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Sommario 

Il tema principale di questa tesi è la soluzione di problemi ingegneristici legati all’analisi e 

alla sintesi di sistemi dinamici non lineari. I sistemi dinamici non lineari sono di largo 

interesse per ingegneri, fisici e matematici, e questo è dovuto al fatto che la maggior parte 

dei sistemi fisici in natura è intrinsecamente non lineare. 

 

La non linearità di questi sistemi ha conseguenze sulla loro evoluzione temporale, che in 

certi casi può rivelarsi del tutto imprevedibile, apparentemente casuale, seppure 

fondamentalmente deterministica. I sistemi caotici sono un esempio lampante di questo 

comportamento. Nella maggior parte dei casi non esistono delle regole standard per l’analisi 

di questi sistemi. Spesso, le soluzioni non possono essere ottenute in forma chiusa, ed è 

necessario ricorrere a tecniche di integrazione numerica, che, in caso di elevata sensibilità 

alle condizioni iniziali, portano a problemi di mal condizionamento e di elevato costo 

computazionale. 

 

La teoria dei sistemi dinamici, la branca della matematica usata per descrivere il 

comportamento di questi sistemi, non si concentra sulla ricerca di soluzioni esatte per le 

equazioni che descrivono il sistema dinamico, ma piuttosto sull’analisi del comportamento a 

lungo termine del sistema, per sapere se questo si stabilizzi in uno stato stabile e per sapere 

quali siano i possibili attrattori, ad esempio, attrattori quasi-periodici o caotici. 

 

Per quanto riguarda la sintesi, sia da un punto di vista pratico che teorico, è molto 

importante lo sviluppo di metodi in grado di sintetizzare questi sistemi. Sebbene per i 

sistemi lineari sia stata sviluppata una teoria ampia e esaustiva, al momento non esiste 

alcuna formulazione completa per la sintesi di sistemi non lineari. 

 

In questa tesi saranno affrontati problemi di caratterizzazione, analisi e sintesi, legati allo 

studio di sistemi non lineari e caotici. 

 

La caratterizzazione dinamica di un sistema non lineare permette di individuarne il 

comportamento qualitativo a lungo termine. Gli esponenti di Lyapunov sono degli strumenti 

che permettono di determinare il comportamento asintotico di un sistema dinamico. Essi 

danno informazioni circa il tasso di divergenza di traiettorie vicine, caratteristica chiave 

delle dinamiche caotiche. Le tecniche esistenti per il calcolo degli esponenti di Lyapunov 

sono computazionalmente costose, e questo fatto ha in qualche modo precluso l’uso 

estensivo di questi strumenti in problemi di grandi dimensioni. Inoltre, durante il calcolo 

degli esponenti sorgono dei problemi di tipo numerico, per ciò il calcolo deve essere 

affrontato con cautela. L’implementazione di algoritmi veloci e accurati per il calcolo degli 

esponenti di Lyapunov è un problema di interesse attuale. 

 

In molti casi pratici il vettore di stato del sistema non è disponibile, e una serie temporale 

rappresenta l’unica informazione a disposizione. L’analisi di serie storiche è un metodo di 

analisi dei dati provenienti da serie temporali che ha lo scopo di estrarre delle statistiche 

significative e altre caratteristiche dei dati, e di ottenere una comprensione della struttura e 

dei fattori fondamentali che hanno prodotto i dati osservati. Per esempio, un problema dei 

reattori a fusione termonucleare controllata è l’analisi di serie storiche della radiazione Dα, 

caratteristica del fenomeno chiamato Edge Localized Modes (ELMs). La comprensione e il 
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controllo degli ELMs sono problemi cruciali per il funzionamento di ITER, in cui il type-I 

ELMy H-mode è stato scelto come scenario di funzionamento standard. Determinare se la 

dinamica degli ELM sia caotica o casuale è cruciale per la corretta descrizione dell’ELM 

cycle. La caratterizzazione dinamica effettuata sulle serie temporali ricorrendo al cosiddetto 

spazio di embedding, può essere utilizzata per distinguere serie random da serie caotiche. 

 

Uno dei problemi più frequenti che si incontra nell’analisi di serie storiche sperimentali è la 

presenza di rumore, che in alcuni casi può raggiungere anche il 10% o il 20% del segnale. È 

quindi essenziale , prima di ogni analisi, sviluppare una tecnica appropriata e robusta per il 

denosing. 

 

Quando il modello del sistema è noto, l’analisi di serie storiche può essere applicata al 

rilevamento di guasti. Questo problema può essere formalizzato come un problema di 

identificazione dei parametri. In questi casi, la teorie dell’algebra differenziale fornisce utili 

informazioni circa la natura dei rapporti fra l’osservabile scalare, le variabili di stato e gli 

altri parametri del sistema. 

 

La sintesi di sistemi caotici è un problema fondamentale e interessante. Questi sistemi non 

implicano soltanto un metodo di realizzazione di modelli matematici esistenti ma anche di 

importanti sistemi fisici reali. La maggior parte dei metodi presentati in letteratura dimostra 

numericamente la presenza di dinamiche caotiche, per mezzo del calcolo degli esponenti di 

Lyapunov. In particolare, le dinamiche ipercaotiche sono identificate dalla presenza di due 

esponenti di Lyapunov positivi. 
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Introduction 

The main topic of this thesis is the solution of engineering problems related to the analysis 

and synthesis of nonlinear dynamical systems. Nonlinear dynamical systems are of wide 

interest to engineers, physicists and mathematicians, and this is due to the fact that most of 

physical systems in nature are inherently non-linear.  

 

The nonlinearity of these systems has consequences on their time-evolution, which in some 

cases can be completely unpredictable, apparently random, although fundamentally 

deterministic. Chaotic systems are striking examples of this. In most cases, there are no hard 

and fast rules to analyse these systems. Often, their solutions cannot be obtained in closed 

form, and it is necessary to resort to numerical integration techniques, which, in case of high 

sensitivity to initial conditions, lead to ill-conditioning problems and high computational 

costs. 

 

The dynamical system theory, the branch of mathematics used to describe the behaviour of 

these systems, focuses not on finding exact solutions to the equations describing the 

dynamical system, but rather on knowing if the system stabilises to a steady state in the long 

term, and what are the possible attractors, e.g. a quasi-periodic or chaotic attractors. 

 

Regarding the synthesis, from both a practical and a theoretical standpoint, it is very 

desirable to develop methods of synthesizing these systems. Although extensive theory has 

been developed for linear systems, no complete formulation for nonlinear systems synthesis 

is present today. 

 

In this dissertation, problems of characterization, analysis and synthesis, related to the study 

of nonlinear and chaotic systems, will be addressed. 

 

Dynamical characterization of nonlinear systems can identify long-term qualitative 

behaviours. Lyapunov exponents allow to determine the long-term asymptotic behaviour of 

a dynamical system. They give information about the rate of divergence of nearby 

trajectories, a key component of chaotic dynamics. Existing techniques to evaluate 

Lyapunov exponents are expensive, and this fact may have precluded extensive use of the 

Lyapunov exponents in large dimensional problems. Moreover, numerical problems arise 

during the Lyapunov exponents evaluation, so it has to be approached with care. The 

implementation of fast and accurate algorithms for Lyapunov exponents evaluation is a 

problem of current concern.  

 

In many practical situations the state vector of the system is not available, and the only 

information available is given by one time series. Time series analysis is a method for 

analysing time series data in order to extract meaningful statistics and other characteristics 

of the data and obtain an understanding of the underlying forces and structure that produced 

the observed data. For example, an issue in controlled thermonuclear fusion reactors is the 

analysis of the time series of Dα particle radiation, characteristic of the phenomena called 

Edge Localized Modes (ELMs). Understanding and control of ELMs are crucial issues for 

the operation of ITER where the type-I ELMy H-mode has been chosen as the standard 

operation scenario. Determine whether ELM dynamic is chaotic or random is crucial to 

correctly describe the ELM cycle. Dynamical characterization carried out on the time series 
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resorting to the so called embedding space, can be used to distinguish between random and 

chaotic time series. 

 

One of the most frequent problems encountered in experimental time series analysis is the 

presence of noise, which can reach in some cases even 10 or 20% of the signal. It is 

therefore essential, prior to any analysis, to develop an appropriate and robust denoising 

technique. 

 

When the system model is known, time series analysis can be applied to fault detection. The 

fault detection problem can be formalized as a problem of parameter identification. In these 

cases, the differential algebra theory provides useful information about the nature of 

relations between the scalar observable, the other state variables and the system parameters. 

 

Synthesis of chaotic systems is a fundamental and interesting problem. These systems do not 

imply just a realization method of existing mathematical models but also of important real 

physical systems. The majority of the methods presented in literature numerically 

demonstrates the presence of chaotic dynamic, evaluating Lyapunov exponents. In 

particular, hyperchaotic dynamic is identified by the presence of two positive Lyapunov 

exponents. 

 

Organization of the thesis 
 

The thesis is organized as follows. 

 

In the first part (chapters 1-6), an overview of the state of the art is given. 

 

 In chapter 1 an overview on nonlinear dynamical systems is given, with particular 

attention to the Lyapunov exponents evaluation for the determination of qualitative 

behaviours. 

 

 Chapter 2 deals with an overview on synthesis of nonlinear systems, in particular of 

hyperchaotic systems. 

 

 In chapter 3 an overview on statistics and statistical methods for data analysis is 

presented. In addition, some concepts related to graph theory are introduced. 

 

 Chapter 4 deals with time series analysis.  

 

 In chapter 5 an overview on neural networks, as a tool for nonlinear regression problems, 

is given.  

 

 In chapter 6, some concepts about controlled thermonuclear fusion reactors are 

introduced, with particular attention to the Edge Localized Modes (ELMs) phenomenon. 

 

Applications are discussed in the second part (chapter 7-11).  

 

 In chapter 7, a new algorithm, (PSLE) which optimizes Lyapunov exponents estimation 

in piecewise linear systems is described.  
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 In chapter 8, a systematic method to synthetize systems of order 2n characterized by two 

positive Lyapunov exponents, by coupling nth-order chaotic systems with a suitable 

nonlinear coupling function, is proposed. 

 

 Chapter 9 deals with the fault detection problem. In this chapter, a traditional Multi-

Layer Perceptron with a tapped delay line as input is trained to identify the parameters of 

the Chua’s circuit when fed with a sequence of values of a scalar state variable. 

 

 In chapter 10, a new denoising method, based on the wavelet transform of the noisy 

signal, is described.  

 

 Chapter 11 deals with the statistical analysis and dynamical characterization of the 

ELMs time series. 

 





Part I. 

Theory 
 

 

 

 

 

…and the flame of the candle thins out slowly … 
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Chapter 1 

Nonlinear dynamical systems analysis 

In this chapter, an overview on nonlinear dynamical systems is given, with particular 

attention to the Lyapunov exponents evaluation for the determination of qualitative 

behaviours. 

 

1.1 Continuous-time dynamical systems 
 

A dynamical system is a system whose state varies over time. Mathematically, a dynamical 

system consists of a state space or phase space and a rule, called the dynamic, for 

determining which state corresponds at a given future time to a given present state. In a 

deterministic dynamical system the state, at any time, is completely determined by its initial 

state and dynamic. 

 

A deterministic dynamical system may have a continuous or discrete state space and a 

continuous-time or discrete-time dynamic. The evolution of the state of a continuous-time 

dynamical system is described by a system of ordinary differential equations called state 

equations. 

 

Theorem 1.1.1: (Existence and uniqueness of solution for a differential equation) 
Consider a continuous-time deterministic dynamical system defined by a system of ordinary 

differential equations of the form 

 

    ttt ,xfx   (1.1.1) 

 

where   nt Rx  is called the state,  tx  denotes the derivative of  tx  with respect to time, 

  00 xx t  is called the initial condition, and the map   nn RRR  :,f  is continuous 

almost everywhere on RRn
 and globally Lipschitz in x . Then, for each 

   RRnt00,x , there exists a continuous function   nt RR  :,; 00xφ  such that 

  0000 ,; xxφ tt  and     ttttt ,,;,; 0000 xφfxφ  . Furthermore, this function is unique. The 

function  00,; txφ   is called the solution or trajectory through  00 , tx  of the differential 

equation (1.1.1). 

 

The initial time 0t  can be chosen, without loss of generality, unless otherwise explicitly 

stated, to be zero, for the sake of simplicity. 

 

If the map  ,f  of a continuous-time deterministic dynamical system depends only on the 

state and is independent of time t, then the system is said to be  autonomous and may be 

written as 

 

 xfx  . (1.1.2) 
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If, in addition, the map   nn RR  :f  is Lipschitz, then there is a unique continuous 

function   nRR  :, 0xφ  (called the trajectory through x0), which satisfies   000
xxφ t  

and     00 xφfxφ tt   where, for shorthand, the map   nnt RR  :,φ  has been denoted by 

tφ . 

 

Otherwise, if the map  ,f  of a continuous-time deterministic dynamical is dependent of 

time t, the system is said to be non-autonomous. 

A non-autonomous, n-dimensional, continuous-time dynamical system may be transformed 

to an (n+1)-dimensional autonomous system by appending time as an additional state 

variable and writing 

 

      
 












1

,

1

1

tx

txtt

n

n



 xfx
. (1.1.3) 

 

1.2 Discrete-time dynamical systems 
 

Consider a discrete-time deterministic dynamical system defined by a system of difference 

equations of the form 

 

    kkk ,1 xgx   (1.2.1) 

 

where   nk Rx  is called the state,   00 xx k  is the initial condition, and 

  nn RZR  :,g  maps the current state  kx  into the next state  1kx , where Z0k . 

By analogy with the continuous-time case, there exists a function   nk RZ  :,; 00xφ  such 

that   0000 ,; xxφ kk  and     kkkkk ,,;,;1 0000 xφgxφ  . The function  00 ,; kxφ   is 

called the solution or trajectory through  00 ,kx  of the difference equation (1.2.1). 

 

The initial iterate 0k  can be chosen, without loss of generality, unless otherwise explicitly 

stated, to be zero, for the sake of simplicity. 

 

If the map  ,g  of a discrete-time dynamical system depends only on the state  kx  and is 

independent of k, then the system is said to be autonomous and may be written more simply 

as 

 

 kk xgx 1  (1.2.2) 

 

where kx  is shorthand for  kx . 

 

Otherwise, if the map  ,g  of a discrete-time dynamical system is dependent of k, then the 

system is said to be non-autonomous. [Chen 2002] 
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By analogy with the continuous-time case, a non-autonomous, n-dimensional, discrete-time 

dynamical system may be transformed to an (n+1)-dimensional autonomous system by 

appending the iteration as an additional state variable and writing 

 

      
 












kkx

kxkk

n

n

1

1,1 xgx
. (1.2.3) 

 

1.3 Affine dynamical systems 
 

Definition 1.3.1: A continuous-time dynamical system of the form 

 

       tttt fxAx   (1.3.1) 

 

where A(t) is an nn  matrix and f(t) is a vector function, is called affine. 

 

Definition 1.3.2: A continuous-time affine dynamical system of the form (1.3.1) is called 

linear if the vector function f(t) is null. 

 

Any set of n linearly independent solutions x1(t), …, xn(t) of the linear system 

 

     ttt xAx    (1.3.2) 

 

is called a fundamental system of solutions and is a basis in the space of its solutions. A 

matrix X(t) = {x1(t), …, xn(t)} whose columns are the vectors of a basis is called a 

fundamental matrix. Such a matrix is a solution of the matrix equation 

 

     ttt XAX   (1.3.3) 

 

and vice versa any non-singular solution of equation (1.3.3) is a fundamental matrix of 

system (1.3.2). 

 

If X(t) is a fundamental matrix of system (1.3.2), and the trajectory starts from x0 at time t0, 

the solution is written for system (1.3.1) as 

 

           
 

t

t

dtttt
0

1

00

1  fXXxXXx  (1.3.4) 

 

and for system (1.3.2) as 

 

      00

1
xXXx ttt  . (1.3.5) 

 

The matrix U(t, τ) = X(t)X
-1

(τ) is called the Cauchy matrix of system (1.3.2). [Adrianova 

1995] 
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When t0 = 0, only one argument in the Cauchy matrix can be written, denoting U(t, 0) ≡ 

U(t), which then satisfy the differential equation and initial condition 

 

     
 








IU

UAU

0

ttt
 (1.3.6) 

 

where I stands for the n-dimensional identity matrix. 

 

Generally, a solution to (1.3.6) is given by 

 

   tt ΩU exp , (1.3.7) 

where Ω(t) is given by the Magnus expansion [Blanes 2008] 

 

   





1k

k tt ΩΩ  (1.3.8) 

 

and exp(∙) is the matrix exponential operator. 

 

The Ωk(t) can be evaluated recursively as 

 

   

     2
!

1

1 0

0

1





 







kd
j

B
t

dt

k

j

t
j

k

j

k

t





SΩ

AΩ

 (1.3.9) 

 

where Bj are the Bernoulli numbers, 

 
       

         12,

,

1

1

1

1
















kjttt

ttt

jk

m

j

mkm

j

k

kk

SΩS

AΩS

 (1.3.10) 

 

and [A, B] = AB – BA is the matrix commutator of A and B. 

 

Definition 1.3.3: A continuous-time affine dynamical system of the form (1.3.1) is called 

stationary if the matrix A(t) and the vector function f(t) are independent of time. 

 

A stationary version of systems (1.3.1) and (1.3.2) is 

 

    fAxx  tt , (1.3.11) 

 

   tt Axx  . (1.3.12) 

 

It is possible to demonstrate that the exponential matrix exp(At) is a fundamental matrix of 

system (1.3.12), and its Cauchy matrix is equal to U(t, τ) = exp(A(t – τ)). Thus, if the 

trajectory starts from x0 at time t0, the solution is written for system (1.3.11) as 
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           fAIxfUxUx
AA 1

000
00

0

ee,, 
 

tttt
t

t

dtttt  , (1.3.13) 

 

and for system (1.3.12) as 

 

     
000

0e, xxUx
A tt

ttt


 . (1.3.14) 

 

By sampling the solution with step Ts, it is possible to obtain the recursive formulas for 

solution (1.3.13) 

 

  fAIxx
AA 1

1 ee 

  ss T

k

T

k  (1.3.15) 

 

and for solution (1.3.14) 

 

1e  k

T

k
s xx

A
. (1.3.16) 

 

The exponential matrix plays a fundamental role in the solution of linear and affine systems. 

In [Higham 2005] a scaling and squaring Padé method to solve matrix exponential is 

proposed showing excellent results in terms of efficiency and accuracy. Since for non-

normal matrices, if ||A
k
||

1/k
 << ||A||, overscaling can occur, in [Al-Mohy 2009] an algorithm 

has been proposed that alleviates the overscaling. In practical applications, it is important to 

know how sensitive the result is, before its computation is attempted. Thus, for a small 

perturbations E in matrix A, Relative Condition Number (RCN) has to be computed  

 

 AAEA

AE

AA eeeRCN 


 


suplim)(

0
. (1.3.17) 

 

1.4 PWL dynamical systems 
 

Definition 1.3: An autonomous continuous-time dynamical system of the form 

 

 xfx   (1.4.1) 

 

where   nn RR  :f  is a piecewise linear function (Fig. 1.4.1), is called , piecewise linear 

(PWL)
1
. 

 

                                                           
1
 In these contexts, the term “linear” does not refer solely to linear transformations, but to 

more general affine functions. 
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Fig. 1.4.1 A piecewise linear function in 3D. 

 

Most of the PWL functions can be represented by the canonical form [Parker 1986] 

 

  



p

i
i

T

ii
1

xαγMxqxf  (1.4.2) 

 

where 
nnRM , 

n

ii Rαγq ,,  and Ri  are independent of time. 

 

A function f(x) in the canonical form (1.4.2) is continuous, as a sum of continuous 

functions, and divides the space Rn
 into several regions by means of p hyper-planes, each 

one of them is described by the equation  0 i

T

i xα . Within each single region, system 

(1.4.1) acts as a stationary affine dynamical system. 

 

1.5 Steady-state behaviors 
 

A trajectory of a dynamical system from an initial state x0 settles, possibly after some 

transient, onto a set of points called a limit set. The limit set corresponds to the asymptotic 

behaviour of the system as t  and is called the steady- state response. A limit set is 

called attracting if there exists a neighbourhood such that all nearby trajectories converge 

toward the limit set as t . An attracting set A that contains at least one orbit that comes 

arbitrarily close to every point in A is called an attractor. 

 

In an asymptotically stable linear system the limit set is independent of the initial condition 

and unique so it makes sense to talk of the steady-state behaviour. By contrast, a nonlinear 

system may possess several different limit sets and therefore may exhibit a variety of 

steady-state behaviours, depending on the initial condition. The set of all points in the state 

space that converge to a particular limit set L is called the basin of attraction of L. 

 

The simplest steady-state behaviour of a dynamical system is an equilibrium point. An 

equilibrium point or fixed point of (1.1.2) is a state xQ at which f(xQ) = 0 and   QQt xxφ  . 

A trajectory starting from an equilibrium point remains indefinitely at that point. An 
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equilibrium point or fixed point of a discrete-time dynamical system is a point xQ that 

satisfies g(xQ) = xQ.  

 

A state x is called periodic if there exists T > 0 such that   xxφ T . A periodic orbit which 

isn’t a stationary point is called a cycle (Fig. 1.5.1). A limit cycle Γ is an isolated periodic 

orbit of a dynamical system. The limit cycle trajectory visits every point on the closed curve 

Γ with period T. Thus,     Γxxφxφ   ,Ttt .  

 

 
Fig. 1.5.1 Limit cycle. 

 

The next most complicated form of steady-state behaviour is called quasi-periodicity. In 

state space, this corresponds to a torus (Fig. 1.5.2). A quasi-periodic function may be 

expressed as a countable sum of periodic functions with frequencies that are not rationally 

related ([Chen 2002]). 

 

 
Fig. 1.5.2 Two-torus. 

 

1.6 Chaotic systems 
 

Although the notion of chaotic behaviour in dynamical systems has existed in the 

mathematics literature since the turn of the century, unusual behaviours in the physical 

science were described as “strange”. From an experimentalist’s point of view, chaos may be 

defined as bounded steady-state behaviour in a deterministic dynamical system that is not an 

equilibrium point, nor a periodic solution, and not a quasi-periodic solution. Chaos is 

characterized by repeated stretching and folding of bundles of trajectories in state space. Two 

trajectories started from almost identical initial conditions diverge and soon become 

uncorrelated; this is called sensitive dependence on initial conditions and gives rise to long-term 

unpredictability. 

 

The repeated stretching and folding of trajectories in a chaotic steady state gives the limit set 

a more complicated structure that, for three-dimensional continuous-time systems, is 

something more than a surface but not quite a volume (Fig. 1.6.1) [Chen 2002]. 
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Fig. 1.6.1 Chaotic attractor. 

