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Abstract

We examine the boundary behaviour of the gauged N = (2, 0) supergravity in D = 3 coupled
to an arbitrary number of scalar supermultiplets which parametrize a Kähler manifold. In
addition to the gravitational coupling constant, the model depends on two parameters, namely
the cosmological constant and the size of the Kähler manifold. It is shown that regular and
irregular boundary conditions can be imposed on the matter fields depending on the size of
the sigma model manifold. It is also shown that the super AdS transformations in the bulk
produce the transformations of the N = (2, 0) conformal supergravity and scalar multiplets on
the boundary, containing fields with nonvanishing Weyl weights determined by the ratio of the
sigma model and the gravitational coupling constants. Various types of (2,0) superconformal
multiplets are found on the boundary and in one case the superconformal symmetry is shown
to be realized in an unconventional way.
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1 Introduction

In probing various aspects of the remarkable connections between anti de Sitter and conformal
supergravity theories, the AdS3/CFT2 correspondence in particular provides a relatively more
manageable case to study. At the same time, some novel features arise due to the fact that
AdS supergravity in D = 3 is essentially non-dynamical. Nonetheless, AdS3 supergravity plays
a significant role in the description of the matter fields to which it couples. As a step towards a
detailed study of the amplitudes, anomalies and other significant properties of this type of theo-
ries, it is useful to determine precisely the behaviour of the AdS supersymmetry transformations
at the boundary. This problem has been examined for pure N ≤ 2 AdS3 supergravity in [1],
pure N = 4 AdS3 supergravity in [2] 1, the maximal AdS7 supergravity in [5], the maximal F (4)
AdS6 supergravity in [6] and the minimal AdS5 supergravity in [7], where it was shown that
the correct transformations rules of the boundary conformal supergravities indeed follow from a
careful study of the bulk super AdS transformations. However, a similar analysis does not seem
to have been carried out so far for matter coupled AdS supergravities which should shed further
light on the AdS/CFT duality questions in the context of M-theory in backgrounds with less
than maximal supersymmetry. Our aim in this paper is to fill this gap.

AdS supergravities are based on AdS superalgebras. Given the fact that the AdS group in
2 + 1 dimensions is a product of two factors as SO(2, 2) = SO(2, 1)L × SO(2, 1)R, the super
AdS group itself has the factored form GL × GR. It turns out that there are many choices for
GL,R , the most typical case being OSp(2, p) × OSp(2, q ), where p and q are not necessarily
equal. The supergravity theories based on these algebras will be referred to as the N = (p, q)
AdS3 supergravities. They have been constructed as Chern-Simons gauged theories long ago by
Achucarro and Townsend [8]. However, very little is known so far about their matter couplings.
In fact, the only cases studied until now seem to be the N = (2, 0) AdS3 supergravity coupled
to an arbitrary number of scalar supermultiplets [9, 10] and N = (16, 0) AdS3 supergravity with
an exceptional sigma model sector [11]. The models constructed in [9] and [10] are significantly
different from each other, stemming from the fact that the scalar fields are neutral under the
U(1) R-symmetry group in the model of [9], but charged in the model of [10]. The Izquierdo-
Townsend model has only one free parameter, namely the cosmological constant, in addition to
the gravitational constant, unlike the model of [10], where there is the additional parameter that
measures the size of the sigma model manifold. In fact, the U(1) charge carried by the scalar
fields is related to this size, and as we will show in this paper, the limit in which the U(1) charge
vanishes implies a flat sigma model manifold, and the models of [9] and [10] do indeed agree in
that case.

The model studied here is expected to arise from a compactification of M -theory. The much
studied compactification of Type IIB theory on AdS3 × S3 × K, where K is essentially T 4 or
K3, gives rise to N = (4, 4) or N = (4, 0) AdS3 supergravities coupled to matter. The spectra
of these theories are known [12, 13] but not their actions so far. Whether our N = (2, 0) model
arises as a consistent truncation of such theories remains to be seen.

1Various aspects of the AdS/CFT correspondence for pure supergravities in D = 3, in particular the asymptotic
symmetries, have been studied in [3, 4].
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The super AdS transformations in the bulk theory studied here are shown to produce the trans-
formations of N = (2, 0) conformal supergravity coupled to scalar multiplets with nonvanishing
Weyl weight determined by the ratio of the Kähler sigma model manifold and the gravitational
coupling constant. In doing so, the so called regular and irregular boundary conditions are uti-
lized [14, 15]. These choices of boundary conditions result in the phenomenon in which scalar
fields in AdS space of sufficiently negative mass-squared can be associated with CFT operators
of two possible dimensions. An example of this has been discussed in [15] in the context of
AdS5 × T 1,1 compactification of Type IIB string theory. Here, we provide another example of
this phenomenon and show explicitly the resulting CFT supergravity plus matter symmetry
transformations. In doing so, we find an interesting conformal supermultiplet structure that
involves a submultiplet of fields that transform into each other. In this novel multiplet the
superconformal symmetry is realized in an unconventional fashion.

The (2, 0) model is described in the next section. The relation between the models of [9] and [10]
is described in Section 3. The boundary conditions and the linearized field equations are given
in Section 4, and the bosonic and fermionic symmetries of the boundary CFT are obtained in
Section 5. Concluding remarks are contained in Section 6.

2 The Matter Coupled N=(2,0) AdS3 Supergravity

The N = (2, 0) AdS3 supergravity multiplet consists of a graviton eµ
a, two Majorana gravitini

ψµ (with the SO(2) spinor index suppressed) and an SO(2) gauge field Aµ. The n copies of the
N = (2, 0) scalar multiplet, on the other hand, consists of 2n real scalar fields φα(α = 1, ..., 2n)
and 2n Majorana fermions λr (r = 1, ..., n and the SO(2) spinor indices are suppressed).

In [10], the sigma model manifold M was taken to be a coset space of the form G/H × SO(2)
where G can be compact or non-compact and H × SO(2) is the maximal compact subgroup of
G, where SO(2) is the R-symmetry group. In particular, the following cases are considered [10]

M+ =
SO(n + 2)

SO(n) × SO(2)
, M− =

SO(n, 2)
SO(n) × SO(2)

. (2.1)

The results can be readily translated to the case of G/H×U(1) with G = SU(n+1) or SU(n, 1)
and H = SU(n).

Key ingredients in the description of the model are the matrices (LI
i, LI

r) where I = 1, ..., n +
2, i = 1, 2, r = 1, .., n, which form a representative of the coset M±. It follows that

LI
iLIj = ±δij , LI

rLIs = δrs , LI
iLIr = 0 , (2.2)

±LI
iLJi + LI

rLJr = δJ
I ,

where ± correspond to the scalar manifolds M±. The SO(n), SO(2) and SO(n + 2) vector
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indices are raised and lowered with the Kronecker deltas and the SO(n, 2) vector indices with
the metric ηIJ = diag(+ + ... + −−).

