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We calculate the production rates of the second Kaluza-Klein (KK) photon �ð2Þ and Z boson Zð2Þ at the
LHC including all significant processes in the minimal universal extra dimension (MUED) model. For

discrimination of the MUED model from other TeV scale models at the LHC, �ð2Þ and Zð2Þ play a crucial

role. In order to discuss the discrimination and calculate their production rates, we derive KK number

violating operators including the contribution of the top Yukawa coupling. Using these operators, we

accurately calculate branching ratios of second KK particles. In addition we find that these KK number

violating operators provide new processes for �ð2Þ and Zð2Þ productions, such as cascade decay from

second KK quarks produced through these operators. They have large contributions to their total

production rates. In particular, these production processes give the dominant contribution for �ð2Þ

production for 1=R * 800 GeV. As a result, with an integrated luminosity of 100 fb�1, the number of

produced �ð2Þ and Zð2Þ are estimated as 106–102 for the compactification scale between 400 and 2000 GeV.

DOI: 10.1103/PhysRevD.80.056006 PACS numbers: 11.10.Kk, 12.60.�i

I. INTRODUCTION

Theoretical arguments in particle physics and cosmo-
logical observations conclude that the standard model
(SM) is not the theory of everything but is rather the
effective theory describing physics below Oð100Þ GeV.
Many models beyond the SM have been proposed, and
the universal extra dimension (UED) models [1] are some
of the attractive candidates for new physics at TeV scale.1

In the UED models, all SM fields can propagate into
compactified extra dimensions, and hence they are accom-
panied by the tower of Kaluza-Klein (KK) particles. They
can give plausible explanations for the existence of dark
matter [3], the number of fermion generations [4], SM
neutrino masses which are embedded in extended models
[5], and so on. Among various UED models, the simplest
and the most popular one is called the minimal UED
(MUED) model. The MUED model is defined on the
five-dimensional space-time, where the extra dimension
is compactified on an S1=Z2 orbifold. In the MUEDmodel,
only two parameters are newly introduced to the SM. One
is the compactification scale of the extra dimension 1=R,
the inverse of the radius of S1 circle, and the other is the
cutoff scale of the MUED model �. In order to satisfy
terrestrial experiments, 1=R must be larger than 400 GeV
[1,6], while the calculation of the relic abundance of the
lightest KK particle (LKP) suggests that the abundance of

the dark matter is explained for 500 GeV & 1=R &
1500 GeV [7]. As indicated from these results, the
MUED model would be discovered and studied at the
Large Hadron Collider (LHC).
The confirmation of the MUED model (in general, UED

models) at collider experiments requires the discovery of
KK particles. Though the LHC can produce KK particles,
it is difficult to confirm that they are indeed the KK
particles, because new particles predicted in various TeV
scale models give quite similar signatures to each other.
Therefore it is very important to understand how they can
be identified as KK particles. In this article, we discuss the
discrimination of the MUED model from other TeV scale
models.
In Ref. [8], an excellent idea to discriminate the MUED

model from other TeV scale models has been proposed.
The essence of the discrimination is the discovery of the
second KK particles. The signals of the first KK particles
are quite similar to those of new particles in other models.
However, the discovery of the second KK particles
strongly suggests the existence of the MUED model, since
their masses are peculiarly almost equal to 2=R, and the
value of 1=R is expected by the masses of the ‘‘first KK’’

particles. In particular, the second KK photon �ð2Þ and Z

boson Zð2Þ play an important role for the search of the
second KK particles. They are able to decay into two
charged leptons. It is possible to reconstruct the masses

of �ð2Þ and Zð2Þ clearly from the charged dileptons emitted
by them. Connecting their masses and those of the first KK
particles, we can confirm the realization of the MUED
model.

Hence, �ð2Þ and Zð2Þ are the key ingredients to discrimi-
nate the MUED model from other TeV scale models. We
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1UED models are motivated by the TeV scale extra dimension

theory [2].
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therefore calculate their production rates at the LHC. To do
this, first we derive the effective Lagrangian containing KK
number violating operators, which are relevant to both the
second KK particles productions and decay. Previously,
these operators have been discussed in Ref. [9] considering
only gauge interactions. We improve the operators by
including the contribution of Yukawa interactions.

Through the KK number violation operators, �ð2Þ and

Zð2Þ decay into dilepton. In addition to the decay, these
operators allow single second KK particle production,
which does not suffer from a severe kinematical suppres-
sion compared to pair productions. Next we study the

production processes of �ð2Þ and Zð2Þ including both the
KK number violating and conserving processes. At the

LHC, �ð2Þ and Zð2Þ are produced mainly through the cas-

cade decays of the second KK gluons gð2Þ and quarks qð2Þ.
Here the symbol q stands for both SUð2Þ doublet and
singlet quarks. We also need to calculate their branching

ratios into �ð2Þ and Zð2Þ. Finally, we calculate the produc-

tion rates of �ð2Þ and Zð2Þ from each process, and estimate
the number of the dilepton signals from them.

