
Ph.D. in Electronic and Computer Engineering
Dept. of Electrical and Electronic Engineering

University of Cagliari

Process Software Simulation Model
of Lean-Kanban Approach

Maria Ilaria Lunesu

Advisor: Prof. Michele Marchesi
Curriculum: ING-INF/05 SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

XXV Cycle
April 2013

Ph.D. in Electronic and Computer Engineering
Dept. of Electrical and Electronic Engineering

University of Cagliari

Process Software Simulation Model
of Lean-Kanban Approach

Maria Ilaria Lunesu

Advisor: Prof. Michele Marchesi
Curriculum: ING-INF/05 SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI

XXV Cycle
Aprile 2013

Dedicated to Nonno GiovannAntonio

and

to My Family

Contents

1 Introduction 1

2 Related Work 7

3 Lean-Kanban Approach 13
3.1 Lean Kanban Development . 13

3.1.1 Development for feature . 25
3.1.2 Kanban approach . 26

4 Software Process Simulation Modeling 31
4.1 What is a simulation model? . 32
4.2 Advantages of simulation . 33
4.3 Common uses of simulation modelling . 35
4.4 Simulation techniques and approaches . 38

4.4.1 Continuous Simulation . 39
4.4.2 Discrete Event Simulation . 40
4.4.3 Agent-Based Simulation . 42
4.4.4 Hybrid Simulation . 42

5 Model Description 45
5.1 Simulation Model Description . 45
5.2 Description of the Actors . 46

5.2.1 Developers . 46
5.2.2 Features and Activities . 48
5.2.3 Events . 50

5.3 The Object-oriented Model . 51
5.4 Calibration and Validation . 52

6 Applications of the Simulation Model 55
6.1 Case Study One . 55

6.1.1 Description of the approach . 56
6.1.2 Calibration of the model . 56

6.2 Case Study Two . 57
6.2.1 Description of the approach . 61
6.2.2 Calibration of the model . 62

6.3 Case Study Three . 63

i

ii CONTENTS

6.3.1 Case of Chinese Firm . 63
6.3.2 Description of the approach . 65
6.3.3 Calibration of the model . 68
6.3.4 Case of Microsoft Maintenance Project 70
6.3.5 Calibration of the model . 71

6.4 Case Study Four . 73
6.4.1 Description of the approach . 73
6.4.2 Calibration of the model . 74

7 Experimental Results 79
7.1 Simulation Results . 79
7.2 Results Case Study One . 79

7.2.1 Optimization of the activity limits . 81
7.3 Results Case Study Two . 82

7.3.1 The original process . 83
7.3.2 The Kanban process . 84
7.3.3 The Scrum process . 85

7.4 Results Case Study Three . 87
7.4.1 Results of the Chinese Firm case . 87
7.4.2 Results of Microsoft case . 94

7.5 Results Case Study Four . 97

8 Discussion of Experimental Results 103

9 Threats to validity 107
9.1 Threats to internal validity . 107
9.2 Threats to external validity . 108
9.3 Threats to construct validity . 108

10 Conclusion and future work 111

Bibliography 115

A Extra Data 125

List of Figures

3.1 Value Stream Mapping of a traditional software development. 15
3.2 Value Stream Mapping of software agile iterative development. 15
3.3 A typical Kanban board. 27
3.4 A Kanban board more complex. 28

4.1 Structure of Discrete Events System. 42
4.2 Structure of Agent based System. 43
4.3 Example of the use System Dynamics. 44

5.1 UML Class Diagram of Developer with their skills, and organized in Team. 48
5.2 UML Class Diagram of Features . 49
5.3 UML Class Diagram of Activities . 49
5.4 UML Class Diagram of Events. 51
5.5 UML Class Diagram of Simulation Model. 52
5.6 UML Class Diagram of KanbanSystem and KanbanSimulator. 53

6.1 The Scrum process . 61
6.2 Cumulative no. of issues in the system. 65
6.3 A Generic Simulation Model for Software Maintenance Process. 69

7.1 WIP Limits, devs with one or two skills . 80
7.2 WIP limits, devs skilled in all activities . 80
7.3 No limits, devs with one or two skills . 80
7.4 No limits, devs skilled in all activities . 80
7.5 Plot of the cost functions in ascending order for 4 exhaustive searches, with dif-

ferent values of the penalty and of the developers’ skills. 81
7.6 The CFD of the original process. 83
7.7 The CFD of the Kanban process. 84
7.8 The CFD of the Scrum process. 86
7.9 The WIP diagram of the WIP-limited process with a developer and a tester added

after six months. 88
7.10 The WIP diagram without WIP limits. The Planning curve overlaps with the Back-

log curve. 90
7.11 The WIP diagram with WIP limits. The Testing curve overlaps with the Released

curve. 92

iii

iv LIST OF FIGURES

7.12 Comparison of the number of CLOSED issues vs. time. The results are average of
10 runs, in WIP-limited case (solid line) and non-limited case (dashed line). The
other lines represent two standard deviation intervals. 93

7.13 The WIP diagram of the original process. 95
7.14 The WIP diagram of the WIP-limited process. 96
7.15 Lean-Kanban Process. Box plot of project duration as a function of variations in

features’ effort. Each box refers to 100 simulations. 98
7.16 Scrum Process. Box plot of project duration as a function of variations in features’

effort. Each box refers to 100 simulations. 98
7.17 Lean-Kanban Process. Box plot of project duration as a function of features per-

centage that don’t pass the SQA phase and need rework, keeping. 99
7.18 Scrum Process. Box plot of project duration as a function of features percentage

that don’t pass the SQA phase and need rework, keeping. 99
7.19 Lean-Kanban Process. Box plot of project duration as a function of the percentage

of rework and effort variation: A: no rework and no variation; B: 10% rework, effort
Std. Dev. = 1.0;C: 20% rework, effort Std. Dev. = 2.0; D: 30% rework, effort Std. Dev.
= 3.0; E: 50% rework, effort Std. Dev. = 5.0. 100

7.20 Scrum Process. Box plot of project duration as a function of the percentage of
rework and effort variation: A: no rework and no variation; B: 10% rework, effort
Std. Dev. = 1.0;C: 20% rework, effort Std. Dev. = 2.0; D: 30% rework, effort Std.
Dev. = 3.0; E: 50% rework, effort Std. Dev. = 5.0. 100

7.21 Medians and Standard Deviations of Cycle Times, for various values oWhen both
of the parameters. These quantities are averaged over 100 simulations. 100

9.1 The interpretation of the different types of threats 108

List of Tables

6.1 The main features of the simulated activities . 58
6.2 The Main Fields of the Dataset Studied. 64
6.3 Main Statistics of Time Required to Manage Issues (in days) 66
6.4 Statistics about issue arrival, fixed issues flow and actual development work esti-

mates. 68
6.5 The composition of the case study team, with primary and secondary activities of

developers. A: Analysis, I: Implementation; T: Testing; D: Deployment. 75

7.1 The four best points found in the search, for the four cases considered 81
7.2 Statistics of cycle times in the Original Process . 84
7.3 Statistics of cycletime in the Kanban Process . 85
7.4 Statistics of cycle time in the Scrum Processes . 86
7.5 Statistics of cycle times in the WIP-limited Process. 90
7.6 Limits verified and actually used for the various activities during the simulation . 91
7.7 Statistics of effort of the 100 features used. Data in case of Lognormal variation

report the average over 100 different random extractions. 97
7.8 Statistics on 100 simulations for each method, with no rework and no feature ef-

fort variation. The data shown are the average of the referred parameters. Within
parenthesis we report the standard error . 98

v

Chapter 1

Introduction

Lean software development [34] is a relatively new entry within the Agile Methodologies
realm, but it is currently one of the fastest growing approaches among software profession-
als.

Lean is derived by Lean Manufacturing [1], which strives to maximize the value produced
by an organization and delivered to the customer. This is accomplished by reducing waste,
controlling variability, maximizing the flow of delivered software, focusing on the whole pro-
cess, and not on local improvements, all within a culture of continuous improvement.

In 2003, the Poppendiecks published a book about Lean Software Development (LSD),
applying lean principles to software production [1]. They identified seven key lean princi-
ples: eliminate waste1, build quality in, create knowledge, defer commitment, fast deliver,
respect people and optimize the whole [38]. In particular is the Kanban system [3] the latest
trend in Lean software development, emphasizing a visual approach to maximize flow and
spotting bottlenecks and other kinds of issues.

Recently, the Lean approach and concepts are becoming popular among software engi-
neers because they are simple, structured and yet powerful.

Kanban processes have already been extensively studied through simulation in the man-
ufacturing context [6]. The Lean approach is focused on maximizing the customer value and
on reducing waste at every level. One of the key practices of Lean is to minimize the Work-
In-Progress (WIP), it is the items that are worked on by the team at any given time. In LSD,
an important tool for managing workflows and controlling waste, is the concept of "pull sys-
tem" [1]: where new work is pulled into the system or into an activity when there is capacity
to process it, rather than being pushed into the system when a new request arrives.

In this way, developers are maximally focused, and the waste of time and resources due
to switching, from one item to the other, 1 is minimized. A tool to minimize WIP - and to
increase information flow about the project state among the team – is the Kanban board
[3]. In general, we can define the Kanban software process as a WIP limited pull system
visualized by the Kanban board. Recently, the Kanban method is attracting a growing interest
among software developers [17].

A Kanban board graphically shows the activities of the process in its columns. The items
under work are represented by cards applied on the board in the column representing the

11 Waste in software development: partially done work; extraprocesses; extra features; task switching; wait-
ing; defects [34])

1

2 CHAPTER 1. INTRODUCTION

item’s current state. Each activity (column) has a maximum number of items that can be
pulled into it, according to WIP-limits. The board allows the project team to visualize the
workflow, to limit WIP at each workflow stage, and to monitor the cycle time (i.e., the average
time to complete one task).

One of the key concepts of Kanban system is that the whole development has to be opti-
mized, avoiding local optima and striving to find global optima. The process itself is based
on several parameters, and a global optimization is difficult. Moreover, these parameters are
not fixed, but depend on factors such as the number and skills of developers, the specific
practices used by the team, the number and effort of the features to be implemented.

These factors are not only variable among different projects, but can also vary during
a given project. For these reasons, an up-front, one size fits all study and optimization of
process parameters is out of discussion.

This is a typical problem where the simulation of the software process might be useful. In
fact, the Kanban system is a very structured approach, and it is possible to design a software
process simulator that captures most of what happens during development.

Recently, Ikonen et al. [41] empirically investigated the impact of Kanban adoption on a
development team from various perspectives, suggesting that Kanban motivates the workers
and helps managers to control the project activities.

Simulation is a generic term which includes a set of methods and applications that are
able to represent how real systems work, typically using a general-purpose computer. Simu-
lation has been applied to software process for more than twenty years.

A process for the development of softwares consists of a well-defined set of activities that
lead to the creation of a software product. In literature there are many software processes
different from each other but whose essential purpose is to be able to meet the expectations
of customers, and above all, provide quality software products on time and within budget.

Many software processes have been adopted in industrial practices. For example, the
Personal Software Process (PSP) [14], proposed by SEI, shows software engineers how to
plan, track and analyze their work. The Team Software Process (TSP) [2] is built on the PSP
and extends it to a software project team. Scrum [42] is an iterative, incremental software
process, which is by far the most popular Agile development process [44].

Therefore, all software processes are driven by a common goal, but they differ from the
modalities used to achieve these objectives.

In general its approach, toward the production of the software, could change, in fact the
processes could be guided by the documents, by the code itself, or by risk, and so forth.

Today, the software companies are facing with one of the big problems typically a soft-
ware process is envolving: the management of changing requirements and, as mentioned
earlier, the ever-increasing demands by the market to be able to produce quality software in
time and with reduced costs. The technical process simulation software, as it is considered
now, in academic and industrial research, is a mean of assessing a software development
process, and can help companies to manage certain changes in the development process
and therefore is a valid support to the decision-making process.

They can be used specifically to help companies and manage the development process
and also the changes that the reality of the software imposes. With the term simulation
means the activity of replicate by means of suitable models a reality already existing or to
be designed in order to study, in the first case, the effects of possible actions or somehow
predictable events, and in the second case, evaluate various alternative design choices.

Compared to the direct experimentation, expensive and often virtually impossible, or

3

that achieved by means of mathematical models, the simulation shows the advantage of
great versatility, the speed of realization and the relative low cost. And through the simula-
tion it is also possible to explore and evaluate new management policies, design choices and
alternatives model systems of great complexity by studying the behavior and evolution over
time.

In general, the starting point in a simulation project, is the identification of a reality that
will be analyzed in order to highlight inside the system which is going to be studied. The
system is not a reality, but it is a representation, where the level of detail will depend on
the objectives of the study and the type of problem that must be resolved. At this point one
passes to the construction of a formal model that allows to simulate the identified system, in
order to understand the behavior.

The simulation also allows a saving of time in the analysis systems: in fact, if one wanted
to test the behavior of a real system, the analysis time would be very expatiated, while with
a simulation model it will be employed a minimum time to have an overview of the whole
system. Thanks to the simulation that can then be used in all these areas, we can start only
from an abstract knowledge of the software system to be produced, and it happens without
having yet determined how many resources need to be used as a model for the production
process and how long it will take to make the product software.

For this purpose comes the idea of making a simulation model capable of reproducing
different types of process and related approaches to various methodologies.

We developed a simulator of the Kanban process a WIP limited pull system visualized
by the Kanban board. The simulator is fully object-oriented, and its design model reflects
the objects of the Lean software development domain. We used this simulator, firstly, to as-
sess comparatively WIP-limited and unlimited processes. We studied the optimum values
of the working item limits in the activities, using a paradigmatic case of 4 activities and 100
work items. We performed an exhaustive search on all the admissible values of the solu-
tion, finding sensible optimal values, and a non-trivial behavior of the cost function in the
optimization space.

This demonstrates the feasibility and usefulness of the approach. Nevertheless, in last
years, the Lean software development approach has been applied also to software practice
including software maintenance. Maintenance, is an Agile approach whose underlying con-
cept is borrowed from manufacturing [35],it is also an important stage of software life cycle,
which accounts for a large percentage of a system’s total cost. After a software product has
been released, the maintenance phase keeps the software up to date with respect to discov-
ered faults, environment changes and changing user requirements. A software maintenance
team has often to cope with a long stream of requests that must be examined, answered to,
and verified[47].

In practice, these activities are often performed with a no specified process, or using
"heavyweight" processes [34] that overburden developers with meetings, report requests,
item prioritization, and so on. Therefore, it is very important to adopt a maintenance pro-
cess that is efficient and easy to follow. The simulator we implemented, that is event-driven
and agent-based has been used to simulate the PSP, the Scrum and the Lean-Kanban pro-
cesses for software maintenance activities. One of the aim of this thesis is to demonstrate
that the proposed simulation model, that implement a WIP-limited approach such as Lean-
Kanban, can indeed improve maintenance throughput and improve work efficiency.

The proposed simulation-based method, as advocated by a Lean-Kanban approach, could
help demonstrate the efficiency of a WIP-limited software maintenance process. Therefore

4 CHAPTER 1. INTRODUCTION

at first, we developed a generic simulator, we tuned it to reflect the original maintenance
process, then we imposed a limit on the number of maintenance requests (i.e., WIP) a main-
tenance team can work on at each given time and used the tuned simulation model to sim-
ulate a WIP-limited maintenance process. The proposed simulation study showed that the
WIP-limited process can lead to improvement in throughput. Furthermore, the WIP-limited
process outperforms the original process that does not use a WIP- limit.

The scope to build this software process simulation model was also to reproduce post-
release maintenance activities. Through simulations, we could show that the original pro-
cess could be improved by introducing a WIP-limit. We assessed the capability of the model
to reproduce real data and found that the WIP-limited process could be useful to increase the
efficiency of the maintenance process. It has been shown that such simulation model, after
a customization and calibration phase, can help to improve software maintenance process
in industrial environments. In fact this process simulator, can simulate the existing main-
tenance process that does not use a WIP limit, as well as a maintenance process that adopt
a WIP limit. We performed two case studies using real maintenance data collected from a
Microsoft project and from a Chinese software firm.

The results confirm that the WIP-limited process as advocated by the Lean-Kanban ap-
proach could be useful to increase the efficiency of software maintenance, as reported in
previous industrial practices. In particular considering that software risk management is
a crucial part of successful project management, but it is often an aspect not well imple-
mented in real projects, we investigated the reasons. One reason is that project managers do
not have effective tools and practice for the risk management of the software.

For that the Software Process Simulation Modeling (SPMS) is emerging as a promising
approach to address a variety of issues related to software engineering, including risk man-
agement. Clearly, SPMS cannot address risk dimensions such as Organization environment
stability and management support, lack of User involvement, Team motivation and commu-
nication issues. However, it can be useful to establish the impact of risks such as Require-
ment estimation errors, rework due to software that does not meet its intended functions
and performance requirements (software technical risk), Project complexity, Planning and
control practices. Nevertheless, in the present state of things, it should be better clarified
how and to which extent SPMS can support software risk management, especially in the
case of Agile methodologies. At this point we proposed a Monte Carlo stochastic approach
to perform risk assessment of agile processes.

The main idea of our work was to model the process, the project requirements and the
team characteristics, to identify the possible variations in model parameters that can cause
any risk, to identify the key outputs to monitor, and to perform many simulations varying
the parameters. The resulting distributions of key outputs can give an idea of expected out-
puts and of their variance, including proper risk percentiles. We performed an analysis of
risk management in the case of a medium-sized project carried forward by a team of seven
developers, with different skills.

We analyzed different variation rates both in term of estimation errors and of need of re-
work. We compared two agile approaches: one based on time-boxed iterations (Scrum), the
other one based on continuous flow with work in progress (WIP) limits (Lean-Kanban). In
both cases, we assessed the risks regarding project duration variations, and regarding lead
times and cycle times needed to fulfill the implementation of features requested by the user–
that is the time needed to give value to the customer. In particular a by-product of the anal-
ysis is also a comparative assessment of Scrum and Lean-Kanban approaches on a typical

5

case using simulation.
In this thesis we presented, moreover, a risk assessment procedure based on process

modeling and simulation, and tested it on two popular agile methods –Scrum and Lean-
Kanban – using synthetically generated requirements. We shown how it is possible to run
the simulator in a Monte Carlo fashion, varying the identified risk factors and statistically
evaluating their effects on the critical outputs. The proposed approach is clearly relevant for
project managers, who get a tool able to quantitatively evaluate the risks, provided that the
process and the project’s data are properly modeled. This is made possible by the relative
simplicity of agile processes, that typically operate on atomic requirements – the features
–through a sequence of activities, performed during time-boxed iterations, or in a continu-
ous, WIP-Limited flow like with Kanban. Using the existing simulation model, customized
to follow the Scrumban process, we are working on the analysis and the simulation regard-
ing data collected from a real experiment conducted in the context of Software Factory Net-
work. The experiment is regarding a distributed development project conducted by a team
composed by two groups of skilled developers located in two different sites in Spain and in
Finland respectively. Thesis Organization:

In Chapter 2 we showed the related work and the existing empirical studies on simulation mod-
elling of Lean-Kanban aimed to study, the applications and the effectiveness of its
practices, highlighting the main aspects faced in this work thesis, in particular simula-
tion of development and maintenance processes, simulation considering a risk analy-
sis and a hint regarding simulation of distributed software development;

In Chapter 3 we reported an overview regarding Lean-Kanban approach and its practices and tools,
we mentioned the potential of the use of Kanban approach;

In Chapter 4 the main aspects of simulation and modelling and its advantages and disadvantages
are shown in detail, we mentioned the main used models and the different approaches;

In Chapter 5 we presented a description of the different actors of the model we developed and
tested on different cases studies, for each actor the abilities and characteristics are
shown;

In Chapter 6 we presented different case studies that showed the applications of the simulator to
real cases. For each case study a description and the calibration of the model are ex-
plained in detail underlying the different calibrations;

In Chapter 7 we presented the experimental results that come from the simulation runs performed
in the different case studies, in particular, we highlighted the results from the compar-
ison among Scrum, Kanban and generic maintenance processes;

In Chapter 8 we briefly discuss about the results obtained applying the proposed model to different
real cases, reported in the previous chapter;

In Chapter 9 we presented some threats to validity related to the different aspects of this thesis;

In Chapter 10 we presented the final considerations related to the approach and the obtained results,
finally we concluded the thesis works and we presented some future work.

Chapter 2

Related Work

The Lean approach, first introduced in manufacturing in Japan between 1948 and 1975 [15],
strives to deliver value to the customer more efficiently by designing out overburden and
inconsistency, and by finding and eliminating waste (the impediments to productivity and
quality).

This is expressed in a set of principles that include optimizing flow, increasing efficiency,
decreasing waste, improving learning, and using empirical methods to take decisions. In
2003, Mary and Tom Poppendieck published the first book about applying Lean principles
to software development [1]. They identified seven key lean principles: eliminate waste1,
build quality in, create knowledge, defer commitment, deliver fast, respect people and opti-
mize the whole. A key Lean activity is to build a value stream map (as reported in[1] pag.9) ,
breaking down the process into individual steps, and identifying which steps add value and
which steps do not, thus adding to the waste. Then, the goal is to eliminate the waste and
improve the value-added steps.

An important conceptual tool to manage how work flows is the concept of pull system (as
reported in[1] pag.71), where processes are based on customer demand. The work in process
(WIP) is usually made evident to the team, and to the stakeholders, using a Kanban board.
In general, it can define the Kanban software process as a WIP limited pull system visualized
by the Kanban board .

Recently, the Kanban approach applied to software development, seem to be one of the
hottest topics of Lean. In the recent 3-4 years, Kanban has been applied to software process,
and is becoming the key Lean practice in this field. A correct use of the Kanban board helps
to minimize WIP, to highlight the constraints, and to coordinate the team work.

However, Lean is more than Kanban, and more Lean practices should be used, together
with Kanban, to take full advantage of the application of Lean to software development. Note
that the Kanban board is similar to the information radiators of Agile methodologies [16], but
it is not the same thing.

To be eligible to use the Kanban approach, the software development must satisfy the
two Corey Ladas’ postulates [17]: Kanban processes have already been extensively studied
through simulation in the manufacturing context [2]. Here we quote the seminal work by
Huang, Rees and Taylor [7], who assessed the issues in adapting Japanese JIT techniques to

1Waste in software development: partially done work; extraprocesses; extra features; task switching; wait-
ing; defects [1]

7

8 CHAPTER 2. RELATED WORK

American firms using network discrete simulation. Among the many authors who studied
Kanban using simulation we may quote Hurrion, who performed process optimization using
simulation and neural networks [8], the data-driven simulator KaSimIR by Kchel, and

Nielnder, developed using an object-oriented approach [9], the hybrid simulator by Hao
and Shen [10]. The simulation approach has been also used to simulate agile development
processes. As regards Lean-Kanban software development, the authors are only aware of a
Petri-net based simulation cited by Corey Ladas in his website [13].

The mathematical formalism of Petri nets, introduced to describe state changes in dy-
namic systems, is simple, yet powerful. However, it is not flexible enough to describe the de-
tails of software development, including features, activities, developers, deliverables. Using
simulation optimization, the practice of linking an optimization method with a simulation
model to determine appropriate settings of certain input parameters is possible to maximize
the performance of the simulated system [14].

The growing interest on Kanban software development is demonstrated by the publica-
tion of various books, and by the proliferation of Web sites on the subject in the past couple
of years. The most popular among these book was written by David J. Anderson [3]. An-
other book by Corey Ladas is about the fusion of Scrum and Kanban practices [17]. A third
book on the subject was written by Kniberg and Skarin [18], and is also availabile online.
The reader interested to a more detailed description of the Kanban approach should refer to
these books. A well-defined software process can help a software organization achieve good
and consistent productivity, and is important for the organizationâs long-term success.

However, an ill-defined process could overburden developers (e.g., with unnecessary
meetings and report requests) and reduce productivity. It is thus very important to be able
to understand if a software process is efficient and effective.

Many software processes have been adopted in industrial practices. For example, the
Personal Software Process (PSP) [60] proposed by SEI shows software engineers how to plan,
track and analyze their work. The Team Software Process (TSP) [60] is built on the PSP and
extends it to a software project team. Scrum [63] is an iterative, incremental software pro-
cess, which is by far the most popular Agile development process [65].

In recent years, the Lean-Kanban approach [3] advocates to minimize the Work-In-Process
(WIP, which is the number of items that are worked on by the team at any given time) and
to maximize the value produced by an organization. Often the impact of a software process
on software productivity is understood through actual practices. To be able to estimate the
impact of processes before a project start, many software process simulation methods haven
been proposed over the years.

For example, Barghouti and Rosenblum [46] proposed methods for simulating and ana-
lyzing software maintenance process. Otero et al. [61] use simulation to optimize resource
allocation and the training time required for engineers and other personnel. In a previous
work [51], some of the authors presented an event-driven simulator of the Kanban process
and used it to study the dynamics of the process, and to optimize its parameters.

Typically many software projects have suffered from several kinds of problems, such as
cost overruns, lengthening of the time of delivery and poor product quality. One of the fac-
tors that cause these problems is the fact that the risks are not handled, as shown by Charette
[78].

Risk management in software projects is a key component of the success of a project.
Software engineering researchers and professionals have proposed a number of systematic
approaches and techniques for effective risk management as reported by Boehm [79]. A

9

study conducted by the Project Management Institute has shown that risk management is
an activity not practiced among all the disciplines of project management in the IT indus-
try [80]. In real software projects, the risks are often managed using the insights of project
manager, and the entire process of risk management is rarely followed [81]. One of the main
reasons for this is that project managers lack practical techniques and tools to effectively
manage the risks. Process Modeling Simulation Software (SPMS) is presented as a promising
approach suitable to address various kind of issues in software engineering [4]. The results of
the review conducted by Zhang et al. [5] showed that the risk management is one of the sev-
eral purposes for SPMS. Liu et. al. performed a systematic review on this topic, concluding
that the number of SPSM studies on software risk management has been increasing gradu-
ally in recent years, and that discrete-event simulation and system dynamics are two most
popular simulation paradigms, while hybrid simulation methods are more and more widely
used [82].

Regarding the application of SPMS to agile methodologies, system dynamics models
were used in several investigations. Among them, we quote the paper of Cocco et al., who
analyzed the dynamic behavior of the adoption of Kanban and Scrum, to assess their relative
benefits [86]; this paper includes also some references to previous work on the topic. Cao et
al. performed an extensive study of the complex interdependencies among the variety of
practices used in agile development using system dynamics [84].

Discrete-event simulation of agile development practices were introduced by Melis et
al. [11] [12]. Anderson and the authors of this paper proposed an event-driven, agent-based
simulation model for Lean-Kanban process, extensible to other agile software processes, and
used it to demonstrate the effectiveness of a WIP-Limited approach, and to optimize the WIP
limits in the various activities [50]. In a subsequent work, Anderson et al. used an extended
version of this simulator to compare Lean-Kanban with traditional and Scrum approaches
on the data collected from a Microsoft maintenance project, showing that the Lean-Kanban
approach is superior to the others [51]. Turner et al. worked on modeling and simulation of
Kanban processes in Systems Engineering [52] [53]. These work, though quite preliminary,
propose the use of a mixed approach, merging Discrete Event and Agent-based simulation
approaches. In particular, Discrete Event simulation is used to simulate the flow of high level
task and the accumulation of value, while Agent-based simulation is used to model work-
flow at a lower level, including working teams, Kanban boards, work items and activities.

Lamersdof et al. present a model for identifying risks at the beginning of a project [72].
The model systematically captures experiences from past projects in a set of logical rules
describing how project characteristics influence typical risks in distributed development.
Analysing the literature on distributed or global software development (GSD) they found
risks of the use of distributed development vs. collocated software development.

Hawthorne and Dewayne [39] discuss the challenges and opportunities that software en-
gineers face as a direct result of outsourcing and other distributed development approaches
that are increasingly being utilized by industry, and some of the key ways they need to evolve
software engineering curricula to address the challenges. They used an analysis of different
interesting characteristics of distributed development. The differences from our work are
about the fact that they try to identify best practices to help the software engineers to ongo-
ing distributed development considering as important aspect the use of an architecture.

By Lundell et al. [40] an analysis of some OSS (Open Source Software) development
model with distributed nature of a problem and the reasons to consider distributed develop-
ment is offered . The goal of this work is to compare OSS development model with traditional

10 CHAPTER 2. RELATED WORK

distributed development models, using, as starting point the caracterization of the context
in which OSS development takes place. They use two frameworks to make an observation
on how some practices relates to the issues DD work. These frameworks are populated like a
matrix and their dimensions are: temporal, geographic, socio-cultural distances in one axis
and control, coordination and communication in the other. The differences with our work
are that they compare OSS with traditional distributed development model checking in the
literature the role of the developer also as user.

Walkeland et al. [42] propose a general case for solving problems related to the a soft-
ware development project by combining a service approach to system engineering with a
Kanban-based scheduling system. The main goal of this work is, through modeling compo-
nent, to verify whether organizing project as a set of cooperating kanban (a kanban-based
scheduling system, KSS) results in better project performance. They used the combination
of three different approaches to model the process System Dynamics, Discrete-event and
Agent based. This work provides the basis for validating the approach with agent based sim-
ulation meanwhile we considered an event driven and agent-based approach to model and
simulate the process followed and make a comparison with other processes.

Zhao and Osterweil [37] present the definition of a process for performing rework and a
tool that executes the process in order to support human seeking help in being sure that they
are carrying out rework completely and correctly. The focus of this work has been to present
notions about rework with their ideas and conceptual basis, using a detailed specification of
the process. They use a specific tool and made the comparison with other tools. In this work
the authors analyzed the rework and its phases in detail using a specific tool and giving an
example about the characteristics and benefits instead in our work the rework is a part of the
used process.

Cavrak et al. [73] offer an outline of the characteristics of an existent flexible project
framework for conducting student project in a distributed environment. Based on data
collected from a distributed environment, they describe the analysis of cultural differences
highlighting the goal that is to present a flexible project framework for conducting and eval-
uating distributed student projects and underline the done analysis of collaboration links
within distributed team. They used a framework to identify the roles in the project. It is dif-
ferent from our work because they considered a general framework for running distributed
student projects and base their work on an extensive experience.

A report on a process transition from Scrum to Scrumban in one software company is
presented by Nikitina et al. [83], it gives an account on the process transition, changes done
to the development process undergoing the transition and the improvement achieved. The
paper present a brief and clear description of Kanban e Scrum. The main goal of this work
is to show the transition from a process to another. Authors use an action research method
combining two phases Initial Study and Software Process Transition. The differences from
our work is that they show the steps to change process instead we analyze the results that
come from the process in order to calibrate the simulation model.

Huston [38] presents an explanation of the opportunity for continued growth of this field
lies in the reciprocity between research and industrial practice. An agenda for advancing
software process simulation though this reciprocity is offered. He shows the current promi-
nence of SPS (Software Process Simulation) using some research question underlining some
aspects. In comparison of our work the hurdles that could be faced in SPS are shown.

Turner et al. [52] [53] show the simulation of the process performance vs. traditional
methods of sharing systems engineering services across projects, and whether the overall

11

value of the systems of systems over time is increased. They developed a general Kanban ap-
proach a specific Kanban-Based process for supporting SE in rapid response environments
and simulated that process as well as traditional process to determine if there were gains in
effectiveness and value. The main goal of this work is, through modeling component, to ver-
ify whether organizing project as a set of cooperating kanban (a kanban-based scheduling
system, KSS) results in better project performance. They used three different approaches
to model the process System Dynamics, Discrete-event and Agent based. Martin and Raffo
[29] present a detailed hybrid model of a software development process currently in use at a
major industrial developer. They show also that simulation models of the software develop-
ment process can be used to evaluate potential process changes. The main difference from
our work is the used approach and the goal, in fact their hybrid model allow to simulate
the discrete activities within the context of an environment described by a system dynamics
model.