Other important ingredient of the model is the SO(2) gauged pull-back of the Maurer-Cartan
form on M± which is decomposed into the SO(n) × SO(2) connections Qrs

µ and Qij
µ , and the

nonlinear covariant derivative P ir
µ as follows:

P ir
µ =

(
L−1DµL

)ir
, Qij

µ =
(
L−1DµL

)ij
, Qrs

µ =
(
L−1DµL

)rs
, (2.3)

where the SO(2) covariant derivative is defined as

DµL =
(
∂µ + 1

2Aij
µ Tij

)
L , (2.4)

The anti-hermitian SO(2) generator Tij occurring in this definition is realized in terms of an
(n + 2) × (n + 2) matrix, which can be chosen as (Tij)I

J = (± δIi δ
J
j − i ↔ j ). Introducing the

coordinates φα (α = 1, ..., 2n) which parametrize the scalar manifold G/H, we can also define
the coset vielbein V ir

α and the SO(2) × SO(n) connections Aij
α , Ars

α on G/H as

V ir
α =

(
L−1∂αL

)ir
, Aij

α =
(
L−1∂αL

)ij
, Ars

α =
(
L−1∂αL

)rs
, (2.5)

where ∂α ≡ ∂
∂φα . From the above relations it follows that

P ir
µ = ∂µφαV ir

α + AµSir , (2.6)

Qµ = ∂µφαAα + AµC , (2.7)

Qrs
µ = ∂µφαArs

α + AµCrs , (2.8)

where Aij
α = Aαϵij , Aij

µ = Aµϵij , Qij
µ = Qµϵij and the (C, Sir) functions are defined as

ϵijϵ
klC = (L−1TijL)kl ,

ϵijC
rs = (L−1TijL)rs ,

ϵijS
kr = (L−1TijL)kr . (2.9)

The matter coupled N = (2, 0) Chern-Simons supergravity Lagrangian which makes use of these
ingredients has been obtained in [10]. Up to quartic fermions the Lagrangian is as follows [10]:
2

2Conventions: ηab = (− + +), ε̄ = ε†iγ0, γµC and γµνC are symmetric and γµνρ = 1√
−g

ϵµνρ. The SO(2)

charge conjugation matrix is unity, Γi is symmetric and {Γi, Γj} = 2δij . A convenient representation is Γ1 = σ1,
Γ2 = σ3. We define Γ3 = Γ1Γ2. Note that (Γ3)2 = −1.
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e−1L =
1
4
R +

e−1

2
ϵµνρψ̄µDνψρ −

e−1

16ma4
ϵµνρAµ∂νAρ −

1
4a2

P ir
µ Pµ

ir

+
1
2

λ̄rγ
µDµλr +

1
2a

λ̄rγ
µγνΓiψµP ir

ν − m

2
ψ̄µγµνψνC

2

−2ma ψ̄µγµΓiΓ3λrCSir − 1
2
m(1 + 4ϵa2) λ̄rλrC

2

+2ma2 λ̄rΓ3λsC
rsC + 2ma2 λ̄rΓiΓjλsS

irSjs

+2m2C2(C2 − 2a2SirSir) , (2.10)

which has the local N = 2 supersymmetry

δeµ
a = −ε̄γaψµ ,

δψµ = Dµε + mγµC2ε ,

δAµ = 4ma2 (ε̄Γ3ψµ) C − 4ma3 (λ̄rγµΓiε) Sir ,

Li
IδLI

r = aε̄ Γiλ
r ,

δλr =
(
− 1

2a
γµP ir

µ + 2maΓ3CSir
)

Γiε . (2.11)

The functions C and Sir are defined in (2.9) and 3

Dµε =
(

∂µ + 1
4ωµ

abγab −
1

2a2
QµΓ3

)
ε ,

Dµλr =
(

∂µ + 1
4ωµ

abγab +
(

ϵ +
1

2a2

)
QµΓ3

)
λr + Qµ

rsλs . (2.12)

The parameter ϵ = ±1 corresponds to the manifolds M± defined in (2.1), and the constant a is
the characteristic curvature of M± (e.g. 2a is the inverse radius in the case of M+ = S2). The
gravitational coupling constant κ has been set equal to one, but it can easily be introduced by
dimensional analysis. The constant m is the AdS3 cosmological constant. Unlike in a typical
anti de Sitter supergravity coupled to matter, here the constants κ, a, m are not related to each
other for non-compact scalar manifolds, while a is quantized in terms of κ in the compact case
as [10].

To conclude this section, and for later purposes, we list the equations of motion which follow
from the Lagrangian (2.10):

3The ϵ term in Dµλr was inadvertently omitted in [10].
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Rµν − a−2P ir
µ P ir

ν + 8m2C2
(
C2 − 2a2SirSir

)
gµν = 0 , (2.13)

ψµν + 2mγ[µ ψν] C
2 + 2maγµνΓiΓ3λrCSir − 1

2a
Γiγ

ργµνλrP
ir
ρ = 0 , (2.14)

Fµν − 4ma2√−gϵµνρP
ρ
irS

ir = 0 , (2.15)

γµDµλr − m(1 + 4ϵa2) λrC2 +
1
2a

γµγνΓiψµP ir
ν + 4ma2Γ3λsC

rsC

+4ma2ΓiΓjλsS
irSjs − 2maγµΓ3ΓiψµCSir = 0 , (2.16)

DµP ir
µ + 16m2a2ϵijS

jrC
(
(1 + ϵa2)C2 − a2 SksSks

)

+16m2a4 CrsSisC
2 = 0 , (2.17)

where the fermion bilinears in the bosonic field equations have been suppressed and

ψµν = Dµψν − Dνψµ , (2.18)

DµPµir =
1√
−g

∂µ

(√
−ggµνP ir

ν

)
+ ϵQik

µ Pµ kr + Qrs
µ Pµ ir . (2.19)

3 Connection with the Izquierdo-Townsend Model

The model reviewed above [10] differs from the one constructed by Izquierdo and Townsend [9],
in all the terms containing the C and S-functions. These differences stem from the fact that
the scalar fields in the model above are charged under the R-symmetry group SO(2) while in
the model of [9] they are neutral. Given that this charge is related to the sigma model radius,
taking the zero charge limit in order to compare the two models is expected to constrain the
scalar manifold. Here, we will show the relation between the two models and show that they
indeed agree only in the limit in which the scalar manifold is flat.

We begin by parametrizing the coset representative L as follows

L = exp

(
0 φir

−ϵ(φir)T 0

)
, (3.1)

where φir are 2n real coordinates on M±. Next, we perform the rescalings

Aµ → a2 Aµ , φir → aφir (3.2)

5



and consider the limit a2 → 0. From the definitions in (2.3) we find

P ir
µ = a∂µφir + · · · ,

Qµ = a2
(

Aµ − 1
2
φir∂µφr

jϵij

)
+ · · · ,

Qrs
µ = a2(∂µφriφi

s − φri∂µφi
s) + · · · , (3.3)

where · · · denote higher order terms in positive powers of a2. Let us define

dφαAα =
1
2
φirdφj

r ϵij , (3.4)

so that Qµ = a2(Aµ + ∂µφαAα), where the index α represents a pair of indices (ir). We have

