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Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), 
a disease that has been plaguing mankind for millennia, with estimates of its 
occurrence dating back 9,000 years. Currently, an astonishing one quarter of the 
world’s population has latent tuberculosis. In these cases, Mtb is inactive and the 
disease cannot be transmitted [1].
As Mtb is inhaled via the lungs, it is phagocytosed by alveolar macrophages and 
resides in the phagosome. Knowledge about the environment Mtb encounters 
inside this phagosome has increased over the years as it is known to be hypoxic 
and nutrient poor [2], nitrosative, oxidative, and conductive to increased iron 
uptake by Mtb [3] and that Mtb cocatabolizes multiple amino acids, C1, C2, and 
C3 substrates within this phagosome, wherein the major carbon source is likely 
acetate or acetyl-CoA derived from host lipids [4].

Mtb is renowned for its waxy cell wall and its ability to remain ‘dormant’ within 
the host macrophage (latent tuberculosis). In such a dormant state Mtb does not 
grow, but is able to survive. This quiescent non-growing part of an Mtb population 
is particularly problematic, as these bacteria are phenotypically resistant, or ‘drug 
tolerant’. When using an effective medicine, such as isoniazid, 99% of Mtb is 
killed during the first two days of administration. The drug tolerant part of the 
population however remains, resulting in current treatments requiring at least 6 
months to reach acceptable cure. The situation can become direr with multiple 
drug resistant TB (MDR-TB), which is thought to have arisen by poor compliance to 
the drug administration regimen for normal TB. With this type of TB, Mtb does not 
respond to isoniazid and rifampicin, and expensive and toxic second line drugs are 
required. The total treatment period for MDR-TB is at least 2 years [1]. Extensively 
drug resistant TB (XDR-TB) is even worse as it is only cured in less than one-third 
of the cases, while a little over half of the cases of MDR-TB are cured.
These prolonged treatment periods and the rise of resistant Mtb requires the 
development of novel therapeutic interventions. Mtb metabolism provides 
opportunities for such development, as it encompasses over 1000 potential drug 
targets in the form of metabolic enzymes (Rienksma, 2018). If we are able to develop 
a model that can recreate the metabolic state of Mtb, especially for dormant or 
VBNC (viable but non-culturable) cells, we have a chance to pinpoint enzymes 
essential for survival in such a state and develop novel therapeutic interventions 
that target these enzymes.

Metabolic networks and metabolic models
Metabolism can be viewed as an interconnected network of nodes and edges, 
wherein the nodes represent metabolites and the edges represent reactions. These 
reactions can be transport reactions from one compartment to another, wherein 
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the compartments can be viewed as different enclosed spaces within or outside 
of the microorganism, such as the cytoplasm and the extracellular space. These 
reactions can also be conversions of one metabolite into another. In order to 
pinpoint essential enzymes, such a genome-scale metabolic network can be cast 
in a mathematical form resulting in a genome-scale constraint-based metabolic 
model (GSM). GSMs enable the prediction of metabolic states. A metabolic state 
is defined as the whole of fluxes or conversion rates (in mmol/h) throughout 
metabolism, including transport reactions. The earliest constraint-based model of 
Mtb metabolism was not ‘genome-scale’ but focused on the mycolic acid pathway, 
a specific kind of lipid produced by mycobacteria [5]. In time, various GSMs have 
been created, most based on other earlier versions (Figure 1.1).

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

GSMN-TB
726/849/75%

iNJ661
661/939/77%

iAB-AMØ-1410-Mt-661
2071/3951/71%

MMF-RmwBo
776/1108/79%

iNJ661v
663/1049/69%

MergedTBModel
917/1400/75%

MAP
28/219/89%

sMtb
915/1192/83%

GSMN-TB 1.1
759/876/75%

2015 2016 2017 2018

iOSDD890
890/1061/79%

gal2015
760/862/76%

iSM810
810/891/79%

iNJ661mu
672/957/76%

iEK1011
1011/1109/82%

Figure 1.1 - Timeline of GSM of Mtb metabolism
Arrows indicate dependencies of one model on another. Models are given by rectangles, wherein the names of the 
models are given in the top line. The numbers represent from left to right: The number of genes, the number of 
reactions, and the percentage of reactions that are not orphan.

The metabolic state is captured as a vector of fluxes in vector v. The CB metabolic 
model basically consists of a series of steady state reaction differential equations 
describing each conversion of one metabolite to another and each transport 
reaction of a metabolite. Transport reactions can be uptake or secretion processes, 
or, in eukaryotes, transport over various cellular compartments. This series of 
steady state equations is founded on an underlying metabolic network wherein 
all metabolites are interconnected by conversion and transport reactions. All 
these steady state equations are captured in stoichiometric matrix, S, wherein 
the columns represent the various reactions and the rows represent the various 
metabolites associated with these reactions. A negative value in the stoichiometric 
matrix indicates consumption of the respective metabolite and positive value 
indicates formation. Metabolites that are not associated with a given reaction are 
indicated with a zero at the respective position in the stoichiometric matrix. The 
most straightforward approach for calculating a metabolic state is to construct 
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a Linear Programming Problem, LP-Problem, consisting of an objective and 
constraints. An LP-Problem based on a metabolic network is often referred to as a 
flux balance analysis problem (Text Box).

Solving a flux balance analysis problem as the one given above and thus simulating 
metabolism using a CB metabolic model is referred to as flux balance analysis (FBA). 
When this problem has been solved, the vector of reaction fluxes could assume 
different values while still obtaining the optimal objective function value, w. The 
range of these values is generally known as the solution space and in the case of 
CB metabolic models a set of fluxes within this range is known as a metabolic state. 
This solution space can be very large if the number of constraints is generally low 
and the difference between values in the l vector and their corresponding values 
in the u vector is large. As fluxes within microorganisms are very difficult to 
measure, uptake and secretion fluxes are mostly used to constrain GSMs and bring 
(a few) of the values in the l vector and u vector closer together. When biomass 
concentration and nutrient concentrations are measured over time in a controlled 
environment, these (specific, i.e. per weight of biomass) uptake and secretion 
fluxes can be calculated.

Experimental data to create genome-scale models
Obviously, an important part of a GSM is the S-matrix, which is based on a 
metabolic network. Such a metabolic network is based on enzymes and their 
function. Therefore, data on substrates and products of metabolic enzymes is a 
prerequisite to create such a network. This data mainly comes from two sources: 
biochemical enzymology experiments to provide evidence on the functioning 
of individual enzymes and bioinformatics based on the Mtb genome, to provide 
predictions of functioning of individual enzymes.
Another valuable source of data is the biomass composition of Mtb, acquired by 
measuring the fraction of as many specific compounds as possible that make up 
Mtb biomass. This biomass composition can subsequently be cast into a biomass 
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reaction wherein a plurality of these compounds is consumed. Subsequent 
maximization of this biomass reaction gives a prediction of the maximal specific 
growth rate attainable under the given constraints. Conversion of a metabolic 
network in a GSM can be visually represented (Figure 1.2). The sum of the 
molecular weights of each metabolite multiplied by its respective number in the 
stoichiometric matrix should equal zero for each column in the S-matrix. In other 
words, there should be no net accumulation or consumption of any metabolite.

Figure 1.2 - Converting a metabolic network into a GSM [6]
Each reaction (green arrows) converting one metabolite (yellow diamond) into another within a metabolic network 
(left panel) is written down in a stoichiometric matrix (middle panel). In this S-matrix metabolites that are consumed 
are denoted by a negative number, while metabolites that are produced are denoted by a positive number. By adding 
(measured) constraints to the model and optimizing for an objective, a metabolic state can be calculated (right panel).

Experimental data to shrink the solution space
By constraining a GSM, using the l and u vectors, such that only nutrients available 
to a given microorganism can be taken up, a metabolic state of the organism 
growing on those nutrients can be predicted. To sufficiently shrink the solution 
space, it is useful to know a couple of uptake/secretion rates and have exact 
knowledge on the types of nutrients available. In general, it is preferred that the 
uptake rates of the main (or more preferably all) carbon, nitrogen, and oxygen 
sources are known. Insufficient knowledge on the uptake/secretion rates and the 
nutrients available quickly leads to a very large solution space and an inability to 
predict the metabolic state.

Genome-scale data
Genome-scale data, such as gene expression data and protein expression data 
form valuable resources to shrink the solution space. A general assumption is that 
these two types of expression data are somehow related to flux. Protein expression 
data is more closely related to flux as compared to gene expression data and thus 
represents the more favorable type of data.
Metabolomics provides a source of data that is perhaps the most closely related 
to flux. However, an inherent problem of (untargeted) metabolomics is that it 
provides no information about flux differences [7]. Metabolic flux analysis using 
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stable isotopes, such as 13C, do provide information on fluxes and have been used 
for Mtb [4, 8, 9]. This information is however indirect, as it must be inferred via a 
metabolic network.
Perhaps the most reliable and direct information on fluxes is provided by measuring 
nutrient concentrations (e.g. with HPLC) and biomass in a medium over time and 
use these to calculate the uptake rates.

Methods to integrate genome-scale data and GSMs
A wealth of methods have been created to integrate genome-scale data, particularly 
gene expression data, such as GIMMI [10], iMAT [11], MADE [12], E-Flux [13], PROM 
[14], E-Fmin [15], uFBA [16], and TRFBA [17], just to name a few. These methods 
all try to “overlay” the respective data and the GSM to infer fluxes from the data.

Predictions by genome-scale models
If sufficient data on these rates and nutrients is available, it allows the modeler to 
make predictions on essential genes under those conditions. In a GSM each gene 
is associated to (part of) an enzyme product, which is in turn associated to at least 
one reaction, i. If the enzyme product is essential for the reaction to carry flux, its 
flux boundaries are set to zero (li = ui = 0), and the biomass reaction is maximized, 
resulting in the optimal objective function value, w. With this value, w, a prediction 
can be made as to whether the respective gene is essential. In general, if the ratio of 
the optimal objective function value obtained with the aforementioned constraint, 
wknockout, to the optimal objective function value obtained without such constraint, 
wwildtype, falls below a certain limit, the gene is deemed essential [18].
The specific growth rate, i.e. the flux through the biomass reaction, is often predicted 
using GSMs. These predictions can serve to validate a GSM or discrepancies 
between predictions and data can lead to the discovery of novel metabolites and/
or enzymes [19].
Uptake and secretion rates can be measured in steady state conditions and 
subsequently be used to constrain the metabolic state of the organism. In general, 
the number of constraints increases with the number of measured uptake and 
secretion rates. These constraints subsequently reduce the size of the solution 
space, allowing a more accurate metabolic state prediction [19]. Although it is also 
possible to predict uptake rates using GSMs [20], this is not common procedure.
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Outline of this thesis

The objectives of this thesis are:

- Provide a genome-scale constraint-based model (GSM) of Mtb metabolism that 
is up to date and fully mass balanced.

- Use this GSM to simulate the metabolic state within the host.
- Point out vulnerable metabolic pathways of Mtb in an in-host environment.

In 2007 two large GSMs of Mtb had been published: GSMN-TB (genome scale 
metabolic network tuberculosis) and iNJ661 (in silico Neema Jamshidi 661 genes) 
[21, 22]. The almost simultaneous publication of both models resulted in two 
independently created, and quite different models. In chapter 2, these two models 
are combined together with a model of the mycolic acid synthesis pathway, MAP 
[5], to create a consensus GSM, sMtb (in silico Mycobacterium tuberculosis). Model 
sMtb is tested for its ability to predict an in vitro metabolic state and its ability to 
correctly identify essential genes. This performance is compared with iNJ661 and 
GSMN-TB.
Despite this increased knowledge, a precise picture of the nutrients available and 
their role in uptake and secretion rates is still unknown. Therefore, an experimental 
model representing a real infection scenario, wherein Mycobacterium bovis BCG 
infects human macrophage-like THP-1 cells is studied using RNA-sequencing to 
get a complete genome-wide picture, is described in chapter 3. The thus obtained 
dual RNA-seq data can be used to constrain GSMs by assuming a linear relationship 
between such data and metabolic fluxes catalyzed by the encoded enzymes. This 
results in condition-specific models, as gene expression data used to constrain the 
metabolic fluxes within the GSM are associated with a given condition [23, 24]. A 
slightly different approach is given chapter 4 where condition-specific objective 
functions are formulated to predict the metabolic state of Mtb inside the host.
By assuming that anti-TB drugs are not always fully effective, the effect of known 
drugs on the metabolic state of Mtb is assessed. Using model sMtb, some pathways 
are predicted to become more important during administration of these drugs to 
a patient in need thereof, while other pathways become less important. To obtain 
a more detailed understanding of the metabolic processes that occur during 
infection, the metabolism of both Mtb and its host, the human macrophage, need 
to be taken into account. Therefore, in chapter 5, the flux rerouting process upon 
drug application is visualized using a combined GSM of Mtb and its host, and 
vulnerable pathways are highlighted. Finally, a general discussion and outlook is 
given in chapter 6.
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Abstract

Systems-level metabolic network reconstructions and the derived constraint-based 
(CB) mathematical models are efficient tools to explore bacterial metabolism. 
Approximately one-fourth of the Mycobacterium tuberculosis (Mtb) genome 
contains genes that encode proteins directly involved in its metabolism. These 
represent potential drug targets can be systematically probed with CB models 
through the prediction of genes essential (or the combination thereof) for the 
pathogen to grow. However, gene essentiality depends on the growth conditions 
and, so far, no in vitro model precisely mimics the host at the different stages of 
mycobacterial infection, limiting model predictions. These limitations can be 
circumvented by combining expression data from in vivo samples with a validated 
CB model, creating an accurate description of pathogen metabolism in the host. 
To this end, we present here a thoroughly curated and extended genome-scale 
CB metabolic model of Mtb quantitatively validated using 13C measurements. We 
describe some of the efforts made in integrating CB models and high-throughput 
data to generate condition specific models, and we will discuss challenges ahead. 
This knowledge and the framework herein presented will enable to identify 
potential new drug targets, and will foster the development of optimal therapeutic 
strategies.

Keywords: Mycobacterium tuberculosis, metabolic model, constraint-based 
metabolic model, gene essentiality, metabolic state, systems biology.
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The rise of multi-resistant Mycobacterium tuberculosis 
and the need for new intervention strategies

Mycobacterium tuberculosis (Mtb) is the etiological agent of tuberculosis (TB) and 
has re-emerged as a serious threat for human health. In 2012, TB claimed the lives of 
1.3 million people [1]. The rapid appearance of multi, extensively and totally drug-
resistant strains, emphasizes the adaptability of Mtb and has raised concerns of its 
impact to human health. Furthermore, due to the diverse genetic predisposition of 
the infected subjects, uncertainties on long-term adverse effects and other safety 
concerns regarding the rise of drug resistant strains, the development of new, 
effective and affordable TB drugs has been slow [2]. New (combined) therapeutic 
strategies are urgently required to combat these drug-resistant strains [3].
In vitro studies have revealed sets of genes that are essential for growth and survival 
under laboratory growth conditions [4, 5]. Due to the differences between the in 
vivo and the in vitro environments this does not automatically imply that these 
sets of genes are suitable drug targets. Besides, given all cellular components from 
different types of networks, genes (and their products) that may be not essential 
on their own can be indispensable in combinations not immediately obvious. A 
vital improvement would be the expansion of these studies to in vivo or ex vivo 
models, such as animal models, which would as faithfully as possible mimic the 
onset and progression of the infection, as well as the strategies against it [6]. An 
alternative and complementary method to identify suitable drug targets is to use 
mathematical descriptions of the metabolism of Mtb under in vivo conditions, 
circumventing experimental difficulties that arise with in vivo and ex vivo studies.
Approximately one-fourth of the annotated mycobacterial gene pool encodes 
structural proteins known to be involved in its metabolism presenting a wealth 
of enzymes and metabolites as potential drug targets. Stoichiometric genome-
scale models of metabolism are essential to identify possible metabolic drug 
targets, as they provide a holistic view on metabolism. Drug targets in the form of 
enzymes encoded by their specific genes, have been identified by gene essentiality 
predictions based on modeling the in vivo environment [7]. Recent insights have 
clarified the picture of available metabolites to Mtb inside the host and shed new 
light on in vivo gene essentiality predictions [8-11].
Predictions on gene essentiality can be done using constraint-based (CB) metabolic 
models by simulating the effect of total loss of an enzyme function in a metabolic 
network. This black and white scenario where a drug is able to completely shut 
down an enzymatic reaction is not fully realistic. In most cases, drug effects are 
subtler, leading to only a partial loss of function [12]. Furthermore, and owing to 
the network structures in which they are embedded, genes may code for proteins 
that are not essential per se, but which do become so if equally non-essential 
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proteins to which they are connected become dysfunctional or absent. A reliable 
metabolic network topology, knowledge of the available metabolites in the host, in 
vivo growth and survival requirements and strategies, and reliable and quantitative 
predictions of metabolic activity are important and thus far overlooked.
A stoichiometric genome-scale CB metabolic model that is experimentally 
validated, not only qualitatively for the correct network topology, but also 
quantitatively for predicting fluxes, provides many opportunities to further 
identify metabolic bottlenecks and weak spots. Instead of using only qualitative, 
topology based, methods such models can be explored for new drug targets and 
novel synergistic drug combinations using more realistic quantitative approaches. 
For example, in addition to simulating the effect of a knockout of given genes or 
combinations thereof, the effect of a partial loss of function induced by a drug can 
also be simulated. Simulating the effect of decreasing the function of enzymes 
that can be targeted with known drugs can highlight alternative metabolic escape 
routes that become more relevant under these conditions paving the way to the 
development of more efficient therapeutic strategies.
Here we present a new genome-scale CB model of Mtb metabolism, sMtb (in silico 
Mycobacterium tuberculosis), which builds upon three previously published models 
and which is experimentally validated in great detail. Our model also includes 
recently discovered or annotated reactions and pathways, has undergone extensive 
manual curation and outperforms its predecessors in terms of both qualitative 
and quantitative predictions. We discuss the applications of this model for the 
identification of possible drug targets, to the unraveling of potentially unknown 
interconnections and for the development of future intervention strategies.

Mathematical models of metabolism

There are different types of metabolic models, all of them based on networks of 
metabolites that are interconnected through enzymatic, spontaneous, or transport 
reactions. These metabolic networks are reconstructed from literature and 
annotated genome data.
CB metabolic models are stoichiometric, mass, charge and energy-balanced 
scaffolds that describe steady-state kinetics, whereas dynamic metabolic models 
are explicitly time-dependent and enable to determine the changes in the 
concentration of metabolites over time. Thus, dynamic metabolic models enable 
more accurate descriptions of metabolism, but require many detailed kinetic 
parameters, such as rate-constants of every enzyme. Such kinetic parameters are 
often unknown and obtaining them experimentally is often difficult or impossible. 
Therefore, for a genome-scale dynamic model, many of these parameters are 
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unavailable and many of them would have to be fitted to the model, which would 
diminish its predictive power. In addition, simulations with these models are 
computationally costly, making dynamic models thus far unsuitable to describe 
metabolism on a genome-scale.

Metabolic network

-1
 1
 0
 0
 0
 0 
 0

 0
-1
 2
 0
 0
 0 
 0

 0
 0
-1
 1
 0
 0 
 0

 0
 0
 0
-1
 1
 0 
 0

 0
 0
 0
 0
-1
 1 
 0

 0
 0
 0
 0
 0
-1 
 1

 0
 0
 1
 0
 0
 0 
-1

 1
 0
 0
 0
 0
 0 
 0

 0
 0
-1
 0
 0
 0 
 0

 0
 0
 0
-1
 0
 0 
 0

 0
 0
 0
 0
-1
 0 
 0

Reactions

M
et

ab
ol

ite
s

Stoichiometric matrix

Flux 1

Flux 2

Flux 3

Convert to 
mathematical 

form 
Apply 

constraints 

Solution space

Calculate 
metabolic state 

Measured constraints

Objective function

Figure 2.1 - Constraint-based model creation and functioning.
A scaffold metabolic network is constructed from an annotated genome and completed after a rigorous survey of 
organism specific databases and literature. This metabolic network represents all the different possibilities for 
metabolites to travel through the network (metabolic states). After this network has been constructed, a stoichiometric 
matrix is created that encompasses the stoichiometry of all metabolic reactions under steady state conditions. 
Constraints on uptake and/or secretion rates are subsequently set, and the optimization of one or multiple objectives 
leads to the prediction of a metabolic state.

Genome-scale CB metabolic modeling provides a holistic view on metabolism and 
transport. A metabolic network forms the foundation of a CB metabolic a model 
(Figure 2.1). The stoichiometry of each reaction is written in stoichiometric matrix 
where negative numbers represent the consumption of metabolites and positive 
numbers represent the formation of metabolites. This stoichiometric matrix 
ensures that the system is in steady-state, as for every reaction no metabolite 
can accumulate. Through the application of constraints, hence they are called 
‘constraint-based’, the number of possible metabolic states can be lowered, to 
best predict the actual metabolic state of an organism under given genetic and 
environmental conditions [13]. Applying too many constraints can result in an 
infeasible model where no possible metabolic state can be found. CB metabolic 
models can be used to predict genes [14] and metabolites that are essential to 
synthesize precursors for growth [15]. A major advantage of genome-scale CB 
metabolic models as compared to dynamic models is that few parameters are 
required to describe the entire known metabolism of an organism. On the other 
hand, CB metabolic models are not easily adapted to describe the dynamics of 
the system, since they contain a stoichiometric matrix and are thus designed to 
operate in steady-state conditions where uptake and secretion fluxes are constant 
and there is no net accumulation of metabolic intermediates, which is only valid 
if the time scales under consideration are different enough. These metabolic 
models are based on optimization principles and need one or more optimization 
objectives to function. Optimization objectives in CB metabolic models can be 
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multiple and describe what the organism ‘aims’ for. Examples of frequently used 
metabolic objectives are: maximizing the speed at which an organism grows, 
maximizing the production of energy carrying metabolites (such as ATP), and 
minimizing the overall usage of enzymes [16].

Flux predictions
Flux is a commonly used concept in physics where it is defined as the rate of 
flow of a magnitude or property through a defined area [17]. In the realm of CB 
metabolic models, this term is used to indicate the rate of conversion of one 
metabolite to another per unit of biomass (usually given in mmol gdw-1 h-1, 
where gdw denotes grams of cell dry weight). For transport reactions, there is 
no metabolite conversion and the term flux refers to the rate of transportation 
between cellular or sub-cellular compartments. Fluxes can have positive or 
negative values in CB metabolic models, depending on whether a forward or 
reverse reaction is predicted. The metabolic state, flux state or flux distribution 
of an organism is defined as the whole of all fluxes throughout metabolism 
[18, 19]. Constraints can be placed on some of these fluxes (e.g. the uptake and 
secretion rates) to limit the model. These constraints reflect the limitations of 
enzymes, transport proteins or nutrients and lead, upon optimization of one or 
multiple objectives, to meaningful flux distributions.

Objective functions
An important assumption of CB metabolic models is that optimization principles 
underpin metabolic states. In other words, the model assumes that a cell ‘strives 
to achieve a metabolic objective’ [20]. CB metabolic models are underdetermined 
and can be solved mathematically, which requires the optimization of one or 
multiple objective functions. Most genome-scale CB metabolic models contain 
one or multiple biomass functions. A biomass function is an integral part of 
a CB metabolic model and entails the amounts (in mmol) of metabolites that 
are required to form one gram dry weight of biomass and as such represents 
growth of the organism. The amounts of the individual metabolites are usually 
based on literature about the organism and vary for different reconstructions. 
Maximization of the flux through the biomass function thus leads to a prediction 
of the metabolic state when maximal growth is achieved, given a defined set of 
available nutrients.
Schuetz and colleagues [16] used a model of the central carbon metabolism of 
Escherichia coli to systematically compare flux distributions, resulting from 11 
objective functions, to 13C-determined in vivo flux distributions from six growth 
conditions. They concluded that no single objective best describes all conditions 
and the most relevant objective for each condition has to be identified.
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Solution space
The solution space of a CB metabolic model (represented as a dashed cube in Figure 
2.1) is defined as the range in which fluxes can vary while leading to the optimal 
value of the objective function. An inherent property of CB metabolic models is 
the fact that, even after optimizing a given objective function, the solution space 
remains largely undetermined. This region of feasible metabolic flux distributions 
grows larger with increasing model size and reflects the metabolic flexibility of 
living organisms. Once the solution space has been defined, Markov chain Monte 
Carlo sampling [21] or variations thereof [22] can be used to obtain probability 
distributions for the fluxes and extract descriptors (such as means and standard 
deviations) for these distributions. Such an approach gives an indication of which 
fluxes can be accurately determined under a given set of constraints, and which 
cannot. Moreover, an estimation of the significance of the change of each flux 
between different conditions can be provided.

Predictions of specific growth rates
CB metabolic models can quantitatively predict specific growth rates, or growth 
yields. Therefore, a comparison between predicted and experimentally determined 
values, such as the specific growth rate, provide the means to test the accuracy 
of the model. Constraints are set on the set of experimentally measured uptake 
and/or secretion rates while the uptake of other available metabolites (if any) is 
left unconstrained. Subsequently, the biomass function is set as the objective to 
maximize, which results in a predicted maximal specific growth rate.
These quantitative validations are limited since only one predicted ‘flux’ value, 
the specific growth rate, is compared to experimental data. Due to the inherent 
uncertainty provided by the size of the solution space, not all metabolic fluxes 
can be predicted with equal accuracy. However, many of these fluxes can still 
be predicted within a narrow range. Comparing multiple predicted fluxes to 
experimentally measured or experimentally inferred fluxes provides a much more 
solid and quantitative validation of CB metabolic models.

The importance of updating models
An example that illustrates the importance of updating CB metabolic models is 
the conversion of fructose-6-phosphate to fructose-1,6-bisphosphate catalyzed by 
PfkA and/or PfkB in Mtb. Within different models, the enzymes and their interaction 
in catalyzing this ATP driven reaction are annotated differently. In one Mtb model 
this reaction can only occur if PfkA and PfkB are both present, while in another 
this reaction can occur if either PfkA or PfkB is present [23, 24]. However, Phong 
and colleagues [25] showed that only PfkA catalyzes the conversion of fructose-
6-phosphate to fructose-1,6-bisphosphate whereas PfkB does not. Thus, clearly 
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both models should be updated. This is one of the examples that show that it is 
important not only to create consistent models, but also to continuously update 
them. CB metabolic models organize and integrate the knowledge on metabolism 
and transport into a well-defined network. Therefore, CB metabolic models enable 
to systematically explore the metabolic capacities of organisms under a broad 
range of conditions and allow assessing the effect of perturbations (genetic or 
environmental) on the underlying metabolic network. On the basis thereof, these 
analyses subsequently enable generating experimentally testable hypotheses, 
making predictions over a range of conditions, and to provide invaluable insights 
that cannot be obtained if not from a systems perspective.

Merging of metabolic models
Two or more independently created CB metabolic models of the same organism 
will likely contain many common reactions and metabolic pathways. Owing to the 
specific emphasis and expertise of the model builders, it is also likely that both 
models would describe different parts of metabolism or the same pathways with 
different detail level. To preserve the knowledge in these models, a logical step 
is combining them into one comprehensive or consensus model. Merging two or 
more CB metabolic models describing the same organism might seem, at first sight, 
a straightforward task. Nevertheless, it can prove quite time consuming and full 
of unexpected challenges, such as those associated with the so-called namespace 
problem, derived from using different names for the metabolites [26]. This 
complicates the automatic identification of compounds common to both models. 
This implies that manual curation is still required to identify similar reactions and 
remove discrepancies.

Topological and elemental balancing inconsistencies
In a CB metabolic model all reactions must be stoichiometrically balanced so 
that there is no net internal production of any metabolite. Software tools, such 
as the COBRA Toolbox [27] include functionalities to inspect the model and 
detect unbalanced reactions. These tools require all metabolites in the model to 
be annotated with their chemical formula, which is the case for iNJ661 but not 
for GSMN-TB 1.1. Moreover, GSMN-TB 1.1 does not explicitly contain water or 
protons (apart from transport reactions and respiration), making it impossible to 
verify whether the reactions are elementally balanced.
Futile cycles are metabolic routes with no net gain. The existence of futile cycles in 
a metabolic network expands the solution space and complicates flux predictions. 
In some cases, these cycles are inherent to the biology of the studied organism. 
However, they can also appear as a result of an overlooked doubling of reactions, 
or by wrongly assigned reaction directionality. These types of futile cycles are 
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harmless from the model point of view, as long as they do not lead to net production 
or degradation of metabolites. Otherwise, they render the model unbalanced and 
model predictions can become unreliable.

History of CB metabolic models of Mycobacterium tuberculosis
Figure 2.2 shows the timeline of the successive CB models of Mtb metabolism 
that have been reconstructed since 2005. The very first CB metabolic model 
described the synthesis of triacylglycerol from glucose in human adipose tissue 
in 1986 [28]. Nearly two decades later, in 2005, the first CB metabolic model of 
Mtb appeared [14]. This model (MAP) was a detailed description of the mycolic 
acid synthesis pathway. Mycolic acids are long chain fatty acids that are unique 
to mycobacteria and essential for their survival [29]. In 2007, two genome-scale 
CB metabolic models of Mtb were independently published. Even though both 
models, GSMN-TB (Genome Scale Metabolic Network Tuberculosis) [30] and 
iNJ661 (in silico Neema Jamshidi, 661 genes) [23], describe the same organism, 
there are a number of substantial differences between them. GSMN-TB is arguably 
more complete than iNJ661, as it contains more genes (726 as compared to 661) 
and it also accounts for the methylcitrate cycle, which is critical for intracellular 
growth of Mtb [31]. iNJ661 has a more detailed annotation containing chemical 
formulas for each metabolite (except for some groups of metabolites that are 
lumped together and protein-metabolite complexes) and it is topologically more 
consistent, since it contains no duplicated reactions or metabolites. In 2009, Colijn 
and colleagues [32] metabolically interpreted gene expression data to predict the 
impact of 75 different drugs, combinations of drugs and media compositions on 
the mycolic acid synthesis capacity of Mtb. The mycolic acid synthesis pathway is 
described with greater detail within MAP than in GSMN-TB. Therefore, all mycolic 
acid reactions in GSMN-TB were replaced with the mycolic acid reactions from 
MAP creating a more comprehensive model (indicated by MMF-RmwBo in Figure 
2.2). In the beginning of 2010, Fang and colleagues [33] used a semi-automatic 
method to create a model more compatible with in vivo conditions, iNJ661v, which 
optimally reproduced in vivo gene essentiality measurements. For completeness, 
this model was supplemented with reactions and metabolites from GSMN-TB and 
with the methylcitrate cycle. In the same year, Bordbar and colleagues [7] created 
the first macrophage-Mtb combined model. This dual model combined iNJ661 with 
a cell-specific alveolar macrophage model derived from the first human metabolic 
reconstruction [34]. High-throughput host gene expression data from ex vivo 
infected macrophages were integrated in the model to distinguish three different 
forms of tuberculosis: latent, pulmonary and meningeal. In 2011 Chindelevitch 
and colleagues developed MetaMerge, an algorithm to combine two CB metabolic 
models, and used it to merge iNJ661 and GSMN-TB [35]. The joining of both models 
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by MetaMerge is an automated process, therefore manual curation is still required 
to select correct reactions from highly similar reactions derived from both models 
and to identify metabolites that could not automatically be assigned to a database 
identifier, or whose chemical formula could not be determined. In 2013, an 
improved and extended version of GSMN-TB, GSMN-TB 1.1 appeared [24]. GSMN-
TB 1.1 contains the cholesterol degradation pathway and additional corrections to 
the original GSMN-TB model.

