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Critical Exponents of O(N) Scalar Model at Temperatures
below the Critical Value Using Auxiliary Mass Method
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We investigate a phase transition of the O(N) invariant scalar model using the auxiliary
mass method. We determine the critical exponent β by calculating an effective potential
below the critical temperature.

Phase transitions at finite temperature are important phenomena in particle
physics, cosmology and condensed matter physics. For example, the QGP phase
is produced in heavy ion collisions. 1) Some phase transitions occurred in the early
universe. 2) The electro-weak phase transition in particular plays an important role
in the electro-weak baryogenesis scenario 3) and gives some constraints to models of
elementary particle physics. 4) - 6) We also see a great number of phase transitions in
condensed matter physics. In the present paper, we investigate an O(N) invariant
scalar model which corresponds to many condensed matter systems, for example
alloys, superfluids and binary liquids. 7)

To investigate such phase transitions, we can use finite temperature field theory,
which is based only on a statistical principle. However, we often have an infrared
divergence and cannot obtain reliable results using perturbation theory at finite
temperature. 8) To overcome this problem, we used the auxiliary-mass method, 9) - 11)

and calculated an effective potential and critical exponents of the O(N) invariant
scalar model above the critical temperature Tc in a previous paper. 12) We did not
investigate at a temperature below Tc for two reasons, numerical instability and the
lack of computer power. In this work we have overcome these problems, and we
calculate an effective potential and critical exponents of the O(N) invariant scalar
model below the critical temperature.

We explain the idea of the auxiliary-mass method. Since we can calculate a
reliable effective potential for temperatures T � m

λ using perturbation theory, 8) first
we assume the mass as m ∼ T and calculate an effective potential. This potential is
reliable if the coupling constant λ is small. We next extrapolate the effective potential
to that of a true mass using a non-perturbative evolution equation. Finally, we
determine the necessary physical quantities. We determine critical exponents below
Tc in the present paper.

Applying this method to the O(N) invariant scalar model, the Euclidean La-
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Here, the Ja are external source functions, and the index a runs from 1 to N .
We assume that the coupling constant λ is small, and therefore the perturbation
theory at zero temperature is reliable. We first calculate the effective potential at
an auxiliary large mass m = M ∼ T at the one-loop level as
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Here φ̄ is a field expectation value. We leave only the finite-temperature part of the
equation because we can ignore the zero temperature part due to the small coupling
constant. We note that the daisy-resummation is not necessary because of the large
mass. We then construct a non-perturbative evolution equation which connects the
effective potential at an auxiliary large mass, m2 ∼ T 2, and that of the true mass,
m2 = −µ2. Since we have constructed this for the O(N) invariant scalar model in a
previous work, 12) we present only the result:
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This partial differential equation is solved with the initial conditions (2) numerically.
We display the effective potential for N = 4 around Tc in Fig. 1, and we find that

the phase transition is of second order. The same behaviour is found for other values
of N . This is consistent with other analyses using lattice field theory and renormal-
ization group theory. 7) We find that the auxiliary-mass method satisfactorily deals
with the problem of the infrared divergence.

We next determine the critical exponents and study how well the auxiliary-mass
method works. Since we have investigated this model above Tc previously, obtaining
the critical exponents γ and δ, 12) we investigate below Tc and determine the critical
exponent β here. The critical exponent β relates an order parameter, φc, to a reduced
temperature, τ ≡ Tc−T

Tc
, as

φc ∝ τβ. (4)

The order parameter φc as a function of reduced temperature τ is presented in
Fig. 2 for N = 4. Similar behaviour for other values of N is found. Since the order
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Fig. 1. The effective potential obtained by the auxiliary-mass method (N = 4, λ = 0.01). A

second-order phase transition occurs at the critical temperature. Similar behaviour is observed

at other values of N and λ.

2.5

2.0

1.5

1.0

0.5

0.0

φ c
 
 
µ

29.6529.6029.5529.5029.45

T/µ

/

Fig. 2. Stable field expectation value φc as a function of the temperature T (λ = 0.01). φc decreases

monotonically and vanishes smoothly as the temperature increases.

parameter φc vanishes smoothly at Tc, we find that the phase transition is of second
order. We next plot φc as a function of τ in Fig. 3 for various N . These data appear
linear with different gradients, corresponding to β for each N . The exponent β is
larger for larger values of N .

We summarise the results of the present paper and a previous paper 12) in Ta-
ble I. The values of β, γ and δ are much better than the Landau approximation
and the dependence on N is close to the most reliable value (MRV). There are,
however, slight differences between our results and the MRV, which are caused by
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Fig. 3. Log-scale plots of φc − τ (λ = 0.01). The data were fit by linear functions with gradients

corresponding to β for each N . We find that the exponent β is larger for larger N .

Table I. The critical exponents β, γ and δ obtained in the present paper and a previous paper.

Those of Landau approximation (LA) and the most reliable values (MRV) are also summarised.

We used the results of the six-loop approximation using the Padé-Borel resummation for the

MRV here.

β (LA, MRV) γ (LA, MRV) δ (LA, MRV)

N = 1 13) 0.39 (0.5, 0.327) 1.37 (1, 1.239) 4.0 (3, 4.8)

N = 2 13) 0.41 (0.5, 0.348) 1.47 (1, 1.315) 4.2 (3, 4.8)

N = 3 13) 0.44 (0.5, 0.366) 1.60 (1, 1.386) 4.4 (3, 4.8)

N = 4 13) 0.45 (0.5, 0.382) 1.66 (1, 1.449) 4.4 (3, 4.8)

an approximation in deriving Eq. (3).∗)

In conclusion, we have investigated the O(N) invariant scalar model using the
auxiliary-mass method and have obtained good results both qualitatively and quan-
titatively. These results suggest that the auxiliary-mass method is an effective tool
at finite temperature. We were able to investigate not only second-order phase tran-
sitions but also first order phase transitions since the finite-temperature field theory
is based only on a statistical principle. We therefore believe that this is one of the
most powerful methods to investigate a weak first order phase transition and models
which have end-points: cubic anisotropy, the abelian Higgs model and the standard
model.∗∗)

The authors are supported by JSPS fellowship.

∗) An improvement of the approximation is underway.
∗∗) We are preparing to apply this method to these models presently.
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