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Abstract 

This paper focuses on the environmental determinants of  child mortality in Ethiopia. The 

data for this study were obtained from the demographic and health survey conducted in 

2014.  It specifically examines how child mortality is related to the household's 

environmental characteristics, such as mother's education, source of drinking water, type 

of toilet used, type of cooking fuels, antenatal visit and place of delivery. A survival 

analysis was used to analyze the determinants of child mortality. As expected the Kaplan-

Meier estimation show that most of the deaths occurred at first birth day of life. As the 

result of this we employed Cox proportional hazard and weibull regression models to 

select factors affecting child mortality in Ethiopia. According to the Cox proportional 

hazard and weibull regression models, mothers' education, source of drinking water, type 

of toilet used, antenatal visit, place of delivery and type of cooking fuel were found to 

have significant impact on child mortality in Ethiopia. Child's mother who had primary, 

secondary and above educational level were lower risk of mortality than mothers' who 

had no education level and children whose parents use non-improved source of drinking 

water have less survival chance than those who use improved source of drinking water. 

With regard to source of cooking fuel, children born in households using high polluting 

fuels (fire woods and charcoal ) as their main source of cooking fuel have higher 

mortality rates as compared to those using low polluting fuels (electricity). Children born 

in household‟s with either flush toilets or pit latrines have lower mortality rate than those 

born in households without any toilet facility. Policies aimed at achieving the goal of 

reduced child mortality should be directed on improving the household‟s environmental 

status if this goal is to be realized. 

 

Key Words: Child mortality , Kaplan-Meier estimator,  Cox-PH model, weibull model.



- 1 - 
 

Chapter One 

Introduction 

1.1 Background  

Child mortality, commonly on the agenda of public health and international development 

agencies, has received renewed attention as a part of the United Nation‟s Millennium 

Development Goals. Approximately 6.3 million infants and children under five years of 

age die each year, with large variations in under-five mortality rates, across regions and 

countries (WHO, UNICEF, 2013).  

Globally, the under-five mortality rates have declined from 85 per 1000 to 51 per 1000 

(UNICEF 2012). However, it is estimated that more than 7 million children will die 

before attaining the age of five. Of these, India, Pakistan, Ethiopia, Nigeria and 

Democratic Republic of Congo will suffer half of all under-five children deaths 

(UNICEF 2008). India alone shares the burden of 24% of world‟s under-five mortality 

followed by Nigeria which shares 11% of this burden (UNICEF 2012). It is obvious that 

health policies in these five countries need to be reviewed and new imputes provided to 

bring down the high under-five mortality rate. 

The world has made enormous progress in improving child survival since 1990, reducing 

the under-five mortality rate by nearly half from 90 to 46 deaths per 1,000 live births in 

2013. Currently, the global under-five mortality rate is falling faster than at any other 

time over the past two decades. Yet, progress is insufficient to meet the Millennium 

Development Goal 4 (MDG 4) which calls for reducing the under-five mortality rate by 

two-thirds between 1990 and 2015. According to the report ,which examines trends in 

child mortality since 1990, analyses the main causes of under-five deaths, and highlights 

national and global efforts to save children's lives – the annual number of under-five 

deaths has fallen from 12.6 million in 1990 to 6.6 million in 2012. 

Unger (2013) observed that areas of broad economic and social disadvantage (due to 

overcrowding, substandard housing, poor water and sanitation) tend to have higher 

under-five mortality compared to socially and economically advantaged areas. Becares et 

http://www.springerplus.com/content/2/1/284#B31
http://www.springerplus.com/content/2/1/284#B30
http://www.springerplus.com/content/2/1/284#B31


- 2 - 
 

al., (2013) suggest that addressing neighborhood poverty and area deprivation is essential 

to improving health outcomes of individuals. 

Environmental conditions are a major direct and indirect determinant of human health. In 

developing societies, modern forms of exposure to urban, industrial and agrochemical 

pollution add to the health burden caused by traditional household and community-based 

risks. The vicious cycle, intrinsically linking poverty, environmental degradation and ill 

health needs to be broken. 

In most developing countries, especially in Sub- Saharan Africa (SSA), the basic child 

mortality causes of more than 80% of the diseases are inadequate and unsafe water 

supply, and improper disposal of waste(WHO 2010). 

Child mortality varies among world regions but the highest prevalence is concentrated in 

Sub-Saharan Africa where mortality of children under five decreased from 177 in 1990 to 

98 deaths per 1,000 live births in 2012 (UNICEF, 2013). Despite the overall decline in 

the prevalence of child mortality, it remains still at unacceptably high levels. About half 

of all deaths of children under five has been concentrated in Sub-Saharan Africa in 2012 

(UNICEF, 2013). Hence, the need to reduce child mortality is one of the major 

challenges in improving child health, in particular in Sub-Saharan Africa. 

Several single country studies based on micro data have shown the impact of individual‟s 

or household‟s endowments of resources (e.g. income, assets, land) as well as access to 

safe drinking water, food, energy, and improved sanitation on infant and child mortality 

(Kembo and Van Ginneken (2009) (Zimbabwe); Mesike and Mojekwu (2012) (Nigeria); 

Gemperli et al. (2004) (Mali); Nuwaha et al. (2011) (Uganda); Manda (1999) (Malawi); 

Kandala and Ghilagaber (2006) (Malawi); Adeyemi et al. (2008) (Nigeria); Adebayo and 

Fahrmeir (2012) (Nigeria); Ogunjuyigbe (2004) (Nigeria); Wang (2003) (Ethiopia).  For 

example, using demographic and health survey (DHS) data from Nigeria,  Fahrmeir 

(2012) shows strong positive impacts of socioeconomic and environmental factors on 

child survival. He also investigates the relative importance of socioeconomic 

endowments and environmental factors by the age of the child. While birth spacing and 

breastfeeding are found to be relatively more important for the survival probability during 

the period of infancy, socioeconomic variables and environmental factors such as access 
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to safe water, improved sanitation, or indoor air pollution are relatively more important 

with increasing age of child. Similar results are found by Kyei (2012) for South Africa. 

Similarly empirical research used aggregated macro data to study the determinants of 

child health outcomes. For example, Hmwe H. et al. (2013) show, based on a longitudinal 

study for 193 countries using annual data between 2000 and 2009 from the World 

Development Indicators, that GDP per capita, access to safe drinking water, improved 

sanitation, and public health expenditure per capita increases the probability of child 

survival. 

The health effects of such environmental determinants were highlighted in the World 

Health Organization‟s 2010 World Health Report (World Health Organization 2010), 

which showed that unsafe water, poor sanitation, and hygiene are the cause of 4%–8% of 

the overall burden of diseases in developing countries and nine-tenths of diarrheal 

diseases, which is a major contributor to infant mortality. 

According to World Bank (2013), environmental health risks fall into two broad 

categories. The first are the traditional hazards related to poverty and lack of 

development, such as lack of safe water, inadequate sanitation and waste disposal, indoor 

air pollution, and vector-borne diseases. The second category is the modern hazards such 

as rural air pollution and exposure to agro industrial chemicals and wastes that are caused 

by development that lacks environmental safeguards. 

Unsafe water and sanitation, indoor air pollution from household solid fuel use, and 

ambient urban particulate matter (PM) pollution are responsible for an estimated 3.4%, 

2.7%, and 0.6% of the global burden of disease, respectively, with 90%, 71%, and 7% of 

the disease burden from these risk factors borne by infants and young children in low- 

and middle-income countries. 

As the world enters into the 21
st 

century, debate on childhood mortality remains a big 

issue for developing countries. Their commitment is reflected in their desire to reduce the 

level of child mortality by two- thirds of their 1990 levels by the year 2015, as expressed 

in the Millennium Development Goals. To achieve this goal, it is imperative to attempt 
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and determine what factors contribute to the high levels of child mortality in developing 

countries and in particular, Ethiopia. 

Although enormous literature exists on child mortality, evidence on why infant and child 

mortality rates remain high in many sub-Saharan African countries despite action plans 

and interventions made is still insufficient. Environmental risk factors account for about 

one-fifth of the total burden of disease in low income countries according to recent 

estimates (World Bank, 2010). WHO (2012) reports that among the 10 identified leading 

mortality risks in high-mortality developing countries, unsafe water, sanitation and 

hygiene ranked second, while indoor smoke from solid fuels ranked fourth. About 3% of 

these deaths (1.7 million) are attributable to environmental risk factors and child deaths 

account for about 90% of the total. 

Worldwide, safe and adequate drinking water is still not accessible to 1.1 billion people, 

and 2.4 billion people lack adequate sanitation. The recent figures for Ethiopia (2010) 

indicate a water supply coverage of 38% (98% in urban areas and 26% in rural areas), 

and a sanitation coverage of 15% (58% in urban areas and 8% in rural areas). Unchecked 

urban growth has its price in terms of environmental health: disposal of municipal and 

hazardous waste, particularly health care waste, remains a problem in many regions. Up 

to 60% of the global burden of Acute Respiratory Infection (ARI) is associated with 

indoor air pollution and other environmental factors. Occupational diseases and injuries, 

grossly underreported are responsible for more than 1 million deaths annually all over the 

world; health care workers, miners and manufacturing workers are at highest risk.  

Ethiopia has one of the lowest rates of coverage for improved water and sanitation in the 

world. Just over 54 per cent of households have access to an improved source of drinking 

water, with a higher proportion among urban households (75%) and among rural 

households (49%). According to Joint Monitoring Program (JMP) 2012 update, the 

proportion of the population having access to improved and unimproved sanitation 

facilities stands at 54 % (21% improved and 33 % unimproved). 

 Nearly 39 million Ethiopians – most of them in rural areas don‟t have access to 

safe water. 
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 Nearly 48 million lack access to basic sanitation. 

Ethiopia is the second most populous country in Africa after Nigeria with a population of 

nearly 85 million in 2010 (World Bank, 2013). The population grows at a rate of 2.6 

percent per annum which is slightly greater than the sub-Saharan African countries 

average growth of 2.5 percent and the majority of people (84%) reside in rural areas, with 

agriculture being the major source of livelihood. The age structures suggest nearly 45 

percent of the populations are under age 15 and the percentages of the population above 

age 65 are only about 3.2 percent. High mortality, high fertility and low life expectancy 

characterize the demography, as in most sub-Saharan African countries (Ringheim et 

al,2009). 

In Ethiopia, results from the 2011 EDHS data showed that a remarkable decline in all 

levels of childhood mortality. The same report showed that infant mortality has declined 

by 42 percent over the 15-year period preceding the survey from 101 deaths per 1,000 

live births to 59 deaths per 1,000 live births. Furthermore, under-five mortality has 

declined by 47 percent over the same period from 166 deaths per 1,000 live births to 88 

deaths per 1,000 live births. Even though not to the same extent, the neonatal mortality 

has also decreased over the 15-year period preceding the survey by 31 percent from 54 

deaths per 1,000 live births to 37 deaths per 1,000 live births. This reduction in neonatal 

mortality, as in other parts of the world, was slower than for infant, and under-five 

mortality, which fell by 42 percent and 47 percent respectively over the 15 year period 

(EDHS Report 2011). In addition, the country is experiencing a high neonatal mortality 

rate at 37 per 1000 live births, comparable to the average rate of 35.9 per 1000 live births 

for the African region overall (Oestergaard et.al, 2011). 

The Ethiopian situation is similar with that of the Sub Saharan Africa which is 

characterized by high infant mortality rate; it also ranks 6
th
 in the world by total number 

of death of infants. Infant and child mortality in Ethiopia had shown a continuous decline 

since 1960 onwards with a more pronounced reduction in the recent decades. The trend 

of infant mortality rates has been about 200 per 1000 live births in 1960, 153 per 1000 

live births in 1970, 110 per 1000 live births in 1984, 97 per 1000 live births in 2000 and 

77 per 1000 live births in 2005, 59 per 1000 live birth in 2011. This means that infant 
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mortality declined by 20.6% and 23% between 2000 to 2005 and 2006 to 2011 

respectively . This decline may be attributed to expansion of Health Extension program, 

high coverage of immunization, community based intervention, and rapid expansion of 

health facilities. According to the 2011 Ethiopian Demographic Health Survey (EDHS) 

there were 59 deaths per 1000 live births. But it contributes to 67% of the under-five 

children mortality. 

The statistics, contained in a 2013 progress report, Committing to Child Survival: A 

Promise Renewed, compiled by the UN children's fund UNICEF, the World Health 

Organization (WHO), and the World Bank Group, showed Ethiopia has reduced child 

deaths by more than two thirds over the past 20 years. 

Government commitment and resources have contributed to Ethiopia's progress on the 

issue. "The government has set some very bold and extremely ambitious targets. It has 

then backed them up with real resources and real commitment sustained over the last 10 

years," said Dr Peter Salama, UNICEF country representative for Ethiopia, pointing to 

the country's health extension program. "The program put on the government payroll 

more than 36,000 health workers and deployed them to more than 15,000 health posts 

across Ethiopia . That is the single most important reason why Ethiopia has reduced its 

under-five mortality rate." 

There is limited research conducted on child mortality in Ethiopia. Most of the 

information for any program planning and implementation has been based on Ethiopian 

Demographic and Health Survey (EDHS) conducted every five years. EDHS describes 

only the rate of mortality and does not provide information on the causes of death 

distribution, and health interventions differ from older children. This study focused on the 

determinants and risk factors associated with child mortality in Ethiopia. particularly 

interested in how child survival is affected by environmental factors. 

Poverty is one of the most important factors affecting the infant mortality rate in Africa. 

Ethiopia is one of the poorest African countries with, according to UNICEF (2013) 

report, with a Gross National Income per capita of about USD 530. The impact of 

poverty on the health of children is due to lack of access to a variety of material and 

http://www.theguardian.com/world/ethiopia
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nonmaterial resources, as well as environmental and psychological deprivation at 

cultural, social and health levels. Low socio-economic position has been found to be 

associated with low birth weight and increased neonatal mortality (Bradley and Corwyn 

2012). 

While medical interventions can in principle prevent most early child deaths, they cannot 

eliminate the underlying causes of poor health, which are linked directly to those severely 

deprived or 30 percent of the world's children living in absolute poor conditions 

(UNICEF 2010). Eliminating extreme poverty is the key to improving global child 

survival rates, particularly over the long term. 

Environmental conditions , in particular, a safe source of drinking water , appear to be 

important determinants of infant mortality risks in both urban and rural locations. In the 

latter, the very few households with an electricity supply have a greatly reduced 

probability of infant death. In urban areas, the mortality risk is substantially higher 

among households living in premises with no finished floor. It seems likely that this 

characteristic identifies slum dwellings and the poor public health conditions found there. 