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

GSMN-TB
726/849/75%

iNJ661
661/939/77%

iAB-AMØ-1410-Mt-661
2071/3951/71%

MMF-RmwBo
776/1108/79%

iNJ661v
663/1049/69%

MergedTBModel
917/1400/75%

MAP
28/219/89%

sMtb
915/1192/83%

GSMN-TB 1.1
759/876/75%

Figure 2.2 - Time line of CB metabolic models of Mtb.
The numbers below every model name denote the number of genes, the number of reactions and the percentage of 
gene-associated reactions in the model. MAP: Mycolic acid pathway [14], GSMN-TB: Genome-scale metabolic network 
of M. tuberculosis [30], iNJ661: in silico Neema Jamshidi 661 genes [23], MMF-RmwBo: Merged McFadden-Ramam 
with biomass objective [32], iNJ661v: in vivo compatible model based on iNJ661 [33], iAB-AMØ-1410Mt-661: in silico 
Aarash Bordbar alveolar macrophage 1410 genes Mycobacterium tuberculosis 661 genes [7], MergedTBModel: Merged 
Mycobacterium tuberculosis model [35], GSMN-TB 1.1: A curated and extended version of GSMN-TB [24], sMtb: in silico 
Mycobacterium tuberculosis.

Biomass functions for in vitro Mtb
iNJ661 and GSMN-TB 1.1 are reconstructed independently and therefore not only 
differ in network topology, but also differ in the biomass reactions. The chemical 
formulas of all biomass precursors in a CB metabolic model, multiplied with their 
stoichiometric coefficients, should add up to one gram dry weight of biomass. This is 
the case for the biomass functions of iNJ661 and sMtb and the contribution of each 
subgroup of metabolites to the total biomass can be calculated (Table 2.1). However, 
the weight percentage of nucleic acids in iNJ661 seems to be up to five-fold higher 
than those used in GSMN-TB 1.1. This difference can be attributed to differences in 
two studies reporting on nucleic acid dry weight percentages [36, 37]. Unfortunately, 
there are no chemical formulas provided in GSMN-TB 1.1, which complicates the 
identification of the exact nature of some compounds, such as ‘DIM’ (dimycocerosate) 
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or ‘PIMS’ (phosphatidyl myo-inositol mannosides), and such a classification of the 
relative contribution of subgroups of metabolites to biomass cannot be obtained. 
Biomass functions are often used to validate CB metabolic models by comparing 
predicted specific growth rates with experimentally obtained specific growth rates. 
iNJ661 was validated in such a way, for growth on three media differing in carbon 
and nitrogen sources [23]. Similarly GSMN-TB, the predecessor of GSMN-TB 1.1 was 
validated using experimentally measured specific growth rates for various measured 
glycerol uptake rates [30].
For sMtb, the biomass composition is based on the average composition measured 
at two different growth rates [36], although adaptations would be required for those 
conditions where experimental evidence shows altered compositions. Objective 
functions for dormant mycobacteria are most likely very different from those of 
actively replicating mycobacteria.

Table 2.1 - Weight percentages of different biomass components.

Metabolite group Percentage of iNJ661 biomass 
(%wt/wt)a

Percentage of sMtb biomass 
(%wt/wt)a

Amino acids 27 22

Nucleic acids 26 5

Sugars and Carbohydrates 21 26

Lipids 25 39

Other 1 8
a The weight percentage of each subgroup of metabolites is calculated by multiplying the stoichiometric coefficients 
for each metabolite in each subgroup by their molecular weights and dividing the total in each subgroup by the total 
weight of all metabolites.

Biomass functions for in vivo Mtb
Biomass composition of Mtb is not constant over different conditions. For 
instance it is known that Mtb accumulates triacylglycerol under in vitro conditions 
that produce a state which mimics the dormant state in the host [38], and that 
the synthesis of a specific class of iron chelating molecules, called mycobactin 
siderophores, is required for iron acquisition [39]. These adaptations effectively 
change the biomass composition. Moreover, in vivo Mtb is under constant stress 
caused by the host immune system, in particular oxidative stress by reactive oxygen 
and nitrogen species produced by the host [40]. The damaging effects of these 
reactive species must be compensated, again changing the growth requirements, 
which should be reflected in the optimization objective(s) when in vivo metabolic 
states are simulated.
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A consensus metabolic model of Mtb (sMtb)

The mere existence of eight different genome-scale metabolic models of Mtb, 
of which most are extensions of previous ones, reflects the importance of 
keeping CB metabolic models up to date. Two major independently created 
CB models of Mtb metabolism have thus far not been merged and manually 
curated. These two models: GSMN-TB 1.1 and iNJ661 differ in size and cover 
partly overlapping parts of Mtb metabolism. Metabolites are annotated 
differently for both models. Model iNJ661 contains for the metabolites: 
abbreviations, full names, chemical formulas and charges, whereas GSMN-
TB 1.1 only contains abbreviations and full names. Both models use different 
abbreviations and few metabolite names appear the same in both models. 
Neither model contains references to persistent chemical databases, such as 
ChEBI [41], PubChem [42] or KeGG [43] or database-independent identifiers, 
such as SMILES [44]. There are large parts of metabolism covered by GSMN-TB 
1.1 that are not covered by iNJ661 and vice versa. In addition, the mycolic acid 
synthesis pathway is described in more detail by model MAP than either iNJ661 
or GSMN-TB 1.1. Therefore we have constructed sMtb, a manually curated 
merged model of MAP, iNJ661 and GSMN-TB 1.1 that is currently the most 
comprehensive genome-scale metabolic model of Mtb. sMtb is provided in the 
Supplementary Material in SBML formats, level 2 and 3 and as a spreadsheet. 
Unlike previously published CB metabolic Mtb models, sMtb contains chemical 
formulas, references to KeGG, PubChem, ChEBI and SMILES for all metabolites. 
These references permit automated reasoning and allow all reactions to be 
elementally balanced. The metabolic network of sMtb contains 1192 reactions, 
915 genes, and 929 metabolites. It includes a number of important extensions 
to previous models, such as the mycolic acid synthesis [29], dimycocerosate 
ester biosynthesis [45] and cholesterol degradation [8] pathways that have 
been updated according to the latest insights. In sMtb 84% of the reactions are 
associated with the corresponding genes, whereas in GSMN-TB 1.1 and iNJ661 
these percentages are only 75% and 77%, respectively. A high percentage of 
gene-associated reactions in a CB metabolic model is a signature of a reliable 
network topology. However, it is not a guarantee, because the gene essentiality 
predictions of GSMN-TB 1.1 are better than those of iNJ661 (Table 2.2). This 
does not necessarily mean that the network topology of GSMN-TB 1.1 is better 
than that of iNJ661, it could also be due to the more accurate biomass objective 
of GSMN-TB 1.1 that is designed to describe in vitro growth.
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Table 2.2 - Validation of network topology and biomass function by gene essentiality.
Note that due to rounding, the totals may not add up to 100%.

Model iNJ661 GSMN-TB 1.1a sMtb

Objective for in vitro growth no yes yes

True Positives 132 20% 175 23% 215 23%

True Negatives 288 44% 395 52% 522 57%

False Positives 59 9% 45 6% 45 5%

False Negatives 182 28% 144 19% 133 15%

Correct predictions 420 64% 570 75% 737 80%

Sensitivity 42% 55% 62%

Specificity 83% 90% 92%

Accuracy 64% 75% 80%
a TP, TN, FP, FN and Correct predictions percentages from [24].

Prediction of gene essentiality
Gene essentiality predictions depend, among other factors, on the available 
nutrients, the topology of the metabolic network, the quality of the annotation 
and the chosen objective function. These predictions are suitable to test the 
topology of a metabolic network, however, they are by no means a quantitative 
validation of flux distribution predictions. Genes are deleted from the model one 
at the time and all the reactions that are dependent on the enzyme encoded by 
the gene are constrained to carry no flux. If the value of the objective function 
(often maximization of biomass production) is significantly or totally reduced by 
these constraints, the gene is predicted to be essential. These predictions are thus 
condition specific and differ for the various models. We have used iNJ661, GSMN-
TB 1.1 and sMtb to predict genes that upon in silico deletion would result in a 
decrease of the specific growth rate by 95% or more (see Supplementary Methods). 
Those genes were said to be essential and compared to an in vitro gene essentiality 
dataset generated via deep sequencing [5]. It can be seen in Table 2.2 that sMtb 
performs best in predicting in vitro gene essentiality, with an accuracy of 80% as 
compared to 75% for GSMN-TB 1.1 and 64% for iNJ661.
However, as the chosen threshold changes, so do the sensitivity (also called 
true positive rate) and the false positive rate (1 - specificity). The relationship 
between the false positive rate and the true positive rate for the gene essentiality 
predictions by the various models for different threshold values is given in a 
Receiver Operating Characteristic (ROC) curve (Supplementary Figure 2.2). The 
corresponding Area Under the Curve (AUC) represents the chance that a randomly 
chosen experimentally observed essential gene is predicted as such and is 
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commonly used for model comparison. For iNJ661, GSMN-TB 1.1 and sMtb this 
chance equals 0.65, 0.78 and 0.80 respectively. In all three cases the p-values (all 
lower than 10-5) associated with the AUC show that these areas are significantly 
different from 0.5, which would correspond to a random prediction.

Central carbon metabolic flux predictions compared to 13C data
To validate CB metabolic models, ideally the predicted metabolic states would 
be compared to measured metabolic states. Although metabolic states cannot 
directly be measured, they can be inferred by isotopic labeling experiments. Flux 
distributions obtained from Mtb CB genome-scale metabolic models have thus 
far not been compared to in vitro 13C inferred fluxes as has been done for other 
organisms, such as E. coli [16, 46].
We compared the ability to correctly predict metabolic flux distributions for the 
three CB metabolic models: iNJ661, GSMN-TB 1.1 and sMtb. In vitro results for 
Mtb and the attenuated TB vaccine strain Mycobacterium bovis Bacillus Calmette-
Guérin (BCG) were obtained from Beste et al. [47]. BCG has a high degree of genome 
identity to Mtb and is therefore often used as an Mtb surrogate [48-50]. The three 
CB metabolic models GSMN-TB 1.1, iNJ661 and sMtb all contain biomass functions 
that are based on both BCG and Mtb biomass composition. Therefore, metabolic 
fluxes from both Mtb and BCG are used. Beste and colleagues measured the 
specific glycerol consumption rate, the specific Tween 80 consumption rate and 
the specific CO2 production rate at two different dilution rates: 0.01 h-1 and 0.03 
h-1 for BCG and 0.01 h-1 for Mtb [47]. These experiments were done in a chemostat, 
therefore the dilution rate equals the specific growth rate. Tween 80 is a fatty 
acid ester of sorbitan polyethoxylate. Mycobacteria have phospholipase A activity 
that releases fatty acids from Tween [51]. In the case of Tween 80, oleic acid is 
released. Therefore, the specific consumption rate of Tween 80 can be simulated 
as the specific consumption rate of oleic acid (for more details see Supplementary 
Methods).

Table 2.3 - Growth related ATP coefficients and specific growth rate predictions for the 
various models.

Model Growth related coefficient
(mmol gdw-1)

Specific growth rate prediction (h-1)

0.01 BCG 0.03 BCG 0.01 Mtb

iNJ661 60 0.0137 0.0155 0.0077

GSMN-TB 1.1 47 (+9a) 0.0037 0.0070 0.0037

sMtb 57 0.0151 0.0260 0.0129
a Excluding ATP costs for protein, RNA, and DNA synthesis. The sum of these costs equals approximately 9 mmol 

gdw-1 h-1.
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Non-growth associated maintenance is expressed as a conversion of ATP to ADP 
and quantifies the energy required by Mtb to maintain itself in a given environment. 
All models gave the best specific growth rate prediction when the non-growth 
associated maintenance was set to 0 mmol gdw-1 h-1 (Supplementary Figure 2.1). 
However, a small amount of energy for maintenance is always required to sustain 
an organism in its environment, therefore a small arbitrary maintenance flux of 0.1 
mmol gdw-1 h-1 was included in each model before predicting the optimal specific 
growth rate to compare with the measured values (Table 2.3).

As can be seen in Figure 2.3, predicted fluxes and 13C inferred in vitro fluxes in 
general do not completely agree. The different pathways in central carbon 
metabolism are separated in Figure 2.4 and the predictions of the different models 
are given. Metabolic pathway representations of the metabolic state predictions 
are given in Supplementary Figures 2.3, 2.4, and 2.5. All models predict a low flux 
through the pentose phosphate pathway, even though 13C inferred fluxes show 
otherwise for BCG at a specific growth rate of 0.03 h-1, but show completely different 
behaviors for the tricarboxylic acid cycle and the glyoxylate shunt (Figure 2.4). The 
discrepancies between 13C inferred fluxes and the flux predictions by the various 
models show that the predictions of the models become worse as the distance (i.e. 
the number of reactions) from the glycerol entry point, where glycerol is converted 
to glycerol-3-phosphate, increases. The predictions for pathways such as the TCA 
cycle and glyoxylate shunt are worse than those for glycolysis and glycerol uptake, 
because they are further ‘downstream’ of the glycerol entry point in the models 
and thus more options exist for the flux to be rerouted towards alternative parts 
of the metabolic network that are not shown in the network depicted in Figure 
2.3. Model sMtb does relatively well at flux predictions for glycolysis and the TCA 
cycle. In contrast to iNJ661 and GSMN-TB 1.1, it is the only model that predicts 
a flux from pyruvate to acetyl-CoA for BCG at a specific growth rate of 0.03 h-1 
and Mtb at a specific growth rate of 0.01 h-1. The standard deviations for most 
predicted fluxes are relatively small (given by error bars in Figure 2.4), implying 
that the predictions are precise but not accurate. This could be partly due to 
the applied sampling method to determine means and standard deviations (see 
Supplementary Methods), but it could also be caused by a bimodal distribution of 
flux solutions instead of a normal distribution, which would limit the usefulness 
of concepts such as means and standard deviations. Another point to consider 
regarding flux predictions is that although the flux predictions of all three models 
can be improved, 13C fluxes are also inferred from a model, using measured 
metabolites, which makes it more complicated to point out whether the predicted 
fluxes, inferred fluxes, or both can be improved.
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Figure 2.3 - Central carbon metabolism and agreement between 13C inferred and predicted flux.
Central carbon metabolism of BCG and Mtb is given on the left. For each reaction a gene name and a locus tag is given 
corresponding to the gene(s) encoding the enzyme(s) catalyzing the reaction. Isozymes are indicated separated by a 
‘|’ while subunits are separated by a ‘&’ symbol. The graphs on the right indicate the agreement between 13C inferred 
[47] fluxes and predicted fluxes by iNJ661 (crosses), GSMN-TB 1.1 (triangles) and sMtb (plusses). The fluxes are given 
as a percentage of the glycerol uptake rate. Negative percentages denote a reversed flux direction. The black dashed 
line represents perfect agreement.
Metabolite abbreviations: GL, glycerol; G6P, D-glucose 6-phosphate; F6P, D-frucose 6-phosphate; FBP, D-fructose 
1,6-bisphosphate; G3P, D-glyceraldehyde 3-phosphate; 13PDG, 3-phospho-D-glyceroyl phosphate; 3PG, 3-phospho-
D-glycerate; 2PG, 2-phospho-D-glycerate; PEP, phosphoenolpyruvate; PYR, pyruvate; D6PGL, D-glucono-1,5-lactone 
6-phosphate; D6PGC, 6-phospho-D-gluconate; RL5P, D-ribulose 5-phosphate; X5P, D-xylulose 5-phosphate; R5P, 
D-ribose 5-phosphate; S7P, sedoheptulose 7-phosphate; E4P, D-erythrose 4-phosphate; ACCOA, acetyl-CoA; ICIT, 
isocitrate; AKG, 2-oxoglutarate; SUCSA, succinic semialdehyde; SUCCOA, succinyl-CoA; FUM, fumarate; MAL, 
malate; OA, oxaloacetate; GLX, glyoxylate.
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Figure 2.4 - 13C inferred fluxes and predicted fluxes for various parts of central carbon metabolism.
13C Inferred [47] (black) and predicted fluxes for iNJ661 (dark grey), GSMN-TB 1.1 (grey) and sMtb (light grey), given as 
a percentage of the glycerol uptake rate, for the various parts of central carbon metabolism for BCG grown at 0.01 h-1 
and 0.03 h-1 and Mtb grown at 0.01 h-1. The error bars indicate the standard deviations.
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Nevertheless, sMtb shows the highest agreement between inferred and predicted 
fluxes, closely followed by iNJ661 (Table 2.4). The more accurately reflected 
cellular behavior under in vitro conditions by sMtb as compared to iNJ661 and 
GSMN-TB 1.1 increases the confidence of predictions of cellular behavior under 
in vivo conditions by sMtb. Therefore, sMtb provides a more accurate platform for 
drug target discovery than was available before.

Table 2.4 - Pearson’s correlation coefficient for inferred and predicted fluxes for BCG and 
Mtb at various growth rates.

Model Pearson’s correlation coefficient

BCG μ = 0.01 h-1 BCG μ = 0.03 h-1 Mtb μ = 0.01 h-1 Average

iNJ661 0.87 0.90 0.94 0.90

GSMN-TB 1.1 0.42 0.80 0.90 0.66

sMtb 0.90 0.95 0.98 0.94

Drug-phenotype predictions
We tested the three models on their ability to assess the effectiveness of anti-
TB drugs with known metabolic targets. Table 2.5 provides an overview of the 
predicted phenotypes after drug application by inactivating the specific enzyme 
and the corresponding reaction(s) in silico (see Supplementary Methods). sMtb 
predicts the highest number of non-viable phenotypes caused by anti-TB drugs, 
closely followed by iNJ661 and GSMN-TB 1.1. Nevertheless, these predictions are 
based on growth on Roison’s minimal medium [47], which does not represent in 
vivo conditions. Moreover, in vitro biomass reactions are used for both GSMN-TB 
1.1 and sMtb. Setting the models such that they simulate in vivo conditions would 
alter these drug-phenotype predictions. However, this is complicated due to the 
fact that iNJ661 does not contain a cholesterol degradation pathway, which has 
been shown to be important for intracellular growth and survival [8, 52-56]. Mtb 
infection is a complex interplay between the pathogen and its host that involves 
cellular changes in both organisms [57]. Therefore, modeling both host and 
pathogen metabolism simultaneously is required for an accurate representation 
of infection.
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Table 2.5 - Drugs with known metabolic targets [6, 58-60] and the percentage of the specific 
growth rates obtained after in silico gene knockouts of these targets.

Target Drug Percentage of the wild type specific growth 
rate obtained

iN
J6

61

G
SM

N
-T

B
 1

.1

sM
tb

InhA Isoniazid, ethionamide 0 % 100 % 0 %

KasA Isoniazid 0 % 100 % 0 %

DfrA Isoniazid 0 % 100 % 100 %

EmbB Ethambutol 0 % 0 % 0 %

Alr Cycloserine 0 % 0 % 0 %

DdlA Cycloserine 0 % 0 % 0 %

FolP1 Para-amino salicylic acid 100 % 100 % 100 %

AtpE TMC207 63 % 57 % 60 %

DprE1 BTZ043 100 % 0 % 0 %

KasB Thiolactomycin 0 % 100 % 0 %

FabH Thiolactomycin 100 % 0 % 100 %

MmaA4 Thiacetazone 100 % 0 % 0 %

Total percentage of non-viable phenotypesa 58% 50% 67%
a If the predicted specific growth rate of an in silico knockout mutant equals 5% or less of the in silico wild-type specific 
growth rate prediction, the knockout mutant is classified as a non-viable phenotype.

While CB metabolic models unfortunately cannot directly predict which molecules 
are effective drugs, they can predict which metabolic enzymes make for suitable 
drug targets. Whether or not such enzymes can be effectively inhibited depends on 
the characteristics of the enzyme itself. Databases such as TuberQ [61] can provide 
a druggability analysis for an enzyme predicted to be a suitable drug target, 
thereby verifying if the enzyme can effectively be targeted. An approach to select 
suitable drug targets will be more effective if essentiality analysis is combined with 
additional systems level information such as information on the accumulation of 
stable toxic intermediates. For examples, the cholesterol degradation pathway in 
Mtb [8] contains a large number of enzymes, many of them essential for cholesterol 
degradation and thus possible drug targets. However, accumulation of stable toxic 
intermediates such as cholest-4-en-3-one and catechol derivatives can occur if 
the enzymes HsaC, KshA, Cyp125 and Cyp142 are non-functional [62, 63]. The 
accumulation of such intermediates can be fatal to Mtb, increasing the potential 
of these enzymes as drug targets. A similar approach can be taken by designing 
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replacement substrates for enzymes that serve as inhibitors of subsequent enzymes 
after being activated by the target enzyme [64].
Perhaps one of the biggest advantages of using CB metabolic models to find 
drug targets is that it enables the prediction of metabolic rearrangements after 
constraining the flux through reactions that are known to be affected by a given 
drug. This can highlight the possible ‘escape routes’ that Mtb possesses. Bhat 
and colleagues [12] used such an approach which is further discussed in the part: 
Discovering new drug targets and combinations of drugs.

sMtb overall performance
Model iNJ661 predicts metabolic states relatively well as compared to GSMN-TB 
1.1 (Table 2.4, Figures 2.3 and 2.4), but on the other hand the gene essentiality 
predictions of GSMN-TB 1.1 are better (accuracy of 75%) than those of iNJ661 
(accuracy of 64%). The consensus genome-scale CB metabolic model sMtb is the 
most comprehensive, manually curated genome-scale CB model of Mtb to date. It 
represents the strengths of iNJ661 and GSMN-TB 1.1 and not only gives accurate 
qualitative predictions, such as gene essentiality predictions (Table 2.2) and drug-
phenotype predictions (Table 2.5), but also accurate quantitative predictions, 
such as the specific growth rate (Table 2.3) and the metabolic states (Figure 2.4; 
Supplementary Figures 2.3, 2.4, and 2.5). The overall improved performance of sMtb 
is essential for obtaining meaningful and accurate predictions of the metabolic 
state in conditions that are experimentally inaccessible. Moreover, the improved 
annotation of sMtb regarding its metabolites is a critical point, as it enables future 
refinements and extensions by other researchers with relative ease.
However, even though sMtb performs better in overall predictions of in vitro 
metabolic states, there is room for improvement, especially regarding the metabolic 
state predictions of the pentose phosphate pathway and the glyoxylate shunt. 
Options to achieve these better predictions would be to supply a more accurate 
objective, or to improve the underlying metabolic network of sMtb.

Understanding Mtb metabolism and designing 
intervention strategies: challenges and outlook

In an attempt to mimic metabolic states of Mtb in various environments more 
accurately, CB metabolic models can be constrained with various types of 
-omics data. Unlike flux measurements, gene expression data can be relatively 
straightforwardly obtained using RNA sequencing or microarray technologies. CB 
metabolic models can also act as scaffolds for other types of -omics data, such as 
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proteomics. These data types have the added advantage of being (almost) genome-
scale and can be integrated into CB metabolic models, creating condition-specific 
models with increased predictive power. Such condition-specific models are 
important to provide reliable metabolic state predictions in in vivo conditions 
where uptake rates and metabolic objectives are unclear, with the ultimate goal of 
designing novel intervention strategies.

Integration of expression data
Alternative methods have been developed to integrate either gene or protein 
expression data into CB models, see [20, 65-67] for recent reviews. A systematic 
evaluation of these methods, comparing performance and robustness using 
alternative models and data sets [68] shows that no method outperforms the 
others in all the tested scenarios. Here, we will focus on the methods that have 
been applied to explore mycobacterial metabolism.
E-Flux [32] constrains the maximum flux through a reaction using the measured 
gene expression levels. Whenever the expression level of an enzyme-coding gene is 
low, tight constraints are imposed on the maximal flux through the corresponding 
reaction. The rationale is that mRNA levels can be used as an approximation to the 
amounts of protein available, and these in turn can be used as an approximation 
to the upper bound on reactions rates. This algorithm was tested using two 
models, MAP and MMF-RmwBo. The Boshoff Mtb gene expression compendium 
[69] contains over 400 microarray experiments measuring the transcriptional 
adaptations of Mtb to 75 different drugs, drug combinations and growth conditions. 
E-Flux was used to predict the impact of each of these conditions and drugs on the 
biosynthesis of mycolic acids. This approach correctly predicted the specificity of 
seven of the eight known inhibitors of mycolic acid biosynthesis included in the 
data compendium. Additionally, it was also able to identify a small number of non-
specific potential inhibitors and enhancers of mycolic acid biosynthesis.
While E-Flux uses transcript data to improve the predictions of metabolic fluxes, 
Fang and colleagues [70] proposed an in silico approach to create state-specific 
models by integrating gene expression data. Their method relies on comparing 
gene expression levels between a metabolically well-characterized reference state 
and the perturbed state of interest. This method uses the flux distribution in the 
reference state and imposes soft constraints on the fluxes according to the observed 
changes in gene expression to characterize the perturbed metabolic state. Changes 
in gene expression data for wild type Mtb H37Rv, as well as for the ΔdosR deletion 
mutant, associated with the transfer from normoxic to hypoxic conditions were 
combined with iNJ661v to produce condition specific models for both strains. These 
models correctly predicted the essentiality of dosR for the adaptation to hypoxia. 
Additionally, the model also predicted the altered biomass composition of Mtb in 
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hypoxic conditions (linked to the increased production of cell-wall metabolites) 
and the critical contribution of the reductive side of the tricarboxylic acid cycle to 
the adaptation to low oxygen environments. The condition-specific models can 
also serve to specifically identify drug targets for the latent stages of the disease.
The algorithms described so far provide as primary output models of metabolism 
with altered constraints that can be used to further characterize the metabolic 
responses. Differential Producibility Analysis (DPA) [71] on the other hand, aims at 
extracting metabolic signals from expression data. DPA uses the model to identify 
genes affecting the production of each metabolite in the network, then expression 
data is used to obtain and average expression values of each set of metabolite 
associated genes. These values are then used to identify the metabolites associated 
with increased and decreased gene expression. DPA was used to analyze the 
metabolic state of Mtb in vivo (with expression data obtained from sputum samples 
of TB patients and from pathogens replicating in mouse macrophages) [72, 73] 
and in various in vitro conditions (such as growth on different carbon sources or 
exposure to different stress sources) [69, 74]. The analysis showed that one of the 
main adaptations to the macrophage environment is the downregulation of genes 
influencing metabolites in central metabolism, and the simultaneous upregulation 
of genes linked to cell wall synthesis

Integration of regulatory information
Probabilistic regulation of metabolism (PROM) [19] is an algorithm that attempts 
to link regulatory and metabolic networks. The transcriptional regulatory 
network of Mtb [75] and the Boshoff Mtb compendium [69] were used to build 
a probabilistic model of gene regulation. The probabilities were then integrated 
into the iNJ661 model as constraints on reactions of which the flux could vary 
according to the state of the transcription factor regulating the expression of the 
enzyme-coding gene. PROM correctly predicted the phenotype of 23 out of the 
24 studied transcription factor knock out mutants. The increased knowledge on 
the regulatory networks in Mtb [76] opens new ways to consider not only genes 
primarily related to metabolism but also to their regulators, thereby increasing the 
potential to discover new drug targets.

Growth related ATP coefficients and non-growth associated maintenance
The biomass reaction describes the assembly of biomass precursors into new 
cells. Each biomass precursor has a defined coefficient denoting the amount (in 
mmol) required to form one gram dry weight of biomass. The assimilation of these 
precursors requires energy, in the form of ATP to ADP conversion that is introduced 
through a growth related ATP coefficient in the biomass function (also called growth 
associated maintenance). This coefficient is very similar for iNJ661, GSMN-TB 1.1 
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and sMtb (Table 2.3). The growth related ATP coefficient of iNJ661 equals 60 mmol 
gdw-1 and that of GSMN-TB 1.1 equals 47 mmol gdw-1 plus an additional 8.8 mmol 
gdw-1 associated with protein formation. Both models thus have a similar value 
for growth-associated maintenance. Unlike the growth related ATP coefficient, 
non-growth associated maintenance is independent of the biomass composition. 
Instead, it depends on the environment and on the metabolic pathways utilized 
for growth [77]. It is assumed that non-growth associated maintenance, in the 
form of ATP to ADP conversion, is a fixed value independent of the specific growth 
rate. Here, we have set the non-growth associated maintenance to a small value 
so that the three models give the best predictions of the specific growth rate (see 
Supplementary Figure 2.1)
Non-growth associated maintenance is a useful parameter when trying to simulate 
in vivo, e.g. phagosomal, growth. The phagosome is a hostile environment and 
the energy required for non-growth associated maintenance will be relatively 
high, compared to in vitro growth conditions. Moreover, the specific growth rate 
will be limited in the phagosome. A high non-growth associated maintenance 
requirement and a low specific growth rate cannot be simulated effectively using 
a model that contains a regular biomass reaction, which includes a growth related 
ATP coefficient, but no non-growth associated maintenance cost.