Chapter 3

Lean-Kanban Approach

3.1 Lean Kanban Development

In this section some typical practices of "Lean" development applied to the software are de-
scribed. The "Lean" approach was introduced in the mechanical industry by the Japanese,
and in particular from Toyota in 80s, and has been very successful at international level
in 90s. Its application to the software development, is mainly due to Mary and Tom Pop-
pendieck, which in 2003 published the book "Lean Software Development: An Agile Toolkit",
in which they described the principles and practices related to this approach. This book
was, actually, very general, such as those of Agile Manifesto, the principles were shareable
but generic; they presented a series of 22 "tool" very diversified. For this reason, developers
preferred methodologies structured and precise, such as XP and Scrum.

More recently, "Kanban", was found, in Lean approach, by David J. Anderson [3]. In
fact, "Kanban" was originally the Lean practice to view the processing status of the involved
various entities.

With Anderson, it becomes a view control of the process, which highlights the workflows
and bottlenecks. The Kanban approach, is complemented by concepts of Theory of Con-
straints proposed by Goldratt and of Lean approach and currently is having great success in
Agile software.

LSD: Lean Software Development was the first attempt to apply the "Lean" or "Toyota ap-
proach", typical of the industrial production, to the software process. In fact, software devel-
opment is a form of product development. Much of software we use was probably purchased
as a product. Software that is not developed as a standalone product may be embedded in
hardware, or it may be the essence of a game or a search capability. Some softwares, includ-
ing much custom software, is developed as a part of a business process. Customer don’t buy
the software we develop. They buy games, word processors, search capability, a hardware
device or a business process. In this sense, most of the useful software are embedded in
something larger than its code.

The software development is just a subset of the overall product development. And thus,
if we want to understand lean software development, we should discover what constitutes
an excellent product development. The Toyota Production System and the Toyota Product
Development System from the same underlying principles. The first step in implementing
lean software development is to understand these underlying principles. It is based on seven

13

14 CHAPTER 3. LEAN-KANBAN APPROACH

principles of "Lean":

1 Eliminate waste

2 Amplify learning

3 Decide as late as possible

4 Deliver as fast as possible

5 Empower the team

6 Build integrity in - Create systems inherently cohesive

7 See the whole

"Lean approach" offers 22 tools, each one linked to one of the principles. The 22 tools
are shown and described below.

Eliminate waste

Tool 1: Seeing Waste
The seven source of wastes of software development are as follows:

1. Partially Done Work

2. Extra Processes

3. Extra Features

4. Task Switching

5. Waiting

6. Motion

7. Defects

We an also consider useless management activities, project tracking, unnecessary measure-
ments, permissions.

Tool 2: Value Stream Mapping
It is possible to define, in a graphic fashion a value flow map, i.e. activities that bring

value to the company, by contributing to the software production and release that is paid by
the customer. This map shows the assets, with their time, and idle time or standby.
We show, with pictures, the differences between the case of development "waterfall" Fig 3.1
and an agile iterative development Fig 3.2.

Amplify learning
Software development is an activity project, and not production. Therefore it is very vari-

able and uncertain at first, because it needs to check the alternatives, and because the risk
degree is high. The quality software is related to the quality of the experience that the cus-
tomer has with it.

3.1. LEAN KANBAN DEVELOPMENT 15

Figure 3.1: Value Stream Mapping of a traditional software development.

Figure 3.2: Value Stream Mapping of software agile iterative development.

A quality system has a received integrity (in the sense of consistency, completeness, ease
of use), and a conceptual integrity. The integrity perceived by the customer is the balance
of features, usability, robustness and economy that satisfies the customer. The conceptual
integrity is related to social cohesion and good system design.

When designing software, it should, usually, use project cycles in which it matures and
converges, and not try to "do everything right the first time." Of course, everything depends
on the characteristics of the problem to be solved. Tools to extend learning are:

Tool 3: Feedback
Get feedback from the customer, the organization, by other developers, by the code, im-

plies an iterative development. In general:

1. Do not let that defects accumulate, perform tests as soon as the code is written.

2. Instead of adding documentation, try new ideas by writing code.

3. Instead of collecting additional requirements by the user, show screens test and hear
what he says.

4. Instead of studying in detail what tools to use, could you provide the three most po
pular and try all of them.

16 CHAPTER 3. LEAN-KANBAN APPROACH

5. Instead of trying to convert a legacy system all at once, provided to Web interface, in
order to experiment with new ideas here.

Tool 4: Iterations
The iterations are the increase to the software that is designed, written, tested, integrated

and released in a short and predetermined period of time. There are three basic principles
related to the iteration:

1. Development for small batches, that improve the quality, communication among de-
velopers, resource utilization and feedback.

2. The iterations are a method based on the options, the choice may be delayed. The
development is controlled based on the facts and not on the assumptions.

3. The iterations are points of control and synchronization within the team, with the cus-
tomer and between any multiple teams.

At the beginning of each iteration there is a planning session between team and customer, or
his representative, to decide which features to implement. The team evaluates the function-
alities and says what can be implemented in the iteration. A team must get support from the
organization: skills, information, resources, environment programming and integration.

The iterative approach can lead to non-convergence (thrashing), if the functionalities
change too quickly. During the iteration, the team must be allowed to work. The iteration
should not be too short, not to favor the trashing, nor too long,in order to maximize feed-
back.

It is ideal to have a "negotiable scope", in order to implement the most important fea-
tures, leaving the team and customer to remove and add secondary features. The imple-
mented features are displayed in a "burn-down" graph to keep under control the develop-
ment and the convergence of the system. You can, also, use the graph of the number accep-
tance tests exceeded, compared to the number of those defined.

Tool 5: Synchronization
If the collective ownership of the code is used, it needs to integrate often in order to syn-

chronize efforts. To properly integrate, it is good that the system is equipped with automated
testing, which must all be passed before integration.

Another tool of synchronization is to immediately implement a vertical "slice", maybe
simplified, of system functionality (Spanning Application), and then follow with the other
features, developed by imitating and improving first.

Another approach to synchronization is the matrix, in which various teams develop com-
ponents or subsystems in parallel, with synchronization points. Interfaces, and established
control points must be defined before.

Tool 6: Set-Based Development
This instrument addresses the problem of multiple project constraints. Instead of declar-

ing one at time, satisfy them and then, check if the new ones are compatible with the old, it
is better to put them all on the table, giving the permissible ranges for each constraint (sets),
and see if there is an intersection that can satisfy all of them.

3.1. LEAN KANBAN DEVELOPMENT 17

The software can be developed in parallel with some different solutions to a problem,
and then discuss them and use the best features of each one. It is important that each solu-
tion is used to communicate the constraints, not the specific solution.

Decide as late as possible
In software, the cost of correcting errors, or incorrect requirements, grows exponentially

according to the correction done during analysis, design, coding, or after release. In fact, not
all requirements have costs of correction that grow in the same way. The cost of correction
of higher cost constraints (high-stake constraints) can have an exponential very steep.

The iterative and incremental development allows a delay of many design decisions, sav-
ing in the event of changes in constraints/requirements that occur after the start of the sys-
tem.

Tool 7: Options Thinking
Each choice of implementation should be considered as if it were an option, with asso-

ciated cost and benefits, to be calculated and to be taken into consideration. The various
features can be associated with more alternative options. The choice of which option to ex-
ercise effectively be made as late as possible, when the costs and benefits of the alternatives
are more stable and clearer.

Tool 8: The Last Responsible Moment
In particular in a parallel development of a system, the final decisions should be taken in

the last reasonable instant, that is, when not taking them an important alternative is elimi-
nated, that you can not take any more. This does not mean delaying the project. Some tactics
are:

1. Share project information even if is partial.

2. Encourage direct collaboration among developers.

3. Develop a sense for how to absorb the changes. In practice:

– use software modules;

– use interfaces;

– use parameterized modules;

– use abstractions;

– avoid sequential programming in favor of the declarative;

– attention to the construction of frameworks and specific instruments;

– avoid duplications;

– separating concerns: Each module must have a single responsibility well defined
(cohesion);

– encapsulate changes, leaving the stable interface;

– delay the implementation of future capabilities;

– Avoid extra features.

4. Develop a sense for what is critically important in the domain.

18 CHAPTER 3. LEAN-KANBAN APPROACH

5. Develop a sense for when they made the decisions.

6. Develop the ability to respond quickly.

Tool 9: Making Decisions
Development approach with "breadth first" (attempting to cover the whole system, low

level of detail, then increasing it across the width) as opposed to the "depth first" (it could be
covered in detail a portion of the system, then another, and so on). In general, it is better the
first. Intuitive decision making opposed to rational decisions.

Small teams able to self-organize. Swarm intelligence:

• flexibility: the team adapts quickly to changes in the environment;

• strength: even if one or more members leave, the group can still operate well;

• Self-organization: the team requires minimal supervision.

• Use simple rules but clear and followed by all. I.e., The 7 principles of "lean."

• Delivered as quickly as possible

From the initial idea to the finished product should spend as little time as possible, but with-
out hurry and compromising the quality.

Tool 10: Pull Systems
Developers must always have something to do, and have to know by themselves, without

someone tell him. It needs to avoid the "micromanagement". In the "pull", who works at
a processing stage starts only if the previous step ends and passes another product. The
products state being processed, including those from to start and finished products for each
phase are displayed in a board, with the "Kanban" approach (see fig 3.3).

The processing unit is the "Feature", or functionality, that constitutes the requirements
of the system. The stages can be eg.: Analysis, coding, testing, integration. Each feature
corresponds to a card, which is put on a board and that shows its status (Fig. 3.3).

In addition to the cards and the board, it should be done a daily meeting of 15’ in which
the team exchange information about what each of them has done and will do. Furthermore,
in addition to the board Kanban, it is well make use of other "information radiators" to share
problems, ideas, candidates for refactoring, etc.

Tool 11: Queuing Theory
The queuing theory is the transit time and waiting for elements in the queue. The cycle

time (Cycle time) is the time it takes to travel an entire queue, including any initial waiting.
It should be reduced to the minimum. There are two ways to reduce the cycle time: reducing
the arrival rate in the queue, and reduce the transit time within the queue.

In input should be avoided arrivals blocks of features too large. It is better to divide the
work in basic functionalities, that are distributed over time. This also facilitates the paral-
lelization of their implementation. More details on the management of queues in the Theory
of Constraints.

3.1. LEAN KANBAN DEVELOPMENT 19

Tool 12: Cost of Delay (Cost-benefit analysis)
It needs to well know how to calculate economic implications of delays in delivery,so as

other design choices and development. A delay may, for example, help to lose a window of
opportunity with lost earnings much higher than the simple cost of delay in itself.

Each project should have an associated analysis, kept up to date, its costs and benefits
present and future, in order to assess the impact of decisions. All costs must be quantified in
dollars, or Euros, to be compared. See the examples in the book.

Empowering the team
The Lean approach than Fordism, ie the so-called "scientific approach" to planning in-

dustry, in which people are guided in detail by their leaders. The assumptions of CMMI,
Fordist approach to the production of software are:

1. The best way to manage a system is break it down into modules to produce an easily
defined way, which are transformed from one state of inputs to one output in order to
obtain specific purposes.

2. In a mature organization everything is carefully planned and then checked for meet
the plan.

The Lean approach, however, is based on alternative assumptions:

1. Mature organization considers the system as a whole and does not focus on optimize
disintegrated.

2. Mature organization focuses on effective learning, and gives people who do the work
the power to make decisions.

Tool 13: Self-Determination
The power to make decisions should be given to the people who work. A Work-out is a

meeting of a few dozen developers, which can takes 2-3 days, in order to present proposals
on how to improve the work. The manager must decide, within one month, which proposals
to accept. Applicants of accepted proposals must, immediately, begin their implementation.

An idea for a manager or project leader is to treat employees as if they were a group of
volunteers.

Tool 14: Motivation
If people have a purpose, usually seek to pursue it with care. If people do not have one

purpose, they tend to get confused and uncomfortable. To give a sense of purpose to a team:

• Start with a motivation (a vision) clear and compelling.

• Make sure that the goal is achievable.

• Give the team access to customers.

• Let the team take their commitments alone.

• The manager’s role is to listen, provide support and protection from interference ex-
ternal.

20 CHAPTER 3. LEAN-KANBAN APPROACH

• Keep away from the skeptics team.

Each type of developers should have their own purposes. The building blocks of the rea-
sons are:

1. Membership in the group, which includes mutual respect and reduced international
competitiveness.

2. Safety of the workplace and the fact not to be punished in case of errors.

3. Expertise with a disciplined environment, professional and with all the tools necessary.

4. Progress: it needs to give a sense of achievements, perhaps the most celebrated impor-
tant. Iterative development ease that.

Work more than eight hours can be a sign of a motivated and passionate team. But it is
not sustainable in the long term, and also must be careful not to establish an atmosphere in
where people are morally obliged to work overtime.

Tool 15: Leadership
There is a difference between managers and guide (leader). A manager faces the com-

plexity and plans budgets, organization, tracking and control. A guide faces change: it gives
the direction, aligning people, giving the reasons.

In software, it often happens that the development of large systems emerge a small group
of exceptional designers who take responsibility for most of the project. In general in the
team there are masters developers for competence and experience are the natural leaders of
development.

Usually emerge spontaneously, but must then discover and use them in the best possible
as an interface to customers and management. One of the tasks of the master developer,
in iterative development, is to determine when the design of a system is sufficient to begin
encoding as soon as possible, so as to get feedback and then to develop the project.

Tool 16: Expertise
Organization of software development requires both skills technological (analysis, lan-

guages, databases, user interfaces, Web technologies, ...) and of domain. To develop them,
are very useful community competence (Communities of Expertise), in where experts ex-
change views and experiences directly or via the Web

And the task of the community also responsible for defining coding standards and devel-
opment.

Create systems inherently cohesive
A successful system must have integrity perceived and conceptual integrity, and thus

have integrity "built in". According to Bill Curtis, the three fundamental requirements for
achieving this are:

1. High level of expertise in the application domain in the team.

2. Acceptance of change as the norm, and the ability to adapt to the changes in emerging
project during construction.

3.1. LEAN KANBAN DEVELOPMENT 21

3. An environment that fosters communication, integrating people, tools and informa-
tion.

Tool 17: Perceived Integrity
The perceived integrity requires a strong focus on customer needs, and the use of feed-

back. To establish a good exchange of information with customers, there are several tech-
niques:

• Small systems are developed by a single team, with short iterations and feedback from
maximum number of potential users at each iteration.

• Extensive testing by customers are an excellent means of communication client-team.

• Complex systems are represented in a comprehensible language and simple models
for users and that developers can use without further refinement.

• Large systems must have a master developer with deep knowledge of the customer
and excellent technical credentials, whose role is to facilitate the emergence of project,
representing the needs of the customer with the developers.

The Model Driven Design (MDD) could be used by developing analysis and design models
using a understandable language to the user, and converts the code easily, and perhaps semi-
automatic. In order to serve a set of models:

• A conceptual model of the domain, representing the classes with the basic entity of the
system, or at least the basic entities and their relationships. The details must express
key concepts, but do not be too refined.

• A glossary with terms of the model, in the model language.

• A model of the use cases, with descriptions of the scenarios of dynamic operation of
the system.

• Qualifiers expressing estimates or constraints on the system, eg. the no. expected
users, the response times acceptable, the rate of acceptable defects, etc..

Tool 18: Conceptual Integrity
If a system has conceptual integrity, all of its parts, at various levels, work together cleanly

and consistently. When a new system is created, it is better that there are few new and inno-
vative parts, reusing the other.

The conceptual integrity is not achieved the first time around, but with a long project
work and iterations. For material goods, using the integrated problem solving, that follows
the following principles:

1. Understanding of the problem and its solution must be carried out simultaneously,
not sequentially.

2. Preliminary information is disseminated immediately. The flow of information be-
tween designers of high-level and developers is not delayed until these are not com-
plete.

3. The information is frequently transmitted in small sets, and not all at once.

22 CHAPTER 3. LEAN-KANBAN APPROACH

4. The information flows in two directions, not just one.

5. The best way to transmit information is the face to face communication, and no doc-
uments or e-mail.

The software usually has multiple layers:

1. Presentation (UI).

2. Services (transaction management) in many systems is omitted.

3. Domain (business logic).

4. Translation (mappings, wrapper): in many systems is omitted.

5. Sources of data (persistence, messaging)

The lower layers should not depend on the top ones. The way to obtain the conceptual in-
tegrity in the software is similar to that of physical products:

• Reusing parts and existing approaches: for example, wrappers to access legacy databases,
XML and XML parsers available, adherence to standards.

• Use the integrated problem solving.

• Ensure that critical areas are addressed by experienced developers.

• Complex systems require the guidance of a master developer.

Tool 19: Refactoring
It is the notorious practice of XP. Refactoring is typically done in small steps. After each

small step, you’re left with a working system that’s functionally unchanged. Practitioners typ-
ically interleave bug fixes and feature additions between these steps. So refactoring doesn’t
preclude changing functionality, it just says that it’s a different activity from rearranging
code.

The key insight is that it’s easier to rearrange the code correctly if you don’t simultane-
ously try to change its functionality. The secondary insight is that it’s easier to change func-
tionality when you have clean (refactored) code.

Refactoring is a kind of reorganization. Technically, it comes from mathematics when
you factor an expression into an equivalence - the factors are a cleaner ways of expressing
the same statement. Refactoring implies equivalence; the beginning and end products must
be functionally identical. You can view refactoring as a special case of reworking.

Practically, refactoring means making code clearer and cleaner and simpler and elegant.
Or, in other words, clean up after yourself when you code. Examples would run the range
from renaming a variable to introducing a method into a third-party class that you don’t
have source for.

Refactoring is not rewriting, although many people think they are the same. There are
many good reasons to distinguish them, such as regression test requirements and knowl-
edge of system functionality. The technical difference between the two is that refactoring, as
it was stated above, doesn’t change the functionality (or information content) of the system
whereas rewriting does. Rewriting is reworking.

3.1. LEAN KANBAN DEVELOPMENT 23

Tool 20: Testing
XP testing was different in many ways from "traditional" testing. The biggest difference

is that on an XP project, the entire development team takes responsibility for quality. This
means the whole team is responsible for all testing tasks, including acceptance test automa-
tion. When testers and programmers work together, the approaches to test automation can
be pretty creative!

As Ron Jeffries says, XP is not about "roles", it’s about a tight integration of skills and
behaviors. Testing is an integrated activity on an XP team. The development team needs
continual feedback, with the customer expressing their needs in terms of tests, and pro-
grammers expressing design and code in terms of tests. On an XP team, the testers will play
both the customer and programmer "roles". They’ll focus on acceptance testing and work
to transfer her testing and quality assurance skills to the rest of the team. Here are some
activities testers perform on XP teams.

• Negotiate quality with the customer

• Clarify stories, flush out hidden assumptions

• Enable accurate estimates for both programming and testing tasks

• Make sure the acceptance tests verify the quality specified by the customer

• Help the team automate tests

• Help the team produce testable code

• Form an integral part of the continuous feedback loop that keeps the team on track.

The biggest difference between XP projects and most "traditional" software development
projects is the concept of test-driven development. With XP, every chunk of code is covered
by unit tests, which must all pass all the time. The absence of unit-level and regression bugs
means that testers actually get to focus on their job: making sure the code does what the
customer wanted. The acceptance tests define the level of quality the customer has specified
(and paid for!)

Testers who are new to XP should keep in mind the XP values: communication, sim-
plicity, feedback and courage. Courage may be the most important. As a tester, the idea of
writing, automating and executing tests in speedy two or three week iterations, without the
benefit of traditional requirements documents, can be daunting.

Testers need courage to let the customers make mistakes and learn from them. They
need courage to determine the minimum testing that will prove the successful completion
of a story. They need courage to ask their teammates to pair for test automation. They need
courage to remind the team that we are all responsible for quality and testing. To bolster this
courage, testers on XP teams should remind themselves that an XP tester is never alone.

Consider the whole
The "Systems Thinking" is an approach that looks at organizations as systems, analyz-

ing how its parts are connected and how the organization behaves as a whole. It has main
patterns

24 CHAPTER 3. LEAN-KANBAN APPROACH

1. Limits to Growth: Even if a process or approach leads to the desired results, usually
creates effects that outweigh these results. If the process is pushed further to increase
the results, the secondary effects grow more, and the growth is limited. It should be
instead find and remove limits to growth.

2. Move the load: if a problem cause side effects, but it is difficult to deal with, it could
tends to treat the effects instead. However treating the symptoms and not the cause,
the problem usually worsens.

3. Sub optimization: there is often a temptation to divide a complex system into smaller
simple sections, and manage them as if they were independent. Improving the indi-
vidual parts, however, is not said it best everything.

Tool 21: Measurements
The measures of process, product, cost, etc.. occur at the local level, but to use them to

optimize local performance it is often counterproductive for a global optimization. It needs
to sub-optimize for several reasons:

• Superstition: it is a not established association of cause and effect.

• Custom: to act and measure because "it has always been done in this way", and not
for good reasons.

The measure of performance is often unsuitable, when it comes to knowledge workers. Typ-
ically, we try to cover all aspects with the approach (wrong!):

1. Standardization: it abstracts the process of development in sequential phases, pre-
scribing how the various stages must be made, and it is measured according to the
process.

2. Specification: to create a detailed development plan, and measuring performance
against floor.

3. Breakdown: the great tasks are broken down into smaller tasks, which are in When
measured.

The correct way to measure is, instead, to try to measure everything, and as much as
possible in an aggregate fashion. You have to measure the information, not performance,
aggregating to hide and mediate individual performance. Usually it makes little sense to
assign the individual errors developers: they are a consequence of the system and develop-
ment practices, not negligence of the individual.

Tool 22: Contracts
The Lean approach of Poppendieck devotes much space to the discussion and specific types
of contract as possible regarding software development. In general, the contract at a pre-
determined price is not recommended, which locks the price and requirements, but means
that the supplier adheres to them, and charged too much for any changes, and contracts
based on man-hours (Time-and-Material) that are flexible to the requirements, but encour-
age the supplier to be inefficient. The contracts are recommended:

3.1. LEAN KANBAN DEVELOPMENT 25

• Contracts Multistage (Multistage Contracts), used both to clarify in advance fixed-
price contracts, which for the whole contract. Development occurs in a succession
of contracts limited, with checks at the end of each one.

• Contracts with Cost Objective (Target-Cost Contracts), in which the total cost is re-
sponsibilities of both the customer and the supplier. It is a fixed price contract in
which, if the goal of cost is exceeded, both parties lose out while, if it is centered, both
sides earn. For example:

– Cost plus fixed bonus: the price does not include the profit of the supplier, which
is given only at the end of the project. If the actual cost exceeds the target cost,
the supplier works in the cost price for the missing part. If the actual cost is less
than the cost goal, the supplier has a greater profit.

– Profit should not be exceeded: the price includes the profit, but if the real cost
exceeds the target cost the vendor provides a cost price of the extra hours.

– Agreements with objective of time (Target-Schedule Contracts): in the case where
the finish work on time is more important that not exceed the cost, this type of
contracts identifies functionality priority, and ancillary features, with the aim of
ensure, however, that are completed within the stipulated time those priorities.

– Contract with shared benefits (Shared-Benefit Contracts) are designed to pro-
mote full cooperation between customer and supplier because they give bene-
fits both if the project is successful. An example are the contracts "co-source", in
which both produce the software: half is produced by the team of the client, and
half from the team of the supplier, working in cooperation, typically with an agile
approach.

All these contracts have in common the fact that not prescribe in advance the require-
ments of the system.

3.1.1 Development for feature

The premise of the approach ToC is that the work of software production is broken
down into elementary units, implementable one at a time. Such is the agile approach,
in which the requirements are divided into elementary units (User Stories, Features,
Backlog items, as well as use cases). Elementary units called henceforth feature) evolve
in stages: acquisition, analysis, design, coding, testing, integration. This allows to
model the software process as a flow of processing feature.

It needs to estimate the importance of the features, in order to have a tool for their
prioritization. The implementation flow can be drawn with a flow diagram, such as
those used in Lean approach, shown in Fig 3.3. A vertical section of features under
work shows the amount of Work in Progress (WIP), i.e. the number of features handled
at the same time. An horizontal section gives the average time for processing a feature.

It is also important to note that the features are perishable in the sense that their value
decreases average over time as the requirements tend to change and make obsolete

26 CHAPTER 3. LEAN-KANBAN APPROACH

those defined in the past.

3.1.2 Kanban approach

In the literature there are some simulation models of the Lean-Kanban approach for
manufacturing processes. For example, Huang et al.[7] assessed the issues in adapt-
ing Japanese Just In Time techniques to American firms using network discrete sim-
ulation. Hurrion [8]] performed process optimization using simulation and neural
networks. Köchel and Nieländer [9] proposed a data-driven Kanban simulator called
KaSimIR. Hao and Shen [10] proposed a hybrid simulator for a Kanban-based mate-
rial handling system. The simulation approach has been also used to simulate agile
development processes. For example, event-driven simulators for Extreme Program-
ming practices were introduced by Melis et al. [11] [12]. A Petri-net based simulation
of Lean-Kanban approach was cited by Corey Ladas in his website [13].

In a previous work we presented an event-driven simulator of the Kanban process,
from which we derived the different versions of the simulator presented in this thesis.
Using this simulator we could show the advantages of a WIP-limited approach versus
a non-limited one, on synthetically generated data [50].

In a subsequent work we used an extended version of the simulator to compare Lean-
Kanban with traditional and Scrum approaches on the data collected from a Microsoft
project, showing that the Lean-Kanban approach is superior to the others [51]. This
paper extends our previous work for modeling and evaluating the Lean-Kanban based
software maintenance process.

Recently, Turner et al. worked on modeling and simulation of Kanban processes in
Systems Engineering –the engineering of complex or evolving systems composed of
hardware, software and human factors [52] [53]. These work, though quite prelimi-
nary, propose the use of a mixed approach, merging Discrete Event and Agent-based
simulation approaches. In particular, Discrete Event simulation is used to simulate the
flow of high-level tasks and the accumulation of value, while Agent-based simulation
is used to model workflow at a lower level, including working teams, kanban boards,
work items and activities.

Kanban means "visual signal" in Japanese. More than a development process is a set
of practices that support Lean approach. Such practices, initially aimed at improving
the exchange of information in a Lean team, then evolved into a more structured ap-
proach. The objective of the Kanban is to provide visual tools to facilitate the Lean
approach, viewing and also providing constraints to minimize the Work in Progress
(WIP) and highlight the bottlenecks. In this sense, Kanban is complementary to Lean
and ToC. With Kanban:

1. It is fully displayed the workflow:

* each feature is written on a card and placed on the board;

* columns denote the state of the board cards in them posted.

2. The WIP is limited by limiting the number of cards that can be on different columns.

3.1. LEAN KANBAN DEVELOPMENT 27

Figure 3.3: A typical Kanban board.

3. The lead time is measured (average time to complete a feature), to optimize the
process making it less and less variable as possible.

In Fig 3.3 is shown a typical board Kanban, simplified. Each feature is to implement
written on a card, in the figure denoted by a letter of the alphabet. The columns are
following:

– Backlog: Here there are the accumulated feature to implement. Since this Kan-
ban not explicitly contemplates the collection activity requirements (creation of
the features), it is assume that these features are given as input uncontrolled de-
velopment.

– Selected (2): here are located the selected features for implementation. At most
there are 2. When one of them is shifted to the right because it starts developing,
you can "pull" another by the total backlog. This is typically that of higher priority.

– Develop (3): the features under development, at most 3. Are in turn divided into:

* Ongoing: feature under development;

* Done: feature ready for release.

The constraint on the 3 feature at the most, cumulatively on feature and Ongoing
Done.

– Deploy: the feature being "deploy" (release). There are no constraints on their
number.

– Live!: The feature release and running.

A more detailed and realistic Kanban board is shown in Figure 3.4, with the features
obtained breaking up the "user stories".

The movement of the cards on the board can, easily, get the flow diagram described
in ToC approach. Furthermore, the observation of the board shows just what activi-
ties are the bottlenecks. After each activity it is better if there is a column "buffer" in
which to deposit the feature whose processing is complete, waiting to be "pulled" in
subsequent processing [3].

28 CHAPTER 3. LEAN-KANBAN APPROACH

Figure 3.4: A Kanban board more complex.

Often the Kanban approach is used with Scrum, even if it involves a continuous flow
implementation of the feature, which is taken from the Backlog whenever a vacancy in
the active column. The use of "time boxed" iterations as in Scrum is therefore neces-
sary any more, even if the activities of planning and review that occur at the beginning
and end of each iteration must be disclosed with frequency, in order to maximize the
communication and feedback.

It is also important the team management and individual team skills. Even in this
case, there is no a specific approach, but using approaches borrowed from Scrum, XP
or other agile methodologies.

Since the process of feature is made in specific activities, one type of activity could
be carry by a specialist of at only one activity (eg. testing or design), or developers
generalists able to choose the activities at that time more critical.

It is reported that the size of a team that follows a Kanban approach can also be greater
than that of typical Scrum or XP team, and up to 50-70 people. The case of large teams,
roles will typically be more specialized than in the case of teams of 5-10 people.

The choice of what are the specific features at some stage on which work is left to the
developers, although it is advisable that a developer, once started the activity on a fea-
ture, bring it to at the end. The Kanban approach is compatible with the development
of more projects in parallel, because individual feature may also belong to different
projects. In this case, using cards of different color, or drawing horizontal "swim lanes"
on the board, referring to the various projects.

A non-iterative process that follows the Kanban approach might consist of:

1. Preliminary activity of gathering requirements to determine and evaluate a set of
features to start the development of the system.

3.1. LEAN KANBAN DEVELOPMENT 29

2. Preliminary activity to determine the basic architecture of the system (see ap-
proach FDD).

3. Development by feature, with pull approach using the Kanban board. This devel-
opment is asynchronous and iterative.

4. Regular meetings of retrospective verification of the work in progress, determi-
nation of the hills of bottle, improvements to the process.

5. Periodic meetings of planning, with collection of feedback from the user and re-
vision / addition of features of the system.

6. Daily stand-up meeting.

7. Release management at pre-established times, with possible negotiation of the
features planned for each release.

Further refinements can be the management of bug fixing (equivalent to a bug or fea-
ture to class of bugs connected), refactoring (also broken down into features, or left
discretion of developers within the coding work of feature), functional test and accep-
tance (also similar to features).

Problems related to Lean and similar approaches The Lean approach the original, with
the 7 principles of Lean is generic and very reasonable, and does not pose particular
problems.

The approach ToC and / or Kanban assumes that the development is broken down
into features, size comparable and the processing of which evolves according to a time
sequence of activities (including possibly with cycles of rework).

Chapter 4

Software Process Simulation
Modeling

Software Process Simulation (SPS) is a discipline with its own body of knowledge, the-
ory, and research methodology. The main aspect of the discipline is the fundamental
notion that models are approximations for the real-world. To engage Software Process
Simulation, practitioners must first create a model approximating an event. The model
is then followed by simulation phase, which allows for the repeated observation of the
model.

After one or many simulations of the model, the analysis step takes place. Analysis aids
in the ability to draw conclusions, verify and validate the research, and make recom-
mendations based on various iterations or simulations of the model. These basic rules
combined with visualization, the ability to represent data as a way to interface with the
model, make Software Process Simulation a problem-based discipline that allows for
repeated testing of a hypothesis.[70]

Software Process Simulation also serves as a tool or application that expands the abil-
ity to analyze and communicate new research or findings. In last years, we witnessed
the diffusion and rise in popularity of Process Simulation. In fact, new and innova-
tive software engineering techniques are constantly being developed, so a better un-
derstanding of these is useful for assessing their effectiveness and predicting possible
problems. Simulation can provide information about these issues avoiding real world
experimentation, which is both time and cost-intensive.