This article is organized as follows. In the next section,
we briefly review the MUED model. Then we mention the
difficulty that appears during the confirmation of the
MUEDmodel at the LHC, and discuss an idea to overcome
the difficulty. In Sec. III, we discuss the Lagrangian rele-

vant to the productions of �ð2Þ and Zð2Þ, and we calculate
the branching ratios of colored second KK particles. In

Sec. IV, we show some numerical results for �ð2Þ and Zð2Þ
productions, and discuss the significance to discover the
particles at the LHC. Section V is devoted to summary.

II. THE MUED MODEL AND ITS
DISCRIMINATION FROM OTHER MODELS

The MUED model is the simplest version of the UED
models. In this model, fields with a fifth dimensional
momentum n=R behave as new heavy particles with a

tree-level mass
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

SM þ ðn=RÞ2
q

from the viewpoint of

four-dimensional field theory. These new particles are
called KK particles, n is called the KK number (n ¼ 0
for SM particles, n ¼ 1; 2; . . . for KK particles), and mSM

represents the mass of the corresponding SM particle.
The SM particles and their KK particles have identical

gauge charges and spins. All interactions of the KK parti-
cles in the four-dimensional space-time are determined by
the Lagrangian in five dimensions. Since the UED models
are not renormalizable, they should be considered as an
effective theory defined at the scale �, where � is usually
taken to be�R�Oð10Þ [1,10]. In this article, we take� to
be�R ¼ 20.2 Thus, in order to discuss the phenomenology

of the MUED model, we need only two new parameters:
1=R and �.
Although the masses of KK particles at tree level are

highly degenerate in each KK mode, the degeneracy is
slightly relaxed by radiative corrections [9]. The mass
spectrum of the nth KK particles with the radiative correc-

tions �mn are given by mn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn=RÞ2 þm2

SM þ �m2
n

q
.

Here, analytical expressions of the radiative corrections
�mn are given in Ref. [9]. In general, due to the radiative
corrections, colored KK particles are heavier than non-
colored KK particles in each KK level. We have used
couplings improved by the renormalization group (RG)
equation to compute the radiative corrections to the masses
of KK particles. The gauge couplings at the one-loop level
are given by

��1
i ð�Þ ¼ ��1

i ðmZÞ � bi
2�

ln½�=mZ�

�X
n

�ð�� n=RÞ
~bi
2�

ln½�=ðn=RÞ�: (1)

Here �i ¼ g2i =ð4�Þ, gi ¼ ðg0; g2; gsÞ are the SM gauge
coupling constants (i stands for each gauge group), � is
the renormalization scale, and � represents the step func-

tion. bi and ~bi are summarized in Table I.
The mass spectrum of the first KK particles (n ¼ 1) and

the second KK particles (n ¼ 2) for 1=R ¼ 500 GeV are
shown in Table II. When we calculate the mass spectrum of
nth KK particles, we choose their mass scale, n=R, as
renormalization scale. It is seen that each KK mode is
degenerate with each other and the masses of the second
KK particles are almost twice of the first KK particles.
Since the translational invariance along the extra dimen-

sion direction is broken due to the orbifolding on an S1=Z2,
the fifth dimensional momentum (KK number) is no longer
conserved. Nevertheless, the subgroup of the translational
invariance remains unbroken, which is called the KK
parity. Under the parity, particles with even (odd) KK
number have plus (minus) sign, and the product of the
sign is conserved in each process. Because of the KK parity
conservation, the lightest KK particle (LKP) is stable and
provided as a candidate for dark matter. The situation is
quite similar to the case of supersymmetric models with
R-parity conservation, in which the lightest supersymmet-
ric particle (LSP) is stable. The relic abundance of the KK
particle dark matter has been calculated in the MUED

TABLE I. Coefficients of RG improved gauge coupling con-
stants. Each ~bi is the contribution from one KK level of KK
particles.

Fields b0 b2 bs ~b0 ~b2 ~bs

Gauge 0 �22=3 �11 0 �7 �21=2
Higgs 1=6 1=6 0 1=6 1=6 0

Fermion 20=3 4 4 40=3 8 8

2Our results are almost independent of �, since it always
appears with a loop suppression and gives only logarithmic
corrections.
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model [7], and it turns out that if the KK particle dark
matter dominates the component of dark matter in the
universe, 1=R should be in the range of 500–1500 GeV.
The MUED model, therefore, would be explored at the
LHC.

