδ1)−b ·δT
2Lσ (Lδ2)

+ δT
2LΘ̂(t)+Ω(t)δT

2L ·1N

= −b ·δT
2Lσ (Lδ2)+δT

2 LΘ̂
= −b · ‖Lδ2‖1+δT

2 LΘ̂ (9.26)

Applying theHölder’s Inequalityand taking into account (9.10), the next estimation,
involving the last sign-undefined term in the right hand sideof (9.26), can be made

|δT
2LΘ̂| ≤ ‖Lδ2‖1

∥

∥Θ̂
∥

∥

∞ ≤ Π · ‖Lδ2‖1 (9.27)

on the basis of which it yields

V̇(t)≤−(b−Π) · ‖Lδ2‖1 (9.28)

It follows by (9.23) that V̇(t) ≤ 0, therefore the uncertain system (9.20)-(9.22) is equi-
uniformly stable [Orlov, 2008]. Indeed, initializing the system in an arbitrarily vicinity of
the origin such thatV(0) ≤ R0, the uncertain system (9.20)-(9.22) cannot leave this vicin-
ity, regardless of whichever admissible uncertaintyΘ̂ affects the system. In other words,
inequality (9.28) guarantees the boundedness of the perturbed disagreementvector’s state
trajectories in (9.20)-(9.22).

⊲ Global equi-uniform asymptotic stability

To begin with, let us note that by virtue of (9.28) all possible solutions of (9.20)-(9.22),
initialized att0 ∈ R within the invariant compact set

DR =
{

(δ1,δ2) ∈ R
2N : V (δ1,δ2)≤ R

}

(9.29)

are a priori estimated by
sup

t∈[t0,∞]

V (δ1,δ2)≤ R (9.30)

which, considering the Lyapunov function definition (9.24), implies the following relations:

‖Lδ1‖1 ≤ R/a , δT
2Lδ2 ≤ 2R (9.31)

Furthermore, by virtue of (9.19), the following chain of inequalities holds:

λ2‖δ2‖2
2 ≤ δT

2Lδ2 ≤ λN‖δ2‖2
2 (9.32)

which allows to manipulate (9.31) as

‖Lδ1‖1 ≤ R/a , ‖δ2‖2 ≤
√

2R/λ2 (9.33)
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The idea behind the reminder of the proof is inspired by the Extended Invariance Principle
[Orlov, 2008] and it is based on constructing a parameterized family of local Lyapunov func-
tionVR(δ1,δ2), R> 0 such that eachVR(δ1,δ2) is well posed on the corresponding compact
setDR and its time derivative, initialized withinDR is negative definite and yields the desired
stability and convergence properties. A parameterized Lyapunov functionVR(δ1,δ2), R> 0
with the properties above, can be obtained by augmenting theLyapunov function (9.24) as
follows:

VR(t) =V(t)+κR·U(t) (9.34)

whereU(t) is the sign-indefinite function

U(t) = δT
1Lδ2 (9.35)

andκR is a proper positive constant. By Young’s inequality and taking into account (9.33),
then it follows that

U(t) = δT
1Lδ2 ≥−1

2

(

‖Lδ1‖2
2+‖δ2‖2

2

)

≥
≥ −1

2

(R
a · ‖Lδ1‖1+‖δ2‖2

2

) (9.36)

Taking into account (9.34), (9.36), and the left inequality in (9.32), it follows that

VR ≥
[

a− κRR
2a

]

· ‖Lδ1‖1+
1
2
[λ2−κR] · ‖δ2‖2

2 (9.37)

which, in accordance with the following restriction:

κR < min
{

2a2

R , λ2

}

(9.38)

guarantees thatVR(t) is not negative in spite of having added the sign indefinite term U(t).

In turns, by differentiating (9.35) along the trajectory of the uncertain dynamic (9.20)-
(9.22), it results:

U̇ = δT
2Lδ2−a · ‖Lδ1‖1−b ·δT

1Lσ (Lδ2)+δT
1LΘ̂ (9.39)

In the right hand side of (9.39) there is a negative definite term (the second one) and
three positive or sign-indefinite terms. Bounds to the latter de-stabilizing terms are now de-
rived. As for the first entry, by the Hölder inequality and theright inequality in (9.33), it
derives that

|δT
2Lδ2| ≤ ‖Lδ2‖2‖δ2‖2 ≤

√

2 ·R
λ2

· ‖Lδ2‖1 (9.40)

As for the term−b · δT
1Lσ (Lδ2) one can exploit once more the Hölder inequality,

taking into account that‖σ(Lδ2)‖∞ = 1. to assess that

|b ·δT
1Lσ (Lδ2) | ≤ b‖Lδ1‖1‖σ (Lδ2)‖∞ ≤ b‖Lδ1‖1 (9.41)

The last term in the right hand side of (9.39) satisfies the inequality

|δT
1LΘ̂| ≤ ‖Lδ1‖1‖Θ̂‖∞ ≤ Π · ‖Lδ1‖1 (9.42)
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Therefore relation (9.39) can be estimated as

U̇ ≤
√

2·R
λ2

· ‖Lδ2‖1−a · ‖Lδ1‖1+b · ‖Lδ1‖1+
+Π · ‖Lδ1‖1

(9.43)

Then, by combining (9.28) and (9.43), the time derivative of (9.34) can be upper-
estimated as follows:

V̇R ≤−c1 · ‖Lδ1‖1−c2 · ‖Lδ2‖1 ≤
≤−cR · (‖Lδ1‖1+‖Lδ2‖1)

(9.44)

where
c1 = κR(a−b−Π) , c2 = b−Π−κR

√

2R/λ2 (9.45)

cR = min
{

c1,c2

}

(9.46)

and with the coefficientκR subject to the next inequality which is stricter than (9.38)

κR < min
{

2a2

R ,λ2,
√

λ2
2R · (b−Π)

}

(9.47)

The exponential convergence towards the manifoldLδ1 =Lδ2 = 0, can be shown tak-
ing into account the following

VR ≤ a · ‖Lδ1‖1+ 1
2|δT

2Lδ2|+κR · |δT
1Lδ2| ≤

≤ c̄1 · ‖Lδ1‖1+ c̄2 · ‖Lδ2‖1 ≤
≤ c̄R · (‖Lδ1‖1+‖Lδ2‖1)

(9.48)

with

c̄1 = a+κR

√

2R
λ2

, c̄2 =
1
2

√

2R
λ2

, c̄R = max
{

c̄1, c̄2

}

(9.49)

which can be derived applying the Hölder Inequalities and substituting the bounds in (9.33),
along with (9.44) which leads to

V̇R(δ1,δ2)≤−ρR ·VR(δ1,δ2) (9.50)

with

ρR ≤ cR

c̄R
=

min
{

κR(a−b−Π) ,b−Π−κR
√

2R/λ2

}

max
{

a+κR
√

2R/λ2,
√

R/2λ2

} (9.51)

which implies the exponential decay ofVR(t).

