
UNIVERSITY OF CAGLIARI

Ph.D. School in Mathematics and Computer Science
Ph.D. Course in Computer Science – XXV cycle

Doctoral Thesis
Scientific fields

INF/01
MAT/09

Models and algorithms for the
empty container repositioning and

its integration with routing problems

Michela Lai

Advisor
Prof. Paola Zuddas

Co-advisor
Dr. Maria Battarra

May 2013

Dedicated to my family

Thesis introduction

The introduction of containers has fostered intermodal freight transportation.
A definition of intermodality was provided by the European Commission as

“a characteristic of a transport system whereby at least two different modes
are used in an integrated manner in order to complete a door-to-door transport
sequence” EUROPA 2005.

The intermodal container transportation leads to several benefits, such as higher
productivity during handling phases and advantages in terms of security, losses and
damages. However, the distribution of containers comes with a drawback: due to
directional imbalances in freight flows, some areas tend to accumulate unnecessary
empty containers, while others face container shortages. For example, in 2007 the
Trans-Pacific trade container flow from Asia to North America was estimated at
14.5 million TEUs (Twenty foot Equivalent Unit), while the opposite direction only
had 5.6 million TEUs “Review of maritime transport, United Nations, New York,
2008”. As a consequence, carries were requested to reposition about 9 million TEUs
from North America to Asia, in order to meet future transportation opportunities.

Several planning models were developed for carriers in order to manage both
loaded and empty containers profitably, Crainic 2003. However, they were built
to operate under normal circumstances, neglecting the fact that networks are
increasingly affected by both uncertainty and vulnerability, which may result
in disruptions. These disruptions affect the normal operations of facilities, and
make them partially or totally non-functional. Disruptions may be generated by
unexpected events, due to both natural causes (hurricanes, earthquakes, etc.) and
human-generated ones (accidents, failures, etc.). To make matters worse, widely
adopted “just-in-time” supply chains make manufacturers vulnerable to disruptions
if containers do not reach assembly plants in time. “The lack of key parts could
reduce output, employment, and income for individual companies by amounts larger
than the value of the delayed part and in areas and businesses far removed from
the facility where a disruption occurred” Office 2006.

Therefore, it is not enough for carriers to serve customers while operating at
the lowest costs, because unexpected future evolutions cannot be ignored at all,
even if they will not be observed. Proactive strategies should be adopted to become

I

Thesis introduction

more resilient, i.e., deploying contingency plans for smoothly continuing operations
whenever disruptions occur. Considering a hurricane for example, a forecast may
preventively stop all activities of a port, but other forecasts may not exclude
weather improvements which allow the port to continue its activities. Therefore,
both disruptions and normal operations represent possible futures, and there is no
certainty about which future scenario will occur.

In Part I the maritime repositioning of empty containers is described and
modelled, in order to evaluate the effects of uncertainty on this problem. The
objective is to survey whether the impact of uncertainty can be mitigated by a
stochastic programming approach, in which disruptions and normal operations are
both foreseen as possible futures or scenarios. This approach is carried out by a
multi-scenario optimization model in which scenarios are linked by non-anticipativity
conditions, which enforce here-and-now decisions to be identical over all scenarios.

The empty container repositioning becomes even more challenging and difficult
when integrated with routing problems. In fact, carriers often face problems in
which they must determine simultaneously how many empty containers are carried
by a fleet of vehicles and which routes must be followed by these vehicles. These
problems typically arise in inland networks, in which one must plan the distribution
by trucks of loaded and empty containers to customers.

Part II and III address this type of vehicle routing problems, which are motivated
by a real case study occurred during the collaboration with a carrier that operates
in the Mediterranean Sea in door-to-door modality. The carrier manages a fleet
of trucks based at the port. Trucks and containers are used to service two types
of transportation requests, the delivery of container loads from the port to import
customers, and the shipment of container loads from export customers to the port.

Part II addresses the problem involving a heterogeneous fleet of trucks that
can carry one or two containers. We present a Vehicle Routing Problem with
backhauls, load splits into multiple visits, and the impossibility to separate trucks
and containers during customer service. Then, we formalize the problem by an
Integer Linear Programming formulation and propose an efficient meta-heuristic
algorithm able to solve it. The meta-heuristic determines the initial solution by a
variant of the Clarke-and-Wright algorithm, and improves it by several local search
phases, in which both node movements and truck swaps are implemented.

Part III addresses the problem involving a homogeneous fleet of trucks that can
carry more than a container per truck. As a consequence, the identification of routes
can be more difficult. We present a Vehicle Routing Problem with backhauls, load
splits into multiple visits, the opportunity to carry more than a containers per truck,
and the impossibility to separate trucks and containers during customer service.
Then, we formalize the problem by an Integer Linear Programming formulation and

II

Thesis introduction

propose an efficient meta-heuristic algorithm able to solve it. The meta-heuristic
determines an initial feasible solution by a Tabu Search step, and next improves
this solution by appropriate adaptive guidance mechanisms.

III

Thesis introduction

IV

Contents

Thesis introduction I

I Seaside 1

1 Problem description 3
1.1 Literature review . 5

2 Modeling 7
2.1 Deterministic model . 11
2.2 Uncertainty and Multi-scenario model 15

3 Experimentation 21
3.1 Scenario definition . 24
3.2 Data management . 27
3.3 Uncertain demand . 28
3.4 Uncertain handling capacity . 33
3.5 Uncertain demand and handling capacity 38

4 Conclusions 45

II Landside - Heterogeneous fleet size 47

5 Problem description 49
5.1 Literature review . 51

6 Modeling 55

7 Solution method 59
7.1 Initialization . 61
7.2 Constructive phase . 63

V

Contents

7.3 Improvement phase . 64

8 Experimentation 67
8.1 Data management . 68
8.2 Artificial instances . 69
8.3 Real instances . 74

9 Conclusions 77

III Landside - Homogeneous fleet size 79

10 Problem description 81
10.1 Literature review . 84

11 Modeling 87

12 Heuristic solution method 91
12.1 SplitVRP phase . 92
12.2 Merging phase . 92

13 Meta-heuristic solution method 101
13.1 SplitDeliveryVRP phase . 103
13.2 Merging phase . 103
13.3 Adaptive guidance phase . 106
13.4 Penalizations . 108

14 Experimentation 111
14.1 Data management . 112
14.2 Effectiveness of adaptive guidance mechanisms 113
14.3 Comparison between solution methods 114
14.4 Comparison with the exact algorithm 121

15 Conclusions 129

Thesis conclusions 131

Bibliography 135

VI

List of Figures

2.1 Components of the system. 7
2.2 An example of system. 9
2.3 The system dynamics. 10
2.4 Two scenarios in a time-extended network. 17

3.1 Experimentation time-extended network. 23
3.2 A deterministic decision tree with a single parameter. 25
3.3 Deterministic policies taken into account for the comparison. 25
3.4 Uncertain demands: Decisions taken in the first call of the vessel in

port E. 32
3.5 Uncertain demands: Decisions taken in the second call of the vessel

in port E. Evolution e1. 32
3.6 Uncertain demands: Decisions taken in the second call of the vessel

in port E. Evolution e2. 33
3.7 Partial disruption: Decisions taken in the first call of the vessel in

port E. 36
3.8 Partial disruption: Decisions taken in the second call of the vessel in

port E. Evolution e1. 37
3.9 Partial disruption: Decisions taken in the second call of the vessel in

port E. Evolution e2. 37
3.10 Complete disruption: Decisions taken in the first call of the vessel in

port E. 41
3.11 Complete disruption: Decisions taken in the second call of the vessel

in port E. Evolution e1. 42
3.12 Complete disruption: Decisions taken in the second call of the vessel

in port E. Evolution e2. 42

5.1 Heterogeneous landside problem description. 50
5.2 An example of route . 50

7.1 Improvement phase: Node Relocate example. 59

VII

List of Figures

7.2 Improvement phase: Node Exchange example. 60

10.1 Homogeneous landside problem description 82
10.2 An example of route . 83

12.1 Merging method. 93

13.1 Improved merging method: example route. 104
13.2 Improved merging method: merged routes. 105

VIII

List of Tables

3.1 Uncertain demands: Demand fulfilment percentages and operating
costs. 30

3.2 Partial disruption: Demand fulfilment percentages and operating costs. 34
3.3 Complete disruption: Demand fulfilment percentages and operating

costs. 39

7.1 The structure of the meta-heuristic. 62

8.1 Tested value of α and β . 68
8.2 Artificial instances: 10 customers 70
8.3 Artificial instances: 20 customers 71
8.4 Artificial instances: 30 customers 72
8.5 Artificial instances: 40 customers 73
8.6 Artificial instances: 50 customers 73
8.7 Real instances. 75

12.1 The structure of the constructive heuristic. 92

13.1 The structure of the meta-heuristic. 103

14.1 Best calibrations performed. 112
14.2 Adaptive guidance effectiveness. 113
14.3 Comparison between solution methods: 10 Customers. 115
14.4 Comparison between solution methods: 20 Customers. 116
14.5 Comparison between solution methods: 30 Customers. 117
14.6 Comparison between solution methods: 40 Customers. 118
14.7 Comparison between solution methods: 50 Customers. 120
14.8 Comparison with the exact algorithm: 10 Customers. 122
14.9 Comparison with the exact algorithm: 20 Customers. 123
14.10 Comparison with the exact algorithm: 30 Customers. 125
14.11 Comparison with the exact algorithm: 40 Customers. 126
14.12 Comparison with the exact algorithm: 50 Customers. 127

IX

List of Tables

X

Part I

Seaside

Chapter 1

Problem description

Ports are intermodal transit facilities for full and empty containers. Full contain-
ers are transported from departure ports to arrival ports according to the requests
of customers. Due to trade imbalances in their flows, import-dominant ports tend
to accumulate unnecessary empty containers, while export-dominant ones face
container shortages. Therefore, shipping companies must periodically reposition
empty containers between ports.

The empty container surpluses and shortages in ports can be expressed in
terms of supply and demand. The supply can be defined as the number of empty
containers available in a given port at any given time. These containers can be
stored to meet future requests from the landside or moved to other ports. The
demand can be defined as the number of empty containers requested in a given
port at any given time. The demand in a port must be met by empty containers in
stock in the same port or moved there from other ports.

The empty container repositioning is performed by vessels sailing well-established
shipping lines according to tight schedules, which specify arrival and departure
times at ports. Vessels carry both full and empty containers. The paths of full
containers from departure ports to arrival ports (through possible transshipment
ports) are supposed known to shipping companies, in fact these data are available
from the moment they accept the transportation requests of customers. Customers
typically book the transportation of full containers several days before the arrival
of vessels at the departure ports. Despite what happens with full containers, empty
containers have no fixed origin-destination pairs. As explained by Song and Dong
2011a, “this type of practice tends to be more flexible to handle the uncertain and
dynamic events, since part of the repositioning decisions can be done when more
reliable information becomes available”.

The empty container repositioning problem aims to pick up unused empty
containers from ports where they are in surplus and providing them in ports

3

1 – Problem description

where they are in shortage. Therefore, shipping companies must decide how many
empty containers to load/unload to/from vessels, and how many empty containers
transport in the residual transportation capacity (left by full containers). An
optimal repositioning plan minimizes both operational costs and shortage costs.

In this problem setting, decisions must be taken one day before the arrival
of vessels. This leads ports to organize their internal activities on time, in order
to implemented the decisions and serve vessels as requested. Moreover, shipping
companies want to decide the overall number of empty containers loaded and
unloaded from vessels during the whole time spent in port in their berthing. These
decisions must be taken one day before the arrival of vessels, because ports need
to timely plan their internal activities. In other words, when a vessel spends more
than one day in a port, decisions do not concern the number of empty containers
loaded and unloaded in each day during its berthing, decisions concern the overall
number of empty containers loaded or unloaded, leading ports to plan their internal
activities properly in order to serve all requests. The exact time in which containers
are loaded or unloaded will be determined in a different issue, which is called Quay
Crane Scheduling Problem, Meisel and Bierwirth 2011. Moreover, since the time
spent by vessels in ports is limited, the number of empty containers loaded or
unloaded from vessels is limited as well.

Usually, in the real world, when empty containers are unloaded from a vessel, they
are moved to temporary areas, where they are kept while loading and discharging
operations are performed on that vessel. Next, when the vessel leaves, empty
containers are moved to dedicated areas for their storage. Similarly, when empty
containers must be shipped, they are picked from the dedicated storage areas at
least one day before the arrival of vessels, moved to temporary areas and loaded
onto vessels. Therefore, shipping companies must determine the number of empty
containers stored in ports taking into account the space available in the dedicated
storage areas.

It is important to note that demands in a port may not be completely satisfied,
especially when: (i) the supply of empty containers over all ports is lower than
the overall demand; (ii) storage, transportation and handling capacities limit the
number of empty containers repositioned. Therefore, it is crucial for shipping
companies to determine how many empty containers lack until the full demand
satisfaction. This information helps shipping companies to take, and perform if this
is the case, corrective actions, such as renting containers from leasing companies.

Decisions on empty container repositioning are taken daily, even if data are
affected by uncertainty. As an example, the uncertainty may concern the empty
container demand arising from unexpected transportation opportunities. Generally
speaking, the uncertainty leads to multiple possible future evolutions. Each possible

4

1.1 – Literature review

future evolution have same characteristics for certain data, and changes can be
represented by different values for the uncertain parameters (for example the number
of empty containers requested in a port). Therefore, all possible future evolutions
can be described in different scenarios, each one representing all the characteristics
of the possible future evolution described. In this study the maritime repositioning
of empty containers is modelled in order to evaluate the effects of the uncertainty.
Two formulations will be proposed and evaluated in terms of demand satisfaction
and operating costs: (i) a deterministic model with a single scenario; (ii) a multi-
scenario model in which multiple scenarios are are linked by non-anticipativity
conditions, which force identical decisions for all scenarios in the first periods.

The objective is to survey whether the impact of uncertainty can be mitigated by
a stochastic programming approach, in which disruptions and normal operations are
both foreseen as possible futures or scenarios. The two formulations, deterministic
and multi-scenario, will be proposed in Chapter 2. Numerical experiments are
carried out in Chapter 3 to show the value of the multi-scenario formulation in this
problem, and its computational viability. Finally, conclusions are summarized in
Chapter 4.

1.1 Literature review

Many studies have been done on empty container repositioning under stochastic
demand. Research on empty containers was carried out by both dynamic pro-
gramming and integer programming. The first approach aims at examining the
characteristics of optimal control policies for empty containers in shipping networks,
which typically have specific topological structures. Lai, Lam, and Chan 1995
evaluated several allocation policies to reduce operational costs and prevent empty
container shortage when their demand is uncertain. Li et al. 2004 investigated a
single port with a discrete time system and stochastic demand. Their research was
extended later to a multi-port system Li et al. 2007. Lam, Lee, and Tang 2007
studied a two-ports two voyages system, Song and Earl 2008 investigated a two
depot system and Song and Zhang 2010 worked on a single port in a continuous-
time system. Specific work on liner shipping systems was carried out by Song and
Dong 2011a on both fleet sizing and empty container repositioning under uncertain
demand.

This thesis belongs to the line of integer programming formulations for the
management of empty containers and extends the body of literature in the field,
because it is investigated under the assumption of uncertain port disruptions.
Many papers in the field assume perfect knowledge on future system evolution
and propose deterministic formulations, Crainic 2003. This is not to say that they

5

1 – Problem description

ignore uncertainty at all. They typically work with forecasted data and use models
in a rolling horizon fashion. Deterministic models on empty container management
have been proposed by Shen and Khoong 1995, Choong, Cole, and Kutanoglu 2002,
Erera, Morales, and Savelsbergh 2005, Olivo et al. 2005, Feng and Chang 2008,
Song and Carter 2009, Moon, Do Ngoc, and Hur 2010 and Song and Dong 2011b.
However, these formulations may not be appropriate when dissimilar futures might
occur and preventive measures must be adopted to deal with possible disruptions.

An alternative approach to address the problem at hand is the Adjustable
Robust Optimization, Ben-Tal et al. 2004. A robust plan is defined as one in which
constraints are satisfied for the nominal values and feasibility can be re-established
for any outcome by recovery actions. Erera, Morales, and Savelsbergh 2009 adopted
this approach for the maritime repositioning of empty containers. In their setting,
all demands must be met and larger-than-expected demands are faced by keeping
safety stocks and moving additional containers on vessels. However, there may be
some limits to the adjustment generated by recovery actions, in the case of limited
capacities in storage and transportation activities. Hence, sometimes only a part of
the empty container demand can be satisfied.

The approach presented in this study is in the field of stochastic integer pro-
gramming Powell and Topaloglu 2003, whose goal is to find a policy optimizing
the expected value of a function depending on random variables. Although this
approach requires a good knowledge of the distributions of uncertain parameters, it
can be adopted even for this problem. The different scenarios represent the different
future evolutions and subjective weights can be used to characterize their relative
importance. Non-anticipativity conditions guarantee that decisions do not depend
on which scenario will occur, because this information is not yet available.

Stochastic programming for empty container management has already been used
to account for the uncertainty of demand and transportation capacities. Crainic,
Gendreau, and Dejax 1993 proposed a two-stage stochastic model with partial
network recourse for inland repositioning problems. Specific papers on maritime
networks have been proposed by Cheung and Chen 1998, Leung and Wu 2004 and
Di Francesco, Crainic, and Zuddas 2009. This is, to the best of our knowledge, the
first paper using stochastic programming to address empty container repositioning
under port disruptions.

6

Chapter 2

Modeling

The elementary components of the system are ports and vessels. Ports are
represented by circular shapes and are denoted by letters, as in Figure 2.1a. Vessels
are represented by rhombus shapes and are denoted by numbers, as in Figure 2.1b.
All elementary components are connected to each other by links, represented by
arrows as in Figure 2.1c, that concern possible decisions for the shipping company.

(a) Port (b) Vessel

(c) Link (d) Inventory

(e) Loading (f) Keeping on board

(g) Transportation (h) Unloading

Figure 2.1: Components of the system.

The temporal horizon, with respect to which the planning horizon is referred,
is divided in several periods. Periods can represent hours, days, weeks, and so
on, depend on the company needs. Moreover, decisions refer to periods in which
they are taken, and may have effects in other periods. Therefore, the connection

7

2 – Modeling

between elementary components lead to a multi-period complex system, in which
are represented all dynamics.

An example of a system can be observed in Figure 2.2. The example is made up
of five ports, two vessels and a time horizon of five periods. Periods are denoted by
numbers from 1 to 5. Ports are replicated in every period of the planning horizon
and are represented by circular shape, denoted by letters from A to E. Vessels are
represented by rhombus shape above ports in all periods of their berth, denoted by
numbers 1 and 2.

The set of decisions involved in Figure 2.2 concerns:

Inventory Number of empty containers located in the port between two periods.
These decisions are represented by arrows that have origin in a port in a
period, and destination in the same port in the next period. Figure 2.1d;

Loading Number of empty containers loaded on a vessel during its berthing.
These decisions are represented by arrows that have origin in a port in a
period, and destination in a vessel that is berthing in that port and in the
same period. Figure 2.1e;

Keeping on board Number of empty containers kept on board on a vessel during
its berthing.
These decisions are represented by arrows that have origin in a vessel, that
is berthing in a port, and destination in the same vessel during the same
berthing (in the same port and in the next period). Figure 2.1f;

Transportation Number of empty containers carried by a vessel between two
berthing.
These decisions are represented by arrows that have origin in a vessel, that is
berthing in a port, and destination in the same vessel on next berthing (in a
different port and in a following period, at least the next one). Figure 2.1g;

Unloading Number of empty containers unloaded from a vessel during its berthing.
These decisions are represented by arrows that ave origin in the vessel berthing
in a port, and destination in the same port and in the same period. Figure
2.1h.

In Figure 2.2 there are two shipping lines, line 1 and line 2. The vessel deployed
on line 1 arrives in port B at period 1, in port C at period 2, in port A at period
3, next in port B at period 5, and so on, repeating its schedule from this point
onwards. The vessel deployed on line 2 arrives in port D at period 2, in port C at
period 3, in port E from period 4 up to period 5, and so on, repeating its schedule
from this point onwards. Loading and unloading connections represent the number

8

of empty containers loaded and unloaded from vessels in each period of their berth,
as in Cheung and Chen 1998.

According to the classical notation of the graph theory Ahuja, Magnanti, and
Orlin 1993: external arrows entering and leaving the port represent respectively the
supply and the request of empty containers in that port. Moreover, A “super-sink”
node is introduced at the end of the planning horizon in order to collect empty
containers that have their destination port beyond the last period.

Figure 2.2: An example of system.

To represent the whole system dynamics, we adopt the following choices: (i)
vessels are represented above the port only in the arrival period of their berthing;
(ii) keeping on board arrows are not taken into account; (iii) unloading arrows
have origin in the vessel, in the arrival period, and destination in the port, in the
departure period of the berthing. As a consequence, when unloading arrows have
their origin and destination in the same period, the vessel stays in port one period
only. If the destination is in the next period, the vessel stays in port two periods,
and so on. Moreover, according to the requirement of loading only empty containers
available in ports at least one day before the arrival of vessels, an additional choice
adopted is the following: (iv) loading arcs have destination in the vessel, in the
arrival period, and origin in the port, in the previous period of the arrival period of
the berthing. It is important to note that even if the decision on how much empty
containers load onto vessels is taken one day before their arrival period at ports,
empty containers loaded onto vessels use the available storage capacity of the ports

9

2 – Modeling

until the arrival period of vessels.

Figure 2.3: The system dynamics.

Figure 2.3 shows an example of the system dynamics made up of five periods,
five ports and two vessels. Despite what represented in Figure 2.2 vessels are not
replicated in each period of their berth, but are represented only in the periods when
they arrive at ports. As a consequence, also loading and unloading connections
differ form Figure 2.2, and, even if the vessel berth for more than one period, only
one loading connection and one unloading connection are represented for each berth
of the vessel.

In Figure 2.3 thick lines represent decisions to take now (here-and-now decisions),
dotted line represent past decisions and thin lines represent future decisions. The
here-and-now decisions of Figure 2.3 concern:

• the number of empty containers loaded onto vessels arriving in period 2;

• the number of empty containers transported by vessels after the departure
from ports reached at period 2;

• the number of empty containers unloaded from vessels arriving in ports at
period 2;

• the number of empty containers stored between period 1 and period 2 in each
port.

10

2.1 – Deterministic model

In this study, two different formalizations will be introduced for the problem at
hand: the deterministic model, to be presented in Section 2.1, and the multi-scenario
model to be presented in Section 2.2.

2.1 Deterministic model

This section concerns the formalization of the deterministic model. The de-
terministic model involves a single scenario, and it is appropriate when data are
known with a high level of certainly for all periods of the planning horizon, since
the repositioning of empty container is determined for the whole planning horizon.

The deterministic model involves sets, data and parameters. We now present
an overview of the notation to understand better the model. All sets, data and
parameters are listed following their alphabetical order.

SETS

H: Set of ports;

T : Set of contiguous time periods, each of which represents a day. The time period
index t ∈ T takes values from 1 to |T |. All decisions made at period t = 1 ∈ T
represent the here-and-now decisions;

V : Set of vessels;

V (i,t): Set of vessels arriving in port i ∈ H at time t ∈ T ;

W (i,t): Set of vessels leaving from port i ∈ H at time t ∈ T .

INPUT DATA

bt(i): Net supply of empty containers in port i ∈ H at period t ∈ T . Positive value
of bt(i) represents the number of empty containers which become available
in port i ∈ H at time t ∈ T . Nevative value of bt(i) represents the number
of empty containers required in port i ∈ H at time t ∈ T . If bt(i) is equal to
zero, port i ∈ H acts as a transshipment node at time t ∈ T ;

Rv: Schedule of vessel v ∈ V . The schedule consists of a sequence of ordered triplets
< i,t,t

′
>, the triplets means that vessel v ∈ V arrives in port i ∈ H at period

t ∈ T and stays in this port up to t′ ∈ T . The next triplet in the sequence
provides analogous data for the following port reached by vessel v ∈ V after
i ∈ H;

U(t+1)v(i): Handling capacity. Represents the number of load/unload operations
of empty containers that can be successfully executed during the time spent

11

2 – Modeling

in port by vessel v arriving at port i at time t + 1. In this study, the time
needed to execute a load operation is assumed to be equal to the time needed
to execute an unload operation. Given the time spent in port by the vessel,
and the time needed to complete an operation, the number of containers that
can be loaded/unloaded during the berthing is known. Moreover, the volume
of full containers to load/unload during the berth is also known. Taking into
account the number of full containers that must be loaded/unloaded during
the berth, the handling capacity is supposed updated in order to represent
the number of empty containers only that can be loaded/unloaded. Therefore,
the handling capacity represents an upper bound of the number of empty
containers that can be loaded/unloaded from a vessels during its berthing;

Uht(i): Maximum number of empty containers that can be stored in port i ∈ H at
period t ∈ T ;

Umtv(i): Residual transportation capacity for empty containers moved by vessel
v ∈ V (i,t) from port i ∈ H to the next port in its schedule Rv. Taking into
account the volume occupied by full containers, the transportation capacity
is updated in order to represent the number of empty containers that can be
transported by the vessel to the next port.

DECISION VARIABLES

xht(i): Decision made at period t ∈ T on the number of empty containers stored in
port i ∈ H at period t ∈ T and not assigned for loading to any vessel arriving
at time t + 1 ∈ T ; cht(i) represents the related unitary cost. Loading and
unloading decisions do not take into account the precisely periods in which
these operation are performed. Therefore, storage costs are supposed charged
only when empty containers are kept in the dedicated storage area;

xltv(i): Decision made at period t ∈ T on the number of empty containers available
in port i ∈ H, which must be loaded on vessel v ∈ V (i,t+1); cltv(i) represents
the related unitary cost;

xmtv(i): Decision made at period t ∈ T on the number of empty containers
transported by vessel v ∈ V (i,t+ 1) from port i ∈ H to the following port in
its schedule Rv. It is important to note that this variable considers all empty
containers carried by vessel v ∈ V (i,t+ 1) regardless when and where they
were loaded and when and where they will be unloaded; cmtv(i) represents
the related unitary cost.

12

2.1 – Deterministic model

xutv(i): Decision made at period t ∈ T on the number of empty containers unloaded
from vessel v ∈ V (i,t+ 1) in port i ∈ H; cutv(i) represents the related unitary
cost.

PARAMETERS

αvit: Periods spent in port by vessel v ∈ V (i,t): it takes value 0 if the vessel stays
in the port for less than one day, it takes the value 1 if it stays between one
and two days and, so on. Index vit will be omitted in the model in order to
facilitate its reading;

τvit: Number of periods elapsed between two arrival times of two consecutive berth
by vessel v ∈ V (i,t): it takes the value 1 if the arrival time in port i− 1 ∈ H
is equal to t− 1, it takes the value 2 if the arrival time in port i− 1 ∈ H is
equal to t− 2, and so on. The arrival time of vessel v ∈ V (i,t) in the previous
port can be found in the triplets of its schedule Rv. Index vit will be omitted
in the model in order to facilitate its reading.

Additional informations concern the number of empty containers in shortage
in port i ∈ H at period t ∈ T and the number of empty containers that cannot
be stored in port i ∈ H at period t ∈ T , due to its limited storage capacity. In
order to facilitate the comprehension of the model, these quantities are represented
explicitly by variables usually called as artificial variables or dummy variables. For
the sake of clarity, from this point onward, empty containers in shortage in port
i ∈ H at time t ∈ T are represented by shortage variables, denoted by xsht(i),
whereas empty containers that cannot be stored in port i ∈ H at time t ∈ T are
represented by exceed capacity variables, denoted by xect(i). csht(i) and cect(i)

represents their related unitary cost.
Finally, the problem can be formalized as follow:

min
∑
t∈T

∑
i∈H

[∑
v∈V (i,t+1)

(
cltv(i) xltv(i) + cmtv(i) xmtv(i) + cutv(i) xutv(i)

)
+ cht(i) xht(i)

+ csht(i) xsht(i) + cect(i) xect(i)

]
(2.1)

xht(i)+
∑

v∈V (i,t+1)

xltv(i)+xect(i)−xht−1(i)−
∑

v∈W (i,t)

xu(t−1−α)v(i)−xsht(i) = bt(i)

∀i ∈ H,∀t ∈ T (2.2)

13

2 – Modeling

xm(t−τ)v(i− 1)− xmtv(i)− xutv(i) + xltv(i) = 0

∀v ∈ V (i,t+ 1),∀i ∈ H,∀t ∈ T (2.3)

xht(i) +
∑

v∈V (i,t+1)

xltv(i) + xsht(i) − xect(i) ≤ Uht(i) ∀i ∈ H,∀t ∈ T (2.4)

xltv(i) + xutv(i) ≤ U(t+1)v(i) ∀v ∈ V (i,t+ 1),∀i ∈ H,∀t ∈ T (2.5)

xmtv(i) ≤ Umtv(i) ∀v ∈ V (i,t),∀i ∈ H,∀t ∈ T (2.6)

In addition to constrains 2.2-2.6 all decision variables must be non-negative integers.
The objective function in 2.1 minimizes the costs of inventory, loading, trans-

portation, unloading operations over the planning horizon. Shortage and extra
capacity costs are also taken into account.

Constraints 2.2 concern the flow balance constraint for each port i ∈ H and
each period t ∈ T . A positive value of bt(i) represents a surplus of empty containers,
available in port i ∈ H at period t ∈ T . Empty containers in surplus: (i) can be
stored in the same port in the same period, xht(i); (ii) can be loaded onto a vessel
v ∈ V (i,t+ 1) arriving in the same port in the following period, xltv(i); (iii) can
exceed the storage capacity of the port in the same period, xect(i). When empty
containers exceed the storage capacity, the empty containers that are not able to
stay in port in that period are given away by a most costly way, like transported in
other port. Negative value of bt(i) represent a request of empty containers. Empty
container demands: (iv) can be met by containers stored in the same port in the
previous period, xht−1(i); (v) can be met by containers unloaded from a vessel
v ∈ V (i,t− α) departing from the same port in the same period, xu(t−1−α)v(i); (vi)
can lead to shortages in that period, xsht(i). When empty container demands
lead to shortages, empty containers are provided by a most costly way, like renting
empty containers from other port.