1
2
dφα ∧ dφβFαβ =

1
2
dφir ∧ dφj

r ϵij , (3.5)

where Fαβ = ∂αAβ − ∂βAα. In the limit a2 → 0 the Lagrangian becomes

e−1L =
1
4
R +

1
2
e−1ϵµνρψ̄µDνψρ −

1
16

e−1

m
ϵµνρAµ∂νAρ −

1
4
∂µφir∂µφir

+
1
2

λ̄rγ
µDµλr +

1
2

λ̄rγ
µγνΓiψµ∂νφ

ir

−1
2
mψ̄µγµνψν − 1

2
mλ̄rλr + 2m2 , (3.6)

and the transformation rules become

δeµ
a = −ε̄γaψµ ,

δψµ = Dµε + mγµε ,

δAµ = 4mε̄ Γ3ψµ ,

δφir = ε̄ Γiλr ,

δλr = −1
2
γµ∂µφirΓiε , (3.7)

where the covariant derivatives are defined by
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Dµψν =
(
∇µ − 1

2
∂µφαAαΓ3 − 1

2
AµΓ3

)
ψν ,

Dµλr =
(
∇µ +

1
2
∂µφαAαΓ3 +

1
2
AµΓ3

)
λr ,

Dµε =
(
∇µ − 1

2
∂µφαAαΓ3 − 1

2
AµΓ3

)
ε , (3.8)

and ∇µ = ∂µ + 1
4ωµ

abγab. Introducing

A′
µ = Aµ + ∂µφαAα

= Aµ +
1
2
φir∂µφj

rϵij , (3.9)

the Lagrangian (3.6) becomes

e−1L =
1
4
R +

1
2
e−1ϵµνρψ̄µDνψρ −

1
16

e−1

m
ϵµνρA′

µ∂νA
′
ρ −

1
4
∂µφir∂µφir

−A′
µJµ +

1
2
∂µφαAαJµ +

1
2

λ̄rγ
µDµλr +

1
2

λ̄rγ
µγνΓiψµ∂νφ

ir

−1
2
mψ̄µγµνψν − 1

2
mλ̄rλr + 2m2 , (3.10)

where the current Jµ is defined as

Jµ = − 1
16me

ϵµνρ∂νφ
α∂ρφ

βFαβ , (3.11)

with Fαβ defined in (3.5). The transformations rules (3.7), on the other hand, become

δeµ
a = −ε̄γaψµ ,

δψµ = Dµε + mγµε ,

δA′
µ = 4mε̄ Γ3ψµ − δφα∂µφβFβα

δφir = ε̄ Γiλr ,

δλr = −1
2
γµ∂µφirΓiε , (3.12)
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where we have discarded a term in δAµ which can be expressed as a gauge transformation δAµ =
∂µΛ. Of course, the above transformations are up to cubic fermion terms in the transformation
rules of ψµ and λr, since the Lagrangian (3.10) is up to quartic fermion terms. Note also that
the covariant derivatives have now simplified to

Dµψν =
(
∇µ − 1

2
A′

µΓ3
)

ψν ,

Dµλr =
(
∇µ +

1
2
A′

µΓ3
)

λr ,

Dµε =
(
∇µ − 1

2
A′

µΓ3
)

ε . (3.13)

The formulae (3.10), (3.12) and (3.13) agree with those of the Izquierdo-Townsend model [9] for
the flat sigma model. Note that in trying to set the U(1) charge of the scalar fields equal to
zero, we have been forced to flatten the sigma model manifold. This is due to the fact that the
U(1) charge is related to the radius of the scalar manifold. The flat model discussed here will
be used in Section 5.3.

4 Boundary Conditions and Linearized Field Equations

In order to examine the properties of the model described above near the boundary, we shall
begin by fixing certain gauges and studying the behaviour of the linearized field equations near
the boundary.

The AdS3 spacetime can be covered by two regions each of which is parametrized by a set of
Poincaré coordinates (x0, x1, x2) in R3 with x2 > 0. We shall use the notation xµ = (x0, x1) and
x2 ≡ r. This patch contains half the boundary of AdS3 in the form of the Minkowskian plane
at r = 0. The other region is behind the horizon at r = ∞. In what follows we shall work only
within one of the regions.

Following [1], we choose the following gauge conditions

er
2 =

1
2mr

, er
a = 0 , eµ

2 = 0 ,

ψr = 0, Ar = 0 , (4.1)

where a = 0, 1 is the tangent space index in D = 2. Note that the second coordinate is labeled
as r in curved space and as 2 in tangent space. The metric in this gauge takes the form

ds2 =
1

(2mr)2
(dr2 + dxµdxν ĝµν) , (4.2)
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where ĝµν = êµ
aêν

bηab. The SO(2,2) invariant AdS metric corresponds to the case ĝµν = ηµν .
The components of the spin connection following from the metric (4.2) are

ωµ
ab = ω̂µ

ab , ωr
ab = −ê[bν∂rêν

a] ,

ωµ
a2 = −1

r
êµ

a + ê(bν∂rêν
a)êµb , ωr

a2 = 0 . (4.3)

When ĝµν = ηµν , the only nonvanishing component is ωµ
a2 = −δa

µ/r.

We next study the asymptotic behaviour of the solutions of the linearized field equations near
the boundary r = 0. We are going to do this in Euclidean signature. In this signature the
AdS space consists of a single region covered by Poincaré coordinates plus a point at r = ∞.
This point is actually a boundary point and the boundary has the topology of the two sphere,
represented in the Poincaré coordinates by the Euclidean plane at r = 0 plus the point at infinity.

We will assume that the dreibein eµ
a behaves as r−1 as in the SO(2, 2) invariant case. To

determine the asymptotic behaviours of the remaining fields, we need to examine their linearised
field equations as expanded around the supersymmetric AdS background in which the only
nonvanishing fields are

ĝµν = ηµν , L = 1 . (4.4)

Next, we use the coset representative L given in (3.1) which leads to the following expressions
at the linearized level

P ir
µ → ∂µφir, C → 1, Crs → 0, Sir → ϵ ϵijφjr . (4.5)

The field equations for Aµ and ψµ linearized around the background (4.4) are 4

∂rAµ = 0 , ∂[µAν] = 0 , (4.6)

∂rψµ± = ∓1
2r−1 ψµ± . (4.7)

where the suffixes ± indicate the eigenvalues of γ2, which in turn indicate the chiralities of the
spinors on the boundary. The equations involving radial derivatives are readily solved to all
orders in r, and in a convenient normalization we have

Aµ = A(0)µ , ψµ = (2mr)−
1
2 ψµ(0)+ + (2mr)

1
2 ψµ(0)− . (4.8)

To give the proper boundary condition for the vector field, we define 5

4We use the convention γµν = 1√
−g

ϵµνγ2.
5We use a notation in which the chiralities and Hodge dualities are labeled by lower ± indices and the regular

and irregular nature of boundary conditions are labeled by upper ± indices.
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A(0)µ± = Pµ±
νA(0)ν =

1
2
(gµν ±

√
−gϵµν)Aν

(0) . (4.9)

The remaining equation for Aµ in (4.6) then amounts to

∂µ
−Aµ+ = ∂µ

+Aµ− . (4.10)

As we shall show in the next section, the anti self dual component A(0)µ− forms an off-shell
d = 2 supermultiplet together with ψ(0)µ+ and e(0)µ

a. Thus it is natural to treat A(0)µ− as the
independent boundary field, and let A(0)µ+ be determined from (4.10). The fact that only one
of the Hodge dualities of the vector field is independent can also be understood by considering
the Hamiltonian formulation of the bulk Chern-Simons theory, where A(0)µ± form a pair of
canonically conjugate variables. Thus, the proper boundary conditions for the supergravity
multiplet are:

eµ
a ∼ (2mr)−1e(0)µ

a , ψµ+ ∼ (2mr)−
1
2 ψ(0)µ+ Aµ− ∼ A(0)µ− . (4.11)

We now turn to the discussion of the boundary conditions on the matter fields, starting with
the scalar fields.