The confirmation of the MUED model at the LHC is not
so easy. Although it is necessary to discover the KK
particles, it is very hard to distinguish the signals of these
particles from those of other TeV scale models (for ex-
ample, the minimal supersymmetric standard model, the
little Higgs models, and so on), because these models also
predict new heavy particles which give quite similar sig-
nals. For example, in a supersymmetric model, new parti-
cles also have identical couplings to their corresponding
SM particles and the masses of colored new particles are
heavier than those of other new particles. Furthermore,
there is a conserved discrete symmetry (R parity), which
makes LSP stable. In both models, at the LHC, heavy
colored new particles are produced first. Then they imme-
diately decay into lighter new particles. Finally the lightest
new particles leave detectors as missing energy. The spin
difference may be used to discriminate the MUED model
from other models [11]. However, the spin determination,
particularly when the masses of new particles are degen-

erate, is difficult at the LHC, and hence the discrimination
of TeV scale models is also difficult.
In order to discriminate the signals of the MUED model

from those of other models, we focus on the existence of
the KK tower. First of all, we need to speculate the value of
1=R. At the LHC, we can find the signals of first KK
particles through the four lepton channel [12]. Through
the observations of cascade decays of the first KK particles,
we can speculate the value of 1=R. It is then possible to
predict the masses of the second KK particles. The discov-
ery of new particles with predicted masses strongly sug-
gests that the MUED model is realized as new physics at
the TeV scale. At tree level, the second KK particles decay
into lighter KK particles through KK number conserving
processes, and eventually LKPs are left. Since the LKP
gives no signal at the detectors, it is very hard to measure
the mass of its parent particle. Fortunately, the second KK
gauge bosons directly couple with SM fermion pairs
through KK number violating interactions. Consequently,

�ð2Þ and Zð2Þ decay into two charged leptons with nonzero

branching ratios, and the masses of �ð2Þ and Zð2Þ can be
clearly reconstructed from the dileptons [8]. The mass

difference between �ð2Þ and Zð2Þ is about 50 GeV for
1=R ¼ 500 GeV, as shown in Table I, and for this mass
difference each resonance can be distinguished clearly by
the observation of dielectron signals [8]. The double peak
resonance also suggests the existence of the MUEDmodel,
because this is one of the typical signatures of this model.
For the discussion of the feasibility to confirm the MUED
model at the LHC, we need to know the event rate of the
dilepton signals. We thus calculate the production rates of

�ð2Þ and Zð2Þ at the LHC in the following sections.

III. PRODUCTIONS OF �ð2Þ AND Zð2Þ

In this section, we discuss the Lagrangian relevant to the

production of �ð2Þ and Zð2Þ bosons. With the Lagrangian we

calculate the branching ratios of gð2Þ and qð2Þ, which are
necessary for the discussion of the indirect production of

�ð2Þ and Zð2Þ.

A. Lagrangian for �ð2Þ and Zð2Þ productions
First, we show the Lagrangian conserving the KK num-

ber relevant to gauge bosons,

Lcon ¼ �gi
X1
n¼1

½ �fðnÞta��fðnÞVð0Þa
i� þ �fðnÞta��PLðRÞfð0ÞV

ðnÞa
i� þ �fð0Þta��PLðRÞfðnÞV

ðnÞa
i� �

� giffiffiffi
2

p X1
n;m¼1

½ �fðnÞta���5fðmÞVðnþmÞa
i� þ �fðnþmÞta��fðnÞVðmÞa

i� þ �fðnÞta��fðnþmÞVðmÞa
i� �

þ gif
abc
i

X1
n¼1

½ð@�Vð0Þa
i� ÞVðnÞb�

i VðnÞc�
i þ ð@�VðnÞa

i� ÞVðnÞb�
i Vð0Þc�

i þ ð@�VðnÞa
i� ÞVð0Þb�

i VðnÞc�
i �; (2)

where the summation over i, a, b, and c is implicitly made. fðnÞ, gi, ta, and Va
i� are listed in Table III. In the third part of the

TABLE II. Mass spectrum of KK particles for 1=R ¼
500 GeV and �R ¼ 20.

KK particle n ¼ 1 n ¼ 2

KK gluon gðnÞ 618 GeV 1170 GeV

KK Z boson ZðnÞ 534 GeV 1059 GeV

KK W boson W�ðnÞ 534 GeV 1046 GeV

KK photon �ðnÞ 501 GeV 1000 GeV

KK Higgs HðnÞ 518 GeV 1014 GeV

KK CP-odd Higgs AðnÞ 512 GeV 1011 GeV

KK charged Higgs H�ðnÞ 510 GeV 1010 GeV

KK SUð2Þ singlet electron EðnÞ 505 GeV 1008 GeV

KK SUð2Þ doublet lepton LðnÞ 514 GeV 1022 GeV

KK SUð2Þ singlet up quark UðnÞ 571 GeV 1100 GeV

KK SUð2Þ singlet down quark DðnÞ 569 GeV 1097 GeV

KK SUð2Þ doublet quark QðnÞ 582 GeV 1117 GeV

KK light top quark TðnÞ 569 GeV 1071 GeV

KK heavy top quark tðnÞ 594 GeV 1109 GeV

KK SUð2Þ singlet bottom quark BðnÞ 569 GeV 1097 GeV

KK SUð2Þ doublet bottom quark bðnÞ 575 GeV 1106 GeV
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Lagrangian, fabci is the structure constant of SUð3Þ for
gluon and that of SUð2Þ for the W boson. As long as we
use the KK number conserving Lagrangian, second KK
particles are produced in pair due to the KK number
conservation, and hence the production rates are sup-
pressed due to their small phase spaces.