⊲ Global equi-uniform finite-time stability

Consider the uncertain disagreement vector dynamics (9.20)-(9.22) rewritten in the fol-
lowing compact form:

δ̇ =Φ(δ)+Ψ(t) , δ = col(δ1,δ2) ∈ R
2N (9.52)



9.4. Convergence Analysis 118

where
Ψ(t) = col

(

0N, Θ̂+Ω ·1N
)

= col(ψ1, . . . ,ψ2N) ∈ R
2N (9.53)

is an uncertain vector of uniformly bounded functions, according to

|ψi(t)| ≤ Mi, Mi =

{

0, i = 1, . . . ,N

Π+a+b, i = N+1, . . . ,2N
(9.54)

and
Φ(δ) = col(δ2,−a ·σ (Lδ1)−b ·σ (Lδ2)) =

= col(φ1, . . . ,φ2N) ∈ R2N (9.55)

is a vector of piece-wise continuous functions.

Since the proof of finite-time convergence will be based on the properties of homoge-
neous systems, in the following it is introduced the definition of local homogeneityand the
Quasi-homogeneity Principle, both taken from [Orlov, 2004], upon which the presented rea-
soning will rely on. Homogeneity concepts were applied for finite-time stability analysis of
consensus protocols for first-order agents in, e.g, [Wang & Hong, 2010].

Definition 9.1. A piece-wise continuous vector field

f(t) = col( f1(x), . . . , fn(x)) ∈ R
n with x ∈ R

n (9.56)

is called locally homogeneous of degree q∈ R with respect to the dilation vectorr =
(r1, . . . , rn), ri > 0, if for all ε > 0

fi
(

ε r1x1, . . . ,ε rnxn,ε−qt
)

= εq+r i fi (x, t) , i = 1, . . . ,n (9.57)

�

Theorem 9.2. [Orlov, 2004] Quasi-homogeneity Principle. The uncertain system(9.52) is
globally equi-uniformly finite-time stable if the following conditions are satisfied:

1. The right-hand side of(9.52) consists of a locally homogeneous piece-wise
continuous functionΦ(δ) of degree q< 0 with respect to dilationr and
a piece-wise continuous functionΨ(t) whose componentsψi , i = 1, . . . ,n
are locally uniformly bounded by constants Mi ≥ 0 within a homogeneity
ball;

2. Mi = 0 whenever q+ r i > 0;
3. The uncertain system(9.52) is globally equi-uniformly asymptotically sta-

ble around the origin.

�

In accordance with the Definition9.1, it is possible to observe thatΦ(δ) is locally
homogeneous of degreeq=−1 with respect to the dilation vectorr = [r i] ∈ R2N taking the
form

r i =

{

r i = 2, with i = 1, . . . ,N

r i = 1, with i = N+1, . . . ,2N
(9.58)
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Then, since system (9.52) is globally equi-uniformly asymptotically stable, and the fol-
lowing conditions hold:

q+ r i > 0 ∀ i : Mi = 0 ⇒ i = 1, . . . ,N

q+ r i ≤ 0 ∀ i : Mi 6= 0 ⇒ i = N+1, . . . ,2N
(9.59)

all the conditions of Theorem9.2are satisfied, and the proposed local interaction rule (9.12)
guarantees the finite-time stability of system (9.52). As a consequence, the consensus prob-
lem (9.11) is solved in finite-time. The proof of Theorem9.1is completed. �

Remark 9.2. It is worth to remark that protocol(9.12) can be extended to the task of
“distributed leader-tracking” [ Khoo et al., 2009] for multi-robot networks(9.4) [Pilloni
et al., 2014a, Pilloni et al., 2014c]. Indeed, let agent i= 1 be a autonomous leader with
bounded acceleration i.e.|ẋ1,2| < Λ, able to communicate by with only a subset of follow-
ers (V/{1}); according toG, protocol(9.12) ensures the finite-time tracking of the leader
position by its followers, i.e. xi,k − x1,k = 0 ∀ i = 2, . . . ,N, k= 1,2. This can be proven by
non-smooth Lyapunov analysis considering the following candidate Lyapunov function:

V(t) = a · ‖Mδ̃1‖1+
1
2
· δ̃T

2Mδ̃2 (9.60)

whereδ̃i,k = xi,k− x1,k is the distributed tracking error andM = L f −diag{ℓ21, . . . , ℓN1},
with L f the Laplacian associated to the subgraph ofG composed only by followers (see i.e.
[Khoo et al., 2009]).

The same results can be extended to the case of multi-dimensional state trajectories for
each agent by exploiting straightforwardly the Kronecker product. �

Remark 9.3. Remarkably, the proposed controller, can provide the global achievement of
consensus by using a control authority that remains always bounded, thereby addressing
issues of actuator saturation [Ren, 2009, Roy et al., 2004, Ren, 2008]. This is not the case,
e.g., with more classical consensus protocols, either linear [Ren et al., 2007a] or nonlinear
[Cao & Ren, 2012], which imply an unbounded control effort when the discrepancy between
agent’s initial conditions tends to infinity. �

Remark 9.4. Denotingδ = col(δ1,δ2) = [di] ∈ R2N, as discussed in Section 3 of [Orlov,
2004], an upper bound on the settling-time function after which the network of agents will
be synchronized (i.e.,δ1 = δ2 = 0) is

T(t0,δ(t0))≤ τ (δ(0),ER)+
1

1−2q

(

ςR−1)q
s(ς) (9.61)

where
τ (δ(0),ER) = sup

δ(·,t0,δ(0))
inf {T ≥ 0 : δ(t, t0,δ(0)) ∈ ER} (9.62)

for all t0 ∈ R, t ≥ t0+T , and

s(ς) = supτ
(

δ(0),E1
2ς

)

(9.63)

are respectively the reaching-time functions and its upper-bound. ER denotes an ellipsoid of
the form

ER =







δ ∈ R
2N :

√

√

√

√

2N

∑
i=1

(

di

Rr i

)2

≤ 1







(9.64)
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Figure 9.1: Communication topologies respectively for thesecond-order consensus task (left)
and the distributed-tracking task (right).

located within a homogeneity ballς ≥ ε0R, andε0 ≤ ε is a positive constant called lower
estimate of the homogeneity parameterε. For further details see ([Orlov, 2004], Section 3).
�

9.5 Numerical Simulations

To demonstrate the efficacy of the proposed protocol consider the network on the left-
side of Figure9.1, consisting of 10 perturbed agents. Agents’ dynamics are governed by
equations (9.4)-(9.5). Disturbancesϑi(t) are selected as harmonic signals with randomly
time-varying chosen coefficients guaranteeing that the upper-boundΠ in (9.10) is Π = 2.
The initial states are chosen asxi,1(0) = i, xi,2(0) = −5.5+ i with i = 1, . . . ,10. For the
computation of the control gains, according to the tuning rule (9.23), the valuesa= 15 and
b = 10 were chosen. The continuous time network dynamics (9.9) has been simulated by
using the Runge-Kutta 4-th order integration method with fixed step size equal to 10−3s.

Figure9.2shows the time evolutions of the disagreement vectors (9.17). It can be seen
that consensus is achieved after a transient of about 4 seconds. Figure9.3depicts a compar-
ison between the time evolution of the Lyapunov Function (9.34) during three tests where
different control gain pairs(a,b) were adopted, according to the legend inserted in the plot.
Comparing those curves it is seen how higher values of the control gainsa andb can reduce
the settling time to reach consensus. Overall, the collective network’s dynamics behaves as
expected and the disturbance effect is rejected in the sensethat exact consensus is achieved
in spite of the presence of unknown perturbations corrupting the agents’ dynamics.

