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The two-particle-self-consistent theory is applied to the single-impurity Anderson model. It is
found that it cannot reproduce the small energy scale in the strong correlation limit. A modified
scheme to overcome this difficulty is proposed by introducing an appropriate vertex correction
explicitly. Using the same vertex correction, the self-energy is investigated, and it is found that
under certain assumptions it reproduces the result of the modified perturbation theory which
interpolates the weak and the strong correlation limits.
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§1. Introduction

The single impurity Anderson model (SIAM)1) is not
only a model for the magnetic impurity in metals,
chemisorption2) and a quantum dot in mesoscopic sys-
tems,3) but also the most important model for the study
of the strongly correlated electron systems. It was proved
that the lattice models with strong correlation is reduced
to a generalized impurity Anderson model with energy-
dependent hybridization in the limit of infinite spatial
dimensions.4) In that theory, a knowledge on the excita-
tion spectrum of the impurity is indispensable.

It is, however, not possible to obtain an exact solu-
tion to the dynamical properties of SIAM. The best way
known to date is to resort to the numerical renormaliza-
tion group method,5) but it needs heavy numerical tasks,
especially when both finite temperature, finite magnetic
field and finite excitation energy must be taken into ac-
count. Therefore, it is desirable to find an approximate
but a simpler scheme which is applicable to the problems
in realistic materials with strong correlation.

Various approximate schemes proposed to date have
several deficiencies despite their advantages. The non-
crossing approximation (NCA)6–8) cannot reproduce the
Fermi liquid properties at low frequencies and low tem-
peratures, and the slave boson mean field or 1/N expan-
sion theory9) cannot avoid redundant phase transition-
s. The second-order perturbation theory exhibits Fermi
liquid properties and happens to reproduce the correc-
t atomic limit in the symmetric case,10) but it is not
the case when there is an electron-hole asymmetry. This
point is recently overcome by introducing an interpola-
tive form for the self-energy phenomenologically.11)

Therefore, it is of much importance to establish a
method to calculate the static and dynamic properties of
SIAM in the wide range of parameters efficiently. Such
a method must be free from the Hartree-Fock instability
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and have proper energy scales. In the present paper, we
first apply the two-particle self-consistent theory (TP-
SC)12) to SIAM in §2. TPSC has proved to be successful
in the study of the Hubbard model in the weak and the
intermediate correlations, and is considered to be superi-
or to the fluctuation-exchange approximation (FLEX)15)

in that only TPSC can reproduce the side peaks in the
single-particle spectrum. Application of FLEX to SIAM
is already reported,13) which has clarified that FLEX is
poorer on magnetic susceptibility than the simple per-
turbation theory,14) in addition to the above-mentioned
deficiency on the spectrum. Despite the superiority of
TPSC, we will find below that it cannot reproduce a s-
mall energy scale in SIAM in the strong correlation limit.

TPSC can be also regarded as an extension of
the self-consistently renormalized spin-fluctuation theory
(SCR).16) The author previously proposed an extension
of SCR theory17) to the case of the strong correlation on
a microscopic basis.18) In §3 we apply a similar scheme
to SIAM in combination with TPSC instead of SCR, and
establish a scheme which can be applied to the case of
strong correlation. We also investigate the self-energy
using the same vertex corrections and find that under
certain assumptions our theory reproduces the modified
perturbation theory (MPT),11,19,20) which interpolates
the weak and the strong correlation limits. Thus the
phenomenological character of MPT is partially resolved.

§2. The Two-Particle-Self-Consistent Theory
for the Single-Impurity Anderson Model

The Hamiltonian for SIAM is written as

H =
∑
kσ

εkc+
kσckσ + Ed

∑
σ

ndσ

+V
∑
kσ

(d+
σ ckσ + c+

kσdσ) + Und↑nd↓ (2.1)

in the ordinary notation, where εk and Ed denote the
energy of the conduction and d electrons, respectively, V
the hybridization, and U the Coulomb repulsion between
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d-electrons. In the following, the subscript d in ndσ will
be dropped.