Objective and constraints for Mycobacterium tuberculosis in the host
When using CB genome-scale metabolic models of Mtb as opposed to non-
pathogenic microorganisms grown in an in vitro condition, it is not straightforward 
to select an optimization objective. The primary objective of the pathogen might be 
focused on survival instead of growth. In addition, the host-pathogen interaction 
is a complex and time-dependent dynamic process, where they mutually influence 
each other. Hence, CB metabolic models, which rely on the steady state assumption, 
might not be realistic for many pathogens. Mtb is known for its ability to remain 
dormant in the host for years. In those cases, the host’s immune system prevents 
the pathogen from spreading and Mtb is contained within solid granulomas [2]. It 
is estimated that 2 billion people worldwide are latently infected [1]. The relative 
metabolic activity at the latent infection stage however, is very low. There is thus 
a stark need to understand the mechanisms underlying dormancy and predict 
its dynamics and the switch to active state. Modeling accurately and realistically 
this infection stage is hence of utmost importance. A key factor determining the 
accuracy of CB metabolic models in an infection setting is the identification of a 
suitable objective function representing dormant Mtb. Shi and colleagues created 
an objective function representing non-growing cells, based on the minimal 
cell wall composition deduced from gene expression data [78]. They compared 
predicted flux changes between growing and non-growing cells with qPCR data 
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and found consistency between fluxes and gene expression for critical pathways 
of central metabolism. A limitation of this approach is that the metabolic model 
is based on transcript abundance data [78]. A leap forward would be to investigate 
the biomass composition of Mtb in an in vivo or ex vivo situation.
Knowledge (or the lack thereof) of the availability of nutrients in the host 
environment is another factor that determines the quality of the model predictions. 
Bordbar and colleagues constructed a macrophage-Mtb model, iAB-AMØ-1410-
Mt-661, they estimated that the carbon sources available in the phagosome were 
glycerol and even long chain fatty acids (myristic acid, palmitic acid and stearic 
acid) [7]. Recent insights have changed this picture and highlighted the importance 
of cholesterol [8], aspartate [79], and other nutrients [9] in the phagosomal 
environment. Knowing the precise composition and availability of such nutrients 
will enable much more accurate predictions of the in vivo metabolic state and of 
the in vivo essentiality of gene products.

Annotation of combinatorial proteins
Little is known about transport proteins of Mtb despite the abundance of genomic 
data [80]. Transport proteins are at the boundaries of the metabolic networks and 
therefore function as gatekeepers for fluxes. Not only is it important to know 
which compounds Mtb can take up, but it is also important to know whether these 
transporters are channels, symporters or antiporters. In addition, quantitative 
predictions also require the knowledge of the energy requirements of the 
transporters. A better annotation of transport proteins of Mtb is therefore required.

Cofactor limitation
Beste and colleagues mimicked the cofactor requirements of the enzymes by 
forcing the reactions catalyzed by these enzymes to use a small arbitrary amount 
of cofactor [30]. Quantitative predictions are most likely not accurate due to the 
arbitrarily chosen amount of cofactor used in any reaction. Nevertheless, such an 
approach could be extended to simulate cofactor limitations. Iron availability is 
assumed to be reduced in the phagosome [72], thus introducing ways to mimic 
this iron scarcity in the CB models, will lead to more accurate descriptions of the 
bacterial metabolism during the infection process.

Discovering new drug targets and combinations of drugs
Fang and colleagues integrated a dynamic cell population growth model and an 
enzyme inhibition model with a modified version of iNJ661 [81]. The integrated 
model was able to reproduce in vitro experimentally measured dose-response 
curves of 3-nitropropionate, an inhibitor of the glyoxylate shunt and the 
methylcitrate cycle.
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Simulating single or double gene knock out mutants to discover potential drug 
targets and synergistic combinations, greatly depends on the network topology, the 
objective function, and the substrate(s) available to the bacteria. The difference in 
specific growth rate predictions between the wild-type and simulated single or double 
knock out mutants, is mainly attributable to the rates at which substrates are taken 
up and metabolites are secreted, and not to the compounds available. Synergistic 
combinations of drug targets can also be found by gradually decreasing flux through 
the first potential target, which can be found for example, through a classic gene 
essentiality approach, and afterwards identifying those parts of the metabolism 
that are forced to carry a relatively higher flux. Bhat and colleagues applied a similar 
strategy and studied the effect of varying inhibition by isoniazid, a front-line drug, on 
the metabolic state [12]. By gradually limiting the flux through the target of isoniazid, 
InhA, they found that the flux through various pathways was induced compared to 
the unperturbed state. These pathways could then potentially be analyzed to identify 
suitable targets for drugs administered in combination with isoniazid.
These examples show the potential of using CB models to systematically probe the 
metabolic space of Mtb, generate novel insights and pin-point possible targets for 
interventions, with drugs or otherwise.

Combinatorial models and host drug targets
The integrated human alveolar macrophage-Mtb model iAB-AMØ-1410-Mt-661 
combines the Mtb metabolic model iNJ661 and the first reconstruction of human 
metabolism, RECON 1. Recently, the human model was updated to the consensus 
reconstruction, RECON 2 [82], which in turn can be combined with sMtb to create 
an updated macrophage-Mtb model. It is crucial for such a model to contain an 
accurate description of the phagosomal environment and its contents, as this 
provides the framework for the host-pathogen interaction and can have a large 
impact on the predictions of the metabolic state for both organisms. Although drug 
target discovery is generally focused on the pathogen, there are also opportunities 
to look at the host metabolism for drug targets. An example of a host-targeted drug 
is thioridazine, which is postulated to inhibit efflux of potassium and calcium from 
the phagolysosome required for its acidification [83]. The phagosomal environment 
steers the pathogen metabolism, thus drugs targeting primarily the host and altering 
this environment will result in metabolic changes in Mtb as well. This could result 
in a state that renders the bacteria more susceptible to subsequent anti-TB drugs. 
A combined model could provide additional host drug targets, however a thorough 
understanding of the functioning and composition of the phagosome is required. An 
experimentally validated and accurate macrophage-Mtb model has much potential 
for drug target discovery, especially for the identification of synergistic drug targets, 
both in the host and Mtb itself or a combination of both.
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Conclusions

The quality and predictive power of genome-scale reconstructions of the 
metabolism and transport of Mtb is gradually increasing. Our current model, sMtb, 
outperforms considerably previously published models in in vitro metabolic state 
predictions (Table 2.4, Figure 2.3 and 2.4) and specific growth rate predictions (Table 
2.3) as well as in vitro gene essentiality predictions (Table 2.2) and drug-phenotype 
predictions (Table 2.5). However, there is still ample room for improvement. The 
predictions of flux through the pentose phosphate pathway can be improved for 
all models, while flux through the glyoxylate shunt is still best predicted by iNJ661. 
Better metabolic state predictions can be obtained through an improved network 
topology, by improving the determination of the biomass composition under 
different conditions, and by defining more accurately the objective function, as 
Schuetz and colleagues did [16] for a small E. coli model. Different combinations of 
the growth related ATP coefficient and the non-growth associated maintenance also 
have an impact on the metabolic state predictions, but these are hard to measure 
and their values can vary even for well-known organisms [84, 85]. Nevertheless 
they can be valuable parameters to fit CB metabolic models to 13C data, thereby 
improving their predictive power.
A CB metabolic model with sufficient in vitro predictive power forms the foundation 
for reliable in vivo metabolic state predictions. Nevertheless, the in vivo metabolic 
state of Mtb is arguably not in steady state and relatively little is known about the 
‘objective’ of Mtb in the host. Efforts on both the experimental and modeling side 
of Mtb metabolism continuous to shed light on its in vivo metabolic state(s) and 
paves the way for the discovery of new (synergistic) drug targets and possible new 
intervention strategies. The long term vision is that such a metabolic model will 
be one of the modules of a larger multi-scale modeling framework that connects 
a variety of models at different scales, each describing a particular subset of the 
behavior of Mtb in infection settings. This will thus ultimately contribute to the 
grander vision of a model-based ‘Virtual Patient’, with enormous potential to 
Health and Medicine.

Availability of supporting data
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Abstract

The human pathogen Mycobacterium tuberculosis has the capacity to escape 
eradication by professional phagocytes. During infection, M. tuberculosis resists 
the harsh environment of phagosomes and actively manipulates macrophages 
and dendritic cells to ensure prolonged intracellular survival. In contrast to other 
intracellular pathogens, it has remained difficult to capture the transcriptome of 
mycobacteria during infection due to an unfavorable host-to-pathogen ratio.
We infected the human macrophage-like cell line THP-1 with the attenuated 
M. tuberculosis surrogate M. bovis Bacillus Calmette–Guérin (M. bovis BCG). 
Mycobacterial RNA was up to 1000-fold underrepresented in total RNA preparations 
of infected host cells. We employed microbial enrichment combined with specific 
ribosomal RNA depletion to simultaneously analyze the transcriptional responses 
of host and pathogen during infection by dual RNA sequencing. Our results confirm 
that mycobacterial pathways for cholesterol degradation and iron acquisition are 
upregulated during infection. In addition, genes involved in the methylcitrate cycle, 
aspartate metabolism and recycling of mycolic acids were induced. In response 
to M. bovis BCG infection, host cells upregulated de novo cholesterol biosynthesis 
presumably to compensate for the loss of this metabolite by bacterial catabolism.
Dual RNA sequencing allows simultaneous capture of the global transcriptome of 
host and pathogen, during infection. However, mycobacteria remained problematic 
due to their relatively low number per host cell resulting in an unfavorable 
bacterium-to-host RNA ratio. Here, we use a strategy that combines enrichment for 
bacterial transcripts and dual RNA sequencing to provide the most comprehensive 
transcriptome of intracellular mycobacteria to date. The knowledge acquired into 
the pathogen and host pathways regulated during infection may contribute to a 
solid basis for the deployment of novel intervention strategies to tackle infection.

Keywords: Mycobacterium bovis BCG, THP-1 cells, infection, host-microbe 
interaction, transcriptome, dual RNA sequencing, microbe enrichment.
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Background

Tuberculosis (TB) is an infectious disease caused by the airborne pathogen 
Mycobacterium tuberculosis and accounts for 1.3 million fatalities annually 
[1]. Unlike non-pathogenic microbes that are eliminated inside the maturing 
phagosome of immune cells such as macrophages, M. tuberculosis brings 
phagosome maturation to a halt and manages to cope with various host threats 
including acidification, reactive radicals and nutrient limitation [2]. Studying 
the transcriptome of intracellular pathogens, in particular M. tuberculosis, 
during infection remained difficult due to a low bacteria-to-host RNA ratio. 
For different pathogens the number of organisms per host cell spans several 
orders of magnitudes ranging from 1 to 10 for M. tuberculosis and up to 1000 
for Chlamydia [3, 4].
The first insights into the intracellular life of M. tuberculosis provided by 
comparative microarray analysis, revealed a switch from aerobic to anaerobic 
respiration, induction of the dormancy regulon dosR and iron scavenging as 
well as upregulation of β-oxidation of fatty acids upon infection [5]. Similar 
technologies and quantitative real-time PCR were applied to broaden our 
understanding of specific aspects of intracellular M. tuberculosis [6-9]. 
Microarray probes have the disadvantage of unspecific cross-hybridization 
between pathogen and host [4], and most often such probes are not optimized 
for minimal cross-reactivity with other species. Cappelli and colleagues [8] 
estimated that non-specific signals account for up to 12.5% of all signals. 
Additionally, transcription of non-coding regions and missed or miss-
annotated genes often remain disregarded due to a limited array design. 
Quantitative real-time PCR has mostly been applied to small subsets of genes, 
since detection of each transcript requires a pair of specific oligonucleotides 
[6-9].
Dual RNA sequencing (dual RNA-seq) is a relatively novel technique to study 
gene expression profiles. This technique allows unbiased and simultaneous 
sequencing of transcriptomes of multiple organisms and therefore is a superb 
technology to study intracellular pathogens during infection of host cells. 
The sequencing reads can subsequently be matched in silico to the respective 
organism. Without prior knowledge of sample content, its composition can be 
deduced from dual RNA-seq datasets without targeting specific species [10]. 
Most importantly, dual RNA-seq captures the transcriptome in its entirety 
thereby overcoming the limitations of microarrays discussed above. First 
application of this technology to study M. avium subsp. paratuberculosis during 
macrophage infection has shed new light on mycobacterial iron acquisition 
[11].
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The attenuated TB vaccine strain M. bovis Bacillus Calmette–Guérin (M. bovis BCG) 
has been widely used in research as surrogate for pathogenic M. tuberculosis due 
to a high degree of genome identity [12-14]. In this study, we investigated the 
transcriptional adaptation of M. bovis BCG 24 hours after infection of the human 
macrophage-like cell line THP-1 by dual RNA-seq. The underrepresentation of 
bacterial RNA in preparations of total RNA from infected host cells requires high 
sequencing depth to gain statistical significance and adequate pathogen coverage, 
leading to increased costs. Mangan and colleagues developed a method entailing 
differential lysis with guanidine thiocyanate to enrich for mycobacteria from 
infected macrophages, thus avoiding massive underrepresentation of bacterial RNA 
as compared to total RNA preparations of infected cells [15]. This method has been 
used for in vivo transcriptome studies using microarrays [6, 16]. Here we present a 
strategy that combines bacterial enrichment for bacterial transcripts and dual RNA-
seq, which we evaluate against non-enriched samples.

Results

Twenty-four hours post-infection, THP-1 cells were harvested and total RNA was 
isolated. Additionally, two out of three infected THP-1 samples were enriched for 
M. bovis BCG bacilli, using the procedure described in Materials and Methods. The 
analysis of the 50-bp RNA-derived paired-end sequencing data is illustrated in 
Figure 3.1. Two out of the three datasets derived from the non-enriched infections 
(IF1/2) were compared to a reference sample with uninfected THP-1 cells (THP) 
and differentially expressed THP-1 genes were identified. For differential M. bovis 
BCG gene and small RNA expression analysis, the datasets derived from enriched 
infections (IF1/2ER) were compared to a reference culture of exponentially growing 
M. bovis BCG (EGB). A spike-in sample (SPI) was used to estimate the percentage 
of infected cells and to correlate the reads of spiked-in M. bovis BCG with the M. 
bovis BCG culture and the non-enriched THP-1 infections with M. bovis BCG. An 
overview of the primary sequencing data is depicted in Table 3.1.

Pathogen specific enrichment strategy is effective
It has been estimated that a minimum of 2–5 million reads from a ribosomal RNA-
depleted library is required to adequately cover the gene expression profile of a 
pathogen in a dual RNA-seq experiment [17-19]. Datasets IF0, IF1 and IF2, derived 
from non-enriched infections contained 0.4, 1.6 and 1.1 million 50-bp reads that 
aligned to the M. bovis BCG genome, which was too low for significant coverage 
of the gene expression profile. Subsequently, an enrichment strategy for M. bovis 
BCG was applied to overcome this obstacle, thereby increasing the coverage of 
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intracellular M. bovis BCG transcripts. These enriched datasets (IF1ER and IF2ER) 
contained 6.1 and 3.3 million 50-bp reads that aligned to the M. bovis BCG genome 
(Table 3.1).

Figure 3.1 - Schematic overview of RNA sequencing data analysis.
A total of eight datasets were processed by aligning the 50-bp paired-end sequencing reads to the human transcriptome, 
the M. bovis BCG genome, and/or the M. bovis BCG gene and small RNA sequences. Six of these datasets were used for 
differential gene and/or small RNA expression analysis. (THP: Reference dataset for the THP-1 transcriptome, EGB: 
Reference dataset for the (exponentially growing) M. bovis BCG transcriptome, SPI: Spike-in dataset, IF0/1/2: Datasets 
of M. bovis BCG bacilli infecting THP-1 cells, IF1/2ER: Datasets of M. bovis BCG cells infecting THP-1 cells enriched 
for M. bovis BCG bacilli)

Table 3.1 - Reads (millions and percentages) mapped on the human transcriptome and the 
M. bovis BCG genome.

Human 
transcriptome

M. bovis BCG 
genome

Dataset Description M of 
reads

% M of 
reads

% Total

THP Uninfected THP-1 cells 30.9 100 – – 30.9

EGB M. bovis BCG bacilli – – 168 100 168

SPI Mixed THP-1 and M. bovis BCG 
RNA

31.8 91.0 3.16 9.0 35.0

IF0 Infected THP-1 cells replicate 0 21.5 98.0 0.45 2.0 21.9

IF1 Infected THP-1 cells replicate 1 38.2 96.0 1.57 4.0 39.7

IF2 Infected THP-1 cells replicate 2 28.0 96.3 1.07 3.7 29.0

IF1ER Infected THP-1 cells replicate 1 
enriched for M. bovis BCG bacilli

18.0 74.7 6.09 25.3 24.0

IF2ER Infected THP-1 cells replicate 2 
enriched for M. bovis BCG bacilli

26.0 88.6 3.35 11.4 29.4
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The absolute number of M. bovis BCG reads of all infected sample preparations 
was subsequently classified in four different categories: protein-coding RNA, 
ribosomal RNA, small RNA, and other (Figure 3.2A). We simulated the relationship 
between the number of identified differentially expressed protein-coding M. bovis 
BCG genes and sequencing depth (Figure 3.2B). For very low numbers of sequencing 
reads, the number of identified genes increases in a linear way with the library 
size. With increasing library size the number of correct identifications tends to 
stabilize (Figure 3.2B). The relative abundance of the four different categories 
was fairly similar in both, enriched and non-enriched samples, demonstrating 
that impact of enrichment per se on M. bovis BCG derived sequencing reads is 
negligible (Figure 3.2C). The normalized counts of the protein coding M. bovis 
BCG transcripts in the enriched datasets (IF1ER and IF2ER) and the non-enriched 
datasets (IF1 and IF2) revealed a linear relationship, with Pearson’s correlation 
coefficients of 0.91 and 0.92, respectively (Supplementary File 3.1). We conclude 
that pathogen enrichment does not introduce any bias to protein-coding gene 
expression of M. bovis BCG. However, the correlation for normalized counts per 
gene of THP-1 reads between the same datasets is much lower, 0.57 and 0.70, 
respectively (Supplementary File 3.1). Therefore, the non-enriched datasets (IF1 
and IF2) were used for differential gene expression analysis of THP-1 genes. This 
enrichment procedure thus enabled us to study the intracellular gene expression 
of M. bovis BCG during infection.

Figure 3.2 - Classification of 50-bp sequencing reads and effect of increasing sequencing depth.
(A) The total number of 50-bp sequencing reads, matching the paired-end analysis criterion that both reads could be 
aligned to the M. bovis BCG genome, were assigned to four different categories (protein-coding RNA, ribosomal RNA, 
small RNA, and other). The total of the reads for each sample represents the number of reads aligning to the M. bovis 
BCG genome. (B) Simulation of the relation between the number of differentially expressed M. bovis BCG genes and 
sequencing depth. Random subsets of reads were selected from EGB, IF1ER and IF2ER and the mean number (n=5) 
of reliably identified differentially expressed genes (FDR < 0.05) and the standard deviation (error bars) are given for 
various sequencing depths. Note that the ratio of a random set to the total set approaches 1 as the size of the random 
set increases. Therefore, the random samples become more similar to each other and the standard deviation decreases. 
For reasons of completeness, we have included a standard deviation for every point. (C) Classification of the relative 
number of 50-bp paired-end sequencing reads aligning to the M. bovis BCG genome. The legend is the same as in (A).



Comprehensive insights into transcriptional adaptation of intracellular 
mycobacteria by microbe-enriched dual RNA sequencing

3

59

M. bovis BCG response to infection
Twenty-four hours post-infection a clear response of the phagocytosed M. bovis BCG 
bacilli can be observed on the transcriptome level. A total of 367 M. bovis BCG genes 
were differentially expressed (FDR < 0.05), of which 216 were induced and 151 were 
repressed. A list of all differentially expressed genes of both M. bovis BCG and THP-1 
cells is provided in Supplementary File 3.2.

M. bovis BCG cholesterol catabolism genes are induced during infection
Cholesterol is a complex lipid that consists of three cyclohexane rings (A, B and C), 
a cyclopentane ring (D), and an 8-carbon side chain. An incomplete degradation 
pathway of cholesterol was recently proposed for M. tuberculosis [20]. This pathway 
was extended with the side chain degradation of rings C and D (Supplementary File 3.3) 
and several genes involved in the pathway were added based on additional literature 
[21-28]. This extended cholesterol degradation pathway has been previously described 
in a genome-scale metabolic model of M. tuberculosis [29].
We observed a strong increase in expression of almost all genes assigned to cholesterol 
degradation (Figure 3.3A and Supplementary File 3.3). Initially, cholesterol is taken

Figure 3.3 - Metabolic processes during infection.
Genes in green are induced upon infection (FDR < 0.05), genes in red are repressed (FDR < 0.05) and genes in black show 
no differential expression. (A) Cholesterol degradation is divided in three parts: The degradation of the side chain (yellow 
part), degradation of rings A and B (red part) and the degradation of the side chain of rings C and D (blue part). Dashed 
arrows represent multiple reactions. The degradation of the rings C and D side chain is based on homologous genes from 
Rhodococcus equi. AD: 4-androstenedione, ADD: 1,4-androstenedione, 9OHADD: 9-hydroxy-1,4, androstene-3-17-dione, 
3-HSA: 3-hydroxy-9,10-seconandrost-1,3,5(10)-triene-9,17-dione 3,4-DHSA: 3,4-dihydroxy-9,10-seconandrost-1,3,5(10)-
triene-9,17-dione 4,9 DSHA: 4,5-9,10-diseco-3-hydroxy-5,9,17-trioxoandrosta-1(10),2-diene-4-oic acid, HIP: 9,17-dioxo-
1,2,3,4,10,19-hexanorandrostan-5-oic acid, 5OH-HIP: 5-hydroxy-methylhexahydro-1-indanone propionate. (B) Aspartate 
could be imported via AnsP2 and used for the synthesis of vitamin B5, glutamate and methionine. thrB, dapA and nadABC 
are downregulated, indicating that aspartate is to a lesser extent used to synthesize threonine, lysine and NAD(P).
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up by the transport system encoded by the mce4 gene cluster [30]. The 3β-hydroxyl 
group is oxidized and isomerized to cholest-4-en-3-one either by the membrane-
bound oxidase ChoD or by the dehydrogenase HsdD [21, 31]. No apparent induction of 
the mce4 operon, the hydroxysteroid dehydrogenase (HsdD) and cholesterol oxidase 
(ChoD) coding genes was observed in our datasets. However, the number of transcript 
reads assigned to the mce4 operon and to choD and hsdD indicate that they were 
expressed in both the infectious and the non-infectious state (Data set S3.1).

Although the degradation of rings A and B is well established, the side chain degradation 
of rings C and D (Figure 3.3A and Supplementary File 3.3) is less understood in 
mycobacteria and therefore was reconstructed based on orthology with Rhodococcus 
equi genes [22, 26].
KstR and KstR2 (BCG3639, BCG3621c; Rv3574, Rv3557c) have been previously 
identified as regulators of cholesterol utilization in mycobacteria [32]. The KstR2 
regulon comprises kstR2 itself and all genes linked to the degradation of the side chain 
of rings C and D, whereas genes regulated by KstR participate in the degradation of 
rings A and B and the initial degradation of the cholesterol side-chain (Figure 3.3A 
and Supplementary File 3.3). In our datasets the expression of kstR2 was strongly 
induced upon infection, whereas kstR remained unchanged (Data set S3.1). To verify 
these findings and the expression of other genes we selected a subset of 14 genes, of 
which 3 encode small RNAs, and designed primers (Supplementary File 3.5) to use for 
qRT-PCR. Among the selected genes, 5 genes are involved in cholesterol catabolism 
and 2 genes encode enzymes of the methylcitrate cycle (Supplementary File 3.6). The 
qRT-PCR results confirmed the integrity of our RNA-seq data.

We analyzed the behavior of the genes in the cholesterol degradation pathway in a 
compendium of expression data collected for M. tuberculosis. Although no condition 
associated with cholesterol utilization has been included in the compendium, many 
conditions in our compendium lead to differential expression of genes regulated 
by KstR and KstR2 (Figure 3.4). Yet, a reduced set of KstR2-regulated genes (fadD3, 
fadE31 and ipdA) exists, which seems to be specifically induced upon infection 
and most likely specifically reacts to only this kind of perturbation. The specific 
induction renders FadD3, FadE31 and IpdA of potential interest for therapeutic 
intervention. Bioinformatics analysis using the consensus IdeR binding motif [33] 
and the KstR2 binding motif [32] revealed that these regions overlap (Figure 3.5).
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Griffin and co-workers [34] found that although propionyl-CoA can be derived 
from other host metabolites, the requirement for the methylcitrate cycle is largely 
attributable to the degradation of host cholesterol. The induction of the methylcitrate 
cycle and the slight repression of icd1 (BCG3409c; Rv3339c), encoding an isocitrate 
dehydrogenase, suggests that the oxidative part of the citric acid cycle is bypassed in 
favor of this pathway (Supplementary File 3.4). This emphasizes that cholesterol is 
the main carbon source for intra-phagosomal M. bovis BCG.

Expression profile suggests M. bovis BCG recycles mycolic acids
Mycobacterial fatty acids are precursors for mycolic acids and are synthesized by 
at least two fatty acid synthases: FAS-I and FAS-II [35]. FAS-I consists of a single 
multifunctional enzyme, encoded by fas (BCG2545c; Rv2524c), and elongates fatty 
acids at the beginning of the mycolic acid synthesis pathway, while FAS-II consists 
of multiple enzymes and elongates fatty acids created by FAS-I. The mycobacterial 
genes umaA1, cmaA2, hadA, and mmaA3 (BCG0509, BCG0546c, BCG0684, BCG0692c; 
Rv0469, Rv0503c, Rv0635, Rv0643) encode enzymes that further process FAS-II 
products (Figure 3.6). Previous reports suggested that FadE23 and FadE24 (BCG3163, 
BCG3162; Rv3140, Rv3139) might be involved in recycling of mycolic acids [24]. 
Taken together, the expression patterns observed in our study (Figure 3.6) indicate 
that new acids are rather generated by remodeling existing mycolic acids and host 
fatty acids than synthesized de novo.

Figure 3.6 - M. bovis BCG gene expression pattern of mycolic acid synthesis
Genes involved in fatty acid synthase II (FAS-II) and downstream of FAS-II are induced (green), while fatty acid 
synthase I (FAS-I) is repressed (red).
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Expression pattern of intracellular M. bovis BCG suggests utilization of host 
aspartate
Gouzy and colleagues showed that nitrogen incorporation from exogenous 
aspartate is required for host colonization by M. tuberculosis [36]. We observed 
changes in the gene expression pattern upon infection, regarding aspartate 
metabolism (Figure 3.3B). Intriguingly, the gene encoding the unique aspartate 
importer AnsP1 (BCG2144; Rv2127) showed no significant change in expression, 
while its homolog ansP2 (BCG0385c; Rv0346c) showed a two-fold induction (Data 
set S3.1). Gouzy and colleagues found that an M. tuberculosis ansP2-knock-out (KO) 
mutant was able to grow on aspartate as sole nitrogen source [36]. Moreover, an 
ansP1 mutant showed no growth defect in either resting or activated macrophages. 
The lack of induction of the sole asparaginase gene ansA (BCG1590c; Rv1538c), that 
can catalyze the conversion of asparagine to aspartate, suggests that, in addition 
to its reported asparagine transport capacity [37], mycobacterial AnsP2 imports 
aspartate from the phagosome during infection. Some of the genes that encode 
aspartate-utilizing enzymes are induced, such as panD and aspB (BCG3665c, 
BCG3629; Rv3601c, Rv3565). In particular, AspB was predicted to transfer nitrogen 
from aspartate to glutamate, which serves as a central nitrogen carrier for 
alternative metabolic pathways [38], suggesting that M. bovis BCG utilizes host 
aspartate as nitrogen source during infection.
The repression of de novo NAD(P) synthesis genes nadA, nadB and nadC (BCG1632, 
BCG1633, BCG1634; Rv1594, Rv1595, Rv1596) and the absence of significant 
changes in expression of pncA, pncB, nadD and nadE (BCG2062c, BCG1392c, 
BCG2437c, BCG2457c; Rv2043c, Rv1330c, Rv2421c, Rv2438c) involved in NAD(P) 
synthesis and salvage [39] (Data set S3.1), indicates that bacterial NAD(P) may 
become limited during infection. The transcripts of enzymes catalyzing branching 
reactions towards threonine, methionine and lysine showed an unexpected 
pattern (Figure 3.3B): both dapA (BCG2769c; Rv2753c) and thrB (BCG1356; 
Rv1296), involved in initiation of threonine and lysine biosynthesis respectively 
were repressed, while metX (BCG3411; Rv3341), encoding an enzyme that initiates 
methionine biosynthesis, was induced. We conclude that host aspartate utilized 
by M. bovis BCG might largely be converted into methionine rather than threonine 
and lysine.
The induction of sodA (BCG3909; Rv3846) (Data set S3.1), encoding superoxide 
dismutase that destroys harmful radicals, confirms that M. bovis BCG counteracts 
reactive oxygen intermediates (ROI) produced by the host cell [2, 40]. Interestingly, 
aspartate has the capacity to quench ROI by intramolecular oxidation of the sulphur 
atom [41]. Although experimental prove has yet to be provided, it is attractive 
to speculate that mycobacteria produce methionine during infection to support 
counteraction to ROI.
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M. bovis BCG iron scavenging; siderophore synthesis, secretion and import
Mycobactins comprise an essential class of mycobacterial siderophore molecules to 
access iron of the host. These molecules are synthesized by an array of mycobactin 
enzymes, consisting of several proteins organized in a megasynthase [42]. The 
mycobactin megasynthase genes mbtB–F were induced upon infection and so 
were the majority of additional genes involved in mycobactin biosynthesis: mbtG/
I/J/K/N (BCG2392c, BCG2400c, BCG2399, BCG1409c, BCG1408; Rv2378c, Rv2385, 
Rv2386c, Rv1347c, Rv1346) (Data set S3.1).
The type VII secretion system ESX-3 is essential for mycobactin-mediated iron 
acquisition and in vivo survival [43]. The ESX-3 secretion system is regulated by 
ZuR (BCG2373; Rv2359) [44] and consists of 11 genes [45] of which 7 were induced 
upon infection (Data set S3.1). The repression of zuR, resulted in the induction 
of ESX-3. A siderophore transport system of M. tuberculosis consisting of MmpL4 
and MmpS4 (BCG0489c, BCG0490c; Rv0450c, Rv0451c) is required for infection 
of mice [46]. Both mmpL4 and mmpS4 and two other genes encoding an inner 
membrane transporter for mycobactin irtA/B [47] (BCG1410/1411; Rv1348/1349) 
were induced (Data set S3.1). Of the bacterioferritins BfrA/B (iron storage proteins 
induced by IdeR), only bfrB (BCG3904; Rv3841) showed a significant decrease. A 
possible explanation could be the reduced availability of iron in the host, and thus 
less iron storage capacity is required.