With reference to the extension of the consensus problem (9.11) to the task of distributed
leader-tracking for multi-robot perturbed networks as in (9.4), consider the right network
on Figure9.1. Let agent 1 to be a perturbed leader with a sinusoidal reference trajectory
x1,0= 2sin(t) in Figure9.4it can be appreciated how after a transient finite-time all followers
reach the leader’s position in spite of the presence of unknown but bounded perturbations.

9.6 Conclusion and Future Works

This Chapter proposed a discontinuous distributed local interaction rule for achieving
finite-time consensus in a network of double integrators agents affected by bounded distur-
bances. Agents are supposed to interact through an indirected, static and connected, com-
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Figure 9.2: Trajectories of the disagreement vectorsδ1(t) andδ2(t).
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Figure 9.3: Transient evolution of the Lyapunov FunctionVR(t).

munication topology. A Lyapunov-Based analysis confirm effectiveness of the proposed al-
gorithm to solve the finite-time consensus problem and provides a very simple set of tuning
rules for adjusting the algorithm parameters. Complete disturbance rejection has been pro-
vided. Numerical simulations confirm the theory developed.
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Chapter 10

Robust Consensus Algorithms in
Infinite-Dimensional Networked Systems

In this Chapter the problem of driving a group of perturbed infinite-dimensional agents
communicating through an undirected topology towards a common temperature’s consensus
value is considered. Since agents communicate by exchanging only information acquired at
the boundary of the spatial domain, the proposed consensus algorithm can be considered as
a boundary cooperative control. Each agent is modeled as 1D rod, described by the well-
known heat diffusion equation, whereas perturbations are supposed to be only bounded in
derivative and acting at the boundary of each rod too. Performances of the proposed local
interaction rule in terms of robustness and rate of convergence are investigate by Lyapunov-
Based approach from which simple tuning rules for achievingthe consensus condition are
developed. Simulative results demonstrate the effectiveness of the suggested scheme.

10.1 Introduction

Although a lot of practical engineering applications involves concepts of partial differ-
ential equations (PDEs) [Krstic & Smyshlyaev, 2008], the consensus problem for this class
of system or more generally for infinite dimensional system has not yet received the same
level of attention with respect to its finite-dimensional counterpart [Demetriou, 2013]. Some
recent, but precursors works in this area are listed here [Chao et al., 2007, Tricaud & Chen,
2009, Demetriou, 2010, Demetriou, 2009]. These works treat different aspects of consensus
in the framework of PDEs. With regards to the existing literature in this area, Demetriou
has extensively studied the problem of designing adaptive consensus filters for state esti-
mation in order to integrate local information coming from aspatial domain [Demetriou,
2009, Demetriou, 2010, Demetriou, 2012]. Whereas in [Chao et al., 2007, Tricaud & Chen,
2009] applications of consensus for controlling mobile actuators in diffusion processes are
discussed.

The aims of the present Chapter is to consider the problem of synchronization or con-
sensus of the states of systems governed by a class of parabolic PDEs. In particular, the
problem of driving the states of a group of perturbed infinite-dimensional agents commu-
nicating through an undirected topology towards a common consensus value is considered.
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In literature, one of the first attempts to tackle this problem is presented in [Bliman & Fer-
rari-Trecate, 2008], where starting from the classical finite-dimensional consensus theory
[Olfati-Saber & Murray, 2004], the authors provide conditions for achieving average con-
sensus in the framework of delayed MAS and partial difference equations. Afterwards in
[Galbusera et al., 2007] a control scheme based on the wave equation for consensus inMAS
with double integrator dynamics is presented. More recently, a similar statement to the one
here discussed can be found in [Demetriou, 2013], where the consensus problem for a net-
work of agents modeled by parabolic PDEs communicating by anundirected communication
topology is treated.

Nevertheless, all these works propose protocols in which the control action acts in the
whole spatial domain of each agent, but it is commonly considered to be more realistic to
have actuation and sensing nonintrusive (think, for example, of a fluid flow where actuation
would normally be from the walls of the flow domain) [Krstic & Smyshlyaev, 2008, Pisano
& Orlov, 2012].

Therefore, in this Chapter the communication policy limited only at the boundary of the
agents has been considered. This means that agents can exchange information acquired only
at the boundary of their domain. For this reasons, the proposed consensus algorithm can be
considered as aboundary cooperative protocol[Krstic & Smyshlyaev, 2008].

Furthermore, in order to consider a more realistic scenario, each agent is modeled as
1D rod, described by the well-known heat diffusion equationperturbed by some unknown
disturbances. The class of perturbations here considered only assume them, to be bounded
in derivative and acting at the boundary of each rod too.

The major contribution of this work is to enforce a robust asymptotic agreement amongst
the agent’s states and thus the nullification of their disagreement, only sharing information
captured at the boundary of each rod and even in presence of perturbation or sensing distur-
bances.

The complete rejection of such a wide class of perturbation was firstly discussed in
[Pisano & Orlov, 2012] for classic local boundary control but was never achieved in the
framework of infinite-dimensional MAS. The protocol that will be discussed later extends
the results obtained by the authors in [Pilloni et al., 2013b] in the finite-dimensional MAS
framework. A further novelty with respect to [Pilloni et al., 2013b], is that this protocol is
born to be discontinuous, but by augmenting the system statewith its derivative and apply-
ing it to the augmented dynamic it result to be continuous. Inother words, the discontinuous
protocol passing through a first-order dynamical filter is smoothed-out, which implies a lot
of benefits but the most important is the attenuation of the possible undesired phenomenon
known aschattering, common in discontinuous control theory (see [Boiko et al., 2008, Pil-
loni et al., 2012a] and references therein).

The Chapter is organized as follows: in Section10.2 some useful norm’s properties
are reminded to provide the reader with necessary context and background. The problem
statement and the proposed boundary consensus protocol arepresented in Section10.3.
Section10.4discusses the performances of the proposed algorithm in terms of robustness
and rate of convergence by a Lyapunov-Based approach from which simple tuning rules for
achieving the consensus condition are provided. To corroborate the theoretical results, sim-
ulation results are shown in Section10.5. Conclusion and hints for further investigation in
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Section10.6close the Chapter.

10.2 Mathematical Preliminaries and Notations

10.2.1 Useful Norm Properties

With reference to real spaces, letx = col(x1, . . . ,xN) be a column vector inRN, the
Lp-norm and the L∞-norm ofx are defined respectively as

‖x‖p =(|x1|p+ · · ·+ |xN|p)1/p , p= 1,2, . . . (10.1)

‖x‖∞ = lim
p→∞

‖x‖p = max{|x1|, . . . , |xN|} (10.2)

Let’s considering L1-, L2- and L∞-norm of any given vectorx, the following inequality
is always satisfied [Khalil, 2002]:

‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1 (10.3)

Useful inequalities concerning the scalar product of two vectorsx andy ∈ RN are,
respectively, the Hölder’s Inequality

∣

∣xT ·y
∣

∣≤ ‖x‖p · ‖y‖q ,
1
p
+

1
q
= 1 (10.4)

and straight from the Young’s Inequality

∣

∣xT ·y
∣

∣≤ ‖x‖p
p

p
+

‖y‖q
q

q
,

1
p
+

1
q
= 1 (10.5)

With reference to norms of regular quadratic forms, letM ∈ RN×N be a symmetric
positive semi-definite matrix with ordered eigenvaluesγ1 ≤ ·· · ≤ γN, it yields:

γ1‖x‖2
2 ≤ xTMx≤ γN‖x‖2

2 (10.6)

In the end, let Hl (0,1), with l = 0,1,2, . . . , be the Sobolev Space of absolutely contin-

uous scalar functionszi(ς) with square integrable derivativesz(k)i (ς) up to orderl , it can be
now presented the extension of the concept of norm for vectorsz(ς) = col(z1(ς), . . . ,zN(ς))
of infinite dimensional functions as follows:

‖z(·)‖l =

(

∫ 1

0

l

∑
k=0

‖z(k)(ξ )‖2
2 dξ

)
1
2

(10.7)

where‖z(k)(ξ )‖2= (
∫ 1

0 z(k)(µ)T ·z(k)(µ)dµ)
1
2 is the L2-norm of the k-th derivative ofz(ξ ).