Constraints 2.3 concern the flow balance constraint for each vessel v ∈ V (i,t+1),
each port i ∈ H and each period t ∈ T . A vessel v ∈ V (i,t + 1) arrives in port
i ∈ H at period t + 1 ∈ T , and according to its schedule Rv: (i) in the previous
berth the vessel was in port i− 1 ∈ H at period t− τ ∈ T ; (ii) in the next berth
the vessel will be in port i+ 1 ∈ H at period t+ τ ∈ T . The total number of empty
containers shipped by vessel v, xmtv(i), from port i to the next port i+ 1, is given
by the number of empty containers shipped by the same vessel in the previous berth,
xm(t−τ)v(i− 1), PLUS the number of empty containers loaded on the same vessel
in the same berth, xltv(i), MINUS the number of empty containers unloaded from
the same vessel in the same berthing, xutv(i). Loading and unloading operations
are supposed performed in mutual exclusion, and the constraint does not force any

14

2.2 – Uncertainty and Multi-scenario model

operation. If no operation is need, the number of empty containers shipped by
vessel v, from port i to the next port i+ 1, must be equal to the number of empty
containers shipped by the same vessel in the previous berth, from port i− 1 to port
i.

Constraints 2.4 concern the storage capacity of each port i ∈ H in each period
t ∈ T . Empty containers in stock can be: (i) stored in the same port in the same
period, xht(i); (ii) loaded on a vessel v ∈ V (i,t+ 1) arriving in the same port in
the following period, xltv(i); (iii) provided by a most costly way in the same port
and in the same period, xsht(i); (iv) given away by a most costly way in the same
port and in the same period, xect(i). The operations involved in point (i) , (ii) and
(iii) occupy a part of the storage capacity of the port, whilst the operation involved
in point (iv) make available a part of the same storage capacity. Therefore, all
operations must be taken into account to not violate the storage capacity, Uht(i).

Constraints 2.5 concern the handling capacity of the each port i ∈ H for each
vessel v ∈ V (i,t+ 1), in each period t ∈ T . The handling capacity of a port i ∈ H
for a vessel v ∈ V (i,t + 1) represents the number of empty containers that can
be successfully loaded/unloaded during the berthing. Therefore, the number of
empty containers loaded on vessel v ∈ V (i,t + 1), xltv(i), PLUS the number of
empty containers unloaded from the same vessel, xutv(i), must be lower than the
maximum number of empty containers that can be successfully loaded/unloaded
during the berthing of the vessel v in port i at time t+ 1, U(t+1)v(i).

Constraints 2.6 concern the residual transportation capacity for each vessel
v ∈ V (i,t), each port i ∈ H and each period t ∈ T . A vessel v ∈ V (i,t) depart from
port i ∈ H at period t ∈ T , and according to its schedule Rv in the next berth the
vessel will be in port i+ 1 ∈ H at period t−α+ τ ∈ T . The total number of empty
containers shipped by vessel v, xmtv(i), from port i to the next port i+ 1, must not
exceed the residual transportation capacity of vessel v in port i at time t, Umtv(i).

2.2 Uncertainty and Multi-scenario model

The deterministic formulation, presented in section 2.1, has a single scenario
and is appropriate when data are known with a high level of certainly for all periods
of the planning horizon, and there is confidence in the data. When data are not
known with certainty, or a level of uncertainty affects some data, a multi-scenario
formulation can be more appropriate to represent better the situation of the system.
The aim is to introduce a formulation that ensure an effective repositioning of
empty container for each different possible future evolutions.

Usually, all data are known with a high level of certainty or are based on
historical data. Expert opinions are taken into account to identify some statistical

15

2 – Modeling

component for each uncertain parameter and construct subjective distributions. The
multi-scenario formulation is effective also when distributions, based on historical
data, are not available. Moreover, when statistical informations are known with a
low level of certainty, or there is no confidence in the data, expert opinions are taken
into account to assign to each scenario a weight that characterizes its importance.

Generally speaking, the information of the uncertain parameters are as much
accurate as much the period in which are foreseen is close the first period of the
planning horizon. Therefore, all parameters are certain up a given period θ, and
θ + 1 represents the first period in which uncertain parameters may appear.

All scenarios are collected in an overall mathematical model linked by the
“non-anticipativity” constraints, which forces identical decisions up to time θ. Their
addition in the model guarantee that current decisions do not take advantage of
information not yet available.

The multi-scenario model belongs to the class of stochastic integer programming,
and it can be easily converted into the deterministic equivalent of a two-stage
stochastic model, in which here-and-now decisions are in the first stage and the
remaining decisions in the second stage Powell and Topaloglu 2003.

Referring to Figure 2.3 that illustrates the system dynamics, Figure 2.4 represents
an example of two scenarios in a time-extended network. The uncertainty can affect,
potentially, all parameters of the system. Figure 2.4 represents an example in which
uncertainty concerns the numbers of empty containers offered or demanded in ports.
Positive numbers close to nodes represent the surplus of empty containers, whereas
negative numbers represent their demand. The two scenario in Figure 2.4 differs in
the number of empty containers requested in port C at period 4, respectively 15

for scenario 1 and 20 for scenario 2.
The following part of the section illustrates the multi-scenario model for the

most general case: uncertainty in all parameters. In this problem setting, the ability
of decisions to withstand against uncertainty is sought from the point of view of
shipping companies, which must plan the repositioning of empty containers in order
to meet all customer demands.

With respect to the deterministic formulation, presented in section 2.1, in the
multi-scenario formulation there is the need to introduce scenarios and weights.
The following notation will be used:

SETS

G: Set of scenarios. A single scenario g represents a possible future evolution based
on the value taken by the uncertain parameters.

DATA

16

2.2 – Uncertainty and Multi-scenario model

Figure 2.4: Two scenarios in a time-extended network.

θ: Period up to which all parameter are certain. θ+ 1 represents the first period in
which uncertain parameters may appear;

wg: Weight of the scenario g ∈ G.

The differences between the deterministic model and the multi-scenario one
concern the introduction of scenarios and non-anticipativity constraints. The
multi-scenario model can be formalized as follow:

17

2 – Modeling

min
∑
g∈G

wg
∑
t∈T

∑
i∈H

[∑
v∈V (i,t+1)

(
clgtv(i) xl

g
tv(i) + cmg

tv(i) xm
g
tv(i) + cugtv(i) xu

g
tv(i)

)
+ chgt (i) xh

g
t (i)

+ cshgt (i) xsh
g
t (i) + cecgt (i) xec

g
t (i)

]
(2.7)

xhgt (i)+
∑

v∈V (i,t+1)

xlgtv(i)+xecgt (i)−xh
g
t−1(i)−

∑
v∈W (i,t)

xug(t−1−α)v(i)−xsh
g
t (i) = bgt (i)

∀i ∈ H,∀t ∈ T,∀g ∈ G (2.8)

xmg
(t−τ)v(i− 1)− xmg

tv(i)− xu
g
tv(i) + xlgtv(i) = 0

∀v ∈ V (i,t+ 1),∀i ∈ H,∀t ∈ T,∀g ∈ G (2.9)

xht(i)
g +

∑
v∈V (i,t+1)

xlgtv(i) + xshgt (i)− xec
g
t (i) ≤ Uhgt (i)

∀i ∈ H,∀t ∈ T,∀g ∈ G (2.10)

xlgtv(i) + xugtv(i) ≤ U g
(t+1)v(i) ∀v ∈ V (i,t+ 1),∀i ∈ H,∀t ∈ T,∀g ∈ G (2.11)

xmg
tv(i) ≤ Umg

tv(i) ∀v ∈ V (i,t),∀i ∈ H,∀t ∈ T,∀g ∈ G (2.12)

xhgt (i) = xhft (i) ∀i ∈ H,t ∈ {1, . . . ,θ},∀g,f ∈ G,g /= f (2.13)

xlgtv(i) = xlftv(i) ∀v ∈ V (i,t),∀i ∈ H,t ∈ {1, . . . ,θ},∀g,f ∈ G,g /= f (2.14)

xmg
tv(i) = xmf

tv(i)) ∀v ∈ V (i,t),∀i ∈ H,t ∈ {1, . . . ,θ},∀g,f ∈ G,g /= f (2.15)

xugtv(i) = xuftv(i) ∀v ∈ V (i,t),∀i ∈ H,t ∈ {1, . . . ,θ},∀g,f ∈ G,g /= f (2.16)

In addition to constrains (2.8)-(2.16) all decision variables must be non-negative
integers.

The objective function in (2.7) minimizes the costs of inventory, loading, trans-
portation, unloading operations over the planning horizon for all scenarios. Shortage
and extra capacity costs are also take into account.

Constraints (2.8) concern the flow balance constraint for each port i ∈ H, each
period t ∈ T and each scenarios g ∈ G. Constraints (2.9) concern the flow balance
constraint for each vessel v ∈ V (i,t+ 1), each port i ∈ H, each period t ∈ T and
each scenarios g ∈ G. Constraint 2.10 concerns the storage capacity of each port

18

2.2 – Uncertainty and Multi-scenario model

i ∈ H in each period t ∈ T and each scenarios g ∈ G. Constraints 2.11 concern
the handling capacity of the each port i ∈ H for each vessel v ∈ V (i,t + 1), in
each period t ∈ T and each scenarios g ∈ G. Constraints 2.12 concern the residual
transportation capacity for each vessel v ∈ V (i,t), each port i ∈ H, each period
t ∈ T and each scenarios g ∈ G.

Constraints (2.13) concern the non-anticipativity condition for the number of
empty containers stored in ports between period 1 and period 2. The number of
empty container stored in port must be the same for each scenario.

Constraints (2.14) concern the non-anticipativity condition for the number of
empty containers loaded onto vessels that arrive in ports at period 2. The number
of empty container loaded onto vessels arriving in port in the second period of the
planning horizon must be the same for each scenario.

Constraints (2.15) concern the non-anticipativity condition for the number of
empty containers transported by vessels that arrive in ports at period 2. The
number of empty container transported by vessels arriving in port in the second
period of the planning horizon must be the same for each scenario.

Constraints (2.16) concern the non-anticipativity condition for the number of
empty containers unloaded from vessels that arrive in ports at period 2. The number
of empty container unloaded from vessels arriving in port in the second period of
the planning horizon must be the same for each scenario.

It is important to note that the non-anticipativity constrains do not concern
both shortage and extra capacity variables. In fact, these information may differ
between scenarios since the value taken by the uncertain parameters is different.

19

2 – Modeling

20

Chapter 3

Experimentation

Numerical tests are carried out to evaluate the relevance of both formulations, the
deterministic and the multi-scenario one, for the repositioning of empty containers
under uncertainty.

In both formulations decisions are taken in a “rolling horizon fashion” to com-
prehend their impacts in the future. In a rolling horizon fashion the repositioning
of empty container is determined for the whole planning horizon, but only the
decision involved in the first period are taken into account and implemented. Next,
after decisions are implemented, all periods are shifted by one unit. The second
period becomes the first, the third one becomes the second, and so on until the
end of the planning horizon, where new information become available. The data of
the problem are updated and the problem will be solved again to find the optimal
solution under new conditions.

The two formulations are compared in terms of operating costs (OPC) and
customer satisfaction, represented by the demand fulfilment percentage (DFP).
Both indicators, OPC and DFP , are defined in each rolling for each port i ∈ H
only in the fist period of the planning horizon. The OPC and the DFP indicators
are computed as follows:

OPC =
∑

v∈V (i,2)

(
cl1v(i) + cm1v(i) + cu1v(i)

)
+ ch1(i) ∀i ∈ H (3.1)

DFP = 100
|b1(i)| − xsh1(i)

|b1(i)|
∀i ∈ H (3.2)

Referring to Equation (3.1), operating costs are computed as the sum of all costs
generated by here-and-now decisions in the first period of the planning horizon.
According to Equation (3.2), the demand fulfilment percentage: (i) takes value 100

if there is no shortage in port i ∈ H in the first period of the planning horizon; (ii)
takes value zero if the number of empty containers in shortage in port i ∈ H in the
first period of the planning horizon equals the demand of the port (no demand is

21

3 – Experimentation

met). It is important to note that in ports characterized by a surplus of empty
containers DFP takes always value 100.

Tests are carried out according the following procedure for a number of days:

• Models are solved and here-and-now decisions are implemented;

• Operating costs generated by here-and-now decisions are determined, and the
demand fulfilment percentage is computed for each port in the first period of
the planning horizon;

• A new period is added at the end of the planning horizon, which is rolled
forward in time once (i.e., the second period “becomes” the first in the next
run of the models, the third “becomes” the second and so on) and the forecasts
are updated. In this phase, called from now onward “rolling”, may happen
that some uncertain parameter becomes certain, since their period becomes
more close to period θ with the rolling.

In this experimentation θ takes value 2. This is a reasonable choice motivated
by the following points: (i) customers book their requests several days before the
arrival of the vessel; (ii) the number of empty containers available at ports in the
first period is known by observation; (iii) the number of the empty container in the
second period can be estimated accurately.

Demand and supply values are generated for each port, and each period, by
several customer transportation requests. Each request consists of a number of full
containers, which must be shipped, on behalf of a customer, from an origin port, in
a period, to a destination port, in another period. Therefore, each customer request
refers to number of empty containers required in the origin port and offered in the
destination port.

The experimentation is based on the extended-time network represented in
Figure 3.1, which shows the network in the first day of the simulation. The network
has 8 periods, 5 ports and 2 vessels. Ports A and B are import-dominant, C is
a hub, D and E are export-dominant. As a result, the problem consists in the
repositioning of empty containers from A and B to D and E. The number of empty
containers of each customer request is randomly generated by a uniform distribution
from 1 to 3. For each request the time in which empty containers are requested
in the origin port and become available in the destination port is generated by a
uniform distribution over 50 periods. 2000 customer requests has been generated
and the number of empty containers that are totally offered and required in each
port and each period is computed. The difference between supplies and demands
is equal to bt(i). Furthermore, the average daily supply in ports A and B is 80

containers, whereas the average daily demand in ports D and E is 100 containers.

22

Figure 3.1: Experimentation time-extended network.

To reduce both beginning and end effects, due to the data generation of demands
and supplies, the 50 period planning horizon is truncated removing the first 15

periods and the final 15 periods.
This simulation process can be performed with any value of costs. This ex-

perimentation considers the case of a shipping company repositioning its empty
containers in the space available on its vessels: it pays ports for storage, loading
and unloading operations. Since the shipping company owns vessels, no additional
cost is paid for containers while on-board. According to meeting with industrial
experts, the following unitary costs are adopted:

• Storage (cht(i)): $10;

• Loading (cltv(i)): $100;

• Transportation (cmtv(i)): $0;

• Unloading (cut(i)): $100.

It is important to note that these costs do not lead to unnecessary volumes of empty
containers repositioned on vessels. For example, if we consider a container available
in a port in the first period of the planning horizon, since the storage cost in the
whole planning horizon ($10/period multiplied by 8 periods = $80) is lower than

23

3 – Experimentation

the loading cost ($100), it would be never put on a vessel if there is no demand in
the network. Finally, csht(i) and cect(i) are set equal to a high value, $10000, in
order to minimize both shortages and storage capacity violations.

3.1 Scenario definition

A set of scenarios is generated to consider all different possible realizations of
uncertain parameters. The set of scenarios generated characterize each possible
future evolutions, and differ each other on the value taken by uncertain parameters.
Moreover, there is the complication that the values foreseen or the weights assigned
to the uncertain parameters may change during the time, because models are
implemented in a rolling horizon fashion and at each rolling data forecast are
updated. Several procedures can be adopted for the scenarios generation. An
easy procedure is to take into account the expert opinions in order to identify
the minimum, the most plausible, and the maximum values for each uncertain
parameter. Then, these three values are combined for each uncertain parameter
and one scenario is generated for each possible future.

The deterministic formulation considers one scenario at a time. In order to
compare in the same conditions the deterministic formulation with the multi-
scenario one there is the need to solve all possible combinations of the uncertain
parameters during the time. All possible combinations of the uncertain parameters
generates a decision tree for the deterministic policies. The deterministic decision
tree represents all scenarios, and at each level i there are the values foreseen for the
uncertain parameters in the ith rolling. Figure 3.2 shows an example of how the
deterministic decision tree is generated. The example involves a single uncertain
parameter that can take three different values: the minimum, MIN , the most
plausible, MODE, and the maximum value, MAX. The uncertain parameter is
foreseen the first time in the fourth period of the planning horizon. In the first
level of the decision tree (root node) there is the value foreseen for the uncertain
parameter when it appears the first time. Next, the first rolling is performed and the
uncertain parameter is foreseen in the third period of the planning horizon. As the
previous run of the model, the uncertain parameter can take three different values
(minimum, most plausible or maximum). Next, the second rolling is performed and
the uncertain parameter is foreseen in the second period of the planning horizon, it
becomes certain and it is observed with one of the three different values. Figures
3.2a, 3.2b and 3.2c represent the three decision trees generated. Each of them
differs in the value foreseen for the uncertain parameter when it appear the first
time in the planning horizon, when none rolling is performed. As Figure 3.2 shows,
each value foreseen for the uncertain parameter, when it appears the first time (first

24

3.1 – Scenario definition

level of the decision tree), leads to 9 different policies, each of them differs in the
value foreseen for uncertain parameter during the time, and taken by the uncertain
parameter when it becomes certain in the last rolling.

(a) Decision tree of the minimum value

(b) Decision tree of the most plausible value

(c) Decision tree of the maximum value

Figure 3.2: A deterministic decision tree with a single parameter.

The decision tree grows exponentially with the number of the uncertain param-
eters and the values that uncertain parameters can take. In this experimentation,
for the sake of clarity in the comprehension of the comparison, is represented the
case in which the uncertain parameters can take two values only (minimum or
maximum). Moreover, only four deterministic policies will be compared with the
multi-scenario model, the first two policies and the last two policies of the decision
tree, as showed in Figure 3.3 in which grey nodes represent the policies taken into
account for the comparison.

Figure 3.3: Deterministic policies taken into account for the comparison.

Two scenarios are considered: in scenario g1 “normal” operations are foreseen,

25

3 – Experimentation

whereas in scenario g2 “uncertain” operations are forecast as a possible future. Three
policies can be adopted:

p1 which uses the deterministic model with scenario g1 as a point forecast;

p2 which uses the deterministic model with scenario g2 as a point forecast;

p3 which uses the multi-scenario model. Scenarios g1 and g2 are incorporated in
the multi-scenario formulation and linked by non-anticipativity constraints.
In these tests, the weights of scenarios are supposed equal, in order to face
the most critical situation, in which the shipping company has no idea about
which scenario is more likely to occur.

These policies are compared for a number of days by the simulation of two possible
future evolutions:

e1 in which normal operations occur in each period of the planning horizon;

e2 in which uncertain operations occurs at some point in time.

The three policies (p1, p2, and p3) are compared in both evolutions (e1 and e2)
in terms of costs, generated by here-and-now decisions, and demand fulfilment
percentage.

The uncertainty can involve potentially any data or parameter. The contribution
of this study is to illustrate the effectiveness of a multi-scenario approach in facing
three significant types of uncertainty:

Uncertain demand in which customer request are supposed to increase signifi-
cantly after unexpected event. This is the most realistic type of uncertainty, in
fact as the planning horizon growth as difficult becomes the correct estimation
of the customer requests. In the multi-scenario model presented in Section 2.2,
this type of uncertainty involves Equation (2.8);

Uncertain handling capacity in which empty containers cannot be loaded and
unloaded from vessels, because berthing cannot be performed. Although
containers cannot be handled in the seaside, they can be stored, shipped
and received from the landside. In the multi-scenario model presented in
Section 2.2, this type of uncertainty involves Equation (2.11). From this point
onward, this type of uncertainty will be called as uncertain handling capacity
or partial disruption;

Uncertain demand and handling capacity in which empty containers can nei-
ther be handled in the seaside nor the landside. Vessels do not berth and

26

3.2 – Data management

containers cannot be stored, shipped and received from the landside. The vol-
ume of empty containers in stock in the port does not change during this type
of uncertainty. Empty containers can be re-used only after the uncertainty
conclusion. In the multi-scenario model presented in Section 2.2, this type of
uncertainty involves Equations (2.8) and (2.11). From this point onward, this
type of uncertainty will be called as uncertain demand and handling capacity
or complete disruption.

3.2 Data management

The deterministic and the multi-scenario model were coded using IBM ILOG
CPLEX Optimization Studio 12.5 and solved by the Branch & Bound of ILOG
CPLEX 12.2 which employs state-of-the-art algorithms and techniques to solve
mixed integer programming problems. Experiments are performed on a Linux
four-CPU server 2.67GHz 64GB RAM, with default parameter settings.

The ILOG Optimization Programming Language (OPL) provides an easy way
to represent models. Moreover, other features concern: (i) the possibility to use
advanced data structures; (ii) the possibility to manage Mixed-Integer Linear
Programming; (iii) the possibility to initialize decision variables both integer or
float.

The ILOG OPL Studio is made up of:

• The Optimization Programming Language used to develop optimization
models;

• The Integrated Development Environment used to perform and test in an
easy way optimization models;

• Application Programming Interfaces (API) that incorporates optimization
models in stand-alone applications.

OPL is supported in various platforms, such as UNIX (AIX, Solaris and Linux) and
Windows. It is important to note that Unix platforms do not have a graphic user
interface that perform and test the optimization model easily. In a Unix platform
an optimization model is executed by the oplrun command line. Notwithstanding,
all options included in the Windows graphic user interface are available also in the
command line version.

The are mainly two file in OPL: (i) a file concerning the optimization model
(.mod) and (ii) one or more files concerning the initialization of data declared in
the model file (.dat). The model file includes the declaration of data and decision
variables, the objective function and the definition of all constraints. The input file

27

3 – Experimentation

includes the initialization of all data involved in the model, such as vessels, ports
and periods in this particular case.

As mentioned before, the rolling phase requires the shift of the planning horizon
by one period. In order to facilitate the rolling phase, two output files are generated
with extension .dat by a script that personalizes all data included in it. The first file
concerns all solution details, such as objective function and number of containers
stored, loaded, transported and unloaded in each period of the planning horizon.
The second output file has the same structure included in the input one. The
differences between them concern the following points:

• All components that are characterized by the period in which they are
considered, such as demands, scheduling of vessels, storage capacities and
costs, are reported in the output file with their period decreased by one unit;

• All components involved in period 0 after the shift operation are deleted;

• All components involved in the first period of the planning horizon are updated
in order to take into account the decisions made in the current execution of
the model;

• All components involved in the last period of the planning horizon (t = T)
are set to 0.

In order to find the optimal solution under new conditions, only information involved
in the last period of the planning horizon must be updated based on new information
available. Moreover, when new information becomes available, changes may be
applied also to uncertain parameters updating their point forecasts.

All components that are not characterized by a period, such as the total storage
capacity of a vessel, are reported as in the input file.

The idea of create a second output file with the same structure of the input one
leads to an important benefit: the saving of time spent in managing all components
included in the input file. Instead of modify all periods for all components, only a
little part of them must be updated.

Next sections show the computational results for each type of uncertainty
presented in Section 3.1

3.3 Uncertain demand

Referring to Figure 3.1, this test evaluates the effects of an abnormal growth of
the demands in ports D and E, at periods 4 and 5 respectively. If uncertain events
occur, the demand is supposed to grow of a quantity δ. In this experimentation δ is

28

3.3 – Uncertain demand

defined as the maximum demand that characterize the port in the whole planning
horizon. The capability of facing the uncertainty consists in the ability to increase
the number of empty containers unloaded in port D and E during the first and
second call of the vessel. These additional containers represent preventive measures
reducing the risk of shortages if the uncertainty occurs.

Policies p2 and p3 foresee the anomaly growth of the demand, which could be
observed during the second rolling of the planning horizon. In order to evaluate the
policies also after the realization of the uncertainty, the simulation is performed for
8 days, rolling the planning horizon 7 times. Results are illustrated in Table 3.1,
where each row describes a combination of policies and evolutions. Columns show
the demand fulfilment percentages, DFP, in the first period of the planning horizon
from day 4 up to day 8, computed as in Equation (3.2). The demand is completely
met from day 1 up to day 3 in all ports. The last column, OPC, represents total
costs generated by here-and-now decisions, computed as in Equation (3.1). These
costs are computed for each row as the sum of storage, loading, transportation and
unloading costs in all days of the simulation.

The next subsections analyse the results obtained for the two different evolutions
of the future: e1 in which normal operations occur in each period of the planning
horizon, and e2 in which uncertain operations occurs at some point in time.

Evolution e1 - Normal Operations

When normal operations occur (evolution e1), the policy that provides highest
demand fulfilment percentages is policy p3. Operating costs amount to $210040

and, with respect to the demand fulfilment percentages, only 81.25% of demand in
E, and 100% elsewhere is met at day 7, whereas all demands are satisfied in each
port in the other periods of the planning horizon.

Deterministic policies are less effective in terms of demand fulfilment percentages.
More precisely, with respect to the policy p3:

• the deterministic policy p1 satisfies all demands in the first 7 days, but the
demand fulfilment percentage of day 8 in port E is lower. In fact this policy
satisfies only the 56.25% of the demands in port E, and 100% elsewhere at
day 8.

• the deterministic policy p2 presents the worst demand fulfilment percentages
for this evolution. This policy satisfies all demand in each port from day 6

up to day 8, whereas low demand fulfilment percentages characterize day 4

and 5. In fact, the policy satisfies only the 51.00% of the demands in port
E, and 100% elsewhere at day 4, and 0.00% of the demands in port E, and
100% elsewhere at day 5.

29

3 – Experimentation

DFP OPC
Day 4 Day 5 Day 6 Day 7 Day 8

p1(e1)
100%
in all
ports

100%
in all
ports

100%
in all
ports

100%
in all
ports

56.25% in E,
100%

elsewhere
$194640

p2(e1)
51.00% in E,

100%
elsewhere

0.00% in E,
100%

elsewhere

100%
in all
ports

100%
in all
ports

100%
in all
ports

$195320

p3(e1)
100%
in all
ports

100%
in all
ports

100%
in all
ports

81.25% in E,
100%

elsewhere

100%
in all
ports

$210040

p1(e2)
100%
in all
ports

100%
in all
ports

0.00% in D,
22.00% in E,

100%
elsewhere

100%
in all
ports

25.00% in E,
100%

elsewhere
$192940

p2(e2)
51.00% in E,

100%
elsewhere

0.00% in E,
100%

elsewhere

100%
in all
ports

100%
in all
ports

25.00% in E,
100%

elsewhere
$211350

p3(e2)
100%
in all
ports

100%
in all
ports

0.00% in D,
82.00% in
E,100%

elsewhere

100%
in all
ports

25.00% in E,
100%

elsewhere
$207640

p1(e1) - Policy p1 in evolution e1
p2(e1) - Policy p2 in evolution e1
p3(e1) - Policy p3 in evolution e1
p1(e1) - Policy p1 in evolution e2
p2(e2) - Policy p2 in evolution e2
p3(e2) - Policy p3 in evolution e2

Table 3.1: Uncertain demands: Demand fulfilment percentages and operating costs.

From the point of view of the operating cost, the policy p1 is the best one with
an amount of $194640. Policies p2 and p3 provide higher costs. However, since this
comparison is based only on operating costs without take into account shortage
costs, this consideration can be wrong. More precisely, with respect to the operating
costs the policy p3 presents the highest value with an amount of $210040 but, with
respect to policy p2, the company has more day to find an alternative to improve
the demand fulfilment percentages that characterize port E. If the possibility to
find a better alternative leads to less shortage costs, then the policy p3 can be more
convenient than policy p2.

30

3.3 – Uncertain demand

Evolution e2 - Uncertain Operations

When the uncertain operations occur (evolution e2), the policy that provides
highest demand fulfilment percentages is the policy p3. The total operating cost
amounts to $207640 and, with respect to the demand fulfilment percentages, only
the 0.00% of the demands in port D, 82.00% of the demands in port E, and 100%
elsewhere is met at day 6, and 25.00% of the demands in port E, and 100% elsewhere
is met at day 8. All demand are satisfied in each port in the other periods of the
planning horizon.

Deterministic policies are less effective in terms of demand fulfilment percentages.
More precisely, with respect to the policy p3:

• the deterministic policy p1 provides lower demand fulfilment percentage at
day 6. In fact this policy satisfies only 0.00% of the demands in port D,
22.00% of the demands in port E, and 100% elsewhere.

• the deterministic policy p2 present the worst demand fulfilment percentages.
This policy satisfies all demand in each port from day 6 and 7, whereas low
demand fulfilment percentages characterize day 4 and 5. Indeed, this policy
satisfies only 51.00% of demands in port E, and 100% elsewhere at day 4,
and 0.00% of the demands in port E, and 100% elsewhere at day 5.

From the point of view of operating costs, the policy p1 is the best one with
an amount of $192240. Policies p2 and p3 provide higher costs. In spite of what
happen for the evolution e1, the policy p2 present the highest operating costs with
an amount of $211350.

Remarks

Generally speaking, the multi-scenario policy p3 leads to higher demand ful-
filment percentages than policy p1 and policy p2 and, of course, larger operating
costs must be paid. Moreover, considering the evolution e2 the policies p1 and p3
lead to a better distribution of the shortages between ports D and E, whereas the
deterministic policy p2 concentrate all shortages in port E.

Figure 3.4 represents for each policy the decisions taken on the number empty
containers stored, loaded, kept on board, and unloaded in port E during the first
call of the vessel of line 2.

Figure 3.4 shows that there is no empty container in stock for each policy before
the arrival of the vessel, and several containers are unloaded in order to meet
demands. If policy p1 is adopted, the number of empty containers unloaded is
lower than the number of empty containers unloaded by policies p2 and p3. Indeed,

31

3 – Experimentation

Stored Loaded Kept on boardUnloaded
P1(G1) - Deterministic model when normal operations are foreseen0 0 52 140
P2(G2) - Deterministic model when a disruption is forecast0 0 121 71
P3(G1&G2) - Multi-scenario model including both cases0 0 52 140

p1

p2

p3

0

20

40

60

80

100

120

140

Stored Loaded Kept on board Unloaded

Figure 3.4: Uncertain demands: Decisions taken in the first call of the vessel in
port E.

policy p1 does not foresee the disruption and relies on the second call to unload an
additional number of empty containers. In order to minimize costs, policy p1 kept
on board the volume of empty containers unloaded by policies to p2 and p3.