 

Examples of chaotic systems are the Chua’s circuit [Matsumoto 1985] and Lorenz system 

[Lorenz 1963]. 

 

1.7 Lyapunov exponents estimation for nonlinear dynamical 

systems analysis 
 

In determining the qualitative properties of dynamical systems the asymptotic behaviour 

plays a fundamental role. Asymptotic behaviour is intended as the set of properties that 

prevail when the time t , or, in practice, when time t is sufficiently large. It is 

important to have tools capable of indicating what happens in the long run. Lyapunov 

exponents are these tools. They quantify the average rate of exponential separation of 

nearby solutions and allow to distinguish between the different qualitative behaviours which 

may characterize a dynamical system.  

Necessary condition in order that a system evolves towards an attractor is that the level of 

contraction exceeds the level of expansion, and thus the sum of Lyapunov exponents is 

negative 

 

0
1




n

i
i . (1.7.1) 

 

Then, by examining the Lyapunov exponents spectrum, it is possible to deduce the geometry 

of an attractor. For an asymptotically stable equilibrium point, all the exponents are 

negative. For an asymptotically stable limit cycle, an exponent is zero and all the others are 

negative. For an asymptotically stable k-torus, k exponents are zero and all the others are 

negative. No Lyapunov exponent of a non-chaotic attracting set is positive. Generically, the 

number of zero Lyapunov exponents of a non-chaotic hyperbolic attracting set indicates the 

topological dimension of the attractor: an equilibrium point has dimension 0, a limit cycle 

has dimension 1, a k-torus has dimension k [Parker 1989]. 

 

One feature of chaos is sensitive dependence on initial conditions. This sensitive 

dependence occurs in a flow with an expanding component (fig. 1.7.1 [Strogatz 1994]). 

Since a positive Lyapunov exponent indicates expansion, what distinguishes chaotic 

attractors from non-chaotic attractors is the existence of a positive Lyapunov exponent. 
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Fig. 1.7.1 Divergence of nearby trajectories in chaotic phenomena. 

 

From the facts that at least one Lyapunov exponent of a chaotic system must be positive, 

that one Lyapunov exponent of any limit set other than equilibrium point must be zero, and 

that the sum of the Lyapunov exponents of an attractor must be negative, it follows that a 

chaotic attractor must have at least three Lyapunov exponents, which implies that an 

autonomous chaotic system must have a dimension not less than three. Thus, for a chaotic 

attractor, one exponent is positive, one is zero, and all the others are negative.  

 

When more than one Lyapunov exponent of an attractor is positive, then this is called 

hyperchaotic behaviour [Rossler 1979]. Hyperchaos normally arises as a natural regime in 

extended space-time systems, delayed systems or in complex networks. The first example of 

hyperchaotic system was presented by Rossler (Fig. 1.7.2) [Rossler 1979] whereas 

hyperchaos was first observed from a physical system by Matsumoto, Chua and Kobayashi 

in [Matsumoto 1986]. 

 

 
 

Fig. 1.7.2 Hyperchaotic Rossler attractor. 

 

1.8 Algorithms for the evaluation of Lyapunov exponents 
 

Unfortunately, Lyapunov exponents are not easy to calculate. The computational load is 

considerable, and results are sometimes uncertain due to numeric problems. It is therefore 

important to develop efficient algorithms for the calculation of Lyapunov exponents. 

 

Let us consider a n-th order autonomous continuous-time dynamical system defined by the 

state equation (1.1.2). The solution is denoted by t(x0), where x0 is the initial state. Let us 
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consider the variation of the solution when the initial conditions are perturbed, 

Y(t)=t(x0)/x0, and the Jacobian matrix A(t)=f/x. The equation  

 

 









IY

YΑY

)(

)()(

0t

ttt
 (1.8.1) 

 

is called variational equation. 

 

Lyapunov exponents can be evaluated analytically as 

 

    



t

t

i
t

i
t

i dtt
t

td
t

0

Re
1

limlog
1

lim  , (1.8.2) 

 

where di(t) are the square root of the eigenvalues of Y
T
(t)Y(t) and i(t) are the eigenvalues 

of A(t). In presence of at least one positive Lyapunov exponent, the elements of the matrix 

Y
T
Y diverge [Eckmann 1985]. Moreover, Y

T
Y is ill-conditioned, because its column vectors 

tend to line up along the local direction of most rapid growth. These problems can be 

overcome considering the growth rate of n-dimensional volumes [Benettin 1980, Shimada 

1979]. These volumes can be computed by QR method applied on integration of system 

(1.8.1) [Dieci 1997]. 

 

Ad hoc procedures for the numerical calculation of LEs in PWL systems have been 

proposed in [Chialina 1994]. In [Parker 1986] a procedure for the solution of the variational 

equation in PWL systems is reported. 
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Chapter 2 

Nonlinear dynamical systems synthesis 

This chapter describes the state of the art concerning on the synthesis of hyperchaos by 

coupling of chaotic circuits. 

 

2.1 Generating hyperchaos by coupling of chaotic circuits 
 

Synthesis of hyperchaotic circuits is a fundamental and interesting problem. These systems 

do not imply just a realization method of existing mathematical models but important real 

physical systems to investigate interesting nonlinear phenomena. Recently, the generation of 

hyperchaos and the hyperchaotic circuit realization have attracted the increasing attention of 

researchers, and a variety of chaotic and hyperchaotic circuits have been presented. 

 

In order to obtain hyperchaos, three important requirements must be met: dissipative 

structure of the system, minimal dimension of the phase space that embeds the hyperchaotic 

attractor of the system not less than four, number of terms in the equations giving rise to 

instability not less than two, of which at least one must have a nonlinear function. As a 

consequence of the requirement on the minimal dimension of the phase space, the minimum 

number of coupled first-order autonomous ordinary differential equations must be four. 

 

A simple way to construct a hyperchaotic circuit is to use two or more, regular chaotic 

circuits either identical or non-identical ones. They can be coupled by means of linear or 

nonlinear resistors by unidirectional or recurrent coupling.  

Generally speaking, these hyperchaotic systems have been derived by an ad hoc design 

rather than by a systematic procedure. In these cases, the dynamics of coupled chaotic 

systems is strictly linked with their synchronization. The method most frequently used for 

detecting hyperchaos in this type of systems is based on the evaluation of the Lyapunov 

exponents.  

 

In the case of coupled Chua’s circuits, many linear and ring geometries have been 

considered in terms of chaotic synchronization. Different theoretical and experimental 

results have been obtained, depending on the type of the arrangement. Kapitaniak et al. have 

reported experimental observations of hyperchaotic attractors in open and closed chains of 

Chua’s circuits [Hu 2011]. In References [Li 2011][Zhang 2010], linear-stability analyses of 

a ring of N Chua’s oscillators are performed. Results show that, for a number of oscillators 

in the ring that is smaller than a certain critical number, the behaviour of the system is 

chaotic synchronized, whereas, above such a threshold value, the system exhibits a 

hyperchaotic behaviour consisting in a cycling wave of chaotic amplitude that travels 

through the array [Suzuki 1994].  

 

In [Elwakil 2006] unidirectional and diffusive coupling of identical n-double scroll cells in a 

one-dimensional cellular neural network is studied. Weak coupling between the cells leads 

to hyperchaos, with n-double scroll hypercube attractors. 

In [Li 2008], a pair of bi-directionally coupled Chua’s circuits is dealt with. The study 

makes reference to PWL Chua’s circuits and shows the existence of hyperchaotic attractors. 

In [Grassi 2009] two Chua’s circuit with cubic nonlinearity, bidirectionally coupled, are 
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considered. The dynamics is analysed referring to a transformed space, i.e., the space 

described by the transverse and tangent systems. With the proposed coupling, the transverse 

system is described by the same equations of a single autonomous system, whereas the 

tangent system is structurally identical but forced by the transverse system. In [Kapitaniak 

1994] the procedure has been extended to any dynamic system with nonlinear polynomial 

elements and it has been tested through application to Chua’s circuit with cubic nonlinearity, 

Lorenz system and Rossler system. 

 

In [Lorenzo 1996] hyperchaotic attractors are generated in a ring of three Chua’s circuits 

exploiting sine function as nonlinearities, whereas in [Matias 1997] two sinusoidal 

oscillators are nonlinearly coupled.  

 

In [Suykens 1997] a hyperchaotic oscillator consisting of two Wien-bridge oscillators 

coupled by a resistor and a diode is presented. The whole circuit is investigated both 

numerically and experimentally. Also, its hyperchaotic dynamics is studied theoretically by 

a topological horseshoe with two-directional expansions which provides an immediate 

evidence of hyperchaos. 

 

In [Sanchez 2000] four-wing and eight-wing hyperchaotic attractors are generated by 

coupling identical Lorenz systems. The presence of hyperchaos is demonstrated by means of 

the calculation of Lyapunov exponents. 

 

Connecting two symmetric three-dimensional linear systems by hysteresis switching 

[Cannas 2002] or adding a state-dependent impulsive switching to chaotic system [Cincotti 

2007] also leads to the birth of hyperchaos. 

 

In [Cafagna 2003] an experimental and numerical study into the transition between 

synchronized low-dimensional, and unsynchronized hyperchaotic dynamics using a system 

of coupled electronic chaotic oscillators is presented.  

 

In [Camplani 2009] one of the authors presented two Lorenz systems nonlinearly mutually 

coupled obtaining a six-dimensional system with two positive Lyapunov exponents. 
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Chapter 3 

Data analysis and statistics 

The term “statistics” derives from the Latin word “status,” meaning “state.” Statistics 

comprises three major divisions: collection of statistical data, their statistical analysis, and 

development of mathematical methods for processing and using the statistical data to draw 

scientific and practical conclusions. In this chapter, some concepts concerning with statistics 

and statistical methods for data analysis are presented. In addition, some concepts related to 

graph theory are introduced. 

 

3.1 Preliminary concepts 
 

Below some preliminary notions of statistics will be introduced ([Polyanin 2007]).  

 

The set of all possible results of observations that can be made under a given set of 

conditions is called the population. The population is treated as a random variable X. 

 
Definition 3.1.1: The cumulative distribution function of a random variable X is the 

function FX(x) whose value at each point x is equal to the probability of the event {X < x}: 

 

     xXPxFxFX  . (3.1.1) 

 

The cumulative distribution function has a number of properties: 

 

1. F(x) is bounded: 0 ≤ F(x) ≤ 1. 

2. F(x) is a non-decreasing function for ),( x : if x2 > x1, then F(x2) ≥ F(x1). 

3. 0)(lim 


xF
x

. 

4. 1)(lim 


xF
x

. 

5. The probability that a random variable X lies in the interval [x1, x2) is equal to the 

increment of its cumulative distribution function on this interval: 

     1221 xFxFxXxP  . 

6. F(x) is left continuous: )()(lim 0
0

xFxF
xx




. 

 

Definition 3.1.2: A random variable X is said to be continuous if its cumulative distribution 

function F(x) can be represented in the form 

 

   



x

X dyyfxF . (3.1.2) 

 

The function fX(x) = f (x) is called the probability density function of the random variable X. 

 

The probability density function has the following properties: 

 

1. f(x) is always non-negative: f(x) ≥ 0. 
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2.    
2

1

21

x

x

dyyfxXxP . 

3.   1




dyyf . 

4.     xxfxxXxP  . 

5. For continuous random variables, one always has P(X = x) = 0, but the event {X = x} is 

not necessarily impossible. 

6. For continuous random variables,  

)()()()( 21212121 xXxPxXxPxXxPxXxP  . 

 

Definition 3.1.3: The expectation (expected value) E{X} of a continuous random variable X 

defines the mean position of a random variable and is given by 

 

   




 dxxxfXE . (3.1.3) 

 

For the existence of the expectation, it is necessary that the integral in (3.1.3) converges 

absolutely. 

 

Definition 3.1.4: The expectation E{Y} of a continuous random variable Y, which is related 

to a random variable X by a functional dependence Y = g(X),  can be determined by 

 

        




 dxxfxgXgEYE , (3.1.4) 

 

where f(x) is the probability density function of the random variable X. 

 

Definition 3.1.5: The variance Var{X} of a continuous random variable X is the measure of 

the deviation of X from its expectation E{X}, determined by the relation 

 

          XEXEdxxfXExXVar 222
 





. (3.1.5) 

 

Definition 3.1.6: A quantile of level γ of a one-dimensional distribution is a number tγ for 

which the value of the corresponding distribution function is equal to γ, i.e. 

 

    10   tFtXP . (3.1.6) 

 

All the concepts related to probability distributions of one-dimensional random variables 

can be extended to the multidimensional case. 

 

Definition 3.1.7: The distribution function F(x
(1)

, x
(2)

, …, x
(N)

) = FX
(1)

, X
(2)

, …, X
(N) (x

(1)
, x

(2)
, …, 

x
(N)

) of a N-dimensional random vector (X
(1)

, X
(2)

, …, X
(N)

), or the joint distribution function 

of the random variables X
(1)

, X
(2)

, …, X
(N)

, is defined 
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as the probability of the simultaneous occurrence (intersection) of the events {X
(1)

 < x
(1)

}, 

{X
(2)

 < x
(2)

}, …, {X
(N)

 < x
(N)

}, i.e., 

 
                   NNN xXxXxXPxxxF  ,...,,,...,, 221121 . (3.1.7) 

 

Definition 3.1.8: A multivariate random variable (X
(1)

, X
(2)

, …, X
(N)

) is said to be continuous 

if its joint distribution function F(x
(1)

, x
(2)

, …, x
(N)

) can be represented as 

 

            
        

 

 
 

 
 

  
  



N

N

x
N

x x
N

XXX

N dydydyyyyfxxxF ...,...,,...,...,,

2 1

21

2121

,.. . ,,

21
, (3.1.8) 

 

where the joint probability function f(x
(1)

, x
(2)

, …, x
(N)

) = fX
(1)

, X
(2)

, …, X
(N) (x

(1)
, x

(2)
, …, x

(N)
) is 

piecewise continuous. 

 

Theorem 3.1.1: Two random variables X and Y are independent if and only if the joint 

distribution function of the bivariate random variable (X, Y) is equal to the product of the 

cumulative distribution functions of X and Y, or equivalently, if and only if the joint density 

function of the bivariate random variable (X, Y) is equal to the product of the probability 

density functions of X and Y 

 

     yFxFyxF YXYX ,,
, (3.1.9) 

     yfxfyxf YXYX ,,
. (3.1.10) 

 

A set of entities randomly selected from a population is called a sample. A sample must be 

representative of the population i.e., it must show the right proportions characteristic of the 

population. The number of elements in a sample is called its size and is denoted by the 

symbol n. The elements of a sample are denoted by X1, …, Xn. 

 

Definition 3.1.9: The empirical distribution function corresponding to a random ordered 

sample X1, …, Xn is defined for each real x by the formula 

 

 














 

n

kkn

Xx

XxXnk

Xx

xF

1

0

1

1

*  (3.1.11) 

 

i.e., )(* xFn  is constant on each interval (Xk, Xk+1] and increases by 1/n at the point Xk. The 

empirical distribution function )(* xFn  is an unbiased consistent estimator of the theoretical 

distribution function i.e., converges to the theoretical distribution function as n . 

 

Definition 3.1.10: Let Hi, i = 1, 2, …, L be the random events that the random ordered 

sample X1, …, Xn lies in the ith interval Δi = xi+1 – xi and let ni be their frequencies. The bar 

graph consisting of rectangles whose bases are class intervals of length Δi and whose 

heights are equal to the relative frequency densities ni/(nΔi) is called the relative frequency 

histogram. The area of the relative frequency histogram is equal to . The relative frequency 

histogram is an estimator of the probability density function. 
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Definition 3.1.11: The sample mean of a random sample X1, …, Xn is defined as 

 





n

i
iX X

n 1

* 1
  (3.1.12) 

 

and is an unbiased consistent estimator of the population expectation.  

 

Definition 3.1.12: The sample variance of a random sample X1, …, Xn is defined as 

 

 






n

i
XiXXX X

n 1

2***2

1

1
  (3.1.13) 

 

and is an unbiased estimator of the population variance. 

 

Definition 3.1.13: The sample covariance between two random samples X1, …, Xn and Y1, 

…, Yn is defined as 

 

  






n

i
YiXiXY YX

n 1

***

1

1
 . (3.1.14) 

 

3.2 Some theoretical distributions 
 

In tables 3.2.1 and 3.2.2, a list of theoretical distributions mentioned in the thesis is shown. 

For each distribution, the probability density function (table 3.2.1) and the cumulative 

distribution function (table 3.2.2) are shown. 

 

3.3 The memorylessness property 
 

The memorylessness property ([Feller 1968]) is related to the conditional behaviour of 

random variables related to the time between two subsequent events. Let T be one of those 

variables. Suppose we know in advance that the time T between two events is greater than a 

fixed value T1. The conditional probability that we need to wait less than another T2 seconds 

before the subsequent event, given that the following event has not yet happened after T1 

seconds is given by 

 

 
 

 
   

 1

121

1

211
121

1Pr

Pr
Pr

TF

TFTTF

TT

TTTT
TTTTT









 . (3.3.1) 

 

If the probability in (3.3.1) is independent on T1, i.e. if 

 

     22121 PrPr TFTTTTTTT  , (3.3.2) 

 

then, the distribution is called memoryless. 

 

The exponential is the only memoryless continuous distribution. 
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Table 3.2.1 Probability density function of some theoretical distributions. 

Distribution 
Probability density 

function 
Distribution 

Probability density 

function 

Birnbaum–

Saunders or fatigue 

life 

 












 




x

x

xx

x
2

2

2
exp

22 






 

0,   

Levy 









xx 2
exp

2 3






 

0  

Burr or 

Singh–Maddala   1

1






k

k

x

x
k







  

0,, k  

Log–logistic  2
1













x

x
 

0,   

Chi-squared 






















2
exp

2
2 2

1
2 xx






 

N  

Log–normal 

 












 


2

2

2 2

ln
exp

2

1







x

x
 

R  ,0  

Dagum   1

1






k

k

x

x
k







  

0,, k  

Normal 



















 


2

2

1
exp

2

1







x
 

R  ,0  

Exponential 
 x exp  

0  

Pearson type 

5 
 











  xx










exp
1

 

0,   

Frechet 




























 

xx
exp

1
 

0,   

Pearson type 

6 
   21

12

21

1

,











xB

x
 

0,, 21   

Gamma   













 

 xx
exp

1

 

0,   

Rayleigh 









2

2

2 2
exp



xx
 

0  

Generalized 

gamma 
  



























k

k

k xkx

 



exp
1

 

0,, k  

Rice 















 


202

22

2 2
exp











x
I

xx
 

0,0    

Inverse Gaussian 

 












 


x

x

x 2

2

3 2
exp

2 






 

0,   

Weibull 






























x
x exp1

 

0,   
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Table 3.2.2 Cumulative distribution function of some theoretical distributions. 

Distribution Cumulative distribution function Distribution 

Cumulative 

distribution 

function 

Birnbaum–

Saunders or 

fatigue life 













 


x

x




 

0,   

Levy 














x


2  

0  

Burr or 

Singh–

Maddala 

k

x





























11  

0,, k  

Log–logistic 

1

1





























x
 

0,   

Chi-squared 




















2

2
2




x

 

N  

Log–normal 







 




xlog
 

R  ,0  

Dagum 

k

x





























1  

0,, k  

Normal 







 




x
 

R  ,0  

Exponential 
 xexp1  

0  

Pearson type 

5 

 

 








x
1  

0,   

Frechet 

























x
exp  

0,   

Pearson type 

6 

 21,
x

xI  

0,, 21   

Gamma 

 

 





x
 

0,   

Rayleigh 






















2

2

1
exp1



x
 

0  

Generalized 

gamma 

 
 

 






 k
x

 

0,, k  

Rice 












 x
Q ,1 1  

0,0    

Inverse 

Gaussian 





















 














 
















2
exp

x

x

x

x

0,   

Weibull 



























x
exp1  

0,   
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3.4 Maximum likelihood estimation method for unknown 

parameters 
 

Maximum likelihood estimation is the most popular estimation method for the estimation of 

the parameters of a theoretical distribution. This method allows to estimate the parameters 

of a theoretical distribution directly from the sample elements. 

 

Definition 3.4.1: Let the theoretical distribution function F(x) of a population belong to a 

family F(x, θ) with unknown parameter vector θ. If the sample elements X1, …, Xn are 

drawn independently from the family F(x, θ), then the likelihood function is given by the 

joint probability density function of the all sample, and is given by 

 

   



n

i
in XfXXL

1
1 ,,,...,  . (3.4.1) 

 

In the likelihood function, the sample elements X1, …, Xn are known fixed parameters and θ 

is an argument. Then, the maximum likelihood estimator is a vector θ
*
 such that the 

likelihood function is maximized. 

 

Since L and logL attain maximum values for the same values of the argument θ, it is 

convenient to use the logarithm of the likelihood function in practical implementations of 

the maximum likelihood method. 

 

The equation 

 

    0,log,,...,log
1

1 











n

i
in XfXXL 

θθ
 (3.4.2) 

 

is called the likelihood equation, and its solution vector gives the maximum likelihood 

estimator θ
*
 ([Polyanin 2007]). 

 

3.5 Goodness of fit tests 
 

Suppose that there is a random sample X1, …, Xn drawn from a population X with unknown 

theoretical distribution function F(x). It is required to test the null hypothesis H0: F(x) = 

F0(x) against the alternative hypothesis H1: F(x) ≠ F0(x), where F0(x) is a given theoretical 

distribution function. There are several methods for solving this problem that differ in the 

form of the measure of discrepancy between the empirical and hypothetical distribution 

laws. One of them is the Kolmogorov–Smirnov (K–S) test ([Sachs 1984]). 

 

In the K-S test the measure of discrepancy is a function of the difference between the 

empirical cumulative distribution function F
*
(x) of the experimental data and the theoretical 

one F(x) deduced from the model adopted. Relying on the fact that the value of the 

empirical cumulative distribution function is asymptotically normally distributed, the K–S 

test consists on finding the K-S statistic, 
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   xFxFK
x

 *sup , (3.5.1) 

 

that is the greatest discrepancy between the empirical and theoretical distribution function, 

and comparing it against the critical K-S statistic for that sample size. For high n the critical 

K-S statistic is given by 

 













 2
log

5.0

n
Kcr , (3.5.2) 

 

where α is the significance level, normally equal to 5% or 1%. If 

crKK  , then the null 

hypothesis H0 is rejected at the significance level α. 

Other two criterions to test the goodness of fit of a certain empirical distribution with a 

theoretical one are the Akaike Information Criterion (AIC) and the Bayesian Information 

Criterion (BIC) ([Ljung 1999]). 

