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ABSTRACT

In this work, we extract rich representations of crowd behav-
ior from video using a fine-tuned deep convolutional neural
residual network. Using spatial partitioning trees we create
subclasses within the feature maps from each of the crowd be-
havior attributes (classes). Features from these subclasses are
then regularized using an eigen modeling scheme. This en-
ables to model the variance appearing from the intra-subclass
information. Low dimensional discriminative features are ex-
tracted after using the total subclass scatter information. Dy-
namic time warping is used on the cosine distance measure
to find the similarity measure between videos. A 1-nearest
neighbor (NN) classifier is used to find the respective crowd
behavior attribute classes from the normal videos. Experi-
mental results on large crowd behavior video database show
the superior performance of our proposed framework as com-
pared to the baseline and current state-of-the-art methodolo-
gies for the crowd behavior recognition task.

Index Terms— Crowd behavior recognition, feature ex-
traction, discriminant analysis, residual network.

1. INTRODUCTION

The use of crowd analysis and management with video data
is common practice at public events such as concerts, sport
matches, event celebrations and protests, public gatherings at
stations. A large number of people die every year in very
crowded environments, such as the Mumbai railway station
2017 stampede which killed 22 people and injured 30 peo-
ple [1] and the New Year’s Eve 2015 celebration in Shanghai,
where a stampede tragically left 36 people dead and nearly 50
others injured [2]. For human observers, it is extremely dif-
ficult to monitor a very large number of individuals, their be-
haviors and activities from a large topology of cameras. The
affected areas are generally highly congested urban areas and
extracting useful behavior pattern information has become of
paramount importance for public security, safety, crowd man-
agement, providing timely critical decisions and support.

According to published reviews [3, 4], a large amount
of work exists on tracking, recognizing and understanding
behavior of people in videos. Existing research is mainly
focused on sparse and mostly staged scenes. However, rel-
atively little effort has been devoted to reliable classifica-
tion and understanding of human activities in real and very
crowded scenes. In heavily crowded scenes, often the de-
tected targets (people and objects of interest) are very small,
and the recognition task is very challenging, for instance
characterizing people interactions. In general, researchers
have proposed two ways of analyzing behavior in such com-
plex scenes. Firstly, considering the crowd and scene targets
as a whole, where individual targets such as objects, places,
scenes, their actions or interactions are not identified or clas-
sified individually, rather they are processed based on their
whole appearance [5, 6]. It is often advantageous and sim-
pler to understand the crowd behavior without knowing the
actions of the individuals. Secondly, object based approach,
where each individuals (human and/or objects) are detected
and segmented to perform motion and/or behavior analysis
[7, 8]. This kind of complex segmenting and tracking individ-
uals in crowded videos is a very challenging task. In our work
we use the former, where individuals are not segmented or
tracked, but crowd behavior pattern is perceived holistically,
they are fine-tuned with a deeply learned model, features are
extracted and subclass regularized discriminative analysis is
performed so as to classify crowd behavior attributes.

2. FEATURE EXTRACTION IN CROWD VIDEOS

Recent research has shown deep residual neural networks per-
form very well on image recognition tasks [9]. Unlike clas-
sical sequential neural network architectures, such as VGG
[10], a residual network consists of network-in-network mod-
ules. This kind of architectures solves both the vanishing gra-
dient and over-fitting problems, with a number of layers usu-
ally larger than 100. It also provides a clear path for gradients
to back propagate to early layers of the network, thus making
the learning process faster [9]. Since these residual networks



are trained on large number of images (typically millions),
their deeply learned weights are transferable to other prob-
lems, such as action recognition [11] and video summariza-
tion [12]. This has motivated the use of pre-trained deeply
learned residual models for crowd behavior recognition.

In our work, we first fine tune the network using crowd
behavior videos and then extract rich representations of the
pattern of specific crowd behavior. Spatial partitioning trees
are used to create subclasses so as to facilitate extracting intra-
class variance information. Features projected from the intra-
subclass variances are then scaled using an eigen feature reg-
ularization scheme. Finally low-dimensional discriminative
features are extracted using total class scatter matrix. Our
proposed framework is shown in Fig. 1.

Fig. 1. Our proposed framework.