Stored Loaded Kept on boardUnloaded
P1(G1) - Deterministic model when normal operations are foreseen0 0 100 100
P2(G2) - Deterministic model when a disruption is forecast0 0 129 170
P3(G1&G2) - Multi-scenario model including both cases0 0 90 140

p1

p2

p3

0

20

40

60

80

100

120

140

160

180

Stored Loaded Kept on board Unloaded

Figure 3.5: Uncertain demands: Decisions taken in the second call of the vessel in
port E. Evolution e1.

Figure 3.5 and Figure 3.6 represent for each policy the decisions taken on the
number of empty containers stored, loaded, kept on board, and unloaded in port
E during the second call of the vessel, according to evolution e1 and evolution e2
respectively.

When uncertain operations do not occur and policy p1 is adopted, there are

32

3.4 – Uncertain handling capacity

StoredLoadedKept on boardUnloaded
P1(G1 0 0 0 171
P2(G2 0 0 0 210
P3(G1 0 0 0 201

p1

p2

p3

0

20

40

60

80

100

120

140

160

180

200

220

Stored Loaded Kept on board Unloaded

Figure 3.6: Uncertain demands: Decisions taken in the second call of the vessel in
port E. Evolution e2.

no containers in stock before the arrival of the vessel, and empty containers are
unloaded in order to meet demands up to the third call of the vessel in port E. No
empty containers are unloaded according to policy p2, even if this opportunity is
allowed by the realization of normal operations. Generally speaking, deterministic
policies seem to not exhibit the flexibility of exploit new information, whereas
additional containers are unloaded during second call of the vessel according to
policy p3.

Figure 3.6 shows that no empty containers are unloaded in port E when uncertain
operations occur. The least effective policy is p1, because many empty containers
are kept on board, whereas they were supposed unloaded. Moreover, policies p2 and
p3 can face container shortages by empty containers in stock in port E, unloaded
during the first call of the vessel.

3.4 Uncertain handling capacity

Referring to Figure 3.1, this test evaluates the effects of a partial disruption in
ports D and E, at periods 4 and 5 respectively. If the partial disruption occurs,
empty containers cannot be unloaded from the vessel deployed on line 2 during
the first call in port D, and the second call in port E. The capability of facing
uncertainty consists in the ability to increase the number of empty containers
unloaded in port E during the first call. These additional containers represent
preventive measures reducing the risk of container shortages in case of partial
disruption.

33

3 – Experimentation

Policies p2 and p3 foresee the partial disruption, which could be observed during
the second rolling of the planning horizon. In order to evaluate the policies also
after the realization of the partial disruption, the simulation is performed for 8 days,
rolling the planning horizon 7 times. Results are illustrated in Table 3.2, where
each row describes a combination of policies and evolutions. Columns show the
demand fulfilment percentages, DFP, in the first period of the planning horizon
from day 4 up to day 8, computed as in Equation (3.2). The demand is completely
met from day 1 up to day 3 in all ports. The last column, OPC, represents total
costs generated by here-and-now decisions, computed as in Equation (3.1). These
costs are computed for each row as the sum of storage, loading, transportation and
unloading costs in all days of the simulation.

DFP OPC
Day 4 Day 5 Day 6 Day 7 Day 8

p1(e1)
100%
in all
ports

100%
in all
ports

100%
in all
ports

100%
in all
ports

56.25% in E,
100% elsewhere $194640

p2(e1)
100%
in all
ports

100%
in all
ports

100%
in all
ports

100%
in all
ports

25.00% in E,
100% elsewhere $166980

p3(e1)
100%
in all
ports

100%
in all
ports

100%
in all
ports

100%
in all
ports

43.75% in E,
100% elsewhere $189000

p1(e2)
100%
in all
ports

100%
in all
ports

38.33% in D,
0.00% in E,

100% elsewhere

100%
in all
ports

25.00% in E,
100% elsewhere $146380

p2(e2)
100%
in all
ports

100%
in all
ports

41.67% in D,
100% elsewhere

100%
in all
ports

25.00% in E,
100% elsewhere $165930

p3(e2)
100%
in all
ports

100%
in all
ports

38.33% in D,
100% elsewhere

100%
in all
ports

26.25% in E,
100% elsewhere $164420

p1(e1) - Policy p1 in evolution e1
p2(e1) - Policy p2 in evolution e1
p3(e1) - Policy p3 in evolution e1
p1(e1) - Policy p1 in evolution e2
p2(e2) - Policy p2 in evolution e2
p3(e2) - Policy p3 in evolution e2

Table 3.2: Partial disruption: Demand fulfilment percentages and operating costs.

The next subsections analyse the results obtained for the two different evolutions
of the future: e1 in which normal operations occur in each period of the planning
horizon, and e2 in which the partial disruption occurs at some point in time.

34

3.4 – Uncertain handling capacity

Evolution e1 - Normal Operations

When normal operations occur (evolution e1), the policy that provide highest
demand fulfilment percentages is policy p1. Operating costs amount to $194640

and, with respect to the demand fulfilment percentages, only 56.25% of the demand
in E, and 100% elsewhere is met at day 8, whereas all demand are satisfied in each
port in the other periods of the planning horizon.

The deterministic policy p2 and the multi-scenario one p3 are less effective in
terms of demand fulfilment percentages. More precisely, with respect to policy p1:

• the deterministic policy p2 is the worst policy. This policy satisfies all demands
in the first 7 days, but the demand fulfilment percentage of day 8 in port E
is lower. In fact this policy satisfies only the 25.00% of the demands in port
E, and 100% elsewhere at day 8.

• the multi-scenario policy p3 satisfies all demands in the first 7 days, but the
demand fulfilment percentage of day 8 in port E is lower. The policy p3

satisfies only the 43.75% of the demands in port E, and 100% elsewhere at
day 8.

From the point of view of operating costs, the policy p2 is the best one with
an amount of $166980. Policies p1 and p3 provide higher costs with an amount of
$194640 and $189000 respectively. However, since this comparison is based only on
the operating cost without take into account the shortage ones, this consideration
can be wrong. More precisely, with respect to the operating costs, the policy p3
presents an amount of $189000 but, with respect to policy p2, the company has
a better demand fulfilment percentage. If the company gives a great importance
to the customer satisfaction, then shortage costs may be to high and can lead the
policy p3 more convenient than policy p2.

Evolution e2 - Uncertain Operations

When uncertain operations occur (evolution e2), the policy that provide highest
demand fulfilment percentages are the policy p2 and the policy p3. The total
operating cost amounts to $165930 and $164420 respectively, that leads the multi-
scenario policy p3 slightly better than the deterministic one p2. The demand
fulfilment percentages of policy p2 are only the 41.67% of the demands in port
D, and 100% elsewhere at day 6, 25.00% of the demands in port E, and 100%
elsewhere is met at day 8, whereas all demand are satisfied in each port in the other
periods of the planning horizon. The demand fulfilment percentages of policy p3 are
only the 38.33% of the demands in port D, and 100% elsewhere at day 6, 26.25%

35

3 – Experimentation

of the demands in port E, and 100% elsewhere is met at day 8. All demands are
satisfied in each port in the other periods of the planning horizon.

The deterministic policy p1 is less effective in terms of demand fulfilment
percentages. More precisely, the deterministic policy p1 provides lower demand
fulfilment percentage at day 6. In fact this policy satisfies only 38.33% of the
demands in port D, 0.00% of the demands in port E, and 100% elsewhere at day 6,
25.00% of the demands in port E and 100% elsewhere at day 8. All demand are
satisfied in each port in the other periods of the planning horizon.

From the point of view of the operating costs, the policy p1 is the best one with
an amount of $146380. Policies p2 and p3 provide higher costs with an amount of
$165930 and $164420 respectively. However, since this comparison is based only on
operating costs without take into account the shortage costs, this consideration can
be wrong. More precisely, with respect to operating costs, the policy p3 presents an
amount of $164420 but, with respect to policy p1, the company has better demand
fulfilment percentages. If the company gives a great importance to the customer
satisfaction, then shortage costs may be too high and can lead policy p3 more
convenient than policy p1.

Remarks

Generally speaking, deterministic policies seem effective only when the future
will evolve as expected, and seem unable to reposition empty containers reliably.

Stored Loaded Kept on boardUnloaded
P1(G1) - Deterministic model when normal operations are foreseen0 0 52 140
P2(G2) - Deterministic model when a disruption is forecast0 0 0 190
P3(G1&G2) - Multi-scenario model including both cases0 0 0 192

p1

p2

p3

0

20

40

60

80

100

120

140

160

180

200

Stored Loaded Kept on board Unloaded

Figure 3.7: Partial disruption: Decisions taken in the first call of the vessel in port
E.

Figure 3.7 represents for each policy the decisions taken on the number empty
containers stored, loaded, kept on board, and unloaded in port E during the first

36

3.4 – Uncertain handling capacity

call of the vessel of line 2.
Figure 3.7 shows that there are no empty containers in stock before the arrival

of the vessel, and several containers are unloaded in order to meet demands. If
policy p1 is adopted, the number of empty containers unloaded is lower than the
number of containers unloaded by policies p2 and p3. Policy p1 does not foresee the
partial disruption and relies on the second call of the vessel to unload an additional
number of empty containers. In order to minimize costs, policy p1 kept on board
the volume of empty containers unloaded by policies to p2 and p3.

Stored Loaded Kept on boardUnloaded
P1(G1) - Deterministic model when normal operations are foreseen0 0 100 100
P2(G2) - Deterministic model when a disruption is forecast50 0 150 0
P3(G1&G2) - Multi-scenario model including both cases52 0 120 28

Stored Loaded Kept on boardUnloaded
S1(G1) - Deterministic model when normal operations are foreseen0 0 237 0
S2(G2) - Deterministic model when a disruption is forecast50 0 185 0
S3(G1&G2) - Multi-scenario model including both cases52 0 185 0

p1

p2

p3

0

20

40

60

80

100

120

140

160

Stored Loaded Kept on board Unloaded

Figure 3.8: Partial disruption: Decisions taken in the second call of the vessel in
port E. Evolution e1.

Stored Loaded Kept on boardUnloaded
P1(G1) - Deterministic model when normal operations are foreseen0 0 237 0
P2(G2) - Deterministic model when a disruption is forecast50 0 185 0
P3(G1&G2) - Multi-scenario model including both cases52 0 185 0

p1

p2

p3

0

20

40

60

80

100

120

140

160

180

200

220

240

Stored Loaded Kept on board Unloaded

Figure 3.9: Partial disruption: Decisions taken in the second call of the vessel in
port E. Evolution e2.

37

3 – Experimentation

Figure 3.8 and Figure 3.9 represent for each policy the decisions taken on the
number of empty containers stored, loaded, kept on board, and unloaded in port
E during the second call of the vessel, according to evolution e1 and evolution e2
respectively.

When the partial disruption does not occur and policy p1 is adopted, there are
no containers in stock before the arrival of the vessel, and empty containers are
unloaded in order to meet demands up to the third call of the vessel in port E. No
empty containers are unloaded according to policy p2, even if this opportunity is
allowed by the realization of normal operations. Generally speaking, deterministic
policies seem to not exhibit the flexibility of exploit new information, whereas
additional containers are unloaded during second call of the vessel according to
policy p3.

Figure 3.9 shows that no empty containers are unloaded in port E when the
partial disruption occurs. The least effective policy is p1, because many empty
containers are kept on board, whereas they were supposed unloaded. Moreover,
policies p2 and p3 can face container shortages by empty containers in stock in port
E, unloaded during the first call of the vessel.

3.5 Uncertain demand and handling capacity

Referring to Figure 3.1, this section evaluates the effect of a complete disruption
in port E at periods 4 and 5. If the complete disruption occurs, empty containers
cannot be unloaded from the vessel deployed on line 2 during the second call in
this port. Moreover, empty containers cannot be stored, shipped and received from
the landside. The capability of facing uncertainty consists in the ability to increase
the number of empty containers unloaded in port E during the first call of the
vessel. These additional containers reduce the risk of container shortages in case of
complete disruption.

Policies p2 and p3 foresee the complete disruption, which could be observed
during the second rolling of the planning horizon. In order to evaluate the policies
also after the realization of the complete disruption, the simulation is performed
for 8 days, rolling the planning horizon 7 times. Results are illustrated in Table 3.3,
where each row describes a combination of policies and evolutions. Columns show
the demand fulfilment percentages, DFP, in the first period of the planning horizon
from day 4 up to day 8, computed as in Equation (3.2). The demand is completely
met from day 1 up to day 3 in all ports. The last column, OPC, represents total
costs generated by here-and-now decisions, computed as in Equation (3.1). These
costs are computed for each row as the sum of storage, loading, transportation and
unloading costs in all days of the simulation.

38

3.5 – Uncertain demand and handling capacity

DFP OPC
Day 4 Day 5 Day 6 Day 7 Day 8

p1(e1)
100%
in all
ports

100%
in all
ports

100%
in all
ports

100%
in all
ports

56.25% in E,
100% elsewhere $194640

p2(e1)
100%
in all
ports

100%
in all
ports

100%
in all
ports

100%
in all
ports

40.63% in E,
100% elsewhere $171850

p3(e1)
100%
in all
ports

100%
in all
ports

100%
in all
ports

100%
in all
ports

43.75% in E,
100% elsewhere $193370

p1(e2)
100%
in all
ports

100%
in all
ports

100%
in all
ports

75.00%
in E,
100%
else-

where

0.00% in E,
100% elsewhere $157040

p2(e2)
100%
in all
ports

100%
in all
ports

100%
in all
ports

100% in
all ports

40.63% in E,
100% elsewhere $172750

p3(e2)
100%
in all
ports

100%
in all
ports

100%
in all
ports

100% in
all ports

40.63% in E,
100% elsewhere $192420

p1(e1) - Policy p1 in evolution e1
p2(e1) - Policy p2 in evolution e1
p3(e1) - Policy p3 in evolution e1
p1(e1) - Policy p1 in evolution e2
p2(e2) - Policy p2 in evolution e2
p3(e2) - Policy p3 in evolution e2

Table 3.3: Complete disruption: Demand fulfilment percentages and operating
costs.

The next subsections analyse the results obtained for the two different evolutions
of the future: e1 in which normal operations occur in each period of the planning
horizon, and e2 in which the complete disruption occurs at some point in time.

Evolution e1 - Normal Operations

When normal operations occur (evolution e1), the policy that provide highest
demand fulfilment percentages is policy p1. Operating costs amount to $194640

and, with respect to the demand fulfilment percentages, only 56.25% of demands in
E, and 100% elsewhere is met at day 8, whereas all demand are satisfied in each
port in the other periods of the planning horizon.

The deterministic policy p2 and the multi-scenario one p3 are less effective in

39

3 – Experimentation

terms of demand fulfilment percentages. More precisely, with respect to policy p1:

• the deterministic policy p2 represents the worst policy. This policy satisfies
all demands in the first 7 days, but the demand fulfilment percentage of day 8

in port E is lower. Indeed, policy p2 satisfies only the 40.63% of demands in
port E, and 100% elsewhere at day 8.

• the multi-scenario policy p3 satisfies all demands in the first 7 days, but the
demand fulfilment percentage of day 8 in port E is lower. In fact this policy
satisfies only the 43.75% of demands in port E, and 100% elsewhere at day 8.

From the point of view of the operating cost, policy p2 is the best one with
an amount of $171850. Policies p1 and p3 provide higher costs with an amount of
$194640 and $193370 respectively. However, since this comparison is based only on
operating costs without take into account shortage costs, this consideration can
be wrong. More precisely, with respect to operating costs, policy p3 presents an
amount of $193370 but, with respect to policy p2, the company has better demand
fulfilment percentages. If the company gives a great importance to the customer
satisfaction, then shortage costs may be too high and can lead policy p3 more
convenient than policy p2.

Evolution e2 - Uncertain Operations

When the complete disruption occur (evolution e2), the policy that provide
highest demand fulfilment percentages are both policy p2 and policy p3. Operating
costs amount to $172750 and $192420 respectively, that leads the deterministic
policy p2 better than the multi-scenario one p3. The demand fulfilment percentages
of policies p2 and p3 are the same: only 40.63% of demands in port E, and 100%
elsewhere, are met at day 8, whereas all demands are satisfied in each port in the
other periods of the planning horizon.

The deterministic policy p1 is less effective in terms of demand fulfilment
percentages. More precisely, policy p1 provides lower demand fulfilment percentage
at day 7 and day 8. In fact this policy satisfies only 75.00% of demands in port E,
and 100% elsewhere at day 7 and 0.00% of demands in port E, and 100% elsewhere
at day 8. All demand are satisfied in each port in the other periods of the planning
horizon.

From the point of view of operating costs, policy p1 is the best one with an
amount of $157040. Policies p2 and p3 provide higher costs with an amount of
$172750 and $192420 respectively. However, since this comparison is based only on
operating costs without take into account shortage costs, this consideration can
be wrong. More precisely, with respect to operating costs, policy p3 presents an

40

3.5 – Uncertain demand and handling capacity

amount of $192420 but, with respect to policy p1, the company has better demand
fulfilment percentages. If the company gives a great importance to the customer
satisfaction, then shortage costs may be too high and can lead policy p3 more
convenient than policy p1.

Remarks

Generally speaking, as in Section 3.4, deterministic policies seem effective only
when the future will evolve as expected, and seem unable to reposition empty
containers reliably.

StoredLoadedKept on boardUnloaded
P1(G1 0 0 52 140
P2(G2 0 0 0 215
P3(G1 0 0 0 215

p1

p2

p3

0

20

40

60

80

100

120

140

160

180

200

220

Stored Loaded Kept on board Unloaded

Figure 3.10: Complete disruption: Decisions taken in the first call of the vessel in
port E.

Figure 3.10 represents for each policy the decisions taken on the number empty
containers stored, loaded, kept on board, and unloaded in port E during the first
call of the vessel of line 2.

Figure 3.10 shows that there are no empty containers in stock before the arrival
of the vessel, and several containers are unloaded in order to meet demands. If
policy p1 is adopted, the number of empty containers unloaded is lower than the
number of containers unloaded by policies p2 and p3. Policy p1 does not foresee
the complete disruption and relies on the second call of the vessel to unload an
additional number of empty containers. In order to minimize costs, policy p1 kept
on board the volume of empty containers unloaded by policies to p2 and p3.

Figure 3.11 and Figure 3.12 represent for each policy the decisions taken on the
number of empty containers stored, loaded, kept on board, and unloaded in port
E during the second call of the vessel, according to evolution e1 and evolution e2
respectively.

41

3 – Experimentation

Stored Loaded Kept on boardUnloaded
P1(G1) - Deterministic model when normal operations are foreseen0 0 100 100
P2(G2) - Deterministic model when a disruption is forecast75 0 125 0
P3(G1&G2) - Multi-scenario model including both cases75 0 120 5

p1

p2

p3

0

20

40

60

80

100

120

140

Stored Loaded Kept on board Unloaded

Figure 3.11: Complete disruption: Decisions taken in the second call of the vessel
in port E. Evolution e1.

Stored Loaded Kept on boardUnloaded
P1(G1) - Deterministic model when normal operations are foreseen20 0 200 0
P2(G2) - Deterministic model when a disruption is forecast95 0 125 0
P3(G1&G2) - Multi-scenario model including both cases95 0 125 0

p1

p2

p3

0

20

40

60

80

100

120

140

160

180

200

Stored Loaded Kept on board Unloaded

Figure 3.12: Complete disruption: Decisions taken in the second call of the vessel
in port E. Evolution e2.

When the complete disruption does not occur and policy p1 is adopted, there
are no containers in stock before the arrival of the vessel, and empty containers are
unloaded in order to meet demands up to the third call of the vessel in port E. No
empty containers are unloaded according to policy p2, even if this opportunity is
allowed by the realization of normal operations. This confirm the lack of flexibility
to exploit new information, whereas additional containers are unloaded during
second call of the vessel according to policy p3.

Figure 3.12 shows that no empty containers are unloaded in port E when the
complete disruption occurs. The least effective policy is p1, because many empty

42

3.5 – Uncertain demand and handling capacity

containers are kept on board, whereas they were supposed unloaded. Moreover,
policies p2 and p3 can face container shortages by empty containers in stock in port
E, unloaded during the first call of the vessel.

43

3 – Experimentation

44

Chapter 4

Conclusions

Disruptions generate shocks in the shipping industry, as well as in several
planning activities. This part of the thesis, dedicated to the seaside problem,
investigated the planning of empty containers repositioning when uncertain events
or disruptions may take place. They are supposed to be temporary events occurring
in a port that prevent the empty containers from being properly repositioned in
the maritime network.

We investigated three repositioning policies, and for each policy two different
possible evolutions were taken into account, one with normal operations and
the other in which uncertain operations occur. Tests show that deterministic
formulations are effective only when events occur as forecast. Generally speaking,
the deterministic formulations lead to unsuitable decisions whenever the future
differs from the point forecast. However, the future is uncertain and shipping
companies cannot trust to luck, or use a “crystal ball” to observe the values of
uncertain parameters. A viable method for repositioning empty containers under
uncertainty is provided by a multi-scenario model, in which scenarios are linked by
non-anticipativity conditions. Tests show that the multi-scenario model provides
highest demand fulfilment percentages for different future evolutions with respect
to deterministic approaches.

Most of concepts presented in this first part of the thesis are included in Di
Francesco, Lai, and Zuddas 2013, and were presented in Di Francesco, Lai, and
Zuddas 2010 and Lai, Di Francesco, and Zuddas 2011.

45

4 – Conclusions

46

Part II

Landside - Heterogeneous fleet size

Chapter 5

Problem description

This part of the thesis addresses a vehicle routing problem, which is motivated
by a real case study. A carrier must plan the distribution of container loads by
trucks and containers based at the port. Trucks can carry one container, as in
Figure 5.1a, or two containers, as in Figure 5.1b. Trucks and containers are used
to service two types of transportation requests: the delivery of container loads
from the port to importers, Figure 5.1c, and the shipment of container loads from
exporters to the port, Figure 5.1d. Typically customers need to ship or receive
more than one container load. Therefore, usually each customer must be serviced
by multiple containers and must be visited by more than one truck. Figure 5.1e
represents an example of multiple visits in which customers are importers.

According to the carrier’s policy, trucks and containers cannot be uncoupled
during customer service, because truck drivers are in charge of checking the right
execution of packing and unpacking operations. As a result, when importers receive
container loads by trucks, containers are emptied and moved away by the same
trucks used for providing container loads. Similarly, when exporters are served by
empty containers, containers are filled and moved away by the same trucks used for
providing empty containers. It is important to note that there are no pickups or
deliveries of loaded and empty containers: during customer service containers are
filled or emptied and moved away by the same trucks used for moving containers
to customers.

Moreover, since the container loads of exporters are typically not ready before
the afternoon, the carrier policy is to service importers before exporters. As a
result, routes may consist in the shipment of container loads from the port to
importers, the allocation of empty containers from importers to exporters, and
the final shipment of container loads from exporters to the port. Trucks with
one container can service up to two customers in a route (one importer and one
exporter). Trucks with two containers can service up to four customers in a route

49

5 – Problem description

(a) Truck of capacity one container (b) Truck of capacity two containers

(c) Transportation request of importers (d) Transportation request of exporters

(e) Multiple visits example

Figure 5.1: Heterogeneous landside problem description.

(two importers and two exporters). Every pair of containers can be shipped in a
truck, all containers leaving from importers can be used to service exporters and
no incompatibility occurs between customers and trucks, which can service almost
any customer. Figure 5.2 represents an example in which an importer requests two
container loads. Next, containers are emptied and moved to an exporter in which
one of those containers is filled and shipped to the port.

Figure 5.2: An example of route

It is important to note that the number of container loads to be picked up and

50

5.1 – Literature review

delivered is generally different. When the number of container loads delivered to
importers is larger than the number of container loads shipped by exporters, a
number of empty containers must be moved back to the port. When the number of
container loads delivered to importers is lower than the number of container loads
shipped by exporters, a number of empty containers must be put on trucks leaving
from the port, in order to service all customers.

According to Parragh, Doerner, and Hartl 2008, this problem belongs to the
class of Vehicle Routing Problems with Clustered Backhauls (VRPCB), because in
each route all deliveries must be performed before all pickups. However, in classical
VRPCB, each customer must be visited only once, whereas in this problem multiple
visits at each customer are allowed.

This part of the thesis aims to propose an optimization model accounting for
the original characteristics of this problem. The movement of trucks generates
routing costs. In this problem setting, trucks with two containers capacity lead to
higher costs per unitary distance than trucks with one container capacity. Moreover,
handling costs are paid to put containers on trucks at the port. The objective is to
determine a set of routes in order to minimize routing and handling costs, such that
customers are serviced as requested, truck capacity constraints hold, and importers
are serviced before exporters.

A linear integer programming formulation for the problem will be proposed
in Chapter 6, and tested in Chapter 8. As tests will show, the complexity of the
model leads the exact formulation able to solve only instances with few customers.
Moreover, in the real case study, solutions must be determined rapidly. Therefore,
another objective of this part of the thesis, is to propose an efficient meta-heuristic
for the problem at hand. The scheme of the meta-heuristic, presented in Chapter 7,
is to find an initial feasible solution and, next, to improve this solution by several
local search phases. In Chapter 8, the results of the computational experience are
presented, and a comparison between the performance of the exact and the meta-
heuristic algorithm is reported. Finally, conclusions are summarized in Chapter 9.

5.1 Literature review

This problem belongs to the field of pickup and delivery problems, because there
are two types of customers needing to ship or receive container loads Savelsbergh
and Sol 1995. According to Parragh, Doerner, and Hartl 2008, the problem can
be referred to as a Vehicle Routing Problem with Backhauls, because container
loads must be shipped from the port to importers (or linehaul customers) and from
exporters (or backhaul customers) to the port. More precisely, the thesis investigates
a Vehicle Routing Problem with Clustered Backhauls (VRPCB), because in each

51

5 – Problem description

route all importers must be serviced before all exporters. In Berbeglia et al. 2007
the problem is referred to as a one-to-many-to-one pick up and delivery problem.

However, in traditional VRPCB each customer must be visited exactly once,
whereas in this problem the demand of each customer may be greater than the
vehicle capacity and may be serviced by several vehicles. Therefore, multiple visits
are allowed Archetti, Speranza, and Hertz 2006. To our knowledge, Vehicle Routing
Problems with Backhauls and splits have been investigated only in Mitra 2005 and
Mitra 2008. Unlike this problem setting, the fleet of trucks is homogeneous and the
delivery and pickup of loads can be in any sequence.

In the field of freight transportation, container transportation by truck between
customers and intermodal terminals is known as “drayage”. According to Macharis
and Bontekoning 2004, it involves the delivery of a full container from an intermodal
terminal to a receiver and the following collection of an empty container, as well as
the provision of an empty container to the shipper and the subsequent transportation
of a full trailer or container to the intermodal terminal.

According to the previous definition of drayage, it is possible to separate or not
trucks and containers. The separation of trucks and containers was investigated by
Jula et al. 2005, Chung et al. 2007, Zhang, Yun, and Moon 2011, Zhang, Yun, and
Kopfer 2010, Vidovic, Radivojevic, and Rakovic 2011. Less attention was devoted to
the case in which the tractor and truck drivers stay with containers during packing
or unpacking operations. Due to the lower productivity in this use of trucks, this
case was investigated only in papers motivated by specific technical restrictions
Imai, Nishimura, and Current 2007 or particular regulatory policies Cheung et al.
2008. In this thesis, trucks and containers cannot be uncoupled because the carrier
aims at providing a higher quality service, in which truck drivers are involved in
the control of packing and unpacking operations.

To our knowledge, most of the papers on drayage assume that vehicles transport
exactly one container at a time Jula et al. 2005, Namboothiri and Erera 2008,
Zhang, Yun, and Moon 2011, Zhang, Yun, and Kopfer 2010. However, if a given
weight limitation is not exceeded or special combined chassis are used, carrying two
containers per truck is allowed in many countries, . Hence, moving two containers
instead of one is an opportunity to improve the efficiency of the distribution. It
is important to note that this opportunity makes routing problems more difficult
to solve due to their combinatorial characteristics: a truck with a single container
moves one loaded or one empty container, whereas a truck with two containers
moves two loaded containers or two empty containers or a loaded container and an
empty container. The possibility of moving two containers per truck was considered
only in Chung et al. 2007, who worked on an one-to-one pick up and delivery
problem, and Vidovic, Radivojevic, and Rakovic 2011, who determined routes from

52

5.1 – Literature review

the matching of pick up and delivery nodes.
The closest problem setting was probably faced by Imai, Nishimura, and Current

2007, who studied the optimal assignment of trucks to a set of delivery and pickup
pairs. As in this problem setting, trucks and containers cannot be uncoupled, but
the capacity of trucks is limited to one container only. Caris and Janssens 2009
extended the paper by Imai, Nishimura, and Current 2007 with time-windows at
customers and depot. Their problem was modelled as a full truckload pickup and
delivery problem with time windows. Even this approach is viable only if the
transportation capacity of trucks is one container.

53

5 – Problem description

54

Chapter 6

Modeling

This chapter concerns the formalization of the mathematical model. The model
involves sets, data and parameters. All sets, data and parameters are listed following
their alphabetical order.

SETS

I: Set of importers;

E: Set of exporters;

K: Set of trucks.

INPUT DATA

di: Containers demand of customer i ∈ I ∪ E. When i ∈ I, di represents the
number of loaded containers used to service import customer i ∈ I. Due
to the problem setting, di is also equal to the number of empty containers
available after the service to customer i ∈ I. When i ∈ E, di represents the
number of empty containers used to service export customer i ∈ E, and di is
also equal to the number of loaded containers shipped by customer i ∈ E to
port p;

hkpj: Handling cost of a container put on truck k ∈ K at the port p to service
customer j ∈ I ∪ E;

p: The port;

uk: Capacity of truck k ∈ K.