 

AIC is a way of selecting a model from a set of models. In this case, the model is the 

theoretical distribution. It is defined as 

 

kLAIC 2log2  , (3.5.3) 

 

where L is the likelihood function and k is the number of parameters of the model. Given a 

set of candidate models for the data, the preferred model is the one with the minimum AIC 

value. Hence AIC not only rewards goodness of fit, but also includes a penalty that is an 

increasing function of the number of estimated parameters. This penalty 

discourages overfitting. 

 

BIC is a criterion alternative to AIC. It is defined as 

 

nkLBIC lnln2  , (3.5.4) 

 

where n is the number of samples. Also for BIC, given a set of candidate models for the 

data, the preferred model is the one with the minimum BIC value. The fitted model favoured 

by BIC ideally corresponds to the candidate model which is a posteriori more probable. 

 

There is also a graphical method, known as the quantile-quantile (Q-Q) plot, used for 

comparing the empirical and theoretical probability distributions. In a Q-Q plot, the 

quantiles of the sample are plotted against the quantiles of the theoretical distribution. If the 

two sets come from a population with the same distribution, the points should fall 

approximately along a 45-degree reference line. The greater the departure from this 

reference line, the greater the evidence for the conclusion that the sample set have come 

from a population with a different distribution. An example of Q-Q plot is given in fig. 

3.5.1. 

 

http://en.wikipedia.org/wiki/Overfitting
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Fig. 3.5.1 Example of Q-Q plot for a sample taken from a population with normal 

distribution. 

 

3.6 Analysis of variance 
 

All techniques previously shown are useful for the statistical analysis of a given sample and 

for the extrapolation from it of theoretical information about the population from which the 

sample was extracted. In the case of presence of different samples, it is important to 

understand if these samples come from the same population or from different populations. 

 

The technique typically used to decide whether the different samples belong to the same 

population is the one-way analysis of variance (ANOVA) ([Polyanin 2007], [Dowdy 2004]). 

Using this technique, the variation between different sample means is used to estimate the 

variation between individual observations. Suppose that there are L independent samples 

X1,1, …, Xn
1
,1; X1,2, …, Xn

2
,2; …; X1,L, …, Xn

L
,L, drawn from normal populations with unknown 

expectations a1, …, aL and unknown but equal variances σ
2
. It is necessary to test the null 

hypothesis H0: a1 = …= aL that all theoretical expectations ai are the same against the 

alternative hypothesis H1that some theoretical expectations are different. It should be noted 

that this test can be performed given the assumption that each parent population is normally 

distributed and have the same variance. 

 

If the hypothesis that all samples belong to a population having a normal distribution cannot 

be met, because for example the elements of samples are all positive quantities which cannot 

be described by a distribution defined also for negative values, an alternative method is 

necessary. A method useful for this purpose is the Kruskal-Wallis test ([Kruskal 1952], 

[Davis 2002]). This test makes no assumption about the distribution of samples, but requires 

to use ranks instead of the original observations, that is to array all the observations in order 

of magnitude and replace the smallest by 1, the next-to-smallest by 2, and so on; if there are 

ties (two or more equal observations), each observation is given the mean of the ranks for 

which is tied. The test statistic to be computed is 
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where L is the number of samples, ni is the number of observations in the ith sample, N is 

the number of all observations, Ri is the sum of the ranks in the ith sample, the sum in the 

denominator is over all groups of ties and T = t
3
 – t for each group of ties, t being the 

number of tied observations in the group. If the samples come from identical continuous 

populations, for high ni, H is approximately distributed as 
2
 (chi-squared distribution) with 

L – 1 degrees of freedom. Thus the critical H statistic is given by 

 

    11FHcr , (3.6.2) 

 

where α is the significance level and F
-1

(x) is the inverse cumulative distribution function of 

a chi-squared distribution with L – 1 degrees of freedom. If 


crHH  , then the null 

hypothesis H0, whereby the samples come from the same population, is rejected at the 

significance level α. 

 

3.7 Graph theory and clique detection 
 

In computer science, the clique problem refers to any of the problems related to finding 

particular complete subgraphs ("cliques") in a graph, i.e., sets of elements where each pair 

of elements is connected. 

 

Let G = (V, E) be an arbitrary undirected graph, where V = {1, 2, …, nV} is the node set of G 

and E  V  V is the edge set of G. The symmetric nV  nV matrix AG = (ai,j)(i, j)VV, where 

ai,j = 1 if (i, j)  E is an edge of G, and ai,j = 0 if (i, j)  E, is called the adjacency matrix of 

G. Suppose that all the diagonal entries of the adjacency matrix are zero, i.e. no edge has 

both ends connected to the same node. Thus, the adjacent matrix AG is a symmetrical matrix 

with zero diagonal entries. 

 

In [Harary 1957] the adjacency matrix is called the group matrix, and the graph edges 

represent the presence of an interpersonal relationship among members of a group. This 

concept can be generalized to a generic set of elements among which we wish to study the 

presence or absence of a particular relationship. Then, a clique is a maximal subgraph of at 

least three nodes in which each node is connected by an edge to each other node. 

 

Harary et al. have proposed an algorithm [Harary 1957] for finding cliques in a social group. 

The algorithm, which is summarized below, can be generalized to a general graph. For this 

purpose some definitions are needed. A noncliqual node is one who does not belong to any 

clique. A unicliqual node is one who belongs to exactly one clique. A multicliqual node 

belongs to more than one clique. Two nodes are cocliqual if they belong both to at least one 

clique. 

 

Step 1. Given a graph G, the matrix AG
2
  AG is constructed, where  represents the 

elementwise product operator. The i, j entry of this matrix is zero if and only if nodes i and j 

are not cocliqual, and is positive otherwise. Consequently, all those graph nodes whose row 

in AG
2
  AG consists entirely of zeros are noncliqual. Let MG be the submatrix of AG

2
  AG 

obtained by deleting from it the rows and columns corresponding to every noncliqual node. 

The sum of the elements in any row of MG is equal to the corresponding diagonal element of 

AG
3
. After calculating the matrix MG, the rows of MG are examined. Let v be any node 

whose row sum in MG is r(v). Then, if and only if r(v) = n(v) [n(v) – 1], where n(v) is the 



51 

 

 

 

number of nodes cocliqual with v, i.e. the number of positive elements in v’s row in MG, V is 

a unicliqual node. If G contains unicliqual persons, proceed to step 2, else skip to step 4. 

 

Step 2. Having the unicliqual node v, the next step is to find the clique Cv to which v 

belongs, and the set Cv
’
, which denotes the set of all unicliqual nodes in Cv. The clique Cv 

consists of v, together with all those nodes whose entry in v’s row in MG is not zero. 

 

Step 3. If Cv = G, then G has only one clique. In this case skip to step 5. Else, if Cv  G, let 

G = G – Cv
’
 and revert to step 1. 

 

Step 4. The graph G contains no unicliqual nodes, and the matrix MG has been already 

calculated in step 1. Let v be any member of G such that r(v) is minimal. The next step is to 

find the subgraphs G(v) and G(–v), where G(v) consists of v and all nodes cocliqual with v 

and G(–v) consists of the nodes in cliques not containing v. 

 

Step 5. On arriving at this step from step 4, we now have the two subgraphs G(v) and G(–v). 

Send one of these to to step 1 and store the other. When arriving from step 3, send any 

stored subgroup to step 1. If there are no subgroups in storage, the preocedure is terminated. 

 

Some of the noncliqual nodes can be isolated nodes, i.e. nodes with no edges. The other 

noncliqual nodes may be connected with another node, which can be noncliqual, unicliqual 

or multicliqual, forming a “pair” of nodes. 
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Chapter 4 

Nonlinear time series analysis 

Deterministic dynamical systems, describe the time evolution of a system in some phase 

space. They can be expressed for example by ordinary differential equations or in discrete 

time by difference equations. A time series can then be thought of as a sequence yn of N 

observations performed with some measurement function at successive time instants spaced 

at uniform time intervals. 

 

Time series analysis includes methods for analysing  time series data in order to extract 

meaningful statistics and other characteristics of the data. Methods for time series analyses 

may be divided into two classes: frequency-domain methods and time-domain methods. The 

first include spectral analysis and wavelet analysis; the second include auto-correlation and 

cross-correlation analysis. 

 

Below an overview on the wavelet transform and its application for the denoising of noisy 

signals (sections 4.1, 4.2), and on the use of auto-correlation and cross-correlation analysis 

(section 4.3) has been reported. Moreover, some useful methods for the reconstruction of the 

phase space and for the identification of parameters from a time series has been shown 

(sections 4.4, 4.5, 4.6). Finally some methods for the evaluation of Lyapunov exponents to 

test the chaoticity of time series (section 4.7) and an introduction to the use of the Hurst 

exponent to give a measure of the long term correlation in a time series (section 4.8) have 

been reported. 

 

4.1 Wavelet transform 
 

The development of Fourier analysis is based on the properties of periodic functions, which 

can be expressed as an infinite sum of trigonometric functions. These basic functions have 

the key property of localization in frequency. The Windowed Fourier Transform (also 

known as the short-time FT), in attempting to overcome this deficiency, provides a two-

dimensional representation in the time-frequency domain windowing the signal. However, 

resolution in both time and frequency remains constant because the same window is 

employed across the entire frequency range. Such conventional transforms, which employ 

continuous periodic basis functions, are not suitable to characterize non-periodic and 

transient signals. 

 

The wavelet transform is a mathematical tool that can simultaneously provide information 

on time and frequency of a signal, contrary to what happens with trigonometric functions. It 

works on specific parts of a signal to extract local structures and singularities. This makes 

the wavelets ideal for handling non-stationary and transient signals, as well as fractal-type 

structures ([Han 2006][Han 2009][Wornell 1992][Staszewski 1999]). 

 

The Continuous Wavelet Transform (CWT) of a signal )(ty  is defined as follows ([Chen 

2003]): 

 

     




  dtttysCWT sy ,,   (4.1.1)  
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where the wavelet function 

 

  






 


s

t

s
ts




1
,  (4.1.2) 

 

is a dilated and translated version of the Mother Wavelet )(t , s  is the scale parameter,   

is the translation parameter and * represents the complex conjugate operator. The term 

"wavelet" means small wave, because of the block-wave form of )(t . The term "mother" 

implies that the functions used in the transformation process are derived from one main 

function, the mother wavelet. Literature reports a number of analytical mother wavelets. 

Some examples of Daubechies mother wavelets are shown in fig. 4.1.1. 

 

The wavelet coefficient ),( sCWTy   represents a measure of the similarity between the 

signal )(ty  and the wavelet )(, ts . However, the continuous variation of the parameters s  

and   generates very detailed but also redundant information. The problem of redundancy 

and the need to apply the wavelet transform to discrete signals in real-time led to the 

development of new algorithms to minimize the computational costs.  

 

 

Fig. 4.1.1 Mother wavelet Ψ(t) of four members of the Daubechies wavelet system: db2, 

db4, db8 and db16. 

 

The multiresolution analysis (MRA) resolves the function space into a sequence of 

subspaces  V , each of which must contain all the subspaces related to the levels greater 

than  . If 
    Van   is the approximation of a sequence ny , n=1,...,N, at level  , the 

difference 
 
nd  between the two approximations 

 
na  and 

 1
na  of ny , 

 
      Nnaad nnn ,...,11   

, (4.1.3) 

 

is an additional information on a scale less than 
 12  

, and is called detail of ny . 

 

Thus, subspace  1V  can be resolved as follows: 
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      WVV 1  (4.1.4) 

 

where the space  W , orthogonal to  V , is called detail space and   represents the 

operator sum of vector spaces. By means of a scaling function Φ, called Father Wavelet, the 

bases 
 
k  are generated for each subspace: 

 

    knnk  





 22 2 . (4.1.5) 

 

Equation (4.1.5) is known as dilation equation. 

 

Similarly, by means of the Mother Wavelet )(t , the bases 
 
k  are generated for each 

subspace  W : 

 

    knnk  





 22 2 . (4.1.6) 

 

Equation (4.1.6) is known as wavelet equation. 

 

Generally speaking, using the mother and the father wavelets, a signal ny  can be written as 

follows: 

 

         
 











0

0

0

0

11
,














nn

k
kk

k
kkn danny  , (4.1.7) 

 

where 0  is the level of decomposition, k  are the approximation coefficients at resolution 

level 0 , ,k  are the detail coefficients at level  . In the case of orthogonal bases, the 

coefficients are calculated with the following expressions: 

 

     




i
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i
ik kyiky 00
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22 2 


  (4.1.8) 

       


i
ii

i
ik kyiky 



  22 2
, . (4.1.9) 

 

The coefficients ,k  and k  give the Discrete Wavelet Transform (DWT) of the signal ny . 

The expression of DWT is similar to the general equation of a FIR digital filter. 

 

The DWT can be easily implemented by using the pyramid algorithm. The algorithm uses 

two digital filters, a high-pass filter hn and a low-pass filter gn, which give rise to a bank of 

filters able to decompose the signal into low and high frequency components, by means of 

undersampling operations by a factor of two (fig. 4.1.2a). The series of filtering operations 

at different frequencies correspond to a signal analysis at different resolution levels. This 

process can be expressed completely in terms of the digital filters gn and hn as follows: 
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Fig. 4.1.2 Filter bank of decomposition (a) and reconstruction (b). 

 

The signal reconstruction is achieved by inverting the decomposition procedure (fig. 4.1.2b). 

The approximation and the detail at each level are oversampled by a factor of two, then 

filtered by a high-pass filter nh  and a low-pass filter ng  respectively, and finally summed, 

to give the approximation at lower level. 

 

4.2 Denoising by thresholding of wavelet coefficients 
 

Most noise reduction algorithms assume that noise ηnwith zero mean is added to a discrete 

signal yn of N data points, giving an experimental signal which can be written as: 

 

nnn ηyz   (4.2.1) 

 

The linearity of the wavelet transform preserves the additivity of the model: 

 

kkk ωvw   (4.2.2) 

 

where wk are the noisy signal wavelet coefficients, vk are the uncorrupted wavelet 

coefficients, ωk are the noise wavelet coefficients. 

 

Since noise is often spread out equally over many coefficients, if the signal energy is 

concentrated in a small number of wavelet coefficients, its coefficient values will be 

relatively large compared to those of the noise. Thus, a good denoising methodology using 

wavelets is thresholding ([Donoho 1994]). 

 

Thresholding is a simple non-linear technique, which operates on one wavelet coefficient at 

a time. In its most basic form, each coefficient is compared to a threshold: if the coefficient 

is smaller than the threshold, it is set to zero; otherwise, it is kept (hard thresholding) or 
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shrunk (soft thresholding). The difference between hard and soft thresholding is shown in 

fig. 4.2.1. 

 

 
Fig. 4.2.1 Noise reduction by wavelet thresholding. (a) Hard-thresholding (b) Soft-

thresholding. The x axis represents the original wavelet coefficients, the y axis the values 

computed by the thresholding procedure. 

 

The main problem of noise reduction by thresholding wavelet coefficients is to find the best 

threshold that allows eliminating only the noise and leaves the signal unaltered. Two aspects 

must be considered. First of all, in general, signals have different characteristics at different 

scales and, if the noise is correlated instead of white, also the noise behavior depends on the 

resolution. 

 

Secondly, one single threshold cannot efficiently remove noise, if the amount of noise 

depends on the resolution level, or the signal has different characteristics at different scales. 

Thus, scale-dependent thresholds are generally the best solution. A small threshold yields a 

result close to the input, but the resulting signal may still be noisy. Conversely, a large 

threshold produces a signal with a lot of zero wavelet coefficients and can alter the signal. 

The scale-dependent thresholds have to be chosen to optimize a given cost function. 

 

Signal denoising using wavelet transforms consists of three steps, namely, signal 

decomposition, thresholding of the wavelet coefficients, and signal reconstruction. The 

wavelet transform of the noisy signal up to a given level 0  is evaluated. Then, the detail 

coefficients in the different levels are thresholded and the denoised signal is obtained 

through the inverse of the wavelet transform. 

 

In [Donoho 1994], a universal threshold is proposed 

 

Nln2̂  , (4.2.3) 

 

where 6745.0ˆ M  is a rough estimate of the noise level and M  is the median absolute 

deviation of the detail coefficients up to the level 0 . 

 

In [Han 2006], two scale-dependent thresholding schemes are proposed 

 

Nln2    (4.2.4) 

 

and 
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where   and   are respectively the threshold and the standard deviation of detail 

coefficients at scale  . The authors set 40   in the two examples. However, the basis to 

choose the decomposition level 0  has not been addressed in the paper. On the other hand, 

this is a crucial issue since denoising performance may vary with 0 . 

 

In [Han 2009], the approximate coefficients are handled by the Singular Spectrum Analysis 

and the details are analyzed combining Singular Spectrum Analysis and Spatial Correlation 

theory. In this case, the optimal wavelet decomposition scale is determined by evaluating the 

noise residual ratio at different levels and selecting the level with minimum ratio. However, 

this procedure cannot be applied when the noiseless signal is unavailable. 

 

In a recent paper, Gao et al. ([Gao 2010]) compare the performance of their algorithm based 

on adaptive filtering with those obtained using wavelet thresholding techniques reported in 

[Donoho 1994] and [Han 2006]. The authors claim that adaptive filtering is more effective 

than wavelet based methods. 

 

4.3 Auto-correlation and cross-correlation analysis 
 

In the analysis of time series it is often very important to measure the dependence of a given 

measurement on its predecessors. The auto-covariance is a simple statistical quantity which 

measures this dependence. For a time series ny  of length N the auto-covariance at lag k is 

given by 
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where there are only N – k elements to compare and the factor N – k – 1 depends on the 

correction for the degrees of freedom used in computing the sample auto-covariance. There 

is also a particular definition, which considers only a subset of the time series, for the means 

to subtract 

 







kN

i
ik y

kN 1

1



 (4.3.2) 





N

ki
ik y

kN 1

1



 (4.3.3) 

 



59 

 

 

 

Theoretically, it could be possible to increase the lag k until it is large as N – 1, but as the lag 

becomes larger, the degree of overlap N – k becomes smaller. Conventionally, the auto-

covariance is evaluated for lags from 0 to about N/4. The resulting values can be displayed 

as an auto-covariogram or auto-covariance function, which is a plot of auto-covariance 

against lag. The largest value of the auto-covariance is generally, except in the case of 

periodic time series, at zero lag, since the series will never perfectly match up except at zero 

lag. The zero crossing in the auto-covariance is an important concept, since it characterizes 

the length of time that must elapse before the times series becomes uncorrelated. The first 

zero is known as the decorrelation time. 

 

The measurement units of auto-covariance are the squares of those of the time series, thus 

the auto-covariance is sensitive to the changes of the time series, which makes it difficult to 

compare two auto-covariograms. By dividing the auto-covariance by a standardizing factor, 

it is possible to compute the so-called auto-correlation 
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 , (4.3.4) 

 

where k


 and k


 are the standard deviations 
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The resulting values of the auto-correlation can be displayed as an auto-correlogram, which 

is a plot of auto-correlation against lag. The largest value of the auto-correlation is 

generally, except in the case of periodic time series, at zero lag, and its value is equal to 1. In 

correspondence of the other lags, the auto-correlation oscillates between -1 and 1. 

 

The expected auto-correlation of a random series is zero for lags greater than zero. The 

expected standard deviation in the auto-correlation of a random sequence at any lag is 

 

3

1




kN
k . (4.3.7) 

 

The value 3 comes from a correction for the degrees of freedom used in computing the 

means of each of the two series used (even if they are the same) and in the choice of the 

starting point of the autocorrelation. Thus, if 
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then the series is likely (at about 95%) non-random. 
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If it is possible to compare a time series with itself at successive lags, it is possible to 

compare two different time series with each other in order to determine positions of 

pronounced correspondence. Similarly for the auto-correlation, it is possible to evaluate the 

cross-correlation of two time series ny ,1  and ny ,2  
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where  
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is the cross-covariance at lag k of ny ,1  and ny ,2 , and 
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are the mean values and the standard deviations of the two overlapping series ([Davis 

2002]). 

 

Like the auto-correlation function, it is possible to test the significance of the cross-

correlation. Thus, if 
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then the series are likely (at about 95%) cross-correlated ([Box 1970]). 

 

4.4 State reconstruction by differential algebra 
 

Consider a nonlinear time invariant dynamical system described by 
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where x is the n-dimensional state variable vector, y is a scalar output function of the state, f, 

g, are algebraic vector functions in x, and the dependence on time t and parameter vector p 

has been made explicit. This class of systems includes an extensive variety of systems, 

including chaotic systems such as Rossler, Lorenz and Chua systems. 

 

We assume that only one scalar output is measured as y(t) (i.e., the state is not directly 

available). Since the usually scalar time series in itself does not properly represent the 

multidimensional phase space of the dynamical system, some technique to reconstruct the 

system state or to unfold the multidimensional structure by using only the information 

contained in y(t) must be employed. 

 

Definition 4.4.1 [Forsman 1992]: An algebraic observer for the state xi of the system 

(4.4.1) is a polynomial P(xi, y, y
(1)

, …, y
(m)

) with m < n. 

 

The two following statements are equivalent: 

i) the state of the system (1) can be reconstructed; 

ii) a smooth function h exists such that x = h(y, p). 

 

The possibility that ii) is verified, is strictly linked to the observability concept. In case of 

algebraic systems the most natural way is to refer to algebraic observability [Ljung 1994] 

[Fliess1993]. 

 

The above property can be easily tested in the differential algebra context by resorting to the 

concept of characteristic set associated to the dynamic equations. The characteristic set has 

been introduced by Ritt [Ritt 1950] in 1950 and starting from 1990 has been widely used in 

the study of the dynamic systems [Ljung1994][Fliess 1993]. In order to define the 

characteristic set we need to introduce some concepts of differential algebra. A detailed 

formal description of differential algebra can be found in [Ritt 1950]. 

 

Remark 4.4.1 [Forsman 1992]: The peculiarity of the characteristic set is that it 

summarises all the information contained in the differential equations defining the dynamic 

system. In order to handle differential polynomials (polynomials on x and their derivatives) 

a ranking of the variables and their derivatives must be introduced. 

Chosen the ranking 

 
             n

nnnn

n xxxxxxxyyy  ............... 22

1

11

11

1
 

 

for a system in the form (4.4.1), the characteristic set exhibits n+1 differential polynomials 

i.e.: 

 

i. an output relation that is a differential polynomial on y and its derivatives, which can be 

expressed as    iiappyyyzyk ,...,,...,,,),( 21
p , where ai are coefficients 

depending on the set of parameters p, and i are polynomial functions in y and its 

derivatives. 

 

ii. n differential polynomials triangularised with respect to the state component denoted by 

the n-dimensional K(x ,y , p). 
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Remark 4.4.2 [Ljung 1994]: The state space description of the dynamic model ensures the 

uniqueness of the characteristic set of the differential polynomials of eqs. (4.4.1). 