M. bovis BCG small RNAs
Small RNAs have only recently been discovered in Mycobacteria [48, 49]. Although 
their function is mostly unclear, they can be present in large quantities [50]. In our 
study, differential expression was observed for 19 small RNAs (FDR < 0.05). High 
transcript levels of the small RNAs MTS0997, MTS1338 and MTS2823 were reported 
in chronically M. tuberculosis-infected mouse lungs [50]. We observed a significant 
(FDR < 0.05) induction of MTS2823 as well, although the fold change is small (logFC 
= 1.49) compared to other reports. The expression of MTS1338 was repressed 
in our study, and showed a small fold change (logFC = -2.03). DosR (BCG3156c; 
Rv3133c) induces the latter in M. tuberculosis upon hypoxia and infection [51]. The 
low expression (below 100 CPM) and lack of induction of dosR in our datasets, may 
explain why MTS1338 remained unchanged. We verified the RNA-seq data by qRT-
PCR (Supplementary File 3.6). Whether the contrary expression of MTS1338 in M. 
bovis BCG and in M. tuberculosis during infection is critical for virulence remains 
to be defined.

Host immune response to M. bovis BCG is AIM2 dependent
A pathway enrichment analysis using InnateDB [52] revealed that the THP-1 cells 
show distinct signs of infection (Table 3.2) since we identified numerous enriched 
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pathways involved in immune response such as IFN-α/β signaling, IFN-γ signaling 
and RIG-I/MDA5-mediated induction of IFN-α/β pathways. Interferons (IFNs) are 
synthesized by the host upon infection and trigger the activation of its immune 
system. IFNs can be divided in three classes: type I IFNs (IFN-α, IFN-β, IFN-ε and 
IFN-ω), type II IFNs (IFN-γ) and type III IFNs [53].
Shah and colleagues [54] showed that virulent mycobacteria, such as M. tuberculosis 
inhibit IFN-β production and signaling, resulting in the inhibition of the activation 
of AIM2 (interferon-inducible protein). AIM2 is part of the inflammasome that 
recognizes cytosolic bacterial and viral DNA, thereby contributing to the host’s 
defense. In contrast to virulent mycobacteria, nonvirulent mycobacteria such as 
M. smegmatis, induce AIM2 [54]. M. bovis BCG seems to respond similarly to other 
nonvirulent mycobacteria, as the transcription of the gene encoding AIM2 is highly 
induced (Data set S1) as well as the IFN-α/β signaling pathway and the cytosolic 
DNA-sensing pathway (Table 3.2).

Table 3.2 - Induced THP-1 pathways upon M. bovis BCG infection.
The ten most significantly induced pathways are shown.

Pathway name Number of genes 
annotated in pathway

Number of 
induced genes

P-Value

IFN-α/β signaling 36 23 < 1.0×10–5

IFN-γ signaling 28 16 < 1.0×10–5

RIG-I/MDA5-mediated induction 
of IFN-α/β pathways

12 8 < 1.0×10–5

Cytosolic DNA-sensing pathway 23 8 0.00018

Cholesterol biosynthesis 14 6 0.0033

Hepatitis C 71 14 0.00073

Staphylococcus aureus infection 11 5 0.00078

Steroid biosynthesis 11 5 0.00078

Iron uptake and transport 7 4 0.00096

Toxoplasmosis 60 12 0.00152

Host genes involved in glycolysis and ketogenesis are induced upon 
mycobacterial infection
Phagocytosis of pathogenic mycobacteria triggers the accumulation of lipid bodies 
in the host cell described as foamy phenotype [55]. Secretion of mycobacterial 
ESAT-6 is required to mediate this process by stimulating the uptake of glucose 
into the host cell, which might lead to increased glycolytic activity and elevated 
levels of acetyl-CoA, which in turn leads to the generation of D-3-hydroxybutyrate 
via ketogenesis [55]. Although M. bovis BCG lost the ESX-1 locus, a major virulence 
determinant of pathogenic mycobacteria that encodes the effector proteins ESAT-6 
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and CFP-10 [13, 56], we observe increased expression of several glycolytic enzymes 
including HK3, GPI, PFKP, FBPI, GAPDH, and PGAM1 (Supplementary File 3.2). 
Moreover, we found genes of the ketogenesis pathway induced: ACAT2, HMGCS1, 
BDH2 and HMGCR. The latter gene encodes HMG-CoA reductase, which catalyzes 
the conversion of hydroxy-β-methylglutaryl CoA and leads to the synthesis of 
cholesterol and other sterols. BDH2 encodes 3-hydroxybutyrate dehydrogenase, 
which catalyzes the reversible conversion of acetoacetate to D-3-hydroxybutyrate. 
Subsequent steps that lead to mycobacteria-induced formation of lipid bodies in 
the host cell involve the activation of the anti-lipolytic G protein-coupled receptor 
GPR109A, which triggers adenylyl cyclase. The resulting decrease in host cyclic 
AMP levels leads to a decrease in phosphorylation of stored host lipids by protein 
kinase A (PKA), rendering them less vulnerable to lipolysis by hormone sensitive 
lipase (HSL), thus promoting the formation of lipid bodies [55]. Consistent with the 
attenuated M. bovis BCG strain, we do not observe a change in the expression of 
GPR109A, adenylyl cyclase, PKA and HSL, indicating that this part of the pathway 
leading to the formation of lipid bodies is not active in the host or that this 
response is regulated post-transcriptionally and therefore remains invisible using 
a transcriptome approach.
Taken together, despite the absence of the ESX-1 locus in M. bovis BCG, the host 
response regarding the initial steps of lipid body formation is similar to that 
of M. tuberculosis. Several pathogen factors including mycolic acids that were 
demonstrated to induce the foamy phenotype in macrophages [57], may therefore 
be required to reprogram the host for lipid build-up.

Cholesterol is synthesized and iron losses are compensated by the host upon 
infection
Four out of seven genes in the THP-1 iron uptake and transport pathway were 
induced. The enzyme encoded by the induced gene HMOX1 encodes heme oxygenase 
1, assigned to iron uptake and transport, catalyzes the rate-limiting step of heme 
degradation and is required to confer host resistance to mycobacterial infection in 
mice [58]. Among the other induced genes were FTH1 and FTL, encoding the heavy 
and light polypeptide of ferritin. This suggests that the THP-1 cells compensate 
for the loss of iron caused by M. bovis BCG, by taking up extra iron and degrading 
heme.
The THP-1 cholesterol biosynthesis pathway was induced, as six genes of this 
pathway, including HMGCR encoding the rate-limiting enzyme for cholesterol 
biosynthesis, were upregulated. We conclude that infected macrophages synthesize 
cholesterol to compensate for loss of this molecule caused by mycobacterial 
catabolism.
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Discussion

This study describes a deep sequencing approach towards the elucidation 
of mycobacterial and host cell gene expression profiles during intracellular 
infection. Initially we employed standard deep sequencing settings for eukaryotes 
to resolve the transcriptional profile of intracellular mycobacteria. Although 
this set-up allowed, to some extent, analyzing gene expression in M. bovis BCG, 
mycobacterial transcript coverage was insufficient. Increasing the sequencing 
depth was hindered by high sequencing costs, thereby preventing the method to 
become a broad application. Thus, we decided to enrich for mycobacteria during 
sample preparation of infected THP-1 cells. Indeed, the strategy applied greatly 
increased the coverage of the intracellular M. bovis BCG transcriptome. Although 
mycobacterial gene expression can be analyzed in non-enriched samples (215 
genes, FDR < 0.05), implementation of enrichment greatly expanded the number 
of reliably identified differentially expressed genes by 71% (367 genes, FDR < 0.05). 
Moreover, the sequencing depth simulation (Figure 3.2B) revealed that enrichment 
allowed identification of differentially expressed genes that would have been 
missed otherwise. Repasy and colleagues showed that for an in vivo infection 
setting with mice and M. tuberculosis the MOI ranges from 1 to 5 [3]. Therefore, 
when studying an in vivo infection, the enrichment might not be sufficient to obtain 
a similar sequencing depth as obtained in our in vitro study, for which an MOI of 10 
was used. To determine whether enrichment introduced any bias into the datasets, 
we analyzed non-enriched and enriched samples of two independent biological 
infection replicates. Although the non-enriched and enriched samples comprised 
different numbers of intracellular M. bovis BCG reads, the transcriptomes of 
respective samples of both infection experiments correlated well as indicated by 
high linearity and correlation coefficients (Supplementary File 3.1). Additionally, 
the correlation of intracellular M. bovis BCG expression between the biological 
replicates of both enriched datasets was comparable with the non-enriched 
datasets (0.93 and 0.94, respectively), verifying that the enrichment procedure 
was repeatable and robust, and did not introduce any bias to the intracellular 
mycobacterial transcriptome. For host expression we identified a lower correlation 
between the non-enriched and enriched samples (0.57 for IF1 and IF1ER, and 0.70 
for IF2 and IF2ER) (Supplementary File 3.1). Hence, the datasets of non-enriched 
samples were favored for analysis of the host transcripts in order to preserve 
accuracy of the transcriptional landscape during infection.
Our method is dependent on differential susceptibility to lysis of host and 
microbial cells and not on a molecular sequence capture or depletion method 
as previously described [11]. This has the added advantage that small RNAs can 
be detected and analyzed for differential expression. Additionally, our method 
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is independent of mRNA polyadenylation, as e.g. MICROBEnrich simultaneously 
captures and removes polyadenylated mRNAs along with rRNAs. We consider this 
a critical point because previous findings support the existence of polyadenylated 
tracts in mRNA of mycobacteria [59] and other bacteria [60, 61].
It has been shown previously that mycolic acid liposomes are phagocytized by 
murine macrophages, changing the morphology of the macrophages to foam-like 
cells accumulating cholesterol [57]. Although the cholesterol degradation pathway 
is induced at 24 hours post-infection (Figure 3.3A and Supplementary File 3.3), 
the mce4 gene cluster and hsdD and choD were not induced. Nonetheless, these 
genes were expressed in both conditions and respective proteins could be already 
present before infection, ready for a situation when cholesterol becomes available. 
For hsdD and choD, it is tempting to speculate that alternative genes with a similar 
function exist, since these genes have been found dispensable for cholesterol 
degradation in mycobacteria [21].
Gene regulation of mycobacterial cholesterol catabolism involves a complex 
interplay between KstR, KstR2, and IdeR. KstR and KstR2 are the prime regulators 
of the genes depicted in Figure 3.3A. A clear distinction between their targets 
becomes apparent with KstR regulating the degradation of rings A and B and KstR2 
regulating the degradation of rings C and D. In addition, genes in these regulons 
(fadA5, fadD3, fadE30, echA20) contain IdeR-binding sites in their upstream 
regions [33] and in some cases a profound overlap between these binding sites was 
observed. This implies that these genes can only be expressed upon removal of 
both types of repressors: IdeR under normal iron availability and KstR and KstR2 
during cholesterol shortage (Figure 3.5). The upregulation of IdeR-dependent 
iron uptake systems can be caused not only by low iron availability inside the 
macrophage but also as a response to the NO-induced damage caused to iron-
containing proteins [5]. HsaC, KshA, and the cytochromes Cyp125 and Cyp142 are 
iron-containing enzymes (and hence are susceptible to NO-induced damage) and 
lack of functionality of these enzymes leads to the accumulation of stable toxic 
catabolic intermediates, such as catechol derivatives and cholest-4-en-3-one [62-
65]. The IdeR control of this pathway ensures that it is only expressed when the 
corresponding repair/replacement systems for iron-containing proteins are in 
place, therefore minimizing the risk of toxic intermediate accumulation.
It has been shown that aspartate functions as a major nitrogen reservoir in the host 
[36]. In line with this finding, we observed induction of aspartate utilizing enzymes 
(Figure 3.3B). Interestingly, we did not detect induction of the gene encoding the 
aspartate transporter ansP1, but induction of its homolog, ansP2. Earlier reports 
demonstrated that an ansP1-KO mutant fails to import aspartate in vitro, but 
shows wild-type behavior in either resting or activated macrophages, even though 
aspartate is a major nitrogen source in the host. Moreover, the absence of ansA 
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induction suggests AnsP2 functions as an aspartate importer during infection in 
addition to its role as asparagine importer [37].
Rodríguez and colleagues cultivated M. tuberculosis H37Rv on even long-chain fatty 
acids and analyzed the transcriptome by RNA sequencing, observing a dormancy-
related phenotype [66]. Although there are similarities between their in vitro model 
and our results, the induction of cholesterol catabolism, the methylcitrate cycle 
and aspartate metabolism are not captured using such a method, highlighting the 
differences between using an in vitro model based on even long chain fatty acids as 
opposed to studying intracellular infection directly.

Conclusions

Dual RNA-seq allowed elucidation of the complex interplay between M. bovis BCG 
and THP-1 macrophages. The comparison of non-enriched and enriched ribosomal 
RNA-depleted sequencing libraries of two biological replicates from identical 
infection cultures, showed high correlation of sequencing reads without technical 
bias. Taken together, microbe-enriched dual RNA-seq is a powerful technology that 
enables the assessment of the global transcriptome of “low-number” intracellular 
microbes and their host as demonstrated by the simultaneous induction of M. bovis 
BCG cholesterol degradation genes and host cholesterol synthesis genes.

Methods

Bacterial strains and growth conditions
M. bovis BCG SSI 1331 (American Type Culture Collection, #35733) was grown in 
Middlebook 7H9 medium (Becton Dickinson) supplemented with 0.05% Tween 
80, 0.2% glycerol, 10% albumin-dextrose-catalase supplement (Becton Dickinson) 
(7H9-ADC) or on Middlebrook 7H11 agar (Becton Dickinson) containing 0.2% 
glycerol and 10% oleic acid-albumin-dextrose-catalase enrichment (Becton 
Dickinson). Mycobacterial cultures were grown to the mid-log phase in 1 L roller 
bottles (450 cm2) at 37°C and 2 rpm. For CFU enumeration, serial dilutions were 
performed in phosphate-buffered saline containing 0.05% Tween 80 and plated 
on Middlebrook 7H11 agar. Plates were incubated at 37°C for 3–4 weeks prior to 
counting.

Infection of the human macrophage-like cell line THP-1
The THP-1 cell line (American Type Culture Collection #TIB-202) was maintained 
in Roswell Park Memorial Institute medium 1640 supplemented with 10% fetal calf 
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serum, 2 mM glutamine, 1 mM sodium pyruvate and 0.05 mM 2-mercapto-ethanol in 
a humidified 5% carbon dioxide atmosphere at 37°C. Estimated 4×106 cells/well in a 
6-well plate were differentiated for 24 h using culture medium containing 40 ng/ml 
phorbol 12-myristate 13-acetate. Cells were then washed with fresh culture medium 
and incubated for 48 h. M. bovis BCG was pelleted (3,200 rpm, RT, 10 min), washed 
twice with phosphate buffered saline and resuspended in THP-1 culture medium. 
THP-1 cells were infected with M. bovis BCG at a multiplicity of infection of 10. 
The M. bovis BCG culture medium suspension was added to the differentiated cells, 
centrifuged for 3 min at 800 rpm and subsequently incubated for 4 h. The infection 
mix was removed, cells were washed twice with pre-warmed PBS and incubated with 
fresh culture medium for 20 h prior to RNA extraction.

RNA isolation and mycobacterial RNA enrichment of infected cells
Total RNA from mycobacterial cultures was prepared as previously described [67]. 
Extraction of total RNA from THP-1 cells was prepared with TRIzol reagent using 
glycogen as a carrier according to the suppliers’ recommendation (Life Technologies). 
Total RNA from M. bovis BCG infected THP-1 cells was isolated by abrasive particles 
in a reciprocal shaker with TRIzol [67]. Enrichment of mycobacteria from infected 
THP-1 cells was carried out by differential lysis of host and mycobacterial cells by 
guanidine thiocyanate (GITC).
Infected cells were washed with PBS at RT. Cold 4M GITC was added to the monolayer 
and the cells were transferred to a 1.5-ml screw cap tube. After centrifugation the 
pellet was resuspended in residual GITC and mixed with 1 ml TRIzol containing 20 µg/
ml linear acrylamide, followed by incubation for 5 min at RT. Bacteria were disrupted 
by bead beating (FastPrep Instrument; two cycles of 30s at maximum speed with 
cooling on ice between cycles). The sample was centrifuged for 1 min at 4°C/13,000 
rpm and the supernatant was transferred to a 2-ml screw cap tube containing 200 µl 
chloroform, mixed and incubated at RT for 5 min. After centrifugation at 4°C/13,000 
rpm for 10 min, RNA was extracted from the aqueous phase using the Qiagen RNeasy 
mini kit including an on-column DNase digestion (Qiagen). Quality and quantity of 
total RNA were assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies) 
and a NanoDrop 1000 spectrophotometer (Kisker).

Calculation of spike-in concentration
Total RNA of THP-1 cells and M. bovis BCG cultures was determined on the basis of 
cell counts and RNA isolation yield. As the intracellular copy number for a pathogen 
varies from species to species we assumed the most minimal infection rate of one 
mycobacterium per host cell. Therefore a cellular multiplicity of infection of 1:1 was 
used for mixing host and pathogen RNA, resulting in a ratio of 1000:1 total RNA, 
derived from the proportion of RNA abundance per cell between host and pathogen.
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RNA sequencing
The RNA-seq libraries were prepared according to the TruSeq RNA Sample 
Preparation v2 Guide (Illumina) without fragmentation and without size selection. 
Using an Agilent Bioanalyzer high sensitivity DNA kit, we confirmed that the 
average final library size was already approximately 350 bp without fragmentation; 
therefore the library insert fragmentation time at 94 °C was set to 0 minutes, as no 
additional fragmentation step was required. Up to 98% of bacterial RNA consists of 
ribosomal RNA, which can prevent adequate coverage of a bacterial transcriptome, 
using RNA sequencing [68, 69]. Therefore, the Gram-Positive Bacteria Ribo-Zero 
(Epicentre) rRNA Magnetic Removal Kit was used to remove bacterial rRNA from 
mycobacterial total RNA. For THP-1 total RNA the Ribo-Zero Magnetic Kit Human/
Mouse/Rat was used, while depletion of rRNA from infections without enrichment 
as well as the spike-in experiment was done by a two-step procedure with both 
kits. The mycobacterial enriched total RNA preparations of infected cells were 
depleted with the Ribo-Zero Magnetic Gold Kit Epidemiology. All cDNA libraries 
were checked for quality using the DNA-1000 kit (Agilent) on a 2100 Bioanalyzer 
and quantified with the Qubit 2.0 Fluorometer (Life Technologies). Libraries of 
each consecutive experiment were pooled as 4-plex and on-board loaded with a 
Hi-Seq 1500 instrument. The sequencing reaction was carried out as Rapid Run 
using a TruSeq Rapid PE Cluster Kit and a TruSeq Rapid SBS Kit and 2 × 51 cycles 
including 7 cycles indexing in order to obtain 50-bp paired-end reads.

Data analysis pipeline
A total of eight datasets were created: Uninfected THP-1 cells (dataset: THP), 
exponentially growing M. bovis BCG (dataset: EGB), a spike-in sample consisting 
of THP-1 RNA and M. bovis BCG RNA in a 1000:1 ratio (dataset: SPI), M. bovis 
BCG-infected THP-1 cells with a multiplicity of infection of 10 M. bovis BCG bacilli 
per THP-1 host cell (dataset IF0), two additional independent biological replicates 
of M. bovis BCG-infected THP-1 cells (datasets: IF1 and IF2), and two datasets 
prepared with the enrichment method using the two biological replicates of M. 
bovis BCG-infected THP-1 cells (datasets: IF1ER and IF2ER).
All 50-bp paired-end reads from datasets IF1/2ER, IF0/1/2, EGB were aligned, 
using megablast, against the complete genome sequence of M. bovis BCG Pasteur, 
obtained from the NCBI bacterial genome database (ftp.ncbi.hih.gov/genomes/
Bacteria) and to the human transcriptome obtained from the Ensemble database 
(www.ensembl.org). If both 50-bp reads of a given pair could not be aligned to 
the human transcriptome, or the M. bovis BCG genome, they were discarded 
from further analysis. The 50-bp paired-end reads aligning to the M. bovis BCG 
genome were subsequently aligned to protein-coding genes, ribosomal genes, and 
small RNA (sRNA) genes. The protein-coding gene sequences and the ribosomal 
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gene sequences were obtained from the NCBI database. The sRNA-coding gene 
sequences were obtained from the Bacterial Small Regulatory RNA Database [70] 
and supplemented with sRNA sequences from M. tuberculosis [51].

Gene counting procedure
A single count was assigned to a transcript if a complete pair of reads aligned to 
the M. bovis BCG genome. If only one read of a pair of reads aligned to a given 
gene, also a single count was assigned to this transcript, assuming that the other 
read could align to an intergenic region, or another gene, due to the existence of 
operons. If a pair of reads would align to two different genes, a count was assigned 
to both genes, resulting in a total of two counts per pair of reads. For THP-1 cells, 
all reads assigned to different splice variants of the same gene were counted (one 
count for each aligned read) and summed.

Differential gene expression analysis
The R package edgeR [71] was used for differential gene expression analysis of M. 
bovis BCG and THP-1 genes. Gene and protein functions have been extensively 
studied in M. tuberculosis and therefore the M. tuberculosis (strain H37Rv) orthologs 
of each M. bovis BCG gene were included. Low expression tags receiving less than 
100 counts per million in two or more of the three datasets: EGB, IF1/2ER (or EGB, 
IF1/2), were excluded from differential expression analysis as described in the 
edgeR manual. Tags receiving more than 100 counts per million in the EGB dataset 
and less than 100 counts per million in either one or both replicates of IF1/2ER or 
IF1/2 were still used to account for large decreases in expression upon infection.
EdgeR is a Bioconductor package designed to identify significant changes 
between two or more groups, given that at least one of the groups has replicated 
measurements [71], which is the case for our experimental setup (Figure 3.1). The 
edgeR algorithm models the read counts associated to a gene using a negative 
binomial probability distribution. The variance of this distribution takes into 
account both the stochasticity of the sequencing process and the variability 
associated to biological variation. The common Biological Coefficient of Variance 
(BCV) measures the average dispersion in gene expression values associated to 
biological variability. We used EdgeR to compute the BCV of the corresponding 
samples prior to computing differential expression. For the BCG genes, we obtain 
a BCV of 0.16 from the IF1/2ER samples whereas for the THP-1 genes we obtained 
a BCV of 0.20 from the IF1/2 samples. We assumed that the BCV in datasets EGB 
and THP to be smaller than those in datasets IF1/2ER and IF1/2, due to the less 
stable and controlled conditions arising from infection as compared to standard 
culturing procedures. To compute differential gene expression for M. bovis BCG 
and THP-1 cells, we took a conservative approach and assigned the same BCV to 
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datasets EGB and THP as those obtained from IF1/2ER and IF1/2, respectively. 
Differential expression was then computed for each gene using a pairwise exact 
testing procedure. The algorithm of Benjamini and Hochberg was used to control 
false discovery rates [72]. Protein-coding genes and sRNA-coding genes with an 
FDR < 0.05 were assumed to be differentially expressed.
For THP-1 cells, gene counts from dataset THP were compared to those of datasets 
IF1/2. Differential gene expression analysis was performed similar to M. bovis BCG. 
The low expression tags cutoff of 100 counts per million was normalized for the 
number of genes in the THP-1 genome. Afterwards, we used InnateDB and pathway 
enrichment analysis to identify induced host pathways [52].

Sequencing depth simulation
Subsets of 50-bp sequencing reads, where both pairs aligned to the complete 
genome of M. bovis BCG, were taken randomly from dataset EGB and IF1ER. These 
subsets were of the same size (3.35 M) as the total number of sequencing reads 
from dataset IF2ER aligning to the M. bovis BCG genome in pairs (Figure 3.2A). 
From these two subsets, and from the paired-end sequencing reads of IF2ER 
aligning to the M. bovis BCG genome, random sets of reads were chosen of different 
sizes. For each different size, five random sets were generated. Differential gene 
expression for M. bovis BCG was determined using the method described above 
(data analysis pipeline) for every set. The mean and standard deviation of the 
number of differentially expressed genes was calculated (Figure 3.2B).

Compendium of expression data
A compendium containing 565 two-color microarrays for M. tuberculosis (strain 
H37Rv) was obtained from literature [73] and most of these (454) captured the 
effect of 75 drugs targeting metabolic pathways [74, 75] whereas 111 captured 
stress-induced dormancy in the wild-type and in DosR activation genes in KO 
mutants [76, 77].

Quantitative Real Time PCR
To verify the expression of several genes and small RNA’s, their expression was 
determined using qRT-PCR. For 13 genes, we designed primers (Supplementary File 
3.5) and quantified their relative expression to the reference gene: rpoB (BCG0716; 
Rv0667). This gene encodes the RNA polymerase β-subunit and is thought to be a 
housekeeping gene, which was used as such in previous qRT-PCR studies [78-80]. 
Fold changes in gene expression (Supplementary File 3.6) were calculated using 
the ΔΔCt, as described previously [81].
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Abstract

Genome-scale metabolic models of Mycobacterium tuberculosis (Mtb), the causative 
agent of tuberculosis, have been envisioned as a platform for drug discovery. By 
systematically probing the networks that underpin such models, the reactions that 
are essential for Mtb are identified. A majority of these reactions are catalyzed 
by enzymes and thus represent candidate drug targets to fight an Mtb infection. 
Nevertheless, this is complicated by the limited knowledge on the environment 
that Mtb encounters during infection.
Modeling the behavior of the bacteria during infection requires knowledge of the 
so-called biomass reaction that represents bacterial biomass composition. This 
composition varies in different environments or bacterial growth phases. Accurate 
modeling of the metabolic state requires a precise biomass reaction for the described 
condition. In recent years, additional insights in the in-host environment occupied 
by Mtb have been gained as transcript abundance data of interacting host and 
pathogen have become available. Therefore, we used transcript abundance data 
and developed a straightforward and systematic method to obtain a condition-
specific biomass reaction for Mtb during in vitro growth and during infection of 
its host. The method described herein is virtually free of any pre-set assumptions 
on uptake rates of nutrients, making it suitable for exploring environments with 
limited accessibility. The condition-specific biomass reaction represents the 
‘metabolic objective’ of Mtb in a given environment (in-host growth and growth on 
defined medium) at a specific time point, and as such allows modeling the bacterial 
metabolic state in these environments.
Five different biomass reactions were used predict nutrient uptake rates and gene 
essentiality. Predictions were subsequently compared to available experimental 
data. Our results show that nutrient uptake can accurately be predicted. Gene 
essentiality can also be predicted but accurate predictions remain difficult to 
obtain. In conclusion, a viable strategy to model Mtb metabolism in hard-to-access 
environments that is virtually free of pre-set assumptions is provided.