Consider a directed graph G = (N,A). The set of nodes is defined as the union
of the port with the sets of importers and exporters:

N = {p ∪ I ∪ E}.

The set of arcs A includes all allowed ways to move trucks:

55

6 – Modeling

• from the port to any importer and any exporter;

• from an importer to the port, any other importer and any exporter;

• from an exporter to the port and any other exporter.

More formally, the set A is defined as A = A1 ∪ A2, where

A1 = {(i,j)|i ∈ p ∪ I,j ∈ N,i /= j}
A2 = {(i,j)|i ∈ E,j ∈ p ∪ E,i /= j}.

DECISION VARIABLES

xkij: Routing selection variable equal to 1 if arc (i,j) ∈ A is traversed by truck
k ∈ K, 0 otherwise. ckij represents its routing cost;

ykij: Number of loaded containers moved along arc (i,j) ∈ A by truck k ∈ K;

zkij: Number of empty containers moved along arc (i,j) ∈ A by truck k ∈ K.

The problem can be formulated as follows:

min
∑
k∈K

 ∑
(i,j)∈A

ckijx
k
ij +

∑
j∈N

hkpj(y
k
pj + zkpj)

 (6.1)

s.t.∑
k∈K

∑
l∈N

ykil =
∑
k∈K

∑
j∈p∪I

ykji − di ∀i ∈ I (6.2)∑
k∈K

∑
l∈N

zkil =
∑
k∈K

∑
j∈p∪I

zkji + di ∀i ∈ I (6.3)∑
l∈N

ykil ≤
∑
j∈p∪I

ykji ∀i ∈ I,∀k ∈ K (6.4)∑
l∈N

zkil ≥
∑
j∈p∪I

zkji ∀i ∈ I,∀k ∈ K (6.5)∑
k∈K

∑
l∈p∪E

ykil =
∑
k∈K

∑
j∈N

ykji + di ∀i ∈ E (6.6)∑
k∈K

∑
l∈p∪E

zkil =
∑
k∈K

∑
j∈N

zkji − di ∀i ∈ E (6.7)∑
l∈p∪E

ykil ≥
∑
j∈N

ykji ∀i ∈ E,∀k ∈ K (6.8)∑
l∈p∪E

zkil ≤
∑
j∈N

zkji ∀i ∈ E,∀k ∈ K (6.9)

56

∑
(ji)∈A

(ykji + zkji) =
∑
(il)∈A

(ykil + zkil) ∀i ∈ I ∪ E,∀k ∈ K (6.10)

ykij + zkij ≤ ukxkij ∀(i,j) ∈ A,∀k ∈ K (6.11)∑
j∈N

xkji −
∑
l∈N

xkil = 0 ∀i ∈ N,∀k ∈ K (6.12)∑
j∈N

xkpj ≤ 1 ∀k ∈ K (6.13)∑
k∈K

∑
i∈I∪E

zkip −
∑
k∈K

∑
i∈I∪E

zkpi =
∑
i∈I

di −
∑
i∈E

di (6.14)

xkij ∈ {0,1} ∀(i,j) ∈ A,∀k ∈ K (6.15)

ykij ∈ {0,1,2} ∀(i,j) ∈ A,∀k ∈ K (6.16)

zkij ∈ {0,1,2} ∀(i,j) ∈ A,∀k ∈ K (6.17)

Costs are minimized in the objective function (6.1). The objective function
takes into account both sources of cost: those relative to the travelled arcs and
those concerning the handling of containers at the port.

Constraints (6.2)-(6.5) concern the movement of containers to importers. Con-
straints (6.2) and (6.3) are the flow conservation constraints of loaded and empty
containers, respectively, at each importer node. Constraints (6.4) and (6.5) check
the number of loaded and empty containers in each truck entering and leaving from
importers: the number of loaded containers cannot be increased after a service at
each importer, whereas the number of empty containers cannot be reduced.

Constraints (6.6)-(6.9) concern the allocation of containers to exporters. Con-
straints (6.6) and (6.7) are the flow conservation constraints of loaded and empty
containers, respectively, for each exporter node. Constraints (6.8) and (6.9) control
the number of loaded and empty containers in each truck entering and leaving from
exporters: the number of loaded containers cannot be reduced after a service at
each exporter, whereas the number of empty containers cannot be increased.

Constraints (6.10) guarantee that the number of containers carried by each
truck do not change after visiting a customer.

Constraints (6.11) impose that the number of containers moved by each truck
is not larger than its transportation capacity uk. In this problem, uk takes value 1

or 2. Constraints (6.12) concerns the flow conservation constraints for trucks at
each node. Constraints (6.13) guarantee that trucks are not used more than once.
Constraint (6.14) represents the flow conservation of empty containers at the port
p.

Finally, constraints (6.15), (6.16) and (6.17) define the domain of the decision
variables.

57

6 – Modeling

58

Chapter 7

Solution method

Vehicle Routing Problems are known to be difficult and this problem is not an
exception. Since exact methods may not be able to solve real problem instances,
this thesis propose a meta-heuristic, in which solutions are defined in terms of
truck routes. The meta-heuristic consists of two phases: (i) Constructive phase,
determines a feasible solution by a variant of the Clarke and Wright method, in
which routes are merged and assigned to trucks; (ii) Improvement phase, improves
the solution by several local search phases. The search space of the local search
phases is the set of truck assignments to routes satisfying all constraints (6.2)-(6.17).
Two neighbourhoods are used: (i) Node Relocate , in which a node is moved from
its current route, inserted into another route by the best-insertion method, and
trucks are reassigned to routes involved in the local move, as in Figure 7.1; (ii)
Node Exchange , in which two nodes are swapped between two different routes, and
trucks are reassigned to routes involved in the local move, as in Figure 7.2.

(a) Before (b) After

Figure 7.1: Improvement phase: Node Relocate example.

In both phases, the Constructive phase and the Improvement phase, the meta-
heuristic determines new solutions evaluating pairs of routes in the current solution,
selecting one of them and assigning trucks to the selected pair of routes. In the
Constructive phase, the meta-heuristic selects which pair of routes should be merged

59

7 – Solution method

(a) Before (b) After

Figure 7.2: Improvement phase: Node Exchange example.

and which truck should be used in the new route. In the Improvement phase, the
meta-heuristic evaluates how nodes are moved between any pair of routes, and
selects the pair of routes involved in the best local movement. The trucks assigned
to the routes of the selected pair can be swapped, if the solution improves.

It is important to note that there is not a single way to compare pairs of
routes. Most importantly, different comparison criteria may result in the selection
of different pairs of routes at any step. In this thesis, two criteria are proposed
for the selection of the best pair of routes: (i) Criterion1, selects pairs of routes
such that the objective function in the new solution is minimum; (ii) Criterion2,
selects pairs of routes such that the total travelled distance in the new solution is
minimum. Since it is hardly possible know a priori which criterion finally determines
the best solution in terms of objective function, both of them are considered in the
Constructive phase and the Improvement phase.

The pseudo-code of the meta-heuristic algorithm is illustrated in Table 7.1, in
which the following notation is adopted:

initSol Initial solution;

initList List of savings that can be obtained merging routes in the initial solution;

cwSol(Criterion) Current solution of the Constructive phase, for the considered
criterion;

cwList(Criterion) List of savings of the current solution cwSol(Criterion) in
the Constructive phase, for the considered criterion;

ClarkeWright(cwSol(Criterion),cwList(Criterion)) Function that implements
the variant of the Clarke and Wright method in the Constructive phase. The
input parameters are the current solution, cwSol(Criterion), and the current
list of savings, cwList(Criterion). The output is the new current solution,
cwSol(Criterion);

60

7.1 – Initialization

Sol(Criterion) Current solution in the Improvement phase, for the considered
criterion;

improve Boolean variable taking value true if the Improvement phase improves
the solution, false otherwise. It is initialized to true, in order to perform the
Improvement phase at least once.

improveNodeRelocate Boolean variable taking value true if the Node Relocate
search phase improves the current solution in the Improvement phase, false
otherwise. It is initialized to false.

improveNodeExchange Boolean variable taking value true if the Node Exchange
search phase improves the current solution in the Improvement phase, false
otherwise. It is initialized to false.

nodeRelocate(Sol(Criterion),improveNodeRelocate) Function that implements
the Node Relocate search phase. The input parameters are the current solution
Sol(Criterion), and the variable improveNodeRelocate.
It returns the new current solution, Sol(Criterion), and the updated value
of improveNodeRelocate.

nodeExchange(Sol(Criterion),improveNodeExchange) Function that implements
the Node Exchange search phase. The input parameters are the current solu-
tion, Sol(Criterion), and the variable improveNodeExchange.
It returns the new current solution, Sol(Criterion), and the updated value of
improveNodeExchange.

S∗ Best solution found.

7.1 Initialization

The initial solution cwSol is made up with direct trips, in which vehicles carrying
one container start from the port, go directly to a customer, and then turn back
directly to the port. Although in this solution all customers are served as requested,
it is unfeasible when the number of available trucks with capacity one-container is
not sufficient.

initList is initialized in order to implement the variant of the Clarke and Wright
method, Section 7.2. Each entry of initList represents:

• The identifiers of the pair of routes which may be merged;

61

7 – Solution method

procedure main
Initialize . Section 7.1
Create initSol with direct trips performed by trucks carrying one container only
Create the savings list initList
EndInitialize
for Criterion = 1, 2 do

cwSol(Criterion)← initSol
cwList(Criterion)← initList
ClarkeWright(cwSol(Criterion),cwList(Criterion)) . Section 7.2
improve← true
Sol(Criterion)← cwSol(Criterion)
while improve == true do . Section 7.3

improve← false
improveNodeRelocate← false
improveNodeExchange← false
nodeRelocate(Sol(Criterion),improveNodeRelocate)
nodeExchange(Sol(Criterion),improveNodeExchange)
if improveNodeRelocate == true OR improveNodeExchange == true

then
improve← true

end if
end while

end for
S∗ ← ∅
S∗ ← min{Sol(1), Sol(2)}
return S∗

end procedure

Table 7.1: The structure of the meta-heuristic.

• The maximum saving deriving from their merging. To clarify, since a pair of
routes can sometimes be merged in several ways, this thesis consider only the
new route resulting in the maximum saving;

• The truck capacity υ̌ of the new route, generated after the merging. In
this specific problem setting, if the new route consists of 1 importer and 1

exporter demanding 1 container each, υ̌ takes value 1, whereas it takes value
2 otherwise.

Given two generic routes r1 and r2, the maximum saving generated by their
merging is computed as:

cost(r1) + cost(r2)− cost(r).

In which: cost(r1) and cost(r2) represent the cost of routes r1 and r2, respectively,
and cost(r) the cost of the route obtained by merging r1 and r2. Savings are ordered
in the initList in a non-increasing fashion.

62

7.2 – Constructive phase

7.2 Constructive phase

In order to reduce the number of routes to the number of available trucks, the
variant of the Clarke and Wright method is implemented as follows:

Step0 The current solution, cwSol(Criterion), and the associated list of savings,
cwList(Criterion), are considered;

Step1 If the number of routes is lower than the number of trucks, or if there are
no entries in cwList(Criterion), save the current solution, cwSol(Criterion),
and stop, otherwise go to Step2;

Step2 Consider the pair of routes at the top of cwList(Criterion) and check the
truck capacity υ̌. If there is an available truck having capacity υ̌, merge the
pair of routes, assign the truck to the new route and go to Step5, otherwise
go to Step3;

Step3 If a route of the pair has capacity υ̌, merge the pair of routes, assign the
truck to the new route and go to Step5, otherwise go to Step4;

Step4 Scroll the cwList(Criterion) and check the next entry. If cwList(Criterion) is
not empty go to Step2, otherwise return the current solution, cwSol(Criterion),
and stop;

Step5 Save the new current solution, cwSol(Criterion), re-compute the list of
savings, cwList(Criterion), and repeat from Step1.

After previous steps, the solution may not be feasible, because the final number
of routes was not controlled. If the final number of routes is lower than or equal
to the number of available trucks, the current solution is feasible and the meta-
heuristic switches to the Improvement phase (section 7.3). If this is not the case,
the algorithm turns all routes performed by trucks with capacity one-container into
direct trips. The new current solution, cwSol(Criterion), is made up of all routes
performed by trucks with capacity two-containers, as in the previous solution, and
all direct trips performed by trucks with capacity one-container. Next, cwList is
re-computed and the previous steps of the Clarke and Wright’s method are repeated.
In order to not cycle back to the previous solution, Step3 does not take into account
trucks with capacity one-container. After this phase, the solution is feasible and
the meta-heuristic proceeds with the Improvement phase.

63

7 – Solution method

7.3 Improvement phase

The Improvement phase consists of several local search phases using two neigh-
bourhoods. The first neighbourhood is the set of feasible solutions obtained by
relocating a node from a route to another route by the best insertion method. When
a node is relocated without reassigning trucks to routes, solutions may be infeasible.
In such cases, sometimes feasible solutions can be restored swapping the trucks
previously assigned to the routes involved in the move. Therefore, every time a
node is moved into another route, trucks involved in the local move are reassigned.
The second neighbourhood is the set of feasible solutions obtained by exchanging
two nodes between two routes, and reassigning trucks to routes. As in the first
neighbourhood, trucks assigned to routes can be swapped, in order to determine
feasible solutions.

The Improvement phase starts from the feasible solution determined in the
Constructive phase and, first of all, performs the Node Relocate search phase. It
starts from the first route, which is in the top of the list of routes. If there are
improving moves for the first route, the best one is selected and implemented. Next,
the two routes involved in the move are inserted into the bottom of the list of routes
in the new solution. The list of routes is scrolled down from the top, in order to
not limit local moves to a subset of routes. After an improving move, the list of
routes is updated and the search restarts from the top of the list. If there are not
improving moves for the first route, the best not improving move is saved and the
search goes on with the following route.

After a series of local moves, a local optimum is encountered in which improving
moves are no longer available. In such case, the best not-improving move is
implemented, the route list is updated, and the search restarts from the top of the
list. In order to not repeat moves during the search, moves already implemented
are denied and saved in two separate memories: one for the improving moves and
one for the not improving moves. In order to not reject possible moves for too long,
improving moves are deleted from their memory whenever a not improving move is
implemented, whereas not improving move are deleted when a new local optimum
is determined.

After the consecutive implementation of the maximum number of not improving
moves, the search in the first neighbourhood stops, and goes on in the second
neighbourhood. If the search in at least a neighbourhood improves the solution,
the search is carried out again starting from the first neighbourhood and, next, in
the second one.

The outline of the local search in a neighbourhood is the following:

Step0 notImpIt = 0;

64

7.3 – Improvement phase

Step1 If notImpIt is equal to maxnotImpIt, the method stops its execution. Oth-
erwise increase notImpIt by 1 and go to the next step;

Step2 If any, search the best improving move and go to the next step. Otherwise
go to Step4 (during this search, the best not improving move is saved);

Step3 Implement the best improving move and go to Step2;

Step4 If the solution has been improved save the new local optimum, Sol(Criterion),
and set notImpIt = 0. Next, go to Step5;

Step5 If any, select the best not improving move, implement it, and go to Step1.
Otherwise the method stops its execution.

Where :

notImpIt is the number of iterations for which a not improving move has been
consecutively implemented. When a new local optimum is found, notimpIt is
set to 0; when a not improving move is implemented, notimpIt is increased
by 1.

maxnotImpIt is the maximum number of iterations for the not improving moves.

65

7 – Solution method

66

Chapter 8

Experimentation

The experimentation proposed in this chapter aims to analyse the performance
of the proposed solution method, and to verify that problems of real-life dimensions
can be solved in reasonable time. The meta-heuristic is tested on five real instances
provided by a carrier operating in the area of Vado Ligure (Italy), as well as on
several randomly generated problem instances, that have structures closely similar to
real problems. Moreover, according to meeting with the carrier, the time estimated
in which solutions must be provided is 10 minutes.

This experimentation considers 70 randomly generated artificial instances, which
are divided into five classes:

• 6 instances with 10 customers;

• 10 instances with 20 customers;

• 14 instances with 30 customers;

• 18 instances with 40 customers;

• 22 instances with 50 customers.

The number of containers requested by each customer is uniformly generated
from 1 to 5. In each class the coordinates of nodes are fixed. The instances of
a class differ in the number of importers, in the number of exporters, and in the
number of available trucks for each container capacity. The available trucks in
each instances are equal to the minimum number of trucks needed to service all
container load requests. Moreover, in each class: (i) in the first half of the instances,
trucks with capacity 2-containers service two-thirds of all container loads requests,
whilst the remaining part is serviced by trucks with capacity 1-container; (ii) in
the second half of instances, trucks with capacity 2-containers service all containers
load requests, and trucks with capacity 1-container are not available.

67

8 – Experimentation

8.1 Data management

The exact formulation is coded using IBM ILOG CPLEX Optimization Studio
12.5 and solved by the Branch & Bound of ILOG CPLEX 12.2, which employs state-
of-the-art algorithms and techniques to solve mixed integer programming problems.
The meta-heuristic is coded in the programming language C++. Experiments
are performed on a Linux four-CPU server 2.67GHz 64GB RAM, with default
parameter settings.

Although a major requirement for the carrier is to determine solutions in about
10 minutes, ILOG CPLEX 12.2 is set to stop after 3 hours. This choice allows to
evaluate the quality of solutions provided by the meta-heuristic when no feasible
solution is determined by ILOG CPLEX 12.2 in 10 minutes. For the sake of clarity,
we refer to the solutions obtained by the exact algorithm as CPLEX.

Two parameters must be calibrated in the meta-heuristic algorithm:

maxnotImpIt(Node Relocate): maximum number of consecutive not improving
move in the Node Relocate search phase;

maxnotImpIt(Node Exchange): maximum number of consecutive not improv-
ing move in the Node Exchange search phase.

Denoting with nrRouteSol the number of routes in the solution, the two parameters,
maxnotImpIt(Node Relocate) and maxnotImpIt(Node Exchange), are defined as
follows:

maxnotImpIt(Node Relocate) = nrRouteSol · α
maxnotImpIt(Node Exchange) = nrRouteSol · β

Tests are performed by running all artificial instances with the chosen values of α
and β. Table 8.1 shows the best eight calibrations performed for the two coefficient,
α and β. C1-C8 denoted the value taken by these coefficients in each calibration.
The following part of the experimentation shows the computational results for the
best calibration only. The selected values of α and β are shown in the last column
of the table.

Calibrations Selected
C1 C2 C3 C4 C5 C6 C7 C8 C5

α 1 2 3 4 5 6 7 8 5
β 1 2 3 4 5 6 7 8 5

Table 8.1: Tested value of α and β

68

8.2 – Artificial instances

8.2 Artificial instances

Computational results are presented in Tables 8.2, 8.3, 8.4, 8.5, and 8.6, with
the following notation:

• |I|: Number of importers;

• |E|: Number of exporters;

• |K1|: Number of available trucks with capacity 1-container;

• |K2|: Number of available trucks with capacity 2-containers;

META-HEURISTIC

• o.f.: Objective function returned by the meta-heuristic.

• Node Relocate: Objective function improvements obtained in the Node Relo-
cate search phases;

• Node Exchange: Objective function improvements obtained in the Node
Exchange search phases;

• Criterion: Criterion that provided the best solution: 1 for Criterion1, 2 for
Criterion2. When both criteria provide the same objective function Criterion
takes value “X”.

• Gap criteria: The difference between the two criteria, in terms of objective
function;

• t(s): Time in seconds before the best solution is found;

• % Gap from CPLEX : Percentage gap with respect to the best solution
provided by CPLEX. When solutions of the meta-heuristic are better than
CPLEX upper bounds, or the meta-heuristic provides the optimal solution,
gaps are reported in bold. Moreover, when the solutions of the meta-heuristic
are better than CPLEX upper bounds, gaps are reported with a negative
value;

• n.a.: means comparison gap not available;

CPLEX

• % Opt. Gap: Gap between upper and lower bounds determined by CPLEX.
The elapsed time in seconds is reported only when CPLEX finds the optimal
solution;

69

8 – Experimentation

• n.s.: means no solution determined by CPLEX within 3hours, nor optimal
nor feasible.

META-HEURISTIC CPLEX

|I| |E| |K1| |K2| o.f Node
Relocate

Node
Exchange Criterion Gap

criteria t(s)

%
Gap
from

CPLEX

% Opt. Gap

2 8 2 9 20,135.28 426.54 0.00 2 44.48 0.00 0.00 0.00 (376.08s)
5 5 2 7 20,381.79 247.52 54.57 1 14.40 0.00 0.19 0.00 (5.21s)
8 2 5 9 21,072.44 0.00 271.45 1 90.22 0.00 0.80 0.00 (277.09s)

2 8 0 10 20,677.64 0.00 248.63 1 5.63 0.00 0.03 3.76
5 5 0 8 19,960.83 0.00 136.49 X 0.00 0.00 0.00 0.00 (29.70s)
8 2 0 12 20,697.67 131.29 232.18 X 0.00 0.00 0.00 3.83

Table 8.2: Artificial instances: 10 customers

Table 8.2 shows the results for the class of instances with 10 customers. CPLEX
is able to solve optimally 4/6 instances within 10 minutes, as required by the carrier.
The meta-heuristic can solve all instances in less than one second, and is able to
solve optimally 2/6 instances.

The Node Exchange search phase improves the solution more often than the
Node Relocate. Moreover, for half of the instances the best solution is returned by
Criterion1, whereas the other times the two criteria return the same solution. In
one instance only Criterion2 is better.

CPLEX provides a slightly better solution in 3/6 instances with:

• 5 importers, 5 exporters, 2 trucks of capacity 1-container, and 7 trucks of
capacity 2-containers (0.19%);

• 8 importers, 2 exporters, 5 trucks of capacity 1-container, and 9 trucks of
capacity 2-containers (0.80%);

• 2 importers, 8 exporters, none truck of capacity 1-container, and 10 trucks of
capacity 2-containers (0.03%).

Generally speaking, gaps between the best upper bounds provided by CPLEX
within 3 hours and the meta-heuristic solutions are lower than 1%.

Table 8.3 shows the results for the class of instances with 20 customers. CPLEX
is able to solve optimally 1/10 instances within 3 hours, and none within 10 minutes.
The meta-heuristic can solve most of instances in less than one second, and is able
to solve optimally 1/10 instances.

The Node Exchange search phase improves the solution in few instances, whereas
the Node Relocateone is not able to improve none of them. Moreover, most of
times Criterion1 and Criterion2 return the same solution, or Criterion2 is better.
Criterion1 provides the best solution in only one instance.

70

8.2 – Artificial instances

META-HEURISTIC CPLEX

|I| |E| |K1| |K2| o.f Node
Relocate

Node
Exchange Criterion Gap

criteria t(s)

%
Gap
from

CPLEX

% Opt. Gap

2 18 8 22 41,214.33 0.00 0.00 X 0.00 0.00 0.00 2.51
5 15 7 19 36,607.42 0.00 0.00 X 0.00 0.00 0.00 0.00 (5,845.77s)
10 10 5 14 32,333.11 0.00 306.83 1 426.18 1.00 0.56 2.26
15 5 7 19 37,657.58 0.00 0.00 2 15.10 1.00 0.02 2.87
18 2 5 24 42,781.65 0.00 461.78 2 7.17 0.00 0.00 2.53

2 18 0 26 40,806.04 0.00 0.00 X 0.00 0.00 -0.91 5.74
5 15 0 23 36,048.28 0.00 0.00 X 0.00 0.00 0.00 2.99
10 10 0 17 31,691.35 0.00 144.39 2 8.11 0.00 0.06 3.91
15 5 0 23 37,301.67 0.00 0.00 X 0.00 1.00 -0.75 6.01
18 2 0 27 43,015.11 0.00 0.00 2 8.76 0.00 -0.04 4.96

Table 8.3: Artificial instances: 20 customers

CPLEX provides a slightly better solution in 3/10 instances with:

• 10 importers, 10 exporters, 5 trucks of capacity 1-container, and 14 trucks of
capacity 2-containers (0.56%);

• 15 importers, 5 exporters, 7 trucks of capacity 1-container, and 19 trucks of
capacity 2-containers (0.02%);

• 10 importers, 10 exporters, none truck of capacity 1-container, and 17 trucks
of capacity 2-containers (0.06%).

Generally speaking, gaps between the best upper bounds provided by CPLEX
within 3 hours and the meta-heuristic solutions are lower than 1%.

It is important to note that the meta-heuristic provides a better solution than
CPLEX in 3/10 instances. The best improvement of the meta-heuristic is found for
the instance with 2 importers, 18 exporters, 0 truck with capacity 1-container, and
26 truck with capacity 2-containers, in which the improvement is about 0.91%.

Table 8.4 shows the results for the class of instances with 30 customers. CPLEX
is not able to solve optimally any instance. The meta-heuristic can solve most of
instances in less than five seconds.

The Node Exchange search phase improves the solution more often than the
Node Relocate. Moreover, most of times the best solution is returned by Criterion1,
whereas few times the two criteria return the same solution or Criterion2 is better.
Furthermore, sometimes the best solution is much better than the other one.
Therefore, the intuition of considering both criteria in the algorithm seems to be
appropriate.

CPLEX provides a slightly better solution in 2/14 instances with:

• 10 importers, 20 exporters, 10 trucks of capacity 1-container, and 25 trucks
of capacity 2-containers (0.43%);

71

8 – Experimentation

META-HEURISTIC CPLEX

|I| |E| |K1| |K2| o.f Node
Relocate

Node
Exchange Criterion Gap

criteria t(s)

%
Gap
from

CPLEX

% Opt.
Gap

2 28 13 33 64,525.58 0.00 0.00 1 294.72 3.00 -5.06 7.54
5 25 12 30 60,416.51 0.00 0.00 1 52.44 8.00 n.a. n.s.
10 20 10 25 52,645.37 0.00 0.00 1 601.20 2.00 0.43 2.98
15 15 8 19 50,158.37 1,502.78 556.68 1 158.14 2.00 1.13 2.69
20 10 10 26 53,571.86 445.20 449.54 1 307.32 2.00 -6.38 9.08
25 5 12 32 62,111.73 0.00 0.00 1 127.90 1.00 -0.26 3.21
28 2 14 35 67,227.58 0.00 0.00 1 114.90 1.00 n.a. n.s.

2 28 0 40 62,782.75 0.00 0.00 X 0.00 1.00 -3.43 7.02
5 25 0 36 58,974.78 0.00 333.19 2 96.96 1.00 -7.96 11.43
10 20 0 30 51,763.93 0.00 436.31 2 932.64 2.00 -4.72 9.38
15 15 0 23 48,940.66 0.13 909.49 2 184.18 1.00 -0.85 6.61
20 10 0 31 53,095.51 322.75 565.86 1 279.02 1.00 -1.99 7.16
25 5 0 38 60,565.79 148.25 0.00 1 58.92 0.00 -3.71 7.07
28 2 0 42 65,305.66 0.00 0.00 X 0.00 1.00 -1.34 3.79

Table 8.4: Artificial instances: 30 customers

• 15 importers, 15 exporters, 8 truck of capacity 1-container, and 19 trucks of
capacity 2-containers (1.13%).

Generally speaking, gaps between the best upper bounds provided by CPLEX
within 3 hours and the meta-heuristic solutions are lower than 1.5%.

It is important to note that the meta-heuristic provides a better solution than
CPLEX in 10/14 instances. Comparison gaps are not available for 2/14 instances,
because CPLEX does not provide a feasible solution.

The best improvement of the meta-heuristic is found for the instance with
5 importers, 25 exporters, 0 truck with capacity 1-container, and 36 truck with
capacity 2-containers, in which the improvement is about 7.96%.

Table 8.5 shows the results for the class of instances with 40 customers. CPLEX
is not able to solve optimally any instance. The meta-heuristic can solve most of
instances in less than twenty seconds.

The Node Exchange search phase improves the solution more often than the
Node Relocate. Moreover, most of times the best solution is returned by Criterion2,
whereas the other times the two criteria return the same solution or Criterion1 is
better. Furthermore, sometimes the best solution is much better than the other
one. Therefore, as in the previous case, the intuition of considering both criteria in
the algorithm seems to be appropriate.

It is important to note that the meta-heuristic provides a better solution than
CPLEX in 2/18 instances .Comparison gaps are not available for 16/18 instances,
because CPLEX does not provide a feasible solution.

Gaps between the best upper bounds provided by CPLEX and the meta-heuristic
solutions are negative for both instances solved by CPLEX. Therefore, the meta-
heuristic provides better solution than CPLEX. The best improvement of the

72

8.2 – Artificial instances

META-HEURISTIC CPLEX

|I| |E| |K1| |K2| o.f Node
Relocate

Node
Exchange Criterion Gap

criteria t(s)
% Gap
from

CPLEX

% Opt.
Gap

2 38 20 49 96,786.96 182.60 0.00 2 11.26 9.00 n.a. n.s.
5 35 18 45 89,790.61 79.02 166.66 1 210.38 14.00 n.a. n.s.
10 30 14 38 75,791.53 298.07 264.11 1 147.79 11.00 n.a. n.s.
15 25 12 31 67,958.61 0.00 853.21 1 437.45 10.00 n.a. n.s.
20 20 12 29 69,465.86 688.83 837.90 2 699.74 9.00 n.a. n.s.
25 15 14 36 76,566.41 0.00 477.06 1 574.50 9.00 n.a. n.s.
30 10 17 43 87,129.18 330.23 331.50 1 446.68 11.00 n.a. n.s.
35 5 19 48 96,135.51 0.00 0.00 X 0.00 18.00 n.a. n.s.
38 2 20 51 100,694.59 278.59 15.50 2 146.47 26.00 n.a. n.s.