In rural areas, the majority of dwellings have no finished floor, and this is not 

significantly correlated with mortality risk. Surprisingly, having a toilet is not 

significantly correlated with mortality risk in either urban or rural areas. Children in 

households with fewer assets face a greater risk of death in urban but not in rural areas. 

This is consistent with a greater socio economic gradient in child health in urban areas 

that has been found in other studies (Kyei,2012). 

 

1.2  Statement of the Problem 

One of the targets of the Millennium Development Goals (MDGs) is to reduce the under-

five mortality rate by two-thirds between 1990 and 2015. Since 1990 the under-five 

mortality rate has dropped 35 percent, with every developing region seeing at least a 30 

percent reduction. However, at the global level progress is behind schedule, and the target 

is at risk of being missed by 2015. The global under-five mortality rate needs to be half 

from 57 deaths per 1,000 live births to 29 that imply an average rate of reduction of 13.5 

percent a year, much higher than the 2.2 percent a year (UN-IGME, 2011). 
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The environment, which sustains human life, is also a profound source of ill health for 

many of the world's people. In the least developed countries, one in five children do not 

live to see their fifth birthday, mostly because of avoidable environmental threats to 

health. This translates into approximately 6.3 million avoidable childhood deaths each 

year (UNICEF 2013). Hundreds of millions of others, both children and adults, suffer ill 

health and disability that undermine their quality of life and hopes for the future. These 

environmental health threats, arguably the most serious environmental health threats 

facing the world's population today, stem mostly from traditional problems long since 

solved in the wealthier countries, such as a lack of clean water, sanitation, adequate 

housing, and  improved toilet. 

Poverty also influences health because it largely determines an individual's 

environmental risks, as well as access to resources to deal with those risks. Throughout 

the developing world, the greatest environmental health threats tend to be those closest to 

home. Many in these countries live in situations that expose their health through steady 

exposure to biological pathogens in the immediate environment. More than 1 billion 

people in developing countries live without adequate shelter or in unacceptable housing. 

Further about 1.4 billion lack access to safe water, while another 2.9 billion people have 

no access to adequate sanitation (WDI, 2010), all of which are essential for good hygiene. 

Unable to afford clean fuels, the poor largely rely on biomass fuels for cooking and 

heating. Inside the smoky dwellings of developing countries, air pollution is often higher 

than it is outdoors in the world's most crowded cities. 

 

The study of child  mortality becomes one of the most important researches in developing 

countries like Ethiopia, because there is high level of child mortality. There is little 

research on the patterns of environmental determinants of child  mortality, by analyzing 

how child mortality is differently affected by environmental factors. This paper  presents 

an analysis of the impact of environmental variables on child mortality. The data used in 

this study were obtained from the Demographic and Health Survey conducted in Ethiopia 

in 2014. The overall purpose of the paper was to determine the relative importance of 

various environmental factors on child mortality in Ethiopia. In particular, the study 

should focus on the relationship between child mortality and sex of child, mother‟s 
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educational status, area of residence, place of delivery, source of drinking water , type of 

cooking fuel, antenatal visit, and toilet type used. 

1.3 General Objective of the Study  

The general aim of the study was to explore the environmental factors on child mortality 

in Ethiopia by using survival analysis using Non-parametric, parametric and semi-

parametric methods. 

The specific objectives are: 

 To assess the relationship between the environment and child mortality in 

Ethiopia. 

 To identify the environmental determinants of child mortality, controlling for 

other covariates. 

1.4 Hypotheses of the study 

In order to meet the above objectives, the following hypotheses were tested: 

 Household‟s access to safe water has no effect on child mortality 

 Children born in households with sanitation facilities are more likely to die than 

those in households without. 

 The household‟s main source of cooking fuel has no effect on child mortality. 
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1.5 Significance of the Study 

 It is hoped that the study would provide an in-depth use of Demographic and  

Health Survey data (EDHS 2014). It is expected to improve the understanding of 

the child mortality situation in Ethiopia. 

  The results could be of interest to other studies related to child mortality 

environmental  risks in Ethiopia. 

 The result of this study could provide information to government and other 

concerned bodies in setting policies, strategies, and further investigation for 

reducing child mortality. 

1.6 Limitations of the Study 

 The estimates of child mortality are based on retrospective birth histories which 

are subject to possible reporting errors that may affect the quality of the data. A 

lack of accurate information on the age at death may distort the age pattern of 

mortality. 

 Only surviving women age 15-49 were interviewed; therefore, no data were 

available for children of women who had died. 

 Underreporting of events- respondents are likely to forget events that occurred in 

the past. 
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Chapter Two 

Literature Review 

2.1 Theoretical Literature 

Researchers used a number of different conceptual frameworks to analyze the impact of 

different factors on child survivals. Among these Mosley and Chen (1984) and Schultz 

(1984), classified the determinants of infant and child mortality as exogenous 

(socioeconomic or extrinsic) such as cultural, socioeconomic, community and regional 

determinants and endogenous (bio-medical or intrinsic) such as maternal, environmental, 

nutrition, injuries and personal illness. environmental  factors affect indirectly infant and 

child mortality, they operate through the proximate factors while proximate determinates 

affect infant and child mortality directly (Mosley and Chen, 1984; Schultz, 1984). 

Accordingly, Adebayo, and Samson, (2013) defined child mortality as the likelihood for 

a child born alive to die between its first and fifth birthday. Desta (2011) described infant 

mortality as the probability of dying between birth and the first birth day, while, Child 

mortality is the probability of dying between the first and the fifth birth day. 

Mosley and Chen (1984) set the framework of child survival based on the assumption of 

all socioeconomic factors of child mortality necessarily operate through a common set of 

intermediate factors, they identify clearly the proximate and socioeconomic determinants 

of infant and child mortality and they categorized fourteen proximate determinants of 

infant and child mortality into five general groups based on some reasons; in an optimal 

setting, over 97 percent of children born can be expected to survive until the fifth 

birthday, proximate determinants through the socioeconomic factors operate to influence 

the infant. 
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Figure 2.1: Conceptual and theoretical framework for child mortality Mosely and 

Chen (1984) 

 

Source: Based on Mosely and Chen (1984) and Desta (2011) theoretical framework and 

child mortality and socioeconomic, biological and environmental factors are the driving 

forces behind the reduction of infant and child mortality. Given these assumptions, we 

present the theoretical framework graphically above: 

Several studies on infant and child mortality have been carried out using census and 

survey data. Most of these studies have estimated child mortality using indirect methods 

such as Trussel‟s technique and Preston method (Mojekwu & Ajijola, 2011; Jada,).  

Antai et al. (2010) employed the multilevel logistic regression while Doctor (2011) uses 

multivariate logistic regression. All these studies find demographic, socio-economic and 

environmental factors (source of drinking water, sanitation facilities) to be significantly 

related to infant and child mortality. 
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A study on inequalities in child mortality in ten major African cities by Wilm Quentin et 

al., (2014), and being the first study to systematically investigate socio-economic 

inequalities in child mortality within and across African cities and their development over 

time, found out that in most cities, child mortality is considerably higher among the poor 

than among the rich, with differences between the poorest quintile and the richest quintile 

reaching as much as 108 deaths per 1000 live births in Abidjan in 2011 to 2012. And that 

around the year 2000, Dar-es-Salaam had the highest level of inequality while Abidjan 

and Cairo had rather low absolute (Cairo) and relative (Abidjan) inequality. However, the 

study did not investigate the underlying reasons for the identified differences in 

inequalities across the cities, a weakness that this research tries to unravel. 

In another study on association of urban slum residency with infant mortality and child 

stunting in low and middle income countries by Hmwe et al., (2013), found out that 

living in a slum neighborhood was associated with infant mortality irrespective of 

individual and household characteristics and this association was consistent across 

countries. This study adds to concerns raised by Timaeus and Lush about the harmful 

effects of poor environmental conditions on child health. Nevertheless, this study failed 

to examine the association longitudinally to establish causal relations. It concluded that 

living in a slum neighborhood was associated with infant mortality irrespective of the 

socio-economic status and other characteristics of households and families and further 

showed that the risk of stunting in slum neighborhoods was greater for older children. 

Espo (2002) in his study, used indirect methods to estimate levels and trends of mortality 

in Malawi. The results indicate that source of drinking water and sanitation facilities are 

strong predictors of child mortality. Also, Folasade (2010) in her study to determine the 

relative significance of environmental and maternal factors on childhood mortality in 

southwestern Nigeria find that child mortality rate continued to be a function of an 

environmental factor namely source of drinking water and a child care behavior factor, 

where the child was kept when mother was at work.  

Similarly, Hmwe et al. (2013), in a comparative study of rural areas of Ghana, Egypt, 

Thailand and Brazil, discovered that children‟s health is affected by environmental 

conditions and the economic status of the household. Nuwaha et al. (2011) utilized 
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duration modeling to assess the impacts of water and sanitation on child mortality in 

Egypt. Though sanitation is found to have more pronounced impact than water, the 

results also show that access to municipal water reduces the risk of mortality.  

A Bayesian geoadditive survival model was introduced by Adebayo et al. (2002) to 

analyze child mortality in Nigeria. The results showed that the existence of a district-

specific geographical variation in the level of child mortality. 

Klaauw (2003) developed a flexible parametric hazard rate framework for analyzing 

child mortality. Their model predicts significant correlation between child mortality and 

access to electricity, provision of sanitation facilities, improving maternal education and 

reducing indoor air pollution.  

Jacoby (2003) in a related study, examined the linkages between child mortality, 

morbidity, and household quality and community environment in rural China using a 

competing risks approach. Their findings among others show that the use of clean 

cooking fuels, access to safe water and sanitation reduces the risks of child mortality.  

2.2 Empirical Literature 

Empirically, many studies have shown that child mortality is influenced by a number of 

socio economic and demographic factors such as sex of the child, mother„s age at first 

birth, birth order, preceding birth interval among others (Adebayo, Samson, 2013). 

However, Adeyemi et al. (2010) gesticulates that the cause of disease and death over 

which not much controversies and uncertainties exist is the total environment of man. 

Malaria, acute respiratory infections, measles, and diarrhea which are today major causes 

of mortality for children under five are consequence of the built environment of man. In 

developing countries like Nigeria, one in eight children does not live to see their fifth 

birthday due to avoidable environmental threats, resulting into approximately 6.3 million 

avoidable childhood deaths yearly (World Bank, 2011). According to World Bank 

(2010), environmental risk factors were estimated to account for about one-fifth of the 

total burden of disease in low income countries. The WHO (2012) similarly, reported that 

among the ten identified leading mortality risks in high mortality developing countries, 
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unsafe water, sanitation and hygiene ranked second while smoke from solid fuels ranked 

fourth.  

Figures published by the United Nations Statistics Division (2012:1–4) indicated that 

child mortality and morbidity could not be reduced significantly in most sub-Saharan 

African countries as a consequence of severe economic crisis, lack of economic and 

political stability, and the inability of national governments to make the necessary 

resources and infrastructure available to the rural population. The authors argue that 

recent mortality rate trends of children less than five years could be substantially reduced 

if governments were to demonstrate political commitment to meet the basic needs of 

children and mothers. Sub-Saharan Africa is the region most affected by poverty, which 

leads to child mortality and accounts for more than one-third of all deaths of children 

younger than five years. Numerous studies have shown a close association between child 

mortality and poor environment status. Examples of socio-economic factors that 

adversely affect the survival of children in South Africa, amongst others,  (United 

Nations Statistics Division 2012:2–5). 

Kumar and File (2010) used data from the Ethiopia Demographic and Health Survey 

[EDHS] conducted in 2005 to investigate the predictors„ of child [0-5 years] mortality in 

Ethiopia. The cross tabulation technique was used to estimate the predictors of child 

mortality. Results revealed that birth interval with previous child and mother„s standard 

of living index were the vital factors associated with child mortality. Furthermore, 

Mother„s education and birth order were found to have substantial impact on child 

mortality in Ethiopia. The study concluded that an increase in Mothers„ education and 

improved health care services are significant in reducing child mortality in Ethiopia.  

Thai.et al. (2010) employed was logistic regression to examine the effect of some 

environmental  and economic factors that determine childhood mortality in Eritrea, using 

data from the 2005 Eritrea Demographic and Health Survey (EDHS). The results show 

that type of floor material, household economic status and place of residence are 

significant predictors of child mortality.  
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Mesike and Mojekwu (2012) in their study examined the environmental determinants of 

child mortality in Nigeria using principal component analysis and simultaneous multiple 

regression for child mortality modeling in Nigeria. Estimation from the stepwise 

regression model showed that household environmental characteristics do have 

significant impact on mortality as lower mortality rates were experienced in households 

that had access to immunization, sanitation facilities, good and proper refuse and solid 

waste disposal facilities, good healthy roofing and flooring materials as well as those 

using low polluting fuels as their main source of cooking. 

Duration modeling is applied by Hala (2002) to assess water and sanitation‟s impacts on 

child mortality in Egypt. The results showed that access to municipal water decreases the 

risk and sanitation is found to have a more pronounced impact on mortality than water. 

The meta-study by Blunch et al. (2010) suggests that, although there can be little doubt 

that household income is a crucial factor in determining child health, it appears that 

income is not a significant determinant of infant mortality in the majority of cases. This 

can partly be explained by the fact that as mortality falls, the bulk of under-five-mortality 

is rather those of infants than child death, and these deaths are more sensitive to health 

provision than socio-economic conditions. 

Ikamari, L.D.E.(2013) find out  that demographic factors are more important in 

explaining infant (under 12 months) mortality, socioeconomic, socio-cultural and 

hygienic factors are more important in explaining child (under five) mortality. Younger 

(2007), however, do not find significant effects of variables related to the quality of 

drinking water and sanitation on infant mortality. 

Hmwe H. et al. (2013). evaluate empirically the Solow model with human capital, the 

model was estimated through a panel data analysis, which includes the growth rates of 

physical capital, labor, schooling and health indices. The heath index includes four 

determinants of health; lifestyles, environment, health services and socio-economic 

conditions. It was observed that variables were all significant showing the impact health 

has on economic growth. It was observed that among the determinants of health 

considered, health service result became the most significant. They concluded that a 
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higher awareness of the health of the people is necessary if sustainable growth is pursued 

especially for the third world for policy implications. 

Blunch,Niels-Hugo (2013) used data from 2003 and 2008, DHS surveys in Ghana to 

examine the determinants of infant and child mortality in three northern regions by using 

multivariate logistic regression model found that education of mothers, birth order of 

child and marital status of mothers are powerful significant determinants for infant 

mortality, while only mothers education have a significant impact for child mortality.  

Similarly, Jinadu et al. (2010), in a study, found dirty feeding bottles and utensils, 

inadequate disposal of household refuse and poor storage of drinking water to be 

significantly related to the high incidence of diarrhea.  