In TPSC, the charge and the spin susceptibilities are
expressed in the form similar to those of RPA, but with
the renormalized interaction parameter Uc and Us for
charge and spin channels, respectively. These parameters
are determined by the sum rules,

T
∑
ω

2Π0(iω)
1 + UcΠ0(iω)

= n + 2〈n↑n↓〉 − n2, (2.2)

T
∑
ω

2Π0(iω)
1 − UsΠ0(iω)

= n − 2〈n↑n↓〉. (2.3)

Here ω denotes the Matsubara frequency, n = 〈n↑〉+〈n↓〉
and Us are related to 〈n↑n↓〉 by Us = U〈n↑n↓〉/〈n↑〉〈n↓〉.
Thus, Us can be determined from the second equation,
while Uc can be obtained by solving the first equa-
tion once Us is solved. We assume the symmetric case
Ed = −U/2 and the paramagnetic state 〈nσ〉 = n/2
throughout the present paper. An extension to the asym-
metric case is straightforward. Π0(ω) denotes the polar-
ization function for U = 0, which is calculated at T = 0
as21)

Π0(ω) =
2∆

πω(ω + 2i∆)
log

(
1 − iω

∆

)
, (2.4)

where ∆ denotes the resonance width of the impurity,
∆ = πρcV

2 (ρc is the density of states of conduction
electrons at the Fermi energy). At low frequencies, it
behaves as

Π0(ω) � Π0

1 − iω/∆
(ω � ∆), (2.5)

with Π0 = 1/π∆. Using this form, the sum rule eq.(2.3)
reads

1 − Us

2U
� 2

π2
log

ωc

Γ
, (2.6)

where ωc denotes a cutoff frequency of the order O(∆)
and Γ ≡ ∆− Us/π.

For U → ∞, we have 〈n↑n↓〉 → 0 and hence
Us → 0. Then the above equation is solved as Γ =
ωc exp(−π2/2) ≈ ωc/139. Namely, we obtain

Us = π[∆ − ωce
−π2/2]. (2.7)

If we set gµB = 1 (g = 2 is the g-factor), the static
susceptibility χ ≡ χzz is given by

χ(ω = 0) =
1
2

Π0

1 − UsΠ0
=

1
2πΓ

. (2.8)

Therefore, if we define the Kondo temperature TK by
χ(ω = 0) = 1/4TK, we obtain TK = (π/2)Γ =
(π/2)ωc exp(−π2/2), which is finite even for U →
∞. Of course, the correct formula is TK =√

U∆/2 exp(−πU/8∆),22) which vanishes for U → ∞.
For U < ∞, a similar analysis yields TK(U) =
(π/2)ωc exp[−(π2/2)(1 − Us/2U )], which is larger by
exp[(π2/2)(Us/2U )] than TK(U = ∞).

Thus, in TPSC, the renormalized interaction Us is re-
duced at U 	 ∆ so as to avoid the magnetic insta-
bility, but does not reach π∆, namely, Us → π[∆ −
ωc exp(−π2/2)] and hence the Kondo temperature re-

mains finite even at U = ∞. Therefore, TPSC cannot
describe the case of strong correlation properly. We will
seek for an improvement of TPSC in the next section.
Before it, however, we briefly discuss on the self-energy
in TPSC.

The self-energy for the d-electrons is calculated as12)

Σσ(iε) = Un−σ +
U

4
T

∑
ω

[
2UsΠ0(iω)

1 − UsΠ0(iω)

+
2UcΠ0(iω)

1 + UcΠ0(iω)

]
G0(iε + iω). (2.9)

In the weak coupling limit U → 0, this is reduced to the
second-order self-energy

Σσ(iε) = Un−σ + U2T
∑
ω

Π0(iω)G0(iε + iω). (2.10)

It is well known, however, that the second-order self-
energy does not yield an expected spectral properties in
the electron-hole asymmetric cases. For example, the po-
sitions of the Ed and Ed + U peaks are not correct, and
the Friedel sum rule is not satisfied. These difficulties
can be most easily overcome by the use of the interpola-
tive form of the self-energy11) and by subtracting Σ(0)
from Σ(ε) as pointed out by Yamada.23) More improved
treatment is possible by introducing the effective d-level
position.19,20)

§3. Improvement of Two-Particle-Self-Consistent
Theory

The dynamical susceptibility of the Anderson impurity
can be generally expressed by the diagram shown in Fig.1
and the equation,

χ+−(iω) ≡ T
∑
εε′

χ+−(iε, iε′, iω), (3.1)

χ+−(iε, iε′, iω) = −G↑(iε)G↓(iε′ + iω)

×
[
δε,ε′ + T

∑
ε′′

Γ(iε′′, iε′, iω)χ+−(iε′′, iε′, iω)

]
. (3.2)