Keywords: metabolic model, Mycobacterium tuberculosis, systems biology, host-
pathogen interaction, condition specific, flux balance analysis.
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4

Background

Constraint-based genome-scale metabolic models (GSMs) enable prediction of 
metabolic states. A metabolic state is defined as a vector of all fluxes or conversion 
rates (in mmol h-1) throughout metabolism per weight unit of biomass (usually 1 
gram dry weight, gDw). GSMs comprise linear equations describing conversions 
among metabolites, uptake or secretion processes, and transport processes over 
different compartments. These equations are referred to as flux balance constraints 
and are founded on an underlying metabolic network wherein all metabolites are 
interconnected by conversion and transport reactions. The flux balance constraints 
are captured in a stoichiometric matrix [1]. GSMs may comprise additional 
constraints as well, such as reversibility and capacity constraints. The whole of all 
possible fluxes that satisfy all constraints of a GSM is referred to as the solution 
space [2]. Additional constraints present an opportunity to further limit the size of 
the solution space, which results in a more accurate calculation of the metabolic 
state. A suitable way to increase the amount of constraints is to measure uptake 
and/or secretion rates of metabolites/nutrients. Knowledge of a few of these rates 
can considerable shrink the solution space [3].
Given the stoichiometric matrix, the most straightforward approach for calculating 
a metabolic state is to simulate conditions on which the organism is in a steady state 
physiological condition, meaning that there is no net intracellular accumulation 
of metabolites. Under this assumption, it is possible to construct a Flux Balance 
Analysis (FBA) problem. FBA finds the optimal (maximum or minimum) value of a 
selected function, the so-called objective function, while satisfying all constraints. 
Solution of the FBA problem leads to a vector of reaction fluxes that represents a 
calculated metabolic state of the organism. This calculated metabolic state is more 
likely to represent the actual metabolic state as the solution space is shrunk by 
additional constraints [4, 5].
The metabolic state is, among others, dependent on the objective function. 
Metabolic states have been accurately predicted for several bacteria in recent 
years, using objective functions such as maximizing the flux through the biomass 
reaction to represent growth rate, maximizing ATP production or minimizing 
enzyme usage among others [6].
However, in some conditions measuring uptake and/or secretion rates can 
be notoriously difficult, if not impossible. Such is the case for intracellular 
Mycobacterium tuberculosis (Mtb), a pathogenic bacterium able to withstand the 
harsh environment of the phagosome. Mtb is even capable of halting the maturation 
of the phagosome inside immune cells and providing a niche for the bacterium to 
thrive [7, 8]. Genome-scale metabolic models of Mtb, have been envisioned as a 
platform for drug discovery [9, 10].
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In addition to uptake rates, other measurements can serve to estimate or approach 
(a part of) the metabolic state of a cell, such as transcript profiles [11]. For Mtb, a 
major difficulty with these measurements is the large size difference between the 
eukaryotic host cell and the prokaryotic pathogen, which results in metabolites and 
transcripts from the host vastly outnumbering those of the pathogen [12]. With regard 
to transcript abundance experimental methods have been developed to increase the 
ratio of pathogen mRNA to host mRNA [13]. This enrichment in pathogen transcripts 
renders differences between intracellular and extracellular pathogen transcript 
abundance apparent. We recently published a dataset of Mycobacterium bovis BCG 
and THP-1 cells using a dual RNA-sequencing strategy [14]. However, such an 
enrichment method is not available for metabolites, which are more closely related 
to fluxes as compared to transcripts. Moreover, metabolites, unlike transcripts, 
cannot be assigned to host or pathogen unless they only occur in one of said host or 
pathogen [15].
Transcript abundance data can be used to constrain models in environments where 
knowledge regarding nutrient availability and objective(s) is limited. Methods such 
as iMAT [16], MADE [17], GIMME [18], E-flux [19], TRFBA [20] and others [21] limit the 
solution space by using expression values as a proxy for flux. These methods allow for 
the explanation of phenomena that cannot be derived solely from the models, such as 
the prediction of the Crabtree effect in yeast [22]. These model and data integration 
methods limit the solution space within the ranges of expression data, thereby 
effectively generating condition-specific models. Shrinking the solution space by 
limiting fluxes based on gene expression seems an obvious choice, but it is not at 
all obvious how this should be done. Methods for model and data integration have 
been thoroughly evaluated [23]. The evaluation showed that no method outperforms 
the others for all tested models and datasets. Finally, this condition-specific model 
building can hamper exploration of metabolic states that arise from perturbations of 
the environment, from which the gene expression data was originally derived. These 
adapted models would only allow changes to the metabolic state that fit within the 
boundaries of what was originally measured. Such a rigid model appears a poor 
choice for predictive modeling.
A modeling approach focused on an accurate description of the objective of Mtb during 
infection appears to be a better strategy to make new predictions because it does 
not limit the solution space or metabolic flexibility beforehand. Previous approaches 
have relied on adapting the biomass reaction to represent the composition on 
mycobacterial cells during infection. Bordbar and colleagues adjusted the biomass 
reaction based on differential gene expression [24]. This approach is biased by the 
biomass reaction that is present in the model prior to the tailoring process and the 
potential synthesis of other metabolites specifically during infection, is overlooked. 
Shi and colleagues [25] proposed a biomass reaction comprising trehalose dimycolate, 
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triacylglycerol (TAG) and polyglutamate/glutamine to reflect a minimal cell wall 
composition. The logical assumption applied was that during a ‘non-growth state’, 
Mtb utilizes metabolites produced in pathways of which gene expression is elevated 
and does not, or to a lesser extent, utilize metabolites produced in pathways of 
which gene expression is suppressed. Shi and colleagues used qPCR to monitor gene 
expression [25]. This requires a pre-selection of target genes based on experience 
and experimental output and does not accommodate unbiased exploration of the 
transcriptional landscape.
Here, we integrate a constraint-based (CB) model of Mtb metabolism and RNA 
sequencing data to provide condition-specific biomass reactions during host 
infection and during growth on Middlebrook 7H9 medium. The genome-scale nature 
of this approach ensures all known pathways and biomass precursors are taken into 
account, whereas the nature of the used data (RNAseq) ensures unbiased assumptions 
on the types and quantities of metabolic precursors. During on-going infection 
mycobacterial cells might enter a non-growth state on which maximal growth rate 
is not the metabolic objective. However, still minimal macromolecular components 
need to be synthesized and energetic requirements need to be fulfilled to ensure 
survival. The condition-specific biomass reaction representing infection combines 
both aspects as it reflects the composition of mycobacterial cells during infection, 
and it also represents the metabolic requirements for its survival and interaction 
with the host which are incorporated in the RNAseq data as well. To simulate the 
metabolic state of the bacteria upon infection, flux through the condition-specific 
biomass reaction is maximized, while the total usage of enzymes is minimized. 
As Mtb faces several types of stress and adverse conditions imposed by the host’s 
immune system during infection of the host [26], it is assumed that Mtb does not 
squander its resources, and makes optimal use of available enzymes. From a modeling 
perspective, this can be seen as a bi-objective optimization problem wherein two 
competing objectives, i.e. maximization of biomass production on the one hand, and 
minimization of enzyme usage on the other hand, are simultaneously considered.
The goal of multi-objective optimizations is to find Pareto optimal solutions (also 
called non-dominated solutions) [27]. A solution is Pareto optimal if no other solution 
exists that better satisfies all objectives. In other words, a solution is Pareto optimal 
if an improvement in one objective requires a degradation of another. Multiple 
methods have been developed to obtain Pareto optimal solutions in multi-objective 
optimization problems such as the normal constraint method [28] that has been used 
to explore tradeoffs between hepatic metabolic functions [29]. Here, we tackle the 
problem by using a weighted sum method in which weight factors are attributed to 
each objective: fb and fe,i, for biomass and enzyme usage for each of the i = {1, … , m} 
reactions, respectively. This approach ensures that the obtained solutions are Pareto 
optimal [30].
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Parsimonious enzyme usage FBA (pFBA) has been proposed to explore the tradeoffs 
between maximizing growth and minimizing enzyme utilization [24]. In pFBA there 
is an initial maximization of the biomass reaction followed by a minimization of 
enzyme usage. In our approach, this Pareto optimal solution would correspond to 
the extreme case wherein the weight of the biomass objective is much higher than 
that of the enzyme minimization objectives (fb >> fe,i). By changing these weight 
factors, a ratio between these two factors, fr, is established that enables the prediction 
of metabolic genes essential to Mtb within the macrophage as well as metabolites 
that are sequestered by Mtb from the phagosome. Comparison of these predictions 
with experimentally obtained data [31, 32] reveals that by using a condition-specific 
objective function inferred from transcript abundance data the metabolic state of Mtb 
upon infection can be accurately predicted.

Results

We created two condition-specific biomass reactions (CSI and CSM) based on transcript 
abundance data in two conditions. The term ‘biomass reaction’ is perhaps not the 
most suitable term as these reactions not only cover synthesis of metabolites used 
for biomass production, but also synthesis of excreted enzymes and small molecules, 
repair of damaged lipid membranes and other metabolites involved in host-pathogen 
interaction. Even though these processes themselves are largely unknown, transcript 
abundance data indirectly reflects these processes and combined with a GSM can give 
a picture of required metabolic precursors for these processes.

Condition-specific biomass reactions
The creation of a condition-specific biomass reaction requires a CB model, a list 
of available nutrients in the given condition, a list of metabolic precursors for 
synthesis of macromolecules, and transcript abundance data. We used model sMtb, a 
comprehensive model of Mtb metabolism [10], with minor corrections and additions 
(Supplementary Files 4.1, 4.2 and 4.3). Transcript abundance data was obtained from 
a dual RNA-sequencing experiment wherein transcript abundances of Mycobacterium 
bovis BCG, a close relative of Mtb having a highly similar genome [33], were measured 
under two conditions [14]. In the first condition M. bovis BCG infects THP-1 cells, and 
in the second condition M. bovis BCG grows on Middlebrook 7H9 medium. The sMtb 
model was used as a platform to integrate the expression data and to calculate two 
condition-specific biomass reactions of Mtb, CSI (condition-specific infection) and 
CSM (condition-specific medium), for both aforementioned conditions, respectively. 
A list of all metabolites known or expected to be present in the phagosome was 
assembled (Supplementary File 4.4). Availability of these metabolites was simulated 
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by enabling their free uptake in the model. In addition, a list of all known biomass 
precursors was generated based on the sMtb model (Supplementary File 4.5).

Figure 4.1 - Workflow to create a model with a condition-specific biomass reaction.
(A) An exemplary constraint-based genome-scale metabolic model (GEM) comprising a metabolic network with 
metabolites (yellow diamonds) and reactions (arrows), including uptake reactions (green arrows) and secretion 
reactions (red arrows), is depicted in a microorganism (rounded square). Gene expression data (blue wave-shaped 
lines) is used to constrain maximal flux values according to the E-flux algorithm [19], to obtain a condition-specific 
GEM having a shrunken solution space. (B) The condition-specific (blue background) GEM is subsequently combined 
with nutrient availability data (graph) and uptake of unavailable nutrients is constrained to zero. (C) Biomass 
precursor data (bar plot) is used to pinpoint biomass precursors in the condition-specific GEM with blocked transport 
reactions (red crosses), and the flux through the flux limiting reaction for each precursor is selected by maximizing 
flux towards each biomass precursor (blue diamonds) individually. (D) The sum of all precursor fluxes is normalized to 
one gram biomass dry weight (1 gDw) and a condition-specific biomass reaction (green diamond) is obtained. (E) All 
constraints placed on the GEM in the previous steps, A to D, are removed and a GEM with a condition-specific biomass 
reaction is obtained.
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The flux towards each biomass precursor was maximized one by one, while limiting 
the maximum flux through enzymatically-catalyzed reactions based on the 
transcript abundance for the present condition (Figure 4.1). The ratio of biomass 
precursors obtained for both conditions represents the two condition-specific 
biomass reactions (CSM and CSI). The contributions of each class of precursors to 
these two biomass reactions are shown in Table 4.1 (see Supplementary File 4.5 for 
a more detailed breakdown). The largest differences in the biomass reactions of 
both conditions entails the fraction of amino acids, which is approximately doubled 
in the host as compared to in vitro growth on Middlebrook 7H9 medium, which is 
in accordance with previous predictions [15]. The fraction of carbohydrates on the 
other hand, is substantially reduced from 20.1% to 9.9%.

Table 4.1 - Composition of the condition-specific biomass reactions.

Weight percentage (g/gDw)

Condition-specific infection, CSI Condition-specific medium, CSM*

Amino Acids 33.2 16.1

Nucleic Acids 7.6 8.5

Carbohydrates 9.9 20.1

Lipids 32.5 39.0

Other 16.8 16.2
*Note that due to rounding of the percentages, the total may not add up to 100%.

Simulating Mtb metabolism: balance between growth and enzyme utilization
To predict the in vivo metabolic state, reflecting Mtb’s intracellular behavior, we 
compared the performance of five different biomass reactions: the in vitro biomass 
growth reaction (IVB) and a regular biomass growth reaction (REB), both present 
in sMtb [10], a biomass reaction representing non-replicating cells (NRC) [25], 
the condition-specific biomass reaction representing growth on Middlebrook 7H9 
medium (CSM) and the condition-specific biomass reaction representing growth 
within the host’s phagosome (CSI).
Simulation of the metabolic state of Mtb in the phagosome is complicated by a lack 
of knowledge on the rate at which nutrients are acquired from the host. However, 
various studies have shown that the phagosomal environment is likely to be 
hypoxic [34]. Therefore, we chose to limit the oxygen uptake rate at a relatively low 
value of 0.01 mmol gDW-1 h-1 while keeping unrestricted the uptakes of all other 
nutrients that were assumed to be present in the host. Even with such a restriction, 
nutrients were predicted to be taken up in unrealistically large quantities. This 
behavior can be traced back to anaerobic reactions in the model that result in 
ATP generation, followed by the artificial generation of oxygen at the cost of high 
amounts of energy in the form of ATP to ADP conversion. In addition, limiting the 
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oxygen uptake rate all the way to 0 mmol gDW-1 h-1 resulted in zero flux through 
the (condition-specific) biomass reaction, and was therefore an unsuitable strategy 
as well.
To overcome such difficulty, the assumption was made that Mtb utilizes its 
resources parsimoniously when in a hostile environment. This can be modeled by 
minimization of enzyme usage while maximizing the flux through the biomass 
reaction. This bi-objective optimization was performed using a weighted sum 
method in which the following FBA problem with a weighted objective was solved:

subject to:

Wherein w is the objective function value, ve,i represents the flux or rate of reaction 
i catalyzed by at least one enzyme; fe,i represents the weight factor for reaction i; 
vb represents the specific growth rate (or biomass reaction flux value), i.e. the flux 
through one of the five aforementioned (condition-specific) biomass reactions; fb 
represents the weight factor for the biomass reaction; n is the total number of 
reactions catalyzed by at least one enzyme; S represents the stoichiometric matrix; 
v represents a vector with all fluxes (comprising ve,i and vb); b represents a vector 
with zeros; l represents a vector with lower bounds for all fluxes and u represents a 
vector with upper bounds for all fluxes. The weight factor ratio, fr, between growth 
and total enzyme utilization is given by:

Each reaction in the model catalyzed by one or multiple enzymes was given the 
same weight factor (fe) and the weight factor (fb) of the (condition-specific) biomass 
reaction was varied such that log(fr) varied around a value of 0. A log(fr) value of 0 
entails that the numerator and denominator of equation 4.2 are of equal size and 
reflects a balanced weight distribution between minimization of enzyme usage (i.e. 
maximization of the negative values) and maximization of growth. By changing 
the weight factor ratio, the relative importance of enzyme usage minimization and 
biomass reaction maximization changes (Figure 4.2). If too much weight is put on 
the minimization of enzyme usage, i.e. fr becomes too low, the biomass reaction 
flux value, vb, becomes irrelevant and its value drops to zero, this can be seen at 
the left hand panel of Figure 4.2, where the graphs equal zero. The reason that the 
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average flux through enzymatically catalyzed reactions, ve, does not drop to zero 
when too much emphasis is put on enzyme usage minimization, as can be seen 
in the middle panel of Figure 4.2, is because there is a small (0.1 mmol gDW-1 h-1) 
growth related maintenance coefficient enforcing a small minimum flux of ATP to 
ADP conversion.

Figure 4.2 - Tradeoff between biomass production (growth rate) and enzyme utilization in the 
metabolic model.
Predicted values of the flux through the biomass synthesis reaction (left), average flux through all enzymatically 
catalyzed reactions (middle) and the objective function value (right), i.e. combination of total enzymatic reaction 
minimization and biomass reaction maximization for various fr values. Five different biomass reactions are shown: 
CSI (green), CSM (blue), IVB (yellow), REB (red), and NRC (black). The dashed line indicates fr = 0.8.

Prediction of uptake rates
Figures 4.3-4.5 show predicted uptake rates for the five different biomass 
reactions. As fr increases, unrealistically high uptake rates are predicted to 
overcome the restrictions of the oxygen uptake threshold (0.01 mmol gDW-

1 h-1). As can be seen in Figure 4.2 (black line), the graph representing NRC 
biomass reaction (non-replicating cells) is slightly shifted as compared to 
the other objectives. The reason for this is that the total molecular weight of 
biomass precursors for this objective as obtained form Shi and colleagues is 
not normalized to one gram. Its value is actually higher, resulting in a larger 
objective function value at a smaller fr value (Figure 4.2, right panel). For the 
four other biomass reactions a balance exists between maximization of growth 
and minimization of enzyme usage between approximately log(fr) = -0.5 and 
log(fr) = 0.3 (0.3 ≤ fr ≤ 2.0). Beyond log(fr) = 0.3 the restrictions of the oxygen 
uptake threshold are overcome, and vb and ve values jump to infinite (for the 
NRC biomass reaction, this point is reached earlier). An appropriate value for 
fr was selected from Figures 4.2-4.5 based on the consideration that uptake 
of asparagine, alanine and glutamate in addition to glycerol-3-phosphate and 
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CO2 from the host is likely to occur during infection [31]. In addition, nitric 
oxide is not produced in high amounts by THP-1 cells, and thus not a likely 
source of nutrition [35], further justifying an fr value greater than 0.3 (log(fr) > 
-0.5), when hardly any nitric oxide is predicted to be taken up (Figure 4.5, right 
panel). At fr = 0.8 (log(fr) = -0.1, dashed vertical lines), uptake of glutamate and 
glycerol-3-phosphate is predicted for all biomass reactions except for NRC, the 
biomass reaction describing non-replicating cells. For this biomass reaction 
uptake of glutamate is not predicted. In addition, at this point (fr = 0.8) uptake of 
asparagine is predicted for the condition specific biomass reaction of infection 
(CSI) and predicted to be likely (the average of minimum and maximum uptake 
rates is above zero) for the other four objectives. The uptake of alanine at this 
point is predicted to be likely for all five objective functions.

Figure 4.3 - Predicted amino acid uptake rates.
Maximum and minimum predicted uptake rates for alanine, aspartate, asparagine and glutamate using five different 
biomass reactions: CSI (green), CSM (blue), IVB (yellow), REB (red), and NRC (black) for varying fr values. The dashed 
line indicates fr = 0.8. Two lines of the same color indicate upper and lower limits of the prediction. Note that negative 
values of uptake rates denote excretion of that metabolite.
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Figure 4.4 - Predicted lipid uptake rates.
Maximum and minimum predicted uptake rates for diacylglycerol, glycerol-3-phosphate, and triacylglycerol using 
five different biomass reactions: CSI (green), CSM (blue), IVB (yellow), REB (red), and NRC (black) for varying fr values. 
The dashed line indicates fr = 0.8. Two lines of the same color indicate upper and lower limits of the prediction. Note 
that negative values of uptake rates denote excretion of that metabolite.

Figure 4.5 - Predicted oxygen, carbon dioxide, and nitric oxide uptake rates.
Maximum and minimum predicted uptake rates for oxygen, carbon dioxide, and nitric oxide using five different 
biomass reactions: CSI (green), CSM (blue), IVB (yellow), REB (red), and NRC (black) for varying fr values. The dashed 
line indicates fr = 0.8. Two lines of the same color indicate upper and lower limits of the prediction. Note that negative 
values of uptake rates denote excretion of that metabolite.

As can be seen in Figures 4.3-4.5, the predicted uptake rates are very similar for 
all five biomass reactions. Therefore, the biomass reaction itself seems of minor 
importance for the prediction of uptake rates. The uptake of glutamate appears 
as especially high for a relatively small fr value, regardless of the chosen biomass 
reaction.
Beste and colleagues determined that the amino acids asparagine, alanine and 
glutamate are likely taken up during infection. Acetate- or acetyl-CoA-derived 
from β-oxidation of host lipids and CO2 is utilized intracellularly and glycerol-
3-phosphate could be a potential carbon source as well [31]. Regardless of the 
objective used, sMtb is able to reproduce these observations (Figures 4.3-4.5). In 
general, glutamate is taken up at low fr values, while asparagine becomes more 
important at higher fr values. The routes of glutamate towards most metabolic 
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precursors are shorter than those of asparagine, which is predicted to be taken 
up at a higher fr value. In this way the change of the uptake rates with the fr value 
reflects the metabolic versatility of each component.
Lipid uptake rates show that glycerol-3-phosphate is likely to be taken up, 
while diacylglycerol and triacylglycerol are possibly taken up. Cholesterol is not 
predicted to be used as a carbon source at any fr value, in contrast to mounting 
evidence that cholesterol plays an important role as a nutrient for Mtb in the host 
[14, 36]. Currently, the cholesterol degradation pathway of Mtb is partly unknown, 
therefore only a partial degradation pathway exists in sMtb and the double ringed 
product (ring C and D of the cholesterol molecule) can only be excreted in sMtb. 
Partial degradation results in suboptimal yield of energy carrying metabolites 
derived from the cholesterol molecule compared to other molecules and therefore 
it is not predicted to be taken up. As knowledge on the cholesterol degradation 
pathway advances, the complete pathway will eventually be known. Integrating 
this complete pathway into sMtb will likely yield different results regarding 
cholesterol uptake.
The prediction of CO2 uptake is complicated, as it is a nutrient that is excreted and 
possibly taken up, unlike the other nutrients in Figures 4.3-4.5. With FBA only a 
prediction of the difference between CO2 excretion and uptake can be obtained. On 
average, CO2 is predicted to be excreted throughout the entire fr range.

Gene essentiality within the host
Gene essentiality predictions are often used to assess the predictive power of 
GSMs. Gene essentiality predictions can be simulated with in silico gene knock out 
(KO) mutants and comparing the maximal predicted growth rate of the wild type 
strain with the KO mutant. A reduction in the predicted specific growth rate of 95% 
or more is generally accepted as a threshold value for gene essentiality [9, 10, 37].
Here this approach will not provide satisfactory results, as there are too few 
constraints on the uptake rates of individual nutrients, only on the whole of 
enzymatically catalyzed reactions, resulting in an excess of unrealistic metabolic 
routes that could circumvent the deficiency caused by the deletion of the gene. We 
therefore optimized the aforementioned weighted bi-objective using fe,i = 0.001 for 
all i with and without deleting the corresponding gene. Afterwards, both results 
were compared and a reduction of the specific growth rate, vb, by 95% was marked 
as an essential gene.
These gene essentiality predictions were performed for each of the biomass 
reactions. We subsequently compared these predictions with experimental 
data obtained by Mendum and colleagues [32] and the accuracy, sensitivity and 
specificity of the predictions obtained with each of the five biomass reactions was 
calculated (Table 4.2).
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Table 4.2 - Gene essentiality predictions
Gene essentiality predictions made using sMtb with five objective functions compared with experimental data 
obtained 3 and 7 days after infection [32].
Abbreviations: TP, true positive, TN, true negative, FP, false positive, FN, false negative, CSI, condition-specific 
infection reaction, CSM, condition-specific medium reaction, IVB, in vitro biomass reaction, REB, regular biomass 
reaction, NRC, non-replicating cells reaction.

CSI CSM IVB REB NRC

3ds 7ds 3ds 7ds 3ds 7ds 3ds 7ds 3ds 7ds

TP 47 50 45 47 24 29 45 48 9 10

TN 335 346 343 353 352 365 346 357 419 428

FP 100 97 92 90 83 78 89 86 16 15

FN 222 211 224 214 245 232 224 213 260 251

Accuracy 0.54 0.56 0.55 0.57 0.53 0.56 0.56 0.58 0.61 0.62

Sensitivity 0.17 0.19 0.17 0.18 0.09 0.11 0.17 0.18 0.03 0.04

Specificity 0.77 0.78 0.79 0.80 0.81 0.82 0.80 0.81 0.96 0.97

Discussion

We have created condition-specific biomass reactions based on transcript abundance 
data, thereby ensuring that the obtained biomass compositions represent the 
organism’s needs in the corresponding conditions. By limiting the availability of 
nutrients to those known or estimated to be present in the phagosome and restricting 
the uptake of all other nutrients, we were able to capture the metabolic state of Mtb 
during infection.
Methods such as iMAT [16], MADE [17] or GIMME[18], aim at developing condition-
specific models maximizing the agreement between flux predictions and expression 
measurements methods. The flexibility of these models is reduced, and this can 
limit their predictive power. If, for example, certain reactions are perturbed by the 
effect of drugs, perhaps the system shifts to another metabolic state to accommodate 
the effect of such perturbation. However, due to the fitting of the gene expression 
data, it might happen that this effect cannot be accounted for, as the predicted 
metabolic state is biased to represent the gene expression data. In our approach, 
we initially constrain the reaction bounds in the model with the gene expression 
data. The constrained model is used to derive a condition-specific biomass reaction. 
The obtained coefficients of the biomass precursors contain information on the 
network wide impact of the gene expression data. The constraints in the model are 
then removed while the newly defined condition-specific biomass reaction is used 
to provide an indirect representation of the metabolic state corresponding to the 
expression data. Our goal was to retain flexibility in the model, while incorporating 
the experimental data.
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We reasoned that the enzymes encoded by transcripts and involved in metabolism, 
which were present at a given moment in Mtb, should roughly reflect the flux through 
these enzymes at that specific condition and time point. Even though transcript 
abundance is not linearly correlated to enzyme abundance or flux (i.e. the reaction 
rate of an enzyme) [38], for larger systems, such as pathways or the entire metabolism, 
a correlation is likely to exist. On average, metabolic transcript abundance data 
should reflect the optimal quantity of a given enzyme that is sufficient to perform 
its metabolic task. Production of an excess of metabolic enzymes would be a waste 
of energy, and thus unfavorable for an organism residing in a hostile environment.
The synthesis routes towards amino acids are predicted to carry more flux during host 
infection as compared to in vitro growth, which is in agreement with other predictions 
[15]. This is represented in Table 4.1 by the higher (doubled) fraction of amino acids 
required. This suggests that protein synthesis is increased upon infection. Mtb is known 
to excrete proteins during infection, which could explain this predicted increase [8]. 
At the same time, the predicted lipid synthesis requirement is lower during infection 
than during growth on Middlebrook medium, confirming the lipid-rich diet that Mtb 
encounters in the host environment [8, 34]. Another major difference is the lower 
carbohydrate synthesis. Following the same reasoning, carbohydrates should be more 
abundant in the host environment, but it is generally assumed that Mtb has poor 
access to carbohydrates in this environment [39, 40]. A possible explanation could be 
that Mtb does not synthesize carbohydrates as the synthesis of other metabolites are 
preferred within the host as compared to growth on Middlebrook medium.
We have used a bi-objective optimization approach to simultaneously take into 
account growth requirements and parsimonious enzyme utilization. The tradeoff 
between both objectives is apparent in Figure 4.2. Still the comparison between 
the uptake profiles in Figures 4.3-4.5 led us to conclude that a ratio between both 
objectives, fr, of 0.8 (corresponding to log(fr) = -0.1) is likely to represent the metabolic 
state in the host. This suggests that, under these conditions, growth represents a 
major sink to cellular resources. Here we have selected an equal fe,i for all enzymatic 
reactions i, however this could be modified to account for differences in enzymes, 
such as size (molecular weight), activity or degradation rates.
Finally, it should be borne in mind that the transcriptomics data do not represent 
later infectious states, but a single time point 24 hours post infection, before the 
onset of growth arrest. As can be seen from Figures 4.3-4.5, the profiles of uptake 
rates of different nutrients are quite similar for all five (condition-specific) biomass 
reactions, even though these reactions are very different. Production of a variety 
of precursors is apparently possible using a more or less fixed set of nutrients. The 
predicted combination of nutrients that Mtb acquires during infection is surprising 
from a modeling point of view. As uptake of one nutrient and subsequent production 
of energy carrying metabolites (ATP, NADH), biomass precursor(s), and excretion of 
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byproducts, will always be more favorable than that of another metabolite in terms 
of its potential to sustain growth. The result is that the one nutrient is always favored 
above another and uptake of multiple nutrients normally does not occur without 
setting quantitative arbitrary boundaries on uptake rates. This preferential substrate 
utilization is often regulated at multiple levels, and it should be considered that 
this type of models does not explicitly account for regulation. Still, the energy and 
metabolite precursor gain from each nutrient is very balanced using sMtb and the 
bi-objective optimization, which indicates that enough regulatory information is 
retained in the transcript data.
A major advantage of the simulations performed within this study is that virtually no 
assumptions on quantitative uptake rates are required. The only limitation on uptake 
rates, apart from not allowing uptake of metabolites that are not known or likely to be 
available in the phagosome, is set on the uptake of oxygen. The phagosome is likely 
a hypoxic environment [8, 34] and the oxygen uptake rate was therefore (arbitrarily) 
set to 1% (0.01 mmol gDW-1 h-1) of the rate used in previous predictions on Mtb 
metabolism [9].
The predictions of essential genes using sMtb and the five different (condition-
specific) biomass reactions are not overwhelmingly accurate. In general, the specificity 
(the correct prediction of non-essential genes) is quite good, but the sensitivity (the 
correct prediction of essential genes) is very poor. This is rather remarkable, as such 
a long list of biomass precursors (Supplementary File 4.5) is likely to result in a high 
number of genes predicted to be essential, as there is ample opportunity to disrupt 
synthesis routes towards many precursors by an in silico knockout. Possibly, there are 
even more metabolic precursors that should be taken into account when creating 
biomass reactions for Mtb.
Although the biomass reaction representing non-replicating cells, NRC, has the 
highest accuracy, its sensitivity is the poorest of all biomass reaction, due to its low 
number of biomass precursors. If one is interested in developing novel therapeutic 
intervention strategies, the essential genes are arguably the most interesting. In 
general, the amount of genes that are predicted to be essential is lower than the 
measured number. This could imply that the list of 108 biomass precursors is still 
too short. Given that there are 2500 different lipids identified in Mtb up till now [41], 
the total number of different metabolites is probably a lot higher. Even if metabolic 
intermediates are omitted, it is still likely that the total number of biomass precursors 
is well above 108.
The Mtb genome roughly contains 4000 genes, of which a quarter has an unknown 
function [42]. Model sMtb currently contains 930 genes, which is approximately one-
third of the genome having a known function. Extrapolating these figures would 
mean that there are still an estimated 300 unknown genes in the Mtb genome that 
are involved in metabolism. So, an estimated quarter of model sMtb is missing. This 
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will undoubtedly affect predictions made with sMtb.
Another, more fundamental problem lies in the possibility that Mtb and the host 
continuously interact and a steady state is not easily obtained [43]. As the foundation 
of constraint-based metabolic models is the stoichiometric matrix, wherein a steady 
state (i.e. synthesis and degradation rates for each metabolite are equal) is assumed for 
all metabolites, a non-steady state situation might negatively impact the predictions 
made using sMtb.
The poor prediction of genes essential to survival of Mtb within the host is in stark 
contrast to in vitro predictions previously made using sMtb where accuracies of 80% 
were reached [10]. Remarkably, the biomass reactions seem to have limited influence 
on gene essentiality predictions within the host. As the general list of biomass 
precursors of model sMtb is primarily derived from in vitro data of Mtb, or close 
relatives of Mtb, the list of biomass precursors could be overfitted to in vitro growth 
conditions.
In addition, the condition-specific biomass reactions could be incorrectly inferred. 
As the biomass precursors are maximized individually one at a time, information 
regarding their interdependency is not taken into account. One could for example 
envision maximizing the sum of the flux towards all biomass precursors at the same 
time, while minimizing the difference between the overall flux profile and the gene 
expression profile, instead of the approach taken here. Nevertheless, such a strategy 
is at risk of ignoring precursors and corresponding synthesis pathways that are 
relatively lowly expressed, and ending up with only a few precursors in the biomass 
reaction.
Another explanation is that important constraints are missing. For example, the 
influence of metal cofactors such as iron and zinc on the metabolic state is ignored, 
while these cofactors are crucial for intracellular survival, and many metabolic 
enzymes do not function without these cofactors [7].
Taken together, the lack of predictive power of sMtb regarding in-host essential 
gene predictions could be caused by several problems, one of the most fundamental 
problems being the absence of a steady state situation. The gene essentiality 
measurements from Mendum and colleagues show a similar picture, as only 78-80% 
of the metabolic genes essential for survival are shared between 3 days and 7 days 
after infection [32]. This figure is not strikingly low, but it does point in the direction 
of a lack of a steady state situation. The effect that a non-steady state situation would 
have on the predictions of essential genes and the metabolic state is difficult to 
quantify.
Although Mtb is very similar to Mycobacterium bovis BCG, there are obvious 
differences. First of all, Mtb is highly pathogenic to humans, while M. bovis BCG 
is a relatively safe organism. From a metabolic point of view, both organisms are 
highly similar, although there are some notable differences [44]. Moreover, it is not 
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unimaginable that metabolic differences during infection are highlighted as M. 
bovis BCG is eventually eradicated within human immune cells, while Mtb is able to 
withstand and thrive within such cells. Another aspect is that the gene essentiality 
measurements are made 3 days and 7 days after infection while the dual RNA-seq 
data is derived from an experiment 1 day after infection.
We developed a method of modeling the metabolism of M. tuberculosis during 
infection of the host’s immune cells. The method has the advantage that, unlike 
previously applied host-pathogen modeling approaches [24], it is virtually free 
from any artificially placed constraints on metabolite uptake and secretion rates. 
In addition, our method does not require a pre-composed biomass reaction. The 
only requirements are: knowledge of nutrient availability, a genome-scale dataset 
of transcript abundances (such as an RNA-sequencing dataset), a detailed list of 
biomass precursors, and a genome-scale constraint-based model of metabolism. A 
relatively small amount of data is required for this method, and it is therefore suited 
to explore metabolic states of microorganisms in difficult to access environments 
where an efficient usage of resources is likely to occur.
Our method allows accurate prediction of nutrients from the host, apart from 
cholesterol uptake, which was not predicted to take place, likely due to lack of 
knowledge on the complete degradation pathway. A doubled amino acid synthesis 
requirement was predicted using our method, suggesting an increased synthesis 
rate of proteins relative to other metabolic precursors during host infection. Lipid 
synthesis was predicted to decrease during infection, confirming the predominant 
lipid diet encountered by Mtb within the host.
Flux predictions obtained with the condition-specific biomass reaction, without 
any further constrains show poor correlation with the transcriptomics data 
(lower than 0.1). This value is similar to the values obtained using the other four 
biomass reactions. Poor correlation between transcriptomics data and proteomics 
measurements has been shown in a wide number of publications [45-47]. In addition, 
accurate predictions would also require inclusion of enzyme turnover data [48]. This 
further confirms that fitting the model to the gene expression data might lead to an 
over constrained model.
It is important to notice that during the onset of infection not only the bacterium 
undergoes metabolic changes, but also the host environment it thrives in most likely 
undergoes changes as the host responds to infection. This interplay between the 
host and the pathogen has not been taken into account as here only the bacterium 
is modeled. Another reason for the inaccurate gene essentiality predictions could be 
that many enzymes play additional roles in the synthesis of precursors that are not 
required during in vitro growth or that the list of precursors is not comprehensive. The 
latter explanation would be plausible, as the predictions on nutrient uptake are quite 
accurate, suggesting that nutrient uptake is driven by energy efficiency constraints.
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Methods

Mtb metabolic model
We used our genome-scale metabolic model of M. tuberculosis called sMtb, 
in silico M. tuberculosis [10]. We made some minor corrections to this model 
regarding among others the respiration chain, and added six reactions to 
improve the functioning of the model. This improved sMtb model can be 
found in Supplementary File 4.1 (as systems biology markup language file, 
SBML) and in Supplementary File 4.2 (as excel file) together with a small 
summary of the aforementioned changes in Supplementary File 4.3. A list 
of metabolites that could be present in the phagosome was collected from 
literature [31], similarly a list of metabolites in Middlebrook 7H9 medium was 
collected (Supplementary File 4.4).