Throughout the Chapter it shall also utilize the standard notationH0(0,1) = L2(0,1). Lastly,
generalizing Lemma 1 in [Pisano & Orlov, 2012] for vectors of infinite dimensional functions
the following result yields:
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Lemma 10.1. Let w(ς) ∈ H1(0,1) and wς (ς) its derivative with respect toς , then the
following upper-estimation holds:

‖w(·)‖2
0 ≤ 2

(

‖w(τ)‖2
2+‖wς(·)‖2

0

)

with τ = 0,1 (10.8)

�

10.3 Problem Statements

Let us to consider a connected network ofN agents. Each agent’s is modeled by a
thermally conducting rod spatially distributed on mono-dimensional (1D) domain and whose
temperature fieldsQi(ς , t) with i = 1, . . . ,N, are functions of the normalized spatial variable
ς ∈ (0,1) and timet ∈ R+.

The evolution of the agent’s temperature profile is governedby the parabolic PDE com-
monly referred to as “Heat Equation”:

Qi
t(ς , t) = θ ·Qi

ςς (ς , t) i ∈ V (10.9)

whereQi
t(ς , t) andQi

ςς(ς , t) denote the temporal and the second-order spatial derivatives,
andθ refers to the “diffusivity coefficient” supposed to be identical ∀ i but unknown a priori.

Here, the realistic scenario that each agent “i” is supposed to be perturbed at the bound-
ary by a sufficiently smooth thermal unknown inputψ i(t), and controlled by a matched
boundary controlui(t) is investigated [Pisano & Orlov, 2012, Krstic & Smyshlyaev, 2008].
It follows that the following Neumann-type boundary conditions (BCs) are considered:

Qi
ς (0, t) = 0 , Qi

ς (1, t) = ui(t)+ψ i(t) (10.10)

Whereas the initial conditions (ICs) are

Qi(ς ,0) ∈ H4(0,1) (10.11)

The class of boundary conditions under analysis are specified by the next assumption.

Assumption 10.1. The initial temperatures Qi(ς ,0) in (10.11) are consistent to the next
perturbed heat fluxes:

Qi
ς (0,0) = 0 , Qi

ς (1,0) = ψ i(0) ∀ i ∈ V (10.12)

where the disturbance, supposed to be unknown, are once continuously differentiableψ i(t)∈
C 1(R), and there exist ana prioriknown positive constantΠ such that

∣

∣ψ i
t (t)
∣

∣=
∣

∣ψ̇ i(t)
∣

∣= ≤ Π with Π = max
i∈V

Πi < ∞ (10.13)

�

Remark 10.1. It is worth mentioning that at the boundaryς = 1, constraints(10.10) and
(10.12) implies that ui(0) = 0. Furthermore, by Assumption10.1, the stability of the each
agent’s heat dynamics are studied in a proper Sobolev Space denoted asH2(0,1). As a con-
seguence, the domain of the infinitesimal operator∂ 2/∂ς2 in the boundary problem(10.9)-
(10.11) is confined into a Sobolev SpaceH4(0,1). �
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The objective of the present work is to present a novel continuous local interaction
rule for achieving global asymptotic temperature synchronization in a network of thermal
spatially distributed process. More formally, the problemstatement can be represented by
the following consensus condition [Olfati-Saber et al., 2007]

lim
t→∞

∣

∣Qi(ς , t)−Q j(ς , t)
∣

∣= 0, ∀ i, j ∈ V (10.14)

It is worth to note that the proposed interaction rule can be assimilated to a boundary
control [Krstic & Smyshlyaev, 2008] such that temperatures along the entire rod’s profiles
being actuated to steer towards a common temperature profileenforced by the network topol-
ogy even in presence of heterogeneous sufficiently smooth perturbation at the boundary.

To achieve the control goal, the agents’ state is augmented through adynamic input ex-
tensionby inserting an integrator at the agent inputui(t). It follows that the control derivative
ui

t(t) = u̇i(t) is then regarded to as a fictitious control variable returnedby suitable feedback
mechanism. Thus, the following boundary interaction protocol is suggested

u̇i (t) = u̇i
1(t)+ u̇i

2(t)+ u̇i
3(t), i ∈V (10.15)

with

u̇i
1(t) =−a ·sign

(

L
iQ(1, t)

)

−b ·sign
(

L
iQt(1, t)

)

(10.16)

u̇i
2(t) =−W1 ·L iQ(1, t)−W2 ·L iQt(1, t) (10.17)

u̇i
3(t) =−W3 ·Qt(1, t) (10.18)

wherea, b, W1, W2 andW3 are nonnegative tuning constants, the sign(·) stands for the multi-
valued function such that

sign(S) =











1 if S> 0

[−1,1] if S= 0

−1 if S< 0

(10.19)

WhereasL i is the i-th row of the Laplacian Matrix andQ(ς , t) ∈ H4(0,1)×RN and
its time-derivativeQt(ς , t) are vector-valued function, which stack together, respectively, the
temperature and the heat flux of each rod

Q(ς , t) =col
(

Q1(ς , t), . . .,QN(ς , t)
)

(10.20)

Qt(ς , t) =col
(

Q1
t (ς , t), . . .,QN

t (ς , t)
)

(10.21)

For completeness, according to (9.1), an explicit representation of the sign’s arguments
are [Pilloni et al., 2013b]:

L
iQ(1, t) = ∑

j∈N−
i

(

Qi(1, t)−Q j(1, t)
)

, i ∈ V (10.22)

L
iQt(1, t) = ∑

j∈N−
i

(

Qi
t(1, t)−Q j

t (1, t)
)

, i ∈ V (10.23)
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The proposed boundary dynamic protocol (10.15) is composed by three components.
The contribution (10.16) can be thought as a distributed version of the “Twisting” HOSM
algorithm [Levant, 1993a], where a non-trivial function of the boundary neighbors states
(at ς = 1) is used as sliding manifold (10.23) (see i.e. [Pilloni et al., 2013b]), and two linear
parts, (10.17), being a PD-based consensus algorithm [Franceschelli et al., 2013b], and lastly
(10.18) which has the only role to filter and then keep bounded the control inputui(t). Infact,
differentiating (10.10) and substituting (10.18), at the boundary of each rod it yields:

Q̇i
t(1, t)+W3 ·Qi

t(1, t) = u̇i
1(t)+ u̇i

2(t)+ Ψ̇i(t) ∀ i ∈V (10.24)