4.1 Matter Scalars

The linearized scalar field equation near the boundary is given by (the r-dependence is shown
explicitly and the SO(2) × SO(n) indices of φir and λr are suppressed):

r2∂µ∂µφ + r3∂r

(
r−1∂rφ

)
− m2

φφ = 0 , (4.12)

where

m2
φ = 4a2(a2 + ϵ) = ∆(∆ − 2) , (4.13)

and ∆ equals ∆+ or ∆− defined by

∆±(φ) = 1 ±
√

1 + m2
φ . (4.14)

Thus, in terms of ϵ and a2:

ϵ = 1 :





∆+(φ) = 2 + 2a2 ,

∆−(φ) = −2a2 ,
(4.15)
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ϵ = −1 :





∆+(φ) = 1 + |1 − 2a2| ,

∆−(φ) = 1 − |1 − 2a2| .
(4.16)

A free scalar field φ behaves near the boundary as

φ(r, x⃗) ∼ (2mr)∆−(φ)
[
φ+

(0) + (2mr)2φ+
(2) + · · ·

]
+ (2mr)∆+(φ)

[
φ−

(0) + (2mr)2φ−
(2) + · · ·

]
(4.17)

for 2a2 /∈ Z, and

φ(r, x⃗) ∼ (2mr)∆−(φ)
[
φ+

(0) + (2mr)2φ+
(2) + · · ·

]
+ (2mr)∆+(φ)ln (2mr)

[
φ−

(0) + (2mr)2φ−
(2) + · · ·

]

(4.18)

for 2a2 ∈ Z. The expansion coefficients φ±
(2n) depend only on x⃗. For 2a2 /∈ Z and for ϵ =

−1, a2 = 1
2 , that is ∆+ = 1, the coefficients φ±

(2n), n ≥ 1, are determined through the linearized
field equations as local expressions in terms of φ±

(0). For other values of ϵ and a2, that is for
∆+ = 2, 3, ..., the coefficients φ+

(2n), n ≤ ∆+ − 2 are given in terms of φ+
(0) while φ+

(2∆+−2) is
undetermined and thus independent. At higher order in r one then finds that φ−

(0), φ
−
(2), . . . are

given in terms of φ+
(0) and that φ+

(2∆+), φ
+
(2∆++2), . . . are given in terms of φ+

(2∆+−2). The above
results follow from the small z expansion of the modified Bessel functions [16]. Similar results
hold for small perturbations around the anti-de Sitter background [17].

There are two types of boundary conditions that may be imposed on the scalars: regular condi-
tions which amount to specifying the leading component at the boundary and irregular conditions
which amount to specifying the independent subleading component described above [14, 15], and
which are possible when ∆− ≥ 0. Thus, for 2a2 /∈ Z, a regular boundary condition amounts to
specifying φ+

(0) while an irregular boundary condition amounts to specifying φ−
(0). For ∆+ = 1,

that is, for ϵ = −1, a2 = 1
2 , a regular boundary condition amounts to specifying φ−

(0) and an
irregular condition amounts to specifying φ+

(0).

Given that φ±
(0) are associated with conformal operators of weight ∆±(φ), the requirement of

unitarity imposes the following restriction for irregular boundary conditions:

∆−(φ) ≥ 0 . (4.19)

For regular boundary conditions, the unitarity condition is automatically satisfied, while for
irregular conditions (4.19) restricts the possible values of a2. Thus it follows that the following
boundary conditions are possible:

ϵ = 1 : regular: φ ∼ (2mr)∆−(φ)φ+
(0) for a2 ≥ 0 (4.20)
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irregular: φ ∼ (2mr)2φ+
(2) for a2 = 0 . (4.21)

ϵ = −1 : regular: φ ∼





(2mr)∆−(φ)φ+
(0) for a2 ̸= 1

2 ,

(2mr)ln(2mr)φ−
(0) for a2 = 1

2 .

(4.22)

irregular: φ ∼





(2mr)∆+(φ)φ−
(0) for 0 < a2 < 1 , a2 ̸= 1

2 ,

(2mr)φ+
(0) for a2 = 1

2 ,

(2mr)2φ+
(2) for a2 = 0, 1 .

(4.23)

4.2 Matter Fermions

We now turn to the boundary conditions on the matter fermions. The linearized equations
obeyed by the matter fermions near the boundary is

rγµ∂µλ + rγ2∂rλ − γ2λ − mλλ = 0 , (4.24)

where the fermion mass is given by

mλ =
1
2
(1 + 4ϵa2) . (4.25)

We find that for mλ /∈ Z + 1
2 a solution to (4.24) is given by

λ = (2mr)1−mλ

[
λ(0)− + 2mrλ(1)+ + · · ·

]
+ (2mr)1+mλ

[
λ(0)+ + 2mrλ(1)− + · · ·

]
, (4.26)

where ± refers to the γ2 eigenvalue. For mλ = 1
2 , 3

2 , 5
2 , ..., the solution takes the form

λ = (2mr)1−mλ

[
λ(0)− + 2mrλ(1)+ + · · ·

]
+ (2mr)1+mλ ln 2mr

[
λ(0)+ + 2mrλ(1)− + · · ·

]
.

(4.27)

For mλ = −1
2 ,−3

2 ,−5
2 , ..., the solution is given by (4.27) with mλ → −mλ and all the chiralities

flipped. For later use, we also record the following relation

λ(1)± =
1

2m(2mλ ∓ 1)
γµ∂µλ(0)∓ , 2mλ ∓ 1 ̸= 0 . (4.28)

Note that unlike for the scalars, the coefficients in the logarithmic branch in (4.27) is never
undetermined. Next, following [18], we define the conformal weights of the fermions as
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∆±(λ) = 1 ± |mλ| = 1 ± 1
2 |1 + 4ϵa2| . (4.29)

Thus, in terms of ϵ and a2:

ϵ = 1 :





∆+(λ) = 3
2 + 2a2

∆−(λ) = 1
2 − 2a2 .

(4.30)

ϵ = −1 :





∆+(λ) = 1 + 1
2 |1 − 4a2| ,

∆−(λ) = 1 − 1
2 |1 − 4a2| .

(4.31)

Thus, the regular boundary conditions are associated with r∆−(λ) behaviour and the irregular
boundary conditions with r∆+(λ) behaviour (note that this holds for all values of a2). It follows
from (4.26) and (4.27) that the chirality of the regular and irregular boundary spinors λ±

(0) is
equal to minus the sign of the fermion mass:

(
γ2 ± mλ

|mλ|

)
λ±

(0) = 0 , (4.32)

where the superscript “+” refers to regular and “−” to irregular boundary conditions. Thus, in
the case of regular boundary conditions the chirality is negative for positive fermion mass, and
positive for negative fermion mass. In the case of irregular boundary conditions the chirality is
positive for positive mass and negative for negative mass.