 

Property 4.4.1 [Forsman 1992]: A system is algebraically observable if one at least of the 

following equivalent relations is verified: 

i. derivatives of the state components do not appear in the characteristic set; 

ii. k(y, p) is of order n. 

 

Let’s now return to the nonlinear time invariant dynamic system described by the equations 

(4.4.1) with initial conditions x(0) = x0. The state x(t, x0) is not directly available, only an 

output is measured, say      txty i  where i = 1, …, n. The goal is the reconstruction of 

system state by using only the information contained in y. In order to get k(y, p) and K(x, y, 

p) we need to calculate the characteristic set associated to the dynamic equations (4.4.1). 

 

Proposition 4.4.1: A necessary condition for the finite-time global state reconstruction of 

the system (4.4.1) is that it is algebraically observable. 

 

If the system is not algebraically observable the characteristic set contains some derivatives 

of the state components, hence the state vector is a solution of a differential system whose 

initial conditions are unknown. Thus Remark 4.4.1 implies that no further information is 

available and the state admits infinite solutions. Conversely if the system is algebraically 

observable such solutions are finite in number. 

 
Proposition 4.4.2: The state can be locally reconstructed in a finite time if the system is 

algebraically observable and the characteristic set equations K(x, y, p) = 0 have, for x, a 

finite number of solutions. 

 

Proposition 4.4.3: The state can be globally reconstructed in a finite time if the system is 

algebraically observable and the characteristic set equations K(x, y, p) = 0 have, for x, a 

unique solution. 

 

In this case, with the possibility of choosing between a finite number of solutions, the proper 

solution depends to the knowledge of a basin of attraction of the initial point. 

 

In the adopted definition of observability only the information contained in the dynamic 

equations has been considered without taking into account the initial conditions. 

Nevertheless in a physical system such initial conditions, although unknown, are fixed, thus 

yielding the following remark. 

 

Remark 4.4.3: Although a system is observable following the Definition 3.4.1, it can 

happen that the differential polynomial multiplying some state component in the 

characteristic set, let be G(y, y
(1)

, y
(2)

, …, y
(n)

) such polynomial, identically vanishes in the 

solution related to a particular initial point. In this case although the system is observable 

in the sense of Forsman, such state component would not be reconstructible. This cannot 

happen for a generic initial point, indeed vanishing of G (y, y
(1)

, y
(2)

, …, y
(n)

)x(t
0
) = x

0
, for all t 

and a generic x0 implies y is identically equal zero. 
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In some cases, the algebraic observability can be easily detected by simple inspection and 

manipulation on dynamic equations. 

 

4.5 Identifiability 
 

Algebraic observability is essential for the verification of identifiability of parameters of a 

given system. The property of global identifiability allows one to obtain the values of all 

parameters by means of the only output and its derivatives. 

 

Proposition 4.5.1: A system of the form (4.4.1) is globally identifiable if and only if, for at 

least a generic set of parameters, the equation a(p) = a(p*) has at most a finite number of 

solutions {p = p*}. This equation is solved in the set of parameters p. 

 

The procedure to investigate the observability and identifiability property may result rather 

complex, hence resorting to a software for calculating the characteristic set is necessary. The 

software tool used is DAISY ([Bellu 2007]), it has been written in Reduce 3.6 and resorts to 

the Buchberger algorithm for the calculation of Gröbner bases.  

 

4.6 State reconstruction by embedding 
 

An alternative phase space reconstruction technique, especially when the equations of the 

dynamic system are not known, is the method of delays. By means of this method, vectors in 

a new space, the embedding space, are formed from time delayed values of the scalar 

measurements yn 

 

    nmnmnn yyy ,...,, 21  s , (4.6.1) 

 

where the number m of elements is called the embedding dimension and the time τ is 

generally referred to as the delay. 

 

Embedding theorems by Takens ([Takens 1981]) and by Sauer et al. ([Sauer 1991]) state 

that if the sequence {sn} consists of scalar measurements of the state of a dynamical system, 

then under certain genericity assumptions, the time delay embedding provides a one-to-one 

image of the original set, provided m is large enough. 

 

There is a large literature on the “optimal” choice of the embedding parameters m and τ. It 

turns out, however, that what constitutes the optimal choice largely depends on the 

application. An implementation of this algorithm can be found in the TISEAN package 

([Hegger 1999]) and in [Mohammadi 2009]. 

 

4.7 Lyapunov exponents estimation for nonlinear time series 

analysis 
 

Since a positive Lyapunov exponent is a strong signature of chaos, it is of considerable 

interest to determine its value for a given time series. 
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The first algorithm for this purpose was suggested by Wolf et al. [Wolf 1985]. 

Unfortunately, this algorithm does not allow one to test for the presence of exponential 

divergence, but just assumes its existence and thus yields a finite exponent for stochastic 

data also, where the true exponent is infinite, giving easily rise to wrong results. 

 

While Wolf's algorithm does not use more than a delay reconstruction of phase space, there 

is another class of algorithms [Sano 1985] [Eckmann 1986] which also involves the 

approximation of the underlying deterministic dynamics. This method is very efficient if the 

data allow for a good approximation of the dynamics. 

 

In [Rosenstein 1993] and [Kantz 1994] a more robust algorithm, which has been 

implemented in the TISEAN package ([Hegger 1999]), has been introduced. It tests directly 

for the exponential divergence of nearby trajectories and thus allows to decide whether it 

really makes sense to compute a Lyapunov exponent for a given data set. Given a time 

series and the embedding parameters, the algorithm firstly reconstructs the attractor with the 

method of delays and then, given a point in the embedding space and its neighbourhood, 

evaluates the average divergence of the neighbours with respect to the reference point as a 

function of time and for N reference points. The size of the neighbourhood should be as 

small as possible, but large enough such that on average each reference point has at least a 

few neighbours ([Kantz 2004]). 

 

The computation of the full Lyapunov spectrum requires considerably more effort than the 

computation of the maximal exponent. An algorithm for this purpose has been implemented 

in the TISEAN package. An essential part of this algorithm is some estimate of the local 

Jacobians which rules the growth of infinitesimal perturbations ([Sano 1985][Eckmann 

1985]). Then Jacobians are multiplied one by one, following the trajectory, to an arbitrary 

number of different vectors in tangent space to compute Lyapunov exponents. Every few 

steps, a Gram-Schmidt orthonormalization procedure is applied to the set of vectors, and the 

logarithms of their rescaling factors are accumulated. Their average, in the order of the 

Gram-Schmidt procedure, give the Lyapunov exponents in descending order. A 

disadvantage of this method is that it assumes that there exist well defined Jacobians, and 

does not test for their relevance [Hegger 1999]. 

 

4.8 Hurst exponent 
 

The Hurst exponent occurs in several areas of applied mathematics, including fractals and 

chaos theory, long memory processes and spectral analysis. Hurst exponent estimation has 

been applied in areas ranging from biophysics to computer networking. It has reached high 

popularity especially in the analysis of financial market indexes and stock market ([Lo 

2001][Peters 1994]). 

 

Estimation of the Hurst exponent H was originally developed in hydrology and was 

introduced by Hurst in [Hurst 1951], when he was studying the historical data of the 

flooding of the river Nile. 

 

This quantity can be used to discriminate between a time series generated by a random 

process or a long term correlation time series. 
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 H ≈ 0.5 indicates a random walk (a Brownian time series). In a random walk there is no 

correlation between any element and a future element and there is a 50% probability that 

future return values will go either up or down. Series of this type are hard to predict. 

 

 0 < H < 0.5 indicates an anti-persistent behaviour. This means that an increase will tend 

to be followed by a decrease (or a decrease will be followed by an increase). This 

behaviour is sometimes called "mean reversion" which means future values will have a 

tendency to return to a longer term mean value. The strength of this mean reversion 

increases as H approaches 0. 

 

 0.5 < H < 1 indicates "persistent behaviour", that is the time series is trending. This 

means that an increase will tend to be followed by an increase. The same is true of 

decreases, where a decrease will tend to follow a decrease. The larger the H value is, the 

stronger the trend. Series of this type are easier to predict than series falling in the other 

two categories. 

 

There are several ways to formally define the Hurst Exponent. The description developed by 

Hurst himself is as follows: 
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where n  is also known as the expected value (among the first n samples) of the rescaled 

range (R/S), Rn is defined on a time series yn as 

 

   niyniyR iin ,...,1,min,...,1,max  , (4.8.2) 

 

Sn is the standard deviation of the first n samples and C is an arbitrary constant. 

 

Thus, for every size n, the rescaled range is estimated and the expected value n  among the 

first n samples is evaluated. This leads to a system of equations 

 
H

n Cn , (4.8.3) 

 

and therefore 

 

nHCn logloglog  . (4.8.4) 

 

Using more than two different n, system (4.8.4) is generally over-determined, provided there 

is enough input data and can be solved using a least squares fit. The slope of the fit will be 

the estimated value for H. 
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Chapter 5 

Artificial Neural Networks 

Artificial Neural Networks (ANNs) or simply Neural Networks (NNs) derive their 

inspiration from the biological neuron system and the brain. The field of neural networks 

has a long history of development. Their history begins in the early 1940’s and thus nearly 

simultaneously with the history of programmable electronic computers. During the past few 

years, ANNs have been successfully applied in several fields, like system identification and 

control, chemistry, decision making, pattern recognition, sequence recognition, medical 

diagnosis, financial applications, data mining, visualization and e-mail spam filtering. From 

a practical point of view, they’ve been used mainly for different tasks, like regression 

analysis, classification problems, data processing and robotics. In this chapter an 

introduction to neural networks is given, with particular attention to Multi-Layer 

Perceptrons (MLPs). 

 

5.1 Components of artificial neural networks 
 

A neural network can be defined as a network that resembles the functional architecture of 

the brain. It consists of simple processing units, the neurons, and directed, weighted 

connections between those neurons. The first artificial neuron was first proposed by Warren 

McCulloch and Walter Pitts in 1943 [McCulloch 1943]. The neuron model is shown in fig. 

5.1.1. 

 

 
Fig. 5.1.1 Basic artificial neuron. 

 

The k-th artificial neuron given in fig. 5.1.1 has p input, denoted as x1, x2, …, xp. The  line 

connecting input i to the neuron is characterized by a weight, which is denoted as wk,j. 

Weights in the artificial model correspond to the synaptic connections in biological neurons. 

The threshold, or bias, in artificial neuron is usually represented by ϑk . The activation vk is 

given by the formula 

 

k

p

j
jjkk xwv 

1
, . (5.1.1) 

 

The output value of the neuron is a function of its activation 

 

   k

T
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68 

 

where the weighted sum in (5.1.1) is expressed in vector notation. The most commonly used 

activation functions are the threshold function, the sigmoid function, the hyperbolic tangent 

function and the linear function (see table 5.1.1). 

 

Table 5.1.1 Activation functions. 

Threshold Sigmoid Hyperbolic tangent Linear 
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McCulloch and Pitts proved that a synchronous assembly of such neurons is capable in 

principle to perform any computation that an ordinary digital computer can, though not 

necessarily so rapidly or conveniently ([Hertz 1991]). In fact, while a single artificial neuron 

is not able to implement some complex functions, connecting the outputs of some neurons 

as input to the others, so constituting a neural network, may overcome this problem. 

 

5.2 Network topologies 
 

According to the structure of the connections, networks may be basically distinguished for 

their architectures: feed-forward, recurrent and competitive neural networks. 

 

In feed-forward neural networks, the neurons are organized in the form of layers. The 

neurons in a layer get input from the previous layer and feed their output to the next layer. In 

this kind of networks, connections to the neurons in the same or previous layers are not 

permitted. The last layer of neurons is called the output layer and the layers between the 

input and output layers are called the hidden layers. The input layer is made up of special 

input neurons, transmitting only the applied external input to their outputs. In a network if 

there is only the layer of input nodes and a single layer of neurons constituting the output 

layer then they are called single layer network. If there are one or more hidden layers, such 

networks are called multilayer networks. Classical examples of this kind of networks are the 

Adaline [Widrow 1960] and the Multi-Layer Perceptron [Cybenko 1992]. 

 

The structures, in which loops and feedback connections between neurons belonging to 

different layers are allowed, are called recurrent networks. Examples of recurrent networks 

are the Elman networks [Elman 1990] and the Hopfield networks [Hopfield 1982]. 

 

The third category comprises competitive networks, in which neighbouring cells compete in 

their activities by means of mutual lateral interactions, and develop adaptively into specific 

detectors of different signal patterns. This kind of network is competitive in the sense that 

all the neurons of the network receive the same input. The neuron with the best output 

(following a certain criteria) is chosen as the winner. In case of hard competition only one 

winner can exist and only its connections weights are updated. In case of soft competition 
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also the neighbours neurons of the winner are involved during the weights update procedure. 

An example of competitive network is the Self Organizing Map (SOM) [Kohonen 1990]. 

 

5.3 The learning paradigms 
 

The most interesting characteristic of neural networks is their capability to familiarize with 

problems by means of training and, after sufficient training, to be able to solve unknown 

problems of the same class. This approach is referred to as generalization. 

 

Learning is the procedure that extracts the information from input data. An incomplete 

learning leads to a network that does not perform well. There are three main categories of 

learning paradigms: unsupervised, reinforcement and supervised learning. 

 

Unsupervised learning is also known as clustering. It provides only input patterns to the 

network, which tries to identify similar patterns and to classify them into similar categories 

without any a priori information about data distribution. 

 

In reinforcement learning the network receives a logical or a real value after completion of a 

sequence, which defines whether the result is right or wrong. 

 

Supervised learning methods provide training patterns together with appropriate desired 

outputs. Thus, for each training set that is fed into the network, the output, for instance, can 

directly be compared with the correct solution and the network weights can be changed 

according to their difference. The objective is to change the weights so that the network can 

associate input and output patterns independently after the training, and also provide 

plausible results to unknown similar input patterns, i.e. it generalises ([Kriesel 2007]). 

 

5.4 The perceptron 
 

The perceptron was described by Frank Rosenblatt in 1958 [Rosenblatt 1958]. The 

perceptron is a feed-forward network containing a retina that is used only for data 

acquisition and which has fixed-weighted connections with the first neuron layer (input 

layer). The fixed-weight layer is followed by at least one trainable weight layer. One neuron 

layer is completely linked with the following layer. The first layer of the perceptron consists 

of the input neurons defined above. The last layer of neurons is commonly called output 

layer. All the other layers are called hidden layers. 

 

A Single-Layer Perceptron (SLP) is a perceptron having only one layer of variable weights 

and one layer of output neurons. Perceptrons with more than one layer of variably weighted 

connections are referred to as Multi-Layer Perceptrons (MLP). An n-layer perceptron has 

thereby exactly n variable weight layers and n+1 neuron layers with neuron layer 1 being the 

input layer. 

 

The structure of an MLP with two layers is shown in figure 5.4.1. 

 

Consider the two-layers MLP, shown in figure 5.4.1, with p inputs, m neurons in the hidden 

layer and q neurons in the output layer. The output of the j-th hidden unit can be obtained by 

first forming a weighted linear combination of the p input values, and adding a bias, to give 
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Fig. 5.4.1 Structure of an MLP with two layers (MLP). 
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where )1(

,ijw  denotes a weight in the first layer, going from input i to hidden unit j, ui is the i-

th input and  1

j  denotes the bias for hidden unit j. The activation of hidden unit j is 

obtained by transforming the sum in (5.4.1) using an activation function φ() to give 
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The outputs of the network are obtained by transforming the activations of the hidden units 

using a second layer of processing elements. Thus, for each output unit k, a linear 

combination of the outputs of the hidden layer is performed 
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where )2(

, jkw  denotes the weight in the second layer, from hidden unit j to output k, and 
 2

k  

denotes the bias for output unit k. The activation of the k-th output unit is then obtained by 

transforming this linear combination using a non-linear activation function, to give 
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This equation can be obviously extended to the case of more than one hidden layer with the 

same iterative process. As stated in [Cybenko 1989], an MLP represents a universal function 

approximator, and with a sufficient number of sigmoidal hidden neurons can approximate 

any continuous functional mapping. 

 

5.5 The back-propagation algorithm 
 

Let us consider a network with differentiable activation functions and assume you wish to 

train this network to reproduce a set of targets by means of a set of inputs. Let us assume 

that the network has the form in fig. 5.4.1, with p inputs, m neurons in the hidden layer and 

q neurons in the output layer. The activation functions of the output units are functions 
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differentiable with respect to the input variables, the weights and the biases si dice così?. 

The network error function is a function differentiable with respect to the weights and 

biases. Thus, it is possible to evaluate the derivatives of the error with respect to the weights, 

and these derivatives can be used to find weight and bias values which minimize the error 

function. The algorithm for evaluating the derivatives of the error function is known as 

back-propagation since it corresponds to a propagation of errors backwards through the 

network ([Bishop 1996]). The back-propagation learning procedure was separately 

developed as a generalization of the delta rule and published by the Parallel Distributed 

Processing Group ([Rumelhart 1986]). 

 

If ε
n
 and u

n
 are the values of the error function and of the input, respectively, for the n-th 

pattern, back-propagation procedure can be summarized ([Bishop 1996]) in four steps: 

 

1. An input vector u
n
 is applied to the network and forward-propagated to find the 

activations of all the hidden and output units. 

 

2. The k are evaluated for all the output units using 
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 is used to evaluate the derivative of ε
n
 with respect to the output layer weights. 

 

3. The k are back-propagated using 
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 to obtain j for each hidden unit in the network. 

 

4. The formula 
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 is used to evaluate the derivative of ε
n
 with respect to the hidden layer weights. 

 

The derivative of the total error ε can then be obtained by repeating the above steps for each 

pattern in the training set, and then summing over all patterns 
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The minimization procedure can be achieved by a gradient descend technique. The weights 

can be updated after presentation of each pattern (online learning) or after first summing the 

derivatives over all the patterns in the training set (batch learning). In the first case, the 

weights in the hidden layer are updated using 
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while in the second case are updated using 
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with analogous expressions for the output layer weights. 

 

5.6 Training and validation 
 

The goal of the training procedure is to find a network which gives the smallest error  with 

respect to the training data having the best generalization performance. Networks with too 

little flexibility smooth out some of the underlying structure in the data, while networks 

which are too complex overfit the data. For this reasons it is necessary to avoid the 

phenomenon of the overfitting and an efficient stopping learning criteria is needed. 

 

Since the goal is to find the network having the best performance on new data, the simplest 

approach to the comparison of different networks is to evaluate the error function using data 

independent of that used for training. With this method, various networks are trained by 

minimization of an appropriate error function defined with respect to a training data set. The 

performance of the networks is then compared by evaluating the error function using an 

independent validation set, and the network having the smallest error with respect to the 

validation set is selected (fig. 5.6.1). This approach is called the hold out method. Since this 

procedure can itself lead to some overfitting to the validation set, the performance of the 

selected network should be confirmed by measuring its performance on a third independent 

data set, which is called test set. 

 

In practice, the availability of labelled data may be severely limited and it may not be 

possible to keeping aside part of the data set for model comparison purposes. In such cases, 

the procedure of K-fold cross-validation ([Stone 1974], [Stone 1978], [Wahba 1975]) can be 

adopted. This technique consists first on randomly dividing the data set into K distinct 

segments. Then, the network is trained using data from K – 1 of the segments and its 

performance is tested, by evaluating the error function, using the remaining segment. This 

process is repeated K times, and the test errors are averaged over all K results. If data are 

very scarce, it is possible to go to the extreme limit of K = N for a data set with N data 

points. This limit is known as the leave-one-out method ([Bishop 1996]). 
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Fig. 5.6.1 Training and validation. 
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Chapter 6 

Plasma physics 

In this chapter, some concepts of plasma physics are introduced. In particular, in the first 

paragraph, the mechanism which allows energy generation by fusion reactions is illustrated. 

Subsequently the structure and operation of a fusion device is shown. The third section 

discusses the mechanisms of plasma heating and the various confinement regimes. For 

further details on the first three sections, see [Wesson 2004]. Finally, the last section deals 

with edge localized modes. For more information on edge localized modes see [Wesson 

2004][Wilson 2008][Zohm 1996][Suttrop 2000]. 

 

6.1 Fusion reactions 
 

Nuclear reactions can release a great amount of energy, and can be obtained by means of 

fission (splitting) of high-Z elements or by means of fusion (union) of low-Z elements. In 

astrophysics, fusion reactions keep stars alive and produce almost all the lightest elements. 

The most efficient reaction used to obtain fusion on earth is the reaction D – T, in which the 

two hydrogen isotopes, deuterium (D) and tritium (T), are forced together at a sufficiently 

high temperature (about 10-20keV) in order to overcome the repulsive force due to their 

electrical charge and to allow their fusion by means of the strong binding force between 

them (see fig. 6.1.1). The product of this reaction is a helium nucleus plus a neutron, with a 

resulting reduction of the total mass for the benefit of a release of 17.6MeV of energy by 

reaction. 

 

 
 

Fig. 6.1.1 Fusion reaction. 

 

At these temperature the mixture is completely ionized, and the charge of positive ions is 

neutralized by the presence of an equal number of electrons. The resulting neutral gas is 

called plasma. 

 

6.2 Magnetic confinement 
 

In order to reach the temperatures, densities and confinement times required to provoke and 

maintain a sufficient number of fusion reactions, various types of magnetic confinement 
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devices have been designed. Among these, tokamak is the most highly developed 

technology. 

 

The tokamak is a toroidal plasma confinement system. This system consists essentially of a 

toroidal ring surrounding a magnetic circuit, called core. Around the core, the coils and the 

torus are wrapped. The central solenoid and the torus are respectively the primary and the 

secondary circuit of a transformer. Current is supplied into the primary circuit (the central 

solenoid), developing a magnetic induction flow in the magnetic circuit. If free electric 

charges are present in the secondary circuit (the torus), they are accelerated and in the torus 

an electric current is induced. 

 

The principal magnetic field is the toroidal field, induced by the current flowing in the coils 

wrapping around the torus along the poloidal direction. However, this field alone doesn’t 

allow the plasma confinement. In order to have an equilibrium in which the plasma pressure 

is balanced by the magnetic forces also a poloidal magnetic field is necessary. In a tokamak 

this field is produced mainly by the plasma current flowing in the toroidal direction 

according to Ampere’s law. The combination of the two magnetic fields give rise to 

magnetic field lines with a helical trajectory around the torus. 

 

The plasma is surrounded by a blanket, which has the role to absorb the neutrons, 

transforming their energy into heat which is then carried away by a suitable coolant to 

provide most of the reactor power output, to shield the superconducting coils and other outer 

components and to allow the necessary breeding of tritium to fuel the reactor. The energy 

flux of the neutrons which pass through the outer wall of the blanket must be reduced by a 

factor 10
6
 – 10

7
 before reaching the superconducting coils to avoid both radiation damage 

and heating of the coils. This protection is achieved by placing a shield of about 1m 

thickness of high Z material such as steel between the blanket and the coils. 