Twum et al. (2011)  using the result of 2009 Burkina Faso DHS , indicated that children 

born to mothers with higher educational level associated with lower risk of infant and 

child mortality as compared to children born to mothers with primary education level or 

non-educated. 

Kombo and Ginneken (2010) using the result of 2005-2006 Zimbabwean DHS 

investigate the maternal, socioeconomic and sanitation factors on infant and child 

mortality by using Cox regression model. They found an evidence of birth order (6+) 

with short preceding interval significantly associated with high risk of infant and child 

mortality. Multiple births tend to increase infant and child mortality. On the other hand 

the expected U shape relationship between birth order and infant and child mortality, and  

mothers age and infant and child mortality is not conformed in their analysis, that 

children who are first born and those born to mothers aged 40-49 years are found tend to 

decrease infant and child mortality. However socioeconomic determinants are rather 

small and insignificant effect on infant and child mortality. They suggest that the 

influence of birth order, preceding birth intervals, maternal age, type of birth and 

sanitation factors are more pronounced on infant mortality while weak effect on child 

mortality. 

Kimani R.R and Kimani E R. (2012) in their study in Kenya,  for children by using 

logistic regression models. They examined socioeconomic determinants of infant 
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mortality rate both urban and rural setting. They found similar result like in the case of 

Ghana  above that regional variation exists in infant and child mortality between the 

different provinces of Kenya. Most of the socioeconomic factors are not associated with 

the risk of infant and child mortality while children born in the richest household has 

lower probability of infant mortality relative to children born in the poorest households. 

However ethnicity and breast feeding in both urban and rural areas have a significant 

influence on infant mortality and sex of the child in urban areas and birth order and birth 

interval in rural areas are important determinants for the risk of infant mortality. 

Although they found that the incidences of HIV/AIDS in both urban rural areas increase 

the risk of dying at infancy period. 

In addition many studies have documented role of individual or household socio-

economic and demographic factors associated with rising levels of child mortality in 

Kenya. These factors include maternal education, income or well-being, place of 

residence, breastfeeding, water and sanitation, and access to and utilization of health 

(Ombok M et al. 2010; Ikamari, L.D.E. 2013;). 

Wafula S.W., et al.( 2012) used data from 2008 DHS in Kenya to investigate the impact 

of socioeconomic and environmental variables of infant and child mortality in urban 

areas of Kenya. The results show that the infant and child mortality were lower for those 

who were of birth order 2-3, birth interval more than 2 years, single births, living in 

wealthier households, had a access to drinking water and sanitation facilities, and users of 

low polluting fuels as their main source of cooking. However, maternal age, maternal 

education and gender of the child had no significant association with child mortality. 

Other study in Kenya by Hill (2011) found that mother„s educational levels and economic 

status have a significant impact on infant and child mortality while urban areas are 

associate with high risk of infant and child mortality than rural areas, however, 

controlling for HIV prevalence child mortality are lower in urban areas. 

The hazard rate framework is elegantly utilized by Klaauw (2003), in which a flexible 

parametric framework for analyzing infant and child mortality is developed. Their model 

predicts that a significant number of under 5 years deaths can be averted by providing 

access to electricity, improving the education of women, providing sanitation facilities 
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and reducing indoor air pollution. In particular, reducing indoor air pollution and 

increasing the educational level of women might have substantial impacts on child 

mortality. In a related study, Jacoby  (2003) examine the linkages between child mortality 

and morbidity, and the quality of the household and community environment in rural 

China using a competing risks approach. The key findings are that (1) the use of unclean 

cooking fuels (wood and coal) significantly reduces the neonatal survival probability in 

rural areas; (2) access to safe water or sanitation reduces child mortality risks by about 

34% in rural areas; (3) a higher maternal education level reduces child mortality and that 

female education has strong health externalities (4) access to safe water/sanitation, and 

immunization reduce diarrhea incidence in rural areas, while access to modern sanitation 

facilities (flush toilets) reduces diarrhea prevalence in rural areas; (5) significant linkages 

between Acute Respiratory Infections (ARI) incidence and use of unclean cooking fuels 

are found using the city level data constructed from the survey. 

UN (2011) Sub-Saharan Africa countries: The study has shown that under-five mortality 

is affected by the practice of breastfeeding, the mother‟s marital status, and the mother‟s 

level of education, ownership of flush toilet facilities, the residential area and place of 

delivery of the child. Based on results obtained from Pearson‟s Chi-square tests of 

association, children who died are characterized by a low immunization-coverage rate 

(P = 0.0000), poor nutrition (P = 0.0000), poor access to tap water (P = 0.0000), no 

access to flush toilets (P = 0.0108) and the children belonged to rural and unemployed 

mothers who did not attend antenatal and postnatal health care services (P = 0.0013). 

This indicates that rural mothers and children are relatively disadvantaged with regard to 

basic health services in comparison with urban mothers and children. 

Kamal (2012) investigated the effect of maternal education on neonatal mortality in 

Bangladesh using data from the 2007 Bangladesh Demographic and Health Survey. Both 

bivariate and multivariate statistical analyses were used to assess the relationship between 

neonatal mortality and contextual factors focusing on maternal education. The results 

revealed that the sequential multivariate logistic regression analyses yielded a strong 

significant negative association between maternal education and neonatal mortality.  
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Chapter Three 

Data and Methodology 

3.1 Data Source 

The source of the data used in this study was the 2014 Ethiopia Demographic and Health 

survey (EDHS, 2014) conducted in Ethiopia as part of the worldwide demographic and 

health survey project. The 2014 Ethiopia Demographic and Health Survey were 

conducted by the Central Statistical Agency (CSA) with the support of the Ministry of 

Health. This was the fourth Demographic and Health Survey (DHS) conducted in 

Ethiopia, under the worldwide MEASURE DHS project, a USAID-funded project 

providing support and technical assistance in the implementation of population and health 

surveys in countries worldwide. 

The primary objectives of the 2014 EDHS were to provide up-to-date information for 

planning, policy formulation, monitoring, and evaluation of population and health 

programs in the country. The survey was intentionally planned to be responded at the 

beginning of the last term of the MDG reporting period to provide data for the assessment 

of the Millennium Development Goals (MDGs).  

Information on child mortality was found from the birth history of women who were 

included in the survey. Since the interest of this study is about children from age one until 

age five. 

3.2 Definition of variables 

3.2.1 The response  (dependent)  variable 

The variables used in the estimations are defined in this section. The time is dependent 

variable and is defined as the time that a child who has survived to the beginning of the 

respective interval  (12 months-59 months) will fail (die) in that interval.  

3.2.2 Predictor  (independent)  variables 
The explanatory variables are classified into three groups: environmental, 

socioeconomic and demographic. The choice of these variables was guided by the 
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determinants of child mortality literature. The main focus of this study was on the 

environmental variables only. 

Operational Definition of Variables and Concepts  

1. Child mortality – refers to deaths among children aged between exact age one and 

under   five years (12-59 months).  

2. Infant mortality – refers to deaths that occur to children who were born alive 

between the time of birth and die before they celebrate their first birth day.  

3. Maternal education level- refers to the highest level of formal schooling attained 

by the mother and recognizes no education, primary education and secondary 

level and above.  

4. Source of drinking water- refers to the main source of water for use in the 

household. 

5. Type of toilet facility- refers to the type of facility used to dispose human waste. 

6. Place of residence-This variable indicates where the household is located, either 

in urban areas (cities, towns) or in rural areas. In addition, we assume that the 

various effects might differ across regions. 

Table 3.1: Operational definition and categorization of the covariate variables, EDHS, 2014. 

Variables        Definition and Categorization 

Sex of child Sex of child(1=Male,2=Female) 

Residence Place of residence for women(1=Rural;2=Urban) 

Women education  

 

Women level of education (1= No education;2= Primary; 

3= Secondary and Higher) 

Antenatal visit Antenatal visit during pregnancy(0=No,1=Yes) 

House hold access water 

 

Source of drinking water  (1= improved source; 2= Non-

Improved source ; 3=other source;). 

House hold access toilet  House hold toilet type (1=Improved, not shared;2= shared 

facility ; 3= Non-Improved) 

 Cooking fuel   Type of Cooking fuel(1= fire hood ; 2= charcoal;  

3=kerosene; 4=electricity)  

Place of Delivery  Mothers delivery place(1=Home; 2=Health center;3=Others  
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3.3  Methodology 

3.3.1 Survival Analysis 

Survival Analysis involves the modeling and analysis of data that have a principal end 

point, the time until an event occurs (time-to-event data). Generally, survival analysis is a 

collection of statistical procedures for data analysis for which the outcome variable of 

interest is time until an event occurs. Survival data analysis involves a dependent 

variable, time-to-an event, which is always nonnegative and has a positively skewed 

distribution. 

3.3.2 Theoretical Model 

In survival analysis, we usually refer to the time variable as survival time, because it 

gives the time that an individual has 'survived' over some follow-up period. 

We also use the term `failure' to define the occurrence of the event of interest (even 

though the event may actually be a `success' such as recovery from therapy) (Kleinbaum 

and Klein, 2005). 

Survival analysis is different from the other statistical procedures due to following 

reasons: 

1. In survival analysis, the response variable is time. 

2. Staggered entries are more common in medical research. By staggered entries we 

mean that all individuals in the study do not have the same entrance time. This 

does not affect the survival analysis, as the analysis deals with the length of the 

observation time and not based on the same entrance. 

3. The assumption of normality does not hold in survival analysis, as survival data 

are generally skewed. 

4. The covariates can be time dependent. 

One of the most important differences between the outcome variables modeled via linear 

and logistic regression analyses and the time variable in the survival data is the fact that 

we may only observe the survival time partially. The variable time actually records two 

different things. For those subjects who died, it is the outcome variable of interest, the 

actual survival time. However, for subjects who were alive at the end of the study, or for 
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subjects who were lost to follow-up, time indicates the length of follow-up (which is a 

partial or incomplete observation of survival time). These incomplete observations are 

referred to as being censored. Censoring may occur when a person does not experience 

the event before the study ends, a person is lost to follow-up during the study period, and 

a person withdraws from the study. 

There are three common forms of censoring: 

a. Right Censoring: The most common form of incomplete data is right censoring. 

A survival time is said to be right censored if it is recorded from its beginning 

until a well defined time before its end time. It means a subject's follow-up time 

terminates before the outcome of interest is observed. 

b. Left Censoring: A survival time is said to be left censored if an individual 

developed the event of interest prior to the beginning of the study. This situation 

is less common in survival studies and is often not a focus. 

c. Interval Censoring: A survival time is categorized as interval censored if it is 

only known that the event of interest occurs within an interval of time without the 

knowledge of when exactly it occurs. Interval censoring can occur in clinical  

trials, industrial experiments, etc. 

3.3.3 Descriptive methods for survival data 

Descriptive analysis for survival data is used to present numerical or graphical summaries 

of the survival times in a particular group. In general, a statistical analysis should begin 

with a thoughtful and through univariate description of the data. The survivor function 

and hazard function are the two functions of central interest in summarizing survival data. 

Survivor Function 

Let T be a random variable associated with the survival times, t be the realization of the 

random variable T and f (t) be the underlying probability density function of the survival 

time t. The cumulative distribution function F(t) , which represents the probability that a 

subject selected at random will have a survival time less than some stated value t, is then 

given by: 

0     t,)()()(
0
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t

duuftTprtF                                                                              (3.1) 



24 
 

where T is the length of a completed spell and t is the elapsed time since entry to the state 

at time 0. The survivor function is obtained from the failure function and is given as: 

0    t)(1)()(  tFtTprtS                                                                                 (3.2)                                                           

The survivor function S(t) and the Failure function F(t) are each probabilities, and 

therefore inherit the properties of probabilities. The survivor function lies between zero 

and one, and is a strictly decreasing function of t. The survivor function is equal to one at 

the start of the spell  (t = 0) and is zero at infinity.  Since S(t) is a probability, S(0) = 1 and 

as t approaches ∞, S(t) approaches 0. From equations (3.1) and (3.2) the relationship 

between f(t) and S(t) can be given as:                           
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tf                                                                                                   (3.3) 

Hazard Function 

The hazard function is used to express the risk of death at some time t and is obtained 

from the probability that an individual dies at some time t, conditional on he or she 

having survived to that time. it is defined as:  
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 A related quantity is the cumulative hazard function H(t) defined by; 

 )(exp)( tHtS                                                                                                                (3.5) 

where     0)(ln)()(
0

 
t

tSduuhtH                                                                     (3.6) 

is the integrated hazard function. 

The important result is that, whatever functional form is chosen for (t), one can derive 

S(t) and F(t) from it (and also f(t) and H(t)), and vice versa. 

Estimation of the Survivor Function 

Among the other estimators of the survivor function the Kaplan-Meier estimator is the 

most common one. The Kaplan-Meier or product limit estimator is the limit of the life 

table estimator when intervals are taken so small that only at most one distinct 

observation occurs within an interval. Kaplan and Meier (1958) demonstrated that this 

estimator is a "maximum likelihood estimator". The estimator incorporates information 
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from all of the observations available, both uncensored and censored, by considering 

survival to any point in time as a series of steps defined by the observed survival and 

censored times. This method is non-parametric or distribution-free, since it does not 

require specific assumptions to be made about the underlying distribution of the survival 

times (Hosmer and Lemeshow, 1999). 

Let d(x) denote the number of deaths at time x. Generally d(x) is either zero or one, but 

we allow the possibility of tied survival times in which case d(x) may be greater than one. 

Let n(x) denote the number of individuals at risk just prior to time x; i.e., number of 

individuals in the sample who neither died nor were censored prior to time x. Then the 

Kaplan-Meier estimator of the survival function at time t is obtained from the equation: 
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with the convention that 1t tif  1ˆ KMS  

In the notation above, the product changes only at times x where d(x) ≥ 1; i.e., only at 

times where we observed deaths. 

From equation (3.6) the KM estimator of the cumulative hazard function can be estimated  

))(ˆln()( tStH KMKM                                                                                                     (3.8) 

The variance of the Kaplan-Meier estimators which is referred to as Greenwood‟s 

formula is given as: 
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Another alternative estimator of the survival function and the corresponding commutative 

hazard function at time t due to Nelson and Aalen as stated in Collett (2003), which is 

based on the individual failure times is given by: 
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It is merely in the case of small samples that the Nelson-Aalen estimate of the survivor 

function prevails over the KM estimate (Hosmer and Lemeshow, 1999). 