This area of SPS has attracted growing interest over the last twenty years, but only
recently, is it beginning to be used to address several issues concerning the strategic
management of software development and process improvement support. It can also
help project managers and process engineers to plan changes in the development pro-
cess. The development of a simulation model is a relatively inexpensive way compared
to experimenting with actual software projects of gathering information when costs,
risks and complexity of the real system are very high.

In order to relate the real world results to simulation results, it is usual to combine em-
pirical findings and knowledge from real processes. In general, empirical data are used

31

32 CHAPTER 4. SOFTWARE PROCESS SIMULATION MODELING

to calibrate the model, and the results of the simulation process are used for planning,
design and analyzing real experiments [71].

Likewise, to have a better understanding of this area, in particular what model and
simulation model means, some key concepts have to be explained. A model is defined
as an abstraction (i.e., a simplified representation) of a real or conceptual complex
system. A model is designed to display significant features and characteristics of the
system, which one wishes to study, predict, modify, or control. Thus a model includes
some, but not all, aspects of the system being modeled.

A simulation model is a computerized model that possesses the characteristics de-
scribed above and that represents some dynamics of the system or phenomenon. One
of the main motivations for developing a simulation model or using any other model-
ing method is that it is an inexpensive way to gain important insights when the costs,
risks, or logistics of manipulating the real system of interest are prohibitive. Simu-
lations are generally employed when the complexity of the system being modeled is
beyond what static models or other techniques can usefully represent.

4.1 What is a simulation model?

The process of the model construction is the starting point of the simualtion concept:
using the simulation it is possible to test not only the actual production system that we
would like to realize, but its abstraction. A model is then the abstraction of a real sys-
tem throughout a set of data similar to it. In general, it is possible to build a model by
isolating the important elements of the system and establishing meaningful relation-
ships between them. In practice, each model is valid or not, depending on the specific
objective that is pursued.

There are different kind of models, quantitative models, qualitative models, analytical,
and in general it is usual to divide them into two main categories: static models and
dynamic models. In particular, the static model is used to solve systems which are in
equilibrium conditions (for example, problems relating to the structural calculation in
engineering of structures), instead the dynamic model is used to solve systems that
evolve over time and therefore where it comes into play the time as a variable.

The simulation models are generally dynamic models, which include, therefore, also
the temporal dimension, and have the aim of studying the variation with time of a
system.

A simulation model may be, for example, deterministic or stochastic, or discrete or
continuous. It comes to deterministic simulation when the time evolution of the model
constructed is uniquely determined by its characteristics and initial conditions. When,
in the model, there are random variables that depending on the value taken can lead
to different behaviors it is spoken of stochastic simulation. Continuous simulation in-
cludes a simulation in which the value of the involved variables varies continuously
over time. It has instead a discrete simulation when the state of the studied system,
and the value of the variables, changes in well defined instants of time.

In general, a simulation model is composed of a simulation algorithm, characterized
by an input that consists of two types of data, those defined in the initial stage of set-

4.2. ADVANTAGES OF SIMULATION 33

ting and which are not modifiable by the user, and the variables, user-editable , and
which represent the possible situations that can be recreated at every simulation step.
In output, instead, would have the results, which are starting point of the simulator it-
self, that is those results derived from decisions taken by the user for each simulation.
These results are the ultimate goal of the simulator, in fact on the basis of the obtained
results will be taken decisions also strategic.

Today, in fact, the software processes simulation models are used in different fields and
from different points of view, because their ultimate goal should be to provide answers
to different decision questions, and then are directed to the resolution of strategic is-
sues such as software process management or as a support to the development process
improvement. The process of creation and use of a simulation model consists of the
following phases:

1 Formulation of the problem: it is necessary to define the objectives of the si
mulation, and therefore what accurate information to get from the simulation,
to do this it needs to establish what are the boundaries of the system to be stud-
ied. Make simplifications and assumptions, and then determine the right level of
detail, it is essential for the success of the model.

2 Collecting and processing data: The collection of data relating to the reality to be
represented is a long phase but essential for the success of a simulation model
that really works. The data must be properly collected and analyzed in order to
construct the variables.

3 Parameter setting: to define the values of the parameters that will act with the
features of the model in order to determine the temporal evolution.

4 Construction of the model: the entities of the model and the functional relation-
ships that link them are identified.

5 Coding of the computer model: This step consists of the translation of the model
into a model can be interpreted by computer.

6 Validation of the model: the created model is then analyzed in detail as an ab-
straction of the real system, and eventually to understand the causes, resulting
in errors and differences. Testing the model with a set of sample data and the
results are compared. Therefore, the analysis of the behavior of the constructed
model and the comparison with the initial data allows to understand how it rep-
resents, properly its objectives, and the reality being studied. If there is a good
correspondence, one can consider the model validated.

4.2 Advantages of simulation

The simulations are generally employed when the complexity of the system to be mod-
eled is such that a static model or other techniques are not useful for its representation.
[4] Furthermore, since a model is an abstraction of a real system, it will be represented
only by a few of the many aspects of a software process, which will be those considered
to be basic to meet some goals.

34 CHAPTER 4. SOFTWARE PROCESS SIMULATION MODELING

The purpose of the construction of simulation models is precisely to be able to conduct
virtual experiments and observe the system behavior under certain extreme condi-
tions, or what happens with changes of some parameters. In order to obtain accurate
results, it needs to perform many simulation runs using the model before collecting
any data of a statistical nature.

Furthermore, the experiments that can be conducted are multiple, essentially of two
types: an interactive approach and a comparative ones. In the first case, running the
model it will observe what happens, for example, an action is implemented and it can
be seen, how with this change, the model looks like. The comparative experiments, in-
stead, modify the same parameter multiple times to see how different models behave
in order to choose the solution that is the closest to the real solution or that better
optimizes the model parameters.

As already dealt, the starting point in a simulation project is the identification of a
problematic reality that will be analyzed in order to highlight inside the system to be
studied. The system is not reality, but it is a representation, where the detail level will
depend on the objectives of the study and the type of problem that must be resolved.
Then the objectives are defined and we can proceed with the construction of a formal
model that allows to simulate the identified system, in order to understand the be-
havior. The process outlined in this way, starts from reality up to the final decisions
in three phases: the identification of the system that must be studied, modeling and
simulation.

In a simulation model at any given time the system is described by a set of variables
called "state variables". In case of variables vary continuously, we consider a continu-
ous system, however in case of variables change instantaneously at precise instants of
time, belonging to a finite or countable set, we refer to a discrete system.

Considering this aspect it is important to observe that the choice of a model with re-
spect to another is not strictly linked to the type of the system but to the objectives to
be pursued and therefore the type of study to be performed. Once the model is built, it
needs to implement the simulation model using a general purpose language like (i.e.:
Java, C, Smalltalk and so on). For this purpose there are libraries of ’routines’ oriented
to the simulation or specialized languages typical for the simulation such as, for exam-
ple, among the best known SIMSCRIPT, ModSim, that provide many features typical
for the realization of a model with the advantage of reducing the manufacturing time.

Another possible alternative, to take into consideration, are commercial or open source
software applications already created ad hoc for the simulation, the so-called simula-
tors such as Simul8, Simulation Arena, Extend, or Vensim among the many available.
It is a software packages interactive type and equipped, in general with a graphical
interface, then very intuitive and easy to learn, however, because they are dedicated
to specific types of systems, they have the disadvantages of being limited to specific
model systems[71]. Here are some of the advantages to using modeling and simula-
tion:

– the accuracy and ability to choose correctly by testing every aspect of a proposed
change without committing additional resources;

4.3. COMMON USES OF SIMULATION MODELLING 35

– compress and expand time to allow the user to speed up or slow-down behavior
or phenomena to facilitate an in-depth research;

– understand all aspects of the scenario in order to better understand and repro-
duce it;

– explore possibilities in the context of policies, operating procedures, methods
without disrupting the actual or real system

– diagnose problems by understanding the interaction among variables that make
up complex systems;

– identify constraints by reviewing delays on process, information, materials to as-
certain whether or not the constraint is the effect or the cause;

– develop understanding by observing how a system operates rather than predic-
tions about how it will operate;

– visualize the plan with the use of animation to observe the system or organization
actually operating;

– build consensus for an objective opinion because Software Process Simulation
can avoid inferences;

– prepare for change by answering the ’what if’ in the design or modification of the
system;

– invest wisely because a simulation study costs much less than the cost of chang-
ing or modifying a system;

– better training can be done in a less expensive way and with less disruption than
on-the-job training;

– specify requirements for a system design that can be modified to reach the de-
sired goal.

It is obvious that there are many uses and many advantages to using Software Process
Simulation. The IIE also made note of some disadvantages to using Software Process
Simulation. The list is noticeably shorter and it includes things such as:

– the special training needed for building models;

– the difficulty in interpreting results when the observation may be the result of
system inter-relationships or randomness;

– cost in money and time due to the fact that simulation modeling and analysis can
be time consuming and expensive;

– inappropriate use of modeling and simulation when an analytical solution is best.

4.3 Common uses of simulation modelling

The main purposes of simulation models, as proven by Raffo et al. [4], are the follwing:
to provide a basis for experimentation, predict behavior, answer "what if" questions,
teach about the system being modeled, etc.

36 CHAPTER 4. SOFTWARE PROCESS SIMULATION MODELING

A software process simulation model faced some particular aspects of software devel-
opment/ maintenance/evolution process. It can represent such a process as currently
implemented (as-is), or as planned for future implementation (to-be). Since all mo
dels are abstractions, a model represents only some of the many aspects of a software
process that potentially could be modeled namely the ones believed by the model de-
veloper to be especially relevant to the issues and questions the model is used to ad-
dress. There is a wide variety of reasons for undertaking simulations of software pro-
cess models. In many cases, simulation is an aid to decision making. It also helps in
risk reduction, and helps management at the strategic, tactical, and operational levels.
Here we have a list of the main reasons for using simulations of software processes.

– Strategic management.

Simulation can help to address a broad range of strategic management questions
regarding work distribution across sites or centralization at one location and or if
it is better to perform work in-house or to out-source. Likewise analysis of ben-
efits regarding the employment of a product-line approach to developing similar
systems, or a more traditional approach, or by proposing individual product de-
velopment approach.

In each of these cases, simulation models would contain local organizational pa-
rameters and be developed to investigate specific questions. Managers are as-
sisted in their decision making by comparing the results that come from simula-
tion models of the alternative scenarios.

– Planning. Simulation can support management planning in a number of clear
ways, including

* forecast effort / cost, schedule, and product quality;

* forecast staffing levels needed across time;

* cope with resource constraints and resource allocation;

* forecast service-level provided (e.g., for product support);

* analyze risks.

All of these can be applied to both initial planning and subsequent re-planning.
Simulation can also be used to help select, customize, and accomplish the best
process for a specific project context. These are process planning issues.

– Control and operational management.

Simulation can also provide effective support for managerial control and opera-
tional management. Simulation can facilitate project tracking and oversight be-
cause key project parameters (e.g., actual status and progress on the work prod-
ucts, resource consumption to-date, and so forth) can be monitored and com-
pared against planned values computed by the simulation. This helps project
managers to determine, when it is possible, if corrective action may be needed.
Project managers can also use simulation to support operational decisions, such
as whether to commence major activities (e.g., coding, integration testing). To do
this, managers would evaluate current project status using current actual project
data and employ simulation to predict the possible outcome if a proposed action
(e.g., commence integration testing) taken then or delayed.

4.3. COMMON USES OF SIMULATION MODELLING 37

– Process improvement and technology adoption.

Simulation can support process improvement and technology adoption in a vari-
ety of ways. In process improvement settings, organizations are often faced with
many suggested improvements. Simulation can aid specific process improve-
ment decisions (such as go / no-go on any specific proposal, or prioritization
of multiple proposals) by forecasting the impact of a potential process change
before putting it into actual practice in the organization.

These applications, use simulation a priori to compare process alternatives, by
comparing the projected outcomes of importance to decision makers (often cost,
cycle-time, and quality) resulting from simulation models of alternative processes.

Simulation can also be used ex post to evaluate the results of process, changes or
selections already implemented. The actual results observed would be compared
against simulations of the processes not selected, after updating those simula-
tions to reflect actual project characteristics seen (e.g., size, resource constraints).
The actual results would also be used to calibrate the model of the process that
was used, in order to enhance future use of that model.

Just as organizations face many process improvement questions and decisions,
the same is true for technology adoption. The analysis of inserting new technolo-
gies into a software development process (or business process) would follow the
same approach as for process change and employ the same basic model. This
is largely because adoption of a new technology is generally expected to affect
things that are usually reflected as input parameters to a simulation (e.g., defect
injection rate, coding productivity rate) and / or to change the associated process
in other more fundamental ways. about software processes in several ways.

– Understanding.

Simulation can promote enhanced understanding of many process issues. For
example, simulation models can help project managers, software developers, and
quality assurance personnel better understand process flow, i.e., sequencing, par-
allelism, work and products flows, etc. Simulation results could help people vi-
sualize these process flow issues and could be presented using Animated simula-
tions, Gantt charts and so on. And, also, to understand the effects of the complex
feedback loops and delays inherent in software processes;

In addition, simulation models can help researchers to identify and understand
consistent, pervasive properties of software development and maintenance pro-
cesses. Moreover, simulations (especially Monte Carlo techniques) can help peo-
ple understand the inherent uncertainty in forecasting software process outcomes,
and the likely variability in actual results seen. Finally, simulations could facili-
tate communication, common understanding, and consensus building within a
team or larger organization and likewise help with process or organizational un-
derstanding to some degree.

– Training and learning .

Simulation can help with training and learning about software processes in dif-
ferent ways. Although this purpose is closely related to that of understanding, the
particular setting envisioned here is an explicitly instructional one. Simulations
can provide an useful way for personnel to practice/learn project management.

38 CHAPTER 4. SOFTWARE PROCESS SIMULATION MODELING

A simulated environment can help management trainees learn the likely impacts
of common decisions (often mistakes), e.g., rushing into coding, skipping in-
spections, or reducing testing time. Finally, training through simulation can help
people to accept the unreliability of their initial expectations about the results of
given actions; most people do not possess good skills or inherent abilities to pre-
dict the behavior of systems with complex feedback loops and/or uncertainties
(as are present in software processes).

Software process simulation modeling has gained increasing interest among academic
researchers and practitioners as an useful approach for analyzing complex business.

Simulation modeling has been applied in a variety of disciplines for a number of years,
it has only recently been applied to the area of software development and evolution
processes.

The scope of software process simulation applications ranges from the strategic man-
agement of software development, supporting process improvements,to software project
management training and longer-term product evolutionary models, in general.

A software process has been specifically defined as A set of activities, methods, prac-
tices, and transformations used by people to develop and maintain software products.
Likewise, model is an abstraction (i.e., a simplified representation) of a real or con-
ceptual complex system. A model is an useful tool to explain the main features and
characteristics of the system, all oriented to study, predict, modify, or control it.

In general, the model could include some, but not all, aspects of the system being mo
deled. A model is valuable to the extent that it provides useful answers to the questions
it is used to address. It could represent dynamic system.

One of the main purposes for developing a simulation model is to gain important in-
sights when the costs (in time and resources) and risks are prohibitive. Simulations are
generally employed when the complexity of the system being modeled is beyond what
static models or other techniques can usefully represent.

4.4 Simulation techniques and approaches

When we decide to design and to implement a simulator, various techniques and strate-
gies might be adopted to model the behavior of a given system.

According to the characteristics of the system to be simulated, some techniques may
be more suitable than others. The main factors to take into consideration are the level
of abstraction and the desired accuracy and speed of the simulation. Traditionally,
simulators are designed using either continuous or discrete-event techniques to sim-
ulate a given system [19].

Also, it is useful to classify the system being simulated into two separate categories
depending upon the degree of randomness associated with the behavior of the system
in its simulated environment. As such, the simulation results for a given set of inputs
will always be identical [19].

4.4. SIMULATION TECHNIQUES AND APPROACHES 39

4.4.1 Continuous Simulation

A research group at the Massachusetts Institute of Technology (MIT) developed a so-
cietal model of the world. This was the first continuous simulation model: the World
Model. Today, most continuous models are based on differential equations and/or
iterations, which use several input variables for calculation and in turn supply out-
put variables. The model itself consists of nodes connected through variables. The
nodes may be instantaneous or noninstantaneous functions. Instantaneous functions
present their output at the same time the input is available. Noninstantaneous func-
tions, also called memory functions, take some time for their output to change. Even
complex functions containing partial differential equations that would be difficult or
impossible to solve analytically or numerically may be modeled using the three ba-
sic components mentioned above. Before computers became as powerful as they are
today, the analog approach was the only way to solve this kind of equations within a
reasonable amount of time. Due to the continuous nature of the solver, the result could
be measured instantly.

In software engineering contexts, continuous simulation is used primarily for large-
scale views of processes, like the management of a complete development project or
strategic company management. Dynamic modeling enables us to model feedback
loops, which are very numerous and complex in software projects. Of course, simulat-
ing this continuous system on a computer is not possible due to the digital technology
used. To cope with this, the state of the system is computed at very short intervals,
thereby forming a sufficiently correct illusion of continuity. This iterative recalculating
makes continuous models simulated on digital systems grow complex very fast.

With continuous simulation, time is controlled by continuous variable expressed as
differential equations. During the simulation of the software the equations will be
integrated. The more popular approach for simulating in a time-continuous way is
the System Dynamics modeling [33]. Abdel-Hamid was the first person to use system
dynamics for modeling software project management process [44] System dynamics
models describe the system in terms of flows that accumulate in various levels. The
flows can be dynamic functions or can be the consequence of other auxiliary variables.
As the simulation advances time in small evenly spaced increments, it computes the
changes in levels and flow rates . For example, the error generation rate may be treated
as a flow and the current number of errors could be treated as a level. Because system
dynamics models deal with flows and levels, there are no individual entities and thus
no entity attributes. For a software process model, this means that all modules and
all developers are equal. If we wanted to model the effect of a few error prone code
units on the development process, we would not be able to specify which units were
error-prone [24]. In system dynamics, a system is defined as a collection of elements
that continually interact with each other and outside elements over time, as a whole
system [35]. The two important elements of the system are structure and behavior.
The structure is defined as the collection of components of a system, and their rela-
tionships. The structure of the system also includes the variables that are important
in influencing the system. The behavior is defined as the way in which the elements
or variables composing a system vary over time [35]. While it is possible to represent
discrete activities in a system dynamics model, the nature of the tool implies that all

40 CHAPTER 4. SOFTWARE PROCESS SIMULATION MODELING

levels change at every time interval [24]. If the process contains sequential activities,
some mechanism must be added to prevent all activities from executing at once. For
example, if we modeled the software process as define, design, code and test activities,
as soon as some code was defined, design would start. If we wanted to model a pro-
cess that completed all design work before coding started, we would have to create an
explicit mechanism to control the sequencing [24]. While the system dynamics model
is an excellent way to describe the behavior of project variables, it is a more difficult
way to describe process steps. Finally, a system dynamics model does not easily allow
to model the uncertainty inherent in our estimates of model parameters. A discrete
model could sample from a distribution using a different time for each module. The
system dynamics model either must sample the rate at each time step or must use the
same rate for each model run [24].

4.4.2 Discrete Event Simulation

The discrete approach shows parallels to clocked operations like those used by car
manufacturers in production. The basic assumption is that the modeled system changes
its state only at discrete moments of time, as opposed to the continuous model. So, ev-
ery discrete state of the model is characterized by a vector containing all variables, and
each step corresponds to a change in the vector. Let us consider a production line at
a car manufacturer. Simplified, there are parts going in on one side and cars com-
ing out on the other side. The production itself is clocked: Each work unit has to be
completed within a certain amount of time. When that time is over, the car-to-be is
moved to the next position, where another work unit is applied. (In reality, the work
objects move constantly at a very low speed. This is done for commodity reasons and
to realize minimal time buffer. Logically, it is a clocked sequence.) This way, the car
moves through the complete factory in discrete steps. Simulating this behavior is easy
with the discrete approach. Each time a move is completed, a snapshot is taken of
all production units. In this snapshot, the state of all work units and products (cars)
is recorded. At the next snapshot, all cars have moved to the next position. The real
time that passes between two snapshots or simulation steps can be arbitrary. Usually
the next snapshot of all variables is calculated and then the simulation assigns the re-
spective values. Since the time needed in the factory to complete a production step is
known, the model appropri- ately describes reality. A finer time grid is certainly possi-
ble: Instead of viewing every clock step as one simulation step, arrival at and departure
from a work position can be used, thereby capturing work and transport time indepen-
dently. The discrete approach is used in software engineering as well. One important
area is experimental software engineering, e.g., regarding inspection processes. Here,
a discrete simulation can be used to describe the process flow. Possible simulation
steps might be the start and completion of activities and lags, together with special
events like (late) design changes. This enables discrete models to represent queues.

Discrete event simulation [36] involves modeling a system as it progresses through
time and is particularly useful for analyzing queuing systems. Such systems are com-
mon in the manufacturing environment and are obvious as work in progress, buffer
stocks, and warehouse parts.

4.4. SIMULATION TECHNIQUES AND APPROACHES 41

A major strength of discrete event simulation is its ability to model random events and
to predict the effects of the complex interactions between these events. Experimenta-
tion is normally carried out using the software model to answer "what-if?" questions.
This is achieved by changing inputs to the model and then comparing the outcomes.
This type of simulation is primarily a decision support tool. Inside the software or
model will be a number of important concepts, namely entities and logic statements.
Entities are the tangible elements found in the real world, e.g. for manufacturing these
could be machines or trucks. The entities may be either temporary (e.g. parts that
pass through the model) or permanent (e.g. machines that remain in the model). The
concepts of temporary and permanent are useful aids to understanding the overall ob-
jectives of using simulation, usually to observe the behavior of the temporary entities
passing through the permanent ones. Logical relationships link the different entities
together, e.g. that a ma- chine entity will process a part entity. The logical relationships
are the key part of the simulation model; they define the overall behavior of the model.

Each logical statement (e.g.start machine if parts are waiting) is simple but the quan-
tity and variety and the fact that they are widely dispersed throughout the model give
rise to the complexity. Another key part of any simulation system is the simulation ex-
ecutive. The executive is responsible for controlling the time advance. A central clock
is used to keep track of time. The executive will control the logical relationships be-
tween the entities and advance the clock to the new time. The process is illustrated in
Figure 2.1. The simulation executive is central to providing the dynamic, time based
behavior of the model. Whilst the clock and executive are key parts of a simulation sys-
tem they are very easy to implement and are extremely simple in behavior.Two other
elements that are vital to any simulation system are the random number generators
and the results collation and analysis. The random number generators are used to
provide stochastic behavior typical of the real world.

The model is advanced to the time of the next significant event. Hence if nothing is
going to happen for the next 3 minutes the executive will move the model forward
3 minutes in one go. The nature of the jumping between significant points in time
means that in most cases the next event mechanism is more efficient and allows mod-
els to be evaluated more quickly. The event approach is described in Figure 4.1. The
diagram shows two essential elements: the clock and simulation executive. Here the
simulation executive will use an event list (a string of chronologically ordered events).
The executive is responsible for ordering the events. The executive removes the first
event from the list and executes the relevant model logic. Any new events that occur
as a result are inserted on the list at the appropriate point (e.g. a machine start load
event would generate a machine end load event scheduled for several seconds time).
The cycle is then repeated.

Each event on the event list has two key data items. The first item is the time of the
event which allows it to be ordered on the event list. The second item is the reference
to the model logic that needs to be executed. This allows the executive to execute the
correct logic at the correct time. Note that more than one event may reference the same
model logic, this means that the same logic is used many times during the life of the
simulation run [28], [25]. Discrete event simulation is efficient and particularly appeal-
ing when the process is viewed as a sequence of activities, such as in a manufacturing
line where items or entities move from station to station and have processing done at

42 CHAPTER 4. SOFTWARE PROCESS SIMULATION MODELING

Figure 4.1: Structure of Discrete Events System.

each station. Discrete models easily represent queues and can delay processing at an
activity if resources are not available. In addition, because discrete models are based
on the idea of a sequence of activities, it may be awkward to represent simultaneous
activities. While activities can occur in parallel, it is difficult to represent the idea of an
entity in two activities simultaneously. Imagine a code module in which some parts
are in coding while other parts are in unit test. To capture this in a discrete model, we
are forced to model sub-components of the module so that each sub-component can
be in only one activity at a time [24].

4.4.3 Agent-Based Simulation

A simulation model based on agents (the so-called Agent-based Simulation, hence-
forth ABS) is a multi-agent system consisting of multiple intelligent agents interaction.

An agent is a computational entity that has the ability to carry out independent ac-
tions in a typical dynamic and non-deterministicenvironment. The multiagent sys-
tems have been developed primarily with the aim of solving complex problems. So
the agent represents the basic unit during the simulation interacts with other agents,
creating structures articulated by complex evolutionary dynamics.

An agent has certain characteristics such as: Autonomy: Agents are at least partially in-
dependent and able to interact with each other; Location: No agent has a completely
full vision of the system, but it may have a local knowledge of what surrounds him;
Decentralization: No type of hierarchy exists among the agents of a system (no agent
plays the role of controller); Adaptability: Agents are responsible for maintaining their
own state. In an ABS system the overall behavior emerges from the independent inter-
action of agents see in fig 4.2.

ABS models are now emerging as a tool to solve problems related to complex systems
of interacting entities. Unique characteristics of the ABS model are the ability to per-
form simulations in the long term and large-scale, and the combination of the software
process (like open source development), processes and agile software development.

4.4.4 Hybrid Simulation

Currently, research is focusing on the analysis and the study of such hybrid simula-
tion models, i.e those models generated by the integration of two or more above men-

4.4. SIMULATION TECHNIQUES AND APPROACHES 43

Figure 4.2: Structure of Agent based System.

tioned simulation models. According to a study by J. He Zhang and other researchers
[5], hybrid models are now capturing the interest in the field of research increasingly
relevant, as they would provide the ability to capture more realistically the complexity
of the real world. In fact, the simulation models hybrids are born with the aim of be-
ing able to solve in a single model problems with enough complexity and amplitude
that no simulation approach taken individually, such as SD, SED, or ABS, for example,
might do.

The name "hybrid simulation" is a contraction of computational capabilities analog
(continuous part) and digital (discrete part) used together to define the model.

For this reason it is possible to use this model in order to study the problems of pro-
cesses that affect some other continuous and discrete variables. When you want to
then deal with the process simulation software using a hybrid model, as claimed by
Kellner, Madachy and Raffo [4], it is necessary to first find an answer to the following
question: ’What aspects of this particular software process it is better to represent as
continuous and such others as discrete?’

If the system under analysis is very simple, it is also easy to determine and separate
these aspects. But if the system is very complex, to find an answer to this question can
avail itself of a number of software tools that allow you to determine both the aspects
continuous and discrete ones although it is very difficult to determine a clear distinc-
tion between the two parties, see fig 4.3.

For this reason, the research is moving on this front, in such way as to achieve a good
identification of what is continuous and of what is rather discrete.

Specifically, the software process shows both the appearance of a discrete system than
that of a continuous system, i.e. is characterized by dynamic events that evolve in a
dynamic time. Since the discrete-event model describes the development of the soft-
ware process as a sequence of discrete activities, namely the change in the value of
state variables occurs at discrete moments, this model can not therefore have enough
events to represent the continuous variable dynamic process.

On the other hand the dynamic models describe the interactions between the design
factors, but they are not easily separate process steps. In the literature there are numer-
ous attempts to combine the simulation of discrete event simulation of continuous
events to model more realistically the software processes. For example Rus et al [30]
and Lakey [31] have shown the process as a discrete activities and have tried to incor-
porate the mechanism of feedback cycle typical of a dynamic system. Martin and Raffo

44 CHAPTER 4. SOFTWARE PROCESS SIMULATION MODELING

Figure 4.3: Example of the use System Dynamics.

[4] [29] analyzed the use of labor by means of a hybrid simulation model. Donzelli and
Iazeolla [22] have finally combined the three traditional models modeling (analytical,
continuous and discrete event).

Continuous simulation models describe the interaction between project factors well,
but suffer from a lack of detail when it comes to representing discrete system steps.
Discrete simulation models perform well in the case of discrete system steps, but make
it difficult to describe feedback loops in the system. To overcome the disadvantages
of the two approaches, a hybrid approach as described by Martin and Raffo [24] can
be used. In a software development project, information about available and used
manpower is very important.

While a continuous model can show how manpower usage levels vary over time, a
discrete model can point out bottlenecks, such as inspections. Because of insufficient
manpower, documents are not inspected near-time, so consumers of those documents
have to wait idly, which wastes manpower.

In a purely discrete approach, the number of inspection steps might be decreased to
speed up the inspection process. While possibly eliminating the bottleneck, this might
introduce more defects. The discrete model would not notice this until late in the
project because continually changing numbers are not supported.

The hybrid approach, however, would instantly notice the increase, and depending on
how the model is used for steering the project more time would be allocated for rework,
possibly to the extent that the savings in inspection are overcompensated. Thus, the
hybrid approach helps in simulating the consequences of decisions more accurately
than each of the two single approaches does individually.

Chapter 5

Model Description

5.1 Simulation Model Description

The Kanban system is a new approach to controlling variability in software develop-
ment processes, and to catalyzing process improvements and a culture of continuous
improvement.

The Kanban concepts are simple, structured and yet powerful. For these reasons, it is
possible to design a software process simulator that captures most of what happens
during development. We developed an event-driven Kanban simulator using a full
object-oriented approach, in Smalltalk language.

In the simulator, software requirements are decomposed in features, or work items,
that can be independently implemented. The implementation is accomplished through
a continuous flow across different activities, from requirement analysis to deployment.
The work is performed by a team of developers, able to work on one or more activities,
depending on their skills.

We devised a paradigmatic setting of a typical project, and used the simulator to assess
the optimum maximum number of features that can be worked in an activity, at any
given time – the Kanban limits.

We developed an event-driven simulator of the Kanban software process – a WIP lim-
ited pull system visualized by the Kanban board – and used this simulator to assess
the optimum values of the working item limits in the activities. Initially we studied
a paradigmatic case of 4 activities and a given number of work items, defining a cost
function equal to the total time needed to complete the project, plus a weighted sum of
the limits themselves. We performed an exhaustive search on all the admissible values
of the solution, finding sensible optimal values, and a non-trivial behavior of the cost
function in the optimization space. This demonstrates the feasibility and usefulness
of the approach.

To be able to simulate a Kanban software development process, we devised a model
of system described that is presented in this section. This model is simple enough to
be manageable, but is able to capture all relevant aspects of the process. Moreover,

45

46 CHAPTER 5. MODEL DESCRIPTION

the model itself and its object-oriented implementation allow to easily adding further
details, if needed.

The simulation model records all the significant events related to the features, devel-
opers and activities during the simulation, to be able to compute any sort of statistics,
and to draw diagrams, such as the cumulative flow diagram. In the next section we
recall each actor of the mentioned model describing the main aspects and its relation-
ships.

5.2 Description of the Actors

This chapter is dedicated to describe the basic simulation model and its entities. For
each actor will be given the relationship with the others, showing the equation that
guide the inputs of the simulation. In the next section a customization, in order to
reproduces each case study, is done.

5.2.1 Developers

The present simulator allows for a single team working on the features. The team is
composed of ND . developers. The typical index for a developer is denoted by j . Each
developer is characterized by a list of her skills, one for each activity, s j ,k ,k = 1, ...N A.
A skill is characterized by the following parameters:

– minValue (mi n j ,k): the minimum possible value of the skill in k − th activity for
j − th developer, when her/his experience is zero.

– maxValue (max j ,k): the maximum possible value of the skill in k − th activity for
j − th developer, when her/his experience is maximum.