 

Additional coils are located externally for the plasma shape control. 

 

In experimental tokamaks direct contact between the plasma and the first wall is avoided by 

means of either a material limiter or by a divertor which leads magnetic field lines away 

from the surface of the plasma to a dump plate more remote from the plasma. 

 

 
Fig. 6.2.1 Magnetic confinement in a tokamak. 
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6.3 L-Mode and H-Mode 
 

In an ignited D-T plasma the energy losses are balanced by the plasma heating from the 

stowing down of the α-particles resulting from the fusion reactions. However, the fusion 

reaction rate is a strong function of temperature and is negligible at low temperatures. Thus, 

to reach the temperature required for ignition it is necessary to provide some form of 

heating. 

 

The initial heating in all tokamaks comes from the ohmic heating caused by the toroidal 

current. At low temperatures ohmic heating is quite powerful and, in large tokamaks,  easily 

produces temperatures of a few keV. However, as the temperature increases, the collision 

frequency and the resistivity fall, leading to the requirement for additional heating. 

 

The two main methods designed for heating to ignition temperatures are the injection of 

energetic neutral beams and the resonant absorption of radio frequency electromagnetic 

waves. 

 

The beams used for injection heating are composed of neutral particles. The choice of 

neutral particles is due to the fact that the ions, positively charged particles, would be 

reflected by the tokamak magnetic field. Heating with neutral beams is a complex process: 

ions are produced and accelerated to the required energy and then neutralized by charge 

exchange in a gas target; after removal of the residual ions, the neutral particles are injected 

in the plasma where they are charged again, confined by the magnetic field and then slowed 

by collisions giving up their energy in the process. 

 

Radio frequency heating transfers energy from an external source to the plasma by means of 

electromagnetic waves. There are several types of radio frequency heating, the three 

principal ones involving waves at around the ion cyclotron frequency, the electron cyclotron 

frequency and the lower hybrid frequency. When an electromagnetic wave propagates 

through a plasma the electric field of the wave accelerates the charged particles which then 

heat the plasma through collisions. 

 

When the magnetically confined plasma is heated above a certain threshold level, it may 

spontaneously switch from a low confinement state (or L-mode) to a high confinement state 

(or H-mode). In the H-mode, the energy confinement time is significantly enhanced, 

typically by a factor of two or greater than that in the standard L-mode discharges, leading 

to edge pedestals in the temperature and density. A widely used scaling law for the 

confinement time in H-mode can be found in [ITER 1999], 

 
  19.078.058.039.141.069.015.093.02,98 145.0 AaRnPBI eheattorp

yIPB

E    (6.3.1) 

 

where Ip is the plasma current in MA, Btor is the toroidal magnatic field in T, Pheat is the 

auxiliary heating power in MW, ne is the line averaged electron density in 10
20

 m
-3

, R is the 

major radius in m, a is the minor radius in m, κ is the elongation and A is the mean atomic 

mass. 
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6.4 Edge Localized Modes 
 

In the H-mode, the pressure gradient on the plasma edge is typically high. While this is good 

for confinement, instabilities called edge localized modes can be triggered. 

 

Edge localized modes (ELMs) are repetitive bursts of the edge plasma. They can be 

described by a cycle ([Wilson 2008]) divided into four phases: 

 

 Before the ELM the plasma is stable and has a high pressure gradient at the edge. The 

gradient is maintained on a high level by the edge transport barrier, associated to the H-

mode, where the heat and particles transfer through the magnetic flux surfaces is 

suppressed. 

 

 The pressure gradient overcomes the stability limit and many small turbulent eddies 

appear at the edge. 

 

 The edge plasma is lost to the Scrape-Off Layer (SOL) where it flows along the 

magnetic field lines towards the divertor. 

 

 The lost plasma ends up on the divertor plates producing the distinctive peak in the D-

alpha radiation (visible light emission by the excited atoms of deuterium, fig. 6.4.1). The 

heat load produced by the ELMs on the divertor plates can cause erosion. 

 

 
Fig. 6.4.1 Example of D-alpha emission during a Type-I ELM. 

 

If the conditions remain stationary, the cycle can continue indefinitely. The ELM crash is 

usually significantly shorter than the time between two ELMs. Depending on the type of 

ELM and the state of the plasma, each ELM is able to remove from 1% to 7% of the plasma 

energy and particles. 

 

Over time, researchers ([Wilson 2008]) distinguished among different categories of ELMs, 

each one characterized by specific properties. The first category is represented by Type-I 

ELMs, also called large or even “giant” ELMs. During type-I ELMs, the plasma edge is 

close to the theoretical stability limit or even beyond it, and the D-alpha radiation shows big 

and isolated bursts. This kind of instability is guided by the pressure, and the ELM 

frequency increases with the heating power. 

 

The second category is represented by Type-II ELMs, also called grassy ELMs. Type-II 

ELMs are observed only on high elongation, high triangularity and rather high density 

plasmas. Their magnitude is lower and their frequency is greater than type-I ELMs. 
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The third and last category is represented by Type-III ELMs, also called small ELMs. 

During type-III ELMs the D-alpha radiation shows small and frequent bursts. This kind of 

instability is driven by electric current and appears when the plasma resistivity is rather high 

(edge temperature rather low). The ELM frequency decreases with the heating power. 

Between the different ELM types, during type-III ELMs the plasma confinement is 

degraded more than with other ELMs. 

 

In [Duro 2009] a method for the automated ELM classification has been addressed. 

 

In the H-mode, paradoxically, ELMs contribute to maintain a stable plasma density. In fact, 

in a H-mode without ELMs the plasma density would increase above the overall stability 

limit, leading to sudden loss of the plasma confinement in a major instability called plasma 

disruption. On the other hand, in order to decrease the divertor erosion and maintain a good 

control on the pressure profile, several methods for the ELM mitigation has been 

considered. The most promising approaches are the injection of small pellets of frozen fuel 

into the plasma edge at a high frequency ([Lang 2004][Canik 2010]) and the ergodisation of 

the plasma edge with magnetic field perturbations ([Bécoulet 2008]). 

 

In [Zedda 2008], the results on the analysis of several ELM type-I time series suggest the 

presence of deterministic chaos. 

 





Part II. 

Applications 
 

 

 

 

 

…a light from the window, now I see … 
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Chapter 7 

A fast algorithm for Lyapunov exponents evaluation 

in PWL systems 

In this chapter, a new algorithm (PSLE, PWL Systems LEs Estimation) which optimizes 

Lyapunov exponents estimation in piecewise linear systems has been described. The 

algorithm exploits the linearity of the state equation and of the variational equation to 

accurately evaluate Lyapunov exponents with a reduced execution time. Some applications 

to PWL chaotic systems have been shown. The algorithm has been applied also to chaotic 

systems with polynomial nonlinearity. In this case, firstly, a suitable piecewise linear 

approximation for the polynomial nonlinear function has been evaluated by means of a 

Multi-Layer Perceptron (MLP) neural network with linear and saturating linear transfer 

functions. Then, the linearity of the new state equation and of the variational equation, 

obtained resorting to the piecewise linear approximation of the nonlinear function, has been 

exploited to accurately evaluate Lyapunov exponents of the approximated system with a 

reduced execution time. The first part of the work, dealing with the presentation of the 

algorithm, has been published in the Proceedings of the 9th International Conference of 

Numerical Analysis and Applied Mathematics (ICNAAM 2011), held in Halkidiki, Greece 

on 19
th

 – 25
th

 September 2011 [Cannas 2011]. The second part of the work, dealing with the 

applications to polynomial chaotic systems, has been submitted to the 4th International 

Interdisciplinary Chaos Symposium on Chaos and Complex Systems (CCS 2012), held in 

Antalya, Turkey, on 29
th

 April – 1
st
 May 2012. [Cannas 2013] 

 

7.1 Description of the algorithm 
 

Let consider a n-th order continuous time PWL dynamical system defined by the state 

equation 

 

  t
dt

d
xf

x
 , (7.1.1) 

 

where f() is a piecewise linear function of the state vector x. This function is continuous and 

divides 
n
 in several regions. When the trajectory lies in region j, the system is described by 

the affine equation ẋ(t)=Ajx(t)+bj, and a closed-form solution is given by x(tk)=Cjx(tk-1)+dj, 

where Cj=exp(Aj(tk–tk-1)) and dj=(Cj–I)Aj
-1

bj. The variational equation in each region j is 

Ẏ(t)=AjY(t), and its solution is given by Y(tk)=CjY(tk-1). Thus, if at time tk-1 the trajectory lies 

in region j, the variation of the solution in region j caused by the perturbation xk-1 is 

xexp(Aj(t–tk-1))xk-1. Therefore, 

 

               0
01021211 teeet

tttttt

k
jkkkjkkkj YY

AAA    , (7.1.2) 

 

where j(k–1) identifies the region at the time instant tk-1. 

 

The evaluation of the matrix exponential and the choice of the crossing time tc have been 

crucial for the accuracy of the algorithm. In fact, in case of chaotic systems, if the sojourn 

time tc–tk 
 in the region is too large, numerical problems could appear. 
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In [Parker 1986] the matrix exponential has been evaluated using Lagrange interpolation 

and a time step halving scheme has been proposed to locate the boundary crossing tc. Then, 

the variational equation at time tc, has been evaluated as Y(tc)=exp(Aj(k)(tc–tk-1))Y(tk), 

requiring a new evaluation of the matrix exponential at each boundary crossing. Conversely, 

the matrix exponential and boundary time calculations have not been explicitly addressed in 

[Parker 1986]. 

 

In this algorithm, matrix exponential has been evaluated using Padé approximation 

implemented in Matlab 7.10 and the relative condition number of the exponential matrix has 

been computed using the function expm_cond of the Matrix Function Toolbox [Higham 

2002]. The sampling time  has been held fixed and it has been chosen in order to guarantee 

a good relative condition number in the evaluation of the matrix exponential. 

 

Since has been chosen fixed, the transition between two regions doesn’t exactly occur at 

the time tk, because the passage through the threshold hyperplane is detected only and 

exclusively after that the threshold has been exceeded. Thus, a choice has been made. If the 

distance of x(tk) from the separating hyperplane is less than the distance of x(tk-1), tc is set to 

tk otherwise to tk-1. 

 

Thus, if at the time instant tk-1 the trajectory lies in the region j, the solution of variational 

equation at time tk can be evaluated as 

 

         111
1




 

kjkk

tt

k ttetet jkkj YCYYY
AA 

. (7.1.3) 

 

It is worth noting that this procedure do not require additional exponential matrix 

calculations. Moreover, since the integration step  has been chosen fixed, the matrix 

exponential Cj is evaluated, for the system state equation, only s times, where s is the 

number of possible regions, requiring a limited additional computational cost and strongly 

reducing the computational cost of the algorithm. Moreover, the use of (7.1.3) reduces 

round-off errors. 

 

Discrete QR method [Dieci 1997] has been applied on integration of the variational 

equation, to solve the problems of divergence and ill-conditioning of the solution that 

happen in case of chaotic systems. 

 

7.2 Application to PWL chaotic systems 
 

Several tests have been performed in order to test the precision and the robustness of the 

algorithm on the Lyapunov exponents evaluation of the Chua’s circuit, varying the time step 

, the simulation time T and the time Tf between subsequent QR factorizations. Parameter 

values given in [Matsumoto 1985] and initial conditions [0.5 0.5 0.5]
T
 have been used. 

 

The accuracy A on the calculation of the zero exponent has been used as estimation of the 

accuracy on the Lyapunov exponents calculations. The performance index A
*
 has been 

defined as 

 

   i
, . . .ni

i
,. . .nit

λλΑAtA
11

* maxmin)(),(max)(


 


. (7.2.1) 
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The accuracy A(t) oscillates during the Lyapunov exponents estimation. Thus, it is strongly 

dependent on the time instant t. Conversely, A
*
(t)

 
is monotonically decreasing. The index 

A
*
(t), which can be only calculated at the end of the Lyapunov exponents evaluation, is 

representative of the worst value assumed by the accuracy after t. In this sense it is a 

measure of the improvement on the accuracy during the Lyapunov exponents estimation 

procedure. 

 

 

 
Fig. 7.2.1 A

*
 during the calculation of the zero exponent with respect to (a) simulation time 

(b) calculation time.  

 

Fig. 7.2.1 reports a measure of the accuracy A
*
 with respect to simulation time and 

calculation time for different values of  and Tf. In order to evaluate A
*
 the simulation has 

been stopped after 10000s even if the Lyapunov exponents calculation is reported for 5000s. 

 

Fig. 7.2.1(a) reports A
*
 with respect to the simulation time. As it can be noticed, PSLE is not 

particularly affected by the QR factorization frequency. This parameter is generally critical 

for the accuracy of Lyapunov exponents. Smaller values generally lead to more accurate 

results, but take longer time, since the numerical integration needs to be restarted many 
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times for short calculations. PSLE is robust with respect to the different time steps: the 

largest one, = 20ms, seems to show the more fast convergence. Nevertheless, for t>2000s, 

when Lyapunov exponents settle to approximately their asymptotic value, best performance 

have been obtained with = 5ms. 

 

Fig. 7.2.1(b) reports the performance versus the calculation time. For a given calculation 

time, best performance have been obtained when = 20ms irrespective of Tf. Thus, fixing 

the calculation time, the test with the highest time step, i.e., longer simulations, shows the 

best values of precision. 

  

PSLE has been compared to LET [LET] and PWL algorithm in [Chialina 1994]. The 

algorithm in LET is an integration of the two algorithms in [Eckmann 1985], [Wolf 1985]. 

The graphical interface has been disabled since it causes a growth of calculation time. The 

same algorithms ([Eckmann 1985], [Wolf 1985]) are also implemented in MATDS and 

Mathematica.  

 

In tables 7.2.1 and 7.2.2 the parameters values for the different tests and the obtained values 

of Lyapunov exponents, precision and calculation time respectively, have been reported. 

Since LET performance and calculation time depend on Tf, Lyapunov exponents have been 

evaluated for three values of Tf. Conversely, since PSLE is not influenced by Tf (see 

Fig.7.2.1a) only one value of Tf has been tested. 

 

Table 7.2.1 Parameter values for the LEs calculation. 

 PSLE LET [Chialina 1994] 

Step Fixed Variable N. A. 

 [ms] 5 - N.A. 

ODE solver Matrix exponential Runge-Kutta Matrix exponential 

Tf [ms] 100 100, 200, 500 N.A. 

T [s] 5000 5000 5000 

 

Table 7.2.2 Comparison of the performance. 

 
PSLE 

LET 
[Chialina 1994] 

 tf =100ms tf = 200ms tf = 500ms 

Lyapunov 

exponents 

0.2329 

-0.0009 

-1.7771 

0.2378 

0.0007 

-1.7906 

0.2379 

-0.0028 

-1.7488 

0.2287 

-0.0003 

-1.7845 

0.23 

0.00 

-1.78 

A
*
(T) 9.182  10-4 8.062 10-4 2.269 10-3 1.461 10-3 - 

Tc 17” 26’ 32’’ 13’ 52’’ 5’ 46’’ N.A. 

 

The accuracy of PSLE is slightly better if compared with that obtained in [Chialina 1994] 

using an extrapolation filter to accelerate the convergence. The calculation time is 

significantly shortened. LET reaches better values of A
*
 when Tf = 100ms, at expense of a 

huge calculation time. For other Tf values, LET performance is worst and PSLE results more 

than an order of magnitude fast. Moreover, the time requested by LET and PSLE in order to 

achieve the same accuracy has been evaluated. Varying Tf, LET employs 11’ 41’’, 27’ 43’’, 

29’ 59’’, to achieve 9.182 10
-4 

 versus 17’’ spent by the algorithm. PSLE employs 57” to 

achieve the best value of accuracy, A
*
=8.062e-4, reached by LET in 26’ 32’’. Thus, PSLE 
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significantly shorten the calculation time still maintaining the precision in the Lyapunov 

exponents evaluation. 

 

Lyapunov exponents have been also evaluated for different values of parameter G of the 

Chua’s circuit and for the Matsumoto hyperchaotic circuit [Matsumoto 1986], confirming 

the robustness of PSLE for different dynamics (see Table 7.2.3). 

 

Table 7.2.3 Accuracy for different dynamics. 

System 
Lyapunov 

exponents 
 [ms] T [s] A* 

Chua’s circuit, 

G=0.6 (Stable node) 

-0.011558 

-0.011586 

-1.476856 

5 50000 

/ 

Chua’s circuit 

G=0.63 (Limit cycle) 

0.000009 

-0.057892 

-1.012204 

1.535 10-5 

Chua’s circuit 

G=0.66 (Spiral attractor) 

0.164033 

-0.000023 

-1.569678 

1.261 10-4 

Matsumoto’s 

hyperchaotic 

circuit 

0.2446 

0.1073 

-0.0043 

-53.8069 

50 10000 8.226 10-5 

 

7.3 PWL approximation of nonlinear dynamical systems for 

Lyapunov exponents estimation 
 

Piecewise-linear or, more correctly, piecewise-affine models can approximate any nonlinear 

function with arbitrary accuracy, provided that the function domain is partitioned in a large 

enough number of subdomains where the function is approximated by an affine system 

([Storace 2005]). 

 

Let consider a n-th order continuous time nonlinear dynamical system defined by the state 

equation 

 

  t
dt

d
xf

x
 , (7.3.1) 

 

where f() is a nonlinear continuous function of the state vector x. 

 

A suitable piecewise linear approximation fa(x) for the nonlinear function f(x) can be 

evaluated by means of a neural network with saturating linear transfer functions in the 

hidden layer and a linear output layer. 

 

For example, fig. 7.3.1 shows the structure of a neural network approximating a nonlinear 

odd one-dimensional function passing through the origin. The number of hidden neurons of 

the neural network represents the number of knee points in the positive subdomain of the 

piecewise linear approximation. After the network training, it is possible to extrapolate the 

parameters of the PWL approximation, the knee points γi and the slopes mi. 
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Generally speaking, neural networks with several hidden neurons better approximate the 

desired behavior. Nevertheless, the transitions between two regions during the Lyapunov 

exponents evaluation penalizes the precision of the algorithm. Thus, a compromise between 

the two requirements is made in order to choose the number of hidden neurons. 

 

 
Fig. 7.3.1 Neural network structure for approximating nonlinear odd functions. 

 

7.4 Application to polynomial chaotic systems 
 

The linearity of the new state equation and of the variational equation, obtained resorting to 

the piecewise linear approximation of the nonlinear function, can be exploited to accurately 

evaluate Lyapunov exponents of the approximated system with a reduced execution time. 

 

The technique has been applied to the Chua’s circuit with cubic nonlinearity [Huang 1996], 

with state equations: 

 

 





















y
dt

dz

zyx
dt

dy

xcxy
dt

dx



 3

. (7.4.1) 

 

When α = 10, β = 16 and c = –0.143 the system (7.4.1) has a chaotic behaviour, showing a 

double scroll attractor (fig. 7.4.1). 

 

 
Fig. 7.4.1 Double scroll attractor of the Chua’s circuit with cubic nonlinearity. 
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The cubic non linearity f(x) = x
3
 has been approximated with a PWL function fa(x), using the 

neural network shown in fig. 7.3.1. Table 7.4.1 shows the mean squared error between f(x) 

and the PWL approximation fa(x), varying the number of regions M in the positive 

subdomain. 

 

Table 7.4.1 Mean squared error (MSE) on approximation of the cubic nonlinearity varying 

the number of regions. 

N° of regions 2 3 4 5 6 

MSE 1.442∙10
-5

 2.378∙10
-6

 7.592∙10
-7

 2.822∙10
-7

 1.324∙10
-7

 

N° of regions 7 8 9 10 11 

MSE 6.881∙10
-8

 4.061∙10
-8

 2.547∙10
-8

 1.631∙10
-8

 1.113∙10
-8

 

N° of regions 12 13 14 15 16 

MSE 7.627∙10
-9

 5.786∙10
-9

 4.210∙10
-9

 3.357∙10
-9

 2.675∙10
-9

 

 

For each value of M, the approximated PWL system 

 

  





















y
dt

dz

zyx
dt

dy
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 (7.4.2) 

 

has been integrated. Fig. 7.4.2 shows the attractors corresponding to the values M = 2, 4, 8 

and 16. 

 

 

 
Fig. 7.4.2 Attractors corresponding to the values of  

(a) M = 2, (b) M = 4, (c) M = 8 and (d) M = 16. 
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As it can be noticed, approximations with two branches are not able to reproduce a double 

scroll attractor, whereas with more than three branches they show qualitatively equivalent 

motion between the smooth system and the PWL approximation. This fact has been 

confirmed by the evaluation of the Lyapunov exponents. 

 

In fig. 7.4.3a, the values of the Lyapunov exponents for each value of M are plotted and 

compared with those obtained by LET toolbox for Matlab [LET]. Dashed lines represent the 

3σ confidence intervals of Lyapunov Exponents of system (7.4.1), evaluated using LET 

starting from different initial conditions. 

 

 

 
Fig. 7.4.3 (a) LEs values: LET confidence intervals (dashed lines), PSLE (continuous line); 

(b) calculation time varying the value of M for the PWL algorithm. 

 

The calculation time is of the order of 2 minutes independent of the number of regions. LET 

lasts 1 hour and 50 minutes to perform the same calculation. In table 7.4.2, the simulation 

parameters are listed. 
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Table 7.4.2 Parameter values for Lyapunov exponents estimation. 

Time step N° iterations Initial conditions 

5ms 2∙10
6
 [0 0 0.1] 

 

7.5 Conclusions 
 

PSLE, an algorithm for Lyapunov exponents evaluation in PWL systems, has been 

proposed. The algorithm solves in closed form the state and the variational equations taking 

into account the issues of crossing time and the matrix exponential estimations. The 

computational cost is considerably reduced without compromising the precision. Results 

have been compared with those obtained by algorithms presented in literature for PWL 

systems and by the LET toolbox without graphical interface, demonstrating the 

effectiveness of the approach. 