 



26 
 

Comparison of Survivorship Function 

After providing a description of the overall survival experience in the study, we turn our 

attention to a comparison of the survivorship experience in key subjects in the data. The 

simplest way of comparing the survival times obtained from two or more groups is to plot 

the Kaplan-Meier curves for these groups on the same graph. However, this graph does 

not allow us to say, with any confidence, whether or not there is a real difference between 

the groups. The observed difference may be a true difference, but equally, it could also be 

due merely to chance variation. Assessing whether or not there is a real difference 

between groups can only be done, with any degree of confidence, by utilizing statistical 

tests. 

The standard statistical procedures may be used when there are no censored observations. 

But modifications of these procedures are required when censored observations are 

present in the data. In comparing groups of subjects, it is always a good idea to begin 

with a graphical display of the data in each group. The figure in general shows if the 

pattern of one survivorship function lies above another, meaning that the group defined 

by the upper curve lived longer, or had a more favorable survival experience, than the 

group defined by the lower curve. In other words, at any point in time the proportion of 

subjects estimated to be alive is greater for one group (represented by the upper curve) 

than the other (represented by the lower curve). Now the statistical question is whether 

the observed difference seen in the figure is significant. A number of statistical tests have 

been proposed to answer this question such as Log-rank, Gehan's generalization of 

Wilcoxon test, and Peto-Peto-Prentice's test and so on. 

The calculation of each test is based on a contingency table of groups by status at each 

observed survival time. The general form of these test statistics for the comparison of 

survival functions between two groups can be defined as follows: 
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where: 

 

 Y0( x) is the number of individuals at risk at time x from group 0 

 Y1( x) is the number of individuals at risk at time x from group 1 

 Y (x) is the total number of individuals at risk at time x from both groups 

 dN0( x) is the number of observed deaths from group 0 at time x 

 dN1 x is the number of observed deaths from group 1 at time x 

 dN(x) is the total number of deaths observed at time x 

 w(x) is the weight for censor adjustment at failure time x 

The test statistic Q has chi-square distribution with 1 degree of freedom under the null 

hypothesis that the two survivorship functions are the same when the total number of 

observed events and sum of expected number of events are large and assuming that the 

censoring experience is independent of group. The statistic Q can be extended for 

comparing more than two groups of survival experience (Collett, 2003). The weight 

function w(x) can be used to emphasize differences in the hazard rates over time 

according to their relative values. The most commonly used test is the log-rank test where 

w(x) = 1 for all x. The log-rank test is a non-parametric test for comparing two or more 

survival curves. Since it is a non-parametric test, no assumptions about the distributional 

form of the data need to be made. This test is however most powerful when used for non-

overlapping survival curves. This test can be generalized to accommodate other tests that 

are equally used sometime in practice such as Generalized Wilcoxon test, and Peto-Peto-

Prentice test. Each of these tests uses different weights to adjust for censoring that is 

often encountered in survival data. For instance, the Wilcoxon test weights the j
th

 failure 

time by Y (x) (the number still at risk), and the Peto-Peto-Prentice test weights the j
th

 

failure time by the survival estimate )(
~

xS calculated over all groups combined. Since 

both Y(x) and )(
~

xS are non-increasing functions of x, both tests emphasize the difference 

early in the survival curves (Kleinbaum and Klein, 2005). 

3.3.4  Models for Survival Data  

Our aim is to estimate the hazard ratio of the probability of a child dying within the next 

month after surviving for t months, as a result of environmental factors, among others. In 
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the context of child mortality, the hazard rate is often referred to as the mortality rate. The 

mortality rate at age t can be interpreted as the intensity at which a child dies at this age, 

given that the child survived until age t. We focus on children who are born alive and 

model their mortality probabilities until the age of five. To check robustness, we 

implement two models, a parametric (Exponential and Weibull) and a semi-parametric 

model (Cox -PH). 

A variety of models and methods have been developed for doing this sort of survival 

analysis using either parametric or semi-parametric approaches. Semi-parametric models 

are models that parametrically specify the functional relationship between the lifetime of 

an individual and his/her characteristics of environment. But leave the actual distribution 

of life times arbitrary. The most popular of the semi-parametric models is the 

proportional hazards model. It has the property that the ratio of the hazards depends on 

the values of their explanatory variables but does not depend on time t. A hazard model is 

a regression model in which the "risk" of experiencing an event (death in our case) at a 

certain time point is predicted with a set of covariates. 

3.3.4.1  Cox-Proportional Hazards Model 

This model was proposed by Cox (1972) and has also come to be known as the Cox 

regression model. Cox introduced the model to cater for covariate effects for single event 

failures. This model is valid under the assumption of proportional hazards (PH) , no 

particular form of the probability distribution is assumed for survival time. Cox observed 

that if proportional hazards assumption holds (or is assumed to be hold), then it is 

possible to estimate the effect of parameter(s) without any consideration of the hazard 

function.  

Suppose the set of values of the explanatory variables in the PH model will be 

represented by a vector X. Let ℎ0(𝑡)  be the hazard function for an individual for whom 

the values of all explanatory variables that make up the vector X are zero. The function 

ℎ0(𝑡) is called the baseline hazard function. The hazard function for the individual can 

then be written as: 

)'exp()(),,( xthoxth                                                                                             (3.12) 



29 
 

where β is a p x l vector of unknown regression parameters that are assumed to be the 

same for all individuals in the study and measure the influence of the covariate on the 

survival experience with βi representing increase in the log hazards as xi  increases one 

unit relative to the baseline hazard function. X is a p×1 vector of covariates such as  

treatment indicators, prognostic factors, and etc. The baseline hazard function ℎ𝑜 (𝑡)  can 

take any shape as a function of t. The only requirement is that ℎ𝑜 (𝑡)  > 0. This is the 

nonparametric part of the model and x'  is the parametric part of the model. That is why  

Cox's proportional hazards model is a semi parametric model. 

A key reason for the popularity of the Cox model is that, even though the baseline hazard 

is not specified, reasonably good estimates of regression coefficients, hazard ratios of 

interest, and survival curves can be obtained for a wide variety of data situations. Another 

way of saying this is that the Cox PH model is a “robust” model, so that the results from 

using the Cox model will closely approximate the results for the correct parametric model 

(Kleinbaum and Klein, 2005). 

An important feature of the Cox proportional hazards model, which concerns the 

proportional hazards assumption, is that the baseline hazard is a function of t, but does 

not involve the X‟s. In contrast, the exponential expression, involves the X‟s, but does 

not involve t. The X‟s, here, are assumed to be time-independent. The other assumption 

of the proportional hazards refers to the fact that the effects of covariates are the same for 

all values of t. Putting it in other words, the Cox proportional hazards model assumes that 

changes in the hazard of any subject over time will always be proportional to changes in 

the hazard of any other subject and to changes in the underlying hazard over time 

(Kleinbaum and Klein, 2005). 

From equation (3.12) one can notice a couple of features. First, if the vector of covariate 

is a zero vector, then the hazard function for the i
th

 individual is the baseline hazard 

function. It is the hazard function in the absence of covariates or when all of the 

coefficients of the covariates are assumed to be zero. Second, if we divide both sides by 

)(tho
 , we get equation (3.13) below that indicates where the term proportional comes 

from. Since for each individual, )exp( x   is constant across time, equation (3.14) below 
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shows that at every value of t, the i
th

 individual's log hazard ratio is constant. This implies 

that each individual's hazard function is parallel to the )(tho
. 
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The logarithm of the hazard ratio for two individuals having two distinct covariate values 

xj and xi can be expressed as 
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Clearly the above ratio is independent of time which means that the log hazard ratio is 

constant at any given time. Moreover, the hazard ratio does not depend on the value of 

the covariate; rather it depends on the difference between the covariate values. The Cox 

proportional hazards model can equally be regarded as linear model, as a linear 

combination of the covariates for the logarithm transformation of the hazard ratio given 

by: 
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The cumulative hazard functions at time t for a subject with covariate x is given by: 

)exp()(),,( XtHXtH o                                                                                          (3.16) 

Consequently, from the proportional hazard function, we obtain the survivor function 

given by: 

  )exp(
)(),,(

x

o tSXtS





                                                                                               (3.17) 

where S0( t)  is the baseline survival function (Hosmer and Lemeshow, 1999). 

3.3.4.2  Fitting the Proportional Hazards Model 

Fitting the proportional hazards model to observed survival data entails estimating the 

unknown regression coefficients. Since the baseline hazard )(tho
is left completely 

unspecified, ordinary likelihood methods can't be used to estimate β. Cox conceived of 

the idea of a partial likelihood to remove the nuisance parameter )(tho
 from the 

proposed equation. 



31 
 

Suppose we have a random sample of individuals of size n from a specific population 

whose true survival times are  Z1, Z2 ,..., Zn. Denote by C the censoring process and by  C1 

,C2 ,...,Cn the (potential) censoring times. The observed data are the minimum of the 

survival time and censoring time for each subject in the sample and the indication 

whether or not the subject is censored. Statistically, we have observed triplet data ( ti, δi 

,Xi)  where ti = min(Zi , Ci), δi  is the event indicator δi =1 if the event has occurred and δi 

=0 if it is censored, and Xi is the vector of covariates or the risk factors for the i
th

 

individual. Under the assumption of independent observations, the full likelihood 

function is obtained by multiplying the respective contributions of the observed triplets, a 

value of f (t, X ,β ) for uncensored observation and a value of S(t, X , β) for censored 

observations. Thus, the contribution of each triplet to the likelihood is the expression 

    ii XtSXtf






1

),,(),,(                                                                                       (3.18) 

Since the observations are assumed to be independent, the likelihood function is the 

product of the expression in (3.18) over the entire sample and is formulated as: 
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It can be further simplified as: 

   



n

i

iiii XtsXthl i

1

),,(),,()( 


                                                                     (3.20) 

Cox showed that the relevant likelihood function which considers the baseline hazard rate 

as a nuisance parameter; he called it a partial likelihood function, for the proportional 

hazards model assuming no tied survival times is given by (Hosmer and Lemeshow, 

1999) 
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where, R (t(i)) represents the risk set just prior to time t (i) The corresponding log-partial 

likelihood function is given by 
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We obtain the maximum partial likelihood estimator (MPLE) by differentiating the right 

hand side of (3.21) with respect to β, setting the derivatives equal to zero and solving for 

the unknown parameters. This is using iterative numerical analysis techniques such as 

Newton-Raphson which make use of the efficient scores and the observed information 

matrix. Let U(β) be the p×1 vectors of first derivatives of the log-likelihood function with 

respect to the β -parameters. This quantity is known as the vector of efficient scores. The 

negative of the second derivative of the log-partial likelihood is known as the observed 

information matrix (Hessian matrix) and denoted by 
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According to the Newton-Raphson procedure an estimate of β at the (k+1)
th

 cycle of the 

iterative procedure , ,...2,1k  ),ˆ()ˆ(ˆˆ is ,ˆ 1

11  

 kkkkk I    . The process can be 

started by taking )0,...,0,0(ˆ o and continue until the change in the likelihood function 

is sufficiently low. The estimator of the covariance matrix of the MPLE can be 

approximated by the inverse of the observed information matrix, evaluated at ̂ , that is 

1)ˆ()ˆ(ˆ   IarV                                                                                                            (3.24) 

The partial likelihood function methods described above are based on the assumption that 

there were no tied values among observed survival times. Hence to incorporate tied 

survival times in analyses there are two approaches. These are the Breslow and the Efron 

approximations. The MPLE for β in the presence of ties is obtained in the same manner 

as in the non-tied data case, with exception that derivates are taken with respect to the 

unknown parameters in the log of either the Breslow or Efron approximation to the 

partial likelihood. In many applied settings there will be little or no practical difference 

between the estimators obtained from the two approximations. Because of this, and since 

the Breslow approximation is more commonly available in many software packages, 

unless stated otherwise, analysis presented in this study will be based on it (Hosmer and 

Lemeshow, 1999). 
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After estimation of the regression coefficients, we go for assessing the significance of the 

coefficients and the construction of the confidence interval as well. The three different 

tests used to assess the significance of the coefficients are explained below. 

a) The partial likelihood ratio test 

It is used for testing the significance of a subset of q explanatory variables from p 

explanatory variables, and fit both the unrestricted and the restricted models. Then we 

obtain the value of the log-partial likelihood function )ˆ( qPPL  in the unrestricted model 

and )ˆ( ppL   when the model imposes the restrictions under Ho . The partial likelihood 

ratio test statistic is given by: 

))ˆ()ˆ((2 qppppLR LLQ                                                                                           (3.25) 

Under the null hypothesis Ho for large sample size the statistic LRQ  is asymptotically 

distributed as chi-squared with q degrees of freedom. 

b) The Wald test 

To test H0 = (0,0,...,0) , we use the multivariable Wald statistic 

  qqqw IQ  
 ˆ)ˆ(ˆ 1

                                                                                                     (3.26) 

where p̂  and )ˆ(qI  are the corresponding estimates of q  and sub matrix of the inverse 

of the observed information matrix from the full model. Under Ho and for large sample 

size the statistic wQ ~ χ
2

(q)  at α level of significance. The Wald test can also be used to 

test the significance of individual variables. The Wald test statistic is 
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                                                                                                                   (3.27) 

Under the null hypothesis Ho: βj=0 the statistic Z ~ N(0,1) . Consequently, the 100(1-α )% 

Wald statistic-based confidence interval for βj  is )ˆ(ˆ
2/ jj SeZ   where, Zα/2 is the upper 

α/2 percentile of the standard normal distribution. 

c) The Score test 

The score test statistic, to test H0 : βq (0,0,...,0)  is defined as: 
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),()ˆ,()ˆ,( qpqqpqqpqs UIUQ 
                                                                    (3.28) 

where U ( qpq  ˆ, )  and )ˆ,( qpqI 
   are the score vectors and inverse of the observed 

information matrix evaluated at the hypothesized value of q  and the restricted partial 

maximum likelihood estimator of qp  .Under the null hypothesis and for large sample, 

Q ~ χ
2
 (q)  . When there is a disagreement among the three tests of the significance of the 

coefficient, the partial likelihood ratio test will prevail. 

3.3.4.3  Variable Selection Procedures 

The variable selection procedures in proportional hazards regression analysis requires 

critical decisions in selecting subsets of covariates. The methods available to select a 

subset of the covariates to include in a proportional hazards regression model are 

essentially the same as those used in the other regression models, like purposeful 

selection, stepwise (forward selection and backward elimination). When the number of 

variables is relatively large, it can be computationally expensive to fit all possible 

models. In this situation, automatic routines for variable selection that are available in 

many software packages might seem an attractive prospect. But they lead to the 

identification of one particular subset, rather than a set of equally good ones. The subsets 

found by these routines often depend on the variable selection process that has been used, 

that is, whether it is forward selection, backward elimination or the stepwise procedure, 

and generally tend not to take any account of the hierarchic principle. They also depend 

on the stopping rule that is used to determine whether a term should be included in or 

excluded from a model. 