– experience (ex j ,k): the number of days the j − th developer has been working on
feature development in k − th activity.

– maxExperience (maxE x j ,k): the number of working days needed to reach the
maximum experience of j − th developer in k − th activity, at which point the
skill reaches its maximum value, and does not increase anymore.

The actual value,v j ,k , of skill s j ,k for k − th activity, where j − th developer worked for
ex j ,k days is given by a linear interpolation, shown in eq. 5.1.

v j ,k = mi n j ,k +
(max j ,k −mi n j ,k)ex j ,k

maxE x j ,k
, i f ex j ,k ≤ maxE x j ,k (5.1)

max j ,k i f ex j ,k > maxE x j ,k

Clearly, the use of another form of interpolation, such as for instance a logistic, would
be easy. If we wish to simulate a system where no learning takes place, we can set
mi n j ,k = max j ,k , with maxE x j ,k > 0. The value of ex j ,k will in any case record the
days j − th developer has been working on k− th activity. If the skill factor s j ,k is equal

5.2. DESCRIPTION OF THE ACTORS 47

to one (the default case), the time spent by the j − th developer on a feature exactly
matches the amount of effort dedicated to it. If s j ,k > 1, the developer is more clever
than average, and her time spent working on the feature has a yield greater than the
actual time. On the contrary, If s j ,k < 1, it will take a time longer that the actual effort
to perform the work on the feature.

Each developer works on a feature (in a specific activity) until the end of the day, or
until the feature is completed. When the state of the system changes, for instance be-
cause a new feature is introduced, a feature is pulled to an activity, work on a feature
ends, and in any case at the beginning of a new day, the system looks for idle develop-
ers, and tries to assign them to features available to be worked on in the activities they
belong to. For each idle developer, the following steps are performed:

1. the activities s/he is most skilled in are searched in decreasing order of skill;

2. for each activity, the features waiting to be worked on are considered, in decreas-
ing order of relevance;

3. the first feature in the list found, if any, is assigned to the developer; let it be fea-
ture i − th in activity k − th;the time t

′
i ,k to finish the feature is computed, taking

into account the total estimated effort, yi ,k , the work already performed on the
feature, wi ,k , the developer’s skill in the activity, s j ,k , and a further penalty, p, ap-
plied if the developer was not already working on the feature the day before. The
time to finish the feature is:

t
′
i ,k = p

yi ,k wi ,k

s j ,k
(5.2)

The penalty factor p is equal to one (no penalty) if the same developer, at the begin-
ning of a day, works on the same feature s/he worked the day before. If the developer
starts a new feature, or changes feature at the beginning of the day, it is assumed that
s/he will have to devote extra time to understand how to work on the feature. In this
case, the value of p is greater than one. Let us call T the current simulation time, and
Te the time marking the end of the working day.

1 . If T + t
′
i ,k > Te , the work on the feature is limited until the end of the day, so it is

performed for a time te = Te−T . The actual implementation effort considered,w
′
i ,k ,

is proportional to te , but also to the skill, and inversely proportional to the penalty
factor p:

w
′
i ,k = te s j ,k

p
(5.3)

The new work performed on the feature becomes:wi ,k (Te) = wi ,k (T)+w
′
i ,k .

2 .If T +t
′
i ,k ≤ Te , the work on the feature in k-th activity ends within the current day,

the feature is moved to the "Done" state within the activity, and the developer is
ready to start working on another feature.

If the skill of a developer in an activity is below a given threshold (set to 0.4 in the
current simulator) s/he will never work in that activity(see fig. 5.1).

48 CHAPTER 5. MODEL DESCRIPTION

Figure 5.1: UML Class Diagram of Developer with their skills, and organized in Team.

5.2.2 Features and Activities

Features

The project is decomposed into atomic units of work, that are not further decomposed.
They are considered as already specified in a phase preceding the work simulated, and
are given as inputs to the simulator.

New features can be added as time proceeds. In the followings, the typical index for
a feature is denoted by i , while the total number of features at time t is NF (t). Each
feature is characterized by a name, a state and an estimate ei â expressing how long
it will take to implement the i − th feature, in man-days. The features assigned to an
activity can be in three different states:

– just pulled but not yet assigned;

– under work;

– done, but not yet pulled by the next activity.

Other possible states are Backlog and Released, denoting the initial or final state, re-
spectively. In the present model, the features are just atomic, and are not explicitly
linked to a specific project (see fig. 5.2). It would be possible, however, to introduce
different projects, and assign the features to them. The activities represent the work to
be done on the features. They can be freely configured.

Activities

In the followings, the typical index for an activity is denoted by k, while the total num-
ber of activities is NA. Each activity is characterized by:

– name: the name of the activity.

– maxFeatures: the maximum number of features that can be handled at any given
time, including features in every possible state. It is denoted by MK for the k − th
activity.

– percentage: the typical percentage of the total estimated cost of a feature that
pertains to the activity. For instance, is a feature has an overall estimate of 10
days, and the Design activity has a percentage of 15, the design of the feature will

5.2. DESCRIPTION OF THE ACTORS 49

Figure 5.2: UML Class Dia-
gram of Features

Figure 5.3: UML Class Dia-
gram of Activities

be estimated to be 1.5 days. The sum of the percentages of all the activities should
be one. It is denoted by pk for the k − th activity, with the constraint:∑

pk = 1. (5.4)

When work starts on feature i − th within a given k− th activity, the actual effort of de-
velopment of the feature in the activity is computed. If the initial total estimate of the
feature is ei , and the percentage of the total cost due to the activity is pk , the starting
estimate of the work is xi ,k = ei pk . The estimate xi ,k can be randomly perturbed, by
increasing or decreasing it of a percentage drawn from a given distribution D â in such
a way that the average of a high number of perturbations is equal to the initial estimate
xi ,k . A way to obtain this behavior is to multiply xi ,k by a random number, r , drawn
from a log-normal distribution with mean value equal to 1: yi ,k = xi ,k , where yi ,k is the
actual value of the effort needed to work on feature i − th in activity k − th. If this fea-
ture is assigned to developer j − th, the time to perform the work depends also on the
developer’s skill in activity k−th, s j ,k . The skill is a parameter denoting the developer’s
ability with respect to an "average" developer in a given activity. The estimate of the
effort reflects the time to complete a task by the "average" developer. So this time, ti k ,
expressed in days to complete an activity whose estimate is yi ,k , in function of the skill
is: ti ,k = yi ,k

s j ,k
. So, if the skill is equal to one the developer acts as an "average" developer

and the time is equal to an estimate, if the skill is greater(smaller)than one the time is
lower(longer). In the current implementation of the simulator, only a single developer
can perform an activity on a feature in a given time (no pair-programming). Since the
cost of all developers is considered equal, the actual time, ti k , is directly proportional
to the cost of implementing the feature. The total cost of implementing a feature is
thus proportional to the sum of the development times in the various activities,ti :

ti =
NA∑

k=1
ti ,k . (5.5)

The sequence of activities the implementation of each feature proceeds through is

50 CHAPTER 5. MODEL DESCRIPTION

fixed for each simulation. An example of activities might be: Design, Coding, Testing,
Integration, but what really matters in the simulation is their number and their opera-
tional characteristics (see fig. 5.3).

5.2.3 Events

The simulator is event-driven, meaning that the simulation proceeds by executing
events, in order of their time. When an event is executed, the time of the simulation
is set to the time of the event. The simulator holds an event queue, where events to
be executed are stored sorted by time, and which the events are taken from to be exe-
cuted(see fig 5.4). When an event is executed, it changes the state of the system, and
can create new events, with times equal to, o greater than, the current time, inserting
them into the event queue. The simulation ends when the event queue is empty, or
if a maximum time is reached. The time is recorded in nominal working days, from
the start of the simulation. It can be fractionary, denoting days partially spent. The
simulation does not explicitly account for week-ends, holidays, or overtime. A day can
be considered to have 8 nominal working hours, or less if the time lost on average for
organization tasks is accounted for. If we want to consider calendar days, it is always
possible to convert from nominal working days to them. For instance, let us suppose
that the starting day of the project is Monday, 25 October 2010, and that the current
time is 7.5 days. Since 30 and 31 October are a week-end, and November 1st is holiday,
the 7th day after the start is November 3rd, and the 8th day is November 4th. So, day
7.5 happens in the middle of November 4th, say at noon if the working day starts at 8
a.m. and ends at 17 p.m., with a lunch interval between noon and 1 p.m.

The relevant events of the simulation are the followings:

– FeatureCreation: a new issue (the so called feature) is created and inserted into
the Backlog, and an event FeatureToPull is generated for the first activity, at the
same time. This event refers only to features introduced after the start of the
simulation, and not to the features initially included in the Backlog.

– FeatureWorkEnded: the work of a developer on a feature, within a given activity,
has ended, and the developer becomes idle. This may happen when the feature
is actually finished, as regards the activity, or at the end of the working day. In
the former case, the state of the feature is changed, and an event FeatureToPull is
generated for the next activity, at the same time.

– FeatureToPull: an activity is requested to pull a feature from the previous activity
– or from the Backlog if it is the first. If the activity is nil, it means that a feature in
the state of Finished should be moved from the last activity to the Released state.
If the activity has already reached its maximum number of features, or if there is
no feature to pull in the previous activity, nothing happens. If there is a feature
that can be pulled, it is pulled to the activity, and another event FeatureToPull is
generated for the previous activity (if the activity is not the first), at the same time.
All idle developers of the team are asked to find a feature ready to be worked.
If a developer finds such a feature, the developer is assigned to the feature, the
actual time taken to complete the work is computed (according to eq 5.2), and a
FeatureWorkEnded event is generated and inserted into the event queue for the

5.3. THE OBJECT-ORIENTED MODEL 51

time when the work will end (at the end of the current day, or when the feature is
finished).

The three events are enough to manage the whole simulation. The simulation is started
by creating the starting features, putting them in the Backlog, generating as many Fea-
tureToPull events (at t i me = 0) for the first activity as its maxFeatures value, and then
generating as many FeatureCreation events for future times as required. The simula-
tor is then asked to run, using the event queue created in this way. When the work on
all features has been completed in all activities, no more feature can be pulled and no
more work can start, so the event queue becomes empty, and the simulation ends. To
represent different kind of process, some other event was added like i.e. StartIteration
typical of Scrum process. This event takes place at the beginning of the day when the
iteration starts. This event sets to "false" the availability of all developers and testers
for a given time TS , to model the time needed to hold the review meeting of the previ-
ous Sprint, and the Sprint planning meeting of the current one. TS was set to one day
in the considered case study.

Figure 5.4: UML Class Diagram of Events.

5.3 The Object-oriented Model

In Fig 5.5 we present the UML class diagram of the OO model of the simulator, showing
the classes of the system, and their relationships. The high-level classes of the model
are the simulator itself, the KanbanSystem – which includes the software project and
the process – the team of developers. Lower-level classes are Activity,Feature, Devel-
oper, Skill, and three kinds of Events. Utility classes used to record data for further
analysis are WorkRecord, ActivityRecord and FeatureChanged.

In this class diagram there are the different actors of simulation, who works-the de-
veloper-what is developed-the feature- when the work is performed-the events-and
finally what is performed- the activities. The simulator is implemented in Smalltalk
language, a language very suited to event-driven simulation, and very flexible to ac-
commodate any kind of changes and upgrades to the model. We design a simulator to
simulate the software maintenance process. Our simulator is event-driven, meaning
that the simulation proceeds by executing events, in order of time. When an event is
executed, the current time of the simulation is advanced to the time of the event.

52 CHAPTER 5. MODEL DESCRIPTION

Figure 5.5: UML Class Diagram of Simulation Model.

The simulator holds an event queue, where events to be executed are sorted by their
time (day, hour, minute, second). When an event is executed, it can change the state of
the system, create new events (with times equal to, or greater than, the current time),
and insert the new events into the event queue. The simulation ends when the event
queue is empty, or if a given date and time is reached. The time used in our simula-
tion is recorded in nominal working days, from the start of the simulation. It can be
fractionary, denoting days partially spent. The simulation does not explicitly account
for weekends, holidays, or overtime. A day is considered to have 8 nominal working
hours.

A particular mention of KanbanSystem and KanbanSimulator classes (see fig. 5.6) that
represent the engine of the whole simulator. These classse are responsible to "run" the
simulation through some scripts that recall the suitable methods regarding events, fea-
tures, activities and finally the plot of the output like statistic of cycle and lean times or
CFD(cumulative flow Diagram) in order to calculate WIP, Throughput and totalTime
required.

5.4 Calibration and Validation

The simulation model, presented in this Chapter, has been calibrated and validate ac-
cording with different case studies in the Chapter 6 "Applications of the Simulation

5.4. CALIBRATION AND VALIDATION 53

Figure 5.6: UML Class Diagram of KanbanSystem and KanbanSimulator.

Model". For each process the model was modified in order to follow and reproduce
the used process. At the end of each case study a comparison among results that come
from the project and simulate case is done. This is in order to demostrate the reliability
of the simulation model and to show the repeatibility of the input parameters and the
results.

Chapter 6

Applications of the Simulation
Model

In this section we presented the case studies analyzed and simulated in order to show
the abilities of the simulation model when is applied to real cases. We started pre-
senting the first instance of the simulation model regarding a software development
process and the optimization of its limits. After, we presented the case studies regard-
ing a software maintenance process and its model and reproduction using an original
process (TSP/PSP), a Kanban process and a Scrum process. Then, the case regarding a
maintenance process using data and process collected by a Chinese firm and Microsoft
case. We performed a comparison between original processes and WIP-limited in or-
der to show the improvements achieved through the us of a WIP-Limited approach
And in the case of risk management we performed a comparison between two differ-
ent approaches Scrum and Lean-Kanban.

We offered a description of each case study organized as follows. First we presented
the description of the case study, then a description of the applied approach and in
the last section the calibration of the model in order to follow the used process.

6.1 Case Study One

The main goal of this part of our research was to better understand the Lean-Kanban
approach, to evaluate its effectiveness, and to develop methodologies to optimize its
parameters.

To this purpose, we developed an event-driven, object-oriented simulator of Kanban
systems, both to analyze them using the simulation approach, and to optimize their
parameters. Using simulation optimization, the practice of linking an optimization
method with a simulation model to determine appropriate settings of certain input
parameters is possible to maximize the performance of the simulated system [14].

55

56 CHAPTER 6. APPLICATIONS OF THE SIMULATION MODEL

6.1.1 Description of the approach

In general, we can define the Kanban software process as a WIP limited pull system
visualized by the Kanban board. Recently, the Kanban approach applied to software
development, seem to be one of the hottest topics of Lean. In the recent 3-4 years,
Kanban has been applied to software process, and is becoming the key Lean practice
in this field.

A correct use of the Kanban board helps to minimize WIP, to highlight the constraints,
and to coordinate the team work. However, Lean is more than Kanban, and more Lean
practices should be used, together with Kanban, to take full advantage of the applica-
tion of Lean to software development. Note that the Kanban board is similar to the
"information radiators" of Agile methodologies [16], but it is not the same thing.

To be eligible to use the Kanban approach, the software development must satisfy the
two Corey Ladas’ postulates [17]:

1 It is possible to divide the work into small value adding increments that can be
independently scheduled. These increments are called Features, User Stories,
Stories, Work Items, or Minimum Marketable Features (MMF). The project ends
when all its features are completed.

2 It is possible to develop any value-adding increment in a continuous flow from
requirement to deployment. So, the work on each feature, from its specification
to its deployment, is accomplished through a set of activities, performed in the
same sequential order.

Initially, the features are put in a Backlog, from which they are pulled to be assigned to
the first activity. When a feature is done in the last activity, it is automatically pulled
from it, to a list of "Live" or "Released" features. The work is performed by a team of
developers. Each developer has different skills related to the various activities.

When the work of a developer on a feature ends, or in any case at the end of the day,
he looks for another feature to work at. Kanban systems focus on a continuous flow
of work, and usually do not employ fixed iterations. Work is delivered as soon as it’s
ready, and the team only works on very few features at a time, to limit WIP and make
constant the flow of released features throughout the development.

The growing interest on Kanban software development is demonstrated by the publi-
cation of various books, and by the proliferation of Web sites on the subject in the past
couple of years. The most popular among these book was written by David J. Anderson
[3]. Another book by Corey Ladas is about the fusion of Scrum and Kanban practices
[17]. A third book on the subject was written by Kniberg and Skarin [18], and is also
availabile online. The reader interested to a more detailed description of the Kanban
approach should refer to these books.

6.1.2 Calibration of the model

The simulation model and its implementation, presented in this section, represent the
first and basic version of the aforementioned model. In this case study we reproduce

6.2. CASE STUDY TWO 57

a simple development process structured into four activities and with a team of then
developers, skilled and involved in the different activities.

In the case of the Kanban process, the obvious parameters to optimize are the activity
limits – the maximum number of features admissible in each activity. To this purpose,
we devised a paradigmatic setting of a typical project, and used the simulator to assess
the optimum limits. The settings common to all optimizations are the followings:

1 There are 100 features to be completed. The effort needed for each feature is a
random number drawn from a Poisson distribution with average of 5 days. fea-
tures with zero effort are discarded. The features are the same for all optimiza-
tions.

2 There are 4 activities, as described in Table 6.1. The actual effort needed to com-
plete an activity on a feature is not perturbed, so yi ,k = xi ,k .

3 The feature limits on the four activities are chosen between 1 and a maximum
value which is 9, 12, 7 and 4 for activities 1, 2, 3 and 4, respectively. Let us denote
Mk the limit for k − th activity, thus M1 ∈ 1,2, ...,9, M2 ∈ 1,2, ...,12, and so on.
An exhaustive search can be done by performing 3024 simulations, one for each
possible combination of the four parameters.

4 The number of developers is 10. Developers may be skilled in just one activity, or
in all 4 activities, depending on specific runs performed.

5 The penalty factor p is varied between 1 (nopenal t y) and 3 (in the case of change
of feature the time needed to complete it is 3 times longer).

6 The cost function to minimize, f (), is the sum of the time, tc , needed to complete
all 100 features, and the weighted sum of the limits:

f (M1, M2, M3, M4) = tc +w
∑

Mk

where tc is function of M1, .., M4, and the second term aims to minimize the limits
themselves. The optimizations are performed for different values of w , typically 0
(no influence of limits), 0.2 (small influence), 1 or 2 (strong influence). Note that
the order of magnitude of tc is typically one hundred (days).

7 Time tc is obtained averaging the project end time of 20 simulations, because tc
varies randomly for each performed simulation. The average on 20 runs stabilizes
it substantially.

6.2 Case Study Two

In this section we explain a real software development case study, where a transition
was made from a traditional software engineering approach based on PSP to a WIP-
limited Lean approach. We use data gathered from this case study to assess the good-
ness of the software process simulator we developed, and as an input to a Scrum pro-
cess simulation, to verify the possible results of the use of Scrum in the process.

58 CHAPTER 6. APPLICATIONS OF THE SIMULATION MODEL

Table 6.1: The main features of the simulated activities

Activity Limit % of total effort Skilled developers
1.Design 3 30% 3
2.Development 4 40% 5
3.Testing 3 20% 3
4.Deployment 2 10% 2

The case study regards a maintenance team of Microsoft, based in India and in charge
of developing minor upgrades and fixing production bugs for about 80 IT applications
used by Microsoft staff throughout the world. It has already been described by An-
derson in the chapter 4 of his book [3], because it was one of the first applications of
the WIP-limited approach described in that book, making use of a virtual kanban sys-
tem. Note that there was no kanban board, because the board was not introduced until
January 2007 in a different firm. The success of the new process in terms of reduced
delivery time and customers’ satisfaction has been one of the main factors that raised
interest on such Kanban approach in software engineering.

The process is not about the development of a new software system, or about sub-
stantial extensions to existing systems, but it deals with maintenance, the last stage of
the software life cycle. The importance of maintenance is well known, because it usu-
ally counts for the most part of the system’s total cost – even more than 70% [55]. The
typical maintenance process deals with a stream of requests that must be examined,
estimated, accepted or rejected; the accepted requests are implemented updating the
code, and then verified through tests to assess their effectiveness and the absence of
unwanted side-effects.

In the following subsections we will briefly describe the original process used by the
team, the new Kanban-based process, and a possible Scrum process applied to the
same team.

The original process

The maintenance service subject of our case study is Microsoft’s XIT Sustained Engi-
neering, composed of eight people, including a Project Manager (PM) located in Seat-
tle, and a local engineering manager with six engineers in India. The service was di-
vided in two teams – development team and testing team, each composed of three
members. The teams worked 12 months a year, with an average of 22 working days per
month. The PM was actually a middle-man. The real business owners were in various
Microsoft departments, and communicated with the PM through four product man-
agers, who had responsibility for business cases, prioritization and budget control.

The maintenance requests arrived scattered in time, with a frequency of 20-25 per
month. Each request passed through the following steps:

6.2. CASE STUDY TWO 59

1. Initial estimate: this estimate was very accurate, and took about one day for one
developer and one tester. The estimate had to sent back to its business-owner
within 48 hours from its arrival.

2. Go-No go decision: the business owner had to decide whether to proceed with
the request or not. About 12-13 requests per month remained to be processed,
with an average effort of 11 man day of engineering.

3. Backlog: the accepted requests were put in a "backlog", a queue of prioritized re-
quests, from which the developers extracted those they had to process. Once a
month, the PM met with the product managers and other stakeholders to repri-
oritize the backlog.

4. Development phase (aka Coding): the development team worked on the request,
making the needed changes to the system involved. This phase accounted on av-
erage for 65% of the total engineering effort. Developers used TSP/PSP Software
Engineering Institute processes, and were certified CMMI level 5.

5. Testing phase: the test team worked on the request to verify the changes made.
This phase accounted on average for 35% of the total engineering effort. Most
requests passed the verification. A small percentage was sent back to the devel-
opment team for reworking. The test team had to work also on another kind of
item to test, known as production text change (PTC), that required a formal test
pass. PTCs tended to arrive in sporadic batches; they did not take a long time, but
lowered the availability of testers.

Despite the qualification of the teams, this process did not work well. The throughput
of completed requests was from 5 to 7 per month, averaging 6. This meant that the
backlog was growing of about 6 request per month. When the team implemented the
virtual kanban system in October 2004, the backlog had more than 80 requests, and
was growing. Even worse, the typical lead times, from the arrival of a request to its
completion, were of 125 to 155 days, a figure deemed not acceptable by stakeholders.

The Lean-Kanban process

To fix the performance problem of the team, a typical Lean approach was used. First,
the process policies were made explicit by mapping the sequence of activities through
a value stream, in order to find where value was wasted. The main sources of waste
was identified in the estimation effort, that alone was consuming around 33 percent
of the total capacity, and sometimes even as much as 40 percent. Another source of
waste was the fact that these continuous interruptions to make estimates, which were
of higher priority, hindered development due to a continuous switching of focus by
developers and testers.

Starting from this analysis, a new process was devised, able to eliminate the waste.
The first change was to limit the work-in-progress and pull work from an input queue
as current work was completed. WIP in development was limited to 8 requests, as well
as WIP in testing. These figures includes an input queue to development and testing,
and the requests actually under work. Then, the request estimation was completely
dropped. The business owners had in exchange the possibility to meet every week and

60 CHAPTER 6. APPLICATIONS OF THE SIMULATION MODEL

chose the requests to replenish the input queue of requests to develop. They were also
offered a "guaranteed" delivery time of 25 days from acceptance into the input queue
to delivery.

In short, the new process was the following:

1. All incoming requests were put into an input backlog, with no estimation.

2. Every week the business-owners decided what request to put into the input queue
of development, respecting the limits.

3. The number of requests under work in both activities – development and testing
– were limited. In each activity, requests can be in the input queue, under actual
work, or be finished, waiting to be pulled to the next activity.

4. Developers pulled the request to work on from their input queue, and were able
to be very focused on a single request, or on very few. Finished requests were put
in "Done" status.

5. Testers pulled the "Done" requests into their input queue, respecting the limits,
and started working on them, again being focused on one request, or on very few.
Requests that finished testing were immediately delivered.

The Scrum process

Scrum is by far the most popular Agile development methodology [65]. For this reason
we decided to evaluate the introduction of Scrum for managing the maintenance pro-
cess. A hypothetical introduction of Scrum would be similar to the Kanban approach,
eliminating the estimation phase in exchange for a shortened cycle time. A typical
Scrum process would be:

1. Incoming requests are put into a backlog. The Product Managers would act as
the Product Owners, and the PM would act as the Scrum master (albeit) remote
from the engineering team. The requests are prioritized by the Product Owners.

2. The development and testing proceeds through time-boxed iterations, called Sprints.

3. At the beginning of each Sprint, the Product Owners chose a given number of
requests to implement in the Sprint. These requests are presented and estimated
by developers and testers in a Sprint Planning Meeting.

4. Development and testing is performed on these requests during the Sprint, that
is closed by a Sprint Review Meeting. The finished requests are delivered, while
those still under work are passed to the next iteration(see fig. 6.1).

Of course, we have no data about the adoption of Scrum for the maintenance process.
However, we may make some observations about it. The first is that, even in the best
case of a team able to self-organize giving more resources to coding with respect to
testing, the cycle time cannot go below the iteration length. The meetings before and
after each iteration would last at least one day, so it is better to have iteration lengths
not too short – say at least two or three weeks – not to spend too much time in meet-
ings. In general, we expect Scrum to produce relatively similar results – maybe just a

6.2. CASE STUDY TWO 61

Figure 6.1: The Scrum process

little less effective. An important point is that Scrum was not a viable choice for "po-
litical" reasons, because it was considered non-compatible with PSP or TSP, or both.
The Kanban system was not seen in this way, because PSP was not replaced but merely
augmented with the Kanban system.

6.2.1 Description of the approach

To model the software maintenance process, we used an approach that can be de-
scribed as event-driven and agent-based. It is event-driven because the operation of
the system is represented as a chronological sequence of events. Each event occurs at
an instant in time and marks a change of state in the system [62]. It is also agent-based
because it involves the representation or modeling of many individuals who have au-
tonomous behaviors (i.e., actions are not scripted but agents respond to the simulated
environment) [64]. In our case the agents are the developers, but in a broad sense also
the activities can be considered as entities that can change their behavior depending
on the environment.

For instance, the activities will not "accept" requests in excess of their limits, that can
vary with time. The basic entities of the proposed model, common to all simulated
processes, are the requests, the activities and the team members.

The maintenance requests are atomic units of work. They are characterized by an ar-
rival time, expressed in days after the starting day of the simulation, an effort that rep-
resents the man days needed to implement and test the request, a priority in a given
range, and a state, representing the completion state of the request within each activity.
The requests can be taken from real records, or can be randomly generated, according
to known distributions of arrival times, priorities and efforts. In this case study they
are randomly generated, using statistic parameters taken from the real data. All the re-
quests have the same priority, because requests were prioritized by deciding on which
of them the work had to be started, and not by assigning explicit priority values.

62 CHAPTER 6. APPLICATIONS OF THE SIMULATION MODEL

6.2.2 Calibration of the model

The model of the original process

To model the original process, we introduced, at the beginning of each day (event
"StartDay"), a check of the new requests. If one or more new requests arrived in that
day, one developer and one tester are randomly chosen, and their availability is set
to "false" until the end of the day. In this way, we modeled the estimation work of
accepted requests. We, also, modeled the estimation of not accepted requests by ran-
domly blocking, for a day, a couple formed by a developer and a tester, with probability
equal to the arrival rate of not accepted requests (about p = 0.45). We set the maximum
number of requests in the "Coding" phase at 50, not to flood this activity with too many
requests.

The model of the Kanban process

This approach was able to substantially increase the teams’ ability to perform work,
substantially lowering the lead time from commitment and meeting the promised SLA
response of 25 days or less for 98% of requests. Note that commitments were not made
until a request was pulled from the backlog into the input queue.

Further improvements were obtained by observing that most of the work was spent in
development, with testers not heavily loaded and with a lot of slack capacity. Conse-
quently, one tester was moved to the development team, and the limit of development
activity was raised to 9. This further incremented the productivity. The team was able
to eliminate the backlog and to reduce to 14 days the average cycle time.

The model of the Scrum process

To model the Scrum process, we had to introduce in the simulator the concept of iter-
ation. To this purpose, we introduced the event "StartIteration", that takes place at the
beginning of the day when the iteration starts. This event sets to "false" the availability
of all developers and testers for a given time TS , to model the time needed to hold the
review meeting of the previous Sprint, and the Sprint planning meeting of the current
one. TS was set to one day in the considered case study.

Since the Scrum team is able to self-organize, and since the bottleneck of the work flow
is coding, the Scrum team should self-organize to accommodate this situation. So, in
the Scrum model we modeled all engineers both as developers and testers, in practice
merging the two teams into one. In this way, coding is no longer the bottleneck, and
the work is speeded up. This assumption gives a significant advantage to Scrum over
other processes.

At the beginning of each Sprint, a set of request is taken from the Backlog and pulled
into the Planning activity, to be further pulled to Coding. These request are chosen
in such a way that the sum of their effort is equal to, or slightly lower than, a given
amount of "Story points" to implement in each iteration. The requests that were still
under work at the end of the previous Sprint are left inside their current activity, and

6.3. CASE STUDY THREE 63

their remaining effort is subtracted by the available Story points. The activities have
no limit, being the flow of requests naturally limited by the Sprint planning.

6.3 Case Study Three

In this section we explain a real software development case study, where a transition
was made from a traditional software engineering approach to a WIP-limited Lean ap-
proach. We use data gathered from a Chinese IT company to assess the goodness of
the software process simulator we developed.

6.3.1 Case of Chinese Firm

To further evaluate if a WIP-limited software maintenance process can achieve better
performance than a conventional maintenance process without using a WIP limit, we
studied a large dataset describing maintenance activities at a Chinese IT company. The
data cover the years between 2005 and 20102

Data Collection and Analysis

In this company, when an issue is reported, an issue record is created. Each issue
record includes a unique Id, a Report Date, an initial state "Submitted", a priority and
other essential information. In general, issues with higher priority are handled first;
issues with lower priority values are dealt with later. Priorities are in the range from
0 to 30, with 30 being the maximum priority. A priority of zero means "unspecified",
and will be dealt with as if it was the average of all possible priorities (priority equal to
15.5).

Upon arrival, the maintenance team analyzes the issue. They can judge that the is-
sue is not worth further action, or is a duplicate of another reported issue. The issue
might also be put on hold, waiting for further information ("Suspended" state). In
most cases, analysis is followed by a coding activity aiming to resolve the issue. When
the maintenance team claims the issue is resolved, an "Answer date" is added to the
issue record. Then, the modified software is passed to a verification team.

The verification team verifies the resolution of the issue. Sometimes, this team sends
back the issue to the maintenance team because the verification was not successful. In
most cases, the verification team closes the issue, setting the "Verify Date". Whenever
a change is made to the issue record, the "Date of Change" is set accordingly.

The dataset consists of 5854 records, each referring to an issue. For each record, there
are 12 fields (not all set). The most relevant fields are shown in Table 6.2.

There are 3839 CLOSED issues and 2015 OPEN issues. The "Issue State" of CLOSED
issues can be only: "Resolved", "NoFurtherAction" and "Duplicate". All issues have
always set their "Report Date" and "Date Of Change"; CLOSED issues have always set

2The dataset is available in a comma-separated text file at
http://agile.diee.unica.it/data/MaintenanceData.csv

http://agile.diee.unica.it/data/MaintenanceData.csv

64 CHAPTER 6. APPLICATIONS OF THE SIMULATION MODEL

Table 6.2: The Main Fields of the Dataset Studied.