Next we discuss the KK number violating interactions.
The KK number violating operators have been discussed in
Ref. [9] taking into account only the gauge interactions. In
addition, we include also contributions of Yukawa inter-
actions. The effective Lagrangian for the KK number
violating operators turns out to be

L vio ¼ xi
4

�
NiðfÞct þ

�
9CjðfÞ � 23

3
CjðGÞ�ij

þ nj
3
�ij

�
cj

�
�fð0Þtai ��PLðRÞfð0ÞV

ð2Þa
i� ; (3)

cj �
ffiffiffi
2

p
x2j

16�2
log

�2

�2
; ct �

ffiffiffi
2

p
y2t

16�2
log

�2

�2
: (4)

Here, yt is the top Yukawa coupling constant, xi, ni, CiðfÞ,
CiðGÞ, and tai are listed in Table IV, and NiðfÞ is listed in
Table V. Indices i, and j run over the SM gauge interactions

Uð1Þ, SUð2Þ, and SUð3Þ, and summation over f is implic-
itly made. The renormalization scale is denoted by �.
Contribution 9CjðfÞ comes from Figs. 1(a)–1(c), contribu-

tion �ð23=3ÞCjðGÞ�ij comes from Figs. 1(d)–1(f), and

contribution ðnj=3Þ�ij comes from Figs. 1(g) and 1(h).

Contribution NiðfÞct comes from diagrams in Fig. 2.

B. Production processes of �ð2Þ and Zð2Þ

We are now in a position to discuss the production

processes of �ð2Þ and Zð2Þ. At the LHC, �ð2Þ and Zð2Þ are
produced through two type of processes: (1) direct produc-
tions and (2) indirect productions via the cascade decays of
the second KK colored particles. The production cross

sections of �ð2Þ and Zð2Þ have originally been calculated
in Ref. [8], and their calculation includes all of the KK
number conserving processes and the direct one-body pro-
duction processes of the second KK gauge bosons. In this

article, we calculate the production cross sections of �ð2Þ

and Zð2Þ including all significant processes. For example,

our calculation includes pp ! qð2Þqð0Þ, pp ! �ð2Þqð0Þ,
pp ! qð2Þ �qð0Þ, and so on. Importantly, these processes

provide large contributions to �ð2Þ and Zð2Þ productions,
particularly for large 1=R ( * 800 GeV). We show the

relevant processes to the �ð2Þ production in Figs. 3–8.

TABLE III. fðnÞ, gi, ta, and Va
i� in the KK number conserving

Lagrangian. B, W, and g are Uð1Þ, SUð2Þ, and SUð3Þ gauge
bosons, g0, g2, and gs are Uð1Þ, SUð2Þ, and SUð3Þ gauge
coupling constants, and �a and 	a are Pauli matrices and
Gell-Mann matrices, respectively.

nth KK fermion fðnÞ gi ta Va
i�

SUð2Þ-singlet charged lepton EðnÞ �g0 1 B�

SUð2Þ-doublet lepton LðnÞ �ð1=2Þg0 1 B�

g2 �a=2 Wa
�

SUð2Þ-singlet up-type quark UðnÞ ð2=3Þg0 1 B�

gs 	a=2 ga�
SUð2Þ-singlet down-type quark DðnÞ �ð1=3Þg0 1 B�

gs 	a=2 ga�
SUð2Þ-doublet quark QðnÞ ð1=6Þg0 1 B�

g2 �a=2 Wa
�

gs 	a=2 ga�

TABLE IV. Coefficient in the KK number violating operator in
the effective Lagrangian [Eq. (3)]. g0, g2, an dgs areUð1Þ, SUð2Þ,
and SUð3Þ gauge coupling constants, and Yf is Uð1Þ hyper-

charge. �a and 	a are Pauli and Gell-Mann matrices, respec-
tively.

Uð1Þ SUð2Þ SUð3Þ
xi g0Yf g2 gs
ni 1 2 0

CjðfÞ Y2
f 3=4 4=3

CiðGÞ 0 2 3

tai 1 �a=2 	a=2

TABLE V. Coefficient NðfÞ in the KK number violating op-
erator in the effective Lagrangian [Eq. (3)]. Q3 is the third
generation SUð2Þ-doublet quark, and T is the SUð2Þ singlet
top quark.