We calculate the irreducible vertex function Γ(iε, iε′, iω) ap-

= +

ε+ω ε+ω ε +ω"

ε ε’ ε ε ε" ε’

ε +ω’ε +ω’ε+ω

Fig. 1. The Feynman diagram for the susceptibility χ+−(iε, iε′, iω).
The square denotes the vertex function Γ(iε, iε′, iω).

proximately by taking account of the maximally crossed
diagrams (Fig.2) as

Γ(iε, iε′, iω) =
U

1 + UK(iε + iε′, iω)
, (3.3)

K(iε+ iε′, iω) = T
∑
ε′′

G↓(iε+ iε′− iε′′)G↑(iε′′+ iω). (3.4)
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...+++=
ε+ω ε +ω

ε+ε −ε’ "

ε +ω"

ε ε’

’

Fig. 2. The diagram for the vertex function Γ(iε, iε′, iω).

We use the unperturbed Green’s function G0σ for Gσ and
denote K by K0. Then, we find that K0(0, ω) = Π0(ω),
K0(ω, 0) = Π0(ω) (note that ε + ε′ is bosonic) and thus
at low frequencies

K0(0, ω) = K0(ω, 0) � 1
π∆

1
1 − iω/∆

. (3.5)

If we approximate Γ(iε, iε′, iω) by Γ(iω) ≡ Γ(0, 0, iω), then
we obtain

χ+−(iω) =
Π0(iω)

1 − Γ(iω)Π0(iω)
, (3.6)

Γ(iω) =
U

1 + UΠ0(iω)
. (3.7)

Note that at T = 0 and the low frequency limit, the
effective interaction becomes

Γ(0) =
U

1 + U/π∆
, (3.8)

which smoothly interpolates between Γ(0) = U for small
U and Γ(0) → π∆ for U → ∞. Therefore, the magnetic
susceptibility χzz(0) = (1/2)χ+−(0) diverges when and
only when U → ∞. This is a desired property. Within
the present approximation, eq.(3.6) becomes

χ+−(iω) = Π0(iω)[1 + UΠ0(iω)]. (3.9)

Namely, the terms higher than the second order with re-
spect to U in the perturbational expansion of χ(ω) are
completely canceled out with the terms from the ver-
tex correction, which is of course an artifact of the ap-
proximation. Note also that eq.(3.9) is correct up to
O(U).18,23)

Using the low frequency form for Π0(ω), we obtain

χ+−(ω) � 2χ̃0

1 − iω/∆̃
, (3.10)

where χ̃0 = (1/2π∆)(π∆ + U)/π∆ and ∆̃ = ∆/[1 +
U/(π∆ + U)]. On increasing U from 0 to ∞, χ̃0 varies
from 1/(2π∆) to U/2(π∆)2 → ∞. Thus the Kondo tem-
perature TK = 1/4χ̃0 vanishes for U → ∞ as we desired,
but more slowly as TK → (π∆)2/2U than the correct be-
havior. This must be improved in the future by taking
account of better vertex corrections. On the contrary, ∆̃
is reduced from ∆ only to ∆/2 for U = 0 → ∞, and re-
mains finite at U = ∞. Therefore, we replace ∆̃ with an
effective parameter ∆′ and determine it so as to satisfy
the sum rule eq.(2.3) with Us = Γ(0). Namely, in the
symmetric case and at T = 0,

1 − Γ(0)
2U

=
1
π

∫ ωc

0

dω Im
4χ̃0

1 − iω/∆′

=
4χ̃0∆′

π
log

ωc

∆′ . (3.11)

For U = 0, we have Γ(0) = 0, and the cutoff ωc should
be chosen as ωc = ∆ exp(π2/4) since χ̃0 = 1/(2π∆) and
∆′ = ∆. For U > 0, the cutoff may also be chosen
as a similar form ωc = ∆′ exp(π2/4). Then we obtain
∆′ = ∆×2π∆/(π∆+U), which vanishes as U increases.
If we use eq.(2.5) for Π0(ω), the integration converges
without a cutoff. In that case, we previously proposed18)

to modify χ+−(ω) into

χ+−(ω)′ =
1

χ+−(ω)−1 − iCω
, (3.12)

and determine the parameter C by the sum rule. This is
essentially corresponding to modifying ∆̃ as mentioned
above. At low frequencies, χ+−(ω)′ behaves as