2 38 0 59 94,185.86 0.00 155.79 X 0.00 7.00 n.a. n.s.
5 35 0 54 87,477.82 0.00 136.83 X 0.00 10.00 n.a. n.s.
10 30 0 45 74,220.82 172.50 679.59 2 261.49 11.00 n.a. n.s.
15 25 0 37 66,582.24 0.00 853.21 1 9.65 8.00 n.a. n.s.
20 20 0 35 68,060.10 0.00 690.89 2 267.46 9.00 n.a. n.s.
25 15 0 43 74,941.72 0.00 1,045.09 2 201.28 7.00 -19.16 18.69
30 10 0 51 85,442.64 0.00 57.17 2 105.16 7.00 n.a. n.s.
35 5 0 58 93,870.67 20.22 0.00 X 0.00 25.00 n.a. n.s.
38 2 0 61 97,832.13 0.00 178.24 X 0.00 23.00 -13.26 13.68

Table 8.5: Artificial instances: 40 customers

meta-heuristic is found for the instance with 25 importers, 15 exporters, 0 truck
with capacity 1-container, and 43 truck with capacity 2-containers, in which the
improvement is about 19.16%.

META-HEURISTIC CPLEX

|I| |E| |K1| |K2| o.f Node
Relocate

Node
Exchange Criterion Gap

criteria t(s)

%
Gap
from

CPLEX

% Opt.
Gap

2 48 22 56 129,245.05 2.69 0.00 1 142.91 39.00 n.a. n.s.
5 45 21 54 124,640.83 0.00 187.81 1 229.38 44.00 n.a. n.s.
10 40 18 50 115,950.50 0.00 178.44 1 378.54 26.00 n.a. n.s.
15 35 17 42 101,052.21 0.00 652.91 1 1,617.57 36.00 n.a. n.s.
20 30 13 37 91,561.14 0.00 495.20 1 1,280.39 17.00 n.a. n.s.
25 25 11 32 83,273.59 25.25 408.15 2 857.91 17.00 n.a. n.s.
30 20 12 32 85,351.20 0.00 210.60 2 663.43 16.00 n.a. n.s.
35 15 15 39 97,350.77 0.00 57.34 2 296.27 20.00 n.a. n.s.
40 10 17 46 108,653.18 0.00 446.74 1 54.47 21.00 n.a. n.s.
45 5 20 50 116,059.43 15.87 310.08 1 164.20 40.00 n.a. n.s.
48 2 22 55 126,499.99 15.87 0.00 1 169.28 42.00 n.a. n.s.

2 48 0 67 124,536.09 0.00 317.35 2 494.13 25.00 n.a. n.s.
5 45 0 65 120,406.58 165.01 371.93 2 159.23 31.00 n.a. n.s.
10 40 0 59 112,487.21 0.00 0.00 2 196.24 19.00 n.a. n.s.
15 35 0 51 98,374.91 577.13 566.67 1 994.41 19.00 n.a. n.s.
20 30 0 44 89,079.62 218.64 703.37 1 782.34 19.00 n.a. n.s.
25 25 0 38 81,241.01 0.00 1,551.66 2 180.11 17.00 n.a. n.s.
30 20 0 38 83,161.03 0.00 3,172.85 1 493.30 17.00 n.a. n.s.
35 15 0 47 93,779.99 921.21 1,127.10 1 253.52 29.00 n.a. n.s.
40 10 0 55 104,644.95 0.44 255.56 X 0.00 19.00 n.a. n.s.
45 5 0 60 111,911.64 0.00 431.58 2 50.18 37.00 n.a. n.s.
48 2 0 66 121,785.65 0.00 431.58 2 50.18 38.00 n.a. n.s.

Table 8.6: Artificial instances: 50 customers

Table 8.6 shows the results for the class of instances with 50 customers. CPLEX
is not able to solve optimally any instance. The meta-heuristic can solve most of

73

8 – Experimentation

instances in less than thirty seconds.
The Node Exchange search phase improves the solution more often than the

Node Relocate. Moreover, most of times the best solution is returned by Criterion1,
whereas the other times the two criteria return the same solution or Criterion2 is
better. Furthermore, sometimes the best solution is much better than the other
one. Therefore, as in the previous cases, the intuition of considering both criteria
in the algorithm seems to be appropriate.

It is important to note that comparison gaps are not available in all instances,
because CPLEX does not provide a feasible.

Remarks

Tables 8.2-8.6 show that only few instances with 10 customers can be optimally
solved by CPLEX within 10 minutes, as required by the carrier.

The meta-heuristic can solve all instances in less than one minute. Generally
speaking, the Node Exchange search phase improves the solution more often than
the Node Relocate. Sometimes the best solution is returned by Criterion1, whereas
at times Criterion2 is better. Furthermore, sometimes the best solution is much
better than the other one. Therefore, the intuition of considering both criteria in
the algorithm seems to be appropriate.

Gaps between the best upper bounds provided by CPLEX within 3 hours and
the meta-heuristic solutions are lower than 1% in the case of instances with 10 and
20 customers. As problem sizes increases, the meta-heuristic provides significantly
better solutions than CPLEX.

8.3 Real instances

Real instances, which have about 40 customers, cannot be solved by CPLEX
within 10 minutes. In this case the meta-heuristic is compared to the performance
of the carrier’s decisions in terms of total travelled distances. Results are shown in
Table 8.7, in which the following notation is adopted:

• Instances The instance considered;

• |I| Number of importers;

• |E| Number of exporters;

• |K1| Number of available trucks with capacity 1-container;

• |K2| Number of available trucks with capacity 2-containers;

74

8.3 – Real instances

• Carrier Distances The total travelled distance according to the carrier’s
decisions (Km);

• Distances The total travelled distance according to the meta-heuristic (Km);

• Saving(km): Difference between the meta-heuristic and the carrier’s decisions
(Km);

• Saving(%): Percentage gap between the meta-heuristic and the carrier’s
decisions. When the solutions of the meta-heuristic are better than the
carrier’s decisions both values, differences and gaps, are reported in bold.

Instances |I| |E| |K1| |K2|
Carrier Meta-heuristic

Distances Distances Saving(km) Saving(%)

Instance 1 9 34 2 40 16891 16403 488 2.89
Instance 2 13 32 8 31 14986 13097 1889 12.61
Instance 3 4 34 4 39 15094 14437 657 4.35
Instance 4 8 35 6 36 14232 12961 1271 8.93
Instance 5 4 31 3 41 14251 13660 591 4.15

Table 8.7: Real instances.

75

8 – Experimentation

Table 8.7 shows that, for all instances, the meta-heuristic improves the carrier’s
performance. The improvement seems to be particularly relevant when |I| increases
and becomes closer to |E|, due to the larger search space of feasible routes.

76

Chapter 9

Conclusions

This part of the thesis investigated a vehicle routing problem with a number of
original characteristics, such as backhauls, multiple visits, heterogeneous fleets of
trucks, the opportunity to carry two containers per truck, and the impossibility to
separate trucks and containers during customer service. All characteristics were
formalized by an integer linear programming model, and an exact algorithm was
used to solve several artificial instances. As tests showed, the exact method was
able to solve only instances with few customers.

The proposed meta-heuristic determines a feasible solution by a variant of the
Clarke-and-Wright algorithm, in which routes are merged and assigned to trucks.
Next, the solution is improved by by several local search phases, in which both node
movements and truck swaps are implemented. Test show that the meta-heuristic is
more effective than the exact algorithm in solving artificial instances similar to real
problem instances. The comparison with the carrier’s decisions shows that the meta-
heuristic represents a promising instrument to improve the current decision-making
process, because it leads to significant savings and determines routes quickly.

Most of concepts presented in this second part of the thesis are included in Lai
et al. 2013, and were presented in Lai et al. 2012 and Di Francesco et al. 2012.

77

9 – Conclusions

78

Part III

Landside - Homogeneous fleet size

Chapter 10

Problem description

This third part of the thesis addresses a variant of the vehicle routing problem
described in Part II. The difference, between the problem described hereafter and
the previous one, concerns the composition of the fleet of trucks: the carrier manages
a homogeneous fleet of trucks that can carry more than a container per truck. For
the sake of clarity, in the following problem description, both new and old concepts
are presented.

The carrier manages a homogeneous fleet of trucks based at the port. Trucks
have capacity C-containers, as in Figure 10.1a. Trucks and containers are used to
service two types of transportation requests: the delivery of container loads from
the port to import customers, Figure 10.1b, and the shipment of container loads
from export customers to the port, Figure 10.1c. Typically, customers may ask for
the delivery and collection of large number of container loads, therefore more than
a truck frequently visits the same customer. Split of the load is therefore allowed,
even when it is not necessary. Figure 10.1d represents an example of multiple visits
in which customers are exporters.

The carrier policy prescribes that container loads are packed and unpacked
at customer facilities. More precisely, container loads are unpacked at importer
locations in the presence of the driver, and emptied containers are immediately
collected. In the same way, trucks bring empty containers to export customers
and container loads are packed at the customer location in the presence of the
driver. This policy, in which trucks and containers are always coupled substantially
increases the time spent by drivers in the distribution activity and may lead to
more costly solutions. From the carrier’s point of view, empty containers are never
left at customer locations and this will improve containers safety and integrity.
From the customer’s point of view, drivers participate to all packing and unpacking
operations and promptly inform the carrier of possible problems during the service,
and this practice is perceived as a high-quality service.

81

10 – Problem description

(a) Truck of capacity C-containers

(b) Transportation request of importers (c) Transportation request of exporters

(d) Multiple visits example

Figure 10.1: Homogeneous landside problem description

In addition, since container loads of export customers are typically not ready for
collection before the afternoon, the carrier policy establishes that import customers
are serviced before exporters. As a result, containers emptied at importers can
be filled at subsequent export customers, where container loads are packed to be
brought to the port. Trucks with capacity one-container can service up to two
customers in a route (one importer and one exporter). Trucks with C containers can
service up to 2C customers in a route (C importers and C exporters). All containers
leaving from importers can be used to service exporters and no incompatibility
occurs between customers and trucks, which can service almost any customer. Figure
10.2 shows an example in which an importer receives C − 1 loaded containers from
the port. Next, containers are emptied and moved to an exporter in which three of
those containers are filled and shipped to the port.

The number of container loads to be picked up and delivered is generally different.
If the number of container loads to deliver at importers and to collect from exporters
is not balanced in a route, empty containers for exporters have to be loaded on
the truck at the port (if export demand is higher than import demand) or emptied
containers at the importers have to be returned to the port (if import demand
is higher than export demand). Therefore, when the number of container loads
delivered to importers is larger than the number of container loads shipped by
exporters, a number of empty containers must be moved back to the port. When

82

Figure 10.2: An example of route

the number of container loads delivered to importers is lower than the number of
container loads shipped by exporters, a number of empty containers must be put
on trucks leaving from the port, in order to service all customers.

The objective is to determine a set of routes in which routing costs are minimized,
all customers are serviced (importers before exporters), and the trucks’ capacity is
never exceeded. According to Parragh, Doerner, and Hartl 2008 this problem belongs
to the class of Vehicle Routing Problems with Clustered Backhauls (VRPCB),
because in each route all deliveries must be performed before all pickups. However,
in classical VRPCB, each customer must be visited only once, whereas in this
problem multiple visits at each customer are allowed. This problem is called
hereafter the Split Delivery Vehicle Routing Problem with Clustered Backhauls
(SD-VRPCB).

In this study, linehaul customers are referred as import customers, delivery
customers or simply importers. In the same way, backhaul customers are export
customers, pickup customers or simply exporters. Similarly, we refer to delivery
routes or pickup routes to identify those routes in which all visited customers are
importers or exporters, respectively. In addition, we may refer to the delivery or
pickup of container loads as delivery or pickup of containers.

The objective of this part of the thesis is to propose an optimization model
accounting for the characteristics of this problem. A linear integer programming
formulation for the problem will be proposed in Chapter 11, and tested in Chapter 14.
As tests will show, the complexity of the model leads the exact formulation able to
solve only instances with few customers. Moreover, solutions must be determined
rapidly. Therefore, another objective of this part of the thesis, is to propose an
efficient meta-heuristic for the problem at hand. The meta-heuristic proposed is
the result of a series of improvements achieved during the time spent abroad in
the University of Southampton. The scheme of the meta-heuristic, presented in
Chapter 13, is to find an initial feasible solution and, next, to improve this solution
by some adaptive guidance mechanisms. Furthermore, in order to better understand
the improvements achieved during the time spent abroad, the previous constructive

83

10 – Problem description

heuristic is presented in Chapter 12. In Chapter 14, the results of the extensive
computational experience are presented, and a comparison between the performance
of the exact and the meta-heuristic algorithm is reported. Finally, conclusions are
summarized in Chapter 15.

10.1 Literature review

The SD-VRPCB belongs to the one-to-many-to-one pickup and delivery prob-
lems, because container loads must be shipped from the port to importers, and
from exporters to the same port (Berbeglia et al. 2007). In traditional VRPCB
each customer must be visited exactly once, whereas in this problem the demand
of each customer may be greater than the vehicle capacity and may be serviced by
several vehicles. Therefore, multiple visits are allowed and the SD-VRPCB allows
for split of units of the load (Archetti, Speranza, and Hertz 2006).

In the field of freight transportation, containers distributions by truck between
customers and intermodal terminals is known as “drayage”. According to Macharis
and Bontekoning 2004, drayage involves the delivery of a full container from
an intermodal terminal to a receiver and the subsequent collection of an empty
container, as well as the provision of an empty container to the shipper and the
subsequent transportation of a full trailer or container to the intermodal terminal.

The definition of drayage allows solutions in which trucks and containers are
coupled (as in SD-VRPCB) as well as solutions in which they are not. Problems
in which trucks and containers are not coupled have been investigated by Jula
et al. 2005, Chung et al. 2007, Zhang, Yun, and Moon 2011, Zhang, Yun, and
Kopfer 2010, and Vidovic, Radivojevic, and Rakovic 2011. The coupled problem
received less attention; due to the long waiting times at the customer and consequent
low productivity of the trucks, this class of problems has been investigated only
in papers motivated by specific technical restrictions (i.e., Imai, Nishimura, and
Current 2007) or regulation policies (Cheung et al. 2008). In this paper, trucks
and containers are coupled, because the carrier aims at providing a high quality
service, in which truck drivers are responsible for controlling the packing/unpacking
operations and containers’ integrity is favoured.

Another typical characteristic of drayage problems in the literature is that
vehicles are assume to transport at most one container (see for example Jula et
al. 2005, Namboothiri and Erera 2008, Zhang, Yun, and Moon 2011, and Zhang,
Yun, and Kopfer 2010). In practice, truck’s capacity could be higher than one
container and carrying two or more containers per truck is allowed in many countries
(Nagl 2007). Hence, solutions in which trucks have larger capacities represent an
opportunity to remarkably increase the efficiency of the distribution. It is important

84

10.1 – Literature review

to note that this opportunity increases substantially the difficulty of SD-VRPCB,
given the additional complexity of the underlying packing problem.

Imai, Nishimura, and Current 2007 present a problem in which the optimal
assignment of trucks to a set of delivery and pickup pairs is performed. The authors
develop a subgradient heuristic based on a Lagrangian relaxation which enables to
identify a near optimal solution. The heuristic consists of two sub-problems: the
classical assignment problem and the generalized assignment problem. As in our
setting, the container distribution is divided into two activities: pickup and delivery.
These activities are essentially independent, and containers are emptied/loaded at
customer locations. Main differences concern the composition of the fleet of vehicles
and the possibility to assign a truck to more than one trip (if the working time
length is not exceeded). The available trucks have same type and size, but cannot
visit more than one pickup customer (or delivery customer) in a single trip before
coming back to the depot. Moreover, split deliveries are not taken into account.

Caris and Janssens 2009 model the drayage of containers in the service area
of an intermodal terminal as a full truckload pickup and delivery problem with
time windows. The authors propose a two-phase insertion heuristic to construct
an initial solution, and next the solution is improved with a local search heuristic
based on three neighbourhoods. Main differences concern the composition of the
fleet of vehicles and the introduction of time windows. The available trucks have
the same capacity, but cannot visit more than one pickup customer (or delivery
customer) in a single trip since in the full truckload pickup and delivery problem a
vehicle carries a single load. As in our setting, the vehicles’ capacity is expressed in
terms of containers.

The closest problem to SD-VRPCB was faced by Mitra 2005 and Mitra 2008.
These two papers consider a similar problem: vehicles located at a depot serve
delivery and pickup demands of a set of customers. The available vehicles have
the same capacity, and, as in our setting, they can perform at most one trip daily.
Moreover, split deliveries are allowed and the demand of a customer may exceed the
capacity of the vehicles. Main differences concern the order of visit in a trip and
the possibility for a customer to have both delivery and pickup demands. Unlike
SD-VRPCB, importers and exporters are allowed to be visited in any order and each
customer may be visited more than once by the same vehicle. Mitra 2005 develop
a Mixed Integer Linear Programming (MILP) formulation for the problem and
develop a route construction heuristic improving the best known solutions obtained
by the MILP formulation. Mitra 2008 improves further the solution quality by
developing a parallel clustering technique and route construction heuristic for the
same problem.

85

10 – Problem description

86

Chapter 11

Modeling

This chapter introduces first the mathematical notation and then presents an
Integer Linear Programming (ILP) model for the SD-VRPCB. All sets, data and
parameters are listed following their alphabetical order.

SETS

I: Set of importers;

E: Set of exporters;

K: Set of available trucks, each one of capacity C-containers.

INPUT DATA

di: Containers demand of customer i ∈ I ∪ E. When i ∈ I, di represents the
number of loaded containers used to service the importer i ∈ I. Due to the
problem setting, di is equal to the number of empty containers available after
the service to customer i ∈ I as well. When i ∈ E, di represents the number
of empty containers used to service exporter i ∈ E, and di is equal to the
number of loaded containers shipped by customer i ∈ E to port p as well;

p: The port;

C: The truck capacity.

Consider a directed graph G = (N,A). The set of nodes is defined as the union
of the port with the sets of importers and exporters:

N = {p ∪ I ∪ E}.

The set of arcs A includes all allowed ways to move trucks:

• from the port to any importer and any exporter;

87

11 – Modeling

• from an importer to the port, any other importer and any exporter;

• from an exporter to the port and any other exporter.

The backhaul constraints allow for reducing our network and do not consider those
arcs connecting export customers to importers. More formally, the set A is defined
as A = A1 ∪ A2, where:

A1 = {(i,j)|i ∈ p ∪ I,j ∈ N,i /= j}
A2 = {(i,j)|i ∈ E,j ∈ p ∪ E,i /= j}.

DECISION VARIABLES

xkij: Routing selection variable equal to 1 if arc (i,j) ∈ A is traversed by truck
k ∈ K, 0 otherwise. cij represents its non negative routing cost, which is
equal for each truck k ∈ K;

ykij: Number of loaded containers moved along arc (i,j) ∈ A by truck k ∈ K;

zkij: Number of empty containers moved along arc (i,j) ∈ A by truck k ∈ K.

The problem can be formulated as follows:

min
∑
k∈K

∑
(i,j)∈A

cij x
k
ij (11.1)

s.t.∑
k∈K

∑
l∈N

ykil =
∑
k∈K

∑
j∈p∪I

ykji − di ∀i ∈ I (11.2)∑
k∈K

∑
l∈N

zkil =
∑
k∈K

∑
j∈p∪I

zkji + di ∀i ∈ I (11.3)∑
l∈N

ykil ≤
∑
j∈p∪I

ykji ∀i ∈ I,∀k ∈ K (11.4)∑
l∈N

zkil ≥
∑
j∈p∪I

zkji ∀i ∈ I,∀k ∈ K (11.5)∑
k∈K

∑
l∈p∪E

ykil =
∑
k∈K

∑
j∈N

ykji + di ∀i ∈ E (11.6)∑
k∈K

∑
l∈p∪E

zkil =
∑
k∈K

∑
j∈N

zkji − di ∀i ∈ E (11.7)∑
l∈p∪E

ykil ≥
∑
j∈N

ykji ∀i ∈ E,∀k ∈ K (11.8)∑
l∈p∪E

zkil ≤
∑
j∈N

zkji ∀i ∈ E,∀k ∈ K (11.9)

88

∑
(ji)∈A

(ykji + zkji) =
∑
(il)∈A

(ykil + zkil) ∀i ∈ I ∪ E,∀k ∈ K (11.10)

ykij + zkij ≤ C xkij ∀(i,j) ∈ A,∀k ∈ K (11.11)∑
j∈N

xkji −
∑
l∈N

xkil = 0 ∀i ∈ N,∀k ∈ K (11.12)∑
j∈N

xkij ≤ 1 ∀i ∈ N,∀k ∈ K (11.13)∑
k∈K

∑
i∈I∪E

zkip −
∑
k∈K

∑
i∈I∪E

zkpi =
∑
i∈I

di −
∑
i∈E

di (11.14)

xkij ∈ {0,1} ∀(i,j) ∈ A,∀k ∈ K (11.15)

ykij ∈ {0,1, . . . ,C} ∀(i,j) ∈ A,∀k ∈ K (11.16)

zkij ∈ {0,1, . . . ,C} ∀(i,j) ∈ A,∀k ∈ K (11.17)

Routing costs are minimized in the objective function (6.1).
Constraints (11.2)-(11.5) concern the movement of containers to importers.

Constraints (11.2) and (11.3) are the flow conservation constraints of loaded and
empty containers, respectively, at each importer node. Constraints (11.4) check
that the number of loaded containers cannot increase after servicing an importer,
whereas constraints (11.5) check that the number of empty containers does not
decrease.

Constraints (11.6)-(11.9) concern the allocation of containers to exporters. Con-
straints (11.6) and (11.7) are the flow conservation constraints of loaded and empty
containers, respectively, for each exporter. Constraints (11.8) and (11.9) control
the number of loaded and empty containers in each truck entering and leaving from
exporters: the number of loaded containers cannot decrease after a service at an
exporter, whereas the number of empty containers cannot increase.

Constraints (11.10) guarantee that the number of containers carried by each
truck does not change after visiting a customer. In other words, each node must be
a transshipment node with respect to the total amount of containers transiting in
it. Constraints (11.11) imposes that the number of containers on each truck does
not exceed the capacity C.

Constraints (11.12) represent the flow conservation constraints for each truck at
each node and Constraints (11.13) impose that, for each node and for each truck, can
exist at most one successor. Constraints (11.13) together with Constraints (11.12)
imply that the degree of each node must be at most 2. This forces a vehicle to
visit the same customer at most once in a route. Moreover, if there is a successor
for a node i and a truck k, Constraints (11.12) impose that there must exist also
a predecessor for the same node and the same truck. Constraints (11.13) also
guarantee that trucks are not used more than once.

89

11 – Modeling

Constraints (11.14) represent the flow conservation of empty containers at the
port p. Finally, Constraints (11.15), (11.16) and (11.17) define the domain of the
decision variables.

The model was coded using IBM ILOG CPLEX Optimization Studio 12.5 and
solved by ILOG CPLEX 12.2 solver. Extensive computational results are presented
in Chapter 14, however the model was not capable of solving instances of large size
and with high trucks’ capacity. Therefore, we decided to develop a meta-heuristic
to better exploit the possibility of solving difficult instances in limited computing
time. Next chapters presents this contribution.

90

Chapter 12

Heuristic solution method

This chapter illustrates the constructive heuristic algorithm designed before the
improvements achieved during the collaboration with the University of Southampton.
The constructive heuristic consists of two phases: (i) SplitVRP phase, determines
an initial solution in which all routes service either importers or exporters; (ii)
Merging phase, improves the solution by some heuristics, each one implements a
different rule to merge routes determined in the SplitVRP phase. Finally, the best
heuristic, in terms of objective function provided, is selected.

Table 12.1 illustrates the pseudo-code of the constructive heuristic, in which the
following notation is adopted:

initSolImp Initial solution servicing importers only;

initSolExp Initial solution servicing exporter only;

initSMatrix Matrix of all savings that can be obtained merging routes;

Heu Identifier of the heuristic method;

Sol(Heu) Current solution of the considered heuristic;

SolImp Initial solution servicing importers of the considered heuristic;

SolExp Initial solution servicing exporters of the considered heuristic;

SMatrix(Heu) Matrix of all savings of the considered heuristic;

Solve(Sol(Heu), SolImp(Heu), SolExp(Heu), SMatrix(Heu)) Function that im-
plements the heuth heuristic method. The input parameters are the cur-
rent solution, Sol(Heu), the initial solution for importers and exporters,
SolImp(Heu) and SolExp(Heu), and the saving matrix, SMatrix(Heu).
The output is the new current solution for the considered heuristic method,
Sol(Heu);

91

12 – Heuristic solution method

S∗ Best solution found.

procedure main
Found initSolImp . SplitVRP phase Section 12.1
Found initSolExp
Create the savings matrix initSMatrix
for Heuristic = 1, 2, . . . , 7 do . Merging phase Section 12.2

SolImp(Heu)← initSolImp
SolExp(Heu)← initSolExp
SMatrix(Heu)← initSMatrix
Solve(Sol(Heu), SolImp(Heu), SolExp(Heu), SMatrix(Heu))

end for
S∗ ← ∅
S∗ ← min{Sol(1), Sol(2), . . . , Sol(7)}
return S∗

end procedure

Table 12.1: The structure of the constructive heuristic.

12.1 SplitVRP phase

The SplitVRP phase faces two vehicle routing problems with splits: the first has
importers only, whilst the second has exporters only. Split Vehicle Routing Problems
are known to be difficult. Therefore, since an efficient heuristic for this class of
problems was proposed by Archetti, Speranza, and Hertz 2006, their algorithm is
adopted to determine routes for the initial solution. The algorithm is composed of
three phases: (i) the first phase determines the initial feasible solution constructing
a giant tour by applying the GENIUS algorithm, and imposing trucks to return to
the depot whenever their load equals the capacity, (ii) the second phase consists
of a tabu search algorithm and (iii) the third phase improves the solution found
by removing t-split cycles and by re-optimizing each route using the GENIUS
algorithm. The tabu search is based on relocation moves, where this neighbourhood
has been extended to take into account “split” moves. More precisely, a customer is
either relocated into another route or copied into an alternative route. In the latter
case, its original demand is split between the two routes.

12.2 Merging phase

Routes determined in the SplitVRP phase are merged in the Merging phase
according to different saving-based heuristics. Savings represent routing costs
achieved merging two routes, instead of leaving them separately. Given an importer

92

12.2 – Merging phase

route ri and an exporter route rj , the saving generated by their merge is computed
as sij = c(ri) + c(rj)− c(rij). In which c(ri) and c(rj) represent the cost of routes
ri and rj respectively, and c(rij) represent the cost of the merged route rij.

Savings are recorded in a matrix, in which the number of rows is equal to the
number of routes servicing importers, and the number of columns is equal to the
number of routes servicing exporters. Moreover, only positive savings are taken into
account. All negative savings are rejected and recorded in the matrix with value 0,
that means merging not allowed. Whenever two routes ri and rj are merged by a
heuristic, all savings that involve the route ri and/or the route rj in the matrix are
set to 0. Routes ri and rj are no longer available for other merges. Therefore, each
importer route can be merged with at most an exporter route, and vice-versa.

The order of visit between importers and exporters does not change during the
merge. To clarify, consider for instance two importers, i1 and i2, and two exporters,
e1 and e2. Assume that routes determined in the initial solution are p, i1, i2, p,
Figure 12.1a, and p, e1, e2, p, Figure 12.1b. If these routes are merged, the final
route will be p, i1, i2, e1, e2, p as in Figure 12.1c. Therefore, the possibility of
visiting the importer i2 before the importer i1, and the exporter e2 before the e1, is
not taken into account.

(a) Route of importes (b) Route of exporters

(c) Merged route

Figure 12.1: Merging method.

The Merging phase performs a number of heuristics, which can be used to tackle
the problem at hand. All proposed heuristics implement a different rule to merge
routes determined in the SplitVRP phase. In order to facilitate the illustration,

93

12 – Heuristic solution method

hereafter there is the adopted notation:

Row i or ri: represents the i− th importer route in the saving matrix;

Column j or rj: represents the j − th exporter route in the saving matrix;

Entry sij: saving generated merging routes ri and rj;

mi: Number of exporter routes (columns) that can be merged with route ri;

mj: Number of importer routes (rows) that can be merged with route rj;

avrgi: Average of all savings available for route ri;

avrgj: Average of all savings available for route rj.

Eight heuristics are proposed, each one provides a solution denoted by Sol0-Sol7.

H0 - Heuristic 0

The heuristic H0 returns routes as determined in the SplitVRP phase. The
heuristic takes care of the union of the two separate sets of routes, without any sort
of check.

The outline of Heuristic 0 is:

Step0 Sol0 = ∅.

Step1 For each row i, insert ri into Sol0.

Step2 For each column j, insert rj into Sol0.

H1 - Heuristic 1

The heuristic H1 examines the importer routes one at a time. The order in
which routes are examined is their creation order. For each route examined, selects
the best available route servicing exporters. The best route is the one with the
highest value of saving. If a best route exists, merges the two routes and inserts
the merged route in the final solution. Next, goes on by the examination of the
next importer route, until all importer routes are examined.

After the routes examination, it may happen that some route is not merged.
To avoid the possibility to not service customers involved in such routes, all routes
not merged are inserted in the final solution as determined in the SplitVRP phase.

The outline of Heuristic 1 is:

94

12.2 – Merging phase

Step0 Sol1 = ∅.

Step1 For each row i, select the highest sij. Merge routes ri and rj, if any, and
insert the new route into Sol1.

Step2 For each row i not involved in any merging, insert ri into Sol1.

Step3 For each column j not involved in any merging, insert rj into Sol1.

H2 - Heuristic 2

The heuristic H2 examines the exporter routes one at a time. The order in
which routes are examined is their creation order. For each route examined, selects
the best available route servicing importers. The best route is the one with the
highest value of saving. If a best route exists, merges the two routes and inserts
the merged route in the final solution. Next, goes on by the examination of the
next exporter route, until all exporter routes are examined.

After the routes examination, it may happen that some route is not merged.
To avoid the possibility to not service customers involved in such routes, all routes
not merged are inserted in the final solution as determined in the SplitVRP phase.

The outline of Heuristic 2 is:

Step0 Sol2 = ∅.

Step1 For each column j, select the highest sij . Merge routes ri and rj , if any, and
insert the new route into Sol2.

Step2 For each row i not involved in any merging, insert ri into Sol2.

Step3 For each column j not involved in any merging, insert rj into Sol2.