Qð0Þ
3 Qð0Þ

3 �ð2Þ, Qð0Þ
3 Qð0Þ

3 Wð2Þ,
Qð0Þ

3 Qð0Þ
3 gð2Þ, Tð0ÞTð0Þgð2Þ

Tð0ÞTð0Þ�ð2Þ Other

NðfÞ 1 5 0

FIG. 1. The KK number violating vertices for
�fð0Þta��PLðRÞfð0ÞV

ð2Þa
i� induced from gauge interactions. The

attached number represents the KK number of a KK particle
in the loop.
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Figure 3 (Fig. 6) shows the direct production of �ð2Þ
through KK number conserving (violating) processes.

Some of these processes also produce qð2Þ, �qð2Þ, and gð2Þ,
and they decay into �ð2Þ and Zð2Þ. We must include those
contributions in the calculation of the production cross

section of �ð2Þ and Zð2Þ. Figure 4 (Fig. 7) shows the pro-

duction of qð2Þ and �qð2Þ through KK number conserving
(violating) processes, and Fig. 5 (Fig. 8) shows the pro-

duction of gð2Þ through KK number conserving (violating)

processes. These colored particles decay into �ð2Þ and Zð2Þ.
Here the gray circle in Figs. 6–8 stands for the KK number
violating vertex. In the s-channel processes in Fig. 7, the

contributions from gð2Þ one-body direct production are

included, while the contributions from �ð2Þ one-body direct
production are not included. Hence, �ð2Þ one-body direct

production is shown in Fig. 6, and gð2Þ one-body direct

production is not shown in Fig. 8. Note that the �ð2Þ

production from the Zð2Þ decay can be neglected, because

the branching ratio Zð2Þ ! Lð2Þ �Lð0Þ ! �ð2ÞLð0Þ �Lð0Þ is small

enough. The processes of Zð2Þ production are almost the

same as the �ð2Þ production, so we can skip the discussion

of the Zð2Þ production. In Figs. 6 and 8, processes which

have the final state �ð2Þ�ð0Þ, �ð2Þgð0Þ, gð2Þ�ð0Þ, or gð2Þgð0Þ are
not shown, because in this calculation, �ð0Þ and gð0Þ in these
processes are the origin of the infrared divergences for the
one-body production processes of second KK gauge bo-
sons. The divergences can be removed by the calculation
with a complete treatment.
In order to calculate the indirect production cross sec-

tions of �ð2Þ and Zð2Þ, we calculate the branching ratio of

gð2Þ and qð2Þ. We show the branching ratio of the SUð2Þ
singlet KK down-type quark Dð2Þ in Fig. 9, the branching

ratio of the SUð2Þ singlet KK up-type quarkUð2Þ in Fig. 10,
and the branching ratio of the SUð2Þ doublet KK quarkQð2Þ

in Fig. 11 as a function of 1=R. Since Uð2Þ and Dð2Þ are
SUð2Þ singlet, they couple only with the Uð1Þ hypercharge
gauge boson. Please note that the Weinberg angle of the
neutral KK gauge boson is almost equal to 0 [9], and hence
it is possible to identify the KK hypercharge gauge boson

as the KK photon. Thus, as shown in Figs. 9 and 10, Dð2Þ

and Uð2Þ decay into the KK photon, and Dð2Þ and Uð2Þ can
be dominant sources of �ð2Þ. On the other hand, Qð2Þ

dominantly decays into Zð2Þ, and hence Qð2Þ are dominant

sources of Zð2Þ.

FIG. 2. The KK number violating vertices for
�fð0Þta��PLðRÞfð0ÞV

ð2Þa
i� induced from Yukawa interactions. The

attached number represents the KK number of a KK particle in
the loop.

FIG. 3. The production of �ð2Þ through KK number conserving
processes.

FIG. 4. The production of qð2Þ through KK number conserving processes. V stands for �, W�, Z, and g.
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FIG. 8. The production of gð2Þ through KK number violating processes. The gray circle represents the KK number violating vertex.

FIG. 5. The production of gð2Þ through KK number conserving processes.

FIG. 6. The direct production of �ð2Þ through KK number
violating processes. The gray circle represents the KK number
violating vertex.

FIG. 7. The production of qð2Þ through KK number violating
processes. Vð2Þ stands for �ð2Þ, W�ð2Þ, Zð2Þ, and gð2Þ. The gray
circle represents the KK number violating vertex.

FIG. 9 (color online). The branching ratio of Dð2Þ.