Constraining sMtb with gene expression data
Raw sequence read data supporting the results of this article are available 
in the EMBL-EBI European Nucleotide Archive under the Accession No. 
PRJEB6552, http://www.ebi.ac.uk/ena/data/view/PRJEB6552 for both M. bovis 
BCG grown on Middlebrook 7H9 medium and M. bovis BCG cells infecting 
THP-1 cells. RNA sequencing reads were aligned to the M. bovis BCG genome 
as described before [14]. For each gene present in sMtb, the number of reads 
aligning to it was summed. A cutoff value of 100 counts per million (cpm) 
was used to identify lowly expressed genes, that were assigned a count value 
of zero. The resulting gene count values were subsequently transferred to 
their corresponding reactions, summing the counts for reactions catalyzed by 
isozymes. For reactions catalyzed by a protein complex, the smallest number 
of counts of every gene that encodes a part of such a complex was assigned to 
the reaction. For reactions that can be catalyzed by several different protein 
complexes, the smallest number of counts assigned to one of the genes 
encoding a part of each complex was identified and subsequently the total of 
all these smallest numbers of counts was assigned to the reaction. Reactions 
that received no counts using this method were not allowed to carry any 
flux. Afterwards, the total number of counts assigned to each reaction was 
normalized by dividing this total number of counts by the largest number of 
counts assigned to any reaction in sMtb, resulting in a value ranging between 
0 and 1 for each enzyme-catalyzed reaction. This procedure is called the 
E-flux algorithm and is explained in greater detail by Colijn and colleagues 
[19].
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Obtaining condition-specific biomass reactions
The workflow applied to model sMtb is generally depicted in Figure 4.1. This 
workflow was applied twice: for gene expression data of M. bovis BCG grown 
on Middlebrook 7H9 medium (medium condition) and for gene expression data 
of M. bovis BCG cells infecting THP-1 cells (infection condition). Firstly, upper 
bounds on unidirectional (forward) reactions, and upper and lower bounds 
on bidirectional reactions were replaced by the normalized counts assigned 
to that reaction (Figure 4.1A). The resulting sMtb model constrained by gene 
expression data was further constrained by setting uptake rates of unavailable 
metabolites to zero in the given condition and allowing unconstrained uptake 
of available nutrients, based on nutrient availability data (Figure 4.1B). The 
nutrient availability in the phagosome and in Middlebrook 7H9 medium 
is given in Supplementary File 4.4. Afterwards, a general list of biomass 
precursors was obtained from sMtb (Supplementary Files 4.1 and 4.2). For each 
biomass precursor, a sink reaction was added and the flux of each of these sink 
reactions was individually maximized, effectively maximizing the flux towards 
the respective precursor (Figure 4.1C). Subsequently, the obtained maximum 
value for each biomass precursor was normalized such that the total molecular 
weight of these precursors equaled one gram, resulting in a condition-specific 
biomass reaction of Mtb during infection, growing in phagosomal conditions, 
CSI, and a condition-specific biomass reaction of Mtb growing in Middlebrook 
7H9 medium, CSM (Figure 4.1D). These condition-specific biomass reactions 
were subsequently added to sMtb and constraints derived from the gene 
expression were removed (Figure 4.1E).

Calculating nutrient uptake for various objective functions
We compared five different objective functions for their ability to correctly 
predict nutrient uptake rates by Mtb in the phagosome. The following biomass 
reactions were used: CSI, CSM, the regular biomass reaction from model 
sMtb representing growth (REB) [10], the biomass reaction from model sMtb 
representing in vitro growth (IVB) [10] and a reaction representing Mtb in a 
non-replicative state (NRC) [25].
The bounds on uptake rates of all nutrients representing phagosomal conditions 
(Supplementary File 4.4) were unconstrained, with the sole exception of 
constraining the oxygen uptake rate to 0.01 mmol gDw-1 h-1. Subsequently, 
each of the five objective functions was maximized while the sum of all other 
enzymatically catalyzed reactions was minimized (equations 4.1.1-4.1.3). 
The weight factor for the biomass reaction, fb, was varied while keeping the 
weight factor for enzymatically catalyzed reactions, fe,i , constant at 0.001 for 
all reactions i, hence effectively varying fr, the ratio between fb and the sum 
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of all fe,i values (equation 4.2). Subsequently, a flux variability analysis was 
performed, wherein the maximum objective function value, w (Figure 4.2, right 
panel), was set as a constraint and the nutrient uptake rates were minimized 
and maximized individually, resulting in maximal and minimal uptake rate 
boundaries for various nutrients for each objective function (Figures 4.3-4.5) 
[4, 49].

Comparison of gene essentialities for various objective functions
At log(fr) > -0.5 flux is channeled through all (condition-specific) biomass 
reactions (Figure 4.2, right panel). At log(fr) < 0.3 minimizing flux through the 
sum of all enzymatically catalyzed reactions is still relevant and the restrictions 
of the oxygen uptake threshold are not yet overcome. Beyond this point, the 
(condition-specific) biomass reaction weight factor, fb, is so large as compared to 
the sum of all fe,i values, that an optimal objective function value, w, is obtained 
by solely minimizing enzyme usage, and ignoring maximizing flux through 
the (condition-specific) biomass reaction. An fr value of 0.8 was chosen from 
figures 4.2-4.5 as asparagine, alanine and glutamate in addition to glycerol-3-
phosphate and CO2 are taken up from the host, which is likely to occur during 
infection [31] and this value log(0.8) ≈ 0.1 is centered between the boundaries 
of log(fr) = 0.5 and log(fr) = 0.3. The growth rates (i.e. the in silico calculated 
flux of CSI, CSM, IVB, REB and NRC) were maximized indirectly by maximizing 
the aforementioned bi-objective optimization problem. Each biomass reaction 
will always obtain its maximal value using this approach. Thereafter, using the 
COBRA toolbox [50], genes and their corresponding reactions where deleted one 
by one and the resulting specific growth rates were computed by maximizing 
the aforementioned bi-objective optimization problem. These growth rates 
were divided by the wild-type growth rate, resulting in a number between 0 and 
1 for each knocked-out gene, representing the relative specific growth rate. We 
applied a 95% reduction in the relative growth rate as a threshold to indicate 
essential genes as described before [10].
Mendum and colleagues infected human dendritic cells with an Mtb transposon 
library to identify genes that are required for in vivo survival after 3 days and 
after 7 days [32]. These experimentally identified essential genes were compared 
to the predicted essential genes using the aforementioned five different 
objective functions. Subsequently, the accuracy, sensitivity and specificity of 
the predictions, were calculated for all five objective functions and for both 
experimental time points.
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Abstract

Little is known about the metabolic state of Mycobacterium tuberculosis (Mtb) 
inside the phagosome, a compartment inside phagocytes for killing pathogens and 
other foreign substances. We have developed a combined model of Mtb and human 
metabolism, sMtb-RECON and used this model to predict the metabolic state of 
Mtb during infection of the host. Amino acids are predicted to be used for energy 
production as well as biomass formation. Subsequently we assessed the effect of 
increasing dosages of drugs targeting metabolism on the metabolic state of the 
pathogen and predict resulting metabolic adaptations and flux rerouting through 
various pathways. In particular, the TCA cycle becomes more important upon 
drug application, as well as alanine, aspartate, glutamate, proline, arginine and 
porphyrin metabolism, while glycine, serine and threonine metabolism become 
less important. We modeled the effect of eleven metabolically active drugs. Notably, 
the effect of eight could be recreated and two major profiles of the metabolic 
state were predicted. The profiles of the metabolic states of Mtb affected by the 
drugs BTZ043, cycloserine and its derivative terizidone, ethambutol, ethionamide, 
propionamide, and isoniazid were very similar, while TMC207 is predicted to have 
quite a different effect on metabolism as it inhibits ATP synthase and therefore 
indirectly interferes with a multitude of metabolic pathways.
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Background

Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, is an 
intracellular pathogen that thrives inside the phagosome of the host’s macrophages [1, 
2]. This environment prevents obtaining accurate in vivo measurements characterizing 
the metabolic state of the pathogen during infection. Genome-scale models (GSMs) 
of metabolism have been proposed as efficient tools to explore bacterial metabolism, 
even in conditions difficult to access experimentally. Flux balance analysis (FBA) is 
a widely used approach to study GSMs and relies on the definition of an objective 
function that characterizes the metabolic objective of the organism under study 
[3]. Predictions made using GSMs are highly dependent on the objective that is 
being used and the constraints placed on the uptake and excretion of nutrients and 
metabolites. To perform predictions on in vitro growth, most often a biomass reaction 
is selected as objective function for maximization. The biomass reaction details the 
biomass composition in terms of its constituents such as proteins, lipids and nucleic 
acids. This composition might vary in different growth conditions [4]. Biomass as an 
objective function has been used for the earliest genome-scale metabolic models of 
Mtb [5, 6] as well as more recent models [7-13]. Recently, a condition-specific biomass 
reaction has been formulated for Mtb inside the host by integrating model sMtb [9] 
and gene expression data during on-going infection [14].

In silico gene knockout analysis has been the method of choice to predict metabolic 
drug targets, in the form of genes and their associated enzyme products [6, 13, 15]. Such 
methods are based on analyzing the effect of completely blocking the flux through 
the corresponding reactions on growth predictions. This full blockage approach 
would fail to predict cases wherein drugs reach Mtb in relatively small amounts so 
that enzyme function is only partly lost, allowing Mtb to counteract the negative 
effects of such a drug by altering its metabolic state to overcome non-optimal fluxes 
due to the drug affected enzymes. Bhat and colleagues developed a method to study 
dose dependent effects of isoniazid on the metabolic state that relied on simulating 
the effects of partial loss of function of the affected enzymes [16].

To capture the interaction between Mtb and its host on a metabolic level, a model 
of macrophage metabolism is required. Nutrients for Mtb are obtained from the 
phagosome, a cellular compartment specific to macrophages, and from the cytosol 
after Mtb gains access [17]. The phagosome represents a nutrient-poor, hypoxic, 
and nitrosative environment wherein Mtb is able to survive [18]. Nevertheless, the 
nutrients available in the phagosome, arguably after cytosolic access, are predicted 
to be varied [19, 20], and as such, allow metabolic flexibility of Mtb, which is best 
captured using a combined host-pathogen model. Although a host-pathogen 
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metabolic model is more elaborate, and as such introduces more uncertainty and 
variability, several gene expression datasets have been introduced that cover both 
host and pathogen [19, 21], and as such are suited to constrain such a model to make 
it condition-specific.
For Mtb, a host-pathogen model was first created by Bordbar and colleagues [22], 
based on iNJ661, a well known Mtb model published in 2007 [6] and RECON 1, the 
first global human metabolic reconstruction [23]. The combined model allowed 
simulation of metabolic changes during infection and three distinct pathological 
states of Mtb were described.
Improved versions of the individual models describing the metabolism of host and 
pathogen are available. Model sMtb is a comprehensive model of Mtb metabolism 
with an increased scope of the underlying metabolic network, and increased 
predictive power regarding the metabolic state and gene essentiality [9]. RECON 
2.2 [24, 25], almost doubles the size of the metabolic network of RECON 1. Here, we 
integrate sMtb and RECON 2.2 to create an Mtb-Macrophage model, sMtb-RECON. 
The combined model has condition-specific objective functions for both pathogen 
and host, based on dual RNA-sequencing data. By applying various known metabolic 
drugs in silico, we highlight pathways that are important for Mtb to escape eradication 
by drug and host. Drugs that specifically target these pathways could therefore prove 
to be a valuable addition to the existing drugs

Results

Host-pathogen model sMtb-RECON
Model sMtb-RECON has a total of 8987 reactions and 13.4% are from Mtb. Model sMtb-
RECON contains 6373 metabolites and 2605 genes, of which 16.5% and 35.7% are from 
Mtb, respectively. RECON 2.2 has 9 compartments in total (number of metabolites 
indicated between brackets): cytoplasm (1918), extracellular space (770), golgi 
apparatus (312), lysosome (291), mitochondrion (756), nucleus (161), endoplasmic 
reticulum (675), peroxisome (440), and the mitochondrial intermembrane space (1). 
No phagosome compartment is available in RECON 2.2. There is a lysosome, but 
Mtb is known to block phagosome-lysosome fusion, therefore, the metabolites in 
this compartment are not likely to be available as nutrients for Mtb. Mtb is however 
assumed to acquire access to the cytosol. As this compartment contains the majority 
of the biomass precursors for the host, Mtb is assumed to have access to these. The 
cytosolic biomass precursors in model RECON 2.2 are thus set as metabolites that 
can be taken up by the Mtb part of model sMtb-RECON. A list of the metabolites and 
their maximal uptake rates is given in Table 5.1. Model sMtb-RECON can be accessed 
via https://doi.org/10.18174/466578.
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Table 5.1 - Nutrient availability inside the host.
A list of metabolites predicted to be available for Mtb inside the host and their predicted maximal uptake rates.

Metabolite Maximal uptake rate

RECON 2 sMtb  (mmol·gDW-1·h-1)

1 ala_L ALA 1

2 pa_hs 1

3 amp AMP 1

4 arg_L ARG 1

5 asn_L ASN 1

6 asp_L ASP 1

7 atp ATP 1

8 chsterol CHOLESTEROL 0

9 cmp CMP 0.37

10 cys_L CYS 1

11 dag_hs DAG 1

12 damp DAMP 0.30

13 dcmp DCMP 1

14 dgmp DGMP 0.28

15 dtmp DTMP 0.08

16 gln_L GLN 1

17 glu_L GLU 1

18 gly GLY 0.02

19 glygn2 0.21

20 gmp GMP 1

21 hdca HEXADECANOATE 0.32

22 hdcea 9HEXADECENOATE 1

23 his_L HIS 1

24 ile_L ILE 1

25 leu_L LEU 1

26 met_L MET 0.12

27 ocdca OCTADECANOATE 1

28 ocdcea 9OCTADECENOATE 0.03

29 pail_hs PITBA 0.23

30 pchol_hs PHOSPHATIDYLCHOLINE 1

31 pe_hs ETHA 1

32 pglyc_hs PG 1

33 phe_L PHE 1

34 pro_L PRO 1
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Metabolite Maximal uptake rate

RECON 2 sMtb  (mmol·gDW-1·h-1)

36 ser_L SER 0

37 sphmyln_hs 0.05

38 tag_hs TAG 1

39 thr_L THR 1

40 trp_L TRP 0

41 ttdca TETRADECANOATE 1

42 tyr_L TYR 1

43 ump UMP 1

44 val_L VAL 1

45 adp ADP 1

46 no NO 1

47 co2 CO2 1

48 glyc3p GL3P 1

49 o2 O2 1

50 lys_L LYS 1

Modeling host-pathogen interaction
We extended the method presented in [14] to integrate model and gene 
expression data to arrive at a model describing the metabolic state of the system 
during infection. The approach is summarized in Figure 5.1. We used dual RNA 
sequencing data obtained 24 hours after exposing macrophage-like THP-1 cells to 
Mycobacterium bovis BCG, a close relative to Mtb and as such, this data reflects data 
derived from a real life infection with Mtb [21].

First, the combined sMtb-RECON model was modified so that all reversible 
reactions of the Mtb part of sMtb-RECON were split in a forward and backward 
reaction, to make the sMtb part of the model irreversible (thus bringing the total 
number of reactions to 9408). Then the combined model was constrained using 
the dual RNA seq data and condition-specific biomass reactions were obtained, 
for host and pathogen, by maximizing each human biomass precursor one-by-one 
for both the Mtb and the human part of sMtb-RECON. Afterwards, the constraints 
placed on sMtb-Recon were removed and the condition-specific biomass reaction 
of the human part of sMtb-RECON was used as a proxy for nutrient availability for 
the Mtb part of sMtb-RECON. The maximum allowable uptake rates of the Mtb 
part were thus limited to the maximum obtainable fluxes for each human biomass

Table 5.1 - continued
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Figure 5.1 - Predicting the metabolic state of Mtb during infection and drug application.
Schematic overview of the steps required to calculate a metabolic state of Mtb during infection from the upper left panel 
following the arrows to the upper right panel. Mtb (yellow shape) is depicted inside the phagosome (light blue shape) of 
a macrophage (grey shape). Metabolisms of both Mtb and Macrophage are indicated with diamonds and arrows. Yellow 
diamonds represent metabolites, blue diamonds represent biomass precursors, grey/brown/red diamonds represent 
phagosomal nutrients, and the large green diamond represents the condition-specifi c biomass reaction. Grey arrows 
represent metabolic conversion rates, green arrows represent uptake rates, and red arrows represent secretion rates, 
wherein the thickness of the arrows is proportional to the rate. Red crosses represent blocked metabolic conversions.
Upper left panel: A constraint-based genome-scale model of Mtb metabolism is coupled to one of human metabolism and 
a combined model is obtained.
Middle left panel: Metabolic conversion rates (i.e. metabolic fl uxes) are constrained proportional to mRNA transcript 
abundance in both Mtb and macrophage.
Lower left panel: For each potential biomass precursor, the fl ux through metabolism towards that precursor is maximized, 
both for Mtb and the macrophage, obtaining two condition-specifi c biomass reactions.
Lower right panel: The constraints based on mRNA transcript abundance are removed from the combined model.
Middle right panel: The nutrients available for Mtb in the phagosome, and their maximum uptake rate are set according to 
the condition-specifi c biomass reaction of the macrophage. Subsequently, the condition-specifi c biomass reaction of Mtb is 
maximized, while the total fl ux through enzymatically-catalyzed reactions is minimized.
Upper right panel: The rate of an enzymatically-catalyzed reaction is constricted by the effect of a metabolically active 
drug (red cross within the rounded square) and metabolic rerouting occurs towards a part of metabolism that contains a 
relatively higher number of enzymatically catalyzed reactions.

Macrophage

Phagosome

Mtb
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precursor. Thereafter, all reactions affected by a drug were gradually constrained 
as metabolism starts to reroute.
Using this method, uptake and secretion profiles can be predicted. This allows 
prediction of metabolites that are taken up or secreted even if in the starting model 
no additional constraints are imposed to limit uptake or secretion rates, apart from 
the oxygen uptake rate. Mtb encounters a hypoxic environment inside the host [18, 
26, 27]. Therefore, we used the oxygen uptake rate to constrain the model to such 
an extent, that prediction of uptake and secretion rates becomes feasible without 
arbitrarily chosen bounds on other uptake and/or secretion rates.

Metabolic state during infection
Mtb is predicted to take up and secrete a plethora of different metabolites at 
varying rates (Figures 5.2-5.5).

rate (mmol/gDW/h) #10-3
-2.5 -2 -1.5 -1 -0.5 0 0.5

L-Alanine
L-Arginine

L-Asparagine
L-Aspartate
L-Cysteine

L-Glutamate
L-Glutamine

Glycine
L-Histidine

L-Isoleucine
L-Leucine

L-Lysine
L-Methionine

L-Phenylalanine
L-Proline
L-Serine

L-Threonine
L-Tryptophan

L-Tyrosine
L-Valine

Figure 5.2 - Predicted amino acids uptake and secretion rates by Mtb in the host.
Predicted ranges of uptake and secretion rates (mmol gDW-1 h-1) of amino acids by Mtb inside the host are indicated by 
blue bars. Negative values denote uptake and positive values denote secretion.

Almost all amino acids are predicted to be taken up by Mtb (Figure 5.2). Most 
notably serine and proline are predicted to be taken up at relatively high rates. 
Glycine uptake and/or secretion rates remain largely underdetermined, in fact 
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using this approach the model is not able to predict whether it is produced or 
consumed. Notably, our approach also allows a small production of glutamine, 
glutamate, aspartate and alanine. Glutamate can be interconverted to glutamine 
by, for example, glutamine synthase at the expense of ATP [28]. In this way any 
additional uptake of glutamate can serve as a potential source of glutamine, or 
the other way around, although ATP expenditure limits this interconversion. 
Therefore, the ranges wherein glutamate and glutamine are predicted to be taken 
up are equal.

The pattern observed in Figure 5.2 is not a reflection of the coefficients for the amino 
acids in the condition specific biomass reaction of sMtb, as one would perhaps 
expect. This can be seen in figure 5.6, where one would expect that all amino acids 
that are taken up, would be incorporated into biomass, which is obviously not the 
case. By multiplying the flux through the condition specific biomass reaction with 
the respective column of the stoichiometric matrix corresponding to this biomass 
reaction, the fluxes required for synthesis of the individual biomass precursors can 
be obtained. When comparing the fluxes required for biomass synthesis with their 
respective predicted uptake rates, most notably alanine and aspartate are predicted 
to be synthesized by Mtb (Figure 5.6 upper panel). On the other hand, almost all 
serine, proline and glycine is used for purposes other than biomass synthesis, i.e. 
ATP and NADH production required for maintenance (Figure 5.6 lower panel). 
Such behavior has been described in cancer cells [29, 30], but not for Mtb.

rate (mmol/gDW/h) #10-3
-2.5 -2 -1.5 -1 -0.5 0 0.5

(9Z)-Hexadecenoic acid
(9Z)-Octadecenoic acid

1,2-Diacyl-sn-glycerol
Icosanoic acid

sn-Glycerol 3-phosphate
Hexacosanoic acid
Hexadecanoic acid
Nonadecanoic acid
Pentadecanoic acid
Phosphatidylcholine

Triacylglycerol
Tetracosanoic acid

Figure 5.3 - Predicted lipid uptake and secretion rates by Mtb in the host.
Predicted ranges of uptake and secretion rates (mmol gDW-1 h-1) of lipids by Mtb inside the host are indicated by blue 
bars. Negative values denote uptake and positive values denote secretion.
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Glycerol-3-phosphate is a lipid (precursor) that is taken up in a relatively high 
amount (Figure 5.3). It is known that glycerol-3-phosphate serves as a major 
carbon source for several intracellular pathogens [31] and it has been suggested 
that glycerol-3-phosphate might serve as an alternative carbon source for Mtb in 
vivo [32].
Glycerolipids such as diacylglycerol (DAG), triacylglycerol (TAG), and 
phosphatidylcholine are predicted to be taken up as well. Most notably, DAG is 
taken up in relatively large amounts (0.5 mmol gDW-1 h-1). These three metabolites 
are closely related, as phosphatidylcholine can be converted to DAG and choline 
phosphate by phospholipase C [33]. DAG can be converted to TAG, which is 
subsequently stored in lipid droplets [34]. Unsaturated fatty acids (octadecenoic 
and hexadecenoic acids) are also predicted to be taken up. On the other hand, a 
range of saturated fatty acids is predicted to be secreted. These fatty acids are 
derived from TAG and DAG, indicating that there is a higher requirement for the 
glycerol backbone of TAG and DAG than for the attached fatty acids.

rate (mmol/gDW/h) #10-5
-4 -3 -2 -1 0 1 2

Nitric oxide
Sulfate

Iron(2+)
Molybdate

Figure 5.4 - Predicted uptake and secretion rates of cofactors and small molecules by Mtb in the host.
Predicted ranges of uptake and secretion rates (mmol gDW-1 h-1) of cofactors and small molecules by Mtb inside the 
host are indicated by blue bars. Negative values denote uptake and positive values denote secretion.

Small metal cofactors, such as molybdate and iron are predicted to be taken up 
(Figure 5.4). Mtb is known to chelate iron using siderophores, called mycobactins, 
via a specialized ESX-3 system [35]. This ESX-3 system is essential for in vitro 
growth [36]. In sMtb, iron as an ion or element, without being integrated in a larger 
molecule, is not incorporated in the condition-specific biomass reaction, as is the 
case in most biomass reactions of models of Mtb metabolism [6, 9]. However, iron 
incorporated in larger molecules, such as heme groups, is present in the condition-
specific biomass reaction(s) of sMtb.

The excretion of orthophosphate and nitrite (Figure 5.5) are probably artifacts 
from the model, where phosphate might be derived from the phosphate group of 
glycerol-3-phosphate and nitrite could be related to the nitrogen groups of the 
variety of amino acids that are taken up. The model predictions show that free
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rate (mmol/gDW/h) #10-3
-12 -10 -8 -6 -4 -2 0 2 4 6

Oxygen
Carbon dioxide

Ammonia
Nitrite

Orthophosphate

Figure 5.5 - Predicted uptake and secretion rates of molecular oxygen, carbon dioxide and other small 
molecules by Mtb in the host.
Predicted ranges of uptake and secretion rates (mmol gDW-1 h-1) of oxygen, carbon dioxide, and other small molecules 
by Mtb inside the host are indicated by blue bars. Negative values denote uptake and positive values denote secretion.

ammonia can be taken up as well as secreted at about equal rates, so the fate of 
ammonia uptake or secretion remains inconclusive from these predictions.
The oxygen uptake rate equals 0.01 mmol gDW-1 h-1 which equals the imposed 
maximum uptake rate (Figure 5.5). Decreasing the lower bound on oxygen exchange, 
i.e. allowing a higher uptake rate of oxygen, results in a higher specific growth rate. 
As such, the system is limited by oxygen and it is obvious that oxygen is taken up at 
its maximum rate. Carbon dioxide is secreted mainly due to respiration.

Figure 5.6 - Usage of amino acids derived from the host.
Top: Rate of amino acids synthesis by Mtb for biomass incorporation relative to their respective uptake rates.
Bottom: Relative rate of amino acid uptake that is used in processes other than biomass synthesis.
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Metabolic states of drugged Mtb: Rerouting metabolism
Table 5.2 illustrates the mode of action of twelve anti-TB drugs known to interfere 
with metabolic enzyme activity with known targets. To simulate increasing dosages 
of these drugs, we gradually decreased the flux through the reactions catalyzed by 
the affected enzymes.

Table 5.2 - Drugs acting on metabolic enzymes.

Drug Mode of action Target

Isoniazid Inhibits mycolic acid synthesis and 
folate synthesis

Activated by KatG, targets InhA, 
KasA and DfrA

Ethambutol Inhibits arabinogalactan synthesis Possibly EmbB

Ethionamide/ 
Prothionamide*

Inhibits mycolic acid synthesis Activated by EthA, targets InhA

Cycloserine/ 
Terizidone*

Inhibits peptidoglycan synthesis by 
blocking the synthesis and use of 
D-alanine

Targets Alr and ddlA.

Para-amino salicylic 
acid

Inhibits folate metabolism DfrA

TMC207 Inhibits ATP synthase AtpE

BTZ043 Inhibits essential cell-wall arabinan 
synthesis

DprE1

V-13-011503/ V-13-
012725

Inhibits cholesterol catabolism HsaAB

V-13-009920 Inhibits the methylcitrate cycle PrpC

* Drugs with common targets have been grouped.