2.1. Deep Learning Features and Fine-tuning

While training the network using pre-trained ResNet-50
model, all images are resized to 224 × 224, normalized
each channel-wise to zero mean and unit standard deviation.
ResNet-50 pretrained network is fine-tuned using crowd be-
havior recognition database by retraining the whole network.
Training only the higher-level layers helps in extraction of
features specific to the present dataset, avoids overfitting and
increases the robustness, since the number of images are few
as compared to ImageNet trained with millions of images.
Let I(width, height, channels) represent the resized and
normalized input image of size width × height and number
of channels as depth, in our case it is 3. C(a, b, υ) represents
the convolutional layer, where a is the filter size, b is the
strides and υ is the number of filter banks. P (%, ι) repre-
sents the pooling layer, % is the number of strides and ι is the
size of window for subsampling. Each convolutional layer
is followed by a batch normalization layer and RELU as a
non-linearity function. The summations at the end of each
residual unit are followed by a ReLU unit. Each repetitive
residual unit is presented inside R. F (E) denotes the fully
connected layer where E is the number of neurons. Thus, the
fine-tuned ResNet-50 is represented as (1).

The length of F (E) depends on the number of categories
to classify, E is the number of classes. P ∗ refers to aver-
age pooling rather than max pooling as used everywhere else.
The softmax function or the normalized exponential function

is described as: S(F )j = expFj∑E
k=1 exp

Fk
, for j = 1, 2, ..., E.

Using the above equations fine-tuning training is performed
and a new model is obtained. Rich crowd behavioral pattern
representations (features) are extracted from this new deeply
learned model, they are partitioned to form subclasses and
subsequently our discriminative analysis is performed.

ΘR = I(224, 224, 3)→ C(7, 2, 64)→ P (2, 3)→
3×R(C(1, 1, 64)→ C(3, 1, 64)→ C(1, 1, 256))→
R(C(1, 2, 128)→ C(3, 2, 128)→ C(1, 2, 512))→
3×R(C(1, 1, 128)→ C(3, 1, 128)→ C(1, 1, 512))→
R(C(1, 2, 256)→ C(3, 2, 256)→ C(1, 2, 1024))→
5×R(C(1, 1, 256)→ C(3, 1, 256)→ C(1, 1, 1024))→
R(C(1, 2, 512)→ C(3, 2, 512)→ C(1, 2, 2048))→
2×R(C(1, 1, 512)→ C(3, 1, 512)→ C(1, 1, 2048))→
P ∗(1, 7)→ F (e)→ Softmax

(1)

2.2. Subclass Partitioning and Discriminant Analysis

Creating subclasses is apportioning a crowd behavior attribute
(class) into multiple partitions. Among spatial partition trees
[13, 14], popular random projection (RP) and principal com-
ponent analysis (PCA) trees are used to partition each crowd
behavior class into subclasses. RP trees are built by recur-
sive binary splits, it adapts to intrinsic low dimensional struc-
ture without having to explicitly learn crowd behavior pattern
structure. In PCA tree, the partition axis is obtained by com-
puting the principal eigenvector of the covariance matrix of
the crowd image data. Since crowd image appear very differ-
ently under various contexts this kind of partitioning would
be advantageous for data that are heterogeneously distributed
in all dimensions. In our experiments, we use the implemen-
tations of spatial partitioning trees by Freund et al. [13], with
their default parameters of maximum depth up to eight layers
and no overlap in samples splitting.

After the subclass creation, crucial intra-class variance in-
formation is learned by computing the within-subclass scat-
ter matrix and optimization is performed using Fisher crite-
rion [15]. This involves between-class (Sb) and within-class
(Sw = 1

n

∑E
i=1

∑ni

j=1(xij − µi)(xij − µi)T ) scatter matri-
ces, where E is the number of classes or crowd behavior at-
tributes, µi is the sample mean of class i, µ is the global mean,
xij ∈ Rl, where l = feature dimension obtained before the fi-
nal pooling layer from (1), is the jth sample of class i, ni
is the number of samples in ith class and n =

∑E
i=1 ni is

the total number of samples. Traditional linear discriminant
analysis (LDA) assumes that the class distributions are ho-
moscedastic [16], which is rarely true in practice for com-
plex crowd behavior analysis. We assume that there exist
subclass homoscedastic partitions of the data and model each
class as mixtures of Gaussians subclasses, whose Fisher ob-
jective function is defined as J(Ψ) = tr(ΨTSbsΨ)

tr(ΨTSwsΨ)
, where tr

represents trace of a matrix, Ψ denotes a transformation ma-
trix, Sbs is the between-subclass scatter matrix and Sws is the



within-subclass scatter matrix defined as

Sws =

E∑
i=1

pi

Hi∑
j=1

q
Hi

Gij

Gij∑
k=1

(xijk − µij)(xijk − µij)T . (2)

However, when the number of classes are low and train-
ing data are small, variance from the total scatter matrix
outperforms the between-class scatter matrix [17]. So in
this work we propose to use Fisher objective function as
J(Ψ) = tr(ΨTStsΨ)

tr(ΨTSwsΨ)
, where Sts is the total subclass scatter

matrix, Hi denotes the number of subclasses of the ith class
and Gij denotes the number of samples in jth subclass of ith

class. xijk ∈ Rl is the kth image vector in jth subclass of
ith class. µij = 1

Gij

∑Gij

k=1 xijk is the sample mean of jth

subclass of the ith class. pi and q
Hi

are the estimated prior
probabilities. If we assume that each class and subclasses
have equal prior probabilities then pi = 1

E and q
Hi

= 1
Hi

.