Imposing the following unitarity condition

∆−(λ) ≥ 1
2 , (4.33)

it follows that the allowed boundary conditions for the matter fermions are:

ϵ = 1 : regular: λ ∼ (2mr)∆−(λ)λ(0)− for a2 ≥ 0 , (4.34)

irregular: λ ∼ (2mr)
3
2 λ(1)+ for a2 = 0 . (4.35)

ϵ = −1 : regular: λ ∼





(2mr)∆−(λ)λ(0)− for 0 ≤ a2 ≤ 1
4 ,

(2mr)∆−(λ)λ(0)+ for a2 ≥ 1
4 .

(4.36)
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irregular: λ ∼





(2mr)
3
2 λ(1)+ for a2 = 0 ,

(2mr)∆+(λ)λ(0)+ for 0 < a2 < 1
4 ,

(2mr)∆+(λ)λ(0)− for 1
4 < a2 < 1

2 ,

(2mr)
3
2 λ(1)− for a2 = 1

2 .

(4.37)

Note that for ϵ = −1 and a2 = 1
4 the regular boundary condition can be imposed on either of

the chiralities.

5 The Local Conformal Supersymmetry on the Boundary

In this section we shall derive the realization of the d = 2, N = (2, 0) conformal supersymmetry
on the boundary supergravity multiplet (e(0)µ

a, ψ(0)µ+, A(0)µ−) and boundary chiral multiplets
involving fields that are to be specified case by case in accordance with the boundary conditions.

The d = 2 symmetries are found by examining the nature of the bulk transformation rules close
to the boundary. To analyze this we first find the D = 3 transformation parameters which
preserve the D = 3 gauge conditions (4.1) near the boundary. We then evaluate the resulting
D = 3 transformations of a solution to the D = 3 field equations with given set of boundary
data Φ(0). By matching powers of r in the limit when r → 0 we thus obtain the resulting d = 2
transformations δΦ(0). In specifying the boundary data we have to choose between regular and
irregular boundary conditions such that δΦ(0) is a local expression in terms of Φ(0) and its
derivatives.

For ϵ = 1 and a2 > 0, the scalar fields diverge at the boundary and the perturbative expansion
breaks down, therefore we shall exclude the case ϵ = 1 from now on. For ϵ = −1 and a2 > 0,
the matter scalars diverge for a2 > 1 and the matter fermions diverge for a2 > 3

4 . Moreover, for
1
2 < a2 < 3

4 , the supersymmetry transformation of the vector field involve matter contributions
which diverge as r → 0 (see footnote below (5.9)), which is not consistent with its r expansion.
For 0 < a2 ≤ 1

2 the r expansion is well-defined, and in fact, since all matter fields have positive
Weyl weight for this case, the nonlinearities vanish at the boundary. Finally, for a2 = 0, the
appropriate model to consider is the R2n sigma model, in which case the scalars have Weyl
weight zero. In summary, the perturbative expansion makes sense only for

ϵ = −1 , 0 ≤ a2 ≤ 1
2 , or ϵ = +1 , a2 = 0 . (5.1)

We remark that in the case of single scalar multiplet coupling, namely when the sigma model
manifold is S2 for ϵ = 1 and H2 for ϵ = −1, the excluded range of the parameter a2 coincides
with the fact that the scalar potential has the form of a confining well. In the allowed range,
however, the potential is unbounded from below. It would be interesting to study if the potential
exhibits qualitatively similar behaviour for arbitrary number of scalar multiplets.
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Importantly, regularity of the D = 3 solutions determines the irregular boundary conditions
in terms of the regular, or vice versa, which leads to the usual interpretations of the anti-de
Sitter/conformal field theory duality. This leads to subtleties, however, in the case of irregular
boundary conditions in the matter sector, where the nonlinearities appear to lead to mixings
between the regular and irregular fields in the transformations of the irregular fields (at least
for certain rational values of a2). As a first step towards understanding this, it is reasonable to
begin by examining the nature of the transformations of the irregular fields among themselves
by formally putting the regular fields to zero in the case of irregular boundary conditions. This
is our approach when 0 < a2 < 1

2 , which we refer to as case 1 below. For the special values
a2 = 1

2 and a2 = 0, which we treat separately as case 2 and 3 below, the nonlinearities are
however more manageable, and for these two cases we therefore keep both regular and irregular
fields. Thus, in summary, the boundary conditions in the matter sector are taken as follows:

Case 1: ϵ = −1 , 0 < a2 < 1
2 Either regular or irregular matter fields.

Case 2: ϵ = −1 , a2 = 1
2 Both regular and irregular matter fields.

Case 3: a2 = 0 Both regular and irregular matter fields.

(5.2)

5.1 Case 1 : ϵ = −1 and 0 < a2 < 1
2

We begin by determining the asymptotic behaviors of the local symmetries of the bulk which
preserve the gauge conditions (4.1) near the boundary. Using the asymptotic behavior of the
supergravity multiplet fields given in (4.11), we find (without linearizing in the fields) that the
residual gauge symmetries are

ξr = −rΛD(0) , ξµ = ξµ
(0) + O(r2) ,

Λa2
L = O(r2) , Λab

L = ΛL(0)ϵ
ab + O(r2) ,

Λ = Λ(0) + O(r4a2
) ,

ε± = (2mr)∓
1
2

[
ε(0)± + O(r2)

]
, (5.3)

where ΛD(0), ξ(0), ΛL(0), Λ(0) and ε(0)±) denote the parameters of dilatation, reparametrization,
Lorentz rotation, SO(2) rotation and supersymmetry, respectively, and the fields with suffix (0)
are arbitrary functions of xµ. Note that the parameter ξr is determined fully and it has only
linear r-dependence, while the other parameters have series expansions in r. The form of ξr,
ξµ and Λa2

L come from the variations of the gauge conditions involving the dreibein and the
form of Λab

L can be deduced from the requirement of residual Lorentz transformations on the
boundary. The last two results come from the variation of the gauge conditions Ar = 0 and
ψr = 0, respectively.
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To derive the bosonic transformations in d = 2, we insert (5.3) together with the expansions
(4.11), (4.17-4.18) and (4.26-4.27) into the bosonic transformations in D = 3. These do not mix
different chiralities and powers of r. It is therefore straightforward to read off the transformation
for the leading components. We find the usual general coordinate transformations of all the fields
with parameter ξµ

(0), and (in the rest of subsection we have dropped the (0) labels for notational
simplicity)

δeµ
a =

(
ΛDηab − ΛLϵab

)
eµb ,

δψµ+ =
(

1
2ΛD + 1

2ΛL +
1

2a2
ΛΓ3

)
ψµ+ ,

δAµ− = 1
2

(
gµν −

√
−gϵµν

)
∂νΛ ,

δφ±ir = −∆∓(φ)ΛDφ±ir + Λϵijφ±jr ,

δλ±r =
[
−∆∓(λ)ΛD + 1

2ΛLγ2 + (1 − 1
2a2

)ΛΓ3

]
λ±r . (5.4)

Note, the superscripts on the matter fields refer to regular/irregular boundary conditions, and
the chiralities of the matter fermions are given by (4.32).