Name Description Values
Issue Id Unique identifier of

the Issue or Bug to be
fixed

Integer (6-7 digits)

Open/
Closed

Information whether
the issue has been
closed or not

OPEN, CLOSED

Issue
State

The current state of
the issue

Resolved, Duplicate, No-
FurtherAction, Submitted,
Analyzed, NotAccepted, Sus-
pended, Updated, Postponed,
NeedMoreInfo

Report
Date

Date the Issue was
submitted to the
maintenance team

Date (year-month-day)

Priority Relative priority of the
Issue

Integer between 0 and 30, in
increasing order. 0 means:
unspeciÂfied.

Answer
Date

Date the team set an
estimate for fixing the
bug, after analysis

Date (year-month-day)

Date of
Change

Date of the last
change to the record

Date (year-month-day)

Verify
Date

Date the Issue resolu-
tion has been verified
by a verification team

Date (year-month-day)

their "Answer Date" and "Verify Date", while OPEN issues have often not set their "An-
swer Date" and "Verify Date".

Data Analysis

We performed a detailed analysis of the issue records. We limited our analysis to the
period from 12/10/2007 to 30/9/2010 (the report date of the last issue), because there
was a significant number of issues reported during this period. In Figure 6.2 we show
the total number of issues entered into the system, exited from it, and their difference
(issues that were still under processing) from 12/10/2007 to 30/9/2010.

We can see from Figure 6.2 that the team devoted to resolve issues was not able to
keep up with the pace of issue arrival for about two years (more than 700 days), until
the number of issues waiting to be solved (Work in Progress, or WIP) reached the num-

6.3. CASE STUDY THREE 65

ber of about 2000. Then, further resources were added to the team, so that it managed
to keep up with new arrivals and this number did not grow further. This is also par-
tially due to a slowdown of issue arrivals after day 800, which changed from about 6
issues/day to about 3 issues/day.

To get a deeper understanding of the maintenance efforts, we performed some more
statistical analysis of the data as follows. First, we studied the time (in days) needed to
work on an issue. The time information includes the total time from issue reporting
date to verification (for "CLOSED" issues, also known as the "lead time"), the time from
reporting to the answer date (that is the time the maintenance team needed to work
on the issue), and the time from answer to verification (that is the time the verification
team needed to work on the issue). Note that the collected time information includes
not only the time needed to perform actual work, but also the waiting times, that are
prevailing.

Figure 6.2: Cumulative no. of issues in the system.

We found that the time needed to manage the issues exhibits large variations, and is
often longer than one year. This is compatible with the fact that the maintenance team
was unable to cope with the arrival pace of reports for a long time, and was never able
to fill this gap. Table 6.3 shows the main statistics of the considered times for closing,
answering and verifying issues.

6.3.2 Description of the approach

To verify the efficiency of a WIP-limited software maintenance process, as advocated
by a Lean- Kanban approach, we design simulation models. Generally, the typical ac-
tivities of a maintenance process are as follows:

66 CHAPTER 6. APPLICATIONS OF THE SIMULATION MODEL

Table 6.3: Main Statistics of Time Required to Manage Issues (in days)

Value Median Mean St.Dev. Min Max
Lead Time 64 135.7 188.1 0 1729
Answer
Time

24 90.3 171.3 0 1694

Verification
Time

20 45.4 68.4 0 627

– Planning: it represents the choice of the maintenance issues (including bug-fixing
requests and enhancement requests), on which to start the work. This activity
typically takes a short time, and puts the chosen issues in the "Input Queue" to
the subsequent activities.

– Development (Analysis-Coding): it represents the development work to be done
to the existing system (including bug fixing and enhancement). This activity can
be further divided into the Analysis and Coding phases.

– Verification (testing): it represents the work for verifying changes made to address
the issues. During software maintenance, a stream of issues is generated. The
issues arriving at any given time are firstly put in a "backlog" queue of the system.
The issues are then processed through the sequence of activities cited above, each
consuming a given percentage of the total effort needed to complete the issue.

In Lean-Kanban approach, each activity is represented by a column in the Kan-
ban board, holding the cards representing the issues under work in the activity.
The column is in turn divided in two vertical areas, from left to right–the issues
under work in the activity, and the issues completed (Done) and waiting to be
pulled to the next activity.

Figure 6.3 shows an overview of a software maintenance process. A maintenance
project is aimed to resolve a set of issues, and these issues are processed in a sequence
of activities (with or without limits on the maximum number of issues in each activity).
The maintenance work is performed by a team of developers. Each developer is able
to work in one or more activities, but only on one issue at a time. Issues may not pass
the test phase, and thus could be sent back to a previous activity to be reworked.

The "work items" in a maintenance project are the bug-fixing or enhancement re-
quests, that we call "issues". They correspond to the "features" described in the Lean-
Kanban approach. Each issue is characterized by a unique identifier, a report date, an
"effort" expressing the actual amount of work needed to complete the issue in man
days, and a priority, which is a number in a given range, expressing importance of the
issue; a higher number corresponds to a higher priority. The modeled maintenance
process has the following characteristics:

1) The simulation starts at time zero. Time is expressed in days. Each day involves
8 hours of work. At the beginning, the system may already hold an initial backlog
of issues to be worked out.

6.3. CASE STUDY THREE 67

2) Issues are entered at given times, drawn from a random distribution or given as
input to the system.

3) Each issue is assigned an "effort" to be fixed (in days of work). This value can be
drawn from a distribution, or obtained from real data.

4) Each issue passes sequentially through the phases of Planning, Development (Anal-
ysis and Coding) and Verification, as described above. It is possible that a given
percentage of issues pass directly from an activity to the final "closed" state (we
observed this behavior in one of the real- world maintenance processes empiri-
cally studied in this section). Each phase takes a percentage of the whole effort to
process the issue. The sum of the percentages of the three phases is 100%. When
an issue enters an activity, the actual effort (in man days) needed to complete the
activity is equal to the total effort of the issue multiplied by the percentage.

5) The number of team developers may vary with time, with developers entering
and leaving the team.

6) The developers working on the issues in the activity may have different skills. If
the skill is equal to one, it means that the team member will perform work in that
activity according the declared effort – for instance, if the effort is one man day,
the member will complete that effort in one man day. If the skill is lower than one,
for instance 0.8, it means that one-day effort will be completed in 1/0.8 = 1.25
days. A skill lower than one can represent an actual impairment of members, or
the fact that they have also other duties, and are not able to work full time on the
issues. If the skill for an activity is zero, the member will not work in that activity.

7) At the beginning of the day, each developer picks an issue in one of the activ-
ities s/he can work on. The issues are picked at random, taking into account
their priority. This is obtained by sorting issues by their priority plus Gaussian
noise (with zero mean and standard deviation s), which accounts for variability
in priority management. The lowest priority issue is assigned with a probability
of being picked up proportional to 1, while the highest priority one is assigned
with a probability proportional to pm ≥ 1. All intermediate issues are assigned a
probability proportional to a value between 1 and pm, with a linear interpolation
on their priority. In this way, the issues with the highest priority will be typically
processed first, but leaving a chance also for the lower priority ones. This process
continues when there are no issues in that activity, or at the end of the 8-hour
working day.

8) When an issue is processed for the first time, or when the work on the issue is
resumed by a developer who is different from the one who worked on it on the
previous day, a penalty p > 1is applied to the work, to model the waste due to
task switching (extra time needed to study the issue, which is proportional to the
size of the task). In our model, the time actually needed to solve the issue is the
remaining effort multiplied by the penalty. When the effort to complete an issue
in a given activity is low – a few hours – the penalty is applied when work is started
on the issue for the first time, but probably the work will anyway end within the
day. When the effort is bigger, the work in an activity will take more than one day.
If the developer working on the issue is the same across the days, the penalty is
applied only for the first day. If not, it can be repeatedly applied, and the overall

68 CHAPTER 6. APPLICATIONS OF THE SIMULATION MODEL

work will be longer. All developers who worked on an issue in the previous day try
to continue their work on it with probability equal to pp divided by the number of
issues ready to be worked on in the activities pertaining to the developer. Clearly,
when there are many issues to work on in an activity, the chance for a developer
to work on the same issue of the previous day is smaller than when these issues
are few.

9) When the work on an issue in a given activity ends, the issue is passed to the next
activity. When Verification ends, the issue becomes "closed". This is a generic
simulation model for representing many maintenance processes, which can be
customized to cater for a specific maintenance process of an organization. From
the generic model, we can derive two specific models, one with a WIP-limit as
suggested by the Lean-Kanban approach, and the other one without a WIP limit
as adopted by current common practices. For a WIP-limited process, the model
has to be complemented by adding limits to the maximum number of issues than
can be processed at any given time inside an activity.

Table 6.4: Statistics about issue arrival, fixed issues flow and actual development work esti-
mates.

Period (days) New issues/day Closed issues/-
day

Avg. team
size

Issues/day
+ 52.5%

Avg.workdays/issue

1(1-400) 6 1.5 2 2.3 1.15
2(401-800) 6 6.5 8 9.9 1.24
3(800-1049) 3 2.5 3 3.8 1.27

6.3.3 Calibration of the model

We analyzed the total time required to manage issues. We are also interested in the
actual working time spent on them. Unfortunately, we have no exact data about the
actual number of developers belonging to maintenance and verification teams during
the development. The information we were able to get is as follows:

– in the beginning of the examined period, both teams were quite small (2-3 devel-
opers, plus a few part-time testers);

– as the number of unsolved issues became critical, about at day 400, more devel-
opers were added (up to a number of 7-8 developers in the maintenance team);

– the maintenance team experimented a high turnover; in the end, it was com-
posed of a few developers.

To assess in a quantitative way the number of developers, we used the empirical data.
The first observation came from the firm that originated the data, is that the verifica-
tion time is very small with respect to the analysis and coding time, so we concentrated
to estimate the size and working time of the maintenance team. We can observe that
when the maintenance team cannot keep up the pace of input issues, the size of work

6.3. CASE STUDY THREE 69

Figure 6.3: A Generic Simulation Model for Software Maintenance Process.

in progress increases, and the number of issues resolved depends only on the team’s
capacity, and not on the issues in input. From Figure 6.2, it is apparent that the num-
ber of issues completed follows three different patterns:

1. it is quite low until about day 400 (about 1.5 issues completed per day);

2. it suddenly increases between days 400 and 800 (to about 6.5 issues per day);

3. it slows down again to about 2.5 issues per day after day 800.

We make the hypothesis that the sudden variations in completion rates of issues for pe-
riods 1-3, were not due to substantial changes in issue quality, or in developers’ skills,
because we have no evidence of this. Consequently, we assume that such changes
were due to a change in the team size. To compute the average actual working time to
solve an issue, we have to account for the fact that the situation is not in steady-state,
but closed issues are not able to follow the input flow of new issues, as highlighted in
Figure 6.2. We considered that, for each closed issue, the team had also to work on
other issues. We estimated at 50% the percentage of this extra-work with respect with
the number of closed issues, which is roughly the percentage of issue still in progress
at the end of the simulation (2015) with respect to the closed issues (3839). Table 6.4
summarizes the hypotheses on team size and on the average actual work needed to
complete issues in the examined periods.

70 CHAPTER 6. APPLICATIONS OF THE SIMULATION MODEL

6.3.4 Case of Microsoft Maintenance Project

This section is dedicate to show the same case study presented in sec 6.2 but making
a comparison between the original and the WIP-Limited processes. Some tables and
figures are re-called from the previous sections.

Description of the approach

Original Process

The subject of our first case study is Microsoft’s XIT Sustained Engineering, which was
composed of eight people, including a Project Manager (PM) located in Seattle, and
a local engineering manager with six engineers in India. The service was divided into
two teams – development team and testing team, each composed of three members.
The teams worked 12 months a year, with an average of 22 working days per month.
The PM was actually a middle-man. The real business owners were in various Mi-
crosoft departments, and communicated with the PM through four product managers,
who had responsibility for business cases, prioritization and budget control.

The maintenance requests arrived over time, with a frequency of 20-25 per month.
Each request is worked on as follows:

1. Planning: Once a request arrived, it was estimated by one developer and one
tester. The estimate was sent back to its business-owner within 48 hours from its
arrival. The business owner had to decide whether to proceed with the request or
not. About 12-13 requests per month remained to be processed, with an average
effort of 11 man days. The accepted requests were put in a backlog, a queue of pri-
oritized requests, from which the developers extracted those they had to process.
Once a month, the PM met with the product managers and other stakeholders to
reprioritize the backlog.

2. Development phase (including analysis and coding): the development team
worked on the request, making the needed changes to the system involved. This
phase accounted for 65% of the total engineering effort. Developers adopted
Team Software Process (TSP) and Personal Software Process (PSP) proposed by
the Software Engineering Institute [60], and were certified CMMI level 5.

3. Verification/Testing phase: the test team worked on the request to verify the
changes made. This phase accounted for 35% of the total engineering effort. Most
requests passed the verification. A small percentage was sent back to the devel-
opment team for reworking. The test team had to work also on another kind of
item to test, known as production text change (PTC), which does not require a
formal test pass. PTCs tended to arrive in sporadic batches; they did not take a
long time, but lowered the availability of testers.

Despite the qualification of the teams, this process did not work well. The throughput
of completed requests was from 5 to 7 per month, with an average of 6. This meant
that the "backlog" was growing up about 6 requests per month. At the time the team
started to implement the virtual Kanban system in October 2004, the backlog had more
than 80 requests, and was still growing. Even worse, the typical lead times, from the

6.3. CASE STUDY THREE 71

arrival of a request to its completion, were about 125 to 155 days, a number deemed
not acceptable by stakeholders.

WIP-limited Process

The success of the new process in terms of reduced delivery time and customer satis-
faction has been one of the main factors that raised interest on the Lean-Kanban ap-
proach in software engineering. As described in [36], it was one of the first applications
of the WIP-limited software maintenance process. To fix the performance problem of
the team, a Lean-Kanban approach. First, the process policies were made explicit by
mapping the sequence of activities through a value stream, in order to find out where
value was wasted. The main sources of waste were identified in the estimation effort,
which alone was consuming around 33 percent of the total capacity, and sometimes
even as much as 40 percent. Another source of waste was the fact that these continu-
ous interruptions to make estimates, which were of higher priority, hindered develop-
ment due to a continuous switching of focus by developers and testers.

A new process was devised to eliminate the waste. To limit the work-in-progress (WIP)
and pull work from an input queue as current work was completed, were the main
changes. They consideres 8 requests as WIP limits in development as well as in testing.
These figures include an input queue to development and testing, and the requests
actually under work. Then, the estimation request was completely dropped. The busi-
ness owners had in exchange the possibility to meet every week and choose the re-
quests to add to the queue. They were also offered a "guaranteed" delivery time of 25
days from acceptance into the input queue to delivery.

In short, the new process was the following:

1. All incoming requests were put into an input backlog, without estimation.

2. Every week the business-owners decided which requests to be put into the input
queue of development, respecting the limits.

3. The number of requests under work in both activities – development and testing
– was limited. In each activity, requests could be in the input queue, under actual
work, or finished, waiting to be pulled to the next activity.

4. Developers pulled the request to work on from their input queue, and were able
to focus on a single request, or on a few requests. Finished requests were set to
"Done" status.

5. Testers pulled the "Done" requests into their input queue, respecting the limits,
and started working on them, again they were able to focus on one request, or on
a few requests. Requests that finished testing were immediately delivered.

6.3.5 Calibration of the model

Original Process

If one or more new requests arrive on that day, one developer and one tester are ran-
domly chosen, and their availability is set to false until the end of the day. To model
the original process, we introduced at the beginning of each day a check of the new

72 CHAPTER 6. APPLICATIONS OF THE SIMULATION MODEL

requests, creating a new event "StartDay". In this way, we modeled the time spent to
estimate accepted requests. We also modeled the estimation of not accepted requests
by randomly blocking for a day a couple formed by a developer and a tester, with prob-
ability equal to the arrival rate of not accepted requests (about p = 0.45). We set the
maximum number of requests in the "Development" phase to 50, in order not to flood
this activity with too many requests.

An important concept related to the work on requests is the penalty factor, p. The
penalty factor p is equal to one (no penalty) if the same team member, at the beginning
of a day, works on the same request s/he worked the day before. If the member starts
a new request, or changes a request at the beginning of the day, it is assumed that s/he
will have to devote extra time to understand how to work on the request. In this case,
the value of p is greater than 1 (1.3 in our case study), and the actual time needed to
perform the work is divided by p. For instance, if the effort needed to finish the work
on a request in a given activity is t

′
(man days), and the skill of the member is s, the

actual time, t , needed to end the work will be:

t = t
′
s

p
(6.1)

If the required time is over one day, it is truncated at the end of the day. If on the next
day the member will work on the same request of the day before, p will be set to one in
the computation of the new residual time.

The probability q that a member chooses the same request of the day before depends
on the number of available requests in the member’s activity, nr . In this case study we
computed this probability in the following way:

q =
{

1 if n ≤ 20,
20
n if n > 20.

(6.2)

Note that, by selecting those parameters, the engineers will always work on the same
request of the day before, if the number of available requests is smaller than or equal
to 20. This is a common practice in Kanban.

WIP-limited Process

The presented approach was demonstrated to be able to substantially increase the
teams’ ability to perform work, lower the lead time, and meet the promised response
(25 days or less, starting from the day the request was pulled from the backlog into
the input queue) for 98% of requests. Further improvements were obtained by observ-
ing that most of the work was spent on development, while testers were not heavily
loaded and had a lot of slack capacity. Consequently, one tester was moved to the de-
velopment team, and the limit of development activity was raised to 9. This further
increased the productivity. The team was able to eliminate the backlog and reduce the
average cycle time to 14 days.

In this case study we simulate the Lean-Kanban approach. In our simulations, the
engineers can either be developers (with skill equal to one in Development, and equal
to zero in Verification), or testers (with skill equal to zero in Development, and equal
to 0.95 in Verification).

6.4. CASE STUDY FOUR 73

6.4 Case Study Four

Software project Risk management is crucial for the software development projects.
Agile methodologies reduce risk using short iterations – and the consequent frequent
user’s feedback – feature-driven development, continuous integration. However, the
risk of project failure or tine and budget overruns cannot be ruled out also in agile
development. Process simulation, when applicable, is an important Risk assessment
methods. In this paper we present a new approach to modeling some key risk factors
and simulating their effects on project duration and time to implement features, us-
ing an enhanced version of our software process simulator. We studied and analyzed
the critical aspects of software development risk that are suitable to be simulated. We
then comparatively studied Scrum and Lean-Kanban processes in order to evaluate
the presented Risk assessment method. This also resulted in a comparison of the two
processes under the Risk management perspective, showing that Lean-Kanban looks
more suited to manage errors in feature estimation, and the need of reworking a per-
centage of features that do not pass the software quality tests.

6.4.1 Description of the approach

While the Risk assessment methodology we are working on will include also other
tools, such as interviews and risk-mitigation meetings, in this paper we will focus on
the use of the developed simulator, that consistutes the most innovative aspect of the
methodology. Our starting point in Risk assessment are the Six dimensions of risk, as
defined by Wallace et al. [32].

They are:

1. Organizational Environment Risk, including change in organizational manage-
ment during the project, corporate politics with negative effect on project, unsta-
ble organizational environment, organization undergoing restructuring during
the project ,

1. User Risk, including users resistant to change, conflict between users, users with
negative attitudes toward the project, users not committed to the project, lack of
cooperation from users .

1. Requirements Risk, that is continually changing system requirements, system
requirements not adequately identified or incorrect, system requirements not
properly defined or understood.

1. Project Complexity Risk, encompassing high level of technical complexity, the
use of new or immature technology.

1. Planning & Control Risk, including setting of unrealistic schedules and budget,
lack of an effective project management methodology, project progress not mon-
itored closely enough , inadequate estimation of required resources, project mile-
stones not clearly defined , inexperienced project manager .

1. Team Risk, including inadequately trained and/or inexperienced team members,
team member turnover, ineffective team communication.

74 CHAPTER 6. APPLICATIONS OF THE SIMULATION MODEL

Among these dimensions, the Organizational Environment Risk is out of the scope of
this work. Many aspects of User Risk, Requirement Risk and Team Risk are specifi-
cally addressed by Agile Methodologies, that were introduced precisely for this scope.
Our quantitative approach using SPMS addresses mainly dimensions 3, 4 and 5, and
specifically inadequate estimations of requirements, project complexity in terms of
number and estimated effort of requirements, and poor quality of software artifacts,
due again to requirements not properly understood, or to issues in project manage-
ment and planning. The Risk-assessment methodology we propose is performed in
subsequent steps:

1. The development (or maintenance) process is modeled (activities, team, process,
features, constraints) and the simulator is configured to simulate it.

2. Key quantitative risk factors are identified; in our case they are variations in es-
timated efforts to complete features or resolve issues, percentage of rework fore-
casted, variations in the skills of team members, probability of events that stall
the development of single features, or block one or more developers, and so on.

3. Probability distributions are given to these key risk factors, for instance the prob-
ability distribution of actual effort needed to fix an issue, or the probability that a
developer is blocked in a unit of time, together with the probability distribution
of the time length of this block.

4. Key process outputs are identified, such as project total time, throughput, average
and 95% percentile of lead and cycle times to resolve and issue, cost (obtained
knowing the actual daily cost of developers).

5. Hundreds, or thousands of project Monte Carlo simulations are made varying
the risk factors accordingly to their probability distributions, recording the key
outputs.

6. The resulting distributions are analyzed, assessing for instance the most likely
duration and cost of the project, the average time – or the distribution of times
– to implement a feature or to fix a bug, the probability that a given percentage
of features is implemented within a given time. Such Monte Carlo assessment
might be performed also on an ongoing project, simulating the continuous flow
of new requirements or maintenance requests, or just the remaining features to
implement.

6.4.2 Calibration of the model

We tested the Risk assessment methodology on a fictitious case, representing a stan-
dard project, not too small and not too big, in order to be able to perform many Monte
Carlo runs on it. To perform this kind of simulation run a simulation model was used.
This simulator is event-driven and able to represent various kind of processes, the re-
lated activities, the features of the project and the developers with theirs skills and
experience the important events that occur at any given time; it was presented in de-
tail by the authors in their previous works [50] [51]. In this case it is customized to be
able to represents the typical aspects of risk management using the Scrum and Lean-
Kanban approaches,

6.4. CASE STUDY FOUR 75

Its requirements are 100 given features, representing functional requirements of the
system to implement. Each feature has a given total effort estimation, in man-days, ex-
tracted from a Gaussian distribution with average a = 2 and standard deviations = 0.5.
The total average effort is thus t = 200 man-days, or about 9 man-months. Each fea-
ture has also a priority randomly chosen between 1 and 10. The activities involved in
the project are Analysis, Implementation (coding), Testing and Deployment, account-
ing for 15%. 50%, 25% and 10% of the total effort, respectively. These activities can
have an upper limit on the number of feature under work (WIP limits).

The development team is composed of seven people, with mixed skills. Each activity
can be performed by more than one developer, but each developer is fully productive
only in one activity. The other activity they are able to perform, if present, has a pro-
ductivity reduced to 70 percent. This means that the time to complete a task in this
activity is equal to the time needed by a 100% productive developer, divided by 0.7,
that is multiplied by about 1.43. The team characteristics are shown in Table 6.5.

Table 6.5: The composition of the case study team, with primary and secondary activities of
developers. A: Analysis, I: Implementation; T: Testing; D: Deployment.

Activities Developer

1 2 3 4 5 6 7

Primary activity A I I I T T D
Secondary activity I A A NONE NONE D T

In the ideal case of all developers working 100% of their time in their primary activ-
ity, the project, whose total average effort is 200 man-days, would be completed in
200/7 = 28.6 working days. In practice, one has to account the initial and end slacks
(when testers and deployers, and analysts and implementers have no feature to work
on, respectively), the fact that often the work is performed in the secondary activity,
with reduced productivity, and the time needed to study the feature when a developer
works on it the first time, and when s/he switches from another feature, modeled using
the penalty factor p = 1.3 in the simulator(see [50], section 3.2).

A feature, once Testing has been performed, can be judged of poor quality. In this case,
it is sent back to Analysis to be reworked. When a feature is sent back to Analysis, WIP
limits of Analysis can be temporarily overcome. In the case of rework, the effort,q , to
perform again on the feature in Analysis, Implementation and Testing is 50% of the
original effort, because a substantial part of the work was already performed. This
holds also if a feature does not pass Testing more than once.

If r is the rework probability, and q = 0.5 is the rework, it can be demonstrated that the
overall average work,w , on each feature is given by:

w = 1+q

(∞∑
i=1

r i

)
= 1+q[

1

1− r
−1] = 1− r +qr

1− r
(6.3)

We tested the methodology on two different agile processes â Lean-Kanban and Scrum.
Lean-Kanban is characterized of a continuous flow of work on features, in order of pri-
ority but with a limits on WIP. We set the limits according to the number of available

76 CHAPTER 6. APPLICATIONS OF THE SIMULATION MODEL

developers for each activity, plus a small slack. The maximum number of features un-
der work in each activity are: 3, 6, 4 and 2 for Analysis, Implementation, Testing and
Deployment, respectively. There are no meetings scheduled at specific times, and the
short Stand-up Meeting hold every day is not explicitly accounted for. The completed
features are immediately released. The work on the project ends when the last feature
is released.

The Scrum process we tested is characterized by iterations of two weeks (10 working
days), with a post-mortem meeting after each iteration, and a iteration planning meet-
ing before each iterations. The cumulative length of these two consecutive meetings
is considered of one day the short Scrum meeting hold every day is not explicitly ac-
counted for. At the beginning of each iteration, features non overcoming 50 man-days
of cumulative effort are chosen in order of priority to be implemented in the itera-
tions. If one or more features are not finished after the iteration, they are send to be
completed in the next iteration. The completed features are released at the end of the
iteration. When all features are completed, the last iteration is stopped and the work
on the project ends.

The applying of the proposed Risk assessment methodology to the case study is out-
lined in the following steps.

1. The two development processes are modeled as described above. All other pa-
rameters used in the model are taken from the simulation of real cases, coming
from industrial cooperations of our research group.

2. The key risk factors identified are:

* the variations in estimated efforts to complete features;

* the percentage of rework needed to make the feature pass the Testing phase.

Variations in the skills of team members, probability of events that stall the develop-
ment of single features, or block one or more developers are not considered for the
sake of simplicity, though the simulator could account also for these factors.

3. For each identified risk factor, the probability distributions are

– for each feature, the effort estimation variations follow a log-normal distribution
with average the original effort and given standard deviation; we chose the log-
normal because it guarantees that estimation remain positive, and is balanced in
terms of percentage variation; the value of the standard deviation is varied from
zero to 5 man-days (we used the values 0, 1, 2, 3 and 5), to assess various levels of
risk;

– the probabilities of rework after Testing are the same for each feature; they are
varied from zero to 50% in steps of 10%, as above.

4. The key process outputs whose variations are checked are:

– project total time, from project start to the time when the last feature is released;

– this is inversely proportional to throughput;

– statistics on lead and cycle times to implement a feature; they are:

6.4. CASE STUDY FOUR 77

* average length, measuring the average time to give value to the customer;

* standard deviation, measuring variations in the times;

* median time, measuring the most likely time to complete a feature;

* 95% percentile of times, measuring the limit of the worst 5% times;

* maximum time. cost (obtained knowing the actual daily cost of developers).
For each relevant output, Risk.

On each of these values it is possible to set Risk thresholds that, if reached or overcome,
trigger proper mitigation actions.

5. We performed 100 Monte Carlo simulations for each choice of the tested risk factors,
recording the key outputs.

Chapter 7

Experimental Results

7.1 Simulation Results

In this section we presented the experimental results obtained from the analysis of different
case studies. The main goal of this research work was to investigate the effects of the use of
a WIP-Limited approach applied to a real project. Before, we studied the project, analyzed
the data collected and the process followed. Then, using data collected from the various
projects, as input to the simulation model, we performed many simulation runs in order
to better understand the processes and their dynamics. In fact the simulation approach is
useful to analyze the effects of the use of a WIP-Limited approach in comparison with other
kind of development or a maintenance processes.

7.2 Results Case Study One

We performed some preliminary simulation to assess the overall model, and to highlight
the differences between a limited-WIP and an unlimited process. The settings were those
of a typical average software project, with an initial backlog of 100 features, and 40 features
added during the development. The features’ efforts are drawn from a Poisson distribution,
with average equal to 5 man-days and standard deviation of 2.2 man-days. So, the total
amount of man-days of the project is 700 (140 x 5). There are 4 activities, to be performed
sequentially, shown in Table 6.1 in chapter 6.

Note that the description of the activities is conventional. Any other description will yield
the same results, provided that the limits (max. nr. of features) and percentage of total effort
is the same. When a feature is pulled to an activity, the actual effort to complete it,yi ,k = xi ,k

r , as described in Section 6.1, is computed. The Lognormal distribution used has mean equal
to 1 and standard deviation equal to 0.2-meaning that deviations of more than 20% from the
theoretical effort are common. The team is composed of seven developers. Most of them
are skilled in two activities, so the total number of skilled developers in 6.1 is greater than
7. For the sake of simplicity, all skills are set to one, and there is no skill improvement as
the development proceeds. The penalty factor p of eq. 5.2 is set to 1.5. We performed the
following simulation tests:

79

80 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.1: WIP Limits, devs with one or
two skills

Figure 7.2: WIP limits, devs skilled in all
activities

Figure 7.3: No limits, devs with one or
two skills

Figure 7.4: No limits, devs skilled in all
activities

1 setting as described above;

2 settings as above, but with developers skilled in all activities;

3 settings as above, but with no feature limits in the activities (unlimited WIP).

4 unlimited WIP, with developers skilled in all activities.

The resulting Cumulative Flow Diagrams (CFD) of the four simulations are shown in
Fig. 7.1 7.2 7.3 7.4. The times (horizontal axis) are in days of development. As you can
see, the diagrams in the cases of limited and unlimited WIP look very different â in the for-
mer case, there is an almost constant flow of features that are completed, while in the latter
case the CFD is much more irregular. Another difference is between the case when devel-
opers are skilled just in one or two activities (see Table 6.1), and the case when developer
can work in all four activities with the same proficiency (this situation is unlikely in the real
world). In the former case, developers can work only to one or two activities, meaning that

7.2. RESULTS CASE STUDY ONE 81

Figure 7.5: Plot of the cost functions in ascending order for 4 exhaustive searches, with dif-
ferent values of the penalty and of the developers’ skills.

Table 7.1: The four best points found in the search, for the four cases considered

no penalty penalty=3
Best points 1 skill 2 skill 3 skill 4 skill
1 3,6,4,1 4,5,3,2 3,4,3,1 3,5,3,2
2 3,5,4,1 4,6,3,2 3,5,3,1 3,6,3,2
3 3,6,3,2 5,5,3,2 3,5,2,2 3,7,3,2
4 4,5,4,1 5,6,3,2 3,4,4,1 4,4,3,2

for instance at the beginning of the project the testing and deployment developers are idle,
while designers are idle at the end of the project. This situation enforces some limits on the
work that can be done, even when activities are not limited, and is reflected in Fig 7.3, which
show a CFD more structured than in the case of general-purpose developers. On the other
hand, in this case the efficiency of the whole process is lower, and the time to complete all
features is more than 20 longer than in the other cases. When developers work on every
activity, and are thus never idle, the length of the project tends to be shorter.

In general these simulations confirm the validity of the WIP-limited approach, and give
insights on what really happens under different settings of the development.