2.3. Regularization of the Subclasses

By forming the subclasses using spatial partition trees, we
are able to capture robust variance information more closely
in the holistic analysis of the crowd behavior recognition.
We compute the eigenvectors Ψws = {ψws1 , . . . , ψwsl } cor-
responding to the eigenvalues Λws = {λws1 , . . . , λwsl } of
Sws described by (2), where the eigenvalues are sorted
in descending order. The whitened eigenvector matrix
Ψ
ws

= {ψws1 /τws1 , . . . , ψwsl /τwsl }, τwsk =
√
λwsk , is used

to project the image vector xij before constructing the total
subclass scatter matrix. This is equivalent to image vector xij
first transformed by the eigenvector yij = ΨwsTxij , and then
multiplied by a scaling function ωwsk = 1/τwsk (whitening
process). Truncating dimensions is equivalent to set ωwsk = 0
for these dimensions as done in Fisherface and many other
variants of LDA [18]. The scaling function is thus

ωwsk =

{
1/
√
λwsk , k ≤ rws

0, rws < k ≤ l , (3)

where rws ≤ min(l,
∑E
i=1

∑Hi

j=1(Gij − 1)), is the rank of
Sws. Similar scaling function (ωwk ) with rw ≤ min(l, n−E)
are also applicable for Sw scatter matrix.

There are two problems associated with the inverses of
τwsk and τwk . Firstly, the eigenvectors corresponding to the
zero eigenvalues are discarded as the features in the null space
are weighted by a constant zero. This leads to the loss of im-
portant discriminative information that lies in the null space
[18, 19, 20, 21]. Second, when the inverse of the square of
the eigenvalues are used to scale the respective eigenvectors,
features get undue weighage, noise get amplified and tend
to over-fit the training samples. We use a median operator
and its parameter similar to that used for face recognition in
[22, 23] to find the pivotal pointm for decreasing the decay of
the eigenspectrum. We use the function form 1/f , similar to

[24, 22], to estimate the eigenspectrum as λ̃wsk = α
k+β , 1 ≤

k ≤ rws, where α and β are two constants, used to model
the real eigenspectrum in the initial portion. We determine α
and β by letting λ̃ws1 = λws1 and λ̃wsm = λwsm , which yields
α =

λws
1 λws

m (m−1)
λws
1 −λws

m
, β =

mλws
m −λws

1

λws
1 −λws

m
. These are used to gen-

erate the model eigenvalues which matches closely as that of
the real eigenvalues.

2.4. Feature Selection and Dimensionality Reduction

The noise component is small as compared to crowd behavior
pattern components in the principal space but it is dominating
in an unstable region. Thus, the estimated eigenspectrum λ̃wsk
is given by

λ̃wsk =


λwsk , k < m
α
k+β , m ≤ k ≤ rws

α
rws+1+β , rws < k ≤ l

(4)

The feature scaling function is then ω̃wsk = 1√
λ̃ws
k

, k =

1, 2, ..., l. Using this scaling function and the eigenvectors
ψwsk , training data are transformed to ỹij = Ψ̃wsT

l xij , where
Ψ̃ws
l = [ω̃wsk ψwsk ]lk=1. New total subclass scatter matrices are

formed by vectors ỹij of the transformed training data as

S̃ts =

E∑
i=1

pi
ni

ni∑
j=1

(ỹij − µ̃)(ỹij − µ̃)T , (5)

where µ̃ij = 1
Gij

∑Gij

k=1 ỹijk and µ̃ = 1
E

∑E
i=1 µ̃i, such that

µ̃i = 1
ni

∑ni

j=1 ỹij . In this work, we employ the total scat-
ter matrix S̃ts of the regularized training data to extract the
discriminative features because of its greater noise tolerance
as compared to S̃bs. The transformed features ỹij will be de-
correlated for S̃ts by solving the eigenvalue problem. Select-
ing the eigenvectors with the d largest eigenvalues, Ψ̃ts

d =

[ψ̃tsk ]dk=1, the proposed feature scaling and extraction matrix
is given by U = Ψ̃ws

l Ψ̃ts
d , which transforms a crowd behav-

ior image vector x, x ∈ Rl, into a feature vector z, z ∈ Rd,
by z = UTx.