Remark 10.2. Note that, despite state derivative is normally not permitted in the synthesis
task (i.e. it generally induces algebraic loops), its use becomes acceptable when dynamic
input extension is performed. Similar analysis is discussed in [Pisano & Orlov, 2012]. As
a consequence, this statement can be viewed as a second-order consensus problem [Pilloni
et al., 2013b]. In the following, it will be shown that the temperature’s consensus(10.14)
will be achieved asymptotically in terms of both agent’s temperature Q(ς , t) and its time-
derivative, which physically corresponds to the heat fluxesQt(ς , t). �

Remark 10.3. Since at the boundaryς = 1, the proposed dynamic control input is gov-
erned by the ODE(10.24) with discontinuous right-hand side, the solution of the resulting
distributed parameter agent’s dynamic will be understood,in the so-calledFilippov Sense
[Filippov, ]. Extensions of the Filippov concepts towards infinite dimensional setting can be
found in [Levaggi, 2002, Orlov, 2008], where as in the finite-dimensional scenario, a motion
along discontinuity manifolds, is referred to asSliding Mode. It is worth to note that the
existence of a solution for the class of equations under analysis is always guaranteed (owing
on certain properties of the associated set-valued map) andfrom which noticeable proper-
ties, such as absolute continuity, are in force. The reader is referred to [Cortes, 2008] for a
comprehensive account of the notions of solution for discontinuous dynamical systems.�

The present work focuses on the solution of the consensus problem (10.14) for a net-
work of infinite-dimensional agents, whereas the rigorous demonstration of the well-posedness
of the network dynamic (10.9)-(10.11), (10.15)-(10.18) goes beyond the Chapter’s aims.
Anyway the well-posedness of the system in question, under the assumption imposed on the
ICs and BCs, can be verified in accordance with Theorem 3.3.3.in [Curtain & Zwart, 1995]
by the taking into account that the consensus protocol (10.15)-(10.18) is twice piece-wise
continuously differentiable along the state trajectories(see e.g. [Pisano & Orlov, 2012]).

Let’s say that, designed the following column wise vectors

Ψ̇ =col
(

ψ̇1(t), . . . , ψ̇N) (10.25)

σ (LQ) =col(sign(L1Q) , . . . ,sign(LNQ)) (10.26)

and given the next representation, at the network level, forthe vector of fictitious boundary
local interaction protocols (10.15)

U̇(t) =col
(

u̇1(t), . . . , u̇N(t)
)

=−a ·σ (LQ(1, t))−b ·σ (LQt(1, t))+

−W1 ·LQ(1, t)−W2 ·LQt(1, t)−W3 ·Qt(1, t) (10.27)
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in the reminder, denotedQ(·, t) = Z1(·, t), andQt(·, t) = Z2(·, t), it is simply assumed the
following.

Assumption 10.2.The networked system(10.9)-(10.11), (10.16)-(10.18) always possesses a
unique Filippov solution Z1(·, t)∈ H4(0,1)×RN and its time derivative Z2(·, t)∈H2(0,1)×
RN verifies the following auxiliary boundary-valued problem:

Ż1(ς , t) = Z2(ς , t)
Ż2(ς , t) = θ ·Z2,ςς (ς , t)

(10.28)

BCs :

{

Z2,ς (0, t) = 0N

Z2,ς (1, t) = U̇(t)+ Ψ̇(t)
(10.29)

ICs : Z2(ς ,0) = θ ·Qςς (ς ,0) ∈ H2(0,1)×R
N (10.30)

�

Notice that the auxiliary problem (10.28)-(10.30) is obtained by differentiating (10.9)-
(10.11) and (10.16)-(10.18) in the time variable, whereas the ICs are straight derived from
(10.9) and (10.12).

As discussed in [Pisano & Orlov, 2012], it should be pointed out that the solution’s
meaning of the auxiliary boundary-value problem (10.28)-(10.30) has to be viewed in the
mild sense (see e.g. [Curtain & Zwart, 1995]). Furthermore, from [Butkovskii, 1982], it
should be noted that the mild solution of (10.28)-(10.30) coincides to the corresponding
weak solution of the so-called standardizing PDE in distributions

Ż1(ς , t) = Z2(ς , t)
Ż2(ς , t) = θ ·Z2,ςς +θ ·

(

U̇(t)+ Ψ̇(t)
)

· δ̂ (ς −1)
(10.31)

subject to the following homogeneous BCs:

Z2,ς (0, t) = 0N , Z2,ς (1, t) = 0N (10.32)

and to the same ICs in (10.30), whereδ̂ (ς −1) is theDirac’s sampling functionat ς = 1.
It’s worth to mentioning that, according to [Pisano & Orlov, 2012], Z2(·, t) ∈ L2(0,1)×RN

is a vector of continuous functions which solves the boundary problem (10.31)-(10.32) on
t ∈ [0,τ) ∈ R+ in the weak sense (see Definition 1 in [Pisano & Orlov, 2012] for further
details).

10.4 Convergence Analysis

In this Section the performance of the proposed consensus protocol (10.15)-(10.18) are
investigate by means of Lyapunov-Based Analysis, from which simple tuning rules for the
control gains will be straightforward derived. Referring to Remark 1, this statement can be
viewed as a second order consensus problem [Cao & Ren, 2012, Pilloni et al., 2013b].

As it is well-known in standard consensus theory [Olfati-Saber et al., 2007], the achieve-
ment of the consensus condition (10.14) simply implies the annihilation of the so-called
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disagreement vector (see e.g [Pilloni et al., 2013b]). Extending those concepts to infinite-
dimensional multi-agent systems, it can be straight derived the following definition for the
infinite-dimensional disagreement vectors:

δk(·, t) =
(

IN×N − 1N ·1T
N

N

)

·Zk(·, t) =LC ·Zk(·, t) (10.33)

which obviously still preserve their own properties [Olfati-Saber et al., 2007]

1
T
N ·δk(·, t) = 0, L ·δk(·, t) =L ·Zk(·, t), k= 1,2 (10.34)

and following from (9.3), it even yields:

∫ 1

0
δT

k (ζ , t)Lδk(ζ , t)dζ ≥ λ2 · ‖δk(·, t)‖2
0, k= 1,2 (10.35)

In the remainder of the Chapter, it will be demonstrated the achieving of the consen-
sus condition (10.14) even in presence of disturbances acting at the boundary of each rod,
showing the exponential convergence to zero in the spaceH2(0,1)×RN of the disagreement
vector dynamic. To do this, manipulating the boundary problem (10.31)-(10.32) according
to (10.33), derives the followingdisagreement vector boundary-problem:

δ̇1(ς , t) = δ2(ς , t)
δ̇2(ς , t) = θ ·δ2,ςς(ς , t)+θLC

[

U̇ + Ψ̇
]

· δ̂(ς −1)
(10.36)

BCs :

{

δ1,ς (0, t) = δ2,ς (0, t) = 0

δ1,ς (1, t) = δ2,ς (1, t) = 0
(10.37)

ICs : δ2(ς ,0) = θ ·LCZ2(ς ,0) ∈ H2(0,1)×R
N (10.38)

Theorem 10.1.Consider the perturbed collective infinite-dimensional multi-agents system
(10.9)-(10.11) and let Assumption10.1and10.2be satisfied, with the boundary local inter-
action protocol(10.15)-(10.18) applied and tuning parameters selected according to

a> b+Π, b> Π, W1 > 0, W2 > 0, W3 > 0 (10.39)

then, the consensus condition(10.14) is globally asymptotically achieved in the space H2(0,1).
�

Proof of Theorem 1:The proof has been broken into two simple consecutive steps.