Of the twelve drugs in Table 5.2, some are grouped as they have the same enzyme 
target, resulting in nine drugs or groups of drugs with different targets. No effect on 
Mtb metabolism could be predicted for three of these: V-13-011503/V-13-012725, 
V-13-009920, and para-amino salicylic acid. The drugs BTZ043, cycloserine/
terizidone, ethambutol, ethionamide/propionamide, and isoniazid are predicted 
to have a very similar effect on metabolism and their effect is therefore grouped 
(Figures 5.7-5.9, left panels), even though their enzymatic targets are very different 
(Table 5.2). Notably, TMC207 has a very different effect on metabolism (Figures 
5.7-5.9, right panels).
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Figure 5.7 - Flux rerouting through amino acid metabolism and major pathways upon application of 
drugs.
Heat maps indicate a predicted relative increase (pink) or decrease (light blue) through various pathways upon the 
application of a variety of drugs. The logarithm of the sum of all absolute fluxes is given per pathway (values are 
indicated in the color bars on either side), so information on directionality is not comprised. The x-axis indicates 
the percentage of restriction of the drug-affected reaction(s). Left: average of BTZ043, cycloserine/terizidone, 
ethambutol, ethionamide/propionamide, and isoniazid; Right: TMC207.
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Figure 5.8 - Flux rerouting through cell wall component metabolism, lipid metabolism, and cofactor 
metabolism upon application of drugs.
Heat maps indicate a predicted relative increase (pink) or decrease (light blue) through various pathways upon the 
application of a variety of drugs. The logarithm of the sum of all absolute fluxes is given per pathway (values are 
indicated in the color bars on either side), so information on directionality is not comprised. The x-axis indicates 
the percentage of restriction of the drug-affected reaction(s). Left: average of BTZ043, cycloserine/terizidone, 
ethambutol, ethionamide/propionamide, and isoniazid; Right: TMC207.
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Figure 5.9 - Flux rerouting through sugar metabolism, nucleotide metabolism, and various other 
metabolic pathways upon application of drugs.
Heat maps indicate a predicted relative increase (pink) or decrease (light blue) through various pathways upon the 
application of a variety of drugs. The logarithm of the sum of all absolute fluxes is given per pathway (values are 
indicated in the color bars on either side), so information on directionality is not comprised. The x-axis indicates 
the percentage of restriction of the drug-affected reaction(s). Left: average of BTZ043, cycloserine/terizidone, 
ethambutol, ethionamide/propionamide, and isoniazid; Right: TMC207.

For TMC207, alanine, aspartate, glutamate, arginine, and proline metabolism is 
relatively unimportant (Figure 5.7), while porphyrin metabolism and fructose 
metabolism become more important, as the percentage of constriction of 
the reactions affected by TMC207 increases (Figures 5.8-5.9). Porphyrins are 
heterocyclic compounds able to form metal complexes, such as heme, the latter 
attenuating growth of Mtb if absent from the growth medium [37]. In addition, 
with moderate constriction (around 40% in Figures 5.8-5.9) flux is lowered through 
pathways such as cholesterol degradation and cofactor metabolism in general while 
flux trough these pathways is relatively large when the drug-affected reactions 
are constrained mildly (<10%) or heavily (>70%). Metabolism of glutathione, 
an antioxidant, shows behavior opposite to that of cholesterol degradation and 
cofactor metabolism in general (Figure 5.9).

The specific growth rates gradually approach zero upon the application of the 
drugs. The application of TMC207 is predicted to result in a relatively faster drop 
to zero growth rate (at 80% restriction of the flux through the affected reactions 
instead of 100%) (figure 5.10).
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Figure 5.10 - Growth rate decline upon application of drugs.
Blue line: predicted average specific growth rate of Mtb upon application of BTZ043, cycloserine/terizidone, 
ethambutol, ethionamide/propionamide, or isoniazid.
Red line: predicted average specific growth rate of Mtb upon application of TMC207.

Discussion

Mtb is under considerable stress from the host during infection. This situation 
can worsen with the application of drugs. As the dosage of a metabolic drug(s) 
increases, so does the pressure on Mtb to circumvent the effects of the(se) drug(s) 
by rerouting metabolism. The percentage of restriction, as shown in Figures 5.7-
5.10 can be viewed as a proxy for the drug dosage, as the effectiveness of a drug is 
dependent on its ability to interact with as many target enzymes as possible. As 
metabolism is an interconnected network, alternative metabolic states can exist to 
bypass the part of Mtb metabolism that is malfunctioning due to the effect of the 
drug(s).
For the simulations of metabolic states using sMtb-RECON, three different 
assumptions have been made. The first being that the non-growth associated 
maintenance flux is 0.1 mmol gDW-1 h-1 or higher, as this maintenance flux was 
shown to have the best fit to experimental data [9], the second being that the 
condition-specific biomass reaction is maximized and the third being that overall 
enzyme usage is minimized. The first requirement is set as a constraint, while 
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requirements two and three are captured as a bi-objective function in a bi-objective 
optimization problem. The weight factor ratio, fr, between the condition-specific 
biomass reaction weight, fb, and the total enzymatically catalyzed reaction weight, 
fe, equals 0.8. By lowering this factor, more emphasis is put on the minimization 
of enzyme usage, while increasing this factor puts more emphasis on attaining 
a higher value for the condition-specific biomass reaction. Lowering this factor 
would result in a larger part of nutrients being used by Mtb to generate energy, 
while increasing this factor would result in the uptake profile looking more similar 
to the condition-specific biomass reaction itself. Lowering and raising fr is however 
limited to a range wherein a single objective of the bi-objective optimization 
problem is not dominant over the other [14].
Even though the bi-objective optimization problem maximizes the specific 
biomass reaction and simultaneously minimizes the overall enzyme usage, this 
does not result in the direct uptake of all amino acids in a ratio that is proportional 
to the ratio of the corresponding coefficients in the condition-specific biomass 
reaction (Figure 5.6). As the direct uptake of amino acids represents a much 
shorter, and thus less enzyme intensive route, such a route would be preferred if 
the only function of the amino acids were direct incorporation into biomass. This 
is however not the case, because the amino acids are also used to generate energy 
in the form of ATP. Whether amino acids are required to synthesize biomass or are 
required to generate energy or both, it has been shown that Mtb is reliant on amino 
acids to thrive within the host [38-40].
Some nutrients are closely related and their interconversion involves the usage 
of one or only a few enzymes. These interlinked metabolites, such as glutamate/
glutamine and TAG/DAG/phosphatidylcholine can be relatively easily substituted 
and predictions on their individual uptake and/or secretion rates can only be 
derived from the predictions of their combined uptake and/or secretion rate. This 
is especially visible in Figure 5.2, where the ranges of uptake and secretion rates 
are equal for both glutamate and glutamine.
Perhaps surprisingly, the metabolic states predicted with sMtb-Recon after 
perturbation with BTZ043, cycloserine/terizidone, ethambutol, ethionamide/
propionamide, or isoniazid are all highly similar. For some drugs, such as isoniazid 
and ethionamide/propionamide, this can be explained by an overlapping enzyme 
target InhA. Inhibition of this enoyl acyl carrier protein (ACP) reductase is one 
of the most effective ways to eradicate Mtb. This enzyme catalyses 2-trans-enoyl 
ACP reduction and catalyzes the final step in fatty acid synthesis and is involved 
in mycolic acid synthesis. Inactivation of InhA results in cell wall alterations and 
eventually lysis of the cell [41]. However, the mycolic acid synthesis inhibition 
caused by isoniazid and ethionamide/propionamide is not directly related to the 
cell wall synthesis inhibiting effects of ethambutol and cycloserine/ terizidone. 
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Even though there is evidence that arabinogalactan and mycolic acids are physically 
attached to each other, this is not reflected in model sMtb-RECON [42].
Nevertheless, both mycolic acids and arabinogalactan are part of the condition-
specific biomass reaction of Mtb. The condition-specific biomass reaction of 
Mtb is based on RNA sequencing data derived from M. bovis BCG 24 hours post 
infection [21]. The ratio between the metabolic precursors in this biomass reaction 
is constant within model sMtb-Recon. Therefore, a decrease in the ability to 
synthesize mycolic acids, which are part of the biomass reaction, by constraining 
the reactions catalyzed by InhA, results in a decreased maximally achievable value 
of the condition-specific biomass reaction. This in turn will result in a decreased 
arabinogalactan need to achieve this value. The minimization of enzyme usage 
ensures that the overall flux through the arabinogalactan synthesis pathway is 
minimized. This process works the other way around as well. A limitation of the 
flux through the arabinosyltransferase EmbB, that is required for the synthesis of 
arabinogalactan [43], will result in a lower value of the condition-specific biomass 
reaction, in turn leading to a lower need of mycolic acids. The mycolic acid synthesis 
pathway is a highly linear pathway, and completely unidirectional in model sMtb-
RECON. No ATP for maintenance can be generated by mycolic synthesis in the 
model. The lower need of mycolic acids will result in the mycolic acid synthesis 
pathway being minimized as it serves no other purpose other than synthesizing 
mycolic acids for Mtb biomass as energy in the form of ATP cannot be generated 
from this pathway.
The reason the predicted metabolic state of TMC207-affected Mtb differs from 
the other drugs is due to the function of AtpE as an ATP generating enzyme 
involved in respiration. ATP is on the one hand a direct biomass precursor in the 
condition-specific biomass reaction, but it is also required to synthesize almost all 
other biomass precursors. In addition, ATP is required to satisfy the non-growth 
associated maintenance constraint. As such, the effect of constraining AtpE is 
not nearly as straightforward as the effect of constraining InhA or EmbB. This 
effect can be seen in Figure 5.10, wherein the effect of limiting AtpE, due to the 
application of TMC207, on the maximum condition-specific biomass reaction value 
is visible (red line). The line contains multiple bends, the most notable at 30%, but 
at 10% and 20% as well. These bends represent metabolic rerouting that can vary 
with the severity of constraining the respective reaction(s). An example of such 
variance can be seen in Figure 5.7, in the methyl citrate cycle. The flux through 
this cycle does not linearly increase or decrease with the constraining percentage 
at all, which can be more clearly seen when comparing the methyl citrate cycle in 
Figure 5.7 with a linear increase in biomass and maintenance, as seen in Figure 5.9. 
As TMC207 is predicted to have an effect that substantially differs from the effect 
of BTZ043, cycloserine/terizidone, ethambutol, ethionamide/propionamide, and 
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isoniazid, a combination of TMC207 and the latter drugs would probably provide a 
more effective strategy to combat TB than combinations of drugs without TMC207. 
Understanding the metabolic rerouting upon drug administration can lead to the 
identification of new metabolic bottlenecks, the identification of new targets and 
in the long run the development of new therapies based on combination of drugs. 
Moreover, detailed analysis of the mechanisms deployed by Mtb to counteract the 
impact of drugs might offer insights on the role of genetic modifications related to 
the development of drug resistances.
Model RECON 2.2 is a general model of human metabolism. A macrophage is 
however, a very specialized human phagocytic cell, which engulfs and digests 
pathogens in a specialized compartment, the phagosome. An important mechanism 
of pathogen killing by phagocytes involves generating the superoxide anion, which 
reacts with iron sulfur clusters in the pathogen, releasing iron and subsequently 
damaging DNA [44, 45]. RECON 2.2 does not have a phagosomal compartment 
and the applied metabolic state simulation strategy (Figure 5.1) assumes that all 
cytoplasmic biomass precursors for the macrophage are available for Mtb inside 
the phagosome, while the effect of or presence of other compounds is overlooked. 
The effect of oxygen radicals and resulting hydrogen peroxide is not captured 
by the approach applied in this study, which can be seen in Figure 5.9 where no 
change is visible in peroxide (degradation). The overall flux through peroxide 
degradation processes should increase relative to the flux through the condition-
specific biomass reaction, assuming a more or less constant supply of superoxide 
anions by the macrophage.
Divalent metal cofactors such as iron, manganese, and zinc are essential for Mtb 
virulence [2]. Currently, only the iron requirement is reflected in model sMtb-
Recon in the form of heme being an essential precursor for Mtb biomass. The metal 
availability in cells in general is limited and proteins compete for these metals 
[46]. Therefore, a better strategy would be to identify Mtb enzymes that require 
a certain metal cofactor and to simulate low availability of such a cofactor by 
constraining the total flux of all reactions associated with these enzymes [47]. This 
could provide a more accurate representation of the metabolic state of Mtb during 
infection, especially as macrophages are known to use high affinity iron binding 
proteins to limit the availability of iron [48], making this a promising modeling 
strategy.
The question remains whether these predictions are accurate enough to warrant 
pinpointing specific genes and their corresponding enzymes as drug targets. 
Previous modeling efforts have shown a poor predictive power of essential 
genes, using a bi-objective optimization strategy [14]. Continuous step-by-step 
improvements of Mtb models to reach one functional standardized model of Mtb 
metabolism is a solid step in this direction [13].
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Materials and Methods

Mtb and human models of metabolism
We used the genome-scale metabolic model of Mycobacterium tuberculosis called sMtb, 
in silico Mycobacterium tuberculosis [14] which is represents a modification of the model 
presented in [9]. The GSM reconstruction of human metabolism RECON 2.2 [25] was 
used as a model representing the host.

Creating a combined sMtb-RECON model
From the biomass precursors of the biomass reaction of RECON 2.2, all precursors were 
selected that could be present in the cytoplasm. As Mtb is known to be able to escape 
from the phagosome to the cytosol [49] and no phagosomal compartment was present in 
RECON 2.2 we took all metabolic precursors from the cytoplasm as biomass precursors 
for the macrophage condition-specific biomass reaction. A macrophage condition-
specific biomass reaction was created using this list of biomass precursors and the 
gene expression profile of the macrophage-like THP-1 cells [21]. The same method was 
applied to create an Mtb condition-specific biomass reaction using the gene expression 
profile of the Mtb-like Mycobacterium bovis BCG gene expression profile (Figure 5.1, up 
to the lower right panel). This condition-specific biomass reaction is used as a proxy for 
the number of available nutrients and their corresponding maximum uptake rates for 
Mtb in the combined sMtb-RECON model (Figure 5.1, middle right panel).

Constraining sMtb and RECON 2.2 with gene expression data
Model sMtb was constrained as described in [14] using raw sequence read data available 
in the EMBL-EBI European Nucleotide Archive under the Accession No. PRJEB6552, 
http://www.ebi.ac.uk/ena/data/view/PRJEB6552 for M. bovis BCG cells infecting THP-1 
cells. RECON 2.2 was constrained in a similar manner.

Obtaining a condition-specific biomass reaction for sMtb and a phagosomal 
environment
After assigning counts to the reactions in both sMtb and RECON 2.2 a condition-
specific biomass reaction was obtained for sMtb as described in [14]. For RECON 2.2 a 
similar approach was taken. A list of cytoplasmic biomass precursors, obtained from the 
biomass reaction present in RECON 2.2 was used for maximization of said precursors 
one-by-one, while keeping all uptake rates for model RECON 2.2 unconstrained. The 
resulting condition-specific biomass reaction, which is in essence a ratio between 
different cytoplasmic biomass precursors, was used as a proxy for the phagosomal 
composition. These biomass precursor values were subsequently linearly scaled such 
that all values range between 0 and 1 mmol/h by dividing each value by the largest 
value obtained.
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Applying constraints and calculating a reference metabolic state
A reference metabolic state, representing non-drugged growth of Mtb in the 
phagosome, was calculated in a similar manner as previous efforts [14], using 
a bi-objective optimization method, with the exception of using the calculated 
phagosomal composition and its corresponding values as maximal allowable 
nutrient uptake rates. An fr value of 0.8 was used for these calculations [14], wherein

         (5.1)

and fe,i represents the weight factor for enzymatically catalyzed reaction i and fb 
represents the weight factor for the biomass reaction.

Creating a weights vector for each metabolic drug
A list of available metabolic drugs was created and the genes encoding the enzymes 
that are known or expected to be affected by these drugs were listed (Table 5.2). 
For each drug, i, a vector, cd,i, containing weights ranging between 0 and 1 was 
created. A 0 represents a non-affected reaction and a 1 represents a fully affected 
reaction. A reaction that, for example, is catalyzed by three isozymes, and from 
among these isozymes only one is affected by the respective drug, would receive 
a value of 0.33. Likewise, if two out of the three isozymes are affected by the drug, 
a value of 0.67 is be attributed to that reaction. On the other hand, if the reaction 
would be catalyzed by a complex of three enzymes, a value of 1 would always be 
attributed to the respective reaction if at least one enzyme in the complex would 
be affected by the respective drug.

Calculating drugged metabolic states for sMtb
After obtaining drug weight vectors, cd,i for each drug, first, the bi-objective 
optimization problem as described in [14], was solved:
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subject to:

         (5.2.2)
         (5.2.3)

Wherein w is the objective function value, ve,i represents the flux or rate of a 
reaction catalyzed by at least one enzyme; fe,i represents the weight factor for each 

fr =
fb

fe,i
i=1

n

∑
(".$)	

w =max − fe,i ⋅ ve,i
i=1

n

∑
⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+ fb ⋅ vb (".$.%)	

subject	to:	

S ⋅v = b (".$.$)	
l ≤ v ≤ u (".$.%)	

fr =
fb

fe,i
i=1

n

∑
(".$)	

w =max − fe,i ⋅ ve,i
i=1

n

∑
⎛

⎝
⎜

⎞

⎠
⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
+ fb ⋅ vb (".$.%)	

subject	to:	

S ⋅v = b (".$.$)	
l ≤ v ≤ u (".$.%)	

w =max − fe,i ⋅ ve,i
i=1

n

∑
⎛

⎝
⎜

⎞

⎠
⎟+ fb ⋅ vb

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
(".$.$)	

S ⋅v = b (!.!.#)
l ≤ v ≤ u (!.!.#)

fr =
fb
⋅ fe,ii=1

n
∑

(".$)



131

Exploring the metabolic drug response of intracellular Mycobacterium tuberculosis using a systems-biology approach

5

of those reactions; vb represents the specific growth rate, i.e. the flux through one 
of the aforementioned (condition-specific) biomass reactions; fb represents the 
weight factor for the biomass reaction; n is the total number of reactions catalyzed 
by at least one enzyme; S represents the stoichiometric matrix; v represents a 
vector with all fluxes (comprising ve,i and vb) ; b represents a vector with zeros; l 
represents a vector with lower bounds for all fluxes and u represents a vector with 
upper bounds for all fluxes.

Afterwards, the bi-objective optimization problem is altered such that the objective 
function value that was obtained is set as a constraint. A new optimization problem 
is formulated to calculate the minimal flux through the reaction(s) affected by the 
respective drug:

         (5.3.1)

subject to:

         (5.3.2)
         
         (5.3.3)
         (5.3.4)

Wherein w’ represents the new objective function value and cd,i represents the 
drug weight vector for the current drug, i. Finally, a third optimization problem is 
formulated:

         (5.4.1)
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         (5.4.3)
         (5.4.4)

Wherein fd is a value that is gradually lowered from 1 to 0 to represent increasing drug 
dosages, wherein a value of 1 represents no drug is applied or total ineffectiveness 
of the drug, and a value of 0 represents total effectiveness of the drug.
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Systems medicine

Systems medicine is a novel systems approach in medicine, which aims to improve 
diagnosis, targeted therapy, better prognosis and prevention. A central aspect of 
systems medicine is the integration of different sources of data [1]. A metabolic network 
is an example of a system that can be used to integrate these different sources of data.
About 1200 genes out of 4000 Mtb genes are estimated to be involved in metabolism 
[2]. The reactions catalyzed by the enzyme products of this part of the genome can be 
modeled in a single GSM as shown in previous chapters. In this way, a large reservoir 
of potential drug targets is captured in a single model. The general principle is to utilize 
the predictive power of such a GSM to point out bottleneck reactions in metabolism, 
i.e. edges in the metabolic network underlying the GSM that carry a relatively large 
flux, while optimizing the objective function value. The enzymes catalyzing these 
bottleneck reactions have various ligands of which at least one natural substrate is 
known; otherwise the enzyme would not be incorporated in the GSM. These ligand(s) 
can subsequently be used as a template for structure-based drug design for drugs that 
competitively inhibit the enzyme(s) in question [3]. This systems medicine use is, 
besides the use for metabolic engineering purposes, one of the main uses of GSM’s in 
general [4].
It is currently not practically feasible to experimentally obtain a profile of fluxes of the 
entire metabolism of Mtb, also called the metabolic state of Mtb, which is required to 
pinpoint the aforementioned bottleneck reactions. During infection, experimentally 
acquiring a profile of nutrients that are taken up by Mtb is not even possible, let alone 
experimentally acquiring a metabolic state [5]. The use of GSM’s to predict these 
bottleneck reactions represents a first step in the total drug development process. One 
important requirement to predict the metabolic state accurately is the establishment of 
a suitable objective function.

Metabolic state of Mtb during infection
A major focus point of this thesis is the formulation of a condition-specific biomass 
reaction that can be used in an objective function to predict the metabolic state of Mtb 
during infection. The objective function, together with the constraints applied, has been 
shown to widely predefine the degree of freedom in terms of specific pathway usage 
[6]. This implies that the solution space is greatly altered by the objective function(s) 
and the constraints. Hence, the prediction of bottleneck reactions is also likely to be 
affected by the objective function(s) and the constraints. Under growth conditions 
outside the human body, on defined media, it makes sense that Mtb spends it resources 
on growth only, as these conditions are stable and there is no need to spend resources 
on anything else. Inside the host, a hostile environment is encountered, shifting the 
focus from growth to ‘survival’, as pointed out in chapters 4 and 5.
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Pointing out vulnerable pathways

The first step in pointing out bottleneck reactions, or more in general, bottleneck 
pathways, is to provide an up to date and fully functional model of Mtb metabolism.

Providing an up to date model: sMtb
Following a publication on a metabolic network of mycolic acid synthesis, MAP [7], 
two GSMs of Mtb metabolism, GSMN-TB [8] and iNJ661 [9], were independently 
created. iNJ661 was created by a group that specializes in constraint-based 
modeling, while GSMN-TB was created by a group that specializes in Mtb itself. 
While GSMN-TB was, in my view, the most comprehensive of both models, protons 
and water molecules were omitted and chemical formulas were absent. Basic 
references to metabolite databases were lacking, as well as any other information 
that could be used to identify metabolites. It’s predecessor, GSMN-TB 1.1 [10] was 
an extended and curated version of model GSMN-TB, but it unfortunately did 
not contain references to metabolite databases as well. Nevertheless, I set out to 
combine MAP, GSMN-TB 1.1, and iNJ661, which involved a substantial amount 
of manual curation. This process greatly increased the number of genes from the 
661 genes in model iNJ661 and the 759 genes in model GSMN-TB 1.1 to the 915 
genes in model sMtb. Model sMtb has a relatively high percentage of reactions 
that are associated to genes (83% as compared to 75% for GSMN-TB 1.1 and 77% 
for iNJ661). The abundance of these gene-associated reactions provides for a high 
quality model and sMtb outperforms model GSMN-TB 1.1 and iNJ661 both in terms 
of metabolic state predictions as well as gene essentiality predictions. Inferred 
and predicted fluxes correlate quite well with a Pearson’s correlation coefficient 
of 0.94 and gene essentiality predictions have a Matthews correlation coefficient 
(MCC) of 0.58 with gene essentiality data [11] as compared to an MCC of 0.49 for 
GSMN-TB 1.1 and an MCC of 0.28 for iNJ661. Note that these values are based 
on the numbers in Table 2.2 of chapter 2, and that the MCC calculated for sMtb 
is slightly higher than the MCC of 0.53 predicted by Kavvas and colleagues [12], 
the same holds true for the MCC values of iNJ661. Nevertheless, even under such 
well-defined conditions, sMtb cannot capture the fluxes through e.g. the pentose 
phosphate pathway, as shown in chapter 2. This pathway is interconnected with 
glycolysis, and highly conserved in many organisms [13], as such one expects it to 
carry flux under a wide range of conditions. The observation that sMtb is unable to 
recreate the fluxes of the pentose phosphate pathway inferred with 13C metabolic 
flux analysis, gives an indication that the prediction of fluxes through pathways 
that are not directly interconnected with central carbon metabolism might be off 
as well. Another possibility could be a measurement error or an error in the model 
used to infer the 13C metabolic fluxes.
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Creating an in-host objective using gene expression data
Mtb is capable of halting maturation of the phagosome inside immune cells and 
thus providing a niche for the bacterium to thrive [14]. Measuring the uptake and/
or secretion rates of Mtb within this niche is practically not feasible. Even getting 
a profile of the metabolites or nutrients that Mtb acquires within this niche is still 
a hurdle that has not been overcome [5].
Proteomic measurements are in theory a good representative of flux, as the 
regulatory processes between enzymes and fluxes are fewer than those between 
transcripts and fluxes and thus their ‘distance’ to flux is shorter. In addition, while 
enzymes overlap in function, they most often differ in primary structure between 
Mtb and host, allowing them to be pinpointed to the respective organism. Recent 
developments in purification techniques and proteomics allows the capture and 
analysis of Mycobacteria-containing vacuoles and the proteomic analysis of these 
vacuoles, thus generating an Mtb-specific phagosomal proteome [15]. The study 
on Mtb proteins within the host is however still hampered by the skewed ratio of 
host versus Mtb proteins [16].
Transcript abundances can be pinpointed to both host and pathogen, as shown in 
chapter 3. Frustratingly, the only true genome-wide dataset of Mtb during infection 
is still a transcriptomics dataset. The reason is that guanidinium isothiocyanate 
is used to directly penetrate the mycobacterial cell wall, stop the activity of 
intracellular ribonucleases, and stabilize the RNA. In addition, this does not lyse 
Mtb cells, but it does lyse the host cells [17]. The stabilization and simultaneous 
enrichment effect is the key factor to obtain a genome-wide transcript profile 
of Mtb residing inside the host macrophage. Pending a stabilization method for 
proteins, the proteome of Mtb within its host remains elusive, and the genome-
wide data source that best represents fluxes will be transcript abundances.
These two data sources: nutrient availability and transcript abundance represent 
the sole sources of data on Mtb metabolism within the host to this date, and this 
data was thus used to create an objective function of Mtb within the host to be able 
to accurately infer a metabolic state of Mtb during infection.

Host models
A GSM of host metabolism could yield interesting insights once such a model is 
tailored to represent an infected host macrophage. I started with the idea to create 
a condition-specific biomass reaction for a host GSM, just as I had done for Mtb in 
chapter 4. Once created, the condition-specific biomass reaction could be coupled 
to another objective, such as minimizing enzyme usage, to obtain a bi-ojective 
optimization problem specifically for the host. Thereafter, a weighed sum of the 
host bi-objective function and the Mtb bi-objective function could be optimized, 
wherein different weights would represent different scenarios wherein either the 
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host or Mtb has the upper hand. For such an approach it is essential that both 
objectives of each bi-objective function counteract each other, as explained in 
chapter 4 for Mtb, and that the quality of the GSM’s employed is sufficient. The 
lack of any constraints on the uptake rates (apart from constraining the oxygen 
uptake rate, as in chapter 4) implies in particular that there should not be any 
loops present in the network that could somehow result in a net energy production. 
Varying the oxygen uptake rate in host model RECON 2.2 had no effect on the 
obtained objective function value when the host bi-objective optimization problem 
was optimized. Remedying errors in models that cause such unwanted behavior is 
a tedious procedure. The main problem is that these loops are not caused by an 
imbalance in atoms on the left and right hand side of any given reaction, but rather 
by having different options to obtain the same result, such as ATP driven transport 
and passive diffusion of the same metabolite, paving the way for unlimited ATP 
production. The loops that cause similar effects as the one mentioned here can be 
large and complex, and solving these errors involves an iterative process wherein 
the number of iterations is unknown beforehand.

Cholesterol catabolism
The link between cholesterol and tuberculosis has been known for several decades 
[18]. However, the notion that Mtb might catabolize cholesterol is far more recent 
[19]. The complete pathway of cholesterol catabolism in Mtb up to the degradation 
of the side chain and rings A and B is well known. Recently, a mechanism for the 
catabolism of steroid rings C and D has been proposed and partly validated [20]. 
Completion of this pathway in sMtb would result in an additional gain of 2 acetyl-
CoA molecules, 1 propionyl-CoA molecule and 1 succinyl-CoA molecule, instead 
of requiring a sink for the compound consisting of steroid rings C and D and not 
gaining anything in terms of useful compounds out of these steroid rings.
The extension and curation of Mtb GSMs is an ongoing process, as is shown by 
Kavvas and colleagues [12]. The latest Mtb GSM is named iEK10111, of which sMtb 
is the primary base model. The independent selection of sMtb as a primary base 
model by another research group, verifies its quality. Model iEK1011 is shown 
to outperform its predecessors, including sMtb, and is therefore the state of the 
art GSM of Mtb metabolism. But even this model has not incorporated the full 
cholesterol catabolic pathway yet, reflecting the need of the whole Mtb modeling 
community to strive for the most comprehensive GSM of Mtb metabolism.

1 There exists a peculiar habit in the modeling community to name GSM’s according to a specific format, starting with 
the letter ‘i’, for in silico, followed by the author’s first initial, the first letter of his last name, and the number of genes 
in the model. This habit, in my view, is very odd. First of all, the letter ‘i’ might just as well stand for in vitro or in vivo, 
hence, the letter ‘s’ for in silico, would be a much better choice. Second, there exists not the slightest hint about which 
organism’s metabolism has been modeled, which is remarkable, to say the least. A single author, or different authors 
with the same initials for that matter, who model two different organisms having the same number of metabolic genes, 
is a disaster just waiting to happen...
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Optimal model size

Model iEK1011 currently, as its name suggests, encompasses 1011 genes. I estimated 
that about 1200 genes of the Mtb genome would be involved in metabolism. But 
what is exactly metabolism? Arguably, the synthesis of proteins by the action of 
ribosomes falls under metabolism and the transport of cell wall lipids towards 
the outer cellular surface. These two examples, and many more can be thought 
of, highlight that the line between metabolic and non-metabolic is a vague line. 
Therefore, the number of genes on its own in a metabolic reconstruction is not so 
relevant. The average number of genes per reaction, and the way these genes are 
distributed over the reactions however, is relevant.

Lumping reactions
A first approach to show that a metabolic reconstruction, and its resulting GSM 
is an improvement over previous reconstructions, de facto boils down to showing 
that the number of genes in the current reconstruction has increased relative to the 
previous reconstructions. If one counts the number of reactions associated with 
genes and divides this by the total number of reactions, the resulting fraction is an 
indication of the reactions that are actually known to happen inside the modeled 
microorganism (neglecting spontaneously occurring reactions), and as such this 
fraction gives a clearer indication of ‘improvement’ than the sheer number of 
genes or reactions on its own.
Another quality issue is that some pathways, such as fatty acid synthesis and 
elongation, involve repetitive steps carried out by the same enzyme. The choice 
whether or not to lump these reactions has an effect on the solution space. If 
the reactions are not lumped, a random sampling process would assign more 
sampling points to the relatively linear pathway, putting more weight on this 
enzyme as compared to others, resulting in a skewed solution space. The modeler 
thus influences the solution space based on his own choices, irrespective of the 
metabolism that is being modeled.