χ+−(ω)′ � 2χ̃0

1 − iω/∆′ , (3.13)

where

∆′ = (∆̃−1 + 2Cχ̃0)−1 (3.14)

which tends to ∆(π/C)π∆/(π∆ + U) → 0 for U → ∞.
In Fig.3, we show this ∆′ and compare it with ∆′ =
∆×2π∆/(π∆+U) in the above analysis using eq.(3.11).
Both are in good agreement for U 	 ∆ and become
smaller than ∆̃ for U/∆ > 7 although the reduction of
∆′ is not sufficient quantitatively. The first rise of ∆′ at
U <∼∆ is to compensate the decrease of the left-hand side
of the sum rule

1
π

∫ ∞

0

dω Im
2Π0(ω)

1 − Γ(ω)Π0(ω)
+

Γ(0)
2U

= 1 (3.15)

from 1 to 0.9 for U/∆ = 0 to 2 when the C term is
not included (see Fig.4). This decrease is traced back
to the decrease of Γ(0)/2U = (1/2)/(1 + U/π∆). For
U/∆ > 2, the increase of the first term of the l.h.s. of
the above equation dominates and l.h.s. increases again.
The imaginary parts of the dynamical susceptibility cal-
culated with this C term correction are shown in Fig.5.
We set ∆ = 1 here and henceforth.

0 2 4 6 8 10
0

0.5

1

1.5

U/∆

∆'
/∆

Fig. 3. ∆′/∆ calculated by eq.(3.14) is shown as a function of

U . Also shown are ∆′/∆ = 2π∆/(π∆ + U ) (dashed line) and

∆̃/∆ = 1/[1 + U/(π∆ + U )] (dotted line).

Next, we investigate the self-energy. The Feynman
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m

Fig. 4. The left-hand side of eq.(3.15) is plotted by the full line

for the case without the C term correction. The first term in
l.h.s. is plotted by the dashed line, whereas the second term by

the dash-dotted line.
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 U/∆=0
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 U/∆=4
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Fig. 5. The imaginary parts of the dynamical susceptibility

χ+−(ω)′ are shown for U/∆ =0, 2, 4 and 8.

diagram is shown in Fig.6, which may be expressed as

Σ↑(iε) = Un↓ + · · ·
+ T 3

∑
ε′,ε′′,ω,···

Γ(iε, iε′, iω)G↑(iε′)G↓(iε′ + iω)

× Γ(iε′, iε′′, iω) · · ·G↑(iε′′)G↓(iε′′ + iω)

× Γ(iε′′, iε, iω) × G↓(iε + iω) + · · · . (3.16)

Keeping the behaviors of K0(0, ω) and K0(ε, 0) in mind,
we approximate Γ(iε, iε′, iω) at the left and the right
ends by the separable form [Γ̄′(iε)Γ(iω)]1/2,where Γ̄′(iε)
denotes some average of Γ(iε, iε′, iω) on ε′ and ω. To
fix Γ̄′(iε), we consider the first order self-energy due to
Γ(iε, iε′, iω) (Fig.7):

Σ↑(iε) = T
∑
ω

Γ(iε, iε, iω)G↓(iε + iω), (3.17)

which is expanded for small U as

= T
∑
ω

[
U − U2K0(iε + iε, iω) + · · ·]G0↓(iε + iω).

...
ε

ε’

ε +ω’

ε+ω

ε +ω"

ε

ε

"

...
=

Fig. 6. A typical Feynman diagram for the self-energy.

= Un↓ + Σ(2)
↑ (iε) + · · · , (3.18)

where Σ(2)
↑ (iε) denotes the second-order self-energy. On

the other hand, if we replace Γ(iε, iε, iω) in Σ↑(iε) with
the average Γ̄(iε) ≡ 〈Γ(iε, iε, iω)〉ω ,

Σ↑(iε) = Γ̄(iε)T
∑
ω

G0↓(iε + iω) (3.19)

= Un↓ − U2n↓〈K0(iε + iε, iω)〉ω + · · · .
(3.20)

Comparing these two expressions, we obtain

〈K0(iε + iε, iω)〉ω = −Σ(2)
↑ (iε)/U2n↓. (3.21)

Therefore, we approximate Γ̄(iε) as

Γ̄(iε) =
U

1 − B′Σ(2)
↑ (iε)/Un↓

, (3.22)

where B′ is an adjustable parameter to take account of
the effects of the higher order terms. Approximating
Γ̄′(iε) by Γ̄(iε) and replacing the intermediate Γ(iε, iε′, iω)
by the previous Γ(iω), we obtain