To find the d = 2 supersymmetry transformation rules we substitute the expression for the
supersymmetry parameter given in (5.3) into the D = 3 supersymmetry transformation rules
(2.11) and take the limit r → 0. In the supergravity sector we find:

δeµ
a = −ε̄γaψµ ,

δψµ = Dµε + 2γµη , (5.5)

δAµ− = 1
2a2ε̄Γ3γµγρσψρσ + 2a2η̄Γ3γνγµψν ,

where we have introduced the notation

γµ = γaea
µ ,

ε = ε+ ,

η = mε− − 1
8a2

Γ3γ
µAµ+ε+ ,

Dµε =
(

∂µ − 1
2ωµ − 1

2a2
Aµ−Γ3

)
ε (5.6)

and the d = 2 gravitino field strength ψµν is defined as in (2.18) but with the covariant derivative
defined above. We note the correction to the special supersymmetry parameter η. In the
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gravitino transformation rule, this correction arises from the Aµ+ contribution to the three
dimensional Dµε, while in the vector transformation rule it arises from the D = 3 covariant
derivative in the gravitino field strength and from the varying the self-duality projector according
to the following:

δAµ± ≡ δ(Pµ±
νAν) = Pµ±

νδAν ∓ ε̄γµψνAν+ , (5.7)

where the projection is defined in (4.9). We also note that in obtaining the vector transformation
rule we have eliminated the anti self dual component of ψµ− using the boundary limit of the µν
component of the D = 3 gravitino equation (2.14) as follows:

m

2
γµγνψν− = 1

4γνψµν +
1

8a2
Γ3γµψνAν+ + maγµΓiλr

+φ+ir , (5.8)

where ψµν = Dµψν − Dνψµ with the covariant derivative defined as in (5.6). In deriving (5.8)
one notices that the last two terms in the µν component of the D = 3 gravitino equation (2.14)
add up in the leading order, which follows from the fact that for 0 < a2 < 1

2 the D = 3 scalar
fields obey

r∂rφ
ir = 2a2(φir + O(r)) . (5.9)

In the rµ component of the D = 3 gravitino equation, however, these terms cancel, which
means that there is no matter contribution to the leading order. Thus we have obtained a local
realization of the boundary supersymmetry on the (2, 0) conformal supergravity multiplet in
d = 2 which is off-shell and decoupled from matter 6.

We next study the transformations of the matter fields. We recall from (4.22-4.23) and (4.36-
4.37) that both regular and irregular boundary conditions are admissible for 0 < a2 < 1

2 . There
are two sets of combined regular and irregular boundary conditions which lead to two types of
conformal (2, 0) supermultiplets which will be referred to as Type 1 and Type 2. The Type 1
multiplet consists of regular scalars, and fermions which are regular for 0 < a2 < 1

4 and irregular
for 1

4 < a2 < 1
2 . The Type 2 multiplet, on the other hand, is a novel multiplet which consists of

irregular scalars, and fermions which are irregular for 0 < a2 < 1
4 and regular for 1

4 < a2 < 1
2 .

To find the transformations at the linearized level, we insert (4.11), (4.17) and (4.26) into the
D = 3 transformation rules in (2.11) and match powers of r. In the case of Type 2, we also use
the Dirac equation (4.28) in obtaining the scalar transformation. The results are as follows:

Linearized Type 1:





δφ+ ir = aε̄+ Γiλr
− ,

δλr
− = − 1

2aγµ∂µφ+ irΓiε+ + 4maφ+ irΓiε− ,
(5.10)

6At this point we can see why the range 1
2

< a2 < 3
4

does not yield a local realization of the boundary
supersymmetry: although the matter fields vanish at the boundary, so that we can trust the r-expansion, (5.9)
is now replaced by r∂rφ

ir = (2 − 2a2)(φir + O(r)) which results in divergent, matter dependent contributions to
δAµ−.
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Linearized Type 2:





δφ− ir = a
4m(1−2a2)

ε̄+Γiγµ∂µλr
+ + aε̄−Γiλr

+ ,

δλr
+ = −2ma−1(1 − 2a2)φ− irΓiε+ .

(5.11)

We now turn to the full transformation rules. In the case of the Type 1 multiplet all the
nonlinearities vanish except the Aµ+ contribution to the special supersymmetry transformation,
and we find the local transformation rules

Full Type 1:





δφ+ ir = aε̄ Γiλr
− ,

δλr
− = − 1

2aγµ∂µφ+ irΓiε + 4aφ+ irΓiη ,
(5.12)

where η is given by (5.6). Note that the gauge field Aµ does not appear in the derivative of the
scalars φir in the above formula because the chirality of ε projects it to its positive Hodge dual,
which is then absorbed into the special supersymmetry parameter η. In other words, the above
formulae are U(1) covariant modulo η transformations.

In the Type 2 case the first nontrivial order the D = 3 Dirac equation now yields the following
expression for the negative chirality spinor:

λr
(1)− =

1
4m(1 − 2a2)

γµD̂µλr
+ +

1
8ma2

Γ3γµAµ+λr
+ , (5.13)

where D̂µλ is the supercovariant derivative defined by

D̂µλr = ∇µλr + 2ma−1(1 − 2a2)φirΓiψµ . (5.14)

The fact that matter fermions have the U(1) charge −1+ 1
2a2 has been used and ∇µ is the ordinary

Lorentz covariant derivative. Thus the full transformation rules for the Type 2 multiplet reads:

Full Type 2:





δφ− ir = a
4m(1−2a2)

ε̄ΓiγµD̂µλr
+ + a

m η̄Γiλr
+ ,

δλr
+ = −2ma−1(1 − 2a2)φ− irΓiε .

(5.15)

In summary, the transformation rules (5.4) and (5.5) are those of N = (2, 0) conformal super-
gravity [19] consisting of fields (eµ

a, ψµ+, Aµ−) coupled to either one of the following matter
multiplets:

• Type 1: scalar multiplets consisting of scalar fields φir with Weyl weight 2a2 and negative
chirality spinors λr

− with Weyl weight 1
2 + 2a2.

• Type 2: scalar multiplets consisting of scalar fields φir with Weyl weight 2 − 2a2 and
positive chirality spinors λr

+ with Weyl weight 3
2 − 2a2.

18



The supersymmetry transformation rules (5.5), (5.12) and (5.15) close off-shell as follows

[δε1 , δε2 ] = δξ(ξµ) + δΛL
(−ξµωµ) + δε(−ξµψµ) , (5.16)

[δη, δε] = δΛD
(−2ε̄η ) + δΛL

(−2ε̄η ) + δΛ(4a2ε̄Γ3η ) + δη(1
2 η̄ψµγµε) , (5.17)

where ξµ = ε̄1γ
µϵ2. The arguments on the right hand side are the composite parameters of the

relevant transformations. Note the absence of the usual field dependent U(1) gauge transfor-
mation in the commutator of two supersymmetry transformations. In obtaining (5.16-5.17) we
have used

δωµ = 1
2 ε̄γλψλµ + 2ψ̄νγµγνη , (5.18)

which directly follows from ωµ
ab = ωµϵab which is determined from its algebraic equation of

motion as

ωµ = e−1ϵρσeµ
a∂ρeσa + ψ̄µγνψν . (5.19)

The result (5.16-5.17) is up to cubic fermion terms that may arise through some of the composite
ε and η-transformations, since the transformations (2.11) were themselves up to that order. In
the case of Type 1 we have supercovariantized the derivative of φ+ir. In the case of Type 2, the
supercovariant derivative of λr

+ is already present, due to the fact that the three-dimensional
fermionic matter field equation (2.16) is already supercovariant. However, in this case the closure
of two supersymmetries on the fermion requires δφλ type terms in δλ that are expected to arise
in the complete transformation rules.