⊲ Equi-uniform stability

Consider as candidate Lyapunov function the following positive definite functional

V(δ1,δ2) =θa · ‖Lδ1(1, t)‖1+
1
2

θW1 · ‖Lδ1(1, t)‖2
2+

+
1
2

∫ 1

0
δ2(ζ , t)TLδ2(ζ , t)dζ (10.40)
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computed on the solutionsδ1(·, t) of the boundary-valued problem (10.36)-(10.38)

Since (10.40) is locally Lipschitz and not differentiable atς = 1 when any entry vec-
tor Lδ1(1, t) is zero then, as mentioned in Remark10.3, the following treatment refers for
stability analysis to the Lyapunov Generalized Theorem fornon-smooth analysis reported in
[Paden & Sastry, 1987], which makes use of Clarke’s Generalized Gradient [Clarke, 1983]
and involves a set-valued form for the resulting Lyapunov function time derivative. A similar
analysis to the one here presented, involving a sum-of-absolute-value Lyapunov function, can
be found in [Paden & Sastry, 1987]. The reader is referred to [Paden & Sastry, 1987, Clarke,
1983, Shevitz & Paden, 1994] for a more detailed analysis of the correctness of adoptingthe
chain rule to compute the time-derivative ofV(t) for non-smooth Lyapunov analysis.

By (10.34) it results thatL ·LC =L, then the time derivative of (10.40) on the solution
of the boundary problem (10.36)-(10.38) is

V̇(t) =θaδ2(1, t)
TLσ(Lδ1(1, t))+θW1δ2(1, t)

TL2δ1(1, t)+

+
∫ 1

0
δ2(ζ , t)TLδ2,t(ζ , t)dζ =

=θaδ1(2, t)
TLσ(Lδ1(1, t))+θW1δ2(1, t)

TL2δ1(1, t)+

+θ
∫ 1

0
δ2(ζ , t)TLδ2,ζζ (1, t)dζ+

+θδ2(1, t)
TL
[

U̇ + Ψ̇(t)
]

(10.41)

where the integral term in the right hand side of (10.41) can be integrated by parts under the
homogeneous BCs (10.37) and upper estimated as follows:

∫ 1

0
δ2(ζ , t)TLθδ2,ζζ (ζ , t)dζ =

= θ
[

δ2(1, t)
TLδ2,ς (1, t)−δ2(0, t)

TLδ2,ς (0, t)
]

+

−θ
∫ 1

0
δ2,ζ (ζ , t)TLδ2,ζ (ζ , t)≤

≤−θλ2

∫ 1

0
δ2,ζ (ζ , t)Tδ2,ζ (ζ , t) =−θλ2‖δ2,ς (·, t)‖2

0 (10.42)

Then, replacing the closed-loop controller (10.27) into the latter term of (10.41), it
yields

θ ·δ2(1, t)
TL
[

U̇ + Ψ̇(t)
]

=−θa ·δ2(ζ , t)TLσ (Lδ1(1, t))+

−θb · ‖Lδ2(1, t)‖1−θW1 ·δ2(1, t)
TL2δ1(1, t)+

−θW2 · ‖Lδ2(1, t)‖2
2−θW3 ·δ2(1, t)

TLδ2(1, t)+

+θ ·δ2(ζ , t)TLΨ̇(t) (10.43)

Substituting (10.42) and (10.43) into (10.41) and invoking theHölder’s Inequality(10.4)
combined with (9.3), it can be demonstrated the boundedness of the solution of the per-
turbedinfinite-dimensional disagreement vectorboundary-valued problem (10.36)-(10.38)
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as follows:

V̇(t)≤−θ · (b−‖Ψ̇(t)‖∞) · ‖Lδ2(1, t)‖1+
−θλ2 · ‖δ2,ς (·, t)‖2

0−θW2λ 2
2 · ‖δ2(1, t)‖2

2+

−θW3λ2 · ‖δ2(1, t)‖2
2 (10.44)

where gainsb, W2 andW3 must be selected according to the next constraints:

b≥ ‖Ψ̇‖∞ = Π , W2 ≥ 0 , W3 ≥ 0 (10.45)

From (10.44) it has been shown that, initializing the system in an arbitrarily vicinity
of the originV(ς ,0) ≤ R0, the uncertain system (10.36)-(10.38) cannot leave this vicinity,
regardless of whichever admissible uncertaintyΨ̇(t) affects the network.

⊲ Global equi-uniform asymptotic stability

To begin with, as discussed in [Pisano & Orlov, 2012] for infinite dimensional sys-
tems, let us note that by virtue of (10.44) all possible solutions of the disagreement vector
boundary-problem (10.36)-(10.38), initialized att0 ∈ R+ within the invariant compact set

DV
R =

{

(δ1(ς , t),δ2(ς , t)) ∈ H(0,1)×L2(0,1)×R
N :

V (δ1,δ2)≤ R} (10.46)

there always remain confined
sup

t∈[t0,∞]

V (δ1,δ2)≤ R (10.47)

By (10.40) combined with (10.47) and (9.3), the following upper-bounds can be easily
derived:

‖Lδ1(1, t)‖1 ≤ R/θa (10.48)

‖δ1(1, t)‖2
2 ≤ 2R/θW1λ2 (10.49)

‖δ2(·, t)‖2
0 ≤ 2R/λ2 (10.50)

Remark 10.4. The idea behind the reminder of the proof is inspired by the Extended Invari-
ance Principle [Orlov, 2008] and it is based on constructing a parameterized family of local
Lyapunov function VR(δ1,δ2), R> 0 such that, each VR(δ1,δ2) is well posed on the corre-
sponding compact setDV

R and its time derivative, initialized withinDV
R, is negative definite

and yields the desired stability and convergence properties. �

A parameterized Lyapunov functionVR(δ1,δ2), R> 0 with the properties above, can be
obtained by augmenting the Lyapunov function (10.40) as follows:

VR(t) =V(t)+κR·V̄(t) (10.51)

whereV̄(t) is a sign-indefinite function defined below

V̄(t) =
1
2

θW2 · ‖Lδ1(1, t)‖2
2+

∫ 1

0
δ1(1, t)

TLδ2(ζ , t)dζ (10.52)
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andκR is a proper small enough positive constant.

In order to demonstrate the positive definitiveness of the functional (10.51), the lower
estimation ofV̄(t) is first computed. By the generalization for vectors of the Young’s In-
equality in (10.5), along with (10.48), it simply results that the integral term in (10.52) can
be lower bounded as follows

∫ 1

0
δ1(1, t)

TLδ2(ζ , t)dζ ≥−1
2

(

‖Lδ1(1, t)‖2
2+‖δ2(·, t)‖2

0

)

≥

≥−1
2

(

R
θa

· ‖Lδ1(1, t)‖1+‖δ2(·, t)‖2
0

)

(10.53)

whereas by the Laplacian’s property in (9.3), the lower bound of the second term of (10.52)
is

1
2

θW2 · ‖Lδ1(1, t)‖2
2 ≥

1
2

θW2λ 2
2 · ‖δ1(1, t)‖2

2 (10.54)

Therefore, combining results (10.53) and (10.54), along with the lower estimation of
V(t), which can be easily computed by analogous considerations,the positive definitiveness
of VR(t) is guaranteed if and only if the positive constantκR satisfies the following constraint:

κR≤ min
{

2θ 2a2

R , λ2

}

(10.55)

To confirm what has been already said, hereinafter the complete lower estimation of the
augmented function (10.51) is reported:

VR(t)≥
[

θa− κRR
2θa

]

· ‖Lδ1(1, t)‖1+

+
1
2
(λ2−κR) · ‖δ2(·, t)‖2

0+

+
1
2

θλ 2
2 (W1+κRW2) · ‖δ1(1, t)‖2

2 (10.56)

where the restriction (10.55) confirms the positiveness ofVR(t).