H3 - Heuristic 3

The heuristic H3 examines the importer routes one at a time. The order in
which routes are examined depends on the number of available merges. All routes ri,
determined in the SplitVRP phase, are ordered by their value of mi in a increasing
fashion. For each route examined, selects the best available route servicing exporters.
The best route is the one with the highest value of saving. If the best route exists,
merges the two routes, inserts the merged route in the final solution, and reorder all
routes based on the updated value of mi in a increasing fashion. Next, goes on by
the examination of the next importer route until all importer routes are examined.

95

12 – Heuristic solution method

After the routes examination, it may happen that some route is not merged.
To avoid the possibility to not service customers involved in such routes, all routes
not merged are inserted in the final solution as determined in the SplitVRP phase.

The outline of Heuristic 3 is:

Step0 Sol3 = ∅.

Step1 Search for row i with the lowest value of mi. If any, go to Step2, otherwise
go to Step3.

Step2 Select the highest sij available in row i, merge routes ri and rj and insert
the new route into Sol3. Go to Step1.

Step3 For each row i not involved in any merging, insert ri into Sol3.

Step4 For each column j not involved in any merging, insert rj into Sol3.

H4 - Heuristic 4

The heuristic H4 examines the exporter routes one at a time. The order in which
routes are examined depends on the number of available merges. All routes rj,
determined in the SplitVRP phase, are ordered by their value of mj in a increasing
fashion. For each route examined, selects the best available route servicing importers.
The best route is the one with the highest value of saving. If the best route exists,
merges the two routes, inserts the merged route in the final solution, and reorder all
routes based on the updated value of mj in a increasing fashion. Next, goes on by
the examination of the next exporter route until all exporter routes are examined.

After the routes examination, it may happen that some route is not merged.
To avoid the possibility to not service customers involved in such routes, all routes
not merged are inserted in the final solution as determined in the SplitVRP phase.

The outline of Heuristic 4 is:

Step0 Sol4 = ∅.

Step1 Search for column j with the lowest value ofmj . If any, go to Step2, otherwise
go to Step3.

Step2 Select the highest sij available in column j, merge routes ri and rj and insert
the new route into Sol4. Go to Step1.

Step3 For each row i not involved in any merging, insert ri into Sol4.

Step4 For each column j not involved in any merging, insert rj into Sol4.

96

12.2 – Merging phase

H5 - Heuristic 5

The heuristic H5 examines the routes one at a time. The order in which routes
are examined depends on the number of available merges. All importer routes, ri,
and all exporter routes, rj , determined in the SplitVRP phase, are ordered by their
value of mi and mj respectively in a increasing fashion. If the value of mi ≤ mj

(the importer route has lower possibilities to be merged), the route to be examined
is the importer route, whereas if the value of mi > mj the route to be examined
is the exporter route. For each route examined, selects the best available route
servicing importers/exporters.The best route is the one with the highest value of
saving. If a best route exists, merges the two routes, inserts the merged route in
the final solution, and reorder all routes based on the updated value of mi and mj

in a increasing fashion. Next, goes on by the examination of the next route until
all routes are examined.

After the routes examination, it may happen that some route is not merged.
To avoid the possibility to not service customers involved in such routes, all routes
not merged are inserted in the final solution as determined in the SplitVRP phase.

The outline of Heuristic 5 is:

Step0 Sol5 = ∅.

Step1 Search for row i with the lowest value of mi and the column j with the lowest
value of mj . If mi ≤ mj , go to Step2, otherwise go to Step3. If no routes can
be merged, go to Step4.

Step2 Select the highest sij for i, merge routes ri and rj and insert into Sol5. Go
to Step1.

Step3 Select the highest sij for j, merge routes ri and rj and insert into Sol5. Go
to Step1.

Step4 For each row i not involved in any merging, insert ri into Sol5.

Step5 For each column j not involved in any merging, insert rj into Sol5.

H6 - Heuristic 6

This heuristic works in the same way as Heuristic 5, but differs in the selection
of savings. The best route is the one with the value of saving closest to the average
of all available savings, instead of the highest one.

The outline of Heuristic 6 is:

97

12 – Heuristic solution method

Step0 Sol6 = ∅.

Step1 Search for row i with the lowest value of mi and the column j with the lowest
value of mj . If mi ≤ mj , go to Step2, otherwise go to Step3. If no routes can
be merged, go to Step4.

Step2 Select the closest sij to avrgi, merge routes ri and rj and insert into Sol6.
Go to Step1.

Step3 Select the closest sij to avrgj, merge routes ri and rj and insert into Sol6.
Go to Step1.

Step4 For each row i not involved in any merging, insert ri into Sol6.

Step5 For each column j not involved in any merging, insert rj into Sol6.

H7 - Heuristic 7

This heuristic merges routes according to the largest available saving in the
matrix.

The heuristic H7 implements the Clarke and Wright’s method into the selection
of routes. The heuristic examines all entries of the saving matrix, and selects the
best one. The best entry is the one with the highest value of saving, sij. If a best
entry exists, merges the importer route ri with the exporter route rj, and inserts
the merged route in the final solution. Next, goes on the search of the best entry of
the matrix, until all entries are examined.

After the routes examination, it may happen that some route is not merged.
To avoid the possibility to not service customers involved in such routes, all routes
not merged are inserted in the final solution as determined in the SplitVRP phase.

The outline of Heuristic 7 is:

Step0 Sol7 = ∅.

Step1 Select for the largest sij in the saving matrix. If any, go to Step2, otherwise
go to Step3.

Step2 Merge routes ri and rj and insert the new route into Sol7. Go to Step1.

Step3 For each row i not involved in any merging, insert ri into Sol7.

Step4 For each column j not involved in any merging, insert rj into Sol7.

98

12.2 – Merging phase

Remarks

After the execution of all heuristics, the algorithm selects the best one in terms
of objective function.

It is important to note that, none of the illustrated heuristics checks the feasibility
of the solution. Therefore, it may happen that some of them leads to infeasible
solutions in terms of available trucks.

99

12 – Heuristic solution method

100

Chapter 13

Meta-heuristic solution method

This chapter illustrates the improvements, from a methodological point of view,
achieved during the time spent abroad in the University of Southampton with
the supervision of Dr. Maria Battarra. The meta-heuristic proposed is based
on Adaptive Guidance mechanisms. The motivation behind the choice of such
methodology is that adaptive guidance algorithms allow for recycling non-specialized
heuristics at hand. The company may easily adapt modules of code already in use,
minimizing the inconvenience of adopting a new software. Easy pieces of code are
also easier to maintain and possibly adapt to incorporate more advanced problem
features.

Hart 2005 exhibits a large class of simple rules of behavior, called adaptive
heuristics. In adaptive guidance algorithms, the different code components are
coordinated and unified by guidance mechanisms: simple rules are applied to
check the quality of the current solution and detect possibly improvements. The
input parameters of the code components are then perturbed in order to achieve
the desired diversification. Examples of successful implementations of adaptive
guidance algorithms are presented in Battarra, Monaci, and Vigo 2009, Bai et al.
2007, Kramer 2008 and Olivera and Viera 2007.

In our implementation, the code at hand was a Tabu Search (TS) algorithm
(Glover and Laguna 1998) for the Split and Delivery Vehicle Routing Problem
(SDVRP) proposed by Archetti, Speranza, and Hertz 2006.

The overall meta-heuristic consists of three phases: (i) SplitDeliveryVRP phase,
a constructive heuristic decomposes the SD-VRPCB into two SD-VRP sub prob-
lems, one for importers and one for exporters; (ii) Merging phase, merges routes
determined in the first phase using an ILP model based on the saving concept; (iii)
Adaptive guidance phase, analyses the current solution, detects areas of improve-
ment and adjusts the input parameters of the SplitDeliveryVRP phase by using
penalization mechanisms. The three phases are repeated sequentially until a stop

101

13 – Meta-heuristic solution method

criterion is satisfied and the best solution found is returned.
Table 13.1 illustrates the pseudo-code of the adaptive guidance meta-heuristic,

in which the following notation is adopted:

tExe Execution time;

MAXTIME Execution time limit;

it Number of consecutive iterations performed during the whole execution;

MAXIT Maximum number of consecutive iterations allowed during the whole
execution;

notImpIt Number of consecutive iterations performed since the best solution
known was found;

Sol Current solution of the meta-heuristic;

S∗ Best solution found;

SolImp Routes servicing importers. Routes are generated by a Tabu Search
algorithm for the SD-VRP. The input parameters are the set of importers to
be served and the associated perturbed data;

SolExp Routes servicing exporters. Routes are generated by a Tabu Search
algorithm for the SD-VRP. The input parameters are the set of exporters to
be served and the associated perturbed data;

SMatrix Matrix of all savings that can be obtained by merging routes;

Merge(Sol, SolImp, SolExp, SMatrix) Function that merges routes determined
in the SplitDeliveryVRP phase by an ILP model. The input parameters are
the current solution, Sol, the initial solution for importers and exporters,
SolImp and SolExp, and the saving matrix, SMatrix. The output is the
new current solution, Sol;

AdaptiveGuidance(Sol, SolImp, SolExp, it) Function that analyses the solu-
tion with respect to the adaptive guidance mechanisms and perturbs the
data of the SplitDeliveryVRP phase by applying penalization mechanisms.
The input parameters are the current solution, Sol, the initial solution for
importers and exporters, SolImp and SolExp, and the current number of
iterations, it.

In the following, the three phases of the algorithm are described in detail.

102

13.1 – SplitDeliveryVRP phase

procedure main
Start tExe
it = 0
notImpIt = 0
S∗ ← ∅
while tExe ≤MAXTIME & notImpIt ≤MAXIT do

it = it+ 1
notImpIt = notImpIt+ 1
SolImp← TS(I); . SplitDeliveryVRP phase Section 13.1
SolExp← TS(E);
Create the savings matrix SMatrix
Sol← ∅
Merge(Sol, SolImp, SolExp, SMatrix) . Merging phase Section 13.2
if Sol ≤ S∗ || S∗ == ∅ then

S∗ ← ∅
S∗ ← Sol
notImpIt← 0

end if
AdaptiveGuidance(Sol, SolImp, SolExp, it) . Adaptive guidance phase Section 13.3

end while
return S∗

end procedure

Table 13.1: The structure of the meta-heuristic.

13.1 SplitDeliveryVRP phase

The SplitDeliveryVRP phase consists of solving two distinct SD-VRP: the first
involves importers only, whilst the second exporters only. As previously stated, the
TS algorithm proposed by Archetti, Speranza, and Hertz 2006 is employed to solve
this NP-hard problem. The algorithm is composed of three phases: (i) the first
phase determines the initial feasible solution constructing a giant tour by applying
the GENIUS algorithm, and imposing trucks to return to the depot whenever their
load equals the capacity, (ii) the second phase consists of a tabu search algorithm
and (iii) the third phase improves the solution found by removing t-split cycles and
by re-optimizing each route using the GENIUS algorithm. The tabu search is based
on relocation moves, where this neighbourhood has been extended to take into
account “split” moves. More precisely, a customer is either relocated into another
route or copied into an alternative route. In the latter case, its original demand is
split between the two routes.

13.2 Merging phase

Routes determined in the SplitDeliveryVRP phase are merged in the Merging
phase according to an ILP model based on the saving concept inspired by the

103

13 – Meta-heuristic solution method

Clarke and Wright savings algorithm (Clarke and Wright 1964). Savings represent
routing costs achieved merging a route servicing importers with a route servicing
exporters, instead of leaving them separately. The order of visits of customers
involved in a route can change during the merging, therefore we consider the order
on which routes are created and the opposite one. For each pair of routes that
can be merged, we compute the four possible ways to merge routes and the largest
saving is selected as the best merge for the pair of routes.

(a) Route of importes

(b) Route of exporters

Figure 13.1: Improved merging method: example route.

To clarify, consider for instance n importers, serviced by route ri = {p, i1, . . . , in, p},
as in Figure 13.1a, and m exporters serviced by route rj = {p, e1, . . . , em, p}, as in
Figure 13.1b, denoting with c(in,e1) the cost associate to arc (in,e1) ∈ A, and so on.
When evaluating the merge of the two routes, ri and rj, the algorithm computes
four different savings based on the extra mileage formula:

• s1ij = c(in, p) + c(p, e1) − c(in, e1) in which in the route ri and rj are merged
using their original direction. Figure 13.2a;

• s2ij = c(in, p) + c(p, e1) + c(em, p) − c(in, em) − c(e1, p) in which in the final route
ri has its original direction and rj has the opposite direction. Figure 13.2b;

• s3ij = c(p, i1) + c(in, p) + c(p, e1) − c(p, in) − c(i1, e1) in which in the final route ri
has the opposite direction and rj has its original direction. Figure 13.2c;

• s4ij = c(p, i1) + c(in, p) + c(p, e1) + c(em, p)− c(p, in)− c(i1, em)− c(e1, p) in which in
the routes ri and rj have the opposite direction with respect to their original
one. Figure 13.2d.

For each pair of routes, the best saving is defined as the maximum of all
computed extra mileages as sij = max{s1ij, s2ij, s3ij, s4ij}. Savings are recorded in
a matrix, in which the number of rows is equal to the number of routes servicing

104

13.2 – Merging phase

(a) Merged route r1ij

(b) Merged route r2ij

(c) Merged route r3ij

(d) Merged route r4ij

Figure 13.2: Improved merging method: merged routes.

importers, and the number of columns is equal to the number of routes servicing
exporters.

Routes determined in SplitDeliveryVRP phase are merged in the Merging phase
according to an ILP model. The SplitDeliveryVRP phase returns two sets of routes:
the set of delivery routes, defined as SolImp, and the set of pickup routes, defined
as SolExp. Binary variables xij,∀i ∈ SolImp,j ∈ SolExp assume value 1 if routes
ri and rj are merged, 0 otherwise. Note that sij represents the best saving obtained
by the merging of routes ri and rj, computed as described above.

The problem can be formulated as follows:

105

13 – Meta-heuristic solution method

max
∑

i∈SolImp

∑
j∈SolExp

sij xij (13.1)

s.t. ∑
j∈SolExp

xij ≤ 1 ∀i ∈ SolImp (13.2)∑
i∈SolImp

xij ≤ 1 ∀j ∈ SolExp (13.3)

xij ∈ {0,1} ∀i ∈ SolImp, j ∈ SolExp (13.4)

The overall gain is maximized in the objective function (13.1).
Constraints (13.2) and (13.3) limit the maximum number of merges allowed for

each route. For each route in SolImp at most one merge with a SolExp route is
possible, and vice-versa. Therefore, we do not consider merge operations involving
more than an importer and an exporter route, and we merge routes only at their
extreme points (the first or last routes’ position). Despite this limitation, the
solution quality achieved does not seem to suffer from the simplification. In fact, it
is rare that multiple merges would generate feasible solutions (because of capacity
restrictions), and adaptive guidance mechanisms will force the TS algorithm to
choose the most suitable customers in the first and last positions of the routes (see
Section 13.3).

13.3 Adaptive guidance phase

The Adaptive guidance phase analyses the incumbent solution with respect to
some adaptive guidance mechanisms. If drawbacks are detected in the solution, the
input data of the TS algorithm are suitably perturbed by applying penalization
mechanisms. The aim is therefore to identify drawbacks in the incumbent solution,
define quantitative measures for them and design suitable penalization mechanisms
that would achieve the desired diversification effect, without corrupting the original
input data.

The meta-heuristic is guided by four Adaptive Guidance Mechanisms :

(i) A.G.M.1 - Exaggerated Split

This mechanism aims at minimizing multiple visits to customers, because we
realized that the TS algorithm tends to generate routes in which split of the load
is frequent. The overall solutions would likely to be not high quality. Given
a customer i, the minimum number of visits required to satisfy its demand is

106

13.3 – Adaptive guidance phase

minTripi = ddi/Ce. In the incumbent solution, visiti is the number of visits to
customer i in the current solution, and exceedi = visiti −minTripi. The guidance
mechanism selects the importer customer iI ∈ I and the exporter customer iE ∈ E
with the largest positive value of exceedi. If any, a penalization is introduced for all
arcs connecting the selected customers, iI ∈ I and iE ∈ E, in the next γ iterations.
This will guide the TS algorithm to use a lower number of edges connecting these
customers and therefore split the load in a lower number of routes.

(ii) A.G.M.2 - Extreme importer

This mechanism aims at obtaining the most suitable extreme customers in
importer routes. Given that the merge of routes is always performed on the first
or last customer of a route, it is important to define such extreme customers in a
suitable way. More precisely, the first and last importers in a route should be as
close as possible to export customers.

Given a importer iI ∈ I, we denote with αiI the number of times in which iI ∈ I
is visited as extreme node of a delivery route in the incumbent solution (SolImp),
net of the number of times that iI ∈ I is not visited as extreme node. Negative
values of αiI indicate that, considering the set of delivery routes in the incumbent
solution that visit the selected importer, iI ∈ I is frequently visited as an internal
node. Moreover, we denote as σiI the sum of all distances between the selected
importer iI ∈ I and all export customers jE ∈ E. This total distance is usually
lower when many exporters are close to the selected importer iI ∈ I. The guidance
mechanism selects, if any, the importer iI ∈ I with a negative value of αiI and the
highest number of nearest exporters (minimum value of σiI). If any, a penalization
is introduced for all arcs entering or leaving the selected node, iI , in the next γ
iterations.

(iii) A.G.M.3 - Extreme exporter

This mechanism works in the same way as A.G.M.2, but considering export
customers.

(iv) A.G.M.4 - Expensive arc

Given a set of customers, this mechanism aims at diversifying the solution
imposing a penalization for the most expensive arcs used in the incumbent solution.
More precisely, the most expensive arcs among the connections between importers

107

13 – Meta-heuristic solution method

(lI , mI) ∈ SolImp and between exporters (lE, mE) ∈ SolExp are identified as:

c(lI , mI) = max{c(iI , jI)|(iI , jI) ∈ SolImp, iI ∈ I, jI ∈ I}
c(lE , mE) = max{c(iE jE)|(iE, jE) ∈ SolExp, iE ∈ E, jE ∈ E}

The guidance mechanism introduces a penalization for arcs (lI , mI), (mI , lI),
(lE, mE) and (mE, lE) in the next γ iterations.

13.4 Penalizations

Once the incumbent solution’s arcs have been analysed according to the guidance
mechanisms, penalizations are applied to the suitable arc costs for the subsequent
γ iterations. For all arcs for which the guidance mechanisms have suggested a
penalization, the cost matrix is updated as cij = cij +RandomCoef · M for those
arcs connecting customers, and as cij = cij +RandomCoef · M +(|N |−1) · M for
those arcs that involve the port. The latter formula differs from the first: in order to
minimize the number of trucks in the solution, a larger penalty is added to the cost
of those arcs connecting to the port. RandomCoef is a coefficient that randomly
decreases/increases the penalties during the overall execution of the algorithm,
according to the formula:

RandomCoef = (Random(1, . . . ,α) + β)/100 (13.5)

β is a self-adapting parameter, that starts with value 0 and increases its value
by α after each α iterations. Each time a new local optimum is reached, β is
reinitialized to 0. The value M is defined as the largest entry of the cost matrix.

Whenever a new best known solution is obtained, β is set to 0 (in order to
refresh our penalties). Moreover, the penalties associated to the port are removed
for the set of customers requesting a lower number of routes (this should allow
for solutions with a better routing cost, without increasing the overall number of
combined routes).

Regarding the introduction of penalties in the next γ iterations, three different
methods are proposed. Each method leads to a different version of the algorithm.
All methods are implemented and the best one is presented in the computational
experience (Chapter 14). The three methods are:

(i) Unchecked penalties Penalties are always added to the cost matrix. If the
penalty associated to arc (i, j) ∈ A is found at iterations it and it+ δ (with
δ ≤ γ), the penalty is added twice;

108

13.4 – Penalizations

(ii) Unique penalties Penalties are inserted in the next γ iterations only if there
have not been inserted before. If a penalty is already inserted, the penalty
is rejected and the adaptive guidance mechanism is executed again, until a
penalty not yet inserted is found, or no more penalties are available;

(iii) Incremental unique penalties Penalties are inserted in the next γ itera-
tions, but further penalties are explored. If the penalty is already inserted, the
old penalty is incremented and the adaptive guidance mechanism is executed
another time until a penalty not yet inserted is found or no more penalties
are available. Therefore, if a penalty concerning a generic arc (i, j) ∈ A is
found at iterations it and it+ δ (with δ ≤ γ), the penalty is inserted twice
and the adaptive guidance mechanism is executed again looking for additional
penalties.

109

13 – Meta-heuristic solution method

110

Chapter 14

Experimentation

The results proposed in this chapter aim to analyse the performance of the
proposed meta-heuristic. The test set consists of 175 randomly generated instances
with 10, 20, 30, 40, and 50 customers. Given that large-sized instances proved to be
the most challenging, we generated a larger number of instances of large size. The
number of instances for each instance-size is 15, 25, 35, 45, and 55, respectively. The
number of containers requested by each customer is uniformly generated between 1

and 5, whereas the customer coordinates are uniformly generated between−1000 and
+1000. Instances with the same number of customers consider the same containers’
demand values and the customers coordinates, whereas the truck capacity and
the number of importers and exporters vary. A fifth of the instances for each
problem-size considers vehicles with capacity 1-container, 2-containers, 4-containers,
6-containers and 8-containers, respectively. The proportion of importers and
exporters in each instance is computed as follow. Denoting with n the number of
customers involved, we generate n/5+1 instances, in which the number of importers
increases by 5 in each instance (starting from value 0), and as a consequence the
number of exporters decreases by 5 (starting from value n). In order to have at
least two importers/exporters in each instance, the number of importers/exporters
involved is altered when equal to zero: we increase by 2 number those customers
that are not represented in the instance, and consequently we decrease the number
of customers of the other type by the same quantity. The number of available
trucks in each instances is fixed, and is equal to the minimum number of trucks
needed to service all container load requests computed as the the bin packing lower
bound ddem/Ce, where dem represents the maximum number of container load
requested by importers or exporters defined as dem = max{

∑
i∈I di,

∑
i∈E di}.

111

14 – Experimentation

14.1 Data management

The integer programming formulation (11.1)-(11.17) was coded using IBM ILOG
CPLEX Optimization Studio 12.5 and solved by the Branch & Bound of ILOG
CPLEX 12.2. The meta-heuristic presented in Chapter 13 was coded in C++, and
the integer model (13.1)-(13.4) is solved using the Callable Libraries of CPLEX 12.2.
Experiments were performed on a Linux four-CPU server 2.67GHz 64GB RAM,
with default parameter settings.

Although a major requirement for the carrier is to determine solutions in about
10 minutes, ILOG CPLEX 12.2 is set to stop also after 3 hours. This choice allowed
the solver to produce upper and lower bounds and provides a base of comparison
for assessing the quality of the meta-heuristic.

The meta-heuristic algorithm depends on two parameters:

ϕ strategy used to update penalties: takes value 1 for “Unchecked penalties”, 2 for
“Unique penalties”, and 3 for “Incremental unique penalties” (see Section 13.4);

θ: probability that a guidance approach will be used in the next iteration.

Moreover, we set the MAXTIME value to 600 seconds as suggested by the
company, the MAXIT value to 10000, the γ value to |I| for penalties that involve
import customers and |E| for penalties that involve export customers. Finally, the
coefficient α used to evaluate penalties in Equation (13.5) takes value 10.

Table 14.1 presents the validation of θ and ϕ, two crucial components of the
adaptive guidance algorithm. The table presents the best five calibrations obtained
during our preliminary experiments, denoted by C1-C5. The aim is to select ϕ and α
such that the meta-heuristic generates solutions as close as possible to those provided
by the exact algorithm. Therefore, the third row of Table 14.1,

∑
Gap, reports the

sum of the positive average percentage gaps between the solutions provided by the
meta-heuristic with respect to those provided by the exact algorithm.

In the following, results obtained using the calibration C1 are presented, because
this configuration proved to minimize the overall gap from the optimal solutions.

Calibrations Selected
C1 C2 C3 C4 C5 C1

θ 33% 50% 25% 33% 50% 33%
ϕ 1 1 3 3 3 1∑

Gap 26.34% 27.74% 27.74% 26.81% 26.81% 26.34%

Table 14.1: Best calibrations performed.

112

14.2 – Effectiveness of adaptive guidance mechanisms

14.2 Effectiveness of adaptive guidance mechanisms

This section illustrates the improvements achieved by the adaptive guidance
mechanisms. Table 14.2 presents the performance of the meta-heuristic adopting
adaptive guidance mechanisms with respect to the heuristic solution (the solution
obtained by running the algorithm illustrated in Table 13.1 for a single iteration).
The Merging phase algorithm based on an ILP model illustrated in Section 13.2
detects the optimal solution whenever the truck’s capacity is 1-container. Since the
aim of this section is to show the effectiveness of the adaptive guidance mechanisms,
Table 14.2 disregards instances with capacity 1-container.

Computational results are presented in Table 14.2 where C and Instances

represent the transportation capacity of the homogeneous fleet of trucks and the
number of instances involved in each class respectively, Average t(s) is the average
time in seconds before the best solution is found and Average % Gap is the average
percentage deviation of the Adaptive Guidance solution with respect to the solution
provided by the heuristic. It is important to note that each row of Table 14.2
represents the average percentage deviation between solutions of the heuristic and
the meta-heuristic over a subset of instances.

HEURISTIC ADAPTIVE
GUIDANCE

C Instances Average Avergage Average %
t(s) t(s) Gap

10 CUSTOMERS
2 3 0.19 0.19 0.00
4 3 5.23 5.23 0.00
6 3 0.17 2.02 0.00
8 3 5.51 5.51 0.00

20 CUSTOMERS
2 5 1.11 1.11 0.00
4 5 4.83 244.84 -0.73
6 5 4.21 217.78 -3.51
8 5 0.73 205.31 -5.24

30 CUSTOMERS
2 7 8.68 24.77 0.00
4 7 13.12 369.42 -2.11
6 7 13.72 110.87 -1.64
8 7 2.28 162.00 -2.64

40 CUSTOMERS
2 9 21.60 145.46 -0.30
4 9 18.66 159.87 -0.69
6 9 24.42 319.30 -3.00
8 9 15.44 234.74 -1.84

50 CUSTOMERS
2 11 21.10 87.65 -0.02
4 11 20.75 127.68 -0.22
6 11 19.10 86.72 -0.19
8 11 11.98 195.28 -0.64

Table 14.2: Adaptive guidance effectiveness.

Tests show that the adaptive guidance mechanisms are effective. Moreover,

113

14 – Experimentation

the adaptive guidance mechanisms seem to be more effective as the truck capacity
increases. Feasible solutions of better quality are provided by the adaptive guidance
mechanisms in less than 10 minutes in 68/175 instances.

14.3 Comparison between solution methods

This section aims to compare the two different solution methods proposed in
Chapter 12, called constructive heuristic, and Chapters 13, called adaptive guidance
meta-heuristic. Tables 14.3, 14.4, 14.5, 14.6 and 14.7 show the results of the
comparison. The aims is to show the improvements achieved by the meta-heuristic
based on adaptive guidance mechanisms with respect to the constructive heuristic
presented in Chapter 12. Moreover, in order to lead the constructive heuristic
more competitive, savings are computed by the extra mileages formula presented in
Section 13.1.

Computational results are indicated in Tables 14.3, 14.4, 14.5, 14.6 and 14.7
with the following notation:

• C : Transportation capacity;

• |I|: Number of importers;

• |E|: Number of exporters;

• |K|: Number of available trucks with capacity C-containers;

CONSTRUCTIVE HEURISTIC

• o.f.: Objective function returned by the constructive heuristic proposed in
Chapter 12;

• |Ku|: Number of trucks with capacity C-containers used in the solution. This
solution method may leads to infeasible solutions in terms of number of trucks
used in the solution. Therefore, for the sake of clarity all infeasible solutions
provided are “underlined”;

• t(s): Time in seconds before the best solution is found;

ADAPTIVE GUIDANCE META-HEURISTIC

• o.f.: Objective function returned by the meta-heuristic proposed in Chapter 13;

• t(s): Time in seconds before the best solution is found;

114

14.3 – Comparison between solution methods

• % Gap: Percentage gap with respect to the best solution provided by the
constructive heuristic. When solutions provided by the meta-heuristic are
better than those provided by the constructive heuristic, gaps are reported in
bold with a negative value.

CONSTRUCTIVE ADAPTIVE GUIDANCE
HEURISTIC META-HEURISTIC

C |I| |E| |K| o.f. |Ku| t(s) o.f. t(s) % Gap

1 2 8 19 29076.63 19 0.11 29064.82 0.26 -0.04
5 5 16 29692.50 16 0.04 29692.50 0.16 0.00
8 2 23 29607.10 23 0.15 29607.10 0.30 0.00

2 2 8 10 20292.07 10 0.10 20277.64 0.22 -0.07
5 5 8 19640.83 8 0.03 19640.83 0.13 0.00
8 2 12 20469.85 12 0.09 20237.67 0.22 -1.14

4 2 8 5 12709.61 5 0.07 12707 0.17 -0.02
5 5 4 11756.63 4 0.03 11756.63 0.11 0.00
8 2 6 12896.95 7 0.08 12400.96 15.41 -3.99

6 2 8 4 10651.39 4 0.06 9644.93 0.13 -10.43
5 5 3 9443.13 3 0.04 9443.13 0.10 0.00
8 2 4 10397.93 4 0.07 10397.93 5.85 0.00

8 2 8 3 9627.91 3 0.06 9251.42 0.12 -4.06
5 5 2 8756.39 2 0.02 8756.39 0.09 0.00
8 2 3 9862.16 4 0.06 9894.46 16.34 0.32

Table 14.3: Comparison between solution methods: 10 Customers.

Table 14.3 shows results for the class of instances with 10 customers. The
adaptive guidance meta-heuristic seems to be more effective in those instances in
which importers and exporters are not distributed homogeneously and the truck
capacity increases.

The constructive heuristic provides a slightly better solution in 1/15 instances
with 2 importers, 8 exporters and truck capacity 8-containers (0.32%) but this
solution is infeasible. Therefore, since the solution provided by the constructive
heuristic exceed the number of available trucks, the solution provided by the
adaptive guidance meta-heuristic cannot be considered worst.

The best improvement is found for the instance with 2 importers, 8 exporters
and truck capacity 6-containers, in which the improvement, in terms of objective
function, is about 10.43%.