5.2 Case 2 : ϵ = −1 and a2 = 1
2

In this case, we recall the boundary behaviors of the matter fields from (4.18) and (4.27) as
follows:

φir = 2mr
[
φ+ir

(0) + (2mr)2φ+ir
(2) + · · ·

]
+ 2mr ln(2mr)

[
φ−ir

(0) + (2mr)2φ−ir
(2) + · · ·

]
,

λr = (2mr)
1
2

[
λr

(0)+ + 2mrλr
(1)− + · · ·

]
+ (2mr)

3
2 ln(2mr)

[
λr

(0)− + 2mrλr
(1)+ + · · ·

]
.(5.20)

As we shall show, the regular boundary fields (φ−ir
(0) , λr

(0)+) form a supermultiplet of Type 1,
using the terminology introduced above, according to which multiplets containing the regular
scalars are called Type 1 and those containing the irregular scalars are called Type 2. As for the
irregular fields (φ+ir

(0) , λr
(1)−), they will be shown to form an extended multiplet, together with

the fields of the Type 1 multiplet.
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Substituting (5.20) into the negative chirality component of the λ field equation we find that
there are indeed no conditions on λr

(0)+ and λr
(1)− and that λr

(0)− is determined as follows:

λr
(0)− =

1
2m

γµD̂µλr
(0)+, (5.21)

where

D̂µλr
(0)+ = ∇µλr

(0)+ +
√

2mφ−ir
(0) Γiψ(0)µ+ . (5.22)

As we shall see later, D̂µλr
(0)+ is supercovariant. Note that the U(1) charge (−1 + 1

2a2 ) vanishes
here since a2 = 1

2 .

Let us now examine the boundary behaviour of the local symmetry transformations, starting
with the bosonic ones. The bosonic transformations of the matter fields are the same as in the
0 < a2 < 1

2 case, except for the dilatation which acts as follows:

Extended Type 1:





δφ−ir
(0) = −ΛDφ−ir

(0) ,

δλr
(0)+ = −1

2ΛDλr
(0)+ ,

δφ+ir
(0) = −ΛDφ+ir

(0) − ΛDφ−ir
(0) ,

δλr
(1)− = −3

2ΛDλr
(1)− − 1

2mΛDγµD̂µλr
(0)+ .

(5.23)

We see that due to the logarithmic terms in the expansion and the fact that ∆+ = ∆− there
is an admixture of the Type 1 fields in the transformations of the irregular fields (φ+ir

(0) , λr
(1)−).

Thus, the full set of fields are considered to form an extended Type 1 multiplet. This multiplet
structure will also emerge in the conformal supersymmetry transformation rules.

We next turn to the boundary limits of the supersymmetry transformations. Those of the
supergravity multiplet take the same form as given in (5.5), with the replacement Aµ− → A′

µ−
defined as (we suppress the (0) labels in the supergravity sector):

A′
µ− = Aµ− − 1

4
λ̄r

(0)+γµΓ3λr
(0)+ . (5.24)

To see this, we begin by noting that there is an additional log term in the expansion of the
Rarita-Schwinger field. By substituting (5.20) into the rµ component of the Rarita-Schwinger
field equation we find

ψµ+(r, x⃗) = (2mr)−
1
2 ψµ+ + · · · ,

ψµ−(r, x⃗) = (2mr)
1
2 ψµ− +

1√
2
(2mr)

1
2 ln(2mr)γµφ−ir

(0) Γiλ
r
(0)+ + · · · . (5.25)
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The µν component of the Rarita-Schwinger field equation gives

m

2
γµγνψν− = 1

4γνψµν +
1
4
Γ3γµψνAν+ +

1√
2
mγµ

(
φ+ir

(0) +
1
2
φ−ir

(0)

)
Γiλ

r
(0)+ , (5.26)

where ψµν = Dµψν − Dνψµ and Dµε = (∇µ − AµΓ3)ε. Using this the fermionic transformation
of Aµ− becomes

δAµ− =
1
2
ε̄Γ3γνψµν + η̄Γ3γνγµψν − 1√

2
mε̄γµΓiΓ3λr

(0)+φ−ir
(0) . (5.27)

The matter dependence can be removed by the redefinition (5.24). The field A′
µ− then transforms

as in (5.5) upon the use of λr
(0)+ given below. Altogether, we find the conformal supergravity

multiplet transformations (5.5), with a2 = 1
2 .

We next study the supersymmetry transformations of the matter fields near the boundary. We
find after rescaling φ± → 1√

2
φ± (and dropping the (0)’s for notational simplicity)

Extended Type 1:





δφ−ir = 1
2m ε̄ΓiγµD̂µλr

+ ,

δλr
+ = −mφ−irΓiε ,

δφ+ir = ε̄Γiλ
′r
− + 1

m η̄Γiλr
+ ,

δλ
′r
− = −1

2γµ∂µφ+irΓiε + 2Γiη (φ+ir + 1
2φ−ir) ,

(5.28)

where we have used the field equation (5.21) and made the field redefinition

λ
′r
− = λr

(1)− − 1
4m

γµAµ+Γ3λr
(0)+. (5.29)

We observe that (φ−ir, λr
+) form a Type 1 submultiplet, whose fields are inert under the con-

formal supersymmetry transformations, and whose supersymmetry transformations can be ob-
tained by rescaling the fields of the Type 2 multiplet (5.15) as φ−ir → (1 − 2a2)−1φ−ir and
λ+ → 2

√
2λ+, and taking the limit a2 → 1

2 . Correspondingly, the superalgebra closes as in
(5.16-5.17) by setting a2 = 1

2 . The fields (φ+ir, λ
′r
−), on the other hand, transform into each

other under the ordinary supersymmetry transformations, but transform into (φ−ir, λr
+) under

the conformal supersymmetry transformations. (This is similar to the situation of the dilatation
transformation laws (5.23). Therefore, we view the enlarged set of fields (φ+ir, φ−ir, λ

′r
−, λr

+) as
forming a conformal supermultiplet, with closure given by (5.16-5.17) for a2 = 1

2 (with dilata-
tion transformation (5.23)). This extended Type 1 multiplet can be truncated consistently to
an ordinary Type 1 multiplet by setting the Type 2 submultiplet equal to zero, but the reverse
is not consistent.
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5.3 Case 3 : a2 = 0

In this case the boundary behavior of the matter fields is given by

φ =
[
φ+

(0) + (2mr)2φ+
(2) + · · ·

]
+ (2mr)2 ln(2mr)

[
φ−

(0) + (2mr)2φ−
(2) + · · ·

]
,

λ = (2mr)
1
2

[
λ(0)− + 2mrλ(1)+ + (2mr)2λ(2)− + · · ·

]