7.2.1 Optimization of the activity limits

We, also, performed various optimizations, performing exhaustive searches after changing
some parameters. Note that, in the case of more activities, wider search intervals, or more
complex simulations, it would be easy to perform the optimization using minimization al-

82 CHAPTER 7. EXPERIMENTAL RESULTS

gorithms in place of the exhaustive search. To test the stability of the optimization, we
computed the average, the standard deviation and other statistics of 20 different compu-
tation of the cost function (each obtained by averaging 20 simulation runs), for ten different
values-randomly chosen-of the vector M = (M1, M2, M3, M4), with a simulation referring to
a penalty factor of 1.5, and to 10 developers with different skills. The weight w was set to 0.2.
The standard deviation was always between 0.2% and 0.3% of the average, thus showing a
substantial stability of the results. To demonstrate the feasibility and the power of the ap-
proach, we show an example of result in Fig 7.5. It represents 3024 runs (exhaustive search),
with penal t y = 1 (no penalty) and 3 (high penalty to change feature). Cost function has
w = 1. Developers can be with no specific skill (they can work on all 4 activities), or with
just one skill. In the latter case 3 developers are able to work on activity 1, and 4, 2, and 1
developers are able to work on activities 2, 3 and 4, respectively. (The number of developers
able to work in each activity is proportional to the activity’s relative importance in the overall
effort.)

The results are in ascending order of the cost function f (). The "jumps" represent limits
able to delay the whole development, for instance a limit of 1 or 2 features in activity 2. The
case with no skills is heavily penalized when penal t y = 3, because developers can work in
every activity, and are more prone to change the feature they work on in the next day, thus
taking the penalty. If developers are constrained to work only on a single activity, this change
is less likely (and even less likely when WIP is low). Table 7.1 shows the best 4 points (values
of limits M1, M2, M3, M4) for the 4 cases optimized.

7.3 Results Case Study Two

We simulated the three processes presented in 6.2 using data mimicking the maintenance
requests made to the Microsoft team presented above. We generated two sets of requests,
covering a time of four years each (1056 days, with 22 days per month). The average number
of incoming requests is 22.5 per month, with 12.5 accepted for implementation, and 10 re-
jected. So, we have 600 accepted requests in total, randomly distributed. One of the sets had
an initial backlog of 85 requests, as in the case study when the process was changed, while
the other has no initial backlog.

The distribution of the efforts needed to complete the requests is Gaussian, with an av-
erage of 10 and a standard deviation of 2.5. In this way, most requests have an estimated
effort between 5 and 15. Note that the empirical data show an average effort per request of
about 11 man days. In fact, at least in the original process, the engineers were continuously
interrupted by estimation duties, with a consequent overhead due to the application of the
"penal t y" for learning, or relearning the organization of the code to modify or to test. In
practice, we found that the average effort to complete a request was about 11 in the simula-
tion of the original process. This value is equal to the empirical evaluation of 11 "engineering
man days" needed on average to complete a request.

For each of the three studied processes, we performed a set of simulations, with the same
data in input. For each process, and each input dataset, the outputs tends to be fairly sta-
ble, performing several runs with different seeds of the random number generator. For each
simulation, we report the cumulative flow diagram (CFD), that is the cumulative number of
requests entering the various steps of the process, from "Backlog" to "Released", and statis-
tics about the cycle time. The cycle time starts when work begins on the request – in our case

7.3. RESULTS CASE STUDY TWO 83

when it is pulled to the "Coding" activity, and ends when it is released.
In the followings we report the results for the three processes.

7.3.1 The original process

Fig 7.6 shows a typical CFD for the data of the original process. This diagram was obtained
using the dataset with no initial backlog, and then rescaling the initial time to the time when
the backlog of pending requests reached the value of 85, that is at day 287 from the beginning
of the simulation.

The figure makes evident the inability of the process to keep the pace of incoming re-
quests. The throughput of the team is about 6 request per month, and the backlog of pend-
ing requests grows of about 6.5 per month. These figures exactly correspond to the empir-
ical value measured on real data. The "Coding" line represents the cumulative number of
requests entered into the Coding activity, while the "Testing" line represents the cumula-
tive number entered into the Testing activity. Having limited to 50 the maximum number
of requests in the Coding allow to have a relatively limited WIP. The cumulative number of
released requests (red line) is very close to the Testing line, meaning that the time needed
to test the requests is very short. The slope of the red line represent the throughput of the
system.

Figure 7.6: The CFD of the original process.

If we allow one tester to become also a developer, increasing the flexibility of the team,
the throughput increases to 7.3 requests per month. Adding one developer and one tester to
the teams, keeping the above flexibility, further increases the throughput to 8.1 requests per
month, a figure still too low to keep the pace of incoming requests.

In Table 7.2 we report some statistics about cycle time in various time intervals of the
simulation. In general, these statistics show very long and very variable cycle times. We
remember that the backlog of pending requests reaches the value of 85, when the process

84 CHAPTER 7. EXPERIMENTAL RESULTS

Table 7.2: Statistics of cycle times in the Original Process

Time Interval Mean Median St.Dev. Min Max

200-250 140.72 131.49 76.2777 35.02 371.53
251-300 150.18 151.03 79.72 12.61 364.89
301-350 170.34 168.65 89.89 9.96 363.23
351-400 162.65 120.16 88.58 64.51 334.69

was changed, at day 287. Around this time, the average and median cycle times are of the
order of 150-160, values very similar to those reported for real data.

So, we can conclude that the simulator is able to reproduce very well the empirical data
both in term of throughput and of average cycle time.

7.3.2 The Kanban process

In the case of Kanban process, the input dataset includes an initial backlog of 85 requests,
with no work yet performed on them. The process was simulated by moving a tester to the
developer team after 6 months from the beginning of the simulation (day 132), as it hap-
pened in the real case. The activity limits were set to 8 (9 from day 132) and 8 for Coding and
Testing, respectively, as in the real case.

Figure 7.7: The CFD of the Kanban process.

The resulting CFD is reported in Fig. 7.7. Note the slight increase in the steepness of the
Coding and Testing lines after day 132, with a consequent increase of the contribution made
by Testing to the WIP. With the adoption of the Kanban system, the throughput substantially

7.3. RESULTS CASE STUDY TWO 85

Table 7.3: Statistics of cycletime in the Kanban Process

Time Interval Mean Median St.Dev. Min Max

1-100 25.18 22.74 14.06 6.98 146.72
101-200 28.99 27.97 12.92 11.69 87.53
201-300 24.41 22.05 8.15 11.62 49.18
301-400 26.39 24.13 10.37 11.23 78.34

increases with respect to the original process. Before day 132 the throughput is about 10
requests per month (30 per quarter); after day 132 it increases to about 12 requests per month
(36 per quarter), almost able to keep the pace of incoming requests.

If we compare the throughput data with those measured in the real case (45 per quarter
in the case of 3 + 3 teams, and 56 per quarter in the case of 4 + 2 teams), we notice that in
the real case the productivity is 50 percent higher than in the simulated process. Our model
already accounts for the elimination of estimations, and for not having penalties applied the
day after the estimation. Note that the maximum theoretical throughput of 6 developers
working on requests whose average is 10 man days is 13.2 per month, and thus 39.6 per
quarter, not considering the penalties applied when a request is tackled for the first time
both during coding and testing. In the real case, there were clearly other factors at work
that further boosted the productivity of the engineers. It is well known that researchers have
found 10-fold differences in productivity and quality between different programmers with
the same levels of experience (see for instance [54]). So, it is likely that the same engineers,
faced with a process change that made them much more focused on their jobs and gave
them a chance to put an end to their ’bad name’ inside Microsoft, redoubled their efforts
and achieved a big productivity improvement.

Regarding cycle times, their statistics are shown in Table 7.3, for time intervals of 100
days starting from the beginning of the simulation. These times dropped with respect to the
original situation, tending to average values of 25.

We also simulated the Kanban process with an increase of both team sizes of one unit,
after 8 months from its introduction, as in the real case. We obtained an increase of through-
put to 14.7 requests per month, or 44 per quarter, with the average cycle time dropping to
14.3.

7.3.3 The Scrum process

We simulated the use of a Scrum process to manage the same input dataset of the Kanban
case, that includes the initial backlog. In the presented case study, we choose iterations of
3 weeks (14 working days, accounting for the day spent in meetings) because it is the mini-
mum time span accommodating requests whose average working time is more than 10 man
days, and with about 15% of the requests longer than the average plus a standard devia-
tion, so more than 12.5 engineering days. Remember the constraint that only one developer
works on a request at a time – a constraint mimicking the way of work of the actual teams.
With a two-week iteration the team should spend a lot of time to estimate the length of the
requests, and in many cases it should split them into two smaller pieces to do them sequen-
tially across two Sprints. Even with a 3 week Sprint some requests would need to be split,

86 CHAPTER 7. EXPERIMENTAL RESULTS

but we do not explicitly handle this case – simply, the remaining of the request is automati-
cally moved to the next iteration. The number of Story points to implement is set to 90. In

Figure 7.8: The CFD of the Scrum process.

Table 7.4: Statistics of cycle time in the Scrum Processes

Time Interval Mean Median St.Dev. Min Max

1-100 16.69 15.74 4.65 8.62 28.00
101-200 16.68 15.79 5.90 9.03 34.51
201-300 16.41 15.71 4.72 9.72 30.50
301-400 16.79 16.41 4.92 8.91 28.02

fact, with 14 working days per team member during a Sprint, we have a total of 84 man days.
We slightly increased this limit to 90, to accommodate variations. We found empirically that
a further increase of this limit does not increment throughput. We remember that, in our
model of Scrum, all 6 engineers are able to perform both coding and testing (the latter with
0.95 efficiency), thus modeling the self-organization of the team.

Fig. 7.8 shows the CFD diagram in the case of Scrum simulation. Note the characteristic
"ladder" appearance of the Coding line, that represents the requests in input to each Sprint.
This process is much better than the original one, and is almost able to keep the pace of
incoming requests, with a throughput of about 11.5 requests per month. This should be
compared with the throughputs of Kanban with both teams of 3 engineers (10) and with 4
developers and 2 testers (12). Had we not allowed the team to "self organize", the throughput
would have been much lower.

7.4. RESULTS CASE STUDY THREE 87

The cycle time statistics are shown in Table 7.4. They are better than in the Kanban
process, owing the highest team flexibility. Note that in our simulation, we do not wait for
the end of the Sprint to release finished requests, but release them immediately. If we had
waited until the end of the Sprint, as in a "true" Scrum implementation, all these average
times should be increased of 3 days (50% of the difference between the Sprint length and
the minimum cycle time, that is about 9). This is the average waiting time of a request be-
tween its completion and the end of the Sprint. Anyway, the Scrum results are very good,
and comparable with the Kanban ones.

7.4 Results Case Study Three

Using the proposed simulation method described in Chapter 6 Section 6.3 and the data
described in Section 6.3 we performed simulations for the original (without WIP-limits) and
Lean-Kanban (with WIP-limit) processes.

7.4.1 Results of the Chinese Firm case

The simulation models were evaluated for two purposes. The first purpose is verifying if
it can generate similar output data as the original when its input data are the same as the
original. The data we are referring to here are "arrival time" and "priority" as input data,
and "number of solved issues as a function of time" and "statistical properties of date" as
output data. The second is to explore, through the simulation, if the adoption of a WIP-
limited approach can improve the maintenance process with respect to the overall number
of resolved issues and the lead time for each resolved issue.

Simulation of the existing process

We first adapted the generic simulation model for software maintenance process as de-
scribed in Chapter 6, so as to simulate the process reflected by the data presented in Section
6.3.1. The adapted process has the following characteristics:

• Issues are entered at the same time as the empirical data, with the same priorities.
Time zero is 12/10/2007. At time zero, the system has already 100 issue reports, taken
from the latest 100 issue reports prior to 12/10/2007.

• The effort of each issue is drawn from a distribution mimicking the distributions shown
in Table 6.4. The distributions represent the total number of days to close an issue,
but we believe that the actual work time follows similar distributions. For the sake
of simplicity we used a "corrected" Lognormal distribution. The average of the orig-
inal distribution is 1.1 and its standard deviation is 2.5. A correction is then made to
these effort values, raising to 0.5 (half day of work) all efforts less than 0.5, because we
deemed unrealistic to deal with issues needing less than 4 hours of work to be fixed
(including Analysis, Coding and Verification). The average of the corrected distribu-
tion thus becomes 1.255 and its standard deviation becomes 2.20. This is consistent
with the estimates of the average time of actual work needed to fix a defect, reported
in the last column of Table 6.4.

• The maintenance phases have the following specific characteristics:

88 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.9: The WIP diagram of the WIP-limited process with a developer and a tester added
after six months.

– Planning: effort in this phase is considered negligible, since issues are immedi-
ately passed to the Analysis phase as they arrive. After Planning, 1.5% of issues are
immediately marked as "CLOSED", reflecting the empirical percentage of issues
with a lead time of zero or one day.

– Analysis: this phase is estimated to take 30% of the total effort. After Analysis,
5.4% of issues are immediately marked as "CLOSED", reflecting the empirical
percentage of issues with a cycle time of zero or one day after the Answer Date.

– Coding: this phase is estimated to take 50% of the total effort.

– Verification: this phase is estimated to take 20% of the total effort. In this study,
for the sake of simplicity we do not consider issues that do not pass the Verifica-
tion and are sent back to the Analysis phase.

• The percentages of 30-50-20 for Analysis, Coding and Verification efforts over total ef-
fort derive from the fact that we gave 20% of the overall effort to Verification. This is
a very conservative assumption (in the sense that it is overestimated), because the es-
timates made by people working in the firm where the empirical data come from are
typically lower, telling even that "the verification of many bugs requires just 15 min-
utes". The 30-50 subdivision between analysis and coding was made following com-
mon software engineering knowledge [54]. However, changing these percentages does

7.4. RESULTS CASE STUDY THREE 89

not have a substantial impact on the results, provided that the Verification quota does
not increase.

• The developers are divided into two teams: Maintenance Team (MT) and Verification
Team (VT). The VT is devoted only to verification. The MT is composed of developers
performing both Analysis and Coding – with no specific preference – but not Verifica-
tion. This reflects actual work organization inside the studied firm. In practice, this is
obtained using two kinds of developers: MT developers have skill equal to one in Anal-
ysis and Coding, and equal to zero in Verification. Vice-versa, VT developers have zero
skill in Analysis and Coding, and one in Verification. The number of developers varies
over time, reflecting the capacity to fix issues that varies in different periods of time.
As explained in section 6.3, and specifically in Table 6.4, we considered three time
intervals, whose length is 400, 400 and 284 days, respectively. They cover all the con-
sidered period of 1084 days. Table 6.4 reports, among other information, the number
of developers devoted to maintenance and verification during the various phases.

• The factor pm (introduced in Section 6.3, for computing the probability an issue with
the highest priority is picked at the beginning of the day) is set to 5. The standard
deviation of the Gaussian noise added to priority is s = 8. In this way, the issues with
the highest priority will be typically processed first, but leaving a chance also for the
lower priority ones.

• The penalty p is set to 1.5, meaning that the effort to fix the defect is increased by 50%
to account for the time to understand the issue, to study the code, and to fix it. The fac-
tor pp (for computing the probability a developer will continue the work on the same
issue of the day before) is set to 200. This means that, when available issues are less
than or equal to 200, ta developer will always choose to continue working on the same
issue of the day before. If issues are more than 200, this choice is not granted. For in-
stance, if there are 400 issues pending, there is only a 50% chance that a developer will
choose the same issue of the day before. The value of 200 is probability overestimated,
because even with a few issues to be chosen from, it is unlikely that the developer will
stick on the same issue of the day before. However, we preferred to overestimate this
value, not to give the Lean-Kanban approach (where developers choose among a lim-
ited set of issues) a too large advantage compared with the non-limited approach.

This model was implemented and simulated. Figure 7.10 shows the work flow diagram,
which is the cumulative number of defects in the various possible states. Note that the first
two states in this figure (Backlog and Planning) are coincident, because there is no delay be-
tween reporting and planning. The "Analysis", "Coding", and "Verification" curves show the
cumulative number of issues that underwent the corresponding phase, or that are still in it.
The "Coding" curve is well on the right of the Analysis one. Their horizontal distance shows
the typical delay between the start of the Analysis phase and its ending, which is simultane-
ous to the start of the Coding phase. The Verification curve is on the far right of the plot. The
horizontal distance between Coding and Verification shows the time spent in Coding. The
CLOSED curve is higher than the Verification one, because it accounts also for the 6.9% of
cases when a defect is closed upon its arrival, or just after the Analysis (as reported in the de-
scription of the characteristics of Planning and Analysis phases above). Without this artifact,
it would be on the right of the Verification curve. Verification takes a short time because it

90 CHAPTER 7. EXPERIMENTAL RESULTS

accounts only for 20% of the whole processing time, and because the test team does not lack
developers.

Table 7.5: Statistics of cycle times in the WIP-limited Process.

Time Interval Mean Median St.Dev. Min Max

1-100 25.18 22.74 14.06 6.98 146.72
101-200 28.99 27.97 12.92 11.69 87.53
201-300 24.41 22.05 8.15 11.62 49.18
301-400 26.39 24.13 10.37 11.23 78.34

Overall, in Figure 7.10, what really matters is the dotted curve representing CLOSED
defects, which shows a good match to the dotted curve in Figure 6.2. The two solid curves in
Figures 6.2 and 7.10 represent the cumulative number of reported defects, and are therefore
the same.

In conclusion, we believe that the simulated model produces data that match fairly well
with the empirical ones, demonstrating the goodness of the approach in modeling and sim-
ulating real data.

Figure 7.10: The WIP diagram without WIP limits. The Planning curve overlaps with the
Backlog curve.

Simulation of the WIP-limited process

The WIP-limited model is built on the previous simulated model, but it enforces limits in
the number of issues that can be worked on simultaneously in the various activities (in our

7.4. RESULTS CASE STUDY THREE 91

model: Planning, Analysis, Coding and Verification). The characteristics of the WIP-limited
model are as follows:

1. Issue requests are the same as those in the non-limited case.

2. Issue efforts, and the probability that an issue is closed after Planning or Analysis are
the same as those in the non-limited case.

3. The work related to each issue passes sequentially through the phases of Planning,
Analysis, Coding and Verification, with the same relative percentages of efforts as-
signed to them as in the non-limited case. In each activity, an issue can be "under
work" or "done". Done issues wait to be pulled to the next activity, when there is ca-
pacity available. A maximum number of issues that each activity can bear (the WIP
limit) is assigned to each activity. We tried many possible limits, finding that if they
are high the results are very similar to the previous simulation (which is by definition
unlimited). If limits are too small, work is hindered and slowed down. The best com-
promise is when no developer has to wait, but limits are minimized.

4. The developers are divided in two teams, of the same sizes and characteristics of the
non-limited case, as reported in Table 7.6.

5. Selecting issues to be worked on follows the same style as it in the non-limited case,
with the same policy for picking the issues at random, accounting for their priority.

6. The parameters p and pp are the same as those in the non-limited case. In this case,
however, the probability to continue working on the same issue is pp = 200, divided
by the number of issues contained in the activities pertaining to the developer; so in
practice it is always one because this number is limited, and certainly smaller than 200.

7. When the work on an issue in a given activity ends, the defect state is marked as "done".
It is passed to the next activity only when there is enough roomavailable there (in or-
der not to violate the WIP limits). When the choice is among many issues, the issue to
pull is the one with the highest priority. When Verification ends, the issue immediately
becomes CLOSED, and is taken out from the maintenance process.

Table 7.6: Limits verified and actually used for the various activities during the simulation

Statistics Original data Planning Analysis Coding Verification

Interval Actual
Value

Interval Actual
Value

Interval Actual
Value

Interval Actual
Value

1-400 (2,1) 30-100 100 3-15 3 3-15 6 3-15 6
401-800 (8,3) 50-150 100 8-25 10 8-25 10 6-20 8
801-1084 (3,2) 40-100 100 3-15 10 3-15 10 4-15 6

This model was implemented and extensively simulated, trying to assess the "best" val-
ues of the limits. As in the previous case, the Planning activity effort is considered negligible,
so the issues entering Planning are immediately marked as "done". However, these issues
have to comply with the limits of this activity. New issues are pulled into Planning only when

92 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.11: The WIP diagram with WIP limits. The Testing curve overlaps with the Released
curve.

the number of issues belonging to it falls below 1/3 of its limit – that is a sensible threshold
for replenishing the buffer. This is tested at the beginning of each day.

The limits in the various activities obviously vary with the team sizes. They are set at
the beginning of the simulation, then after 400 days, and again after 800 days. With four
activities, the total number of limits to set at the various times is 12, as shown in Table 7.6.

We performed hundreds of runs, varying most of the limits. The main goal was to in-
crease the total number of defects closed after given periods of time. Note that the optimiza-
tions can be made step by step – first we can optimize the limits in the first 400 days, then
the limits between 400 and 800 days, and eventually those in the last part of the simulation.
Some results can be outlined:

• when limits are neither too small nor too high, it seems that they do not influence
much the final number of closed issues;

• limits in the first activity – Planning – are not important, provided they are high enough;
they were set to reasonable values, in our case of the order of one hundred;

• the last activity – Verification – is typically staffed with more developers than actually
needed, at least in the present study; thus, its limits are much less critical than those
of Analysis and Coding;

7.4. RESULTS CASE STUDY THREE 93

Figure 7.12: Comparison of the number of CLOSED issues vs. time. The results are average of
10 runs, in WIP-limited case (solid line) and non-limited case (dashed line). The other lines
represent two standard deviation intervals.

We report some typical values of the limits that seem to be the best in terms of the number
of closed defects at the end of the simulation. Table 7.6 shows the typical intervals we found
to be "best" for each activity and each period. It also shows the actual values used in the
simulations.

Figure 7.11 shows the cumulative number of defects in the various possible states for the
WIP-limited simulation. This figure differs from Figure 7.10, being the four working states
(from Planning to Verification) very close to each other, and far from the "Backlog" (just
reported) state. Also here the CLOSED curve is higher than the Verification one, because
it accounts for the 6.9% of cases when a defect is closed upon its arrival, or just after the
Analysis.

The Planning curve has a "stepped" appearance, because issues are pulled to this state
only from time to time and in "batches". The other three curves are almost overlapping,
denoting a very short lead time to work on defects. Overall, the total number of defects
closed at day 1084 is 4179, about 300 more than in the non-limited case. This is a good
result, showing a higher productivity for the WIP-limited model. The main advantage of the
WIP-limited approach is the increased number of system throughput.

To better compare the ability of the two approaches, we executed 10 runs of the simula-
tion for both the non-limited and the WIP-limited cases. In Figure 7.12 we show the number
of issues in the CLOSED state, the average of 10 runs, and their two standard deviation lim-

94 CHAPTER 7. EXPERIMENTAL RESULTS

its. We can see that the WIP-limited process is more efficient in closing the issues. At the end
of the simulations, the average number of closed issues is 4145 in the WIP-limited case, and
3853 issues in the non-limited case – that is about 7% less.

The higher efficiency of the WIP-limited approach is due to the fact that developers are
more focused on fixing a few issues, because the number of issues they can work on is lim-
ited. In this way, it is less likely that they would change the issue at work the day after, and
consequently there is less overhead due to the penalty that is applied when the work on an
issue is resumed by a different developer.

7.4.2 Results of Microsoft case

We simulated the two models (with and without a WIP-Limit) using data mimicking the
maintenance requests made to the Microsoft team. We generated two sets of requests, cov-
ering a time of four years each (1056 days, with 22 days per month). The average number
of incoming requests is 12.5 per month (600 total). One set had an initial backlog of 85 re-
quests (the number of requests in the backlog when the process was changed in October
2004), while the other had no requests in the backlog (the initial size of the backlog).

The effort needed to complete each request is drawn from a Gaussian distribution. The
average effort value should match the empirical value of 11 man days. However, the simu-
lator applies an overhead of 30% (i.e., the "penal t y" factor p of Equation 6.1 is set to 1.3)
when a request is worked on for the first time, and when the person in charge of the request
changes(which often happens during the simulations). In fact, the engineers are continu-
ously interrupted by estimation duties – as in the real case – so they work on the same re-
quest for two or more consecutive days only sporadically. For this reason, we had to set the
average request effort value to a value smaller than 11, because the original effort is actually
increased when the penalty is applied. We used an average effort value of 9.4 man days and
a standard deviation of 2.5. In this way, 95% of the requests have an original (non-penalized)
effort between 4.4 and 14.4 man days, and the actual average effort when penalties are ap-
plied turns out to be just about 11 man days.

For each of the two processes (with and without a WIP-Limit), we performed a set of sim-
ulations, using the same data as input. For each process and each input dataset, the outputs
tend to be fairly stable when several runs with different seeds of the random number gener-
ator are performed. In the following subections we report the results of the two processes.

Simulation of the Original Process

Figure 7.13 shows a typical WIP diagram for the data of the original process. The figure shows
the inability of the process to keep pace with incoming requests. The throughput of the team
is about 6 requests per month, and the backlog of pending requests grows of about 6.5 re-
quests per month. These numbers exactly match the values of the real data. The "Coding"
line represents the cumulative number of requests entered into the Coding activity, while the
"Testing" line represents the cumulative number entered into the Testing activity. We lim-
ited the maximum number of requests in the Coding activity to 50 because the team never
worked on more than 50 requests at the same time. The cumulative number of released re-
quests (dashed line) is very close to the Testing line, meaning that the time needed to test the
requests is very short. The slope of the dashed line represents the throughput of the system.

7.4. RESULTS CASE STUDY THREE 95

Figure 7.13: The WIP diagram of the original process.

If we allow one tester to become also a developer, increasing the flexibility of the team,
the throughput increases to 7.3 requests per month. Adding one developer and one tester to
the teams, the throughput further increases to 10.1 requests per month, which is a figure still
too low to keep pace with incoming requests.

In Table 7.2 we report some statistics about cycle time in various time intervals of the
simulation. In general, these statistics show very long and variable cycle times. Note that the
backlog of pending requests reached the value of 85, when the process was changed after
287 days. Around that time, the average and median cycle times are of the order of 150-160
days, very close to those reported for real data.

We can thus conclude that the simulator is able to reproduce very well the empirical data
in terms of throughput and of average cycle time.

Simulation of the WIP-limited Process

The input dataset of our WIP-limited process includes an initial backlog of 85 requests, with
no work yet performed on them. The process was simulated by moving a tester to the devel-
oper team after 6 months from the beginning of the simulation (day 132), as it happened in
the real case. The activity limits were set to 11 and 8 for Coding and Testing, respectively, as
in the real case.

The resulting WIP diagram is reported in Figure 7.14. Note the slight increase in the
steepness of the Coding and Testing lines after day 132, with a consequent increase of the
contribution made by Testing to the WIP. With the adoption of the Lean-Kanban approach,

96 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.14: The WIP diagram of the WIP-limited process.

the throughput substantially increases compared withthe original process. Before day 132
the throughput is about 10 requests per month (30 per quarter); after day 132 it increases to
about 12 requests per month (36 per quarter), almost enough to keep pace with incoming
requests.

If we compare the throughput data with those measured in the real case (45 per quarter
in the case of 3 + 3 teams, and 56 per quarter in the case of 4 + 2 teams), we notice that in
the real case the productivity is 50 percent higher than in the simulated process. Our model
already accounts for the elimination of estimations.

Moreover, due to the WIP limitation, developers tend to work on the same request in sub-
sequent days, until it is completed, and thus the 30% penalty applied on the effort to "learn"
the request is applied only for the first day. Note that the maximum theoretical throughput
of 6 developers working on requests whose average effort to complete is 11 man days, 12
per month, and thus 36 per quarter, not considering the penalties applied when a request is
tackled for the first time both during coding and testing. In the real case, there were clearly
other factors at work that further boosted the productivity of the engineers to an astonishing
56 requests per quarter.

It is well known that researchers have found differences in productivity that may vary
even of one order of magnitude among programmers with the same levels of experience, de-
pending on their motivation and on the work environment (see for instance [66]). So, it is
likely that the same engineers, faced with a process change that made them much more fo-
cused on their jobs and gave them a chance to put an end to their bad name inside Microsoft,

7.5. RESULTS CASE STUDY FOUR 97

redoubled their efforts and achieved a big productivity improvement.
Statistics on cycle times are shown in Table 7.3. The data are based on 100-day time

intervals, starting from the beginning of the simulation. These times dropped compared
with the original situation, leading to average values of 25.

We also simulated the WIP-limited process when adding one developer and one tester
after 8 months from its introduction, as in the real case. We obtained an increase of through-
put to 17.7 requests per month, or 53 per quarter, with the average cycle time dropping to 14
days. Figure 7.14 shows the cumulative flow diagram in this case, showing that the backlog
is reduced to zero in 300 working days, that is in about 14 months.

We can conclude that the proposed simulation approach could effectively model the
original process. As regards the WIP-limited process model, its efficiency clearly overcomes
that of the original process, but not as much as in the real case. As already pointed out,
most probably there were human factors at play, not directly related with the process, which
further increased the developers’ motivation and productivity.

7.5 Results Case Study Four

This section is dedicated to the discussion of the simulation results that come from hundreds
simulations made in the previous section and considering different cases. Table 7.7 shows
basic statistics of the 100 features used in the simulations, with no effort variation, and with
the quoted Lognormal variation (in the latter case the values are averaged on all 100 simu-
lations). The original data pertain to a Gaussian distribution with a finite number of items.
The data with Lognormal variation show an increasing skewness of their distribution. The
average is approximately unchanged, while the median shifts toward zero, and the tail values

Table 7.7: Statistics of effort of the 100 features used. Data in case of Lognormal variation
report the average over 100 different random extractions.

Statistic Original data Standard Dev. of Lognormal Variation

1.0 2.0 3.0 5.0

Average 1.98 1.96 1.96 2.02 1.91
Std.Dev 0.45 1.08 1.90 2.78 3.67
Median 1.95 1.77 1.42 1.12 0.73
95% percentile 2.70 3.91 5.39 6.53 7.21
Maximum 3.20 5.99 11.57 18.77 26.37

shifts toward higher and higher values, as the tails becomes fatter and fatter.
We run 100 simulations for each choice of the Risk parameters, and for the two tested

processes – Lean-Kanban and Scrum. Table 7.8 shows a comparison of the two methods in
the no-Risk case, that is no rework and no variation on input feature estimation. The results
are averaged on 100 simulations, with the same input data, but differing in the seed of the
random number generator. The reported data do not vary much along the simulations, as
highlighted by the low value of the standard error.

Lean-Kanban approach shows a superior performance in all parameters – shorter dura-
tion, lead and cycle times, and lower variations of these times. In particular, cycle times,

98 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.15: Lean-Kanban Process. Box
plot of project duration as a function of
variations in features’ effort. Each box
refers to 100 simulations.

Figure 7.16: Scrum Process. Box plot of
project duration as a function of varia-
tions in features’ effort. Each box refers
to 100 simulations.

representing how long it takes to implement a feature, from the start of the work on it to its
release, are 2-3 times shorter, and much stabler.

Table 7.8: Statistics on 100 simulations for each method, with no rework and no feature effort
variation. The data shown are the average of the referred parameters. Within parenthesis we
report the standard error

Lean-Kanban Scrum
Project duration 43.26 (0.054) 48.56 (0.064)
Mean of Lead times to complete a feature 22.4 (0.022) 30.2 (0.028)
Std. dev. of Lead times 11.6 (0.011) 13.4 (0.024)
Median of Lead times 23.0 (0.035) 30.0 (0.0)
Mean of Cycle times to complete a feature 3.97 (0.006) 13.19 (0.022)
Std. dev. of Cycle times 0.92 (0.006) 4.68 (0.011)
Median of Cycle times 3.91 (0.008) 10 (0.0)

In Fig. 7.15 7.16 we report the box-plot statistics on the total project duration varying
the standard deviation of features’ effort, keeping their average at 2 man-days, and keeping
the percentage of rework equal to zero. Each box shows the results of 100 simulations for
the standard deviation value reported in abscissas. The image on the left refers to Lean-
Kanban, showing a slowly increasing median value, together with an strong increase of total
time variations. The image on the right refers to Scrum and shows a similar behavior, but
centered around higher median values of project duration.