FIG. 10 (color online). The branching ratio of Uð2Þ.
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Finally, we show the branching ratio of gð2Þ in Fig. 12. In
this figure, generation indices are implicitly summed for
each line, while jet represents the sum of first and second
generation SM quarks. At the LHC, the production rates of
the second KK colored particles are much larger than those

of other second KK particles, and gð2Þ and qð2Þ dominantly
decay into a second KK particle and a SM particle, as
shown in these figures. Hence, the indirect productions of

�ð2Þ and Zð2Þ from their cascade decays are quite signifi-
cant. Note that the branching ratios of each second KK
particle calculated in this work are different from that in
Ref. [8] due to two reasons. The one is the difference of the
KK number violating operators. In particular, we include
the KK number violating operators induced by the top
Yukawa coupling. The other is the difference of mass
spectrum of KK particles. By comparing our mass spec-
trum (Table II) with theirs (Fig. 1 in Ref. [8]), we find the
difference in these mass spectra. The difference of the
branching ratios from the previous work [8] mainly arises
from the latter reason. In the next section, we will calculate

the production rates of �ð2Þ and Zð2Þ using the results in this
section.

IV. NUMERICAL RESULTS

In this section, we present numerical results of the cross

sections for �ð2Þ and Zð2Þ productions and estimate the

number of the dilepton signal from �ð2Þ and Zð2Þ decays
at the LHC. The calculations of the cross sections have
been performed by using the CALCHEP [13] implementing
the Lagrangian Eq. (3) derived in the previous section.
In Fig. 13 (Fig. 14), we show the production cross

section of �ð2Þ (Zð2Þ) as a function of 1=R. In the calcula-
tion, we have used the CTEQ6L code [14] as a parton
distribution function (PDF). The red solid line shows the
total cross section of �ð2Þ (Zð2Þ) production. Note that,
although we show the results for only significant processes
in these figures and discuss them, all processes shown in
Figs. 3–8 are included in the calculation of the total cross
section. As shown in these figures, for large 1=R ( *
800 GeV), the KK number violating processes dominantly
contribute to the total production cross section. This means
that the KK number violating operators are important for
the discrimination of the MUED model from other TeV
scale models.
We discuss the significance of each production process.

(i) For large 1=R (1=R * 800 GeV), one-body direct pro-

FIG. 11 (color online). The branching ratio of Qð2Þ.

FIG. 12 (color online). The branching ratio of gð2Þ.

 0.00001

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 400  800  1200  1600  2000

FIG. 13 (color online). The production cross sections of �ð2Þ.
The red solid line shows the total cross section, and other lines
show the production cross sections of �ð2Þ for each process as
denoted in the legend.
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FIG. 14 (color online). The production cross sections of Zð2Þ.
The red solid line shows the total cross section, and other lines
show the production cross sections of Zð2Þ for each process as
denoted in the legend.

PRODUCTIONS OF SECOND KALUZA-KLEIN GAUGE . . . PHYSICAL REVIEW D 80, 056006 (2009)

056006-7



duction processes are important, because even if �ð2Þ and
Zð2Þ are too heavy to be produced in pair, these processes

provide �ð2Þ and Zð2Þ efficiently. (ii) In addition to evading

the suppression of small phase space, the processes pp !
qð0ÞVð2Þð �qð0ÞVð2ÞÞ have notable features. Since the PDF of
proton is dominated by gluons and the valence quarks, i.e.,

up and down quarks, the rate of qð0Þgð0Þ collision is larger

than qð0Þ �qð0Þ collision. Furthermore, the cross section of
these processes has the large logarithm factor:

�� log

�ðs�m2
V2Þ þm2

q0

m2
q0

�
: (5)

Heremq0 is the mass of a SM quark,mV2 is the mass of the

second KK gauge boson, and s is the square of the initial
state total energy. In usual cases, cross sections decrease
according to the increasing of 1=R and s. However, this
logarithm factor prevents the drastic decreasing. Thus, in
all ranges of 1=R in these figures, indirect productions of

�ð2Þ and Zð2Þ from pp ! qð0Þgð2Þð �qð0Þgð2ÞÞ and direct pro-

ductions pp ! qð0Þ�ð2Þð �qð0Þ�ð2ÞÞ or pp ! qð0ÞZð2Þð �qð0ÞZð2ÞÞ
provide a non-negligible contribution to their production

cross sections. (iii) At the LHC, the final state qð2Þ �qð0Þ (or
�qð2Þqð0Þ) is mostly provided by the s-channel process me-

diated by the gð2Þ propagator. In other words, these include
the contributions from gð2Þ one-body production and indi-

rect productions through the cascade decay of gð2Þ. In this

case, the pole resonance of gð2Þ leads the large enhance-

ment of the cross section. Thus the processes pp !
qð2Þ �qð0Þð �qð2Þqð0ÞÞ have large cross sections, even if 1=R is
rather large, and provide large contributions to the indirect

productions of �ð2Þ and Zð2Þ. (iv) For small 1=R ( &
800 GeV), the cross sections of KK number conserving
processes are larger than those of KK number violating
processes, because the KK number conserving operators
have no loop suppressions. However, for large 1=R ( *
800 GeV), the contribution from KK number conserving
processes decreases rapidly because of the severe kine-
matical suppression on the pair production of the second
KK particles.