Thus, instead of using automatic variable selection procedures, the following general 

strategy for model selection is recommended by Collet (2003). 

1. The first step was to fit models that contain each of the variables one at a time. 

The values of pL̂2  for these models were then compared with that for the null 

model to determine which variable on their own significantly reduce the value of 

this statistic. A significance level from 20% to 25% is recommended in Hosmer 

and Lemeshow (1999). 
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2. The variables which appear to be important from Step 1 were then fitted together. 

In the presence of certain variables others may cease to be important. As a result, 

backward elimination was used to omit non-significant variables (i.e., those 

variables that do not significantly increase the value of pL̂2  from the model). 

Only those that lead to a significant increase in the value of pL̂2  were retained 

in  the model. 

3. Variables that were not important on their own, and so were not under 

consideration in step 2, may become important in the presence of others. These 

variables are therefore added the model from step 2 with forward selection 

method (i.e., any that reduce pL̂2  significantly were retained in the model). 

4. A final check was made to ensure that no term in the model could be omitted 

without significantly increasing the value of pL̂2 , and that no term not included 

significantly reduces the value of pL̂2 . 

3.3.4.4  Assessment of Model Adequacy 

Following a model has been fitted, the adequacy of the fitted model needs to be assessed. 

Model based inferences depend completely on the fitted statistical model. For these 

inferences to be valid in any sense of the word, the fitted model must provide an adequate 

summary of the data upon which it is based. Many model checking procedures are based 

on residuals. A residual is the difference between the observed value of the outcome 

variable and that value predicted by the model. The two key assumptions in the definition 

of a residual are the value of the outcome is known and the fitted model provides an 

estimate of the mean of the dependent variable or systematic component of the model. 

However, the two assumptions are not valid when using partial likelihood to fit the 

proportional hazards model to censored survival data. The absence of an obvious residual 

has lead to the development of several different residuals, each of which plays an 

important role in examining some aspect of the fit of the proportional hazard model. 

These include the Cox-Snell, martingale and Schoenfeld residuals. 
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a. Cox-Snell residuals ( irc ): The Cox-Snell residual for the i
th

 individual with observed 

survival time ti is given by: 

)(ˆ)(ˆ
iiiii tStHrc                                                                                                    (3.29) 

where )(ˆ
ii tH  and )(ˆ

ii tS  are the estimated values of the cumulative hazard and survivor 

functions of the i
th

 subject at time ti respectively. In general, Cox-Snell residuals are 

useful in assessing an overall model fit (Cox and Snell, 1968). 

b. Martingale residuals )( irM : are also called modified Cox-Snell residuals and, 

expressed as: 

iiiii rctHrM   )(ˆ                                                                                           (3.30) 

where 1i  for uncensored observations and zero otherwise, and rci are Cox-Snell 

residuals. The martingale residuals take values between negative infinity and unity. They 

have a skewed distribution with mean zero. In large samples, the martingale residuals are 

uncorrelated with one another and have an expected value of zero. However, the 

martingale residuals are not symmetrically distributed about zero (Barlow and 

Prentice,1988). 

c. Schoenfeld residuals ( ikrs ): All the above residuals are residuals for each individual. 

We will describe covariate-wise residuals: Schoenfeld residuals. These residuals are 

calculated for each individual and for each covariate (Schoenfeld, 1982). Thus, the 

Schoenfeld residual for the i
th
 individual on the k

th
 covariate is given by: 
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 is a weighted mean of covariate value for those in the risk 

set at the given event time. 

The sum of these residuals is zero and they have a large sample property that, their 

expected value is zero and they are uncorrelated with one another. The vector of these 

residuals for the i
th

 observation can be written as ),...,,( 21
 ipiii rsrsrsrs  and the 
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convention is that ikrs  is set to be missing for censored observations. Scaling a vector of 

Schoenfeld residuals by an estimator of its variance is more effective in detecting 

departures from the assumed model. The vector of the scaled Schoenfeld residuals is then 

given by: 

  iiii rsmrsrsrs )ˆvar()var( 


                                                                                 (3.32) 

where, m is the number of events (deaths) ( Grambsch and Therneau,1994). 

Each of these residuals provides a useful tool for examining one or more aspects of 

model adequacy. 

1. Testing for the form (linearity) of covariates 

After identification of a particular set of explanatory variables on which the hazard 

function depends, it is important to check that the correct functional form has been 

adopted for the continuous covariates. Linearity assumption can be checked by using the 

plot of martingale residuals. The plot of martingale residuals obtained from fitting the 

model, excluding the covariate whose functional form needs to be determined, against the 

excluded covariate display the functional form required for the covariate. In such a way 

that, LOESS smoothed curve can be superimposed on the scatter plots to give 

interpretation. If the resulting plot is showing no systematic pattern and the smoothed plot 

is a horizontal straight line through zero. This indicates that the covariate is linear in the 

model. 

2. Subject-wise diagnostic measures 

In the assessment of model adequacy, it is important to determine whether there are any 

subjects have an unusual configuration of covariates, exert an undue influence on the 

estimates of the parameters or have an undue influence on the fit of the model. Such 

observations may be termed as influential observations and the data from such 

individuals will need to be the subject of further analysis. Conclusions from survival 

analyses are often framed in terms of estimates of the relative hazard, which depends on 

the estimated values of the coefficients in the Cox regression model. For that reason, it 

has particular importance to examine the influence of each observation on these estimates 

(Hosmer and Lemeshow, 1999). It may happen that the structure of the fitted model is 

particularly sensitive to one or more observations in the data set. Such observations can 
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be analyzed through diagnostics that are designed to highlight observations that influence 

the complete set of parameter estimates in the linear predictor. This could be done by 

fitting the model to all n observations in the data set, and then fitting the same model to 

the sets of n-1 observations obtained by omitting each of the n observations in turn. 

Suppose that k̂ denotes the partial likelihood estimator of the coefficient computed using 

the entire sample of size n  and )1(
ˆ

k  denotes the value of the estimator if the thi subject 

is removed. Thus, the DFBETA statistic, which can be used as a measure of how the thj  

parameter estimate would change if the thi  observation was deleted from the data set, is 

defined as: 

)1(
ˆˆˆ

 kkki                                                                                                           (3.33) 

Observations that influence a particular parameter estimate have a large absolute value of 

DFBETA than for other observations in the data set. However, this procedure involves a 

significant amount of computation if the sample size is large. We would like to use an 

alternative approximate value that does not involve an iterative refitting of the model. To 

check the influence of observations on a parameter estimate, an approximate estimator of 

(33) is the thk element of the vector of coefficient changes 

iii L̂)ˆr(âv)ˆ(ˆ
)(                                                                                            (3.34) 

where iL̂  is the vector of score residuals which are modifications of Schoenfeld residuals 

and are defined for all the observations, and )ˆ(ˆ raV  is the estimator of the covariance 

matrix of the estimated coefficients. These are commonly referred to as the scaled 

Schoenfeld residuals. 

3. Methods for Assessing the Proportional Hazards Assumption 

The main assumption of the Cox hazards model is the proportionality of hazard. The 

assumption is vital to the interpretation and use of a fitted proportional hazards model. If 

hazards are not proportional, this means that the linear component of the fitted model 

varies with time in some manner. As a result, we need to plot the logarithm of the 

Kaplan-Meier cumulative hazards function based on different factors so that it helps in 

assessing the proportional hazards assumption before fitting a Cox model. If this 
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assumption is met, then the plots will be more or less parallel. However, looking at the 

plot is not enough to be certain of proportionality since they are univariate analysis and 

do not shows whether hazards will still be proportional when a model includes many 

other predictors. But they support our argument for proportionality (Hosmer and 

Lemeshow, 1999). 

The other method, which could be used after the fit of the model, is extending the 

proportional hazards model by defining several product terms involving each time 

independent variable with some function of time. That is, if the thj  time-independent 

variable is denoted as jx  , then we can define the thj   product term as )(tgx jj   where  

g j (t) is some function of time for the thj variable. Usually the function g j (t) is chosen to 

be the natural logarithm of survival time i.e. )ln()( ttg j   Likewise, Grambsch and 

Therneau (1994) also considered a specific form of time-varying coefficient as: 

                                                                                               (3.35) 

where j  is a coefficient of the product term. Thus, the extended Cox model that 

simultaneously considers all time-independent variables of interest can be formulated as: 
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)(exp)(),,(                                                               (3.36) 

To check the proportional hazards assumption, we consider the null hypothesis that all 

the j  terms are equal to zero so that the model reduces to the proportional hazards 

model. The hypothesis all j 's are zero )0:( joH   is tested via the partial likelihood 

ratio test, score test or Wald test. If the time-dependent covariate is insignificant then the 

assumption of proportionality is satisfied for that particular covariate. Moreover, the 

other statistical test of the proportional hazards assumption is based on the scaled 

Schoenfeld residual. If the PH assumption holds for a particular covariate then the scaled 

Schoenfeld residual for that covariate will not be related to survival time. So this test is 

accomplished by finding the correlation between the scaled Schoenfeld residuals for a 

particular covariate and the ranking of individual survival times. The null hypothesis is 

)()( tgxt jjjjj  
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that the correlation between the scaled Schoenfeld residuals and the ranked survival time 

is zero. Rejection of null hypothesis concludes that PH assumption is violated. 

4. Overall Goodness of Fit 

Residual plots can be used in the graphical assessment of the adequacy of a fitted model. 

For instance, if the fitted model is adequate, the Cox-Snell residuals will behave as n 

observations from a unit exponential distribution. Thus, the plot of the estimated hazard 

rate of the Cox-Snell residuals )(ˆ tH i  , versus irc  will give a straight line with unit slope 

and zero intercept if the fitted model is correct. However, the drawback is that they do not 

indicate the particular departure from the model fitted, if there is any. The other method 

of checking goodness of fit of the model is to use R
2
. In proportional hazards regression 

model as in all regression analyses there is no single, simple method of calculating and 

interpreting R
2
, because in Cox proportional hazards model, R

2 
depends on the proportion 

of the censored observations in the data. A perfectly adequate model may have what, at 

face value, seems like a terribly low R
2
 due to high percent of censored data (Hosmer and 

Lemeshow, 1998). The measure of goodness of fit R
2

p based on partial likelihood is given 

by:- 

 







 pP LL

n
R 0

2 2
exp1      (3.37) 

where,  

 Lo is the log partial likelihood for empty/null model, the model with no    

covariates. 

 Lp is log of partial likelihood for the fitted model with p covariates, and n is the 

total number    of observations in the model. 

3.4  Parametric Survival Regression Models 

In previous topics it was focused entirely on the use of semi-parametric model, 

proportional hazards Cox regression model, in the analysis and prediction of the survival 

time of child mortality. The basis of this method is to avoid having to specify the hazard 

function completely. However, there may be setting in which the distribution of the 

survival time is in specific parametric distribution that justifies the use of a fully 

parametric model to better address the goal of the analysis. A parametric survival model 
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assumes that the survival time follows a known distribution. The popularity of this 

approach is due to the fact that plausible models may be easily fit, evaluated and 

interpreted. 

3.4.1  The Exponential Survival Regression Model 

The simplest model for the hazard function is to assume that it is constant over time. The 

hazard of death at any time after the time origin the study is then the same, irrespective of 

the time elapsed (Collett, 2003). Under this model, the hazard function is written as:     

)(tho                                                                                                                       (3.38) 

From the constant baseline hazard function, the corresponding survivor function is: 

)exp()(
0

tdutS

t

o  







                                                                           (3.39) 

And so the implied probability density function of the survival times is 

)exp()( ttfo                                                                                           (4.40)  

This is the probability density function of a random variable T that has an exponential 

distribution with a mean of 1 .The parameter  with 0 ,is often called the intensity. 

The median event time can be obtained by solving the equation 5.0)( 5.0 tSo which leads 

to /2log5.0 t . More generally, the 𝑝𝑡ℎ  quantile can be obtained by solving the 

equation ptS p 1)(  and thus 


)1log( p
tp


                                                (3.41) 

The main feature of the exponential distribution is thus that the instantaneous hazard does 

not vary over time. Another important property is the lack of memory property. Consider 

a random variable )(~ ExpT . We now study the survival function of a subject 

conditional on having survived up to time 𝑡0 ,   the excess survival time is described by 

the same exponential distribution with constant hazard rate λ. An empirical check for this 

distribution for a set of survival data is provided by plotting the log of the survival 

function estimate versus 𝑡. Such a plot should resemble a straight line through the origin, 

as ttSo )(log   if the exponential distribution assumption holds. 
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3.4.2 Fitting the Exponential Survival Regression Model 

In the parametric setting, estimates of the parameters are obtained by maximizing the 

likelihood function. The survival likelihood for survival data with event times and right 

censored data is generally given by: 

 i

i

n

i

i

i xSxfL  



 1

1

))(())((                                                                              (3.42) 

which leads for exponentially distributed event times to:  

                                                                      (3.43) 

 

 

 

By differentiating the log likelihood function with respect to λ and equating this 

expression to zero leads to the maximum likelihood estimator 
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3.4.3  The Weibull Survival Regression Model 

The Weibull distribution is a generalization of the exponential distribution. However, 

unlike the exponential distribution, it does not assume a constant hazard rate and 

therefore has broader application. The distribution was proposed by Weibull (1939) and 

its applicability to various failure situations discussed again by Weibull (1951). The 

baseline hazard function for Weibull distributed event times is given by: 

  
1)(  ttho                                                                                                               (3.45) 

It follows that the survival function for the Weibull distribution is given by:

)exp()( ttSo                                                                                           (3.46) 

and the density function is 

)exp()( 1   tttfo                                                                                 (3.47) 

with λ, λ > 0, the scale parameter and ,0,  the shape parameter.  
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The median event time can be obtained by solving the equation 5.0)( 5.0 tSo  which leads 

to 





/1

5.0

2log








t . More the 𝑝𝑡ℎ  quantile can be obtained by solving the equation  

ptS p 1)(  and thus  
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






 


p
tp                                                                                      (3.48) 

The shape of the hazard function critically depends up on the values of  . 

If :1  hazard decreases monotonically with time 

If :1 hazard increases monotonically with time 

If :1 constant hazard (equivalent to exponential distribution) 

The Weibull hazard model can be generally presented as 

)exp()()( ioi xthth                                                                                       (3.49) 

))exp((exp)(  txtS ii
                                                                                          (3.50) 

))exp()(expexp()( 1   txxttf iii
 

                                                                (3.51) 

with 
1)(  ttho  and 𝛽 a p × 1 vector containing the parameters. The event time of the 

𝑖𝑡ℎ   subject is then characterized by the Weibull distribution with scale parameter  

)exp( ix  and shape parameter  . Thus, all subjects share the shape parameter but 

differ with respect to their scale parameter. The model assumes that individual i and j 

with covariates Xi and Xj have proportional hazard function of the form:
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The quantities exp(𝛽) can be interpreted as hazard ratios. 