Fig. 7.17 7.18 show the box-plot statistics on the total project duration varying the per-
centage of rework, while keeping the features’ effort standard deviation equal to zero. Each

7.5. RESULTS CASE STUDY FOUR 99

Figure 7.17: Lean-Kanban Process. Box
plot of project duration as a function of
features percentage that don’t pass the
SQA phase and need rework, keeping.

Figure 7.18: Scrum Process. Box plot
of project duration as a function of fea-
tures percentage that don’t pass the SQA
phase and need rework, keeping.

box shows the results of 100 simulations for the rework percentage reported in abscissas.
The image on the left refers to Lean-Kanban, showing a strong increase both in the median
and the variations as rework percentage increases. The increase is similar to that expected
by multiplying the factor w of eq. 6.3, with q = 0.5 and r equal to the rework probability, by
the base value of 43 (the median of the project duration in the case of no rework). The im-
age on the right refers to Scrum. Here the increase in median effort and in volatility is even
bigger. We note also a strong leap in the first step from no rework to 10% rework, that can
be explained perhaps with the fact that even a small rework percentage is able to increase
the number of features that are moved from an iteration to the next, thus altering the whole
project schedule. In Fig. 7.19 7.20 we report the box-plot statistics on the total project dura-
tion varying both the percentage of rework and the features’ effort standard deviation. This
figure substantially confirms the results of Figs. 7.15 7.16 and 7.17 7.18. The last box, de-
noted by E, refers to the case with both the highest rework percentage and effort variation,
so it exhibits the highest median and the highest variation for both Lean-Kanban and Scrum
cases. As regards lead and cycle times, we will focus only on cycle time, because in the re-
ported case all features enter the system at time zero, so lead times are not very significant.
Fig. 7.21 reports the medians and the standard deviations of cycle times, varying the rework
percentage and the features’ variation, for both processes. Each point of the graph refers to
the average made on 100 simulations. We use the median, that is more significant than the
mean for this analysis, and for the sake of simplicity we show only a subset of the computed
cases. In abscissas there is the percentage of rework, while different curves refer to specific
processes and different standard deviations of the feature efforts.

Risk assessment

Starting from the Monte Carlo simulation results, it is possible to assess the risks of the
project, with respect to variations in delivery time and cycle time. For the sake of simplicity,

100 CHAPTER 7. EXPERIMENTAL RESULTS

Figure 7.19: Lean-Kanban Process. Box
plot of project duration as a function of
the percentage of rework and effort vari-
ation: A: no rework and no variation; B:
10% rework, effort Std. Dev. = 1.0;C: 20%
rework, effort Std. Dev. = 2.0; D: 30% re-
work, effort Std. Dev. = 3.0; E: 50% re-
work, effort Std. Dev. = 5.0.

Figure 7.20: Scrum Process. Box plot of
project duration as a function of the per-
centage of rework and effort variation:
A: no rework and no variation; B: 10%
rework, effort Std. Dev. = 1.0;C: 20% re-
work, effort Std. Dev. = 2.0; D: 30% re-
work, effort Std. Dev. = 3.0; E: 50% re-
work, effort Std. Dev. = 5.0.

Figure 7.21: Medians and Standard Deviations of Cycle Times, for various values oWhen both
of the parameters. These quantities are averaged over 100 simulations.

let us consider only Lean-Kanban process. In the case of no rework and no significant error
on feature effort estimation, we can expect a very stable project duration of about 43 working
days, and a cycle time distribution whose median is 4 days and with a standard deviation of 1
day (first dot of blue lines in Fig. 7.15 7.16). These figures are the starting point, that can be
changed only by varying the process or the team composition and/or skills. In the case of an
increase only in features’ efforts, Fig. 7.21 shows that, while the average project length does
non increase too much, but there are several instances of very long projects. For instance, in
the case of Lognormal noise with standard deviation equal to 3, the 5% highest percentile of

7.5. RESULTS CASE STUDY FOUR 101

project length is about 75 days, to be compared to an average length of 49 days. This means
that there is 5 percent chance that the length of the project will overcome 75 days. In the case
of standard deviation equal to 5, the 5% value at risk increases to 115 days, compared to an
average length of 53 days. These figures are to be considered for risk mitigation during the
project, if strong variations of feature efforts emerge. When rework is considered, clearly the
project length increases with rework percentage, as shown in eq. 6.3. Fig. 7.17 7.18 show
that the tails of length distribution are less extreme than in the case of effort variation. How-
ever, when rework percentage is substantial, the inherent effects on project length must be
considered for risk mitigation. When both feature effort variations and rework are present,
as shown in Fig. 7.19 7.20, the increase in average project length is roughly additive, while
the length variations do not add up. As regards cycle times, the simulations show that fea-
ture effort variations have almost no impact on their median, while they obviously impact
on cycle time variance. The rework, on the other hand, induces a strong increase in cycle
time. A 30 percent chance of rework causes a 3-4 fold increase of the cycle time median.
These results should be properly taken in account performing risk assessment, depending
on actual values of effort variation, rework, and criticality of cycle time variation.

Scrum vs. Kanban

A by-product of our study is that it offered a comparative assessment of Lean-Kanban and
Scrum methodologies, though on a simulated paradigmatic case. In fact, the issue of Kanban-
Scrum comparison, and of migration from Scrum to Kanban seems to have raised strong
interest in recent times [78] [77] [83].

Our results show that Lean-Kanban is consistently more efficient than Scrum as regards
project length. This was expected, because on one hand Lean-Kanban has no waste time
due to sprint planning meetings at each iteration, and on the other hand its continuous
flow fully employs all developers in all activities, but for short transients at the beginning
and at the end of the project. Conversely, each Scrum iteration entails such transients. One
might argue that such waste of time and effort in Scrum is not realistic, because also Kanban
needs meetings, and because during sprints team members specialized in activities such as
analysis and testing will anyhow find something to do.

However, Sjoberg et al. claimed a 21% productivity gain migrating from Scrum to Kanban
[78]. This should be compared with our 12% decrease in average project duration with no
perturbations, that increases exactly to about 20% when more realistic effort uncertainty and
rework factors are introduced.

So, we may conclude that our results are consistent with their results as regards average
productivity. The situation is even more favourable for Kanban when risk factors are con-
sidered, because our simulations show that the amplification of average project length and
variations due to the considered risk factors tend to be higher in Scrum than in Kanban.

Regarding cycle times, Sjoberg et al. report a 50% decrease of average lead times mi-
grating from Scrum to Kanban [78]. Our simulations report an even higher 70decrease of
average cycle times (see Table 7.8). In our case study lead times are not relevant, because
all 100 features are given at the beginning of the project, and no new feature is added after-
wards. Adding a constant waiting time to our cycle times would lower our 7% gain, yielding a
value closer to that reported by Sjoberg et al. median and variance look more sensitive. This
result on cycle times is obvious, because in Kanban features are released when actually fin-
ished, and not at the end of each iteration as in Scrum. When feature efforts variations and

102 CHAPTER 7. EXPERIMENTAL RESULTS

rework are introduced, cycle times increase in both methods, but Scrum looks more resilient
because the slack due to fixed lehght iterations accommodates at least partially the increase
of cycle times.

To summarize, the comparison of Scrum vs. Lean-Kanban on the simplified case study
used in this study confirms some empirical findings of another comparison made on a real
case study. It shows that the simpler and less structured approach of Kanban seems to yield
a better productivity, and a higher resilience with respect to risks as previously defined.

Chapter 8

Discussion of Experimental Results

In this section, we briefly discuss about the results obtained applying the proposed model to
different real cases, reported in Chapter 7. The model applied to the different real cases is
the same, but, it was customized in order to adapt it to represent different case studies, as we
underlined in the section of model calibration. In previous Sections (Case Study 1 7.2, Case
Study 2 7.3 Case Study 3 7.4 and Case Study 4 7.5), we showed, that this model was able to
replicate quite well the empirical characteristics of the real maintenance and development
projects studied.

From results of second case study, we obtained some statistics about cycle time in var-
ious time intervals of the simulation. In general, these statistics show very long and very
variable cycle times. Around this time, the average and median cycle times are very similar
to those reported for real data. So, we can conclude that the simulator is able to reproduce
very well the empirical data both in term of throughput and of average cycle time. In the
case of Lean-Kanban Process, from the CFD it is possible to note the slight increase in the
steepness of the Coding and Testing lines after a given day, with a consequent increase of
the contribution made by Testing to the WIP. With the adoption of the Kanban system, the
throughput substantially increases with respect to the original process. In case of Scrum Pro-
cess the cycle time statistics are better than in the Kanban process, owing the highest team
flexibility. Note that in our simulation, we do not wait for the end of the Sprint to release fin-
ished requests, but release them immediately. This is the average waiting time of a request
between its completion and the end of the Sprint. Anyway, the Scrum results are very good,
and comparable with the Kanban ones. Overall, all the choices done during the model cal-
ibration phase seem broadly correct if we consider the results that are very close to the real
ones. Indeed, as all the simulation models, also our model must be calibrated every time
that we want to analyse a new process.

Regarding the results from the third case study, we believe that the simulated model pro-
duces data that match fairly well with the empirical ones, demonstrating the goodness of the
approach in modeling and simulating real data and considering the WIP-Limited process,
from the obtained result, it is possible to denote a very short lead time to work on defects.
Overall, the total number of defects closed at any given day is more than in the non-limited
case. This is a good result, showing a higher productivity for the WIP-limited model. The
main advantage of the WIP-limited approach is the increased number of system through-
put. We show the number of issues in the CLOSED state, the average of the number of runs,

103

104 CHAPTER 8. DISCUSSION OF EXPERIMENTAL RESULTS

and their two standard deviation limits . The higher efficiency of the WIP-limited approach
is due to the fact that developers are more focused on fixing a few issues, because the num-
ber of issues they can work on is limited. In this way, it is less likely that they would change
the issue at work the day after, and consequently there is less overhead due to the penalty
that is applied when the work on an issue is resumed by a different developer.

If we analyzed, also, the WIP diagram for the data of the original process that come from
the Microsoft case, the figures show the inability of the process to keep pace with incoming
requests. We reported some statistics about cycle time in various time intervals of the sim-
ulation. In general, these statistics show very long and variable cycle times. Instead, in the
case of WIP-Limited process we noted the slight increase in the steepness of the Coding and
Testing lines after a specific instant, with a consequent increase of the contribution made
by Testing to the WIP With the adoption of the Lean-Kanban approach and the throughput,
substantially, increased compared with the original process. We can thus conclude that the
simulator is able to reproduce very well the empirical data in terms of throughput and of
average cycle time.

Regarding the analysis of case study four, the Lean-Kanban approach shows a superior
performance in all parameters – shorter duration, lead and cycle times, and lower variations
of these times. In particular, cycle times, representing how long it takes to implement a fea-
ture, from the start of the work on it to its release, are 2-3 times shorter, and much stabler. We
analyzed statistics on the total project duration varying the standard deviation of featuresâ
effort, keeping their average at 2 man-days, and keeping the percentage of rework equal to
zero. Lean-Kanban approach presented a slowly increasing median value, together with an
strong increase of total time variations. The Scrum approach, instead, presented a similar
behavior, but centered around higher median values of project duration.

Regarding the total project duration varying the percentage of rework, while keeping the
featuresâ effort standard deviation equal to zero, the Lean-Kanban, showed a strong increase
both in the median and the variations as rework percentage increases. For Scrum, the in-
crease in median effort and in volatility is even bigger. We note also a strong leap in the first
step from no rework to 10% rework, that can be explained perhaps with the fact that even
a small rework percentage is able to increase the number of features that are moved from
an iteration to the next, thus altering the whole project schedule. If we considered the to-
tal project duration varying both the percentage of rework and the featuresâ effort standard
deviation, we could observe that these figures substantially confirms the previous obtained
results.

In the case with both the highest rework percentage and effort variation, we could see
the highest median and the highest variation for both Lean-Kanban and Scrum cases. As
regards lead and cycle times, we will focus only on cycle time, because in the reported case
all features enter the system at time zero, so lead times are not very significant. We use the
median, that is more significant than the mean for this analysis, and for the sake of simplicity
we show only a subset of the computed cases.

Regarding the risk assessment (case study 4) we showed the result that come from the
comparison between two methods (Kanban and Scrum) in the no-Risk case. The Lean-
Kanban approach regarding a superior performance in all parameters – shorter duration,
lead and cycle times, and lower variations of these times. In particular, cycle times, rep-
resenting how long it takes to implement a feature, from the start of the work on it to its
release, are 2-3 times shorter, and much stabler. We, also cosidered, the total project dura-
tion varying the standard deviation of features’ effort, keeping their average at 2 man-days,

105

and keeping the percentage of rework equal to zero. Lean- Kanban, presented an increas-
ing median value, together with an strong increase of total time variations. The Scrum case,
instead, shows a similar behavior, but centered around higher median values of project du-
ration. Our results show that Lean-Kanban is consistently more efficient than Scrum as re-
gards project length. This was expected, because on one hand Lean-Kanban has no waste
time due to sprint planning meetings at each iteration, and on the other hand its continuous
flow fully employs all developers in all activities, but for short transients at the beginning
and at the end of the project. Conversely, each Scrum iteration entails such transients. One
might argue that such waste of time and effort in Scrum is not realistic, because also Kanban
needs meetings, and because during sprints team members specialized in activities such as
analysis and testing will anyhow find something to do.

Chapter 9

Threats to validity

In this thesis, we presented a method to model and simulate software development and
maintenance processes, and some results of its application on different empirical cases. In
this section, we discuss what it consider to be the most important threats to validity that
should be taken into consideration when considering the presented results, and applying
the proposed method. We recall that there are four main types of threats to validity, namely
construct validity, internal validity, external validity.

9.1 Threats to internal validity

Internal validity:
An experiment is said to possess internal validity if it properly demonstrates a causal

relation between two variables (example fig. 9.1), usually, the treatment and the outcome of
the experiment [56] [57]. Internal validity is not relevant for this study as we are not seeking
to establish the casual relationship between variables in a statistical manner. In other words,
there may be unknown, hidden factors that may affect the results.

In our case, in some experimental cases we have scarce information on the teams – the
organizations that originated the maintenance data did not record detailed information on
maintenance and verification teams. We were not able to get reliable data about composi-
tion, skills and percentage of time actually devoted to work on issues, and we had to extrap-
olate these data from the scarce available information. This might influence the quality of
the results.

Moreover, in the proposed simulation model, the issues are made through a sequence of
activities performed by a team of developers, skilled in one or more of these activities. There-
fore, our model fits well with the actual software development and maintenance processes.
Furthermore, our model does not consider the interactions among developers, which may
have an impact on the maintenance and development efforts.

107

108 CHAPTER 9. THREATS TO VALIDITY

9.2 Threats to external validity

External validity:
An experiment is said to possess external validity if the experimental results hold across

different experimental settings, procedures, and participants. If a study possesses external
validity, its results will generalize to a larger population not considered in the experiment
[56] [57]. In this study we only run the simulation model on some industrial maintenance
projects. Although these projects are large, the number of subjects used in this study is small.
This is because of the difficulty in collecting real industrial data. This is a clear threat to the
external validity of our results. In fact an important aspect to be taken into consideration is
that data analyzed are synthetically produced and refer to just one simplified test case. Also
the fact that, in some case studies all features were available at the beginning of the simulated
project, and that no more feature was added, limits the generalization of our results.

In future we will seek more data and perform more evaluations. Moreover, the simulation
methods we proposed are evaluated on large software systems that have been experiencing
a long period of evolution. For a small or short-living system, the number of maintenance
request is often small, thus making the simulation and statistical analysis inappropriate.

Figure 9.1: The interpretation of the different types of threats

9.3 Threats to construct validity

Construct validity:
Construct validity concerns the degree to which inferences are warranted from the ob-

served phenomena to the constructs that these instances might represent. The question,
therefore, is whether the sampling particulars of a study can be defended as measures of
general constructs [56]. In our case, to show construct validity, the appropriateness of our
approach, focused on issues, activities and developers, to model the actual software devel-
opment process, at least within reasonable accuracy, should be checked. We note that de-
composing software development in small features to be implemented independently from
each others is typical of maintenance (where features are called issues). This is also a prac-
tice common to all agile methods [57].

Also, the fact that feature implementation or issue resolution is made through a sequence
of activities performed by a team of developers, skilled in one of more of these activities, is

9.3. THREATS TO CONSTRUCT VALIDITY 109

quite straightforward. So, to a first approximation, our model fits well with real software
development. What is left out from the model are some kinds of interactions among devel-
opers, i.e. the fact that sometime a developer must stop working to ask for advice to another
developer. Another threat related to construct validity is the fact that our work is centered on
the study of how the process determines the efficiency of the maintenance activity. However,
there are many other human-related factors that could affect the efficiency and productivity
of the team, like, for instance, respecting the workers, keeping them motivated and satisfied,
giving them all the tools they need, and so on. Just limiting WIP will not be effective if the
team is troubled and dissatisfied. A simulation model can simulate processes, but it is very
difficult to explicitly include human factors.

Also, we don’t explicitly account for the risk that an entire group of features are badly
implemented, and need to be reworked later at great project’s expenses. While these char-
acteristics are common to many projects, what we proposed is a model able to represent the
main aspects of agile software development, without trying to model every possible aspect.

We showed in previous Sections (Case Study 1 7.2, Case Study 2 7.3 Case Study 3 7.4 and
Case Study 4 7.5) that this model is able to replicate quite well the empirical characteristics
of the real maintenance and development projects studied. A threat to the validity of this
replication is that of overfitting empirical data might have been well reproduced owing to
the very many parameters used to tune the model.

Regarding the Microsoft case (Case study 2 7.3 and second part of Case study 3 7.4), we
tuned just a few parameters (average effort of the issues and penalty factor p) to reproduce
the overall throughput of the team, and we got cycle time statistics very close to real data,
as reported in Tables 7.2 and 7.3. We did not optimize any parameter to get these statistics
right.

Regarding the Chinese firm case (case study 3 7.4) we just tuned the same parameters
(and the team size in correspondence to the throughput variations at 400 and 800 days),
getting a very good agreement throughout all relevant time intervals. So, overfitting should
be ruled out. Regarding the risk assessment (case study 4) , the main threat to construct
validity is whether our models of Scrum and Lean-Kanban processes are accurate enough
to be realistic. In other words, are features, activities and developers, as modeled by us,
enough to get plausible results? Other studies on empirical data seem to answer favourably
to this question [57] [51] [87], but more research is clearly needed. Another issue related
to construct validity are the characteristics of feature effort variations, and of the need of
rework. While these characteristics are common to many projects, the exact distribution of
effort variations, and the way rework is performed might be improved. Moreover, there are
other possible risk factors, such as inaccurate requirements and team-related issues, such as
resignation of developers, introduction of new developers, intra-team dependencies, and so
on.

Chapter 10

Conclusion and future work

This section is dedicated to discuss the main aspects, regarding the simulation model and its
applications. We recall some important elements we faced in this work thesis highlighting
the obtained results and useful purposes of simulative approach.

We presented a process simulation model developed for assessing the effectiveness of
the WIP-limited approach, and to visualize the flow of work and the organization of work.
The model has been designed and implemented using a full object-oriented approach, and
is easily extensible to accommodate more detailed and realistic representations of the actual
software development process. The simulation outputs can be elaborated, yielding all kinds
of diagrams and statistical information in order to analyze every aspect of what actually hap-
pened during the simulation. We showed simulation results on WIP-limited and unlimited
developments, varying the skills of the developers involved, showing substantial differences
in the resulting CFDs. In this thesis we have presented a simulation model customized, also,
for software maintenance process, that was used for assessing the effectiveness of agile and
lean approaches described in [3] to a real case study, in which a maintenance team experi-
mented the transition from a general, estimation-based approach to a Lean-Kanban process.
We added also the modeling and simulation of a possible application of the Scrum process
to the same case study, albeit Scrum was not really tried in the real case.

The proposed simulation approach allowed us to easily model and apply to the case
study also the Scrum process, despite its iterative nature, different from the steady flow na-
ture of the two other processes.

Furthermore we used the simulator to optimize, through exhaustive search, the WIP lim-
its of the activities of the process. We analyzed the repeatability and robustness of the results,
showing that the simulator can be very useful under this respect.

We analyzed some processes regarding development and maintenance processes follow-
ing the Lean-Kanban principles and practices the other belonging to the lean approach with
respect to the risk management and in order to choose the one that better addresses the re-
lated issues and making also a comparison with other general processes in order to show
how lean-Kanban approach does improve it.

Further studies extended the simulator toward more realistic settings. Among others, we
worked on the following extensions:

• Non-instant availability of collaborators. Could be a specialist required to perform a
task such as "code security review" or a business person, subject matter expert re-

111

112 CHAPTER 10. CONCLUSION AND FUTURE WORK

quired to disambiguate the requirements. Modeling non-instant availability of collab-
orators with different delay parameters would be useful.

• Special cause variation – work blocked due to external circumstances such as a test
environment failure, lack of availability of a collaborator due to special cause reason
(illness, vacation, business trip).

• Specialization of the workforce - for example, the design activity might be made up of
various optional sub-activities, e.g. user interface design, database design, Web ser-
vices design, etc. Some of these sub-activities may require a specialist, or one from a
smaller pool of suitably talented people.

We could model the mix of work items that require more or less specialization and model the
number of sub-activities that have one or very few capable people, and simulate the effect.
This modification would imply to explicitly model the decomposition of features in tasks.
Management of high-priority features, and the effect of the team choosing to break the WIP
limit from time-to-time. Explicit management of software product quality and bugs, with
the need to rework at least partially some feature to fix its bugs.

We used, as input data, a stream of requests synthetically generated, with the same sta-
tistical properties of real requests. The simulator was able to fully reproduce the statistics
of empirical results for the original process, both in terms of throughput and cycle times.
The proposed approach to model and simulate a software process, using an agent-based,
fully object-oriented model, even in this case demonstrated very effective. It allowed us to
model different processes with minimal changes in the model and in the simulator. The use
of a general-purpose OO language like Smalltalk eased this task, allowing a high flexibility in
extending the simulator.

By simulation, we showed also that a WIP-limited approach such as Lean-Kanban can
indeed improve maintenance throughput and reduce cost. We performed two case studies
on a Microsoft maintenance project and a Chinese maintenance project. These projects
have gone through many years of maintenance.

In each study, we first tuned the simulation model to simulate the existing, non-WIP-
limited approach to maintenance, showing a good match between real and simulated data.
We, then, simulated a WIP-limited approach to maintenance on the same data. The results
show that a WIP-Limited approach can improve maintenance efficiency.

Another result of our study was a comparison between Scrum and Lean-Kanban pro-
cesses, whose results confirm what is being reported in this study. The comparison showed
that Scrum is less efficient and more prone to risk than Kanban as regards productivity and
cycle times. This result is not unexpected, given the assumptions of our model. Of course,
Scrum has other advantages over Kanban, and both methods can also be merged, trying to
obtain the best of the two, as in Scrumban. However, these results can be useful, together
with other results and considerations, to a manager with the task to assess the most suited
method to adopt. In the future, we will improve our risk assessment method, evaluating
it on many other case studies, and also exploring the optimal parameter settings that can
minimize the overall risk.

In the future, we plan to further evaluate our simulation method on a variety of software
development and maintenance projects, including open source projects, with the aim to ex-
plore the optimal parameter settings that can maximize the overall development efficiency.
We could also analyze and model the human and team interactions factors that could affect

113

a project team’s maintenance performance. A substantial improvement to our model we are
considering is to scale the model from a single team to multiple teams involved in multiple
projects. This would greatly improve the utility of the tool for large organizations.

We will devote a specific effort to analyze and model human factors that could affect the
productivity of a development team, in relation with the specific process and practices used.

In this thesis we tried to also answer the typical questions regarding the generalization
of the obtained results, typical customization needed in order to reproduce, calibrate all as-
pects of the process, replications of input data (equivalent to statistic values and results).
In the future we will gather data from next Software Factory projects and from industrial
projects that will allow to validate more the reliability of the simulation model that is suit-
able to reproduce different processes.

In particular we aim to conclude the section of research including a simulative study
that we are using to better understand software processes for distributed development in
the cloud environment, in the context of a Software Factory network. Based on the obser-
vation of a real project with sites in Finland and Spain and a Scrumban-like process, an ex-
isting simulator has been adapted to reflect the Scrumban process. The goal of creating the
simulation model was to better understand the distributed software process (with the cloud
environment as context). The goal of the simulation model itself is to support decisions for
planning such kind of projects. Considering the threats of validity of the study, the accuracy
and reliability of the simulation model could be shown and the simulation model imple-
mentation allows for deriving hypothesis on the impact of distribution on parameters such
as throughput.

Overall, we believe that the presented work demonstrated that our event-driven and
agent-based approach is very effective for modelling and simulation of agile and lean soft-
ware development processes, that tend to be simple and well structured, and that operate
on a backlog of atomic requirements. This is particularly true for maintenance processes,
that naturally operate on an inflow of independent requests. At the same time, the study
provided important elements to evaluate the effectiveness of the simulator that could help
increase the understanding of relationships between important variables such as size and
WIP, and can be used as a means to support decision making and to forecast and manage
the risk in software process development.

Bibliography

[1] Poppendieck, M., and Poppendieck, T.,: Lean software development: An agile toolkit. Boston,
Massachusetts, USA: Addison Wesley, 2003. [cited at p. 1, 7]

[2] Womack, J.P., Jones, D.T., and Roos, D. :(1991), The Machine That Changed the World: The Story
of Lean Production, HarperBusiness. [cited at p. 2, 7]

[3] Anderson, D.J.: Kanban: Successful Evolutionary Change for Your Technology Business, Blue Hole
Press, 2010. [cited at p. 1, 8, 13, 27, 56, 58, 111]

[4] Kellner, M., Madachy R.J., and Raffo, M.: Software process simulation modeling: Why? What?
How. Journal of Systems and Software, vol. 45, 1999, pp. 91-105. [cited at p. 9, 33, 35, 43, 44]

[5] Zhang, H., Kitchenham, B., and Pfahl, D.: Reflections on 10 years of software process simulation
modeling: a systematic review, Proceedings of the International Conference on Software Process,
ICSP 2008, LNCS vol. 5007, Springer, 2008, pp. 345-356. [cited at p. 9, 43]

[6] Martins, K., Lewandrowski, U.: Inventory safety stocks of Kanban control systems. Production
Planning and Control, vol. 10, 1999, pp. 520-529. [cited at p. 1]

[7] Huang, P.Y, Rees, L.P. and Taylor BW.: A simulation analysis of the Japanese just-in-time technique
(with kanbans) for a multiline, multistage production system. Decision Sciences, vol. 14, 1983 pp.
326-344 [cited at p. 7, 26]

[8] Hurrion, R.D.: An example of simulation optimization using a neural network metamodel: find-
ing the optimum number of kanbans in a manufacturing system. Journal of the Operational Re-
search Society, vol. 48, 1997, pp. 1105-1112. [cited at p. 8, 26]

[9] Köchel, P., and Nieländer, U.: Kanban Optimization by Simulation and Evolution. Production
Planning & Control, Vol. 13, 2002, pp. 725â734. [cited at p. 8, 26]

[10] Hao, Q., and Shen, W.,: Implementing a hybrid simulation model for a Kanban-based material
handling system. Robotics and Computer-Integrated Manufacturing, vol. 24, 2008, pp. 635-646.
[cited at p. 8, 26]

[11] Melis, M., Turnu, I., Cau, A. and Concas, G.: Evaluating the Impact of Test-First Programming
and Pair Programming through Software Process Simulation. Software Process Improvement and
Practice, vol. 11, 2006, pp. 345-360. [cited at p. 9, 26]

[12] Melis, M., Turnu, I., Cau, A. and Concas, G.: Modeling and simulation of open source develop-
ment using an agile practice. Journal of Systems Architecture, vol. 52 , 2006, pp. 610-618. [cited at p. 9,

26]

115

116 BIBLIOGRAPHY

[13] Ladas, C.: Kanban simulation, online at:leansoftwareengineering.com/2008/11/20/kanban/-
simulation/, December 2010. [cited at p. 8, 26]

[14] Bowden, R.O., Hall,J.D. :Simulation optimization research and development, Proc. Winter Sim-
ulation Conference (WSC’98), 1998, pp.1693-1698. [cited at p. 2, 8, 55]

[15] Ohno, T.: Just-In-Time for Today and Tomorrow, Productivity Press, 1988. [cited at p. 7]

[16] Cockburn, A.: Crystal Clear: A Human-Powered Methodology for Small Teams, Addison Wesley,
2004. [cited at p. 7, 56]

[17] Ladas, C.: Scrumban. Modus Cooperandi Press, Seattle, WA, USA, 2008. [cited at p. 1, 7, 8, 56]

[18] Kniberg, H., and Skarin, M.: Kanban and Scrum making the most of both, C4Media Inc, 2010.
[cited at p. 8, 56]

[19] Craig, D.C., :Extensible hierarchical object-oriented logic simulation with an adaptable graph-
ical user interface. Master of science, School of Graduate Studies, Department of Computer Sci-
ence, Memorial University of Newfoundland, 1996. [cited at p. 38]

[20] Park, S., Kim H., Kang D., Bae D.H., :Developing a software process simulation model using
SPEM and analytical models, Volume 4, Number 3-4 , pp 223 â 236, 2008. [cited at p. -]

[21] Donzelli, P., Iazeolla, G., :Hybrid Simulation Modelling of the Software Process, Journal of Sys-
tems and Software, Volume 59, Issue 3, pp 227-235, 2001. [cited at p. -]

[22] Donzelli, P., and Iazeolla, G., :Using Process Models to test Process Assumptions within the SEL
Recommended Development Approach, 25th NASA Software Engineering Workshop, NASA-GSFC,
Greenbelt, MD, 2000. [cited at p. 44]

[23] Choi, K., Bae, D. and Kim, T., :An approach to a hybrid software process simulation using
DEVS formalism. Software Process: Improvement and Practice, Vol. 11, No. 4, pp.373â383, 2006.
[cited at p. -]

[24] Martin, R., Raffo, D., :A model of the software development process using both continuous and
discrete models., Software Process: Improvement and Practice, 5, pp. 147â157, 2000. [cited at p. 39,

40, 42, 44]

[25] Schriber, T.J., Brunner, D.T., :Inside discrete-event simulation software: how it works and why it
matters. In WSC â99: Proceedings of the 31st conference on Winter simulation, pages 72â80. ACM
Press, 1999. [cited at p. 41]

[26] Münch, J., Armbrust, O., Kowalczyk, M., Soto, M., :Software Process Definition and Management
The Fraunhofer IESE Series on Software and Systems Engineering [cited at p. -]

[27] Kreutzer, W., :System Simulation - Programming Styles and Languages. Addison Wesley, Reading
(U.S.A.), 1986. [cited at p. -]

[28] Fishman, G.S., :Discrete-Event Simulation: Modeling, Programming, and Analysis. Springer Se-
ries in Operations Research and Financial Engineering. Springer-Verlag, Berlin, 2001. [cited at p. 41]

[29] R., Martin, D., Raffo,: Application of a hybrid process simulation model to a software develop-
ment, Journal of Systems and Software, Volume 59, Number 3, 15 December 2001 , pp. 237-246(10)
[cited at p. 11, 44]

BIBLIOGRAPHY 117

[30] Rus I., Collofello J., Lakey P., :Software process simulation for reliability management., Journal of
Systems and Software , 46(2â3), pp. 173â182, 1999. [cited at p. 43]

[31] Lakey P., :A hybrid software process simulation model for project management. In Proceedings
of the International Workshop on Software Process Modeling and Simulation (ProSim â03), Port-
land, OR, 2003. [cited at p. 43]

[32] Wallace, L., Keil, M., Rai, A.: How software project risk affects project performance: An investi-
gation of the dimensions of risk and an exploratory model, Decision Sciences, 35, 289-321 (2004).
[cited at p. 73]