In turns, reminding thatL ·LC =L and differentiating (10.51) along the trajectories of
the uncertain boundary-problem (10.36)-(10.38), it results:

V̇R(t) =V̇(t)+κRθW2 ·δ2(1, t)L
2δ1(1, t)+

+κR ·
d
dt

{

∫ 1

0
δ1(1, t)

TLδ2(ζ , t)dζ
}

=

=V̇(t)+κR·θW2δ2(1, t)L
2δ1(1, t)+

+κR ·
∫ 1

0
θδ1(1, t)

TLδ2,ζζ (ζ , t)dζ+

+κR ·
∫ 1

0
θδ1(1, t)

TL
[

U̇(t)+ Ψ̇(t)
]

δ (ζ −1)dζ+

+κR ·
∫ 1

0
δ2(1, t)

TLδ2(ζ , t)dζ (10.57)
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where due to the boundary conditions (10.37), the first integral in (10.57) has not contribution

∫ 1

0
δ1(1, t)

TLδ2,ζζ (ζ , t)dζ =

= δ1(1, t)L ·
(

δ2,ς (1, t)−δ2,ς(0, t)
)

= 0 (10.58)

Substituting (10.27) in the second integral term of (10.57), it can be compute its upper-
estimation as follows:

θ ·
∫ 1

0
δ1(1, t)

TL
[

U̇(t)+ Ψ̇(t)
]

δ (ζ −1)dζ =

= θ ·δ1(1, t)
TL
[

U̇(t)+ Ψ̇(t)
]

=

=−θa · ‖Lδ1(1, t)‖1−θb ·δ1(1, t)Lσ(Lδ2(1, t))+

−θW1 · ‖Lδ1(1, t)‖2
2−θW2 ·δ1(1, t)

TL2δ2(1, t)+

−θW3 ·δ1(1, t)
TLδ2(1, t)+θ ·δ1(1, t)

TLΨ̇(t) (10.59)

Following this line, by the Hölder’s Inequality (10.4), also the magnitude of the last
integral term in the right-hand side of (10.57) can be upper estimated as follows:

∣

∣

∣

∣

∫ 1

0
δ2(1, t)

TLδ2(ζ , t)dζ
∣

∣

∣

∣

≤‖Lδ2(1, t)‖2 · ‖δ2(·, t)‖0 ≤

≤‖δ2(·, t)‖0 · ‖Lδ2(1, t)‖1 (10.60)

where‖ · ‖0 represents the H0-norm defined as in (10.7). Finally by the bounds (10.58)-
(10.60), the (10.57) can be upper-estimated as

V̇R(t)≤ V̇(t)−κRθ
(

a−b−‖Ψ̇(t)‖∞
)

· ‖Lδ1(1, t)‖1+
−κRθW1λ 2

2 · ‖δ1(1, t)‖2
2+

+κRθ · ‖δ2(·, t)‖0‖Lδ2(1, t)‖1+
+κRθW3 · |δ1(1, t)

TLδ2(1, t)| (10.61)

from which, applying (10.4) and (10.49) at the last term of (10.61)

|δ1(1, t)
TLδ2(1, t)| ≤ ‖δ1(1, t)‖2‖Lδ2(1, t)‖2 ≤

≤ ‖δ1(1, t)‖2‖Lδ2(1, t)‖1 ≤
√

R
θaλ2

· ‖Lδ2(1, t)‖1 (10.62)

and substituting (10.44) and (10.50), it results:

V̇R(t)≤−θ
(

b−‖Ψ̇(t)‖∞−κR

√

2R/λ2

)

· ‖Lδ2(1, t)‖1+

+κRW3

√

R/θaλ2 · ‖Lδ2(1, t)‖1+
−κRθ

(

a−b−‖Ψ̇(t)‖∞
)

· ‖Lδ1(1, t)‖1+
−θ(W2λ 2

2 +W3λ2) · ‖δ2(1, t)‖2
2−θλ2 · ‖δ2,ς (·, t)‖2

0+

−κRθW1λ 2
2 · ‖δ1(1, t)‖2

2 (10.63)
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As closure, in light of Lemma10.1it is possible to write the next inequality

−α1 · ‖δ2(1, t)‖2
2−α2 · ‖δ2,ς(·, t)‖2

2 ≤−c4‖δ2(·, t)‖2
0 (10.64)

with
α1 = θ(W2λ 2

2 +W3λ2) , α2 = θλ2 (10.65)

from which, by the next upper-estimation the negative definitiveness ofV̇R(t) and then, the
convergence towards the consensus condition (10.14) of the agent’s temperatures can be
demonstrated:

V̇R(t)≤−c1 · ‖Lδ1(1, t)‖1−c2 · ‖Lδ2(1, t)‖1+
−c3 · ‖δ1(1, t)‖2

2−c4 · ‖δ2(·, t)‖2
0 (10.66)

with coefficientsci ∈ R+ with i = 1, . . . ,4 defined as follows

c1 =κRθ
(

a−b−‖Ψ̇‖∞
)

(10.67)

c2 =θ
(

b−‖Ψ̇‖∞ −κR

√

2R/λ2−κRW3

√

R/θaλ2

)

(10.68)

c3 =κRθW1λ 2
2 (10.69)

c4 =min{θλ2,θλ2(W2λ2+W3)} (10.70)

tuning parameter selected according to (10.39) and the constantκR stricter than

κR = min
{

2θ 2a2

R ,λ2,
b−Π√

2Rλ2+
√

R/θaλ2
,
}

(10.71)

To complete the proof and thus demonstrate the exponential decay ofVR(t) initialized
within any invariant setDV

R defined as in (10.46), the lower estimation ofVR(t) in (10.56)
can be rewritten in the following form

VR(t)≥c̄1 · ‖Lδ1(1, t)‖1+ c̄3 · ‖δ2(1, t)‖2
2+

+ c̄4 · ‖δ2(·, t)‖2
0 (10.72)

with

c̄1 =θa−κR/2θa (10.73)

c̄3 =(λ2−κR)/2 (10.74)

c̄4 =θ (W1+κRW2)/2 (10.75)

from which, it can be readily derived that

V̇R(t)≤−ρR ·VR(t) with ρR=
min{c1,c2,c3,c4}

min{c̄1, c̄2, c̄3}
(10.76)

It remains to note that, sinceVR(t) > V(t) holds, then the functionalV(t) exponen-
tially decays too, which implies the synchronization of theagents’ temperatures and so, the
achievement of the consensus condition (10.14). The proof of Theorem10.1 is now com-
pleted.
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Figure 10.1: Graph representationG = (V,E) of the network under test.