 

The algorithm has been extended to non linear systems with polynomial nonlinearity, by 

means of a PWL approximation of the nonlinear function. The suitable approximation is 

evaluated by means of a Multi-Layer Perceptron with linear and saturating linear transfer 

functions. PSLE  is then applied to a new system with the piecewise linear approximation of 

the nonlinear function. Comparisons with results obtained by LET with disabled graphical 

interface have been reported in the case of Lyapunov exponents evaluation for the Chua’s 

circuit. Results confirm that the proposed algorithm allows one a fast evaluation of 

Lyapunov exponents without compromising the accuracy of the calculation. 
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Chapter 8 

Effect of a particular coupling on the dynamic 

behavior of nonlinear systems 

In this chapter, a systematic method to project systems of order 2n characterized by two 

positive Lyapunov exponents, is proposed. This procedure couples nth-order chaotic 

systems with a suitable non linear coupling function. Examples of polynomial and piecewise 

linear systems have been proposed. Both numerical simulation and circuit implementation 

have been performed. Transformation techniques have been applied to the study of these 

systems; in particular, the analysis of the transverse and tangent systems has shown that they 

are equivalent to two uncoupled identical chaotic systems of order three. The work has been 

published in the International Journal of Circuit Systems and Applications. 

 

8.1 General approach 
 

Let us consider a system described by  

 

)(xfAx
x


dt

d
, (8.1.1) 

 

where x = (x1 x2 … xn)
T
 Rn

 and f (x) =(f1(x) f2(x) … fn(x))
T
 is a nonlinear function on Rn

. 

  

The coupling functions g and h are introduced to couple two identical systems of the form 

(8.1.1) obtaining 
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The transverse and tangent systems are 
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If  
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i.e., 
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system (8.1.3) becomes 
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with 

 









20100||

20100

xxx

xxx
. (8.1.7) 

 

In this case, transverse and tangent systems are two uncoupled systems, identical to the 

original systems. The effect of the coupling is the same effect of a change in the initial 

conditions x10 and x20 of the uncoupled systems. Thus, if the initial conditions of S// are in 

the same basin of attraction of [x10 x20] the S// dynamics is the same of system S. 

 

The linear transformation of the state variables leads to the uncoupling of the equations 

governing the behavior of the 6
th

 order system by splitting the state space in subspaces. As it 

can be noticed, the two systems S and S// are two identical uncoupled systems. 

 

System S and system S// composed by S// and S are equivalent under a linear 

transformation of the state variables. Since LEs are invariant under linear transformations of 

the state variables, S and S// are characterized by the same LEs.  

 

If system S is chaotic, system S//, being composed of two chaotic systems, is characterized 

by two identical positive LEs. For this reason, system S too presents two positive LEs. 

However, its dynamics is equivalent to that of system S//, i.e., to that of two uncoupled 

systems in chaotic regime, S// and S. Thus, although system S has two positive LEs, it can 

be considered hyperchaotic at the same level as any other pair of uncoupled chaotic systems. 

 

8.2 Application to PWL chaotic systems 
 

Let us consider the Chua’s circuit with PWL nonlinearity. System equations are  
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where 

 

  ExExGGxGxf bab  111 5.0)( . (8.2.2) 

 

If C1 = 10nF, C2 = 100nF, L = 18mH, R1 = 6.6kΩ, R2 = R3 = 44kΩ, R4 = 4.4kΩ, R5 = R6 = 

440Ω, G = 1/1670Ω
-1

 the system shows a chaotic behavior and it is characterized by one 

positive, one negative and one null LE. 

 

The Chua’s circuit is characterized by three fixed points 
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which, in chaotic regime, are non-stable. The origin is a saddle point for all values of the 

parameters. 

 

Let us consider two identical Chua’s circuits S1 and S2. The dynamics of the system S, 

obtained bidirectionally coupling S1 and S2, is described by a set of six differential 

equations, i.e., 
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where 
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The analogue circuit representing system S is shown in fig. 8.2.1. 
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As it can be noticed when x2=0 (x1=0), the left (right) part of the circuit is an independent 

Chua’s circuit. 

 

The system S is characterized by six Lyapunov exponents and one or two Lyapunov 

exponents could be positive. In this case, the parameters are chosen to obtain that each 

Chua’s circuit subsystem operates in the chaotic regime. 

 

 
Fig. 8.2.1 6

th
 order circuit with PWL nonlinearity. 

 

In order to simplify the analysis of the dynamical behaviour of the system, let us introduce 

the transverse systems S and the tangent system S//. The transverse and tangent systems are 

respectively defined by the state variables 
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A direct substitution of (8.2.7) into (8.2.4) leads to the new state equations 
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The linear transformation of the state variables leads to the uncoupling of the equations 

governing the behavior of the 6
th

 order system by splitting the state space in subspaces. As it 

can be noticed, the two systems S and S// are two identical uncoupled Chua’s circuits. 

System S and system S// composed by S// and S are equivalent under a linear 

transformation of the state variables. Since LEs are invariant under linear transformations of 

the state variables, S and S// are characterized by the same LEs.  

 

System S//, being composed of two Chua’s circuits, is characterized by two identical 

positive LEs. For this reason, system S too presents two positive LEs. However, its 

dynamics is equivalent to that of system S//, i.e., to that of two uncoupled Chua’s systems in 

chaotic regime, S// and S. Thus, system S can be considered hyperchaotic at the same level 

as any other pair of uncoupled chaotic systems. 

 

If the initial point of S  or S// is not one of the fixed points P1,2 in (8.2.3), also the 

generalised synchronization 
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can be excluded. 

 

8.2.1. Numerical results 

 

The system equations have been solved using Matlab. The integration method was Runge 

Kutta with time step equal to 10
-6

. Typical hyperchaotic attractors shown in fig. 8.2.2 have 

been obtained. 
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Fig. 8.2.2 View of system S attractor in the plane (a) x1,x2, (b) y1,y2, (c) x1,y1. 

 

Fig. 8.2.3 shows that the time series of the state variables are different, thus system S does 

not include synchronized subsystems. 

 

 
Fig. 8.2.3 System S time series. 

 

Fig. 8.2.4 shows the 3D double scroll attractors for the transverse and tangent systems (Fig. 

8.2.3). 

 

 
Fig. 8.2.4 3D View of the system attractor (a) transverse system, (b) tangent system. 
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8.2.2. Experimental results 

 

To verify the practical feasibility of the circuit, it has been realized in laboratory using 

standard components. The operational amplifiers are TL082 powered by 9V batteries, G is a 

potentiometer of 2k, the resistors are 1/4W with 5% tolerance, the inductor has been 

realized with an active circuit [19]. 

 

Fig. 8.2.5 shows a 2D projection of the double scroll attractor obtained imposing x2=0.  

 

Fig. 8.2.6 shows the voltage x1 of the capacitor C1 vs. the voltage y1 of the capacitor C2 (fig. 

8.2.6a), the 2D attractor obtained measuring the voltages x1 and x2 of the capacitors C1 (fig. 

8.2.6b) and the voltages y1 and y2 of the capacitors C2 (fig. 8.2.6c). 

 

 
Fig. 8.2.5 2D View of the Chua’s circuit attractor obtained imposing x2=0. 

 

 
Fig. 8.2.6 2D View of the 6D-system attractor on the plane (a) x1,y1, (b) x1,x2, (c) y1,y2. 

 

Fig. 8.2.7 shows the 3D views of tangent and transverse systems attractors obtained by 

processing the experimental data with Matlab. 
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Fig. 8.2.7 2D View of the experimental system attractor (a) transverse system, (b) tangent 

system. 

 

As it can be noticed, comparing the attractors in fig. 8.2.2 and 8.2.6 and those in fig. 8.2.4 

and 8.2.7, experimental results are in agreement with numerical simulations.  

 

Lyapunov exponents of system S have been evaluated starting from the experimental time 

series using TISEAN [20]. The LEs spectra estimated from a time series of 10000 samples 

is [5669 2202 146 -1293 -4369 -11589], where the third one can be considered as null when 

compared with the other values. Moreover, the effect of component tolerances results in the 

difference between the Lyapunov exponents of the uncoupled Chua’s circuits and those of 

system S. In particular, one of the two null Lyapunov exponents becomes less than zero in 

system S. 

 

8.3 Application to polynomial chaotic systems 
 

Let us consider the Chua’s circuit with cubic nonlinearity. System equations are the same in 

(8.2.1) and 

  

  3

31 xxxf    (8.3.1) 

 

If  = 10,  = 16, c = 0.143 the system shows a chaotic behavior and it is characterized by 

one positive, one negative and one null Lyapunov exponent. 

 

Three equilibrium points exist, i.e. 

 

     ccPcc=PP  ,0,,0,0,0,0 210 , (8.3.2) 

 

and, in chaotic regime, the three equilibrium points are non-stable. 

 

Let us consider two identical Chua’s circuits S1 and S2. The dynamics of the system S, 

shown in fig. 8.3.1, obtained bidirectionally coupling S1 and S2, is described by a set of six 

differential equations, i.e., 
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Fig. 8.3.1 6

th
 order circuit with polynomial non linearity. 
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where the coupling function is 
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By introducing 
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system (8.3.3) can be written in dimensionless form 
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A direct substitution of equations 
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into (8.3.6) leads to the state equations for the transverse and tangent systems 
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i.e., 
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The systems Sd and S//d are two Chua’s circuits with cubic non linearity. Thus, system Sd, 

obtained coupling two Chua’s circuits through a polynomial nonlinear function, is 

equivalent to system S//d consisting of the same but uncoupled Chua’s circuits. The initial 

conditions of S//d can be obtained substituting in (8.3.7) the initial conditions of Sd. Thus, 

the only effect of the coupling function on Sd dynamics is a change in the initial conditions 

of the original uncoupled circuits.  
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From the result on systems Sd and S//d follows that Sd is certainly characterized by two 

positive, two null and two negative Lyapunov exponents. Nevertheless, it can be considered 

hyperchaotic at the same level as any other pair of uncoupled chaotic circuits. 

 

If the initial point of S  or S// is not one of the fixed points P1,2 in (8.3.2) also the generalised 

synchronization 
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can be excluded. 

 

A more general formulation for system Sd can be 
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where the coupling functions are 
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The transverse and tangent systems are described by the following state variables 
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The transverse and tangent system equations show that they are still two uncoupled Chua’s 

circuits. The parameter K does not appear in their state equations. Thus, the number of 

positive Lyapunov exponents does not depend on the value of K. If K = 1/4 is assumed. 

there is a large simplification in the coupling function expressions. In this case 

 

  2

212112  3, dddd xxxxk  , (8.3.17) 

  2

122121  3, dddd xxxxk  , (8.3.18) 

 

and system (8.3.13) turns to system (8.3.6). 

 

8.3.1. Numerical results 

 

The system Sd is characterized by six Lyapunov exponents. If  = 10,  = 16, c = 0.143, Sd 

has two positive, two negative and two null Lyapunov exponents. The system equations 

have been simulated using Matlab. The integration method was Runge Kutta with fixed time 

step equal to 6·10
-3

. 

 

Under the initial conditions [0, 0.15, 3·10
-4

, 0, 0.05, 10
-4

], the attractors shown in fig. 8.3.2 

have been obtained. 

 

 
Fig. 8.3.2 View of the Sd attractor in the plane (a) x1d,x2d, (b) y1d,y2d. 

 

Fig. 8.3.3 shows that the time series of the state variables are different, thus Sd does not 

include synchronized subsystems. The presence of two positive Lyapunov exponents and 

the absence of synchronization would lead to the hypothesis of hyperchaotic behavior. 

 

8.4 Conclusions 
 

Generally speaking, depending on the coupling function, the qualitative behaviour of two 

coupled systems, could be different by the one of the uncoupled systems. 

 

A systematic method to project systems of order 2n characterized by two positive Lyapunov 

exponents, has been proposed. The procedure couples nth-order chaotic systems with a 

suitable non linear coupling function. 
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Fig. 8.3.3 System Sd time series. 

 

In particular, this study focused on particular sixth-order dynamic systems characterized by 

two positive Lyapunov exponents, occurrence generally assumed as a signature of 

hyperchaos. The dynamic behavior of these systems has been investigated applying 

transformation techniques, i.e., analyzing transverse and tangent 3-D systems. The analysis 

of the transverse and tangent systems showed that they are equivalent to two uncoupled 

identical chaotic systems of order three. Examples of polynomial and piecewise linear 

systems are proposed. Both numerical simulation and circuit implementation have been 

performed.  

 

The presence of two positive Lyapunov exponents is generally considered a signature of 

hyperchaos. This analysis suggests some considerations about the hyperchaoticity of these 

systems. Indeed, despite the presence of two Lyapunov exponents, these systems can be 

considered hyperchaotic at the same level as any other pair of uncoupled chaotic circuits.  
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Chapter 9 

Identification of parameters in nonlinear dynamical 

systems by neural networks 

In this chapter a traditional Multi Layer Perceptron with a tapped delay line as input has 

been trained to identify the parameters of the Chua’s circuit when fed with a sequence of 

values of a scalar state variable. The analysis of the a priori identifiability of the system, 

performed resorting to differential algebra, has allowed to choose a suitable observable and 

the minimum number of taps. The results has confirmed the appropriateness of the proposed 

approach. The work has been submitted to the 4th International Interdisciplinary Chaos 

Symposium on Chaos and Complex Systems (CCS 2012), held in Antalya, Turkey, on 29
th

 

April -1
st
 May 2012. 

 

9.1 General approach 
 

Let us consider a time-invariant, nonlinear system described by the model: 

 

  ]),([   ,,),,( uthyut
dt

d
xppxf

x
  (9.1.1) 

 

where f and h are algebraic functions in x, p is a P-dimensional parameter vector, u is the 

system input and y is a scalar output. 

 

The main purpose is to identify the system parameters in (9.1.1) by means of the observable 

y, after that their identifiability has been verified by means of the differential algebra 

approach. The relationship between parameters and the observable is then captured by the 

training of a neural network with memory. The network input consists of sequences of the 

observable variables and the network outputs are the system parameters. 

 

The solution of the identifiability problem, when it exists, allows one to identify the state 

variable necessary to identify the unknown parameters and it determines the neural network 

architecture. 

  

9.2 Application to the Chua’s circuit with cubic nonlinearity 
 

The Chua’s circuit with a polynomial nonlinearity has been considered [21], with equations 
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The input output relationship (IOR) corresponding to the output y = x1 is 
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By imposing     cc ,,,,   for the coefficients of equation (9.2.2), system  
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has got a unique solution 
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Thus, Chua's circuit is globally identifiable from the observable y = x1. 

 

Thus, a neural network is trained to capture the relationship between the parameters and a 

sequence of values of the y variable. When α=10, β=16, c=-0.143, Chua's circuit exhibits a 

chaotic behaviour. The hypotesis that only one parameter vary with repect these values is 

made. In fault diagnosis, this would mean that a single fault hypotesis is assumed, that is the 

most probable one. For example, manipulating eq. (9.2.2) the parameter α can be expressed 

as a function of the y and its derivatives 
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Several simulations have been performed, with varying the parameter α from 8.5 to 11.5 

with step equal to 0.5 and maintening the other parameters fixed. The Chua’s time series for 

each parameter configuration have been obtained with MATLAB, using Runge-Kutta ODE 

solver with a step size equal to 1ms and simulation time equal to 400s. Forty thousand 

samples for each value of  have been generated to build training set (13685 points) and 

validation set (6842 points). Another set of 6842 samples constitutes an independent test set 

and it is used to evaluate network performance.  

 

Fig. 9.2.1 shows the attractors of the Chua’s circuit for different α values. 

 

The identification of parameter α has been performed by considering, in input to a Multy 

Layer Perceptron neural network, a tapped delay line y(t) = [y(t), y(t–T), …, y(t–(m–1)T)] 

with y = x1.  Each pattern in input consists of samples corresponding to the same value of α. 

The MLP has one hidden layer with hyperbolic tangent transfer function and one output 

with linear transfer function (see fig. 9.2.2).  
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Fig. 9.2.1 Attractors of the Chua’s circuit for different α values. 

 

 
Fig. 9.2.2 Multi Layer Perceptron neural network with a tapped delay line as input. 

 

Several networks have been trained varying between 0.2s and 0.5s, m between 5 and 30, 

with a number of hidden neurons equal to 30. Network performance has been evaluated by 

the minimum Mean Square Error (MSE) on the validation set. The best results have been 

obtained for m=20 and =0.2s. As it can be noticed, the MLP is able to instantaneously 

supply the parameter value without the necessity of waiting the convergence of the 

algorithm or of a decoding procedure.  

 

The same procedure has been adopted to identify the  and c parameters. The  parameter 

vary from 14.5 to 17.5 and the c parameter vary between -0.18 and -0.08. The best 

performances have been obtained for  and c in the case of m=10 and =0.2s. Fig. 9.2.3 

reports an example of network answers for the parameters  estimation. Tables 9.2.1, 9.2.2 

and 9.2.3 summarize the obtained results in terms of the ratio between the root mean square 

error (RMSE) and the absolute value of the  parameter. 
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a) 

 
b) 

 
c) 

 
Fig. 9.2.3 Target (continuous line) and network output (dots) fora parameter, (b)  

parameter, (c) c parameter. 
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Table 9.2.1 Error values on the identification of α parameter. 

α 8.5 9 9.5 10 10.5 11 11.5 
RMSE/α (%) 1.48 1.06 0.55 0.99 1.18 0.91 2.00 

 

Table 9.2.2 Error values on the identification of β parameter. 

 14.5 15 15.5 16 16.5 17 17.5 

RMSE/ (%) 1.00 0.77 0.49 0.73 0.41 0.38 0.57 

 

Table 9.2.3 Error values on the identification of c parameter. 

c -0.18 -0.16 -0.143 -0.12 -0.10 -0.08 
RMSE/|c| (%) 2.52 1.75 1.87 1.18 1.67 2.33 

 

9.3 Conclusions 
 

The identification of the parameters of the Chua’s circuit with cubic nonlinearity using a 

tapped line of the observable x1 as input, has been performed. The first step has consisted on 

the analysis of the system identification resorting to an algebraic observability approach. 

Then, chosen a proper observable, a neural network has been trained to learn the 

relationship between a sequence of the observable values and one unknown parameter. The 

obtained results has confirmed the suitability of the proposed approach also for real time 

applications. 
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Chapter 10 

Denoising of time series based on wavelet 

decomposition and cross-correlation between the 

residuals and the denoised signal 

In this chapter, a new denoising method, based on the wavelet transform of the noisy signal, 

is described. The method implements a variable thresholding, whose optimal value is 

determined by analysing the cross-correlation between the denoised signal and the residuals 

and by applying different criteria depending on the particular decomposition level. The 

residuals are defined as the difference between the noisy signal and the denoised signal. The 

procedure is suitable for denoising signals in real situations when the noiseless signal is not 

known. The results, obtained with synthetic data generated by well-known chaotic systems, 

show the very competitive performance of the proposed technique. The technique has been 

applied also to real time series coming from diagnostics of the JET tokamak reactor, located 

in the Culhum Science Center, Abingdon, UK. Part of the work has been submitted to the 

10
th

 IASTED International Conference on Signal Processing, Pattern Recognition and 

Applications (SPPRA 2013), held in Innsbruck, Austria on 12
th

-14
th

 February 2013. 

 

10.1 Denoising method 
 

Let zn be a noisy time series of length N sampled with constant sampling time Ts. The aim of 

the denoising algorithm is to eliminate the noise component from the noisy time series 

minimizing the function 

 

k
k

crf max , (10.1.1) 

 

where crk is the cross correlation between the denoised signal ny~  and the reconstructed 

noise n
~ . This objective function can be used in experimental applications, when the clean 

signal is not known and traditional performance indexes, e.g., MSE (Mean Squared Error), 

cannot be evaluated. 

 

It is worth noting that since all the values of crk that lie within the 95% confidence limits are 

considered statistically equivalent (see eq. 4.3.15), the evaluation of the minimum of the 

objective function is characterized by a tolerance. The objective of our method is to keep the 

maximum absolute value of the cross-correlation, i.e. the objective function f, as small as 

possible within the 95% confidence limits. 

 

In order to design an algorithm to choose suitable thresholds for the wavelet coefficients, the 

cross-correlation crk, has been evaluated for known noisy time series obtained from Chua's 

circuit ([Matsumoto 1985]) by adding to the clean signal yn a white Gaussian noise of 

known variance ηn. The relation between the cost function f and the signal to noise ratio 
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where 2

y and 2
~   are respectively the variance of the clean signal and of the noise not 

identified by the denoising algorithm, has been analysed to define an appropriate threshold 

criterion. So, in this design phase the noise is known. 

 

Several tests have been performed varying the sampling time and signal-to-noise ratio. 

Moreover, the influence of the choice of the mother wavelet has been considered. 

 

A characteristic behaviour of the cost function f has been identified varying the level of the 

wavelet decomposition. Thus, in the proposed algorithm, also the cost function's 

optimization is scale-dependent. For each scale, the local minimum of f is chosen, and this 

criterion results in a SNR higher than the initial one, the smaller the size of the sampling 

step. 

 

In more detail, in the early resolution levels, the noise component is much greater than the 

signal component and a soft thresholding technique is used. For these levels, the optimal 

threshold, the value giving a local minimum in f, has to be chosen in the range between the 

standard deviation of the detail coefficients and their maximum absolute value. For white 

gaussian noise, the statistical distribution of coefficients in the early levels, and hence the 

optimal threshold, remains to a large extent constant.  

 

Increasing the level, at a certain point a so called ‘critical’ level is reached, where the noise 

and signal components are comparable, thus making the identification of the best threshold 

not so straightforward. The detection of the critical level is made possible, for gaussian 

white noise, by analyzing the standard deviation of the coefficients level by level. When the 

standard deviation of the coefficients begins to increase significantly, then the level is 

classified as critical. At the critical level, a hard thresholding technique is used and the 

optimal threshold value corresponds, with good approximation, to the smallest threshold that 

guarantees a local minimum in the cost function f, in the range between zero and the 

standard deviation of the detail coefficients. 

 

In the last levels the signal component is much greater than the noise component, thus 

thresholding could be very dangerous to the integrity of the signal. Indeed, the optimal 

threshold in the last levels is almost zero. Thus, in the levels following the critical level, a 

threshold equal to zero is chosen. 

 

It is important to consider that the minimum of the objective function in the early levels may 

exceed, in some particular cases, the confidence limits. In this case, the algorithm first tries 

to perform a hard thresholding in place of the soft one. If also in this case the minimum of 

the objective function exceeds the confidence limits, then the algorithm applies the same 

thresholding technique used for the critical level.  

 

10.2 Detailed description of the threshold selection criteria 
 

In order to choose a suitable threshold criterion for the wavelet coefficients the behaviour of 

cross-correlation crk, for known noisy time series obtained from Chua's circuit (fig. 10.2.1a, 

[Matsumoto 1985]) have been analysed. The dynamics of Chua’s circuit is described by the 

following equations: 
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Fig. 10.2.1 (a) Chua's circuit; (b) V-I characteristic of nonlinear resistor. 
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  (10.2.1) 

 

where 1x , 2x , and 3x  denote, respectively, the voltage across the capacitor of capacitance 

1C , the voltage across the capacitor of capacitance 2C  and the current through the inductor 

of the inductance L . )(g  is the piecewise linear function, 

 

    11
2

1
1111  xxGGxGxg abb   (10.2.2) 

 

which describes the voltage-current characteristic of the nonlinear resistor (Fig. 10.2.1b). 