3.4.3  Fitting the Weibull  Survival Regression Model 

The survival likelihood for Weibull distributed survival data with event times and right 

censored data is generally given by  
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resulting in the log likelihood function 
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with 𝑑 the total number of events. Maximum likelihood estimators can be obtained by 

equating the first derivatives of 𝑙 with respect to λ and γ to zero and we get. 
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which is nonlinear in ̂  and can only be solved by a numerical procedure such as the 

Newton Raphson algorithm. 

3.4.4  Model Selection in Parametric Survival Regression Models  

To be select the model that can predict the survival of child, we have two methods. The 

first is graphical approach. For this method the cox-Snell plot is the common one. It is a 

graph of the minus ln of Kaplan-Meier plotted against the cox-Snell residual values. It is 

used to determine how well a specific distribution fits to the observed data. This plot 

would be approximately linear if the specified theoretical distribution is the correct 

model. Easy fit displays the reference diagonal line along which the graph points should 

fall along with the goodness of fit tests; the distribution plots can be helpful to determine 

the best fitting model. The fundamental difference of this approach is that it is quite 

subjective to come on conclusion while the goodness of fit tests are “exact” in the sense 

that the results do not depend on the researcher (provided that the tests are performed 

correctly), using plot is a more empirical way to use in model selection. Akaikie (1974) 

proposed an informative criterion (AIC) statistic to compare different models and/or 

models with different numbers. For each model the value is computed as:  

𝐴𝐼𝐶=−2log 𝑙𝑖𝑘𝑒𝑙𝑖h𝑜𝑜𝑑 +2 (𝑝+1+k)                                                                             (3.56)  

Where, 𝑝 denotes the number of covariates in the model without including the constant 

term and k is the number of parameters minus one i.e. 𝑠=0 for the Exponential regression 
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and k=1 for Weibull regression models. According to the criterion, a model with small 

AIC value will be considered as it fits for the data. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

4.1  Descriptive Analysis of the Survival Data  

The total number of live births considered for this study were 2120 with 181 of children 

death aged from 12 up to 59 months. Of the total live birth, 47.5% and 52.5% of Child 

death have occurred for male and female, respectively. Regarding Place of residence, 

from the total of 2120 children included in the study, 1732 (58.6%) were born in rural 

and 388 (41.4%) born in Urban part of Ethiopia. When we see mothers' education, the 

child mortality was 43.4%, 33.2% and 23.2% for children whose mothers' have no 

education ,Primary and Secondary & above educational status, respectively.  

On the other hand,  type of toilet facility children death were 90.6%,1.1% and 8.3% used 

in Non-improved, shared facility and improved, respectively. Among the total number of  

mothers' (2120), 1759 (83%) were not pre-birth follow up during pregnancy period and 

361(17%) mothers' dose pre-birth follow up during pregnancy period. In addition, 372 

mothers' delivered in health center, 1741 mothers' delivered at home and the rest 7 

delivered on other places like road.  Finally, 144 (79.6%) children death were due to 

Non-improved source of drinking water and 37(20.4%) of death of children were in the 

case of improved water source. All the results have been summarized in Table 4.2 (annex 

A). 

The different survival estimates are displayed in Estimates in annex A (Table 4.1), 

together with the numbers at risk and the number failing. The median survival time of a 

child was 36 months with a standard error of 0.2039869 for the follow-up period of time. 

In addition, the plot of overall Kaplan-Meier estimate indicate that for child mortality 

monotonically decreases as follow up time increases (see figure 4.1). 
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Figure 4.1: Overall product limit estimate of survival function 

 

Figure 4.2 Nelson-Aalen Cumulative hazard estimate 
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The log-rank test, with the null hypothesis that the survival distributions being compared 

are equal at all follow-up times and the alternative hypothesis that the two survival curves 

differ at one or more points in time, was performed to see if there is a significant 

difference among survival experience of two or more groups of the covariates.   

We would like to point out that comparing the differences among survival curves 

utilizing graphical method is more or less subjective and we need formal statistical tests 

to assess the observed difference is the real difference between groups. Hence, we 

employed log-rank statistical test to check for significance differences among different 

categories of factors that had been demonstrated by using the Kaplan-Meier estimates of 

the survivor functions. As we can see from Table 4.3, the results of log-rank test shows 

that there was no significant difference in survival experience in covariates, sex of child 

and place of delivery. However, the p-values of the log-rank test showed that the survival 

experience of children in the various categories antenatal visit, mothers educational 

status, toilet type used , type of cooking fuel, source of drinking water and place of 

residence were differ significantly (i.e. all of these covariates have P-value less than 

0.05). 

Table 4.3: Result of log-rank test of equality of survival distribution for the different 

categorical covariates 

 

 

Covariates  Chi-Square Df p-value 

Sex of child 2.785 1 0.095 

Place of Residence 52.99 1 0.000 

Mothers Educational Status 34.748 2 0.000 

Toilet Type Used 36.253 2 0.001 

Type of Cooking Fuel 26.697 3 0.004 

Antenatal visit during pregnancy 59.058 1 0.000 

Place of Delivery 8.670 2 0.067 

Source of drinking Water 41.378 1 0.000 
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4.2  Results of Cox proportional hazard regression model 

The Cox proportional hazard model is the most widely used procedure for modeling the 

relationship of covariates to a survival time by incorporating censored outcome in the 

analysis. It can be employed for estimating the regression coefficients, conducting 

statistical tests, constructing confidence intervals and making interpretation based on the 

hazard function. Checking the adequacy of model and its development precede 

interpretation of results obtained from the fitted model. 

In model development procedures, fitting all possible models is computationally 

expensive when the number of covariates considered in study is relatively large. For this 

reason, the variable selection procedures given by Collet (2003).  

The first step is to select covariates which are important in a study at some relaxed level 

of significance. Results from univariable proportional hazards Cox regression model are 

presented in Table 4.4 (Appendix). From the table, variables which are significant in 

relation to the time to child mortality at the 10 percent level of significance were included 

in multivariable analysis. The univariable analysis showed that not all explanatory 

variables are statistically important to be included in the multivariable analysis stage. 

Thus, the most appropriate subset of these covariates to be included in the multivariable 

model will be selected based on their contribution to the maximized log- partial 

likelihood of the model (-2L ̂ ) . The value of )ˆ(2 L  for the null or empty model was 

2165.072. Therefore, inclusion of covariates (explanatory variables) was based on the 

amount of reduction of this value. Based on Table 4.4, the highest reduction in )ˆ(2 L   

was observed for type of cooking fuel. It reduces the value from 2165.072 to 2023.691. 

This difference is 141.381 and it is statistically significant (P-value <0.0001) when 

compared with percentage points of the χ
2
 distribution on 3 degree of freedom. The next 

highest change  obtained for place of residence where the difference equal to 131.194 and 

statistically significant.  The third  highest change was obtained for  household type of 

toilet used were the difference equal to 126.893.  

All potential variables that were supposed to have statistically significant impact (at P-

value < 0.1) at univariable analysis were included in the initial multivariable proportional 
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hazards model which leaded to a value of )ˆ(2 L  to 2019.760. Thus, removal of 

variables from the model will be based on the increasing )ˆ(2 L and P-value.  

Results from Table 4.4 indicate that the least important covariate in the model were place 

of delivery and sex of child, since the removal of these covariates led to insignificant 

increment (P-value  0.516 and 0.120) in the value of )ˆ(2 L . Continuing the fitting 

processes by eliminating the variable place of residence and sex of child , the model 

consisted of the remaining six variables were fitted and the effect of eliminating variables 

from the model was assessed.  

Table 4.5: shows the increase in )ˆ(2 L and P-values after eliminating the variables 

place of delivery and sex of child from the model. All of the covariates included in this 

table were significant at 5% level of significance. Hence, we obtained a multivariable 

model that included six covariates, namely antenatal visit, source of drinking water, 

mothers educational status, toilet type used, type of cooking fuel and place of residence. 

Table 4.5: The Preliminary Final Model with parameter estimates and hazard ratios of 

the covariates  

 B SE Wald Df Sig. HR 95.0% CI for 

Exp(B) 

Lower Upper 

Place of Residence   Urban(1)                               

Rural(2)(Ref) 
-.648 .272 5.674 1 .017 .523 .307 .891 

        

Mothers' Education Status   12.293 2 .002    

No Education(1) 

Primary(2) 

Secondary&above 3(Ref) 

1.469 .748 3.857 1 .050 4.343 1.003 18.811 

-.634 .270 5.504 1 .019 .531 .312 .901 

        

Toilet Type Used   8.204 2 .017    

Improved(1) 

Shared facility(2) 

Non-improved 3(Ref) 

-1.301 .461 7.968 1 .005 .272 .110 .672 

.014 .798 .000 1 .986 1.014 .212 4.842 
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 Remark: Reference category is marked by parenthesis (Ref). 

Table 4.5: shows the Cox regression analysis by stepwise method . In the table, estimated 

coefficients (β‟s) of covariates, standard error of β estimates (SE), Wald‟s test statistic 

values, p-values of Wald‟s test, relative risks of covariates on child survival (e β) and 

95% confidence interval of relative risks are shown. 

The final Cox -PH model  as shown in Table 4.5 looks like this  

)'exp()(),,(  xthoxth   















iiii

iiiiii

i
SDWAVTCFTCF

TCFTTTTMEMEPR
thth

1050.11085.13844.02989.0

1252.12014.01301.12634.01469.11648.0
exp)()( 0

 

where:  

 PR1 is place of residence urban. 

 ME1 is mothers educational status no education and ME2 mothers educational 

status primary level. 

 TT1 is  type of toilet used improved and TT2 type of toilet used shared facility. 

 TCF1 is type of cooking fuel which is fire wood, TCF2 is type of cooking fuel 

charcoal and TCF3 type of cooking fuel kerosene.  

 AV1 is no antenatal visit during pregnancy period. 

 SDW1 is source of drinking water which is improved. 

Type of Cooking Fuel   8.471 3 .003    

Fire wood (1) 1.252 .458 7.461 1 .006 3.497 1.424 8.588 

Charcoal (2) .989 .514 3.703 1 .045 2.688 1.982 8.359 

Kerosene (3)  .844 .656 1.655 1 .198 2.326 .643 8.421 

Electricity  4(Ref)         

Antenatal Visit  No (0) 

Yes(1) (Ref) 

1.085 .281 14.868 1 .000 2.959 1.705 5.135 

        

Source of Drinking Water 

Improved (1) 

 

Non-improved 2(Ref) 

 

-1.050 

 

.193 

 

29.590 

 

1 

 

.000 

 

.350 

 

.240 

 

.511 
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 The next important step is to consider variables that were non-significant at univariable 

and multivariable analyses for possibility of confounders. This can be checked by 

considering the change in coefficients of variables remaining in the multivariable model 

when those insignificant variables were added one at the time. A value of 20% change is 

generally considered as an important change in a coefficient (Hosmer and Lemeshow, 

1999). Thus, the variables sex of child and place of  delivery were included one at a time; 

the change in the coefficients of the significant variables was depicted. The results show 

that the percentage changes in the coefficients of the variables were by far less than 20% 

revealing that none of them was  significant confounder. Hence, variables that were 

neither significant at univariable analysis nor at multivariable analysis were not 

confounders of the main factors in the preliminary model of Table 4.5.   

Table 4.6: Percentage changes in the coefficients of the variables included in Table 4.4, 

when the variables those were not significant in the univariable proportional hazards Cox 

regression models are added one at a time. 

Covariates/factors Sex of child Place of delivery 

Place of Residence  -0.07 0.09 

Mothers' Education Status  0.11 0.19 

Toilet Type Used -0.13 0.16 

Type of Cooking Fuel -0.90 0.00 

Antenatal Visit -0.43 -0.20 

Source of Drinking Water -0.90 -0.12 

 

The final step in model development strategy was consideration of interaction terms that 

may be useful in the improvement of the model fit. Thus, all possible interactions among 

covariates that were significant at multivariable analysis were formed and the 

significance of adding each of the interaction terms in the main effects model, one at a 

time, was checked. The SAS results from Table 4.8  indicate that none of` the interaction 

terms were significant at 5% level. Hence, the last model was the one which contains 

only the main effects . However, the interpretation based on this model should not be 

tested until the basic assumptions associated with the proportional hazards Cox 

regression model have been checked. 
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4.3  Model Adequacy  

At this point we have a preliminary model and the next step is to assess its fit and 

adherence to key assumptions before we move to interpretation of the results obtained. 

We start here first by checking the overall goodness of fit using r-square and LR, Score 

and Wald tests. We then proceed to check the proportionality assumption for each 

covariate included in the final model. 

4.3.1  Overall Goodness of Fit 

The value of pR2
 is calculated as:  

063.0)]529.1013536.1082(
2120

2
exp[1)](

2
exp[1 0

2  mp LL
n

R  

Due to the presence of high censoring the value of pR2  is very low and indicates that the 

model is adequate.  

Table 4.7: The Likelihood Ratio, Score and Wald tests for overall measures of goodness 

of fit of the preliminary final model in Table 4.5. 

Test  Chi-Square DF Pr > ChiSq  

Likelihood Ratio  121.1679 6 <.0001  

Score  108.1439 6 <.0001  

Wald  102.8381 6 <.0001  

Testing Global Null Hypothesis: BETA=0 

As we can see from Table 4.7: the p-values associated with the likelihood ratio, Score 

and Wald test statistics are all less than 1% indicating goodness of the fitted model at 5% 

level of significance. 

4.3.2  Testing the proportional hazards assumption  

Two basic assumptions of the Cox-PH model are log-linearity and proportional hazards. 

Just as with other regression models, these assumptions need to be examined. Since all 

covariates used in the final model are categorical, there is no need of checking linearity 

assumption.  

The validity of Cox regression analysis relies heavily on the assumption of 

proportionality of the hazard rates of individuals with distinct values of a covariate. If the 

proportionality assumption holds the LOWESS smoothing curve should be 

approximately horizontal line around zero and the distribution of residuals over time is 
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random, with no particular trend with time. Alternatively, we can run a model with each 

covariate (individually) by introducing a time-dependent interaction term for that 

covariate. If the proportional hazards assumption is valid for the covariate, the time-

dependent interaction term should not be significant. The following table display the SAS 

output of test of proportionality assumption. 