The constructive heuristic provides infeasible solutions in 2/15 instances. More-
over, the infeasible instance with truck capacity 4-containers besides being infeasible
presents also a worst objective function, compared to the solution provided by the
adaptive guidance meta-heuristic.

Table 14.4 shows the results for the class of instances with 20 customers. The
adaptive guidance meta-heuristic seems to be more effective in those instances in
which importers and exporters are more ore less distributed homogeneously and
the truck capacity increases.

115

14 – Experimentation

CONSTRUCTIVE ADAPTIVE GUIDANCE
HEURISTIC META-HEURISTIC

C |I| |E| |K| o.f. |Ku| t(s) o.f. t(s) % Gap

1 2 18 52 61366.30 52 1.35 61366.30 2.70 0.00
5 15 45 55129.44 45 0.86 55129.44 1.76 0.00

10 10 33 48458.95 33 0.26 48122.05 0.96 -0.70
15 5 45 55792.14 45 0.86 55792.14 1.68 0.00
18 2 53 64705.83 53 1.43 64705.83 2.75 0.00

2 2 18 26 39766.04 26 0.74 39766.04 1.35 0.00
5 15 23 35714.81 23 0.52 35373.01 0.97 -0.96

10 10 17 31183.84 17 0.21 31019.25 0.75 -0.53
15 5 23 36523.96 23 0.51 36401.67 1.02 -0.33
18 2 27 42077.40 27 0.78 41955.11 1.50 -0.29

4 2 18 13 22487.36 14 0.66 22633.91 296.19 0.64
5 15 12 20298.88 12 0.34 19938.48 275.93 -1.80

10 10 9 18638.57 9 0.16 18309.34 561.17 -1.79
15 5 12 20494.58 12 0.41 20484.61 41.93 -0.04
18 2 14 23433.85 14 0.64 23433.85 48.99 0.00

6 2 18 9 16413.72 9 0.55 16208.59 0.97 -1.26
5 15 8 16187.41 8 0.33 15235.92 490.82 -6.24

10 10 6 14565.74 6 0.13 14372.09 0.56 -1.34
15 5 8 14723.36 8 0.36 14723.36 10.07 0.00
18 2 9 17791.26 10 0.50 16585.71 586.52 -7.26

8 2 18 7 14738.46 8 0.35 14271.76 8.75 -3.27
5 15 6 14984.17 6 0.33 13932 573.21 -7.55

10 10 5 15296.75 5 0.12 13338.96 191.72 -14.67
15 5 6 14483.36 6 0.34 13786.59 248.41 -5.05
18 2 7 14629.61 7 0.80 14596.35 4.50 -0.22

Table 14.4: Comparison between solution methods: 20 Customers.

The constructive heuristic provides a slightly better solution in 1/25 instances
with 2 importers, 18 exporters and truck capacity 4-containers (0.64%) but this
solution is infeasible. Therefore, the solution provided by the adaptive guidance
meta-heuristic cannot be considered worst.

The best improvement is found for the instance with 10 importers, 10 exporters
and truck capacity 8-containers, in which the improvement in terms of objective
function is about 14.67%.

The constructive heuristic provides infeasible solutions in 3/25 instances. More-
over, the infeasible instances with track capacity 6-containers and 8-containers
besides being infeasible present also a worst objective function.

Table 14.5 shows the results for the class of instances with 30 customers. The
adaptive guidance meta-heuristic seems to be more effective in those instances in
which importers and exporters are more ore less distributed homogeneously and
the truck capacity increases. However, the constructive heuristic provides a slightly
better solution in 3/35 instances with:

• 28 importers, 2 exporters, and truck capacity 2-containers (1.31%);

• 10 importers, 20 exporters and truck capacity 4-containers (3.33%);

• 28 importers, 2 exporters and truck capacity 6-containers (0.72%).

116

14.3 – Comparison between solution methods

CONSTRUCTIVE ADAPTIVE GUIDANCE
HEURISTIC META-HEURISTIC

C |I| |E| |K| o.f. |Ku| t(s) o.f. t(s) % Gap

1 2 28 79 95786.50 79 5.99 95786.50 11.56 0.00
5 25 72 89471.34 72 4.27 89471.34 8.36 0.00

10 20 60 77943.25 60 1.93 77811.59 4.29 -0.16
15 15 45 74845.96 45 0.86 73424.64 3.03 -1.93
20 10 61 80142.17 61 2.13 79524.70 4.34 -0.77
25 5 75 92487.21 75 4.60 92439 8.63 -0.05
28 2 84 100904.53 84 6.61 100904.53 12.66 0.00

2 2 28 40 61202.75 40 2.92 61202.75 5.61 0.00
5 25 36 57999.63 36 1.98 57999.63 3.91 0.00

10 20 30 51167.29 30 1.06 51003.60 2.43 -0.32
15 15 23 48117.84 23 0.51 47883.08 1.85 -0.49
20 10 31 53120.94 31 1.03 52118.06 114.88 -1.92
25 5 38 61011.48 38 2.11 59225.19 4.17 -3.01
28 2 42 64619.81 43 3.04 65478.83 40.59 1.31

4 2 28 20 34455.98 20 2.67 33444.53 330.16 -3.02
5 25 18 32721.19 18 1.27 32536.81 291.13 -0.56

10 20 15 29687.28 15 0.66 30712.85 226.89 3.33
15 15 12 27821.39 12 0.42 27212.92 385.24 -2.23
20 10 16 30261.70 16 0.66 30262.94 230.46 0.00
25 5 19 32577.30 19 1.44 32569.44 537.97 -0.02
28 2 21 34575.26 22 1.90 34401.26 584.10 -0.50

6 2 28 14 24803.84 14 2.29 24547.45 51.71 -1.04
5 25 12 25463.66 12 1.49 24931.40 161.04 -2.13

10 20 10 24559.47 10 0.78 23508.23 481.23 -4.47
15 15 8 20707.75 8 0.37 19676.93 29.78 -5.23
20 10 11 21092.95 11 0.69 20958.28 5.75 -0.64
25 5 13 23080.06 13 1.18 22689.04 24.28 -1.72
28 2 14 25514.31 14 2.20 25700.18 22.33 0.72

8 2 28 10 21389.06 11 1.05 20129.51 198.54 -6.25
5 25 9 21787.45 9 1.11 21228.52 255.26 -2.63

10 20 8 21494.86 8 0.54 19990.34 451.12 -7.52
15 15 6 19101.61 6 0.31 17324.90 204.81 -10.25
20 10 8 19360.10 8 0.57 19359.12 5.57 0.00
25 5 10 20206.39 10 1.06 20074.81 2.61 -0.65
28 2 11 22709.76 11 1.32 20987.49 16.11 -8.20

Table 14.5: Comparison between solution methods: 30 Customers.

It is important to note that, the solution provided for the instance with 28 importers,
2 exporters, and truck capacity 2-containers (1.31%) is infeasible. Therefore, the
solution provided by the adaptive guidance meta-heuristic cannot be considered
worst.

The best improvement is found for the instance with 15 importers, 15 exporters
and truck capacity 8-containers, in which the improvement in terms of objective
function is about 10.25%.

The constructive heuristic provides infeasible solutions in 3/35 instances. More-
over, the infeasible instances with track capacity 4-containers and 8-containers
besides being infeasible present also a worst objective function.

Table 14.6 shows the results for the class of instances with 40 customers. The
adaptive guidance meta-heuristic seems to be more effective in those instances in
which importers and exporters are more ore less distributed homogeneously and

117

14 – Experimentation

CONSTRUCTIVE ADAPTIVE GUIDANCE
HEURISTIC META-HEURISTIC

C |I| |E| |K| o.f. |Ku| t(s) o.f. t(s) % Gap

1 2 38 118 144271.03 118 21.36 144271.03 40.19 0.00
5 35 108 133117.56 108 15.48 133117.56 29.40 0.00

10 30 89 112983.25 89 8.45 112554.02 16.77 -0.38
15 25 74 102098.40 74 4.37 101042.34 10.33 -1.04
20 20 70 105464.07 70 2.64 104372.86 8.66 -1.04
25 15 86 113529.81 86 5.44 113490.47 12.18 -0.03
30 10 102 130234.34 102 10.27 130234.34 20.74 0.00
35 5 115 144120.06 115 17.34 144120.06 33.10 0.00
38 2 121 149974.73 121 22.26 149974.73 40.19 0.00

2 2 38 59 92010.28 60 14.30 91825.86 21.28 -0.20
5 35 54 86230.88 54 8.21 86198.34 42.97 -0.03

10 30 45 73208.40 45 4.28 72702.31 9.58 -0.69
15 25 37 66360.85 37 2.86 65557.61 10.87 -1.22
20 20 35 68521.51 36 1.48 68216.43 600.09 -0.44
25 15 43 73840.76 43 2.43 73840.76 41.60 0.00
30 10 51 83381.37 51 4.63 83381.37 10.85 0.00
35 5 58 93152.85 58 8.04 92748.36 297.70 -0.43
38 2 61 95423.90 61 8.89 95412.13 274.20 -0.01

4 2 38 30 49443.72 30 6.69 48557.60 377.49 -1.82
5 35 27 46306.63 27 5.75 46163.18 66.31 -0.31

10 30 23 40473.92 23 2.33 40421.93 22.98 -0.12
15 25 19 37353.95 19 1.26 36237.66 347.10 -3.08
20 20 18 39843.29 18 0.83 37073.56 3.49 -7.47
25 15 22 39702.33 22 1.34 39702.33 327.76 0.00
30 10 26 47305.16 26 2.34 44546.17 22.75 -6.19
35 5 29 50132.62 29 4.03 49997.79 194.47 -0.26
38 2 31 52052.77 31 6.54 51759.03 76.52 -0.56

6 2 38 20 34939.22 20 7.26 34667.29 451.13 -0.78
5 35 18 33544.47 18 3.68 33408.62 24.51 -0.40

10 30 15 30248.45 15 2.29 29012.38 22.30 -4.26
15 25 13 28593.75 13 1.77 27874.28 113.98 -2.58
20 20 12 29216.47 12 1.32 28348.62 79.61 -3.06
25 15 15 31213.14 15 2.16 30656.34 590.16 -1.81
30 10 17 33545.87 18 3.31 34108.71 528.38 1.65
35 5 20 35416.10 20 5.18 35929.95 480.92 1.43
38 2 21 37731.12 22 6.71 37495.77 582.79 -0.62

8 2 38 15 29232.08 16 3.69 28725.12 52.27 -1.76
5 35 14 28501.99 14 2.66 27698.66 78.21 -2.90

10 30 12 24472.65 12 2.81 24678.09 346.40 0.83
15 25 10 23283.59 10 1.38 22149.72 429.11 -5.11
20 20 9 24397.49 9 0.66 23158.69 197.34 -5.34
25 15 11 25834.76 12 1.62 25291.06 453.36 -2.14
30 10 14 29062.12 14 3.94 27259.17 24.91 -6.61
35 5 15 29222.67 15 7.51 29207.38 100.50 -0.05
38 2 16 30305.90 16 5.34 30110.53 430.62 -0.64

Table 14.6: Comparison between solution methods: 40 Customers.

the truck capacity increases. However, the constructive heuristic provides a slightly
better solution in 3/45 instances with:

• truck capacity 6-containers

– 30 importers and 10 exporters (1.65%);

– 35 importers and 5 exporters (1.43%);

• 10 importers, 30 exporters and truck capacity 8-containers (0.83%).

118

14.3 – Comparison between solution methods

It is important to note that, the solution provided for the instance with 30 importers,
10 exporters, and truck capacity 6-containers (1.65%) is infeasible. Therefore, the
solution provided by the adaptive guidance meta-heuristic cannot be considered
worst.

The best improvement is found for the instance with 20 importers, 20 exporters
and truck capacity 4-containers, in which the improvement in terms of objective
function is about 7.47%.

The constructive heuristic provides infeasible solutions in 6/45 instances. More-
over, the infeasible instances with track capacity 2-containers, 6-containers (38

importers and 2 exporters) and 8-containers besides being infeasible present also a
worst objective function.

Table 14.7 shows the results for the class of instances with 50 customers. The
adaptive guidance meta-heuristic seems to be more effective in those instances in
which importers and exporters are more ore less distributed homogeneously and
the truck capacity increases. However, the constructive heuristic provides a slightly
better solution in 5/55 instances with:

• 45 importers, 5 exporters and truck capacity 2-containers (0.01%);

• truck capacity 4-containers

– 10 importers and 40 exporters (0.02%);

– 45 importers and 5 exporters (0.67%);

– 48 importers and 2 exporters (0.64%);

• 48 importers, 2 exporters and truck capacity 6-containers (1.45%).

It is important to note that, the constructive heuristic provides a slightly better
solution in 2/55 instances with (i) 2 importers, 48 exporters, and truck capacity
2-containers (0.80%) and (ii) 30 importers, 20 exporters, and truck capacity 4-
containers (0.60%), but these solutions are infeasible. Therefore, the solutions
provided by the adaptive guidance algorithm cannot be considered worst.

The best improvement is found for the instance with 25 importers, 25 exporters
and truck capacity 4-containers, in which the improvement in terms of objective
function is about 7.06%.

The constructive heuristic provides infeasible solutions in 3/55 instances. More-
over, the infeasible instance with 15 importers, 35 exporters and truck capacity
2-containers besides being infeasible presents also a worst objective function.

119

14 – Experimentation

CONSTRUCTIVE ADAPTIVE GUIDANCE
HEURISTIC META-HEURISTIC

C |I| |E| |K| o.f. |Ku| t(s) o.f. t(s) % Gap

1 2 48 134 192213.62 134 30.10 192213.62 40.27 0.00
5 45 129 185708.84 129 30.08 185708.84 40.33 0.00

10 40 118 173619.22 118 23.22 173619.22 40.66 0.00
15 35 101 150523.14 101 14 150445.56 28.21 -0.05
20 30 87 136255.81 87 7.93 136165.67 19.31 -0.06
25 25 75 124606.20 75 4.38 124365.86 16.15 -0.19
30 20 76 128052.82 76 6.56 127734.01 17.16 -0.24
35 15 93 144637.08 93 12.27 144302.36 25.31 -0.23
40 10 109 161774.28 109 20.39 161753.30 40.11 -0.01
45 5 120 171855.25 120 30.08 171850.36 40.34 0.00
48 2 132 187325.59 132 30.11 187325.59 40.32 0.00

2 2 48 67 122176.00 68 20.46 123168.38 43 0.80
5 45 65 117798.48 65 13.03 117705.11 300.55 -0.07

10 40 59 110917.54 59 8.74 110449.35 17.28 -0.42
15 35 51 97746.42 52 6.10 97405.67 103.93 -0.34
20 30 44 87773.99 44 4.98 87633.33 11.41 -0.16
25 25 38 79800.75 38 2.40 79646.66 8.25 -0.19
30 20 38 81199.64 38 6.71 81193.66 15.53 0.00
35 15 47 92389.21 47 5.95 92097.28 11.40 -0.31
40 10 55 102846.30 55 10.79 102679.92 389.80 -0.16
45 5 60 109666.17 60 13.95 109684.57 26.34 0.01
48 2 66 119318.58 66 20.90 119318.58 36.74 0.00

4 2 48 34 66101.93 34 9.59 66105.02 16.49 0.00
5 45 33 64703.01 33 8.40 64659.92 281.18 -0.06

10 40 30 60849.71 30 6.30 60862.98 13.07 0.02
15 35 26 54224.83 26 4.44 53419.97 10.59 -1.50
20 30 22 48922.36 22 2.05 48443.32 6.69 -0.98
25 25 19 46938.94 19 1.34 43840.72 384.92 -7.06
30 20 19 45540.03 20 2.38 45815.88 41.97 0.60
35 15 24 53105.83 24 5.18 52388.82 554.36 -1.36
40 10 28 56377.23 28 6.45 55999.16 12.85 -0.67
45 5 30 59640.76 30 7.94 60047.53 41.02 0.67
48 2 33 64357.17 33 8.01 64778.09 41.39 0.64

6 2 48 23 47229.22 23 11.77 46930.96 374.24 -0.63
5 45 22 48374.83 22 8.50 46698.66 30.07 -3.58

10 40 20 44196.04 20 5.58 43805.92 17.76 -0.89
15 35 17 41109.35 17 4.72 40682.89 9.28 -1.04
20 30 15 38249.86 15 2.44 38055.15 5.66 -0.51
25 25 13 37455.15 13 1.47 35395.70 5.45 -5.81
30 20 13 35386.09 13 1.73 34582.74 4.73 -2.32
35 15 16 38423.12 16 2.77 37992.12 11.07 -1.13
40 10 19 41750.20 19 8.23 41256.29 413.71 -1.19
45 5 20 45527.93 20 8.45 44709.86 40.90 -1.82
48 2 22 46054.44 22 11.01 46736.41 41.09 1.45

8 2 48 17 38400.47 17 6.72 37998.30 361.94 -1.05
5 45 17 39473.97 17 6.69 38450.56 14.59 -2.66

10 40 15 37238.66 15 4.07 36903.76 314.15 -0.90
15 35 13 35310.10 13 4.66 33712.72 9.70 -4.73
20 30 11 31065.09 11 1.14 30799.15 408.85 -0.86
25 25 10 30015.91 10 1.21 29030.66 329.70 -3.39
30 20 10 28764.36 10 2.16 28108.41 524.65 -2.33
35 15 12 33382.06 12 2.45 32038.05 6.96 -4.19
40 10 14 34862.45 14 4.54 34790.30 10.77 -0.20
45 5 15 35623.23 15 6.01 35609.86 26.62 -0.03
48 2 17 35905.74 17 9.30 35869.52 140.19 -0.10

Table 14.7: Comparison between solution methods: 50 Customers.

Remarks

Tests show that the adaptive guidance meta-heuristic improves most of instances
with respect to the constructive heuristic. It is important to note that savings are

120

14.4 – Comparison with the exact algorithm

computed by the same formula for both solution methods. Moreover, the improved
meta-heuristic seems to be more effective in those instances in which importers
and exporters are more or less distributed homogeneously and the truck capacity
increases.

The constructive heuristic provides a better solution in 9/175 instances. However,
provides also infeasible solutions in 17/175 instances.

From the point of view of the execution time, the constructive heuristic provides
a feasible solution in a shortest time. However, feasible solution of a better quality
are provided by the adaptive guidance meta-heuristic in less than 10 minutes.

14.4 Comparison with the exact algorithm

This section compares solutions provided by the adaptive guidance meta-heuristic
with exact solutions provided by the exact approach, called CPLEX. Computational
results are reported in Tables 14.8, 14.9, 14.10, 14.11 and 14.12 with the following
notation:

• C : Transportation capacity;

• |I|: Number of importers;

• |E|: Number of exporters;

• |K|: Number of available trucks with capacity C-containers;

ADAPTIVE GUIDANCE

• o.f.: Objective function returned by the meta-heuristic;

• t(s): Time in seconds before the best solution is found;

• % Gap 10 min: Percentage gap with respect to the best solution provided
by CPLEX in 10 minutes. When the solutions of the meta-heuristic are
better than the best CPLEX upper bounds, or the meta-heuristic provides
the optimal solutions, gaps are reported in bold;

• % Gap 3 h: Percentage gap with respect to the best solution provided by
CPLEX in 3 hours. When the solutions of the meta-heuristic are better than
the best CPLEX upper bounds, or the meta-heuristic provides the optimal
solutions, gaps are reported in bold;

• n.a.: No available gap with respect to CPLEX within its time limit, because
the exact algorithm did not find any feasible solution.

121

14 – Experimentation

CPLEX 10 min and 3h

• Opt. Gap: The optimality gap after 10 minutes and 3h, respectively, between
upper and lower bounds determined by CPLEX. The elapsed time in seconds
is reported only when CPLEX finds the optimal solution;

• n.s.: No feasible solution determined by CPLEX within its time limit.

ADAPTIVE GUIDANCE CPLEX
C |I| |E| |K| o.f. t(s) % Gap % Gap % Opt. Gap % Opt. Gap

10 min 3 h 10 min 3 h

1 2 8 19 29064.82 0.11 0.00 0.00 0.00 (0.28s) 0.00 (0.29s)
5 5 16 29692.50 0.07 0.00 0.00 0.00 (0.14s) 0.00 (0.14s)
8 2 23 29607.10 0.14 0.00 0.00 0.00 (0.29s) 0.00 (0.31s)

2 2 8 10 20277.64 0.22 0.00 0.00 5.96 4.34
5 5 8 19640.83 0.13 0.00 0.00 0.00 (5.83s) 0.00 (5.79s)
8 2 12 20237.67 0.22 0.00 0.00 5.20 4.23

4 2 8 5 12707.00 0.17 0.00 0.00 4.07 0.00 (2769.84s)
5 5 4 11756.63 0.11 0.00 0.00 0.00 (2.27s) 0.00 (2.22s)
8 2 6 12400.96 15.41 0.00 0.00 7.02 3.03

6 2 8 4 9644.93 0.13 0.00 0.00 0.00 (27.41s) 0.00 (27.93s)
5 5 3 9443.13 0.10 0.00 0.00 0.00 (0.94s) 0.00 (0.93s)
8 2 4 10397.93 5.85 4.63 4.63 0.00 (43.27s) 0.00 (43.42s)

8 2 8 3 9251.42 0.12 0.00 0.00 0.00 (13.74s) 0.00 (14.09s)
5 5 2 8756.39 0.09 0.00 0.00 0.00 (0.97s) 0.00 (0.81s)
8 2 3 9894.46 16.34 4.82 4.82 0.00 (32.06s) 0.00 (32.21s)

Table 14.8: Comparison with the exact algorithm: 10 Customers.

Table 14.8 shows the results for the class of instances with 10 customers. The
meta-heuristic provides the same solution, with respect to the CPLEX, in most of
all instances. However, CPLEX provides slightly better solutions in 2/15 instances
with:

• 8 importers, 2 exporters and truck capacity 6-containers (4.63%);

• 8 importers, 2 exporters and truck capacity 8-containers (4.82%).

The adaptive guidance meta-heuristic provides the optimal solution in 10/15

instances. From the point of view of the execution time, the meta-heuristic provides
solutions in a shortest time. CPLEX is able to solve optimally 11/15 instances in
less than one minute, and 12/15 instances in less than one hour.

Table 14.9 shows the results for the class of instances with 20 customers.
Referring to the time limit of 10 minutes, the adaptive guidance meta-heuristic

provides better solutions in 16/25 instances, and provides the optimal solution in
5/25 instances (all instances with truck capacity 1-container).However, CPLEX
provides slightly better solutions in 4/25 instances with:

122

14.4 – Comparison with the exact algorithm

ADAPTIVE GUIDANCE CPLEX
C |I| |E| |K| o.f. t(s) % Gap % Gap % Opt. Gap % Opt. Gap

10 min 3 h 10 min 3 h

1 2 18 52 61366.30 2.70 0.00 0.00 0.00 (13.56s) 0.00 (13.54s)
5 15 45 55129.44 1.76 0.00 0.00 0.00 (8.08s) 0.00 (8.06s)

10 10 33 48122.05 0.96 0.00 0.00 0.00 (4.46s) 0.00 (4.42s)
15 5 45 55792.14 1.68 0.00 0.00 0.00 (8.59s) 0.00 (8.62s)
18 2 53 64705.83 2.75 0.00 0.00 0.00 (17.89s) 0.00 (17.90s)

2 2 18 26 39766.04 1.35 -0.20 0.00 5.21 4.95
5 15 23 35373.01 0.97 0.38 0.63 3.62 3.14

10 10 17 31019.25 0.75 -0.22 0.00 4.32 3.87
15 5 23 36401.67 1.02 -1.00 -0.01 6.45 5.45
18 2 27 41955.11 1.50 -1.35 -0.84 6.38 5.90

4 2 18 13 22633.91 296.19 -14.83 0.00 24.36 11.96
5 15 12 19938.48 275.93 -3.62 0.07 13.44 8.87

10 10 9 18309.34 561.17 -11.41 0.67 20.14 8.56
15 5 12 20484.61 41.93 -10.23 -0.10 20.91 11.76
18 2 14 23433.85 48.99 -11.23 -0.05 21.19 11.48

6 2 18 9 16208.59 0.97 -12.24 -1.09 21.31 10.77
5 15 8 15235.92 490.82 0.24 0.54 10.11 7.66

10 10 6 14372.09 0.56 6.43 6.43 7.41 5.83
15 5 8 14723.36 10.07 -2.39 -0.64 11.31 7.37
18 2 9 16585.71 586.52 -22.49 -3.37 27.46 12.42

8 2 18 7 14271.76 8.75 -24.97 -0.11 32.28 13.37
5 15 6 13932.00 573.21 -83.50 5.51 54.15 8.94

10 10 5 13338.96 191.72 9.81 9.81 5.80 2.23
15 5 6 13786.59 248.41 -12.98 2.22 26.39 12.28
18 2 7 14596.35 4.50 -12.44 -3.30 28.45 19.89

Table 14.9: Comparison with the exact algorithm: 20 Customers.

• 5 importers, 15 exporters and truck capacity 2-containers (0.38%);

• truck capacity 6-containers

– 5 importers and 15 exporters (0.24%);

– 10 importers and 10 exporters (6.43%);

• 10 importers, 10 exporters and truck capacity 8-containers (9.81%).

The best improvement is found for the instance with 5 importers, 15 exporters
and truck capacity 8-containers, in which the improvement in terms of objective
function is about 83.50%.

Referring to the time limit of 3 hours, the meta-heuristic provides better solutions
in 9/25 instances, provides the optimal solution in 5/25 instances (all instances with
truck capacity 1-container). However, CPLEX provides slightly better solutions in
8/25 instances with:

• 5 importers, 15 exporters and truck capacity 2-containers (0.63%);

• truck capacity 4-containers

– 5 importers and 15 exporters (0.07%);

123

14 – Experimentation

– 10 importers and 10 exporters (0.67%);

• truck capacity 6-containers

– 5 importers and 15 exporters (0.54%);

– 10 importers and 10 exporters (6.43%);

• truck capacity 8-containers

– 5 importers and 15 exporters (5.51%);

– 10 importers and 10 exporters (9.81%);

– 15 importers and 5 exporters (2.22%).

The best improvement is found for the instance with 18 importers, 2 exporters
and truck capacity 6-containers, in which the improvement in terms of objective
function is about 3.37%.

From the point of view of the execution time, the meta-heuristic provides
solutions in a shortest time. CPLEX is able to solve optimally 5/25 instances in
less than twenty seconds.

Table 14.10 shows the results for the class of instances with 30 customers.
Referring to the time limit of 10 minutes, the adaptive guidance meta-heuristic

provides the optimal solution in 7/35 instances, all instances with truck capacity
1-container, and improves all other instances for which CPLEX provides a feasible
solution. Moreover, comparison gaps are not available for 9/35 instances, because
CPLEX does not provide a feasible solution. The best improvement is found for the
instance with 5 importers, 25 exporters and truck capacity 8-containers, in which
the improvement in terms of objective function is about 115.27%.

Referring to the time limit of 3 hours, the adaptive guidance meta-heuristic
provides better solutions in 26/35 instances, and provides the optimal solution in
7/35 instances (all instances with truck capacity 1-container). However, CPLEX
provides slightly better solutions in 2/35 instances with:

• truck capacity 2-containers

– 5 importers and 25 exporters (0.17%);

– 28 importers and 2 exporters (2.66%).

The best improvement is found for the instance with 2 importers, 28 exporters
and truck capacity 6-containers, in which the improvement in terms of objective
function is about 87.62%.

124

14.4 – Comparison with the exact algorithm

ADAPTIVE GUIDANCE CPLEX
C |I| |E| |K| o.f. t(s) % Gap % Gap % Opt. Gap % Opt. Gap

10 min 3 h 10 min 3 h

1 2 28 79 95786.50 11.56 0.00 0.00 0.00 (305.78s) 0.00 (305.87s)
5 25 72 89471.34 8.36 0.00 0.00 0.00 (162.37s) 0.00 (162.02s)

10 20 60 77811.59 4.29 0.00 0.00 0.00 (68.75s) 0.00 (69.79s)
15 15 45 73424.64 3.03 0.00 0.00 0.00 (42.34s) 0.00 (42.93s)
20 10 61 79524.70 4.34 0.00 0.00 0.00 (75.57s) 0.00 (75.15s)
25 5 75 92439.00 8.63 0.00 0.00 0.00 (217.93s) 0.00 (216.23s)
28 2 84 100904.53 12.66 0.00 0.00 0.00 (373.96s) 0.00 (376.23s)

2 2 28 40 61202.75 5.61 -7.31 -4.14 10.48 7.75
5 25 36 57999.63 3.91 n.a. 0.17 n.s. 5.10

10 20 30 51003.60 2.43 -13.98 -1.19 17.73 7.13
15 15 23 47883.08 1.85 -3.78 -0.53 9.10 6.15
20 10 31 52118.06 114.88 n.a. -0.65 n.s. 6.55
25 5 38 59225.19 4.17 n.a. -17.13 n.s. 18.03
28 2 42 65478.83 40.59 n.a. 2.66 n.s. 2.72

4 2 28 20 33444.53 330.16 -22.01 -15.55 25.52 21.17
5 25 18 32536.81 291.13 -45.69 -15.21 39.61 23.39

10 20 15 30712.85 226.89 -23.49 -14.11 33.81 28.32
15 15 12 27212.92 385.24 -44.90 -21.04 40.19 27.37
20 10 16 30262.94 230.46 -35.23 -4.31 37.50 18.83
25 5 19 32569.44 537.97 -31.15 -19.97 31.43 25.03
28 2 21 34401.26 584.10 -39.83 -25.23 33.61 25.88

6 2 28 14 24547.45 51.71 n.a. -87.62 n.s. 53.15
5 25 12 24931.40 161.04 -66.91 -36.26 50.29 39.08

10 20 10 23508.23 481.23 n.a. -19.35 n.s. 33.78
15 15 8 19676.93 29.78 n.a. -31.34 n.s. 31.77
20 10 11 20958.28 5.75 -55.08 -18.75 42.69 25.15
25 5 13 22689.04 24.28 -90.47 -33.22 51.64 30.85
28 2 14 25700.18 22.33 -54.83 -35.60 42.72 34.49

8 2 28 10 20129.51 198.54 n.a. -75.72 n.s. 50.43
5 25 9 21228.52 255.26 -115.27 -17.22 63.01 31.83

10 20 8 19990.34 451.12 -85.82 -18.21 57.48 33.16
15 15 6 17324.90 204.81 n.a. -71.26 n.s. 48.70
20 10 8 19359.12 5.57 -101.61 -11.73 60.97 28.88
25 5 10 20074.81 2.61 -93.41 -19.44 57.17 30.01
28 2 11 20987.49 16.11 -97.86 -37.51 55.71 35.92

Table 14.10: Comparison with the exact algorithm: 30 Customers.