10.5 Simulation Results

To demonstrate the efficacy of the proposed consensus protocol (10.15)-(10.18) a con-
nected network ofN = 10 rods, displayed in Figure10.1has been considered. It is worth to
note that each agenti ∈ V = {1, . . . ,N}, needs to known the temperatures and their time-
derivatives, computed at the boundaryς = 1, just of the agents belonging to its neighbor set
N−

i = { j ∈ V/{i} : (i, j) ∈ E} ⊆V.

With regard to the agents dynamic, these are governed by the heat equation (10.9),
with diffusivity parameterθ = 1 and homogeneous Neumann-type BC’s as in (10.10). The
uncertain disturbance has been set as

ψ i(t) = sin
(

kiπt
)

with ki ∈ [0,2]⇒ Π = ‖Ψ̇(t)‖∞ = 2π

whereas the initial conditions att = 0 are set to

Qi(ς ,0) = 10+ k̄i ·cos(4πς) with k̄i =−4.5+ i

For solving the networked boundary-problem (10.9)-(10.11), a standard finite-differenze
approximation method has been used. Each spatial domainς ∈ [0,1] has been discretized into
n= 30 uniformly spaced nodes. The resulting temporal dynamic of order 300 is then solved
by Runge-Kutta 4-th order with fixed step size equal to 10−4.

The consensus protocol’s parameters have been selected in accordance with Theo-
rem10.1as next:

a= 32 , b= 16 , W1 =W2 =W3 = 5

The attainment of the temperature’s synchronization and then the achievement of the
consensus condition (10.14) can be appreciate respectively by Figure10.2and Figure10.3,
where the spatiotemporal temperature distribution for the5-th and 10-th agent are depicted.
In confirmation of what has been presented, according with (10.76), in Figure10.4and Fig-
ure 10.5 is shown the exponential convergence to zero of the temperature distributed dis-
agreement vectorδ1(ς , t) which implies the achievement of condition (10.14). More pre-
cisely Figure10.4 shows the spatiotemporal evolution ofδ1(ς , t) ∈ L2(0,1)×RN for the
whole spatial distribution, whereas Figure10.5shows the temporal evolution ofδ1(ς , t) com-
puted at the boundariesς = 1 andς = 0 and at the central node (node 15-th) corresponding
to ς = 0.4828.

Overall, the collective network’s state evolution behavesas expected in the sense that
robust exponential consensus is achieved in spite of the presence of unknown perturbation
acting at the boundary of each rod.
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Figure 10.2: Spatial distribution of temperature of the 5-st RodQ5(ς , t).

Figure 10.3: Spatial distribution of temperature of the 10-th RodQ10(ς , t).
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Figure 10.4: Spatial distribution of temperature disagreement vectorδ1(ς , t) computed for
all the 30 discretization’s nodes.
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Figure 10.5: Temperature disagreement vectorδ1(ς , t) behavior computed at boundariesς =
1, ς = 0 and in the middle node of the spatial discretizationς = 0.4828.

10.6 Conclusion

In this Chapter it has been considered the problem of drivinga group of perturbed
infinite-dimensional agents communicating through an undirected topology towards a com-
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mon temperature’s consensus value.

The major contribution of this work is to enforce a robust asymptotic agreement amongst
the agent’s states and thus the nullification of their disagreement, only sharing information
captured at the boundary of each rod and even in presence of perturbation or sensing dis-
turbances. Among the most challenging directions for next researches, further investigations
focused on relaxing the topological restrictions for directed topologies, possibly switching
and the consideration of different classes of PDEs are mandatory.



Chapter 11

Conclusion

In this Thesis several approaches for dealing with the problem of observation and con-
trol in both the framework of multi-agents and complex systems have been presented. These
techniques, based on concepts of discontinuous sliding-mode and high-order sliding mode
control, have been employed for solving, in a finite-time, problems such as robust state esti-
mation, unknown input reconstruction and consensus-basedsynchronization. Both directed
and undirected topologies have been taken into account.

Those algorithms present improvements with respect to the State of the Art in the ex-
ploitation of new approaches for dealing with perturbed complex systems. Hereinafter a
summary of the main part of the Thesis along with some comments and hints about the
potential future research directions for the contributionof each Chapter are discussed below:

• In Chapter5 it has been theoretically illustrated and experimentally tested
a systematic procedure for tuning the parameters of the Super-Twisting Al-
gorithm when unmodeled parasitic dynamics such as sensors or actuators
are taken into account in the control loop. It is worth to mention, as dis-
cussed in [Ameri & Boiko, 2013], that the treatment here discussed was
probably one of the few works in literature which consider this kind of
problem. Infact, the vast majority of publications relatedon STW control
loops consider only principal dynamics of relative degree one. Among the
some interesting directions for improving the present result, the analysis,
and shaping, of the transient oscillations is of special interest;

• In Chapter6 a new approach for designing decentralized strong observers
has been presented. The approach illustrated defines sufficiently conditions
for achieving the full state-estimation and unknown-inputreconstruction
in the framework of MIMO rectangular systems and then designing strong
observers. The approach has been easily extend to networks of perturbed,
diffusively coupled heterogeneous dynamical systems. Worth of noting
that the proposed approach result inherently robust to disturbances and to-
tally independent to the network configuration or to the number of nodes.
An extension of this work might be the generalization to generic nonlinear
systems;

• In Chapter7, strictly related to the task of designing strong observersin
MIMO systems, HOSM observers are employed as a tool for detecting
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certain abnormal operating conditions in squirrel cage induction motors
(SCIMs). Major contribution of this work is a novel mathematical char-
acterization of the faulty operating mode in SCIMs and the design of a
suitable observer capable of detecting rotor faults such asbroken bar faults
and eccentricity conditions by relying on stator current and shaft speed
measurements. Experiments carried out on commercial motordrives con-
firms the effectiveness of the proposed approach;

• In Chapter8 is proposed a novel decentralized consensus algorithm for net-
works of continuous-time integrators subjected to persistent disturbances
and topological changes. This algorithm is superior in the sense that is able
to perform the achievement of the approximated consensus condition even
in presence of persistent disturbances and not permanentlyconnected com-
munication topologies. It results that under certain restrictions on the di-
rected switching topology, after a finite transient time, the agents achieve
consensus condition by attenuating the destabilizing effect of the distur-
bances. Among the most interesting directions for next research, more
general switching communication policy are actually underinvestigation
along with the discrete-time implementation of the proposed interaction
rule as well;

• In Chapter9 a novel robust local interaction rule for achieving finite-time
consensus in a network of double integrators agents affected by bounded
disturbances is presented. It is worth to mention that in theliterature the
problem of consensus for second order agents was always treated study-
ing idealdouble integrators only, whereas here the perturbed case has been
solved. Further investigations will focus on relaxing the topological restric-
tion for directed, possibly switching topologies;

• In Chapter10 it is considered the problem of driving a group of perturbed
infinite-dimensional agents communicating through an undirected topol-
ogy towards a common temperature’s consensus value. It is worth to men-
tion that the problem of achieving consensus by exchanging only informa-
tion acquired at the boundary of the spatial domain was nevertreated in
the literature. Among the most challenging directions for next researches,
further investigations focused on relaxing the topological restrictions and
the consideration of different classes of PDEs are mandatory.
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