Table 4.8: Result of test of proportionality assumption for each covariate in the final 

model 

Analysis of Maximum Likelihood Estimates 

Variables D

F 

Parameter 

Estimate  

Standard 

Error 

Chi-

Square 

Pr>Chisq Hazard 

Ratio 

Place of Residence           1 0.65993        0.25796         6.5448         0.0105        1.935 

Mothers Education 
status     

1 -0.14136        0..21051         0.4509         0.0500        0.868 

Toilet Type used 1 0.47784        0.23641         4.0854         0.0433        1.613 

Type of Cooking fuel   1 -0.36084        0.13775         6.8616         0.0088        0.697 

Antenatal Visit 1 -1.20911        0.27070        19.9503         <.0001        0.298 

Source of Drinkin 
Water 

1 1.01003       0.19156        27.7998         <.0001        2.746 

PRes *(log(time))  1 0.14754  0.09193  2.5754  0.2085  1.159  

MEdu*(log(time)) 1 -0.21120  0.22840  0.8551  0.3551  0.810  

Toilet*(log(time)) 1 0.14534  0.16919  0.7380  0.3903  1.156  

TCook*(log(time)) 1 0.00725  0.14246  0.0026  0.9594  1.007  

AVisit*(log(time)) 1 -0.05220  0.13115  0.1585  0.6906  0.949  

SoDrinWater*(log(ti

me)) 

1 0.19142  0.42633  0.2016  0.6534  1.211  

 

Linear Hypotheses Testing Results 

Label   Wald Chi-Square       DF   Pr > ChiSq 

Test proportionality 8.1448        6    0.4195 

 

From Table 4.8: above we can see that Wald chi-square values and the corresponding p-

values for each covariate. Since the p-values for each interaction of covariate with 

logarithm of time are greater than 0.05, indicates that the proportionality assumption is 

satisfied. The global fit test also shows that the Wald chi-square test statistic is not 

significant which indicates that the proportional hazards assumption is not violated. 

Annex B (Figures 5-8) show the plots of the scaled Schoenfeld residuals for each 

covariate against time. All LOWESS smoothed curves seem to approximate a horizontal 
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line through zero. The residuals look random showing no trend with time. Hence the 

proportionality assumption is satisfied. 

4.4  Interpretation and Discussion of the Results 

The study assessed child mortality and examined the environmental determinants of child 

mortality in Ethiopia. In survival analysis the measure of effect is the hazard ratio. It is 

interpreted in the same way as the odds ratio. The higher the hazard ratio the lower is the 

survival probability, and vice versa.  For an exposed group the hazard ratio is high, the 

survival probability would be equivalently low. From the final model in Table 4.5 we 

obtained six significant main effects: mothers' educational status, toilet type used, type of 

cooking fuel, antenatal visit, place of residence, and household source of drinking water. 

Place of residence has a negative significant association with child mortality. After 

adjusting other covariates,  risk of dying for a child born in a family live in rural area is 

higher by 47.7% relative to those born in a family live in urban. The 95% confidence 

interval (0.307, 0.891) implies that the risk of death of children who born in a family 

lives in urban  is 0.307 as low and 0.891 as high as those in the reference group.  

After adjusting other covariates, the estimated coefficients of improved and shared  toilet 

types  are -1.301 and 0.014 respectively. The hazard ratio or relative risk of the covariate 

toilet type used improved is 1.014 and it is as little as 0.272. It means that the hazard rate 

of child reduce by 72.8 % in household with sanitary latrine as compared with the 

household without sanitary latrine (shared facility). In favor of this finding ,Klaauw and 

Wang(2004), suggest that good public sanitation systems may constitute a more 

important preventive aspect of child survival. In the latter study of Kabir & Amin (2013) 

, in Bangladesh also highlights that the households with sanitary latrines have low risks 

of child mortality. 

In urban Kenya, access to modern sanitation facilities (flush toilets) reduces diarrhea 

prevalence in urban areas and ultimately reduces the child mortality (Mutunga (2004) ). 

In a study of Balk et al. (2005) , the principal component analysis is used to combine the 

correlated variables which influence on mortality. From this analysis it is found that the 

mortality is correlated positively with the complete lack of toilet facilities and negatively 
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with access to flush toilets. It is also suggested by Vos et al. (2005)  that the availability 

of better sanitation will decrease the probability of infant death since better sanitation and 

drinking water access by the household should positively improve hygienic and health 

conditions for all members. 

For the mothers' education level, we have three categories (no education, primary level 

and secondary and above). Taking secondary and above as reference group and the risk 

of death for children, mothers' education who had no education and primary relative to 

mothers' education level secondary and above are 4.343 and 0.531, respectively. This 

result shows that children with  mother‟s having no education level were 4.343 times 

more likely to die than those with secondary  and above  education level controlling for 

other variables in constant. These results clearly indicate that the child survival is 

increasing with increasing of parent‟s education and it is also found that parent‟s 

education has significant effect on child survival. This result may be due to fact that child 

survival is mainly affected by environmental factors and educated parents may be more 

conscious to the environment where child grow up. 

The risk of dying for a child born in a family without access to improved (pipe) source of  

drinking water is higher by 35% relative to those born in a family with access to 

improved drinking water. The 95% confidence interval (0.240, 0.511) implies that the 

risk of death of children whose source of water is not improved water is 0.240 as low and 

0.511 as high as those in the reference group. This result is in accordance with Unger 

(2013). But other researchers depicts that source of drinking water has no significant 

effect on child mortality.( Abdul Hamid Chowdhury 1, Mohammad Emdad Hossian 2, 

Md. Musa Khan 3,Mohammad Nazmul Hoq 4, Asian Journal of Social science and 

humanities , Bangladish Vol.2 No.2 May 2013). 

The estimated hazard ratio for children  whose mother's attended antenatal visits during 

pregnancy when compared to those mothers who did not attend antenatal visit was 2.959 

(95% CI:1.705-5.135) keeping effects of other covariates constant. That is, children 

whose mothers attended antenatal visits during pregnancy had 95.9% lower risk of child 

mortality than those who did not attend  antenatal visit. In other words the risk of death 
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for children, mother's who did not attend antenatal visit was 2.959 times relative to whose 

mother's attended antenatal visits during pregnancy. 

With regard to households'  source of cooking fuel, the risk of dying for children with fire 

hood, charcoal and kerosene were 3.497, 2.688, and 2.326, respectively. These figures 

shows that the risk of death children whose house hold cooking type of fuel, fire hood is 

3.497 times relative to households type of cooking fuels is electricity. In other words, 

after adjusting other covariates, the hazard of death of children with households use fire 

hood cooking is 3.497 times higher than  households use  electricity (adjusted HR=3.479, 

95% Cl:1.424-8.588). The hazard death of children for household use charcoal cooking is 

2.688 times higher than households use electricity (adjusted HR=2.688, 95% Cl:1.982-

7.36). The hazard death children for households use kerosene cooking fuel is 2.326 times 

higher than households use electricity(adjusted HR=2.326,95%Cl:1.643-8.421). All these 

findings are consistent with Hala (2002), Klaauw and Wang (2004) and Jacoby and Wang 

(2003). 

4.5  Parametric Regression Modelling of Survival of Child 

4.5.1  Model Selection for Survival of Child 

For the child mortality the parametric regression models were fitted. We consider model 

comparison after adjusting for the effect of covariates. In this case the graphical displays 

are based on the Cox-Snell plots. That is, if the model is good fitted, the plot of Cox-Snell 

residuals versus Nelson-Aalen cumulative hazard estimates should lie along the 45 

degree diagonal line that passes through the origin. Using all the covariates in the study, 

we fitted two parametric regression models which are Exponential and Weibull models 

with the corresponding AIC and BIC values. Here we present the Cox-Snell plots for 

model comparison in Figures 4.2 to 4.3. 
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𝐅𝐢𝐠𝐮𝐫𝐞  𝟒. 𝟑: The Cox Snell plot after fitting           𝐅𝐢𝐠𝐮𝐫𝐞 𝟒. 𝟒: The Cox Snell plot after fitting       

                       Exponential regression mode                                Weibull regression model 

As we can see from the  above Cox-Snell plots that Weibull regression model seems the 

best fit among the two models. But graphical methods may not assure the result. The 

common applicable criterion to select the model is the Akaikie information criterion 

(AIC) statistic proposed by Akaikie (1974). So, In addition to the graphical comparison 

of the two parametric regression models, we used Akaikie information criterion (AIC) 

and Bayesian information criterion (BIC) to choose the best model out of the two 

possible models.  The STATA output of the two parametric survival regression models 

are displayed in appendix B with the corresponding AIC and BIC values. 

Table 4.9: Statistical results for model comparison 

Model Observatio

n 

ll (null) ll (model) Df AIC 

value 

BIC value 

Exponential 2120 -600.9143    -542.6691      11 1107.338 1169.589 

Weibull 2120 -395.6862    -324.8979     12 673.7959   741.7059 

According to the results in Table 4.9 above, the Weibull regression model with the 

smallest value of AIC and BIC seems to be the best fit of the two models. Nevertheless,  

the results of cox-snell were consistent with the results based on Akaikie's information 

criterion. Thus, the Weibull regression model was preferable to discuss the effect of 

covariates on the survival of Child mortality in Ethiopia. 
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4.5.2  Univariate unadjusted Weibull regression model 

As Weibull regression is selected, according to the Weibull analysis of single covariate, 

the selected risk factors for further analysis and interpretation are made here below. To 

have an idea about the individual effects of the different explanatory variables on survival 

of children, we fitted Weibull regression model separately for each explanatory covariate. 

Table 4.10: The result of un-adjusted univariate analysis using Weibull regression model 

Covariate Hazard 

ratio 

Std.error              

Z 

 

P>|z|      
 

-2*LL 

95% CI 

Lower Upper 

Sexochild 1.292267     .195206      1.70    0.090       845.996 .961108     1.737529 

PResidence 1.731415 .4757156 2.00 0.046 686.865 .010483 .966698 

MEducationSt

atus 
1.424048 .2234352 2.25 0.024 652.547 1.047056 1.936776 

ToiletType 

Used 
1.634508 .3430492 2.34 0.019 652.214 1.083272 2.466247 

TCookinkFuel .7454722 .0899263 -2.44 0.015 652.214 .5885062 .944304 

AntinatalVisit .3071224 .0924874 -3.92 0.000 791.434 .1702076 .5541713 

PoDelivery .8110552 .2047389 -0.83 0.407 731.372 .4945124 2.330221 

SoDrinkinWat

er 
3.349726 .6283278 6.44 0.000 

652.214 
2.319233 4.838092 

_cons 8.80e-11 1.25e-10 -16.35 0.000  5.48e-12 1.41e-09 

/ln_p 1.683363 .0544476 30.92 0.000  1.576648 1.790079 

P .383632 .2931259         4.838709 5.989924 

1/p 2.60666 .0101135    .166947 .2066667 

As we can see from the above Table 4.10, it shows that covariates like mothers' 

educational status, households toilet type used, households type of cooking fuel, antenatal 

visit during pregnancy, place of residence, and household source of drinking water are 

statistically significant at 5% level of significance. But covariates like sex of children and 

place of delivery are not significant. The risk factors those were statistically significant 

included in the final Weibull regression model for the prediction of survival probability 

of child mortality. 
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4.5.3  Multivariable Analysis Weibull Regression Model 

When there are a number of explanatory variables of possible relevance, the effect of 

each term cannot be studied independently one the others. The effect of any given term 

therefore depends on the other terms currently included in the model. However, in the 

univariate analysis technique the relations that are obtained for one factor do not take into 

account the other factors. So the multivariable analysis is used to know the most 

important factors associated with mortality of children in relation to the covariates 

included in the model. After fitting the univariate weibull survival regression analysis the 

next step is selecting the most important variables to fit the multivariate weibull 

regression model. In order to select the most important covariates in the final model, we 

used stepwise variable selection.  

Table 4.11: Parameter estimates of the final multivariate weibull regression model 

Covariate Hazard 

ratio 

Std.error              

Z 

 

P>|z|      
95% CI 

Lower Upper 

PResidence(1) 

PResidence(Ref) 

 .5877572        .168221 1.86    0.043   .3354108        .929957 

      

Mothers' Educational status 

No education(1) 

Primary(2) 

Secondary&above(Ref) 

      

.5081227 .1555982 -2.21 0.027 .2788125 .9260298 

.4457565 .1128284 -3.19 0.001 .2714216 .7320673 

      

Toilet type used 

Improved(1) 

Shared facility(2) 

Non-improved(Ref) 

      

.3312088 .1464452 -2.50 0.012 .1392322 .7878869 

1.142547   .8782884 0.17 0.862 .2532478 5.154685 

      

Type of Cooking Fuel 

Fire wood (1) 

      

3.323802 1.29274 3.09 0.002 1.550865 7.123548 

Charcoal (2) 

Kerosene (3)  

Electricity(Ref) 

2.752342 1.269107 2.20 0.028 1.11484 6.79504 

2.149882 1.382608 1.19 0.328 .6095359 7.582803 

      

Antenatal Visit No (0) 

                  Yes(1) (Ref) 

3.174416    .9498236  3.86     0.000 1.765932     5.706287 

      

Source of Drinking        
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Water Improved (1) 

 

Non-improved(Ref) 

.2843618    .0539307 -6.63    0.000 .1960814     .4123881 

      

_cons 2.00e-09    2.44e-09 
-

16.43    
0.000 1.84e-10     2.19e-08 

/ln_p 1.713488    .0558461 30.68    0.000 1.604032     1.822944 

P .54828    .3098497   4.973042     6.190057 

1/p 1.8238    .0100655   .1615494     .2010842 

Remark: The reference category is marked by parenthesis (Ref). 

4.5.4  Assessment of Adequacy of the Weibull Regression Model 

To assess the adequacy of weibull regression model, we used the likelihood ratio test 

presented in Table 4.12 below and it illustrated that the model was significantly fit the 

data of child mortality and in using the log likelihood values of the null model and the 

full model, it can be seen that the model has a significant improvement after the covariate 

is incorporated in the model.  

Table 4.12: The likelihood ratio and significance of the Weibull regression model 

 

Log likelihood 

(intercept only) 

Log likelihood  

(Model) 

LR chi-square DF Prob > chi2 

-395.6868 -325.96576 139.44 6 0.0000 

4.5.5  Interpretation and Discussion of the Weibull Regression Model 

All variables significant in Cox- model were also significant in the Weibull  models with  

the expected signs. Households with access to safe water have significantly lower 

mortality rates. Access to sanitation facilities is also significantly related to child 

mortality. Children born in household with either flush toilets or pit latrines have lower 

mortality rate than those born in households without any toilet facility. 

The result of this study also showed that infants whose parents use unprotected (non-

improved) source of drinking water have less survival chance than those who use 

improved  source of drinking water. A study in China showed that access to safe water or 

sanitation reduces child mortality risks by about 34% in rural areas, which means access 

to safe water/sanitation, and immunization reduce diarrhea incidence in rural areas 
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(Jacoby and Wang (2003)). In Kenya, Mutunga (2004) found that child survival was 

found better for those who had access to safe drinking water and sanitation facilities. 