From the point of view of the execution time, the adaptive guidance meta-
heuristic provides solutions in a shortest time. CPLEX is able to solve optimally
7/35 instances in less than 7 minutes.

Table 14.11 shows the results for the class of instances with 40 customers.

Referring to the time limit of 10 minutes, the adaptive guidance meta-heuristic
provides the optimal solution in 2/45 instances, all instances with truck capacity
1-container, and improves all other instances for which CPLEX provides a feasible
solution. Moreover, comparison gaps are not available for 38/45 instances, because
CPLEX does not provide a feasible solution. The best improvement is found for
the instance with 25 importers, 15 exporters and truck capacity 8-containers, in
which the improvement in terms of objective function is about 160.11%.

Referring to the time limit of 3 hours, the adaptive guidance meta-heuristic
provides the optimal solution in 9/45 instances, all instances with truck capacity

125

14 – Experimentation

ADAPTIVE GUIDANCE CPLEX
C |I| |E| |K| o.f. t(s) % Gap % Gap % Opt. Gap % Opt. Gap

10 min 3 h 10 min 3 h

1 2 38 118 144271.03 40.19 n.a. 0.00 n.s. 0.00 (2715.85s)
5 35 108 133117.56 29.40 n.a. 0.00 n.s. 0.00 (1926.40s)

10 30 89 112554.02 16.77 n.a. 0.00 n.s. 0.00 (966.72s)
15 25 74 101042.34 10.33 0.00 0.00 0.00 (523.74s) 0.00 (523.28s)
20 20 70 104372.86 8.66 0.00 0.00 0.00 (425.73s) 0.00 (425.26s)
25 15 86 113490.47 12.18 n.a. 0.00 n.s. 0.00 (647.39s)
30 10 102 130234.34 20.74 n.a. 0.00 n.s. 0.00 (1127.02s)
35 5 115 144120.06 33.10 n.a. 0.00 n.s. 0.00 (2040.40s)
38 2 121 149974.73 40.19 n.a. 0.00 n.s. 0.00 (2931.59s)

2 2 38 59 91825.86 21.28 n.a. n.a. n.s. n.s.
5 35 54 86198.34 42.97 n.a. n.a. n.s. n.s.

10 30 45 72702.31 9.58 n.a. n.a. n.s. n.s.
15 25 37 65557.61 10.87 n.a. n.a. n.s. n.s.
20 20 35 68216.43 600.09 n.a. n.a. n.s. n.s.
25 15 43 73840.76 41.60 n.a. n.a. n.s. n.s.
30 10 51 83381.37 10.85 n.a. n.a. n.s. n.s.
35 5 58 92748.36 297.70 n.a. n.a. n.s. n.s.
38 2 61 95412.13 274.20 n.a. n.a. n.s. n.s.

4 2 38 30 48557.60 377.49 n.a. -26.40 n.s. 24.99
5 35 27 46163.18 66.31 -40.18 -26.23 33.91 26.61

10 30 23 40421.93 22.98 -37.61 -32.84 33.64 31.22
15 25 19 36237.66 347.10 -41.85 -26.41 35.85 27.8
20 20 18 37073.56 3.49 -33.27 -33.25 32.02 31.91
25 15 22 39702.33 327.76 n.a. n.a. n.s. n.s.
30 10 26 44546.17 22.75 n.a. n.a. n.s. n.s.
35 5 29 49997.79 194.47 n.a. n.a. n.s. n.s.
38 2 31 51759.03 76.52 n.a. -20.54 n.s. 23.11

6 2 38 20 34667.29 451.13 n.a. n.a. n.s. n.s.
5 35 18 33408.62 24.51 n.a. n.a. n.s. n.s.

10 30 15 29012.38 22.30 n.a. -162.18 n.s. 66.73
15 25 13 27874.28 113.98 n.a. n.a. n.s. n.s.
20 20 12 28348.62 79.61 n.a. -93.98 n.s. 57.68
25 15 15 30656.34 590.16 n.a. n.a. n.s. n.s.
30 10 17 34108.71 528.38 n.a. -149.41 n.s. 66.04
35 5 20 35929.95 480.92 n.a. -71.52 n.s. 49.02
38 2 21 37495.77 582.79 n.a. n.a. n.s. n.s.

8 2 38 15 28725.12 52.27 n.a. n.a. n.s. n.s.
5 35 14 27698.66 78.21 n.a. -110.79 n.s. 60.12

10 30 12 24678.09 346.40 n.a. -183.27 n.s. 70.59
15 25 10 22149.72 429.11 n.a. -133.48 n.s. 62.82
20 20 9 23158.69 197.34 n.a. -176.25 n.s. 69.85
25 15 11 25291.06 453.36 -160.11 -66.90 67.75 49.68
30 10 14 27259.17 24.91 n.a. -60.87 n.s. 47.19
35 5 15 29207.38 100.50 n.a. -168.13 n.s. 68.31
38 2 16 30110.53 430.62 n.a. -173.79 n.s. 68.67

Table 14.11: Comparison with the exact algorithm: 40 Customers.

1-container, and improves all other instances for which CPLEX provides a feasible
solution. Moreover, comparison gaps are not available for 18/45 instances, because
CPLEX does not provide a feasible solution. The best improvement is found for
the instance with 10 importers, 30 exporters and truck capacity 8-containers, in
which the improvement in terms of objective function is about 183.27%.

From the point of view of the execution time, the adaptive guidance meta-
heuristic provides solutions in a shortest time. CPLEX is able to solve optimally
9/45 instances in less than one hour.

126

14.4 – Comparison with the exact algorithm

ADAPTIVE GUIDANCE CPLEX
C |I| |E| |K| o.f. t(s) % Gap % Gap % Opt. Gap % Opt. Gap

10 min 3 h 10 min 3 h

1 2 48 134 192213.62 40.27 n.a. n.a. n.s. n.s.
5 45 129 185708.84 40.33 n.a. 0.00 n.s. 0.00 (8125.85s)

10 40 118 173619.22 40.66 n.a. 0.00 n.s. 0.00 (5313.18s)
15 35 101 150445.56 28.21 n.a. 0.00 n.s. 0.00 (3136.55s)
20 30 87 136165.67 19.31 n.a. 0.00 n.s. 0.00 (1886.30s)
25 25 75 124365.86 16.15 n.a. 0.00 n.s. 0.00 (1541.31s)
30 20 76 127734.01 17.16 n.a. 0.00 n.s. 0.00 (1807.07s)
35 15 93 144302.36 25.31 n.a. 0.00 n.s. 0.00 (2842.46s)
40 10 109 161753.30 40.11 n.a. 0.00 n.s. 0.00 (4513.38s)
45 5 120 171850.36 40.34 n.a. 0.00 n.s. 0.00 (7020.13s)
48 2 132 187325.59 40.32 n.a. n.a. n.s. n.s.

2 2 48 67 123168.38 43.00 n.a. n.a. n.s. n.s.
5 45 65 117705.11 300.55 n.a. n.a. n.s. n.s.

10 40 59 110449.35 17.28 n.a. n.a. n.s. n.s.
15 35 51 97405.67 103.93 n.a. n.a. n.s. n.s.
20 30 44 87633.33 11.41 n.a. n.a. n.s. n.s.
25 25 38 79646.66 8.25 n.a. n.a. n.s. n.s.
30 20 38 81193.66 15.53 n.a. n.a. n.s. n.s.
35 15 47 92097.28 11.40 n.a. n.a. n.s. n.s.
40 10 55 102679.92 389.80 n.a. n.a. n.s. n.s.
45 5 60 109684.57 26.34 n.a. n.a. n.s. n.s.
48 2 66 119318.58 36.74 n.a. n.a. n.s. n.s.

4 2 48 34 66105.02 16.49 n.a. n.a. n.s. n.s.
5 45 33 64659.92 281.18 n.a. n.a. n.s. n.s.

10 40 30 60862.98 13.07 n.a. n.a. n.s. n.s.
15 35 26 53419.97 10.59 n.a. n.a. n.s. n.s.
20 30 22 48443.32 6.69 n.a. n.a. n.s. n.s.
25 25 19 43840.72 384.92 n.a. n.a. n.s. n.s.
30 20 19 45815.88 41.97 n.a. n.a. n.s. n.s.
35 15 24 52388.82 554.36 n.a. n.a. n.s. n.s.
40 10 28 55999.16 12.85 n.a. n.a. n.s. n.s.
45 5 30 60047.53 41.02 n.a. n.a. n.s. n.s.
48 2 33 64778.09 41.39 n.a. n.a. n.s. n.s.

6 2 48 23 46930.96 374.24 n.a. n.a. n.s. n.s.
5 45 22 46698.66 30.07 n.a. n.a. n.s. n.s.

10 40 20 43805.92 17.76 n.a. n.a. n.s. n.s.
15 35 17 40682.89 9.28 n.a. n.a. n.s. n.s.
20 30 15 38055.15 5.66 n.a. n.a. n.s. n.s.
25 25 13 35395.70 5.45 n.a. n.a. n.s. n.s.
30 20 13 34582.74 4.73 n.a. n.a. n.s. n.s.
35 15 16 37992.12 11.07 n.a. n.a. n.s. n.s.
40 10 19 41256.29 413.71 n.a. n.a. n.s. n.s.
45 5 20 44709.86 40.90 n.a. n.a. n.s. n.s.
48 2 22 46736.41 41.09 n.a. n.a. n.s. n.s.

8 2 48 17 37998.30 361.94 n.a. n.a. n.s. n.s.
5 45 17 38450.56 14.59 n.a. n.a. n.s. n.s.

10 40 15 36903.76 314.15 n.a. n.a. n.s. n.s.
15 35 13 33712.72 9.70 n.a. n.a. n.s. n.s.
20 30 11 30799.15 408.85 n.a. n.a. n.s. n.s.
25 25 10 29030.66 329.70 n.a. n.a. n.s. n.s.
30 20 10 28108.41 524.65 n.a. n.a. n.s. n.s.
35 15 12 32038.05 6.96 n.a. n.a. n.s. n.s.
40 10 14 34790.30 10.77 n.a. n.a. n.s. n.s.
45 5 15 35609.86 26.62 n.a. n.a. n.s. n.s.
48 2 17 35869.52 140.19 n.a. n.a. n.s. n.s.

Table 14.12: Comparison with the exact algorithm: 50 Customers.

Table 14.12 shows the results for the class of instances with 50 customers.

127

14 – Experimentation

Referring to the time limit of 10 minutes, comparison gaps are not available
because CPLEX does not provide any feasible solution.

Referring to the time limit of 3 hours, the adaptive guidance meta-heuristic
provides the optimal solution in 9/55 instances, all instances with truck capacity
1-container. Comparison gaps are not available for 46/55 instances, because CPLEX
does not provide a feasible solution.

From the point of view of the execution time, the adaptive guidance meta-
heuristic provides solutions in a shortest time. CPLEX is able to solve optimally
9/55 instances in less than 3 hours.

Remarks

Tests show that the adaptive guidance meta-heuristic improves most of the
upper bounds produced by the exact algorithm. Moreover, CPLEX is not able to
provide a feasible solutions in 102/175 instances within a time limit of 10 minutes,
and 64/175 instances within a time limit of 3 hours.

From the point of view of the execution time, the meta-heuristic provides all
feasible solutions in a reasonable time (less than 10 minutes).

128

Chapter 15

Conclusions

This third part of the thesis investigated a vehicle routing problem with original
characteristics, such as backhauls, multiple visits, the opportunity to carry more
than a container per truck, and coupled trucks and containers. All characteristics
were formalized by an integer linear programming model, and an exact algorithm
was used to solve several artificial instances. As tests showed, the exact method
was able to solve only instances with few customers.

The proposed adaptive guidance meta-heuristic determines feasible solutions
by decomposing the overall problem into an SD-VRP for the import customers
and an SD-VRP for the exporters. These problems are solved by a Tabu Search
heuristic and the resulting routes are merged by an ILP model. Solutions are
iteratively analysed with respect to problem-specific adaptive guidance mechanisms.
If drawbacks in the solution are identified, suitable penalizations are applied to the
input data at the subsequent iterations. Tests show that the adaptive guidance meta-
heuristic is more effective than the exact algorithm in solving artificial instances of
size larger than 20-30 customers, yielding significant savings in distances travelled by
the trucks. Therefore, the adaptive guidance meta-heuristic represents a promising
instrument to improve the decision-making process.

The solution method proposed in Chapter 12 is presented in Lai, Di Francesco,
and Zuddas 2012. The solution method proposed in Chapter 13 includes concepts
from a work in progress paper, and was presented in Lai, Battarra, and Di Francesco
2012.

129

15 – Conclusions

130

Thesis conclusions

Disruptions generate shocks in the shipping industry, as well as in several
planning activities. Part I of the thesis investigates the planning of empty containers
repositioning when uncertain events or disruptions may take place. They are
supposed to be temporary events occurring in a port that prevent the empty
containers from being properly repositioned in the maritime network.

Part I investigates three repositioning policies, and takes into account two
different possible evolutions for each policy: one with normal operations and
the other in which uncertain operations occur. Tests show that deterministic
formulations are effective only when events occur as forecast. Generally speaking,
the deterministic formulation leads to unsuitable decisions whenever the future is
different from the point forecast. However, the future is uncertain and shipping
companies cannot trust to luck, or use a “crystal ball” to observe the values of
uncertain parameters. A viable method for repositioning empty containers under
uncertainty is provided by a multi-scenario model, in which scenarios are linked by
non-anticipativity conditions. Tests show that the multi-scenario model provides
highest demand fulfilment percentages for different future evolutions with respect
to deterministic approaches.

Research is still in progress to investigate more complex problem settings
involving cooperation with multiple players, like other carriers and leasing companies,
which can provide containers when they are in shortage. Finally, recent advances
in Adjustable Robust Optimization indicate the opportunity to explicitly compare
this approach to multi-scenario models.

The empty container repositioning becomes even more challenging and difficult
when integrated with routing problems. In such cases, carriers often must determine
simultaneously how many empty containers are carried by a fleet of vehicles and
which routes must be followed by these vehicles. These problems typically arise in
inland networks, in which one must plan the distribution by trucks of loaded and
empty containers to customers.

Part II and III address this type of vehicle routing problems, which are motivated
by a real case study occurred during the collaboration with a carrier that operates
in the Mediterranean Sea in door-to-door modality. The carrier manages a fleet

131

Thesis conclusions

of trucks based at the port. Trucks and containers are used to service two types
of transportation requests, the delivery of container loads from the port to import
customers, and the shipment of container loads from export customers to the port.

Part II addresses the problem involving a heterogeneous fleet of trucks carrying
one or two containers, and investigates a vehicle routing problem with backhauls,
multiple visits, and the impossibility to separate trucks and containers during cus-
tomer service. All characteristics were formalized by an integer linear programming
model, and an exact algorithm was used to solve several artificial instances. Tests
show that the exact algorithm is able to solve only instances with few customers.

The proposed meta-heuristic determines a feasible solution by a variant of the
Clarke-and-Wright algorithm, in which routes are merged and assigned to trucks.
Next, the solution is improved by by several local search phases, in which both node
movements and truck swaps are implemented. Test show that the meta-heuristic is
more effective than the exact algorithm in solving artificial instances similar to real
problem instances. The comparison with the carrier’s decisions shows that the meta-
heuristic represents a promising instrument to improve the current decision-making
process, because it leads to significant savings and determines routes quickly.

Research is in progress to face problems with multiple trips for trucks, incom-
patibilities between container loads and trucks, as well as larger transportation
capacities. New solution methods will be developed accounting for the specific
characteristics of these problems.

Part III addresses the problem involving a homogeneous fleet of trucks that
can carry more than a container per truck, and investigates a vehicle routing
problem with backhauls, multiple visits, and coupled trucks and containers. All
characteristics were formalized by an integer linear programming model, and an
exact algorithm is used to solve several artificial instances. As tests show, the exact
method is able to solve only instances with few customers.

The proposed adaptive guidance meta-heuristic determines feasible solutions
by decomposing the overall problem into an SD-VRP for the import customers
and an SD-VRP for the exporters. These problems are solved by a Tabu Search
heuristic and the resulting routes are merged by an ILP algorithm. Solutions are
iteratively analysed with respect to problem-specific adaptive guidance mechanisms.
If drawbacks in the solution are identified, suitable penalizations are applied to the
input data at the subsequent iterations. Tests show that the adaptive guidance meta-
heuristic is more effective than the exact algorithm in solving artificial instances of
size larger than 20-30 customers, yielding significant savings in distances travelled by
the trucks. Therefore, the adaptive guidance meta-heuristic represents a promising
instrument to improve the decision-making process.

132

Thesis conclusions

Research is in progress to face problems with multiple trips for trucks, incom-
patibilities between container loads and trucks, as well as time window and the
possibility to visit customers in any order. New solution methods will be developed
accounting for the specific characteristics of these problems.

133

Thesis conclusions

134

Bibliography

.
Ahuja, R. K., T. L. Magnanti, and J. B. Orlin (1993). Network Flows - Theory,

Algorithms and Applications. Prentice-Hall, Englewood Cliffs.
Archetti, C., M. G. Speranza, and A. Hertz (2006). “A Tabu Search Algorithm for

the Split Delivery Vehicle Routing Problem”. In: Transportation science 40.1,
pp. 64–73.

Bai, R. et al. (2007). “A Simulated Annealing Hyper-heuristic: Adaptive Heuristic
Selection for Different Vehicle Routing Problems”. In: The 3rd Multidisciplinary
International Conference on Scheduling: Theory and Applications, MISTA 2007,
Paris, France.

Battarra, M., M. Monaci, and D. Vigo (2009). “An adaptive guidance approach for
the heuristic solution of a minimum multiple trip vehicle routing problem”. In:
Computers & Operations Research 36.11, pp. 3041–3050.

Ben-Tal, A. et al. (2004). “Adjustable robust solutions of uncertain linear programs”.
In: Mathematical Programming 99.2, pp. 351–376.

Berbeglia, G. et al. (2007). “Static pickup and delivery problems: a classification
scheme and survey”. In: Top 15.1, pp. 1–31.

Caris, A. and G.K. Janssens (2009). “A Local search heuristic for the pre- and
end-haulage of intermodal container terminals”. In: Computers and Operations
Research 36.10, pp. 2763–2772.

Cheung, R. K. and C. Y. Chen (1998). “A two-stage stochastic network model and
solutions methods for the dynamic empty container allocation problem”. In:
Transportation Science 32.2, pp. 142–162.

Cheung, R.K. et al. (2008). “An attribute–decision model for cross-border drayage
problem”. In: TransportationnResearch Part E: Logistics and Transportation
Review 44.2, pp. 217–234.

Choong, S. T., M. H. Cole, and E. Kutanoglu (2002). “Empty container management
for intermodal transportation networks”. In: Transportation Research Part E
38.6, pp. 423–438.

135

Bibliography

Chung, K.H. et al. (2007). “Development of mathematical models for the container
road transportation in Korean trucking industries”. In: Computers & Industrial
Engineering 53.2, pp. 252–262.

Clarke, G. and J. W. Wright (1964). “Scheduling of vehicles from a central depot
to a number of delivery points”. In: Operations Research 12.4, pp. 568–581.

Crainic, T. G. (2003). “Long-haul freight transportation”. In: Handbook of Trans-
portation Science. Ed. by RandolphW. Hall. Vol. 56. International Series in
Operations Research & Management Science. Springer US, pp. 451–516.

Crainic, T. G., M. Gendreau, and P. Dejax (1993). “Dynamic and stochastic models
for the allocation of empty containers”. In: Operations Research 41.1, pp. 102–
126.

Di Francesco, M., T. G. Crainic, and P. Zuddas (2009). “The effect of multi-scenario
policies on empty container repositioning”. In: Transportation Research Part E:
Logistics and Transportation Review 45.5, pp. 758–770.

Di Francesco, M., M. Lai, and P. Zuddas (2010). “Maritime repositioning of empty
containers under uncertainty”. In: 41 Annual Conference of the Italian Opera-
tional Research Society, AIRO 2010, Villa San Giovanni, Italy.

— (2013). “Maritime repositioning of empty containers under uncertain port dis-
ruptions”. In: Computers & Industrial Engineering 64.3, 827–837.

Di Francesco, M. et al. (2012). “A Metaheuristic algorithm for the routing of trucks
with single and double container loads”. In: 43 Annual Conference of the Italian
Operational Research Society, AIRO 2012, Vietri sul Mare, Italy.

Erera, A. L., J. C. Morales, and M. W. P. Savelsbergh (2005). “Global intermodal
tank container management for the chemical industry”. In: Transportation
Research Part E: Logistics and Transportation Review 41.6, pp. 551–566.

— (2009). “Robust optimization for empty repositioning problems”. In: Operations
Research 57.2, pp. 468–483.

EUROPA, ed. (2005). Intermodal transport: intermodality of goods transport. url:
http://europa.eu/legislation_summaries/other/l24179_en.htm.

Feng, C. M. and C. H. Chang (2008). “Empty container reposition planning for
intra-Asia liner shipping”. In: Maritime Policy & Management 35.5, pp. 469–489.

Glover, F. and M. Laguna (1998). Tabu Search. Springer.
Hart, S. (2005). “Adaptive Heuristics”. In: Econometrica 73.5, pp. 1401–1430.
Imai, A., E. Nishimura, and J. Current (2007). “A Lagrangian relaxation-based

heuristic for the vehicle routing with full container load”. In: European journaltitle
of Operational Research 176.1, pp. 87–105.

Jula, H. et al. (2005). “Container movement by trucks in metropolitan networks:
modeling and optimization”. In: TransportationnResearch Part E: Logistics and
Transportation Review 41.3, pp. 235–259.

136

http://europa.eu/legislation_summaries/other/l24179_en.htm

Bibliography

Kramer, O. (2008). Self-adaptive heuristics for evolutionary computation. Springer.
Lai, K. K., K. Lam, and W. K. Chan (1995). “Shipping container logistics and

allocation”. In: Journal of the Operational Research Society 46.6, pp. 687–697.
Lai, M., M. Battarra, and M. Di Francesco (2012). “Heuristics for a split delivery

vehicle routing problem with clustered backhauls”. In: 43 Annual Conference of
the Italian Operational Research Society, AIRO 2012, Vietri sul Mare, Italy.

Lai, M., M. Di Francesco, and P. Zuddas (2011). “A multi-scenario optimization
approach to empty container repositioning under port disruptions”. In: 42
Annual Conference of the Italian Operational Research Society, AIRO 2011,
Brescia, Italy.

— (2012). “Heuristics for the routing of trucks with double container loads”. In:
3rd Student Conference on Operational Research. Vol. 22. OpenAccess Series
in Informatics (OASIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
pp. 84–93.

Lai, M. et al. (2012). “Heuristic search for the routing of heterogeneous trucks with
multiple container loads”. In: EURO working Group on Vehicle Routing and
Logistics Optimization, VEROLOG 2012, BOLOGNA, Italy.

Lai, M. et al. (2013). “Heuristic search for the routing of heterogeneous trucks with
single and double container loads”. In: Transportation Research x.x. Submitted,
pp. xx–xx.

Lam, S. W., L. H. Lee, and L. C. Tang (2007). “An approximate dynamic program-
ming approach for the empty container allocation problem”. In: Transportation
Research Part C: Emerging Technologies 15.4, pp. 265–277.

Leung, S. C. and Y. Wu (2004). “A robust optimization model for dynamic empty
container allocation problems in an uncertain environment”. In: International
Journal of Operations and Quantitative Management 10.4, pp. 315–334.

Li, J. A. et al. (2004). “Empty container management in a port with long-run average
criterion”. In: Mathematical and Computer Modelling 40.1-2, pp. 85–100.

Li, J. A. et al. (2007). “Allocation of empty containers between multi-ports.” In:
Journal of Operational Research 182.1, pp. 400–412.

Macharis, C. and Y.M. Bontekoning (2004). “Opportunities for OR in intermodal
freight transportresearch: A review”. In: European journaltitle of Operational
Research 153.2, pp. 400–416.

Meisel, F. and C. Bierwirth (2011). “A unified approach for the evaluation of quay
crane scheduling models and algorithms”. In: Computers & Operations Research
38.3, pp. 683–693.

Mitra, S. (2005). “An algorithm for the generalized vehicle routing problem with
backhauling”. In: Asia-Pacific journaltitle of Operational Research 22.2, pp. 153–
169.

137

Bibliography

Mitra, S. (2008). “A Parallel Clustering Technique for the Vehicle Routing Problem
with Split Deliveries andPickups”. In: journaltitle of the Operational Research
Society 59.11, pp. 1532–1546.

Moon, I. K., A. D. Do Ngoc, and Y. S. Hur (2010). “Positioning empty containers
among multiple ports with leasing and purchasing considerations”. In: OR
Spectrum 32.3, pp. 765–786.

Nagl, P. (2007). Longer combination vehicles (LCV) for Asia and Pacific region:
Some economic implications. UNESCAP Working Papers, United Nations. url:
http://www.unescap.org/pdd/publications/workingpaper/wp_07_02.
pdf.

Namboothiri, R. and A.L. Erera (2008). “Planning local container drayage operations
given a port access appointment system”. In: Transportation Research Part E:
Logistics and Transportation Review 44.2, pp. 185–202.

Office, Congressional Budget (2006). The Economic Costs of Disruptions in Con-
tainer Shipments, Washington DC, 2006. Accessed 30 December 2010. url: http:
//www.cbo.gov/ftpdocs/71xx/doc7106/03-29Container_Shipments.pdf.

Olivera, A. and O. Viera (2007). “Adaptive memory programming for the vehicle
routing problem with multiple trips”. In: Computers & Operations Research
34.1, 28–47.

Olivo, A. et al. (2005). “An operational model for empty container management”.
In: Maritime Economics & Logistics 7.3, pp. 199–222.

Parragh, S. N., K. F. Doerner, and R. F. Hartl (2008). “A survey on pickup and
delivery problems. Part I: Transportation between customers and depot”. In:
Journaltitle fur Betriebswirtschaft 58.1, pp. 21–51.

Powell, W. B. and H. Topaloglu (2003). “Stochastic programming in transportation
and logistics”. In: Handbooks in Operations Research and Management Science:
Stochastic Programming 10, pp. 555–635.

Savelsbergh, M.W.P. and M. Sol (1995). “The general pickup and delivery problem”.
In: Transportation Science 29.1, pp. 17–29.

Shen, W. S. and C. M. Khoong (1995). “A DSS for empty container distribution
planning”. In: Decision Support Systems 15.1, pp. 75–82.

Song, D. P. and J. Carter (2009). “Empty container repositioning in liner shipping”.
In: Maritime policy & Management 4.36, pp. 291–307.

Song, D. P. and J. X. Dong (2011a). “Effectiveness of an empty container reposi-
tioning policy with flexible destination ports”. In: Transport Policy 18.1, pp. 92–
101.

— (2011b). “Flow-balancing-based empty container repositioning in typical shipping
service routes”. In: Maritime Economics & Logistics 13.1, pp. 61–77.

138

http://www.unescap.org/pdd/publications/workingpaper/wp_07_02.pdf
http://www.unescap.org/pdd/publications/workingpaper/wp_07_02.pdf
http://www.cbo.gov/ftpdocs/71xx/doc7106/03-29 Container_Shipments.pdf
http://www.cbo.gov/ftpdocs/71xx/doc7106/03-29 Container_Shipments.pdf

Bibliography

Song, D. P. and C. F. Earl (2008). “Optimal empty vehicle repositioning and
fleet-sizing for two depot service systems”. In: European Journal of Operational
Research 185.2, pp. 760–777.

Song, D. P. and Q. Zhang (2010). “A fluid flow model for empty container reposi-
tioning policy with a single port and stochastic demand”. In: SIAM Journal on
Control and Optimization 48.5, pp. 3623–3642.

UNCTAD. “Review of maritime transport, United Nations, New York, 2008”. In:
UNCTAD - United Nations Conference on Trade And Development.

Vidovic, M., G. Radivojevic, and B. Rakovic (2011). “Vehicle routing in containers
pickup up and delivery processes”. In: Procedia-Social and Behavioral Sciences
20, pp. 335–343.

Zhang, R., W.Y. Yun, and H. Kopfer (2010). “Heuristic-based truck scheduling for
inland container transportation”. In: OR Spectrum 32.3, pp. 787–808.

Zhang, R., W.Y. Yun, and I.K. Moon (2011). “Modeling and optimization of a con-
tainer drayage problem with resource constraints”. In: International journaltitle
of Production Economics 133.1, pp. 351–359.

139

	Thesis introduction
	I Seaside
	Problem description
	Literature review

	Modeling
	Deterministic model
	Uncertainty and Multi-scenario model

	Experimentation
	Scenario definition
	Data management
	Uncertain demand
	Uncertain handling capacity
	Uncertain demand and handling capacity

	Conclusions

	II Landside - Heterogeneous fleet size
	Problem description
	Literature review

	Modeling
	Solution method
	Initialization
	Constructive phase
	Improvement phase

	Experimentation
	Data management
	Artificial instances
	Real instances

	Conclusions

	III Landside - Homogeneous fleet size
	Problem description
	Literature review

	Modeling
	Heuristic solution method
	SplitVRP phase
	Merging phase

	Meta-heuristic solution method
	SplitDeliveryVRP phase
	Merging phase
	Adaptive guidance phase
	Penalizations

	Experimentation
	Data management
	Effectiveness of adaptive guidance mechanisms
	Comparison between solution methods
	Comparison with the exact algorithm

	Conclusions

	Thesis conclusions
	Bibliography