 

For the following values of the parameters C1 = 1/9F, C2 = 1F, L = 1/7H, G = 0.7Ω
-1

, Ga = –

0.8 Ω
-1

, Gb = –0.5 Ω
-1

 used to obtain the results reported in this thesis, the circuit exhibits 

chaotic behavior and a double–scroll attractor. 

 

The signal to be denoised is the voltage x1 across C1 in a time window of 5000 points with 

sampling time equal to 5ms, 10ms and 20ms. The signal has been normalized and corrupted 

adding a pseudorandom Gaussian white noise with SNRs equal to 7, 10, 14, 17, 20 dB.  

 

Fig. 10.2.2 shows typical plots of the cost function f, normalized with respect to the 

confidence limit (fig. 10.2.2a), and the signal-to-noise ratio (fig. 10.2.2b). In this case the 

sampling time is equal to 0.02s and the signal-to-noise ratio is equal to 14dB. The mother 

wavelet is db2. 

 

For each level, the plot is drawn for threshold values varying between zero and the 

maximum absolute value of the detail coefficients. The squares in the plots represent the 

choice made by the algorithm. For the sake of comparison between successive levels, 



116 

 

especially with regard to the standard deviation of the coefficients, indicated by the solid 

vertical line, the scale factor in the x axis is the same for all levels. 

 

 
Fig. 10.2.2 (a) Cost function normalized with respect to confidence limit (b) signal-to-noise 

ratio. The vertical line indicates the value of the standard deviation of the wavelet 

coefficients for the corresponding level. 

 

As it can be seen in fig. 10.2.2, the local minimum of the devised cost function f properly 

identifies the region of the highest SNR in each level, resulting in a filtered signal with 

minimum noise and negligible distortion. Moreover, the standard deviation of coefficients 

remains roughly constant in the early levels, i.e., from the first to the fourth.  This indicates 

that in the first four levels the signal component is much lower than the noise component. 

 

In the fifth level, the standard deviation of coefficients increases significantly (by a factor of 

~2), indicating that the signal component is starting to rise. Thus, the fifth level is classified 

as critical and the smallest threshold guarantying a local minimum in the cost function f is 

chosen. This choice results in a greater value of the SNR, compared to a threshold chosen on 

the right side of the vertical line. It should be noted that the recognition of the critical level 

is the easier, i.e. the difference between the standard deviations of the pre-critical level and 

of the critical one is the highest, the larger the initial signal to noise ratio and the smaller the 

sampling step of the signal. 

 

Since wavelet denoising of a given signal is sensitive to the mother wavelet, to increase the 

algorithm robustness and efficiency, the procedure is iteratively applied, using different 

mother wavelets. In the first iteration, most of the noise is removed. Thus, since most of the 

noise must be concentrated in the detail coefficients, the procedure starts firstly applying a 

low-order mother wavelet, which collects the high frequency components, and hence the 

noise, on the detail. Then, the order of the mother wavelet is increased, to refine the 

denoising process. Since most of the noise is removed in the first iteration, the critical level 

is determined at the first step and maintained for all subsequent steps. In particular, 

Daubechies wavelets (db2, db4, db8, db16) have been used because transient, aperiodic 

signals – such as partial discharge – are best extracted with an asymmetrical wavelet basis 

function [Ma 2002]. 
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The proposed denoising strategy has been summarized by the flow diagram in fig. 10.2.3. 

 

 
Fig. 10.2.3 Flow diagram of the denoising technique. 

 

Fig. 10.2.4 shows the improvements on parameters such as SNR and RMSE (Root Mean 

Square Error) step by step for the case of Chua's signal used previously. 

 

 
Fig. 10.2.4 Sequence of SNR and RMSE values during the denoising procedure. 

 

The root mean square error has been evaluated as the square root of the mean squared 

difference between the clean signal yn and the denoised signal ny~   
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10.3 The Lorenz system as a case of study 
 

Chaotic signals are well known for being particularly difficult to denoise. Therefore the 

method previously described has been applied to the denoising of noisy chaotic signals, 
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obtained by adding a white gaussian noise to the chaotic signals. As a typical example, in 

the following the results obtained for Lorenz system [Lorenz 1963] have been reported. In 

this case, as in practical cases, the added noise is considered unknown and is not used for the 

denoising procedure. 

 

The dynamics of the Lorenz system is described by 
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 (10.3.1) 

 

where σ is the Prandtl number, ρis the Rayleigh number and β is related to the horizontal 

wavenumber of the convective motions. All σ, ρ, β > 0, but usually σ = 10, β = 8/3, and ρ is 

varied. The system exhibits chaotic behavior for ρ = 28. 

 

The signal to be denoised is the variable x1 in a time window of 5000 points with sampling 

time equal to 5ms, 10ms and 20ms. The signal has been normalized and corrupted adding a 

pseudorandom white gaussian noise with SNRs equal to 7, 10, 14, 17, 20 dB. 

 

For each SNR, ten denoising sessions have been performed varying the added noise. Fig. 

10.3.1 summarizes the simulation results in terms of mean value and minimum-maximum 

values of SNR and RMSE. 

 

 
Fig. 10.3.1 Simulation results for Lorenz system. The y–axis reports the SNR (a) and the 

RMSE (b) of the denoised signal versus the SNR of the original signal with different 

sampling times. 

 

As expected, the denoising performance is strongly influenced by the signal sampling time. 

In particular, the higher the ratio between the sampling frequency and the signal bandwidth, 

the greater the increase in the signal-to-noise ratio. 
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Let us consider the case of a SNR before denoising of 14dB and sampling time equal to 

0.01s. Fig. 10.3.2 shows the standard deviation of the detail coefficients at the different 

decomposition levels during the first iteration of the algorithm. The standard deviation is 

almost constant in the first three levels, whereas it considerably increases in the fourth level. 

Thus, level four is the critical level.  

 

 
Fig. 10.3.2 Standard deviation of details coefficients for each level in the first iteration with 

mother wavelet db2. 

 

Fig. 10.3.3 shows the values of SNR and RMSE in the different steps of the procedure. The 

curve of SNR values is monotonic increasing and that one of RMSE values is monotonic 

decreasing, confirming the suitability of the proposed approach. 

 

 
Fig. 10.3.3 Sequence of SNR and RMSE values during the denoising procedure for the 

Lorenz signal. 

 

Table 10.3.1 reports the obtained results, in terms of SNR and RMSE, and those presented 

in literature. As it can be noticed, the performance of the proposed method is slightly worse 

with respect to that of the improved noise reduction method described in [Han 2009]. 

However, there is a crucial difference between the significance of the results in the two 
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cases. In [Han 2009] the optimal decomposition scale has been chosen in order to obtain the 

minimal noise residual ratio, that can be evaluated only if the noiseless signal is known. 

Since it is strongly problem-dependent, this method cannot be applied in real situations 

when only the noisy signal is available. 

 

Table 10.3.1 SNR and RMSE comparison of four denoising methods. 

Method SNR after denoising (dB) RMSE 

[Han 2006] 23.18 0.5431 

[Han 2009] 24.60 0.4550 

[Gao 2010] - 0.4803 

Present method 24.20 0.4794 

 

To provide a visual representation of the quality of the obtained results, in fig. 10.3.4 three 

noisy signals are plotted. Fig. 10.3.4a shows the signal of the Lorenz system with a SNR 

before denoising of 14dB with different sampling times (5ms, 10ms and 20ms); the related 

denoised signals are reported in Fig. 10.3.4b. 

 

 
Fig. 10.3.4 Lorenz: x1 time series (a) noisy data (SNR=14 dB), (b) denoised data. 

 

10.4 Application to time series from JET diagnostics 
 

The algorithm has been applied to real signals coming from the soft X-rays diagnostic of the 

tokamak JET during an ELM. It is important to consider that, in presence of real noisy 

signals, the form and the values of the noise are not known, and make quantitative 

considerations on the signal to noise ratio or mean square error is not possible. It is therefore 

necessary, in these cases, in order to make qualitative considerations on the success of the 

denoising method, to be able to distinguish, roughly at least, the noise component from the 

signal one. 

 

The denoising technique has been applied to a time series of 20000 samples with sampling 

time Ts = 100μs. In fig. 10.4.1, the time series before and after denoising and the the 

residuals are shown. 
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Fig. 10.4.1 Soft-X rays time series before and after denoising, and residuals. 

 

Fig. 10.4.2 shows the plots of the cost function f, normalized with respect to the confidence 

limit during the first denoising step with mother wavelet db2. 

 

 
Fig. 10.4.2 Cost function normalized with respect to confidence limit. The vertical line 

indicates the value of the standard deviation of the wavelet coefficients for the 

corresponding level. 

 

As can be seen in fig. 10.4.2, the standard deviation of coefficients remains roughly constant 

in the early levels, i.e., from the first to the third. This indicates that in the first three levels 

the signal component is much lower than the noise component. In the fourth level, the 

standard deviation of coefficients increases significantly, indicating that the signal 

component is starting to rise. Thus, the fourth level is classified as critical and the smallest 

threshold guarantying a local minimum in the cost function f is chosen. 
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10.5 Conclusions 
 

A new denoising method based on the wavelet transform of the noisy signal and on the 

cross-correlation between the denoised signal and the residuals has been developed. This 

procedure, in contrast to previous works, is suitable to denoising signals in real situations, 

when the noiseless signal is not known. 

 

Several tests on chaotic signals have been performed varying the sampling step and the 

initial amount of noise. The technique has proved to be quite robust and has allowed 

increasing the signal-to-noise ratio of a quantity dependent only on the ratio between the 

sampling frequency and the bandwidth of the signal. The performance obtained is quite 

competitive with respect to the most recent alternative methods that, on the other hand, are 

not applicable to experimental signals. 

 

With regard to practical applications, the developed algorithms has been applied also to 

experimental time series coming from JET database. The application to experimental time 

series has led the method to deal with the normal difficulties encountered in these cases, like 

the presence of non-white noise and a not clear discrimination between the signal and the 

noise component. In these cases, the algorithm has been able to eliminate only the white 

component of the noise, while keeping the non-white one unaltered.  

 



123 

 

 

 

Chapter 11 

Dynamic behaviour of Type I ELMs 

This chapter deals with the study of dynamic behaviour of Type I ELMs. The final goal of 

the study is the modelization of the phenomenon. 

 

As a first step, a statistical analysis of time intervals between successive Type I ELMs is 

proposed. The analysis can be summarized in the following steps: database construction 

(section 11.1), ELMs detection (section 11.2), i.e., identification of inter-ELM time 

intervals, distribution fitting on the entire sample of time intervals (section 11.3), 

memorylessness study on the best fit distribution (section 11.4), analysis of variance 

(section 11.5), grouping of pulses obtained in similar experimental conditions and detailed 

analysis on some groups (section 11.6), determinism analysis on ELM time series (section 

11.7). 

 

11.1 Database construction 
 

For the analysis, a database of 60 shots has been analysed. The D signals taken from the 

outer divertor line of sight have been used, resulting in a total of 3448 Type I ELMs 

extracted from JET database, sampled with a time step of 100s. 

 

Only the shots in which the plasma conditions are stable and stationary have been selected. 

For the analysis of stationarity, plasma current, vacuum toroidal field at R=2.96, neutral 

beam input power and lower triangularity have been considered as the input quantities of 

interest.  

 

For the sake of stationarity, only cases in which the heating power of the plasma was given 

by only two contributions, ohmic power and neutral beam power, have been used, since the 

greatest contribution to the variation of the input power is given by radiofrequency and LH-

waves heating.  

 

The neutral beam power contribution is the main cause of ELMs generation, since it allows 

the L-H transition. In addition, all experiments dealing with ELM control and mitigation 

techniques have been avoided. 

 

Pulses used for the analysis have been selected within the campaigns between C21 and 

C27b (from 9
th

 June 2008 to 23
rd

 October 2010). In table 11.1.1, a list of the experiments 

candidates for the analysis has been reported. 

 

The level of accuracy of the different input signals has been considered for the verification 

of stationarity of the input space. Fig. 11.1.1 shows the orthogonal projections of the input 

space for each pulse. 

 

As shown in fig. 11.1.1, there is a slight correlation between the plasma current and the 

toroidal magnetic field. This doesn’t result from a physical relationship, but from 

experimental conditions.  

 



124 

 

Table 11.1.1 List of experiments candidates for the analysis. 

Experiment 
Number 

of pulses 

E-1.1.1 Characterisation of divertor detachment 1 

E-1.1.6 Massive gas injection using the DMV 2 

E-1.3.2 Carbon Migration - ILW reference scenarios 8 

E-1.3.4 Disruption mitigation by massive gas injection using the DMV 1 

E-1.3.5 Fuel retention - ILW reference scenarios 1 

E-2.4.1 Characterization of large/regular ELMs 36 

H-1.1.1 ILA commissioning at 42MHz + HRT 1 

HLC-1.1.4 Commission ERFA: Large ELMs (>0.5MJ) 1 

HLC-9 QMB tests 1 

S1-2.4.9 Pedestal identity with AUG & DIII-D + rho* scan 2 

S1-2.4.12 Scaling of confinement and pedestal with rho* and beta 6 

 

 
Fig. 11.1.1 Orthogonal projections of the input space. 

 

11.2 An algorithm for the ELM detection in a Dα time series 
 

In many practical situations the recorded signal itself is quite uninteresting and the relevant 

information is contained in the time intervals between certain characteristic events ([Kantz 

2004]). In this case, ELMs are these characteristic events. Therefore, for each chosen pulse, 

it has been necessary to evaluate the ELM times. For this purpose, an algorithm for helping 

with the ELM detection from a Dα time series yn has been developed. 

 

Unfortunately, the problem of automatic ELM detection is not so straightforward, as it 

might seem by a simple visual inspection. In fact, the Dα signal often shows a nonconstant 

offset and a non negligible noise level. Furthermore, the non-constant ELM amplitudes 

sometimes makes it difficult to distinguish between ELM-peaks and noise-peaks. Thus, a 

signal pre-processing is needed. 
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The pre-processing phase of the signal yn is divided in four steps: a first levelling by upper 

and lower envelope subtraction, a filtering by exponential moving average, a second 

levelling by upper and lower envelope subtraction, and finally a normalization with respect 

to the RMS (root mean square) value of the filtered signal. The envelope subtraction is used 

to eliminate the offset component and to standardize the peak amplitudes, while the moving 

average is used to filter part of the noise component. Furthermore, the aim of normalization 

is to standardize the signal amplitude. 

 

Then, the algorithm looks for all leading edges of the filtered signal ŷn. Before each leading 

edge, it looks for the first leading edge in the original signal yn, which is classified as 

temporary ELM time. For each temporary ELM time t
(i)

, the maximum y
(i)

max and the 

minimum value y
(i)

min of the original signal in the interval (t
(i)

, t
(i+1)

) are evaluated. 

 

If the two conditions 
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 (11.2.1) 

 

are both verified, the time 
 it  is kept, otherwise is discarded. 

 

The structure of the algorithm is very simple, in fact the two thresholds th1 and th2 can be 

determined empirically by the user by means of a visual inspection of the signal. 

 

A cause for reflection is given by the ELM selection criteria. In fact, in some cases, ELMs 

are followed by some secondary peaks of lower amplitude, which often occur before the 

ELM cycle is terminated. Depending on the presence or absence of an interest in the 

identification of secondary peaks, it is important to select consistently the threshold values. 

 

Figure 11.2.1 shows an example of D time series with the ELM times detected by the 

algorithm. 

 

 
Fig. 11.2.1 Example of D time series with circled ELM times detected by the algorithm. 
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11.3 Distribution fitting 
 

As it can be noticed by the database selection, the different pulses have been taken under 

different conditions. Despite this, a first statistical analysis has been performed on a single 

sample consisting of all the time intervals between ELMs of the whole database. 

 

A first exploratory approach of the sample has been graphical. By means of an histogram of 

the ELM time intervals T and a non-parametric estimation, based on a normal kernel, of the 

probability density function (fig. 11.3.1), it has been possible to draw some important 

conclusions about the statistics that describes the data. 

 

 
Fig. 11.3.1 Data histogram and non-parametric estimation of the probability density 

function. 

 

It is important to note that all timings evaluated on the signals have a certain tolerance due 

to the sampling. 

 

Fig. 11.3.1 seems to suggest a probability distribution defined on non-negative real 

numbers, having a maximum at about 32ms. In this context, imposing the conditions 

described above, an attempt has been made to find the theoretical probability distribution 

which best describes the experimental data. Thus, the search scope has been reduced to the 

following distributions: Birnbaum – Saunders, Burr, Dagum, Frechet, Gamma, Generalized 

Gamma, Inverse Gaussian, Levy, Log–logistic, Log-normal, Pearson Type 5, Pearson Type 

6, Rayleigh, Rice and Weibull. An analytical expression of these distribution can be found 

in tables 3.2.1 and 3.2.2. 

 

The maximum likelihood method has been used to estimate the parameters characterizing 

these distributions on the basis of the available data. For each distribution the parameters 

that maximize the likelihood function have been then evaluated. Table 11.3.1 lists the values 

of these parameters. 
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Table 11.3.1 List of distributions and best fit parameters. 

Distribution Parameters Distribution Parameters 

Birnbaum–Saunders 
α = 0.60436 

β = 0.03572 
Log–Logistic 

α = 3.1142 

β = 0.03613 

Burr 

k = 1.8386 

α = 2.6275 

β = 0.0507 

Log–Normal 
σ = 0.57689 

μ = −3.3201 

Dagum 

k = 0.62246 

α = 3.7915 

β = 0.0457 

Pearson Type 5 
α = 2.9575 

β = 0.08943 

Frechet 
α = 2.102 

β = 0.02747 
Pearson Type 6 

α1 = 4.2771 

α2 = 15.042 

β = 0.13881 

Gamma 
α = 2.9672 

β = 0.01425 
Rayleigh σ = 0.03375 

Generalized Gamma 

k = 1.0329 

α = 3.0991 

β = 0.01425 

Rice 
ν = 1.5110 · 10

−5 

σ = 0.03458 

Inverse Gaussian 
λ = 0.12549 

μ = 0.04229 
Weibull 

α = 2.1846 

β = 0.04703 

Levy σ = 0.03024   

 

Table 11.3.2 Results of tests for each theoretical model. Highlighted in grey distributions 

for which the K-S test has given a positive result. 

Distribution 
K 

Kcr
5%

 = 0.0231 
AIC BIC Distribution 

K 
Kcr

5%
 = 0.0231 

AIC BIC 

Birnbaum– 

Saunders 
0.0579 -16855 -16842 

Log- 

Logistic 
0.0509 -16901 -16888 

Burr 0.0183 -16976 -16957 
Log- 

Normal 
0.0443 -16900 -16888 

Dagum 0.0165 -16964 -16946 
Pearson 

Type 5 
0.0881 -16460 -16447 

Frechet 0.1135 -14985 -14972 
Pearson 

Type 6 
0.0246 -16968 -16949 

Gamma 0.0362 -16899 -16887 Rayleigh 0.0621 -16602 -16595 

Generalized 

Gamma 
0.0386 -16917 -16899 Rice 0.0799 -16608 -16596 

Inverse 

Gaussian 
0.0418 -16768 -16756 Weibull 0.0507 -16363 -16351 

Levy 0.3935 -12493 -12487     

 

The verification of conformity of the observed data to the different theoretical models, i.e., 

the goodness of fit, has been carried out using three statistical test. In this particular case, the 

Kolmogorov–Smirnov (K–S) test, the Akaike Information Criterion (AIC) and the Bayesian 
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Information Criterion (BIC) have been applied to the data sample. Table 11.3.2 shows the 

results for the different tests. 

 

All tests show that the theoretical distributions which best fit experimental data are the Burr 

and the Dagum distribution. For the properties of the Burr distribution, if the time intervals 

fit a Burr distribution with parameters k, α and β, then the ELM frequencies (the inverse of 

the intervals) fit a Dagum distribution with parameters k, α and 1/β, and viceversa. 

 

The K-S test has failed, for all other distributions, refuting the hypothesis that the 

distributions belong to the same population with a significance level of 5%. Infact, the K-S 

statistic is greater than the critical value for all the other theoretical models. 

 

a) Burr 

 
b) Dagum 

 
Fig. 11.3.2 Q-Q plot, probability density and cumulative distribution function graphs related 

to the fitted (a) Burr and (b) Dagum distributions. Histograms represent the empirical 

distributions, dotted lines represent the theoretical ones. 
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Fig. 11.3.2 shows the Q-Q plots and the probability density and cumulative distribution 

function graphs related to the fitted Burr and Dagum distributions. 

 

The Q-Q plots confirm visibly the obtained results. Moreover they show that the Burr 

distribution fits the sample better than the Dagum distribution, even if the previous test 

values are very similar. Thus, given these considerations, it can be said that the sample 

intervals are most likely to belong to a Burr distribution, and that the ELM frequencies fit a 

Dagum distribution with parameters k = 1.8386, α = 2.6275 and β = 19.724. 

 

11.4 Memorylessness study 
 

As it can be noticed, the statistics is very far from the one described by an exponential 

distribution, which is well known for its memorylessness property, allowing the hypothesis 

of presence of memory between subsequent ELMs. 

 

The conditional probability that the value of T is smaller than T1 + T2, given that it is larger 

than or equal to T1 is 
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has been evaluated on the entire sample, and its dependency on the variable T1 has been 

used as an indicator of the presence of memory. Fig. 11.4.1 shows the conditional 

probability for the model Burr distribution with respect to the variables T1 and T2. 

 

 

Fig. 11.4.1 Contour plot of probability Pr{T  T1+T2/ T  T1} with respect to T1 and T2. 

 

If α is the conditional probability (11.4.1), the contour line in fig. 11.4.1 related to α 

represents the values of T1 and T2 for which the conditional probability Pr{T  T1 + T2/ T  

T1} = α. For example, the last contour line on the top is related to α = 99%. Thus, looking at 

the point (0.15, 0.25) in the graph, if after T1 = 0.15s no ELM has occurred, then there is a 

99% probability that the next ELM occurs within other T2 = 0.25s. As it can be noticed from 

the contour lines, the dependence on the variable T1 is not negligible, thus the process is not 
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memoryless. In fact, if the process was memoryless, the contour lines would be parallel to 

the x-axis, indicating no dependence on T1. 

 

11.5 Analysis of variance 
 

All the considerations made previously have been made assuming that the intervals in each 

pulse belong to the same population. But the question is to check whether this assumption is 

correct or not, and if the different experimental conditions affect their statistical behaviour. 