Several single country studies based on micro data have shown the impact of individual‟s 

or household‟s endowments of resources , access to safe drinking water,  and improved 

sanitation on infant and child mortality (Kembo and Van Ginneken (2009) (Zimbabwe); 

Mesike and Mojekwu (2012) (Nigeria); Gemperli et al. (2004) (Mali); Nuwaha et al. 

(2011) (Uganda); Manda (1999) (Malawi); Kandala and Ghilagaber (2006) (Malawi); 

Adeyemi et al. (2008) (Nigeria); Adebayo and Fahrmeir (2012) (Nigeria); Ogunjuyigbe 

(2004) (Nigeria); Wang (2003) (Ethiopia).  

Mother‟s education is the most important determinant of child mortality among the 

mother‟s characteristics that are considered in this study. Children whose mothers' have 

no education are 50.81%  likely to die as infants compared with children whose mothers 

have secondary and above education (HR = .5081; 95% CI=(.2788-.9260)). The risk of 

death of children whose mothers' have primary education level was 44.58% compared to 

the reference group secondary and above education level (HR=.4457; 95% CI=(0.2714-

0.7320)) keeping effects of other covariates constant. 

With regard to source of cooking fuel, children born in households using high polluting 

fuels (fire woods) as their main source of cooking fuel have higher mortality rates as 

compared to those using low polluting fuels (electricity). Higher incidence of respiratory 

infections which are responsible for child deaths is expected in households which use 

“dirty” fuels as opposed to those using clean cooking fuels. This finding is consistent 

with Mutunga, clive j. Kenya Institute for Public Policy Research and Analysis 

(KIPPRA) (2004). 

Finally, from the Weibull model estimates, the shape parameter γ which is shown as ρ in 

STATA has a value of 0.548 which implies that the hazard rate  decreases monotonically 

with time or in other words there is negative time dependence. This means that children 

face a higher hazard (mortality rate) in the initial  birth day than in later periods.  
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4.5.6  Discussion of the Results 

The main aim of this study was to identify  factors of child mortality in Ethiopia using the 

nationally representative of  2014, EDHS data. Both univariate and multivariate statistical 

analyses were employed to examine factors affecting child mortality. The analyses 

revealed that environmental variables were statistically significant effect on child 

mortality in Ethiopia. The variables influencing child  mortality are mothers' educational 

status, source of drinking water, place of residence, household type of toilet used, type of 

cooking fuel and antenatal visits. But covariates like sex of child and place of delivery 

were not statistically significant on child mortality in Ethiopia. 

The findings of this study showed that children whose mothers attended antenatal visits 

during pregnancy had lower risk of child mortality than those who did not attend 

antenatal visits. A study in the Gaza Strip, occupied Palestinian territory, by Antai D. and 

Moradi T. (2010) found that newborn babies born to mothers who attended fewer than 

four antenatal sessions during pregnancy had a risk of dying that was almost twice that of 

those born to mothers who attended antenatal session four or more times. A study in 

Indonesia also revealed that the risk of children death was higher among women who did 

not attend antenatal care visits during pregnancy (Kamal S.M.M. (2012). A study in 

Ethiopia by  Desta, M. (2011) showed that child mortality was associated with antenatal 

care follow-up: there was better survival with at least one antenatal care follow-up. Thus, 

antenatal care follow-up is a prominent predictor of survival time of children. 

The result of this study also showed that children whose parents used unprotected 

drinking water have less survival chance than those who use piped drinking water or 

improved source of drinking water. A study in China showed that access to safe water or 

sanitation reduces child mortality risks by about 34% in rural areas, which means access 

to safe water/sanitation, and immunization reduce diarrhea incidence in rural areas 

(Jacoby and Wang (2003)). In Kenya, Mutunga (2004) found that child survival was 

found better for those who had access to safe drinking water and sanitation facilities. A 

study in Egypt by Hala (2002) showed that access to municipal water decreases sanitary 

risks. Access to municipal water and improved sanitation facilities had significant 

positive impact on children mortality (Unger (2013)). Therefore, higher mortality rates 
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are experienced in households that have access to unprotected source of drinking water 

drinking water. 

There was higher mortality in children whose mothers' were not educated or had primary 

education than children whose mothers were attending secondary and above education in 

this paper. The study in rural china by Jacoby and Wang (2003) showed that a higher 

maternal education level reduces child mortality and that female education has strong 

health externalities. In Nigeria a similar study showed that women‟s average educational 

level in their community exerts a great influence on child survival (Mesike, C.G., 

Mojekwu J. (2012)). A study In Ethiopia by Wang (2003) also showed that female 

education attainment has significant effect on reducing infant mortality. Therefore, 

improving the knowledge of mothers in the societies is important to reduce risk of child 

death. Twum et al. (2011)  using the result of 2009 Burkina Faso DHS , indicated that 

children born to mothers with higher educational level associated with lower risk of 

infant and child mortality as compared to children born to mothers with primary 

education level or non-educated. 

The  probability of dying child for females compared to males found in this study was the 

same. It was not significant impact on environmental determinant of child mortality. but 

other study showed that there is a significant impact on child mortality. Likewise, more 

boys die before their first birth day than girls in Kenya (Hill et al., 2001).  
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CHAPTER FIVE 

CONCLUSIONS AND RECOMMENDATIONS 

5.1  Conclusions 

The study has empirically examined the environmental determinants of child mortality in 

Ethiopia using survival analysis method. It has utilized the national representative data 

from the Ethiopian Demographic and Health Survey (EDHS) - 2014. The study employed 

survival statistical analysis to determine risk factors associated with child mortality in 

Ethiopia. Both Cox Proportional hazard model and Weibull regression model analysis 

techniques have been applied to identify the important predictors of child survival. 

The results from the Kaplan-Meier estimate showed that most of the deaths occurred 

during the first birth days of life.  Results based on Proportional Hazards model and 

weibull model revealed that environmental factors had statistically significant effect on 

child mortality. Specifically, the study demonstrated that various factors such as mothers' 

education, household source of drinking water, antenatal visit, place of delivery, type of 

cooking fuel and type of toilet used had statistically significant impacts on the survival 

experience of children. But covariates like sex of child and place of residence were 

insignificant on survival of child.  

The two parametric regression models: Exponential and Weibull regression models, for 

survival probability of children were compared. The Weibull regression model was found 

to better fit to the data.  The findings further suggested the following: Mothers' 

educational and households source of drinking water had a significant effect on survival 

of child, that is, child mothers' who had primary, secondary and above educational level 

were lower risk of mortality than mothers' who had no education level. Children whose 

parents use non-improved has less survival chance than those who use improved source 

of drinking water. With regard to source of cooking fuel, children born in households 

using high polluting fuels  (fire woods and charcoal ) as their main source of cooking fuel 

have higher mortality rates as compared to those using low polluting fuels (electricity). 

Children born in household with either flush toilets or pit latrines have lower mortality 

rate than those born in households without any toilet facility.  
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5.2  Recommendations 

Based on the study findings and keeping the limitations in mind, the study forwarded 

the following recommendations. 

 Greater efforts need to be put in place to ensure provision of basic services like 

water for all. Availability of safe sources of drinking water will significantly 

reduce child mortality and therefore investments in this sector will be rewarding. 

 Access to sanitation facilities like constructing toilets entail a private cost but do 

have significant social benefits. The government should work closely with both 

the private sector and civil society to ensure that households have universal access 

to sanitation facilities do great extend reduce the number of infant deaths. In 

addition, the proposed housing policy should make it mandatory for each housing 

unit to have a sanitation facility such that all households have access to sanitation 

facilities. 

 The government policy should be focused towards promoting the use of low 

polluting fuels and in particular discouraging the use of firewood and charcoal. 

Through the use of economic instruments, incentives should be created for 

promotion of cleaner fuel sources. This will also create employment opportunities 

which will translate into increased earnings and reduced poverty. 

 In general, the government policies should focus on improving child survival and 

health intervention policies should revise and implement to achieve the 

Millennium Development Goals (MDGs) of reducing child mortality. 
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Appendixes 

 

Annex A. 
 

Table 4.1: Category variables coding  

 

 Frequency (1)
h
 (2) (3) 

SexoChild
b
 

1=Male 1134 1 
  

2=Female 986 0 
  

PResidence
b
 

1=Urban 388 1 
  

2=Rural 1732 0 
  

EducationStatus
b
 

1=No Education 1547 1 0 
 

2=Primary 400 0 1 
 

3=Secondary&above 173 0 0 
 

ToiletType
b
 

1=Improved(not shared) 15 1 0 
 

2=Shared facility 24 0 1 
 

3=Non-Improved 2081 0 0 
 

TCookinkFuel
b
 

1=Fire Wood 1783 1 0 0 

2=Char Coal 224 0 1 0 

3=Kerosene 14 0 0 1 

4=Electricity 99 0 0 0 

AntinatalVisit
b
 

0=No 1759 1 
  

1=Yes 361 0 
  

PoDelivery
b
 

1=Home 1741 1 0 
 

2=Health Center 372 0 1 
 

3=Other 7 0 0 
 

SoDrinkinWater
b
 

1=Improved 1105 1 
  

2=Non Improved 

Source 
1015 0 
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Table 4.2: Summary of some important  environmental characteristics of child 

Mortality in Ethiopia.   

 

Covariates/ 

Factor 

Category  

 

Death Censored      Total  

Censored Censored 

Percent 

Sex of child 1(Male) 86 1048 92.4% 1134 

 2(Female) 95 891 90.4% 986 

Place of 

residence 

1(Urban) 75 313 80.7% 388 

2(Rural) 106 1626 93.9% 1732 

Mothers 

Education Status 
No Education(1) 

Primary(2) 

Secondary &above (3) 

79 

60 

42 

 

1468 

340 

131 

 

94.9% 

85.0% 

75.7% 

 

1547 

400 

173 

 

Type of toilet 

facility 

Improved(not 

shared)(1) 

Shared facility(2) 

Non-Improved(3) 

15 

 

2 

164 

0 

 

22 

1917 

0.0% 

 

91.7% 

92.1% 

15 

 

24 

2081 

Type of cooking 

Fuel 

Fire Wood(1) 

Char Coal(2) 

Kerosene(3) 

Electricity(4) 

142 

14 

3 

22 

1641 

210 

11 

77 

92.0% 

93.8% 

78.6% 

77.8% 

1783 

224 

14 

99 

Antenatal Visit 

during pregnancy 

No (0) 

Yes(1) 

106 

75 

1653 

286 

94.0% 

79.2% 

1759 

361 

Place of Delivery Home(1) 

Health Center(2) 

Other(3) 

103 

77 

1 

1638 

295 

6 

94.1% 

79.3% 

85.7% 

1741 

372 

7 

Source of 

Drinking water 

Improved(1) 

Non Improved 

Source(2) 

37 

144 

 

1068 

871 

 

96.7% 

85.8% 

 

1105 

1015 
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Table 4.4: Results of the univariable proportional hazards Cox regression model 

 

Remark: The value of -2L for the model containing all the covariates in this table is 

2019.760 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 B SE Wald df Sig. Exp(B) -2LogL LR(Sig) 

SexoChild -.243 .156 2.417 1 .120 .784 2142.832 0.670 

PResidence -.650 .272 5.715 1 .017 .522 2033.878 0.0025 

EducationStatus 
  

11.869 2 .003 
  

2053.296 

 

0.035 

EducationStatus(1) 1.438 .748 3.689 1 .055 4.211   

EducationStatus(2) -.625 .271 5.329 1 .021 .535   

ToiletType 
  

9.794 2 .007 
  

2038.179 
 

0.000 

ToiletType(1) -1.456 .469 9.619 1 .002 .233   

ToiletType(2) -.137 .807 .029 1 .865 .872   

TCookinkFuel 
  

6.480 3 .090 
  

2023.691 

 

0.000 

TCookinkFuel(1) 1.105 .468 5.577 1 .018 3.018   

TCookinkFuel(2) .832 .525 2.515 1 .113 2.299   

TCookinkFuel(3) .744 .658 1.275 1 .259 2.104   

AntinatalVisit .961 .302 10.144 1 .001 2.614 2115.474 0.002 

PoDelivery 
  

1.324 2 .516 
  

2138.481 

 

0.422 

PoDelivery(1) -.822 1.008 .666 1 .415 .439   

PoDelivery(2) -1.049 1.048 1.003 1 .317 .350   

SoDrinkinWater -1.010 .195 26.928 1 .000 .364 2072.392 0.000 

 -2 Log Likelihood(null model)=2165.072 
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Table 4.13: Result of the Exponential regression model with corresponding AIC and BIC 

values 

Exponential regression -- log relative-hazard form  

No. of subjects =         2120  Number of obs= 2120 

No. of failures =          181 

Time at risk    =        39020 

LR chi2(6) = 115.22 

Log likelihood  =   -543.30261  Prob > chi2 = 0.0000 

Covariates Haz. Ratio Std. Err. Z P>|z| [95% Conf. Interval] 

EducationStatus 1.677208 .2377105   3.65   0.000 1.270417 2.214255 

ToiletType .7981148 .1630596 -1.10 0.270      .5347611 1.191162 

TCookinkFuel .9931768 .1129584      -0.06    0.952      .7947228 1.241188 

AntinatalVisit .7244037 .2316033      -1.01     0.313      .3871134 1.355574 

PoDelivery 1.401772 .4155004 1.14 0.255 .7841011 2.50601 

SoDrinkinWater 4.195479 .7835058     7.68 0.000 2.909509 6.049834 

_cons .0002578 .0002284 -9.33 0.000    .0000454   .0014637 

 

Model Observation ll (null) Ll (model) Df AIC 

value 

BIC value 

Exponential 2120 -600.9143    -543.3026      7 1100.605  1140.219 
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Annex B 

Figure 4.5: Kaplan-Meier survival estimates of different covariates 
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Figure 4.6: The scaled Schoenfeld residuals and their lowess smooth plots of  different 

covariates 

 
Figure 5: Plots of Scaled Schoenfeld Figure 6: Plots of Scaled Schoenfeld 

residuals and their LOWESS smoothed  

obtained from the final model for the  

covariate Mothers educational status       

residuals and their LOWESS smoothed 

obtained from the final model for the 

covariate source of drinking water   
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Figure 7: Plots of Scaled Schoenfeld Figure 8: Plots of Scaled Schoenfeld 

sresiduals and their LOWESS smoothed  

obtained from the final model for the  

covariate toilet type used        

residuals and their LOWESS smoothed 

obtained from the final model for the 

covariate type of cooking fuel   
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Figure 4.7: -log(-log(survival probability)) plot 
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