Σ↑(iε) � Un↓ +

Γ̄(iε)T
∑
ω

Γ(iω)
Π0(iω)

1 − Γ(iω)Π0(iω)
G0↓(iε + iω). (3.23)

We further note that
Γ(iω)

1 − Γ(iω)Π0(iω)
= U, (3.24)

which holds within the present approximation. Therefore
we obtain

Σ↑(iε) = Un↓ +
U2T

∑
ω Π0(iω)G0↓(iε + iω)

1 − B′Σ(2)
↑ (iε)/Un↓

= Un↓ +
Σ(2)

↑ (iε)

1 − BΣ(2)
↑ (iε)

, (3.25)

where B = B′/Un↓. This is exactly the same form as the
interpolative self-energy proposed by Martin-Rodero, et
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al.,11) which bridges between the second-order and the
atomic limit self-energies in both the symmetric and the
asymmetric cases. B was determined so as to reproduce
the correct self-energy in the atomic limit when U → ∞.
Namely, one obtains B = (1 − 2n−σ)/Un−σ(1 − n−σ).

= + ...

Fig. 7. The left- and right-hand sides denote eqs.(3.19) and

(3.18), respectively.

Since the above formula for the self-energy does not
satisfy the Friedel sum rule, one has to introduce an ef-
fective d level energy to be adjusted to fulfil the sum
rule,19,20) or to subtract Σ(0) from Σ(ε)10) to approx-
imately satisfy it. Details of the calculations will be
found in ref.20. Note that B vanishes for the symmet-
ric case. Namely, the self-energy becomes equal to the
second-order one due to the cancelation of the higher or-
der terms in the present approximation. Recently, it was
pointed out that the second-order self-energy becomes
exact when the width of the conduction band becomes
zero.24) The cancelation of the higher order terms in our
treatment may be related to this finding.

§4. Conclusions

In this paper, we have applied the two-particle self-
consistent approximation to the single-impurity Ander-
son model, and found that it is not suitable for the de-
scription of the strong correlation limit. The form of the
dynamical susceptibility was assumed to be of RPA type
in TPSC, and the effective interaction Us is determined
by the sum rule eq.(2.3). In this scheme, a magnetic in-
stability was avoided but Us remained to be too small in
U → ∞. Thus, the low energy scale remains finite and
does not vanish even at this limit. This is understandable
since TPSC was devised originally for the cases of weak
and intermediate correlations. We needed an improved
treatment of the vertex corrections for the dynamical
susceptibility.

Then, we have proposed a modification of TPSC appli-
cable to the strong correlation. We have used the renor-
malized interaction Γ(ω) = U/[1 + UΠ0(ω)] instead of
Us, and assumed the modified form of χ(ω) as

χ+−(ω) =
2Π0(ω)

1 − Γ(ω)Π0(ω) − 2iCωΠ0(ω)
, (4.1)

determining the parameter C by the same sum rule. This
scheme has realized the vanishment of the energy scale
in the strong correlation limit, although the decrease of
the energy scale is slow compared to the correct behavior
(Kondo temperature). Apparently, this is due to our use
of the approximate vertex corrections to χ(ω) which is
not exactly consistent with the self-energy diagram. It
is known that the calculation of the static susceptibility

by the numerical differentiation of the electron numbers
n↑ −n↓ within MPT leads to a rather correct values if it
is combined with the Friedel sum rule.20) But one cannot
apply it to the calculation of the dynamics.

We have also investigated the self-energy within the
same vertex correction and found that with an appro-
priate approximation it reproduces the so-called modi-
fied perturbation theory which interpolates the perturba-
tive regime and the atomic limit. Although the present
derivation includes a crude approximation, it suggests
that an appropriate treatment of the vertex correction
may lead to a theory which bridges the weak and strong
correlation limits. Extension of the present scheme to
the asymmetric case is straightforward. In order to im-
prove the present theory further, we need a better vertex
function. It would be of much interest to calculate the
set of eqs.(3.1-4) exactly.

We have already applied a theory, which is similar to
the present one but is combined with SCR theory, to
the description of the quantum critical phenomena.18)

It will be improved by the application of the present
formulation to lattice problems. Such a study is now
in progress, and will be useful for the investigation of
the realistic materials with strong correlation when it is
combined with the band calculations.
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