 

The technique typically used to decide whether the different samples belong to the same 

population is the analysis of variance (ANOVA). In the present case, the hypothesis that all 

samples belong to a population having a normal distribution cannot be met, because time 

intervals are positive quantities which cannot be described by a distribution defined also for 

negative values. For these reasons, it has been necessary to use the Kruskal-Wallis test. 

 

The Kruskal-Wallis test has been applied to the observations of ELM intervals from all 

pulses. For the test samples, the H statistic has been given as H = 1981.4. This value has 

been compared with the critical value Hcr
5%

 = 77.93, obtained by evaluating the inverse 

cumulative distribution function of a chi-squared distribution with 59 degrees of freedom for 

the probability 0.95. Because 
%5

crHH  , the null hypothesis, whereby the samples come 

from the same population, has been rejected at the significance level 5%. 

 

11.6 Grouping pulses 
 

11.6.1 Grouping by input signals 

 

Given the previous results, pulses relative to similar inputs have been grouped, taking into 

account the signals’ tolerances (4% for toroidal magnetic field, 2% for plasma current, 10% 

for NBI input power and lower triangularity). In particular, two input conditions have been 

considered similar if all the input parameters have fallen within the limits dictated by their 

tolerance, that is 
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where uik and ujk are respectively the input k of pulses i and j and tolk is the relative tolerance 

related to the input k. A set of pulses belong to a group if each pair of pulses belonging to 

the group is characterized by similar input conditions. It has been possible to distinguish 

between three different cases: single pulses, pairs of pulses and cliques (groups of three or 

more pulses). 

 

The algorithm used for finding cliques is reported in [Harary 1957]. 

 

From the initial 60 pulses, 21 groups have been created, including 4 singles, 3 pairs and 14 

cliques. Table 11.6.1 reports the obtained groups. For each group, the number of samples, 

the input conditions and the result of the Kruskal-Wallis test with 5% confidence level are 

reported. 
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Table 11.6.1 Groups with division by input conditions. 

G Pulses ni Inputs 

K-W 

test 

(5%) 

1 
73397, 73445, 73446, 73447, 

73450, 73484, 74130 
432 

2.5MA, 2.4T, 

12.5-14.8MW, 0.23-0.28 
NO 

2 73397, 73484, 74376 200 
2.5MA, 2.4-2.5T, 

14.5-15.1MW, 0.27-0.33 
NO 

3 74364, 76812 176 
2MA, 1.8T, 

15.5-18.5MW, 0.36-0.37 
NO 

4 
74365, 74366, 74367, 74368, 

74369, 74371, 74372, 74373, 

74374, 74375, 74443 

395 
2.5MA, 2.5-2.7T, 

15.5-18.5MW, 0.32-0.35 
NO 

5 
74365, 74366, 74367, 74368, 

74369, 74371, 74372, 74373, 

74374, 74375, 77073 

468 
2.5-2.6MA, 2.4-2.5T, 

15.5-18.5MW, 0.34-0.36 
NO 

6 74375, 74376, 74443, 74444 144 
2.5MA, 2.5-2.7T, 

14-15.8MW, 0.32-0.35 
NO 

7 74375, 74376, 78448 73 
2.5MA, 2.5-2.7T, 

12.9-15.5MW, 0.33-0.4 
NO 

8 '74375, 74376, 77073 175 
2.5-2.6MA, 2.4-2.5T, 

15.1-17MW, 0.33-0.36 
NO 

9 
74378, 75724, 75726, 75727, 

75728, 75731, 75732, 76481, 

79389 

629 
2MA, 2T, 

11-12.8MW, 0.32-0.37 
NO 

10 
74378, 75724, 75726, 75727, 

75728, 75731, 75732, 76476, 

79389 

629 
2MA, 2T, 

11.9-14.5MW, 0.32-0.37 
NO 

11 
74378, 75724, 75728, 75731, 

75732, 76473, 76474, 76475, 

76476, 76477, 76478, 76479 

705 
2MA, 2T, 

12.5-15.2MW, 0.32-0.37 
NO 

12 74612, 74613, 77073 291 2.6MA, 2.3-2.4T, 16.7-17MW, 0.36 NO 

13 74793, 74795 286 
1.7MA, 1.6T, 

9.1-10.5MW, 0.35-0.36 
NO 

14 74798 120 1.7MA, 1.6T, 16.8MW, 0.37 / 

15 75118 33 1.7MA, 1.8T, 9.4MW, 0.26 NO 

16 
75724, 75728, 76471, 76472, 

76473, 76474, 76475, 76476, 

76477, 76478, 76479 

439 
2MA, 2T, 

12.6-15.4MW, 0.32-0.37 
NO 

17 
76428, 76430, 76431, 76437, 

76438, 76440, 76443, 77192 
323 

2MA, 2T, 

7.5-8.4MW, 0.31-0.36 
NO 

18 76470, 76480 45 
2MA, 2T, 

16.8-19.8MW, 0.37 
NO 

19 
76470, 76471, 76472, 76473, 

76474, 76475, 76476, 76477, 

76478, 76479 

363 
2MA, 2T, 

14.5-16.8MW, 0.35-0.37 
YES 

20 78750 104 1.5MA, 1.8T, 17.6MW, 0.32 NO 

21 79546 177 1.5MA, 1.8T, 17.7MW, 0.45 NO 
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As it can be noticed, there are several multicliqual pulses. Moreover, only for one group 

(19) the Kruskal-Wallis test has given a positive result. 

 

11.6.2 Grouping by input signals and experiments 

 

A more selective division between the groups has been made by discriminating pulses with 

similar input conditions but coming from different experiments. By means of this division, 

from the initial 60 pulses, 24 groups have been created, including 10 singles, 4 pairs and 10 

cliques. In table 11.6.2, the groups are listed. For each group, the number of samples, the 

input conditions, the name of the experiment and the result of the Kruskal-Wallis test with 

5% confidence level are reported. 

 

Table 11.6.2 Groups with division by input conditions and experiment. 

G Pulses ni Inputs Exp. 

K-W 

test 

(5%) 

1 
73397, 73445, 73446, 

73447, 73450 
246 

2.5MA, 2.4T, 

12.5-14.5MW, 0.23-0.27 
E-1.3.2 NO 

2 73484 108 2.5MA, 2.4T, 14.8MW, 0.28 E-1.3.2 NO 

3 74130 78 2.5MA, 2.4T, 13.6MW, 0.25 E-1.3.2 NO 

4 74364 116 2MA, 1.8T, 15.5MW, 0.36 E-1.3.2 NO 

5 

74365, 74366, 74367, 

74368, 74369, 74371, 

74372, 74373, 74374, 

74375 

347 
2.5MA, 2.5T, 

15.5-18.5MW, 0.34-0.35 
E-1.3.2 NO 

6 74375, 74376 54 
2.5MA, 2.5T, 

15.1-15.5MW, 0.33-0.35 
E-1.3.5 YES 

7 
74378, 75724, 75726, 

75727, 75728, 75731, 

75732, 76481 

497 
2MA, 2T, 

11-12.8MW, 0.32-0.37 
HLC-9 NO 

8 
74378, 75724, 75726, 

75727, 75728, 75731, 

75732, 76476 

497 
2MA, 2T, 

12.1-14.5MW, 0.32-0.37 
E-2.4.1 NO 

9 

74378, 75724, 75728, 

75731, 75732, 76473, 

76474, 76475, 76476, 

76477, 76478, 76479 

705 
2MA, 2T, 

12.5-15.2MW, 0.32-0.37 
E-2.4.1 NO 

10 74443, 74444 90 2.5MA, 2.7T, 14-15.8MW, 0.32 E-2.4.1 YES 

11 74612, 74613, 77073 291 
2.6MA, 2.3-2.4T, 

16.7-17MW, 0.36 
E-2.4.1 NO 

12 74793, 74795 286 
1.7MA, 1.6T, 

9.1-10.5MW, 0.35-0.36 
E-2.4.1 NO 

13 74798 120 1.7MA, 1.6T, 16.8MW, 0.37 E-2.4.1 NO 

14 75118 33 1.7MA, 1.8T, 9.4MW, 0.26 E-2.4.1 NO 

15 

75724, 75728, 76471, 

76472, 76473, 76474, 

76475, 76476, 76477, 

76478, 76479 

439 
2MA, 2T, 

12.6-15.4MW, 0.32-0.37 
E-2.4.1 NO 
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16 
76428, 76430, 76431, 

76437, 76438 
197 2MA, 2T, 7.5MW, 0.35 E-2.4.1 YES 

17 76440, 76443, 77192 126 2MA, 2T, 7.5-8.4MW, 0.31-0.36 E-2.4.1 NO 

18 76470, 76480 45 2MA, 2T, 16.8-19.8MW, 0.37 E-2.4.1 NO 

19 
76470, 76471, 76472, 

76473, 76474, 76475, 

76476, 76477, 76478, 76479 

363 
2MA, 2T, 

14.5-16.8MW, 0.35-0.37 
E-2.4.1 YES 

20 76812 60 2MA, 1.8T, 18.5MW, 0.37 E-2.4.1 NO 

21 78448 19 2.5MA, 2.7T, 12.9MW, 0.4 S1-2.4.9 NO 

22 78750 104 1.5MA, 1.8T, 17.6MW, 0.32 S1-2.4.9 NO 

23 79389 132 2MA, 2T, 11.9MW, 0.32 S1-2.4.12 NO 

24 79546 177 1.5MA, 1.8T, 17.7MW, 0.45 S1-2.4.12 NO 

 

With this kind of division the groups for which the test has given a positive result are four 

(6, 10, 16, 19). 

 

With regard to the other groups, it hasn’t been possible to say with good confidence level 

that the intervals of a single group belong to the same distribution, therefore pulses 

belonging to these groups have been kept unpaired. The next step has been to look for a 

relationship between the parameters of plasma and the moments relating to the distribution 

of the intervals. 

 

For the two cliques 16 and 19, a more detailed analysis has been performed, by repeating the 

same steps executed for the total sample. 

 

11.6.2.1 Distribution fitting of clique 16 

 

A first exploratory approach of the sample has been graphical. By means of an histogram of 

the ELM time intervals T and a non-parametric estimation, based on a normal kernel, of the 

probability density function (fig. 11.6.1), it has been possible to have an idea about the 

statistics that describes the data. 
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b) 

 
Fig. 11.6.1 (a) Data histogram and non-parametric estimation of the probability density 

function; (b) example of ELM time series taken from clique 16. 

 

The statistic which describes the data is very similar to the distribution of the total sample, 

although characterized by a shift on the right of the mode and a greater dispersion. 

 

The maximum likelihood method has been used to estimate the parameters characterizing 

the distributions on the basis of the available data. For each distribution the parameters that 

maximize the likelihood function have been evaluated. Table 11.6.3 lists the values of these 

parameters. 

 

Table 11.6.3 List of distributions and best fit parameters for clique 16. 

Distribution Parameters Distribution Parameters 

Birnbaum–Saunders 
α = 0.40529 

β = 0.08496 
Log–Logistic 

α = 4.3956 

β = 0.08687 

Burr 

k = 1.4485 

α = 5.37 

β = 0.09753 

Log–Normal 
σ = 0.36264 

μ = –2.4388 

Dagum 

k = 0.60765 

α = 7.401 

β = 0.09879 

Pearson Type 5 
α = 4.9454 

β = 0.38874 

Frechet 
α = 2.8629 

β = 0.07126 
Pearson Type 6 

α1 = 9.8939 

α2 = 1.1050·10
8
  

β = 1.0260·10
6
 

Gamma 
α = 10.497 

β = 0.00877 
Rayleigh σ = 0.07344 

Generalized Gamma 

k = 0.98274 

α = 10.061 

β = 0.00877 

Rice 
υ = 0.08696 

σ = 0.02928 

Inverse Gaussian 
λ = 0.96627 

μ = 0.09205 
Weibull 

α = 3.167 

β = 0.1039 

Levy σ = 0.0786   
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The verification of conformity of the observed data to the different theoretical models, i.e., 

the goodness of fit, has been carried out using three statistical test: the Kolmogorov–

Smirnov (K–S) test, the Akaike Information Criterion (AIC) and the Bayesian Information 

Criterion (BIC). Table 11.6.4 shows the results for the different tests. 

 

Table 11.6.4 Results of tests for each theoretical model for clique 16. Highlighted in grey 

distributions for which the K-S test gave a positive result. 

Distribution 
K 

Kcr
5%

 = 0.0968 
AIC BIC Distribution 

K 
Kcr

5%
 = 0.0968 

AIC BIC 

Birnbaum– 

Saunders 
0.15958 -759.7 -753.1 

Log- 

Logistic 
0.12437 -837.3 -830.7 

Burr 0.05496 -861.9 -852.1 
Log- 

Normal 
0.11847 -797.5 -790.9 

Dagum 0.05122 -866.5 -856.6 
Pearson 

Type 5 
0.18131 -699.5 -692.9 

Frechet 0.20191 1052 1058 
Pearson 

Type 6 
0.08562 -833.0 -823.2 

Gamma 0.07598 -834.2 -827.6 Rayleigh 0.21773 -756.0 -752.7 

Generalized 

Gamma 
0.08712 -832.8 -822.9 Rice 0.10625 -841.9 -835.4 

Inverse 

Gaussian 
0.0813 -714.9 -708.3 Weibull 0.13103 -825.2 -818.6 

Levy 0.51296 -379.2 -376.0     

 

All tests show that the theoretical distributions which best fit experimental data are, as for 

the total sample, the Burr and the Dagum distribution. 

 

Unlike the previous case, this time the K-S test gave a positive result also in correspondence 

with four other distributions: Gamma, Generalized Gamma, Inverse Gaussian and Pearson 

Type 6. The K-S test has failed, for all other distributions, refuting the hypothesis that the 

distributions belong to the same population with a significance level of 5%. 

 

The distribution fitting related to the clique 16 confirmed the results obtained for the entire 

sample, although statistical conclusions are “weaker” because of the lower number of 

samples. 

 

11.6.2.2 Statistical analysis of clique 19 

 

A first exploratory approach of the sample has been graphical. By means of an histogram of 

the ELM time intervals T and a non-parametric estimation, based on a normal kernel, of the 

probability density function (fig. 11.6.2a), it has been possible to have an idea about the 

statistics that describes the data. 

 

As it can be noticed from fig. 11.6.2a, the distribution of the data set has a bimodal 

distribution. This feature can be recognised by observing the time series in fig. 11.6.2b, 

characterized by the alternation of high-frequency periods and ELM-free periods. 
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a) 

 
b) 

 
Fig. 11.6.2 (a) Data histogram and non-parametric estimation of the probability density 

function; (b) example of ELM time series taken from clique 19. 

 

This special case hasn’t allow to confirm the characteristics of the distribution of the total 

sample, strengthening the Kruskal – Wallis test results previously obtained in section 11.5. 

 

11.7 Analysis of determinism of ELM time series 
 

The previous analysis has shown that the statistical properties of the time intervals are 

mostly dependent on the single time series. Then, an analysis of ELM time series may be 

useful in order to highlight the presence of determinism. 

 

For each Dα time series taken from the database, the Hurst exponent has been evaluated with 

the purpose of detecting the presence of determinism within the ELM phenomenon. A 

preliminary denoising of time series has been performed to eliminate the noise component 

by the signal applying the algorithm proposed in chapter 10. In fig. 11.7.1 a histogram of 

values obtained for the 60 denoised time series is shown. 
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Fig. 11.7.1 Histogram of the Hurst exponent values for the different pulses. 

 

As can be noticed, the Hurst exponent values are all located in the range between 0.5 and 1, 

indicating a persistent behaviour. This result is very important for a future modelling of the 

ELM phenomenon. 

 

For 35 of the denoised Dα time series taken from the database, the maximum Lyapunov 

exponent has been evaluated with the Rosenstein algorithm [Rosenstein 1993] developed for 

Matlab in [Mohammadi 2009]. 

 

For the estimation of the maximum Lyapunov exponent, it has been necessary to reconstruct 

the embedding space from each time series. This task is performed automatically by the 

software. For the selection of the time delay methods of autocorrelation function and 

minimum mutual information are used. Two methods, namely False Nearest Neighbors and 

Symplectic Geometry, are used for choosing proper value of the embedding dimension. In 

table 11.7.1 the list of pulses with the embedding parameters is shown. 

 

Table 11.7.1 Estimated embedding parameters and maximum Lyapunov exponent for each 

time series. 

Pulse 
Time 

Delay 

Embedding 

dimension 

Maximum 

Lyapunov 

exponent 

73397 8 5 0.0975 

73445 9 10 0.0820 

73446 8 5 0.0952 

73447 8 5 0.0929 

73450 1 4 0.1248 

74365 1 8 0.1081 

74366 1 5 0.1034 

74368 1 6 0.0804 

74369 1 5 0.0725 

74371 1 7 0.1047 

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

1

2

3

4

5

6

7

Hurst exponent
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74373 1 5 0.0809 

74374 1 8 0.1046 

74376 1 6 0.0816 

74443 1 6 0.1004 

74613 1 5 0.0952 

75118 7 4 0.0951 

75724 1 4 0.0801 

75726 1 9 0.1017 

75727 1 16 0.1012 

75732 1 5 0.1141 

76438 1 4 0.0860 

76470 9 3 0.0736 

76471 8 12 0.0757 

76473 1 8 0.1078 

76474 1 11 0.0997 

76475 1 10 0.1190 

76477 1 3 0.1106 

76478 1 2 0.0754 

76479 1 4 0.0961 

76480 1 4 0.1065 

76481 1 3 0.1129 

77073 1 2 0.1491 

78448 1 9 0.0807 

78750 7 7 0.0829 

73397 8 5 0.0975 

 

In fig. 11.7.2 a histogram of the obtained values is shown. 

 

 
Fig. 11.7.2 Histogram of the maximum Lyapunov exponent values for the different pulses. 

 

As can be noticed, the maximum Lyapunov exponent values are all positive, indicating the 

possibility of a chaotic behaviour. 
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11.8 Conclusions 
 

A statistical analysis of time intervals between successive Type I ELMs has been proposed. 

For this purpose, a database of 60 shots, by using the D signals taken from the outer 

divertor line of sight, has been created. Much attention has been given to the search of time 

intervals in which the plasma conditions are stable and stationary. Firstly, an algorithm for 

finding the ELM spikes in D-alpha time series has been developed. Then, the empirical 

probability distribution of the entire sample of inter-ELM time periods has been fitted with 

several theoretical distributions. Some statistical tests have been used for finding the best fit. 

The tests have shown that Burr distribution is the one that best fits the experimental data.  

 

A memorylessness analysis on the probability distribution recognized that the process is not 

memoryless.  

 

Finally, an analysis of variance on the entire database led to the conclusion that inter-ELM 

time periods coming from different pulses don’t belong to the same population, i.e., the 

statistical properties of the intervals are dependent on the single pulse.  

 

A division of pulses depending on the type of experiment and on some parameters of plasma 

has been performed. A statistical analysis on the two bigger groups confirmed the obtained 

results. 

 

A final analysis of ELM time series has been performed in order to highlight the presence of 

determinism. In fact, the Hurst exponent evaluated for all the pulses, indicated the presence 

of a persistent behaviour. This result is very important for a future modelling of the ELM 

phenomenon. Furthermore, the evaluation of the maximum Lyapunov exponent has allowed 

to hypothesize about the presence of a chaotic behaviour.  
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Conclusions 

In this dissertation the solution of several engineering problems dealing with the analysis 

and synthesis of complex systems has been addressed. 

 

In particular, a new algorithm which optimizes Lyapunov exponents estimation in piecewise 

linear systems has been applied on PWL and polynomial chaotic systems. In the case of 

polynominal systems, firstly, a suitable piecewise linear approximation for the polynomial 

nonlinear function has been evaluated by means of a Multi-Layer Perceptron (MLP) neural 

network with linear and saturating linear transfer functions. Then, the piecewise linearity of 

the state equation has been exploited to evaluate Lyapunov exponents of the approximated 

system. Results show that the algorithm is able to accurately estimate the exponents strongly 

reducing the execution time. 

 

In the field of complex systems synthesis, a systematic method to project systems of order 

2n characterized by two positive Lyapunov exponents, has been proposed. This procedure 

couples nth-order chaotic systems with a suitable non linear coupling function. Examples of 

polynomial and piecewise linear systems have been proposed. Both numerical simulation 

and circuit implementation have been performed. Transformation techniques have been 

applied to the study of these systems; in particular, the analysis of the transverse and tangent 

systems has shown that they are equivalent to two uncoupled identical chaotic systems of 

order n. This result open questions on the definition of hyperchaotic systems as systems 

characterized by two positive Lyapunov exponents. 

 

Furthermore, a method for the fault detection has been developed. For this purpose, a 

traditional Multi Layer Perceptron with a tapped delay line as input has been trained to 

identify the parameters of the Chua’s circuit when fed with a sequence of values of a scalar 

state variable. The analysis of the a priori identifiability of the system, performed resorting 

to differential algebra, has allowed to choose a suitable observable and the minimum 

number of taps. The results has confirmed the appropriateness of the proposed approach, 

particularly for real time applications when the parameter identification must be instaneous. 

 

In the field of time series analysis, a new denoising method, based on the wavelet transform 

of the noisy signal, has been described. The method implements a variable thresholding, 

whose optimal value is determined by analysing the cross-correlation between the denoised 

signal and the residuals and by applying different criteria depending on the particular 

decomposition level.  The residuals are defined as the difference between the noisy signal 

and the denoised signal. The procedure is suitable for denoising signals in real situations 

when the noiseless signal is not known. The results, obtained with synthetic data generated 

by well-known chaotic systems, show the very competitive performance of the proposed 

technique. The technique has been applied also to real time series coming from diagnostics 

of the JET tokamak reactor. 

 

Finally, a study of dynamical behaviour of Type I ELMs has been performed for a future 

modelization of the phenomenon. In this context, a statistical analysis of time intervals 

between successive Type I ELMs has been proposed. The different tests have shown that 

Burr distribution is the one that best fits the experimental data. 
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A memorylessness analysis on the probability distribution recognized that the process is not 

memoryless. 

 

Finally, an analysis of variance on the entire database led to the conclusion that inter-ELM 

time periods coming from different pulses don’t belong to the same population, i.e., the 

statistical properties of the intervals are dependent on the single pulse. A division of pulses 

depending on the type of experiment and on some parameters of plasma has been 

performed. A statistical analysis on the two bigger groups confirmed the obtained results. 

 

The analysis of ELM time series has been performed in order to investigate the presence of 

determinism. The Hurst exponent evaluated for all the pulses, indicated the presence of a 

persistent behaviour. Moreover, the evaluation of the maximum Lyapunov exponent 

indicated the presence of a chaotic behaviour. 

 

The obtained results are useful to gain understanding of the ELM behavior. They are the 

first step for a modelling of the ELM phenomenon which is one of the biggest concerns for 

physicists at ITER. 
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