[33] Forrester, J.W. :Industrial Dynamics. Cambridge MA: Productivity Press, 1961 [cited at p. 39]

[34] Jones, C. :The Economics of Software Maintenance in the Twenty First Century, Available on-
line at: www.compaid.com/caiinternet/ezine/capersjones-maintenance.pdf, February 14, 2006.
[cited at p. 1, 3]

[35] The system Dynamics in Education Project MIT Road maps: A guide to learning system dynam-
ics. Published on: http://sysdyn.clexchange.org/road-maps/home.html, 2000 [cited at p. 3, 39]

[36] Fishman, G.S., :Discrete event simulation: Modeling, Programming, and Analysis. Springer Se-
ries in Operations Research and Financial Engineering. Springer-Verlag, Berlin, 2001 [cited at p. 40,

71]

[37] Ohno T., Mito S., Schmelzeis J., :Just-In-Time for Today and Tomorrow, Productivity Press, Cam-
bridge, MA, 1988. [cited at p. 10]

[38] Poppendieck, M., Poppendieck, T. :Implementing Lean Software Development From Concept to
Cash. Addison Wesley, Boston, 2006. [cited at p. 1, 10]

[39] Poppendieck, M., Cusumano, M.A. :Lean Software Development: A Tutorial, IEEE Software, vol.
29, pages 26-32, 2012. [cited at p. 9]

[40] Petersen, K., Wohlin, C. :Measuring the Flow in Lean Software Development. Software Practice
and Experience, vol. 41, 975-996, 2011. [cited at p. 9]

[41] Ikonen, M., Pirinen, E., Fagerholm, F., Kettunen, P., Abrahamsson, P. :On the Impact of Kanban
on Software Project Work - An Empirical Case Study Investigation. In 16th IEEE International Con-
ference on Engineering of Complex Computer Systems, pages 305-314, Las Vegas, NE, USA, 2011,
IEEE Computer Society Press. [cited at p. 2]

[42] Wang, X, Conboy, K, Cawley, O. :’Leagile’ software development: An experience report analysis of
the application of lean approaches in agile software development. Journal of Systems and Software,
vol. 85, pages 1287â1299, 2012. [cited at p. 2, 10]

[43] Sjøberg, D.I.K, Johnsen. A., Solberg, J. :Quantifying the Effect of Using Kanban versus Scrum: A
Case Study, IEEE Software, vol. 29, pages 47-53, 2012. [cited at p. -]

[44] Abdel-Hamid, T., Madnick, S. :Software Project Dynamics: An Integrated Approach, Prentice-
Hall, Upper Saddle River, NJ, 1991. [cited at p. 2, 39]

[45] Madachy, RJ., :Software Process Dynamics,Wiley-IEEE Press, Chichester, UK, 2008. [cited at p. -]

[46] Barghouti, NS., Rosenblum, DS. :A Case Study in Modeling a Human-Intensive, Corporate Soft-
ware Process, Proc. 3rd Int. Conf. On the Software Process (ICSP-3), Reston, Virginia, USA, October
10-11, 1994, IEEE CS Press, 99-110. [cited at p. 8]

118 BIBLIOGRAPHY

[47] Antoniol, G, Di Penta, M, Harman, M. :Search-based techniques applied to optimization of
project planning for a massive maintenance project. In 21st IEEE International Conference on Soft-
ware Maintenance, 240â249, Los Alamitos, California, USA, 2005. IEEE Computer Society Press.
[cited at p. 3]

[48] Antoniol, G, Di Penta, M, Cimitile, A, Di Lucca, GA, Di Penta, M. :Assessing staffing needs for a
software maintenance project through queuing simulation". IEEE Transactions on Software Engi-
neering 30, 1 (2004), 43-58. [cited at p. 9]

[49] Lin, CT., Huang, CY., :Staffing Level and Cost Analyses for Software Debugging Activities Through
Rate-Based Simulation Approaches. TR, Dec. 2009, 711-724. [cited at p. 10]

[50] Anderson, DJ., Concas, G., Lunesu, M.I., Marchesi, M. :Studying Lean-Kanban Approach Using
Software Process Simulation. Agile Processes in Software Engineering and Extreme Programming
12th International Conference, XP 2011, Madrid, Spain, May 10-13, 2011, Springer LNBIP vol. 77,
12-26. [cited at p. 9, 26, 74, 75]

[51] Anderson, DJ, Concas, G., Lunesu, M.I, Marchesi, M., Zhang, H. :A comparative study of Scrum
and Kanban approaches on a real case study using simulation. Agile Processes in Software En-
gineering and Extreme Programming 12th International Conference, XP 2012, Malmoe, Sweden,
May 21-25, 2012, Springer LNBIP vol. 111, 123-137. [cited at p. 8, 9, 26, 74, 109]

[52] Turner, R., Ingold, D., Lane, JA, Madachy, R., Anderson D. :Effectiveness of kanban approaches
in systems engineering within rapid response environments. Conference on Systems Engineer-
ing Research (CSER), March 19-22, 2012, St. Louis, MO, Procedia Computer Science, vol. 8, pages
309â314. [cited at p. 9, 10, 26]

[53] Turner, R, Madachy R, Ingold, D., Lane, JA. :Modeling kanban processes in systems engineering.
2012 International Conference on Software and System Process (ICSSP), June 2-3, 2012, pp. 23-27.
[cited at p. 9, 10, 26]

[54] Curtis, B. :Substantiating Programmer Variability. Proceedings of the IEEE, vol. 69, no. 7, 1981.
[cited at p. 85, 88]

[55] Wolverton, RW. :The Cost of Developing Large-Scale Software, IEEE Trans. on Computers, vol 23,
1975, 615-636. [cited at p. 58]

[56] Shadish, W., Cook, T., Campbell, D. :Experimental and Quasi-Experimental Designs for General-
ized Causal Inference. Houghton- Mifflin, Boston, 2002. [cited at p. 107, 108]

[57] Highsmith, J. :What is Agile Software Development? CrossTalk, The Journal of Defense Software
Engineering, October 2002, 4-9. [cited at p. 107, 108, 109]

[58] Albrecht, A.J. :Measuring application development productivity. Proceedings of the Joint SHARE,
GUIDE, and IBM Application Development Symposium, 83â92, Monterey, California, October
1979, IBM Corporation. [cited at p. -]

[59] Corona, E., Marchesi, M., Barabino, G., Grechi, D., Piccinno, L. :Size estimation of Web applica-
tions through Web CMF Object. Proc. of 3rd International Workshop on Emerging Trends in Soft-
ware Metrics (WETSoM), ICSE 2012, 3 June 2012, Zurich, Switzerland, 14-20. DOI 10.1109/WET-
SoM.2012.6226986. [cited at p. -]

[60] Humphrey, W.S., :Introduction to the Team Software Process, Addison Wesley, 1999. [cited at p. 8,

70]

BIBLIOGRAPHY 119

[61] Otero, L.D., Centeno, G., Ruiz-Torres, A.J., Otero, C.E.: :A systematic approach for resource allo-
cation in software projects. Comput. Ind. Eng. 56 (4) (2009) 1333-1339. [cited at p. 8]

[62] Robinson, S.: Simulation – The practice of model development and use. Wiley, Chichester, UK,
2004. [cited at p. 61]

[63] Schwaber, K., Beedle, M. :Agile software development with Scrum. Prentice Hall (2002).
[cited at p. 8]

[64] Siebers,P. O., Macal, C. M., Garnett, J., Buxton, D., and Pidd, M.,: Discrete-event simulation is
dead, long live agent-based simulation!. Journal of Simulation (2010) 4, pp. 204-210. [cited at p. 61]

[65] Version One.: State of Agile Survey 2010. Online at www.versionone.com. [cited at p. 8, 60]

[66] Maurer, F., Martel, S. :On the productivity of agile software practices: An industrial case study.
Retrieved September 20, 2004. [cited at p. 96]

[67] Moser R., Abrahamsson P., Pedrycz W., Sillitti A., and Succi G., :A case study on the impact of
refactoring on quality and productivity in an agile team. IFIP Central and East European Confer-
ence on Software Engineering Techniques, 2007. [cited at p. -]

[68] Abrahamsson,cP., Warsta, J., Siponen, M.T., Ronkainen,J., :New directions on agile methods: a
comparative analysis, in: Proceedings of the 25th International Conference on Software Engineer-
ing (ICSEâ03), IEEE Press, 2003. [cited at p. -]

[69] Dyb, T., and Dingsyr, T., :Empirical Studies of Agile Software Development: A Systematic Review,
Information and Softkanbaware Technology, vol. 50, nos. 9/10, pp. 833-859, 2008. [cited at p. -]

[70] Banks, C.M., Sokolowski, J.A., :Principles of Modeling and Simulation: A Multidisciplinary Ap-
proach, Edited by Published by John Wiley & Sons, Inc., Hoboken, New Jersey. [cited at p. 31]

[71] Zhang, H., Jeffery, R., Houston, D., Huang, L., Zhu, L., :Impact of Process Simulation on Software
Practice : An Initial Report, ICSE â11 Proceeding of the 33rd International Conference on Software
Engineering, pp. 1046â1056, ACM, NY (USA) [cited at p. 32, 34]

[72] A., Lamersdorf, J., Münch, A., FernÃ¡ndez- del Viso Torre, C., Rebate Sánchez, M., Heinz and
D. Rombach,: A rule-based model for customized risk identification and evaluation of task assign-
ment alternatives in distributed software development projects- ICGSE ’10 Proceedings of the 2010
5th IEEE International Conference on Global Software Engineering table of contents 209-218 Pub-
lisher IEEE Computer Society Washington, DC, USA Â©2010 ISBN: 978-0-7695-4122-8 [cited at p. 9]

[73] Cavrak,I., Orlic, M., Crnkovic, I.,:Collaboration patterns in distributed software development
projects-34th International Conference on Software Engineering (ICSE), 2012 , Page(s):1235-1244
[cited at p. 10]

[74] Alberts, C.J, Dorofee, A.J.: Risk Management Framework . Pittsburgh: Carnegie Mellon, Software
Engineering Institute. Techn. Report CMU/SEI-2010-TR-017 (2010). [cited at p. -]

[75] Chittister, C., Haimes, Y.: Assessment and Management of Soft-ware Technical Risk, IEEE Trans-
actions on Systems, Man, and Cybernetics 24, 187-202 (1994). [cited at p. -]

[76] Lowrance, William W.: Of Acceptable Risk: Science and the Determination of Safety. Los Altos,
Ca, William Kaufmann (1976). [cited at p. -]

120 BIBLIOGRAPHY

[77] Rutherford, K., Shannon, P., Judson, C., and Kidd, N. 2010. :From Chaos to Kanban, via
Scrum,Proceedings of the 11th International Conference on Agile Software Development, XP2010,
Trondheim, Norway: Springer Verlag, pp. 344-352 [cited at p. 101]

[78] Charette, R.N., :Why software fails, IEEE Spectrum, 2005. 42(9): pp. 42-49. [cited at p. 8, 101]

[79] Boehm, B.W., :Software risk management: principles and practices, IEEE Software, 1991. 8(1):
pp. 32-41. [cited at p. 8]

[80] Dedolph, F.M., :The Neglected Management Activity: Software Risk Management, Bell Labs
Technical Journal, 2003. 8(3): p. 91-95. [cited at p. 9]

[81] Pandian, C.R., :Applied Software Risk Management: A Guide for Software Project Managers,
Auerbach Publications, 2006. [cited at p. 9]

[82] Liu, D., Wang, Q., Xiao, J.: The role of software process simulation modeling in software risk
management: A systematic review. In: Proceedings of the 3rd International Symposium on Empir-
ical Software Engineering and Measurement (ESEM 2009), Lask Buena Vista, FL, October 2009, pp.
302â311. IEEE Computer Society, Los Alamitos (2009) [cited at p. 9]

[83] Nikitina, N., Kajko-Mattsson, M., :Developer-Driven Big Bang Process Transition from Scrum to
Kanban, Proc. 2011 International Conference on on Software and Systems Process (ICSSP 2011),
ACM, 2011. [cited at p. 10, 101]

[84] Cao, L., Ramesh, B., and Abdel-ÂHamid, T. :Modeling Dynamics in Agile Software Development.
ACM Transactions on Management, 1 (2010). [cited at p. 9]

[85] Abdel-Hamid, T.K., Madnick, S.E.: Software Project Dynamics: An Integrated Approach. Prentice
Hall, Englewood Cliffs (1991) [cited at p. -]

[86] Cocco, L., Mannaro,K., Concas, G., and Marchesi, M., :Simulating Kanban and Scrum
vs.Waterfall with System Dynamics. Agile Processes in Software Engineering and Extreme Pro-
gramming Lecture Notes in Business Information Processing, 2011, Volume 77, Part 1, 117-131,.
[cited at p. 9]

[87] Concas, G., Lunesu, M.I., Marchesi, M., Zhang, H.: Simulation of Software Maintenance Process,
with and without a Work-In-Process Limit. submitted for publication (2013). [cited at p. 109]

List of Publications Related to the
Thesis

Published papers

Conference papers

• Anderson, D.J., Concas,G., Lunesu, M. I., and Marchesi, M.,: Studying Lean-Kanban
Approach Using Software Process Simulation. in Agile Processes in Software Engineer-
ing and Extreme Programming 12th International Conference, XP 2011, Madrid, Spain,
May 10-13, 2011, Springer LNBIP vol. 77, pp. 12-26.

• Anderson, D.J., Concas,G., Lunesu, M. I., Marchesi, M., and Zhang, H.,: A compara-
tive study of Scrum and Kanban approaches on a real case study using simulation. in
Agile Processes in Software Engineering and Extreme Programming 12th International
Conference, XP 2012, Malmoe, Sweden, May 21-25, 2012, Springer LNBIP vol. 111, pp.
123-137.

• Concas, G., Lunesu, M.I., Marchesi, M., and Zhang, H., Simulation of Software Mainte-
nance Process, with and without a Work-In-Process Limit Published in Journal of Soft-
ware: Evolution and Process

Submitted papers

• Concas, G., Lunesu, M.I., and Marchesi, M. Assessing the risk of software development
in agile methodologies using simulation Submitted

Not yet Submitted papers

Lunesu, M.I., Münch, J., and Marchesi, M. Simulation of a Distributed Software Devel-
opment Project in the Cloud

121

Appendices

123

Appendix A

Extra Data

This section collects additional content to those presented in Experimental Results chapter.
In this section we presented the analysis made on the data that come from the Chinese

firm. This section represent the pre-processing phase needed before the use of data as input
of the simulator. After this important phase, the data was used as input of the simulation
model in order to perform hundreds of simulation runs useful to assess the simulator and to
produce output tha we can see in the Experimental Results section. In this section we show
the detailed analysis made as follows.

The dataset consists of 5854 sets of data, each referring to a bug. The dates associated
to the bugs vary between 2005 and 2010. For each bug, there are the following 12 data (non
always set):

• Issue Id

• Request Type

• Issue Status

• Issue State

• Report Date

• Product Version

• Component

• Submit Peg

• Analysis Time

• Answer Date

• Date Of Change

• Fixed Time

• Verify Date

125

126 APPENDIX A. EXTRA DATA

Some observations about the data:

• The most important subdivision seems between bugs whose Issue Status is CLOSED
and those whose status is OPEN.

• There are 3839 bugs CLOSED, and 2015 OPEN.

• The Issue States of CLOSED bugs can be only three: Resolved, NoFurtherAction and
Duplicate.

• The Issue States of OPEN bugs can be ten: NoFurtherAction Postponed Duplicate Sus-
pend NotAccepted Submitted NeedMoreInfo Updated Analyzed Resolved.

• All bugs have always set their Report Date and Date Of Change.

• CLOSED bugs have always set their Answer Date and Verify Date.

• OPEN bugs have often not set their Answer Date and Verify Date.

• The fields Analysis Time and Fixed Time are set only sporadically.

The weekdays the bugs were reported or changed state are summarized in Table 1:
Most of the activity took place in the first four days of the week. A reduced activity is

present on Friday. The lowest activity is on Saturday – though not absent. On Sunday there
is a fair amount of activity. For the analysis and simulation of the process, we might consider
a six-day week, in practice merging Saturday and Sunday activities in one day. The proposed
models do not consider the lower activity in the last two days of the six-day week, but will
average out these week-end effects.

Information coming from the database

Initial information about the bug-fixing team was that is was composed of about 6-7 mem-
bers, though this number varied. Further information collected from the student:

• There are two teams: the Developers who fix the bugs, and the Testers who submit the
bugs and verify that they are fixed.

• The Developers can set the following states: Resolved, NoFurtherAction, Analyzed,
Suspend, Duplicate, Updated.

• The testers can set Submitted, Updated, NotAccepted.

• The Answer Date is the date when developer claim a bug is fixed.

• Once a developers claims a bug fix, he will set the bug’s states as shown above.

127

• The testers then verify it. If NotAccepted, the bug is set to OPEN. Otherwise, the bug is
set to CLOSED.

• In average, it took testers 15 minutes to verify a bug fix.

• When a bug is created, the state is Submitted. For some bugs, when additional infor-
mation comes the bug status is changed to Updated.

• For some bugs, the developers think they are related to certain user-requests and new
features, so the developers can create Enhancement for them. Around 30%-40% en-
hancements are related to bugs.

• For these bugs, the fixing time are usually long.

• In general, bugs with higher Submit Peg will be handled first. Bugs with lower Submit
Peg values will be dealt with later.

• All dates in the EXCEL file were generated automatically by the system when an ac-
tion was taken by either developers or testers. The student was a tester and doesn’t
know much about the organizational structure of the development team. Some more
questions were submitted to the student, summarized with their answers in Table 2.

Issues and their states

A possible state diagram of the Issue States and their transitions is shown in Fig. 1. Note
that NotAccepted state is marked as final, though all 39 bugs in this state are still marked as
OPEN. Some of these bugs have a reporting date of 2005 and 2006, so it is argued that this
state will never change further. In the diagram, it is assumed that a bug is always analyzed
(except for NotAccepted bugs) and, if it is suspended or if more information is needed, it is
then analyzed again. In the followings, we will start considering only CLOSED bugs, because
they are more complete and suitable to be studied.

128 APPENDIX A. EXTRA DATA

CLOSED Bugs Analysis

CLOSED bugs are 3839. Among them, Duplicate are 456, NoFurtherAction are 898, and Re-
solved are the remaining 2485. The followings table reports basic statistics of the times (in
days) elapsed from the report date to the answer date (Answer Time), and from the answer
date to the verify date (Answer to Verify). Note that the verify dates and the change dates
are almost always the same, so the time from Verify to Change is almost always zero. Table
reports some statistics on this time only for Resolved bugs.

Defects vs. Enhancements

In the analyzed data, there are 5038 defects and 816 enhancement requests. Table 4 reports
some data about OPEN and CLOSED defects and enhancements.

Note that the relative percentage of enhancements with respect to defects is about 10%
for CLOSED issues, and becomes 31% for open issues. This means that enhancements tend
to stay open for a longer time – this is probably due to two causes: the defect correction is
generally more urgent than enhancement upgrading, and enhancements need usually more
work than defects. The average and standard deviation of the days to fix defects for closed
issues is reported in Table 5:

129

Times of arrival and issues in and out

In Fig. 2 we show the data representing the day of arrival of all issues, with respect to 1/2/2005,
that is the report date of the first issue recorded. All the 5854 data are ordered by day, and are
reported along x axis; their day is reported along y axis. Note that in the first 1000 days (un-
til roughly 1/11/2007) only 251 issues arrived – about one in three days. In the period from
1/11/2007 to 1/11/2010 there were about 5600 issues, with an average of about 5 issues per

130 APPENDIX A. EXTRA DATA

day, at a rate fairly constant, with a slight increase in the last year. In fact, in the dataset there
is no item whose Date of Change is before 12/12/2007. This means that requests closed be-
fore that date are not reported in the dataset, and explains the strange behavior shown in Fig.
2. The 251 issues âarrivedâ before 12/10/2007 are therefore the issues still under work at that
date. Fig. 3 shows the total nr. of issues entered into the system, exited from it, and whose
work is in progress as a function of the number of days from 12/10/2007, until 1/11/2010.

As you can see, the team devoted to fix bugs was not able to keep up with the pace of
arrival of bugs for about two years (more than 700 days), until the number of issues waiting
to be solved reached the number of about 2000. Then, the team managed to keep up with
new arrivals and this number did not grow further. This is also partially due to a slowdown
of issue arrivals, that after day 800 changed from about 6 issues/day to about 3 issues/day.

Consequently, we should consider as a starting date for our analysis the date of 12/10/2007,
keeping the issues with report date before this date as initial state of the system. In this way,
the dataset becomes balanced and unbiased.

Statistics about issue management

When the issue management team cannot keep up the pace of input issues, the size of work
in process (WIP) increases, and the number of issues completed (out issues) depends only
on the team’s capacity, and not on the issues in input. From Fig. 3, it is patent that the
number of issues completed follows three different patterns: 1. it is quite low until about
day 400 (about 1.5 issues completed per day); 2. it suddenly increases between days 400 and
800 (to about 6.5 issues per day); 3. it slows down again to about 2.5 issues per day after day
800. In the last days, both arriving and closed issues slow down. This looks related to the end
of data collection rather than to actual events. We will not consider therefore variations after
day 1030, that is after 7/8/2010.

We make the hypothesis that the sudden variations in completion rates of issues for peri-
ods 1-3, were not due to substantial changes in issue quality, or in developers’ skills, because
we have no evidence of this.

Consequently, we assume that such change was due to a change in the team size. The

131

only information we have about team size is an initial estimate of about 6-7 people. We
assume that this size refers to the period when most issues per day were fixed on average,
Table 6 summarizes the hypotheses on team size and its ability to fix bugs. The different
average times to fix bugs are needed to fit empirical averages. They represent the average
time of actual work needed to fix a bug, including analysis, coding and final testing (which
on average takes 15’). These figures include also possible rework.

If needed, the times shown in Table 6 might change varying the average team size in the
various periods, but they would be different anyway. The differences might be explained by
the fact that, in different periods, the bug-fixing developers were devoted to bug fixing not
at 100% of their time. Regarding arrival times of bug report, Fig. 4 shows the number of
bugs reported in each week after 12/10/2007. The bugs are cumulated in weeks owing to the
irregular arrival pattern during a week.

Fig. 4 shows a short transitory at the beginning, lasting about 14 weeks. Then arrivals are
roughly divided in two regimes. The first 800 days (weeks 15-114), and the last ones (weeks
115-150). The former regime (100 weeks) has mean = 44.8 and standard deviation = 17.9.
The latter regime (36 weeks) has mean = 22.7 and standard deviation = 15.3. Fig.5 shows the

132 APPENDIX A. EXTRA DATA

Cumulative Distribution Function of the nr. of reports per week in the two regimes, together
with their best-fit distributions â Poisson, Normal and Gamma. The Gamma distribution is
by far the best fit of empirical data, and should be used for synthetic data generation.

A Kolmogorov-Smirnov test on the best-fit Gamma distribution rejects the null hypothe-
ses in the first regime (weeks 15-114) with p=0.9913, and in the second regime (weeks 115-
150) with p=0.8744. Note that applying the K-S test using Gamma parameters computed
from the fitted data is not considered a good statistical practice, though. The K-S test ap-
plied to the Normal distribution in the same way gives p = 0.641 and p = 0.758, respec-
tively. The Shapiro-Wilk test for normality rejects the Normality hypothesis with p = 0.993
and p = 0.939, respectively.

Analysis of transit times of issues

We first examined the distribution of times to perform analysis, that is the number of days
spanning from the arrival date to the date of answer of issues. To fit distributions to these
data we had to strip the cases in which there is no answer date, and those whose time is zero.
Table 7 summarizes these data, for all reported bugs with an answer date.

Since the studied distribution is clearly fat-tailed, we plotted its Complementary CDF
in log-log scale, and tried to fit it with Gamma, Lognormal, Weibull and Negative Binomial
distributions. The fit was performed only on positive data. Fig. 6 shows the CCDF of the
empirical data, and of the best-fitting distributions. Note that Gamma and Lognormal dis-
tributions were fitted using best-likelihood parameters (analytical formula using mean and
variance of the data), while Weibull and Negative Binomial parameters were found using an
optimization procedure (fitdistr() function of MASS package of R).

No tested distribution is able to perfectly follow the data. Overall, the Weibull distribution
looks the best for low values of x, and is also not bad in the tail. We then examined the
distribution of times to close the bug from analysis, that is the number of days spanning
from the date of answer to the date of change of issues. To fit distributions to these data we
had again to strip the cases in which there is no answer date, and those whose time is zero.
Table 8 summarizes these data, for all reported bugs with an answer date.

We plotted its CCDF in log-log scale, and tried to fit it with Gamma, Lognormal, Weibull
and Negative Binomial distributions. The fit was performed only on positive data. Fig. 7
shows the CCDF of the empirical times, and of the best-fitting distributions, as in the previ-
ous case. The Weibull and Lognormal distributions look best to fit these data.

133

Eventually, we examined the distribution of times to close the bug from verification, that
is the number of days spanning from the date of verification to the date of change of issues.
To fit distributions to these data we had again to strip the cases in which there is no answer
date, and those whose time is zero. Table 9 summarizes these data, for all reported bugs with
an answer date. Note that in only about 3% of cases there is a delay between verification
date and change date. When this is the case, however, this delay tends to be quite long, with
a mean of 166 days and a median of 103 days.

We plotted its CCDF in log-log scale, and tried again to fit it with Gamma, Lognormal,
Weibull and Negative Binomial distributions. The fit was performed only on positive data.
Fig. 8 shows the CCDF of the empirical times, and of the best-fitting distributions. In this
case, all four distributions are able to fit the curve very well, with the exception perhaps of
the Gamma distribution.

Sub Analysis of transit times as a function of priority and state

We computed basic statistics on the total completion times of CLOSED issues, in function
of their priority. We remember that priorities vary from zero (lowest) to 30 (highest). Fig. 9
shows a plot of the reciprocal of the median completion (or transit) time as a function of the
priority. The data points follow very well a straight line, denoting that completion time is
roughly inversely proportional to priority. The only outlier are times of issues with priority
zero, that are smaller than expected, suggesting that a value o zero means no priority rather
than the lowest possible priority.

Table 10 shows the basic statistics of completion times of CLOSED issues, for the various
possible priorities. As you can see, the data relative to priority zero are closer to the data of
priority 15 (average priority value) rather than to the data relative to priority one.

The number of issues per priority class looks not evenly distributed, with a clear pref-
erence for higher values, the mode being priority = 21. An accurate analysis of these data,
however, is not useful because in the simulations we will use real data, with their actual pri-
orities.

A possible Kanban model for bug maintenance

The sequence of activities performed when a bug-fixing or enhancement request arrives is
reported in Fig. 10. The amount of work needed to complete a request varies in a broad
range, from a few hours to many days of work. The average arrival rate of requests is shown
in Table 6, for each of the three periods with different issue input rate. This arrival rate may
assumed to follow a Poisson distribution with average issues per day shown in Table 6. Us-
ing a Kanban board approach to manage the process, the activities/columns of the Kanban
board might be the following:

134 APPENDIX A. EXTRA DATA

1. First Screening: this is not an activity subject to limits, but it represents the choice of
the work items to put in the input queue. A small percentage of items is immediately
marked as Duplicate or No Further Action, but these items in practice do not furtherly
affect the process. The result of this activity is a column Input Queue holding the work
items to process.

2. Analysis: the first activity of the process, that analyzes the requests. After analysis,
some requests are marked as Duplicate or No Further Action, and are put in the Done
column. Other requests may require more information, or be suspended for some
reason.

3. Coding: the second activity of the process, when the defects are actually fixed, or the
enhancements done.

4. Verification: the third and last activity, when the Fig 10: A flow diagram represent-
ing the work made is verified and accepted. In some cases, bug-fixing activities and
the information flows between them. the bug can be sent back to the analysis phase,
because it did not pass the verification. The test team was actually separated from
the development team, but in a Kanban board approach this can be easily accounted
for by enforcing the constraint that test team members can work only on Verification,
while development team members can work only on Analysis and Coding activities.

5. Done : the last column of the board, reporting the work items in CLOSED status.

The work items in this system are the bug-fixing or enhancement requests. Each work item
is characterized by:

1. An identifier.

1. A weight, expressing the needed amount of work (see later).

1. A priority, which corresponds to the Submit Peg values of items, from 30 to 0 in de-
creasing order of importance.

Since the distribution of times actually needed to close the work on each request is fat-
tailed, and looks to follow a Weibull distribution, it is sensible to assume also a Weibull dis-
tribution of the working time needed to fix bugs, with average given in Table 6, and standard
deviation to be determined by empirical data.

Note that, from Tables 7 e 8, the average total time to analyze a request is 107.3 days (91.0
working days of a 6-days week), while the average time to close a request is 162.8 days (139.5
working days). This means that for most of the time the requests were left unattended and
nobody worked on them. This fact can partially attributed to external factors – for instance
some requests are in Suspended, Postponed or NeedMoreInfo state –an partially to lack of
organization. The Kanban approach should help under this respect.

In the model, requests (work items) will enter either reflecting the dates and priorities
of real data, or following a Gamma distribution with average rate that differs in the three
periods, and can be found in Table 6. A small percentage will be chose at random and im-
mediately marked as Duplicate or NFA and put in the Done, or CLOSED, status.

From time to time, when the number of items in the TO DO column goes under a given
threshold, items in the backlog are chosen and put in the TO DO column (which has a limit).

135

This is made accounting for the priority and time already spent in the queue of pending
requests. Then, items are pulled to the Analysis column and work on them is performed.
When the analysis is done, some items are randomly chosen and again immediately marked
as Duplicate or NFA and put in the Done column. Other items are chosen at random and
put in a blocked status, for a random time interval, to model the requests in Suspended,
Postponed or NeedMoreInfo state.

The effects of the various policies to manage these blocked items will be object of study.
After Analysis, the remaining, non blocked items will be pulled to the Coding column, where
coding takes place. For the sake of simplicity, we may assume that these items cannot be
further blocked. The last activity is Verification, performed by members of the team devoted
only to this task (to model the fact that development and testing teams were in fact different
teams). When an item is verified, it is put to the DONE column. The possibility that an item
can miss the verification and is put back to the Analysis phase should be considered, but in
a first implementation of the simulator will be skipped.

A final observation: Applying a structured process like Kanban, while the total number
of requests processed in the considered time interval will be the same of existing empirical
data, the average and maximum time to process a request can drop dramatically. This would
mimic the observation made

	Introduction
	Related Work
	Lean-Kanban Approach
	Lean Kanban Development
	Development for feature
	Kanban approach

	Software Process Simulation Modeling
	What is a simulation model?
	Advantages of simulation
	Common uses of simulation modelling
	Simulation techniques and approaches
	Continuous Simulation
	Discrete Event Simulation
	Agent-Based Simulation
	Hybrid Simulation

	 Model Description
	Simulation Model Description
	 Description of the Actors
	 Developers
	Features and Activities
	Events

	The Object-oriented Model
	Calibration and Validation

	Applications of the Simulation Model
	Case Study One
	Description of the approach
	Calibration of the model

	Case Study Two
	Description of the approach
	Calibration of the model

	Case Study Three
	Case of Chinese Firm
	Description of the approach
	Calibration of the model
	 Case of Microsoft Maintenance Project
	Calibration of the model

	Case Study Four
	Description of the approach
	Calibration of the model

	 Experimental Results
	Simulation Results
	Results Case Study One
	Optimization of the activity limits

	Results Case Study Two
	The original process
	The Kanban process
	The Scrum process

	 Results Case Study Three
	Results of the Chinese Firm case
	Results of Microsoft case

	Results Case Study Four

	Discussion of Experimental Results
	Threats to validity
	Threats to internal validity
	Threats to external validity
	Threats to construct validity

	 Conclusion and future work
	Bibliography
	Extra Data