2.5. Video Matching using Dynamic Time Warping

Crowd behavior analysis has inherent varying space-temporal
structure. Different crowd groups might show the same be-
havior (e.g. a protest) differently and even the same group
is not ever able to reproduce the same behavior exactly. So,
to compare two behavior events of different lengths we use
dynamic time warping (DTW) [25], which performs a time
alignment and normalization by computing a temporal trans-
formation allowing two behaviors to be matched. In the ex-
periments of this work, Cosine distance measure and the first
nearest neighborhood classifier (1-NNK) are applied along
with DTW to test the proposed approach for crowd behavior
recognition.



3. EXPERIMENTAL RESULTS

We tested our approach on the world’s largest crowd behavior
recognition database [8], comprising of 10,000 videos from
8,257 scenes. This database is constructed to challenge on the
where, who and why questions (abbreviated WWW Crowd
Database). The WWW has 94 crowd-related annotated at-
tributes, such as stadium, concert, stage, fight, mob, parade,
and others, to describe each video in the database. We se-
lected a few normal crowd videos (like waking, skating, grad-
uation, and others) and 4 violent crowd behavior videos, such
as fight, protest, mob and protester from this large database.
Following the conventional protocol [8], the WWW crowd
database is randomly partitioned into training, validation and
test sets in the ratio 7 : 1 : 2, videos are converted to images
at 25 frames per second. This provides a total of 219,094
images, the distribution for each of the selected attributes is
shown in Table 1. In all our experiments we validate our pro-
posed method with the existing ones using the same corre-
sponding database and protocol.

Table 1. Selected attributes and their images from the WWW
crowd database.

Attributes Normal Fight Mob Protest Protester
# Images 15, 631 14, 059 14, 609 87, 241 87, 554

We follow the rule described in [16] that every class is
partitioned by the same number of subclasses h (equally bal-
anced with h = 5), such that Hi = h,∀i. We test our ap-
proach using both PCA and RP decision trees [14], as both
have similar performance we report only the results with PCA
decision trees. Fig. 2 shows the recognition rate (%) ver-
sus the number of features used for classification for various
crowd behavior recognition. We have also implemented the
baseline approach, which uses the features from the ResNet-
50 model fine-tuned using the images from the WWW crowd
database. It is evident that our proposed learning framework
outperforms the baseline method for all the violent activities.
For protest and protester, the recognition rate improvement
is small, but for fight and mob our approach outperforms the
baseline method significantly.
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Fig. 2. Recognition rate (%) on WWW crowd database.

The average recognition rates (%) of all the violent be-
haviors are shown in Fig. 3. It can be clearly seen that our

proposed method outperforms the baseline method for both
the Cosine (Cos) and Euclidean (Eud) distance measures. The
performance gain is higher for small number of features.
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Fig. 3. Average recognition rate (%) on WWW crowd
database.

We also compare our results with the current state-of-the-
art algorithms and baseline method on this database. Table 2
shows the AUCs of the various reported results as compared
to ours. It can be easily seen that our proposed approach out-
performs the baseline and the recently proposed ResnetCrowd
[6] for both the single task and multi-task crowd behavior
recognition significantly. Although Shao et al. [8] used sev-
eral millions of images for their deep learning attributes using
computationally expensive motion channels during training,
our approach outperforms their methodology for crowd be-
havior recognition task as shown in Table 2.

Table 2. Crowd behavior recognition AUCs on WWW crowd
database. ResnetCrowd1 and ResnetCrowd2 represent single
task and multi-task respectively.

Methods Fight Mob Protest Protester Average
Baseline 0.87 0.82 0.83 0.89 0.85

Shao et al. [8] 0.93 0.91 0.95 0.97 0.94
ResnetCrowd1 [6] 0.62 0.68 − − 0.65
ResnetCrowd2 [6] 0.71 0.77 − − 0.74

Our Proposed 0.95 0.94 0.96 0.96 0.95

4. CONCLUSIONS

This paper proposes a fine-tuned deep convolutional neural
residual network framework that creates subclasses in the fea-
ture maps of each of the crowd behavior attribute classes us-
ing spatial partitioning trees. Eigen feature regularization us-
ing eigenmodel is used to weigh the features of the whole
intra-subclass eigenspace of the crowd behavior videos. This
has helped to model the variance appearing from the intra-
subclass variance information. Low dimensional discrimina-
tive features are extracted using total subclass scatter matrix
to represent the various crowd behavior videos. Dynamic time
warping is used on the cosine distance measure to find the
similarity measure between the two videos for crowd behav-
ior recognition task. Experimental results on a large crowd
behavior video database show the superiority of our proposed
framework compared to the baseline and current state-of-the-
art methodologies.
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