Assuming an integrated luminosity of 100 fb�1, the
number of produced �ð2Þ and Zð2Þ are calculated as
106–102 for 400 GeV � 1=R � 2000 GeV. Once �ð2Þ
and Zð2Þ are produced, they decay into dileptons with non-
zero branching ratios. In order to estimate the number of
dilepton signals from �ð2Þ and Zð2Þ, we calculate these
branching ratios. Figure 15 (Fig. 16) shows the branching
ratio of �ð2Þ (Zð2Þ). In both figures, each line generation
indices is implicitly summed. �ð2Þ is the lightest second KK
particle, and the masses of the first KK fermions are always
heavier than half of the �ð2Þ mass. Then �ð2Þ must decay
into a SM fermion pair through KK number violating
processes. On the other hand, Zð2Þ has many decay channels

comparing with �ð2Þ. Although the decay channels of �ð2Þ
and Zð2Þ are quite different with each other, coincidentally
the branching ratio to dilepton is almost the same.
In Table VI, we show the number of the dilepton signals

assuming the luminosity 100 fb�1. Table VI shows that for
1=R & 1600 GeV it remains possible that we can discrimi-
nate the MUED model from other models by using the
dilepton signals with 100 fb�1 integrated luminosity. If the
MUED model is realized by the nature, in addition to the

dilepton signals from the decay of �ð2Þ and Zð2Þ, many new
particles with degenerate mass spectrum around 1=R (i.e.,
the first KK particles) are discovered. Connecting the ob-
servational results of dilepton signals and the discovery of
the first KK particles, it is possible to confirm the MUED
model. In this work, we do not discuss the feasibility of the
MUED model confirmation, which needs a complete anal-
ysis with Monte Carlo simulation. It is beyond the scope of
this paper. This will be addressed in future work [15].FIG. 15 (color online). The branching ratio of �ð2Þ.

FIG. 16 (color online). The branching ratio of Zð2Þ.

TABLE VI. The number of the dilepton signals at the LHC
with 100 fb�1.

1=R Dileptons from �ð2Þ Dileptons from Zð2Þ

400 GeV 1:5� 104 9:4� 103

800 GeV 2:9� 102 1:6� 102

1200 GeV 2:1� 10 1:2� 10
1600 GeV 2.6 1.4

2000 GeV 4:4� 10�1 2:3� 10�1
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V. SUMMARY

At the LHC, the discrimination of the MUED model
from other models is difficult, because the signals of new
particles of TeV scale models are quite similar to each
other. For the discrimination, we focused on a distinct
feature of the MUED model, i.e., the existence of the KK

tower. Once �ð2Þ and Zð2Þ are produced, they can decay into
dilepton which provides a very clear signal of the second
KK particles. The discovery of the second KK particles
strongly indicates the existence of the KK tower and con-
sequently will lead to the confirmation of the MUED
model. In order to estimate the number of the dilepton

events from �ð2Þ and Zð2Þ, we have calculated the produc-

tion rates of �ð2Þ and Zð2Þ at the LHC.
First we have calculated the KK number violating oper-

ators. They play a crucial role for the discrimination,

because �ð2Þ and Zð2Þ can decay into dilepton through these
couplings. In the calculation, we have included the contri-
bution of the top Yukawa coupling to improve the KK
number violating operators. This has improved the branch-
ing ratio calculations of the second KK gauge bosons. Next

we have shown all significant processes for �ð2Þ and Zð2Þ
productions including both the KK number conserving and
violating interactions. Then we have calculated the produc-

tion cross sections of �ð2Þ and Zð2Þ. Finally we have found

that Oð106Þ–Oð102Þ of �ð2Þ and Zð2Þ production events are
expected for 400GeV�1=R�2000GeVwith an integrated
luminosity of 100 fb�1. We have also discussed the signifi-
cance of various production processes and found that the
KK number violating processes give leading contributions

to the �ð2Þ and Zð2Þ productions for 1=R*800GeV. In

particular, our original processes (for example, pp!
qð2Þqð0Þ, pp!qð2Þ �qð0Þ, and so on) have provided large

contributions to the �ð2Þ and Zð2Þ productions, and hence
they have notable significance for the discrimination.

As a result of the calculations, we have shown the

expected production number of dileptons from the �ð2Þ

and Zð2Þ decays (Table VI). We have found that for 1=R &
1600 GeV there is a chance to discriminate models by
using the dilepton signals with 100 fb�1 integrated lumi-
nosity. For the discrimination, it is crucial whether the
dilepton signals can be observed or not. We need further
study to discuss the feasibility of the discovery of the
MUED model by estimating the background from the SM.