Solution space of sMtb
But what does this solution space actually represent in the case of Mtb? Mtb cells 
are notorious for their heterogeneity, as mycobacterial populations often contain 
large numbers of viable, but non-culturable cells (Mukamolova et al. 2003; Oliver 
2010; Trevors 2011). In addition, mycobacterial cultures are heterogeneous due 
to their asymmetric cell division [21]. This leads to distinct cell populations with 
varying antibiotic susceptibility, which in turn might be related to persistent cells. 
It is not unimaginable that these subpopulations, and also the cells within each 
subpopulation, are in different metabolic states. So, if gene expression data from 
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in-host mycobacteria are used to model the metabolic state, like in chapters 4 
and 5, this state likely reflects an average metabolic state composed of many 
different metabolic states. By using a continuous flow reactor to culture Mtb, a 
population may be obtained wherein the individuals are likely to be in a similar 
metabolic state [22], but this hardly possible for in-host mycobacteria. Here, the 
subpopulation problem is likely to persist. Moreover, when treating in-host Mtb 
with drugs, Mtb responds in two stages. First, the majority of Mtb cells are killed 
within a few days, thereafter, the killing rate drops dramatically, and a drug-
tolerant, persistent population remains [23]. From the perspective of trying to 
find bottleneck reactions, to develop novel therapeutics, the metabolism of this 
persistent subpopulation would be much more interesting. The disregard of the 
existence of Mtb subpopulations by GSM’s of Mtb metabolism could imply that the 
metabolic weak points of the drug tolerant population are overshadowed by a large 
population that would be readily eradicated by drugs.
When predicting a metabolic state of Mtb of a persistent subpopulation, it would 
thus make sense to hold back on constraining the model too much based on 
experimental data.

Obtaining experimental data

Various model experiments exist that represent infection and can be used to 
obtain experimental data. In general there is a balance between control over the 
experimental conditions and the degree of representation a real Mtb infection. 
Several different experimental models exist, each having their own strengths and 
weaknesses.

THP-1 cells and M. bovis BCG
The model experiment employed in chapter 3 relies on putting M. bovis BCG into 
contact with THP-1 cells. After 24 hours of interaction and phagocytosis of M. bovis 
BCG by the macrophage-like THP-1 cells, guadinium thiocyanate is introduced 
and the transcriptional profile of BCG is stabilized, while the THP-1 cells are lysed. 
In this model, host-pathogen interaction is present, but dormancy does not occur 
because the M. bovis BCG cells are ultimately eradicated by the THP-1 cells.

Wayne model
A well known model is the Wayne model [24]. This model relies on slowly removing 
oxygen available to Mtb. Given enough time, the Mtb bacilli enter an anaerobic 
stage that is thought represent persistent Mtb. In addition, this model allows 
synchronous replication of the Mtb bacilli when oxygen is reintroduced, offering 
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opportunities to study cell cycle related mechanisms of Mtb. The model however 
does not capture host-pathogen interaction.

Latently infected humans
The Wayne model thus represents dormancy, but host cells are absent, and the 
model experiment in chapter 3 represents Mtb-host interaction, but dormancy 
is absent. In an ideal model experiment, both Mtb-host interaction and dormancy 
would occur. An option would be to take a longue tissue sample of a latently 
infected human and immediately stabilize the transcript profile by introducing 
guanidinium isothiocyanate. It will however be difficult to obtain Mtb from such 
tissue samples, as latently infected humans do not show the symptoms associated 
with tuberculosis. Moreover, the number of Mtb bacilli would probably be very low, 
as they are already relatively low during active tuberculosis. Such an approach 
would be like looking for a needle in a haystack.
Nevertheless, dormant Mtb is able to infect THP-1 cells, postponing Mtb growth 
for 6 days post infection [25]. Such an in vitro model experiment combines both 
dormancy and infection and would perhaps be a good substitute for the model 
experiment employed in chapter 3.

Integrating gene expression data

A plethora of methods to integrate various -omics datasets and GSMs have been 
developed since genome scale metabolic networks have become available. Here, I 
will focus on the integration of transcriptomics datasets, as it is the only type of 
genome-wide data of Mtb that is available under infection conditions.
Some well-known methods to integrate transcriptomics data and GSMs are 
mentioned in chapter 4. All these methods differ slightly from each other, but their 
main focus is the same: shrinking the solution space based on transcript abundances 
of the various enzyme-encoding transcripts. The end result is, obviously, always a 
solution space that ‘looks like’ the transcriptomics data. The resulting GSM thus 
reflects a range of metabolic states (the solution space) that is smaller than the 
range of metabolic states obtained without the data. One of these metabolic states 
should be the actual, real metabolic state of the given organism at the moment and 
under the conditions of obtaining the transcriptomics data. So, actually a subset 
of metabolic states is selected based on the transcriptomics data, regardless of the 
chosen integration method. When predictions of metabolic states in similar (but 
not the same) conditions are subsequently made, it is not guaranteed that the real 
metabolic state falls within the selected subset of metabolic states. The condition-
specific GSM with the selected subset of metabolic states most likely approaches 
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the real metabolic state, and as such gives a better description of metabolism as a 
GSM with a full size solution space would. However, this condition-specific GSM is 
unsuited to make predictions on metabolic states wherein the conditions wherein 
the given organism resides, differ from the conditions wherein the transcriptomics 
data were obtained. This nullifies the use of GSMs as predictive tools and merely 
makes transcript data look like fluxes. Therefore, I set out to develop an approach 
in chapter 4 that captures both the information from the transcriptomics data, 
while retaining the full solution space.

Validation of in-host sMtb
Use of the method described in chapter 4 results in a prediction of an uptake 
and secretion profile that fits the experimental data quite well. However, for the 
in vivo prediction of gene essentiality the story is completely different, as the 
gene essentiality predictions dramatically worsen. The MCC values obtained 
vary around 0 (ranging from -0.14 to 0.01), and are thus no better than a random 
prediction. There are several reasons that could cause gene essentiality predictions 
and experimental data [26] to disagree:
Mtb and its host continuously interact during infection, resulting in an absence of 
steady state [27]. Therefore, the fundamental principles on which GSMs rely are 
not valid.
The data is acquired 3 and 7 days after infection with Mtb, while the condition-
specific biomass reaction is derived from RNA sequencing data of M. bovis BCG 24 
hours after infection.
There is little correlation between fluxes and gene expression and/or the list of 
biomass precursors is too short, causing the condition-specific biomass reaction 
to not reflect the true biomass reaction.
The network topology of model sMtb is incomplete and important parts during 
infection are not captured.
The bi-objective function approach does not represent the real objective(s) of Mtb 
during infection.
Important constraints are neglected.
The method of predicting the essential genes is incorrect, as the bi-objective 
function approach necessitates a method that differs from one using a single 
objective function.
This list is by no means intended to be comprehensive; there could be other causes 
to the poor in vivo gene essentiality predictions. 

Absence of steady state
The lack of a steady state is a very fundamental problem. Firstly, because the 
equations on which sMtb is based are not valid, and secondly, because the dynamic 
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interaction between Mtb and the host cause variation in gene essentiality over 
time, as out of the number of genes essential during infection only 78-80% 
overlap between 3 and 7 days after infection [26]. It is not unimaginable that 
a similar percentage of overlapping essential genes exists between 1 day after 
infection and 3 and 7 days after infection as well.
It is difficult to quantify the impact of the equations of sMtb being invalid in a 
dynamic situation on the predictions made using sMtb. Arguably, this impact 
is relatively unimportant for predicting essential genes, as this is a qualitative 
prediction and a relatively higher or lower flux through essential genes in general 
does not change the essentiality predictions. If data and predictions are obtained 
in a sufficiently small time frame, the dynamic situation inside the host can be 
viewed as a steady state situation. This, however, does render sMtb unsuited 
for predictions on changes in metabolic state during infection over larger time 
periods.

Are M. bovis BCG and Mtb the same?

Mtb and M. bovis BCG have a genome identity of 99.95%, so it would be tempting 
to suggest that both bacteria are virtually the same. However, the most obvious 
difference between M. bovis BCG and Mtb is the fact that Mtb is a human 
pathogen and M. bovis BCG is a vaccine strain [28]. When tuberculosis as a human 
disease is studied, it is obvious that M. bovis BCG is not suited as a study object. 
However, I set out to model metabolism of Mtb with the aim of using the model to 
ultimately develop new drugs. When the entire metabolism of Mtb is compared 
to the metabolism of M. bovis BCG, there are only minor differences [10]. So, if 
a metabolic drug is found that can eradicate M. bovis BCG, it is likely that it can 
eradicate Mtb as well. There are however obvious differences between Mtb and 
M. bovis BCG and some having an impact on metabolism are discussed below.

Pyrazinamidase
An example of a single basepair difference can found in the pncA gene encoding 
pyrazinamidase. M. bovis BCG has a specific point mutation of a C to G in position 
169 of this gene [29]. The mutation of this basepair causes a histidine residue 
to be replaced by an asparagine at position 57 in the PncA enzyme. This trait is 
typical to M. bovis BCG and results in a loss of activity of the pyrazinamidase. 
The effective first line drug pyrazinamide (PZA) is a prodrug that is converted 
to its active form by this pyrazinamidase. The loss of activity thus has severe 
implications, as mycobacteria having this point mutation are resistant to PZA 
[30].
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Cytochrome P450
Another difference between M. bovis BCG and Mtb lies within their regulation of 
cholesterol degradation. Cytochrome P450s Cyp125 and Cyp142 are encoded in 
the genomes of both M. bovis BCG and Mtb. These cytochrome P450s catalyze the 
first steps of the degradation of the side chain of cholest-4-en-3-one [19]. In M. 
bovis BCG cyp142 contains a specific point mutation, resulting in a premature stop 
codon and a non-functional product. There is thus redundancy and thus backup of 
cholesterol oxidation capacity in Mtb as compared to M. bovis BCG [31].

Type VII ESX secretion systems
Would the key to unraveling the pathogenicity of Mtb lie within the differing 
0.05% of its genome? While 0.05% of approximately 4 million base pairs merely 
leaves 2000 base pairs, the effect on the phenotype can vary wildly per base pair, as 
discussed above. Besides specific point mutations of these 2000 base pairs having 
a large effect on similar enzyme products of M. bovis BCG and Mtb, there are larger 
differences as well, such as whole genes being present in the genome of Mtb, while 
being absent in the genome of M. bovis BCG, and vice versa.
One such example is found in the type VII ESX secretion systems. There are five 
types of ESX secretion systems, ESX-1 to ESX-5. The genetic clusters encoding 
these ESX systems share a common set of features and these systems are used to 
transport molecular cargo across the mycobacterial envelope [32].
M. bovis BCG lacks the ESX-1 secretion system genes espA, espC, and espD [33-
35]. There is increasing evidence that this system is used to access the cytosol 
already during the early stages of infection [36, 37]. The absence of these genes 
perhaps causes a difference in nutrient availability for Mtb and M. bovis BCG. This 
difference in nutrient availability may be an underlying cause of the poor gene 
essentiality predictions in chapter 4, as differences in nutrient availability set 
during simulations of the metabolic state have a large impact thereon.

Effects of genomic differences between M. bovis BCG and Mtb
The above-discussed genomic differences between M. bovis BCG and Mtb have 
varying effects on the transcriptomic differences between both bacteria. Arguably, 
when cholesterol is present in conditions wherein M. bovis BCG grows, cyp142 is 
not expressed, as it encodes a non-functional product, whereas Mtb in under the 
same conditions likely would express cyp142, as in this case, the product would be 
functional. As the genomes of both bacteria encode the cyp125 gene, they are both 
likely to express cyp125 under conditions wherein cholesterol is present, and both 
would have the ability to degrade cholesterol. If any, the effect of this difference 
on the rest of the expression profile would probably by minor. The difference in 
the ESX-1 secretion system between M. bovis BCG and Mtb arguably has little 
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implications on the difference in expression profile under conditions wherein the 
host is absent, but could have major implications on the difference in expression 
profiles under intra-host growth conditions. The ESX-1 secretion system of Mtb 
could provide access to a whole range of nutrients that M. bovis BCG under the same 
conditions does not have access to. This would imply that the metabolic states of 
both bacteria could vary significantly under intra-host conditions. The condition-
specific biomass reaction in chapter 4 was formulated based on expression data 
of M. bovis BCG in THP-1 cells and thus might not be applicable to Mtb if the diet 
of Mtb is arguable much richer, as it could have access to cytosolic nutrients. Dual 
RNA sequencing performed on Mtb [5] might therefore result in an improved MCC 
regarding gene essentiality predictions.

Combining host and pathogen model

An effort was made in chapter 5 to combine RECON 2.2 and sMtb to create a host-
pathogen model. This was only partly successful as RECON 2.2 was of insufficient 
quality to apply the method described in chapter 4 to the host part of this combined 
model, as mentioned before.

RECON represents an average metabolism of many different cells
Another point to consider is that the human body consists of many specialized 
cells, which are all markedly different. One of these cells is the macrophage, 
whose lifestyle and expression pattern is undoubtedly different from other types 
of human cells. Bordbar and colleagues [38] addressed this issue by referring 
to gene expression data from inactive macrophages, exchange reactions from 
primary literature, enzyme databases, immunohistological staining databases, and 
transport databases and using this information to tailor RECON 1, the first global 
human reconstruction [39]. The resulting macrophage model was essentially a 
subset of RECON 1.
A problem with such an approach is that it maintains parts of metabolism that are 
expressed under conditions measured, and it disposes parts of metabolism that 
could be expressed, but were not expressed under those conditions. In my view, 
this strategy is not suited to make metabolic state predictions in conditions that 
are not within the scope of the data used to create the macrophage model (which 
are likely the most interesting conditions). In principle, as each somatic cell within 
the human body contains the same genome, each cell could express every gene 
contained within this genome. Limiting the scope of possible metabolic states 
beforehand, by discarding part of this genome, will limit predicting unknown 
metabolic states. Therefore we opted for the method described in chapter 5.
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Capturing effects of ESX secretion systems and siderophores
Another valid reason to create a host-pathogen model is to capture the 
metabolic interaction between the two. In general, one looks at the pathogen 
for the development of novel therapeutic interventions. One could however 
also look at the metabolism of the host and try to block or support certain 
metabolic fluxes in order to tip the scales in favor of the host.

Outlook: Improving Mtb GSM’s

As can be seen in Figure 1.1 of the introduction, the GSM’s of Mtb metabolism 
have gone through several iterations over the years. Currently, model iEK1011 
is the latest GSM of Mtb metabolism, which is based on sMtb [12]. One could get 
the impression that there is nothing left to improve after this many iterations. 
This is, however, far from the truth, as there is ample opportunity to improve 
the quality the latest GSM of Mtb metabolism starting from this latest iteration, 
by for example taking cofactors and translation into account.

Two types of cofactors
A cofactor can be an inorganic metal ion or a more complex organic or metallo-
organic compound [40]. There is a distinct difference between the two, as the 
first has to be acquired from the environment while the latter can in some cases 
be synthesized. Synthesizable cofactors, such as flavin adenine dinucleotide 
(FAD), are fully incorporated into model sMtb, as the compound is a metabolite 
in the metabolic network underlying sMtb. The same holds true for many other 
cofactors, such as various vitamins. For metal ion cofactors, it is a different 
story, as these are not included as metabolites in the reactions wherein they do 
function as a cofactor. An important metal ion cofactor is iron, which is known 
to be withdrawn by the host as a defense mechanism [41]. In addition to iron, 
the macrophage continuously exports other metal cofactors, such as manganese 
and zinc, out of the phagosome [42]. As these divalent metal ions are required 
for several metabolic enzymes to function, a lack thereof would likely impair 
this functioning. Such a lack cannot be captured using sMtb by merely lowering 
the uptake rate of the given divalent metal ion, as its effect on the activity 
of metal cofactor requiring enzymes is not incorporated in the reaction(s) 
catalyzed by the involved enzyme. An approach can be taken wherein the sum 
of fluxes catalyzed by metal cofactor requiring enzymes is constrained, thereby 
enabling the model to uphold the fluxes deemed most important for obtaining 
the objective, while simulating a metal cofactor shortage [40]. However, such an 
approach does not take into account the different affinities for their respective 
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cofactors that the enzymes might have. In a broader sense, the kinetics and 
turnover number of all enzymes in the model can be taken into account by 
using recently developed methods such as GECKO [43].

Taking translation into account
In chapter 4 and 5 a bi-objective approach was taken to tackle the problem 
of unknown uptake rates. The bi-objective function contains two objectives 
that act in different directions. On the one hand, a specific growth rate, or 
(condition-specific) biomass reaction is maximized, while on the other hand, 
enzyme utilization is minimized. There are thus two opposing forces that 
balance one another.
ME-models couple gene expression to metabolism [44]. RNA and protein are 
removed from the biomass reaction and these are set as variables. Coupling 
constraints relate these variables to their catalytic functions in the cell. By 
setting an upper limit to the catalytic rates of RNA and protein producing 
machinery, there is an implicit upper limit to their associated metabolic fluxes, 
and thus an upper limit to growth. This approach circumvents the need for 
setting arbitrary bounds on the uptake and secretion rates. A major disadvantage 
is however, that catalytic rates of an entire range of enzymes need to be known 
or estimated. Nevertheless, this approach could prove valuable for modeling 
the effect of drugs on Mtb, as some well-known anti-TB drugs do not have a 
direct effect on an enzyme involved in metabolism, but rather have an effect 
on RNA polymerase (rifampicin) or ribosomal proteins (streptomycin). An ME-
model of Mtb might be able to capture these effects and provide additional 
combinatorial drug targets.

Quantitative validation of GSMs
Although metabolic state predictions have a quantitative nature, i.e. flux values 
and directions are predicted, the validation of these models is often performed 
in a qualitative manner. While examples of quantitative validation of a handful 
of predicted fluxes by isotopic labeling experiments exist [6, 45, 46], qualitative 
validation remains the default. Validation of gene essentiality predictions is a 
preferred qualitative validation method, and many GSMs of Mtb metabolism 
have been validated in this way [8, 9, 12, 47, 48]. Limitations to the scope of 
metabolism covered by 13C metabolic flux analysis imply that quantitative 
validation is limited as well, resulting in a tiny fraction of all predicted fluxes 
that can be validated using 13C metabolic flux analysis (an estimated 1-5%).
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Final remarks

In general, models are constructed based on experimental data. Later on, models 
are used to make predictions, which are validated by other experimental data. Once 
the validation has been performed, models can take over the effort associated with 
obtaining further experimental data by predicting the outcome of experiments.
For metabolic engineering purposes, a well-validated GSM can predict the effect 
of adding or removing genes associated with metabolic reactions via their enzyme 
products. If optimal production of a given compound is sought, such a GSM could 
provide the answer without the need for experimentation.
In systems medicine, there is but one goal, which is the eradication of the pathogen. 
There is no need to make the pathogen produce a certain compound, let alone 
optimize such production. Could one just take a single experimental dataset and 
come up with a strategy to eradicate the pathogen without constructing a GSM? In 
fact, genome-wide transcript abundances and gene essentiality data is available [5, 
26] for Mtb residing in the host. The gene essentiality data is even used in chapter 
4, to validate sMtb. It would not make sense to use sMtb to retroactively predict 
essential genes again. It would be more convenient to simply pick an essential 
gene or a highly expressed gene from the gene essentiality data or the genome-
wide transcript abundance data and design an inhibitory compound for the 
corresponding enzyme. A GSM would not be required for such a purpose.
Systems medicine is a bit of an odd duck in that sense, as the data that you are 
interested in is likely to be used for validation. Its true value does not lie in the 
prediction of essential metabolic enzymes, but rather lies in organizing our 
knowledge of Mtb in a systematic way so we can make sense of the wealth of 
genome-scale data available. A GSM may function like a compendium of metabolic 
reactions and metabolites as well. This compendium is continuously updated by 
the scientific community and thus provides a valuable source of information. 
In general, a GSM can only point out things hidden in experimental data. It can 
serve as a tool to generate hypotheses from experimental data. As experimental 
datasets become increasingly elaborate and bulky, GSMs such as sMtb will be an 
essential part of many scientific projects to organize acquired data and generate 
new hypotheses.
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Summary

Approximately one-fourth of the Mycobacterium tuberculosis (Mtb) genome 
contains genes that encode enzymes directly involved in its metabolism. These 
enzymes represent potential drug targets that can be systematically probed with 
constraint based (CB) models through the prediction of genes essential (or the 
combination thereof) for the pathogen to grow. However, gene essentiality depends 
on the growth conditions and, so far, no in vitro model precisely mimics the host at 
the different stages of mycobacterial infection, limiting model predictions. A first 
step in creating such a model is a thoroughly curated and extended genome-scale 
CB metabolic model of Mtb metabolism. The history of genome-scale CB models 
of Mtb metabolism up to model sMtb are discussed and sMtb is quantitatively 
validated using 13C measurements.

The human pathogen Mtb has the capacity to escape eradication by professional 
phagocytes. During infection, Mtb resists the harsh environment of phagosomes 
and actively manipulates macrophages and dendritic cells to ensure prolonged 
intracellular survival. In contrast to many other intracellular pathogens, it has 
remained difficult to capture the transcriptome of mycobacteria during infection 
due to an unfavorable host-to-pathogen ratio.

The human macrophage-like cell line THP-1 was infected with the attenuated 
Mtb surrogate Mycobacterium bovis Bacillus Calmette–Guérin (M. bovis BCG). 
Mycobacterial RNA was up to 1000-fold underrepresented in total RNA preparations 
of infected host cells. By combining microbial enrichment with specific ribosomal 
RNA depletion the transcriptional responses of host and pathogen during infection 
were simultaneously analyzed using dual RNA sequencing. Mycobacterial pathways 
for cholesterol degradation and iron acquisition are upregulated during infection. 
In addition, genes involved in the methylcitrate cycle, aspartate metabolism and 
recycling of mycolic acids are induced. In response to M. bovis BCG infection, host 
cells upregulate de novo cholesterol biosynthesis presumably to compensate for 
the loss of this metabolite by bacterial catabolism.

By systematically probing the metabolic network underpinning sMtb, the reactions 
that are essential for Mtb are identified. A majority of these reactions are catalyzed 
by enzymes and thus represent candidate drug targets to fight an Mtb infection. 
Modeling the behavior of the bacteria during infection requires knowledge of the 
so-called biomass reaction that represents bacterial biomass composition. This 
composition varies in different environments or bacterial growth phases. Accurate 
modeling of all fluxes through metabolism under a given condition at a moment 
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in time, the so called metabolic state, requires a precise description of the biomass 
reaction for the described condition.

The transcript abundance data obtained by dual RNA sequencing was used to 
develop a straightforward and systematic method to obtain a condition-specific 
biomass reaction for Mtb during in vitro growth and during infection of its host. 
The method described herein is virtually free of any pre-set assumptions on uptake 
rates of nutrients, making it suitable for exploring environments with limited 
accessibility.

The condition-specific biomass reaction represents the ‘metabolic objective’ of 
Mtb in a given environment (in-host growth and growth on defined medium) at a 
specific time point, and as such allows modeling the bacterial metabolic state in 
these environments. Five different biomass reactions were used predict nutrient 
uptake rates and gene essentiality. Predictions were subsequently compared to 
available experimental data. Nutrient uptake can accurately be predicted, but 
accurate gene essentiality predictions remain difficult to obtain.

By combining sMtb and a model of human metabolism, model sMtb-RECON was 
developed and used to predict the metabolic state of Mtb during infection of the 
host. Amino acids are predicted to be used for energy production as well as biomass 
formation. Subsequently the effect of increasing dosages of drugs, targeting 
metabolism, on the metabolic state of the pathogen was assessed and resulting 
metabolic adaptations and flux rerouting through various pathways is predicted.

In particular, the TCA cycle becomes more important upon drug application, as 
well as alanine, aspartate, glutamate, proline, arginine and porphyrin metabolism, 
while glycine, serine and threonine metabolism become less important for 
survival. Notably, an effect of eight out of eleven metabolically active drugs could 
be recreated and two major profiles of the metabolic state were predicted. The 
profiles of the metabolic states of Mtb affected by the drugs BTZ043, cycloserine 
and its derivative terizidone, ethambutol, ethionamide, propionamide, and 
isoniazid were very similar, while TMC207 is predicted to have quite a different 
effect on metabolism as it inhibits ATP synthase and therefore indirectly interferes 
with a multitude of metabolic pathways.
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Ongeveer een kwart van het genoom van Mycobacterium tuberculosis (Mtb) 
bevat genen die voor enzymen coderen die rechtstreeks betrokken zijn bij 
het metabolisme. Deze enzymen vertegenwoordigen mogelijke doelen voor 
geneesmiddelen die met constraint-based (CB) modellen systematisch onderzocht 
kunnen worden door het voorspellen van genen (of combinaties daarvan) die 
essentieel zijn voor de groei van de pathogeen. Echter hangt de essentialiteit van 
genen af van de groeiomstandigheden en tot nu toe bestaat er geen in vitro model 
dat de gastheer in de verschillende stadia van infectie nauwkeurig nabootst, wat 
modelvoorspellingen beperkt. Een eerste stap in het creëren van een dergelijk 
model is een grondig georganiseerd en uitvoerig CB-model van Mtb metabolisme 
op genoom-schaal. De geschiedenis van CB-modellen van het Mtb metabolisme 
tot aan het model sMtb worden besproken en sMtb wordt kwantitatief gevalideerd 
door gebruik te maken van 13C-metingen.

De humane ziekteverwekker Mtb is in staat om aan uitroeiing door specialistische 
fagocyten te ontsnappen. Tijdens infectie weerstaat Mtb de zware omstandigheden 
in fagosomen en manipuleert op actieve wijze macrofagen en dendritische cellen 
om op die manier er voor te zorgen dat het langdurig intracellulair kan overleven. 
In tegenstelling tot vele andere intracellulaire pathogenen is het lastig gebleken 
om het transcriptoom van mycobacterium tijdens infectie vast te leggen vanwege 
de ongunstige verhouding tussen gastheercel en pathogeen.

De humane macrofaag-achtige cellijn THP-1 werd geïnfecteerd met de verzwakte 
Mtb-surrogaat Mycobacterium bovis Bacillus Calmette–Guérin (M. bovis BCG). 
Mycobacterieel RNA was tot een factor 1000 ondervertegenwoordigd in complete 
RNA-preparaten van geïnfecteerde gastheercellen. Door microbiële verrijking 
te combineren met specifieke ribosomale RNA depletie kon de transcriptionele 
respons van de gastheer en de pathogeen tijdens infectie simultaan worden 
geanalyseerd met behulp van duaal RNA-sequencen. Mycobacteriële metabole 
routes voor de afbraak van cholesterol en de verkrijging van ijzer zijn 
gestimuleerd tijdens infectie. Daarnaast worden genen die betrokken zijn bij de 
methylcitraatcyclus, het aspartaatmetabolisme en het hergebruik van mycolzuren 
geïnduceerd. Als reactie op M. bovis BCG infectie, stimuleren gastheercellen de de 
novo cholesterolbiosynthese, waarschijnlijk om het verlies van dit metaboliet door 
het bacteriële katabolisme te compenseren.

Door systematisch het onderliggende metabole netwerk van sMtb te onderzoeken 
zijn de reacties die essentieel zijn voor Mtb geïdentificeerd. Een meerderheid 
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van deze reacties worden gekatalyseerd door enzymen en zijn dus kandidaat 
om als geneesmiddelendoelwit te dienen om een Mtb-infectie te bestrijden. 
Het modelleren van het gedrag van de bacterie tijdens de infectie vereist kennis 
van de zogenaamde biomassareactie die de bacteriële biomassasamenstelling 
vertegenwoordigt. Deze samenstelling varieert in verschillende omgevingen 
of bacteriële groeifasen. Nauwkeurige modellering van alle fluxen door het 
metabolisme onder een bepaalde conditie op een bepaald moment, de zogenaamd 
metabole toestand, vereist een nauwkeurige beschrijving van de biomassareactie 
voor de beschreven conditie.

De transcripthoeveelheid-data verkregen door het duale RNA sequencen werd 
gebruikt om een eenvoudige en systematische methode te ontwikkelen voor het 
verkrijgen van een conditie-specifieke biomassareactie voor Mtb tijdens in vitro 
groei en tijdens infectie van de gastheer. De hierin beschreven methode vereist 
bijna geen vooraf genomen aannames over de opname van voedingsstoffen, 
waardoor het geschikt is voor het verkennen van omgevingen met beperkte 
toegankelijkheid.

De conditie-specifieke biomassareactie vertegenwoordigt de ‘metabole 
doelstelling’ van Mtb in een bepaalde omgeving (groei in de gastheer en 
groei op een bepaald medium) op een specifiek tijdstip, en maakt als zodanig 
modellering van de bacteriële metabole toestand in deze omgevingen mogelijk. 
Vijf verschillende biomassareacties werden gebruikt om de opname van 
voedingsstoffen en essentialiteit van genen te voorspellen. De voorspellingen 
werden vervolgens vergeleken met de beschikbare experimentele gegevens. De 
opname van voedingsstoffen kan nauwkeurig worden voorspeld, maar nauwkeurige 
voorspellingen van de essentialiteit van genen blijven moeilijk te verkrijgen.

Door het combineren van sMtb en een model van het humane metabolisme 
werd model sMtb-RECON ontwikkeld en gebruikt om de metabole toestand van 
Mtb tijdens de infectie van de gastheer te voorspellen. Er wordt voorspeld dat 
aminozuren gebruikt zullen worden voor zowel energieproductie als voor de 
vorming van biomassa. Vervolgens werd het effect van toenemende doseringen 
van geneesmiddelen, gericht op het metabolisme, op de metabole toestand van 
de pathogeen beoordeeld en de daaruit volgende metabole aanpassingen en 
fluxomleidingen via verschillende routes wordt voorspeld.

Met name de TCA-cyclus wordt belangrijker bij medicijngebruik, evenals 
alanine-, aspartaat-, glutamaat-, proline-, arginine- en porfyrine-metabolisme, 
terwijl glycine-, serine- en threonine-metabolisme minder belangrijk worden 
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voor overleving. Opmerkelijk was dat het effect van acht van de elf metabolisch 
actieve geneesmiddelen kon worden nagebootst en twee belangrijke profielen van 
de metabole toestand konden worden voorspeld. De profielen van de metabole 
toestanden van Mtb beïnvloed door de geneesmiddelen BTZ043, cycloserine en 
zijn derivaat terizidon, ethambutol, ethionamide, propionamide en isoniazide 
leken erg op elkaar, terwijl van TMC207 wordt voorspeld dat het een heel ander 
effect heeft op het metabolisme omdat het ATP synthase remt en daardoor indirect 
invloed heeft op vele metabole routes.
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