In addition, as discussed in Ref. [16], when 1=R is not so

large, the bump hunting for gð2Þ in the dijet invariant mass
distribution might be one of the useful ideas for the com-
plementary check of the discrimination by the dilepton
signals.3 However, since jet analysis is accompanied with

SM QCD background, precise simulation is necessary for

the bump hunting for gð2Þ. We leave those for future work
[15].
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APPENDIX: DECAY RATES OF SECOND KK
PARTICLES

In this Appendix we show analytic expressions for decay
rates of second KK particles. The branching ratios of them
(Fig. 9–12, 15, and 16) are obtained by using the following
expressions. The decay rate of the second KK gauge boson

Vð2Þ is given by

�Vð2Þ!fð2Þ �fð0Þ ¼
C220

96�
mV2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1�m2

f2 þm2
f0

m2
V2

�
2 � 4

m2
f2m

2
f0

m4
V2

vuut

�
�
1�m2

f2 þm2
f0

m2
V2

þ
�
1þm2

f2 �m2
f0

m2
V2

�

�
�
1�m2

f2 �m2
f0

m2
V2

�
þ �

mf2mf0

m2
V2

�
; (A1)

�Vð2Þ!fð1Þ �fð1Þ ¼
C211

48�
mV2

�
1� 4m2

f1

m2
V2

�
3=2

; (A2)

�Vð2Þ!fð0Þ �fð0Þ ¼
mV2

24576�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

m2
f0

m2
V2

vuut �
C200

�
1þ 2m2

f0

m2
V2

�

þ C0
200

�
1� 4m2

f0

m2
V2

��
; (A3)

�Zð2Þ!hð1ÞAð1Þ ¼ �Zð2Þ!Hþð1ÞH�ð1Þ

¼ g22
384�

mZ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1�m2

H1 þm2
H2

m2
Z2

�
2 � 4

m2
H1m

2
H2

m4
Z2

s

�
�
2

�
1�m2
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H2

m2
Z2

�
�

�
1þm2

H1 �m2
H2

m2
Z2

�

�
�
1�m2

H1 �m2
H2

m2
Z2

��
: (A4)

Here mV2, mf2, mf1, and mf0 are the masses of Vð2Þ, the
second KK fermion fð2Þ, the first KK fermion fð1Þ, and the

SM fermion fð0Þ. For Vð2Þ ¼ gð2Þ, C220 ¼ C211 ¼ g2s . For

Vð2Þ ¼ Zð2Þ, C200 ¼ C211 ¼ g22=2. C200, and C0
200 are listed

3Note that the simulation result of the gð2Þ invariant mass
distribution of the dijet signal shown in Ref. [16] cannot apply
for the MUED model, because the coefficient of the KK number
violating operator in their framework is different from the
MUED model.
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in Table VII. The coefficient � depends on the mixing
between the mass eigenstate and the interaction eigenstate
of the KK fermions. The mixing is negligible except for the
KK top quark, and hence � is as follows:

� ¼ 12mtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~mTð2Þ þ ~mtð2Þ Þ2 þ 4m2

t

q for fð2Þ ¼ Tð2Þ

� ¼ �12mtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð ~mTð2Þ þ ~mtð2Þ Þ2 þ 4m2

t

q for fð2Þ ¼ tð2Þ

� ¼ 0 for fð2Þ ¼ other second KK fermions:

(A5)

Here mt stands for the SM top quark mass, and ~mTð2Þ and
~mtð2Þ are given by

~mTð2Þ ¼ 2

R
þ 2

R

�
3

g2s
16�2

þ g02

16�2

�
ln
�2

�2

þ 2

R

�
� 3

2

y2t
16�2

�
ln
�2

�2

~mtð2Þ ¼
2

R
þ 2

R

�
3

g2s
16�2

þ 27

16

g22
16�2

þ 1

16

g02

16�2

�
ln
�2

�2

þ 2

R

�
� 3

4

y2t
16�2

�
ln
�2

�2
: (A6)

The decay rate of the first and second generation second
KK quarks are given by

�qð2Þ!Vð2Þqð0Þ ¼
K

16�
mq2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
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�qð2Þ!Vð1Þqð1Þ ¼
K

16�
mq2
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(A8)

Here mq2, mq1, and mq0 are the masses of qð2Þ, qð1Þ, and
qð0Þ. K ¼ g02=72 for ðq; VÞ ¼ ðQ;�Þ, K ¼ g22=4 for
ðq; VÞ ¼ ðQ;W�Þ, K ¼ g22=8 for ðq; VÞ ¼ ðQ;ZÞ, K ¼
2g02=9 for ðq; VÞ ¼ ðU;�Þ, and K ¼ g02=18 for ðq; VÞ ¼
ðD;�Þ.
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