+(2mr)
3
2 ln(2mr)

[
λ(0)+ + 2mrλ(1)− + · · ·

]
. (5.30)

The supersymmetric variations of the zweibein and gravitino are as in (5.5) while the trans-
formation of Aµ− has a subtlety due to the fact that there is an additional log term in the
expansion of the Rarita-Schwinger field. Taking this into account, from the Rarita-Schwinger
field equation we find

ψµ+(r, x⃗) = (2mr)−
1
2 ψµ+ + · · · ,

ψµ−(r, x⃗) = (2mr)
1
2 ψ(0)µ− +

1
4m

(2mr)
1
2 ln(2mr)Γiγ

νγµλr
(0)−∂νφ

+ir
(0) + · · · , (5.31)

m

2
γµγνψ(0)ν− = 1

4γνψµν+ +
1
8
Γ3γµψν

+Aν+ − 1
8
Γiγµγνλr

(0)−∂νφ
+ir
(0) , (5.32)

where ψµν = Dµψν − Dνψµ with the U(1) connection term in Dµψ shifted as in (3.8). Using
this the fermionic transformation of Aµ− becomes

δAµ− = ε̄Γ3γνψ(0)µν+ + 2η̄Γ3γνγµψ(0)ν+ − 1
2
ε̄Γ3Γiγµγνλr

(0)−∂νφ
+ir
(0) , (5.33)

where we have used (5.7). To cancel the matter contributions, we first need to examine the
transformations of the matter fields. ¿From the matter field equations and the boundary con-
ditions stated earlier for the case at hand, we find that the independent fields at the boundary
are (φ+ir

(0) , λr
(0)−, φ+ir

(2) , λr
(1)+). Under dilatations, these fields are found to transform as

δφ+ir
(0) = 0,

δλr
(0)− = −1

2
ΛDλr

(0)−,

δφ+ir
(2) = −2ΛDφ+ir

(2) − ΛDφ−ir
(0) ,

δλr
(1)+ = −3

2
ΛDλr

(1)+ − ΛDλr
(0)+ , (5.34)
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where, again, a mixing of the type observed earlier in the case of a2 = 1
2 arises here. The

fermionic transformation of the matter fields also exhibit this kind of mixing:

δφ+ir
(0) = ε̄(0)+Γiλr

(0)− ,

δλr
(0)− = −1

2
Γiγ

µε(0)+∂µφ+ir
(0) ,

δφ+ir
(2) = ε̄(0)+Γiλr

(2)− + ε̄(0)−Γiλr
(1)+ ,

δλr
(1)+ = −1

2
Γiγ

µε(0)−∂µφ+ir
(0) − 2mΓiε(0)+

(
φ+ir

(2) +
1
2
φ−ir

(0)

)
, (5.35)

where φ−ir
(0) = − 1

8m2∇µ∂µφ+ir
(0) and λr

(2)− is a more complicated function of the independent fields.

Armed with this result, we first redefine Aµ as in (3.9) so that the newly defined field A′
µ−

transforms precisely as in (5.5), that is without any matter contributions, as expected from
an off-shell conformal supergravity multiplet. As for the interpretation of the matter multiplet
transformations, surprisingly enough, the story is somewhat more complicated. While the ε(0)−
parameter can be redefined into the special supersymmetry parameter η as in (5.6), a close
examination of the transformation rules δφ+ir

(2) and δλr
(1)+ shows that the dependence of the

result on Aµ+ and the special supersymmetry gauge field, which is an appropriately redefined
ψµ−, cannot be removed unless certain equations of motion are imposed. However, these gauge
fields are determined in terms of the independent fields as nonlocal expressions. Therefore, in
order to realize the conformal supersymmetry on the boundary in a local fashion, we need to
remove the dependence on these dependent gauge fields. This can be achieved by setting

(
gµν − ϵµν

√
−g

)
D̂νφ

+ir
(0) = 0 , γµD̂µλr

(0)− = 0 , (5.36)

where the supercovariant derivatives are defined in a standard way in accordance with the super-
symmetry variations (5.35), and D̂νλ

r
(0)− contains the shifted field A′

µ−. These field equations
transform into each other under the supersymmetry variations (5.35), as they should.

Imposing the on-shell conditions (5.36), and recalling that the derivatives on (5.35) need to be
supercovariantized when considering the higher order fermion terms, we find that the ε(0)− term
in the last equation in (5.35) drops out, and that the boundary evaluation of the D = 3 matter
field equations imply that

φ−ir
(0) = 0 , λr

(0)+ = 0 , (5.37)

λr
(2)− =

1
4m

γµ
(

D̂µλr
(1)+ +

1
2
Aµ+Γ3λr

(1)+

)
, (5.38)
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with the supercovariant derivatives defined in standard way. Substituting these results in (5.35),
the Aµ+ dependent term can be absorbed into redefinition of ε(0)− to yield the special super-
symmetry parameter η, and all in all, the supersymmetry transformation rules (5.35) for the
independent field disentangle into those of two separate multiplet of fields as follows (dropping
the (0) and chirality labels on the conformal supergravity fields and parameters):

Type 1:





δφ+ir
(0) = ε̄Γiλr

(0)− ,

δλr
(0)− = −1

2Γiγ
µε∂µφ+ir

(0) ,
(5.39)

Type 2:





δφ+ir
(2) = 1

4m ε̄ΓiγµD̂µλr
(1)+ + 1

m η̄Γiλr
(1)+ ,

δλr
(1)+ = −2mΓiεφ

+ir
(2) .

(5.40)

Again, we have used the terminology of Type 1 and Type 2, according to whether the multiplet
contains regular or irregular scalar fields. The result for Type 1 agrees with that of [19], where
(2,0) conformal supergravity and its coupling to a sigma model in D = 2 is constructed. All the
fields occurring in both multiplets above now have definite Weyl weights since the mixings in
the dilatation transformations (5.34) disappear upon the use of (5.37-5.38).

The algebra (5.39-5.40) closes as in (5.17). In interpreting the composite U(1) transformation,
the composite parameter must be rescaled by a2, since Aµ has been rescaled by a2, prior to
taking the limit a2 → 0. The closure of the algebra can be seen from the fact that the Type
1 and Type 2 multiplets here can be obtained from the Type 1 and Type 2 multiplets found
Section 5.1 for 0 < a2 < 1

2 , by first rescaling the scalar fields as φ → aφ and then taking a2 → 0.

6 Conclusions

In this paper we have analyzed the behaviour of (2,0) gauged supergravity coupled to matter
in D = 3 near the boundary of AdS. We have exhibited the role of the bulk supergravity
and matter field equations in determining the realization of conformal supersymmetry on the
boundary of AdS. We have found that various types of matter multiplets emerge at the boundary
in addition to a universal (2,0) conformal supergravity multiplet These multiplets involve fields
whose conformal dimensions depend on the radius of the Kählerian sigma model coset space
and on the gravitational coupling constant (set equal to 1 in most of the paper). The nature
of the boundary conformal multiplets found depends crucially on the ratio of these constants.
Interestingly, the local supersymmetry of the D = 3 theory does not fix this ratio nor the sign
of the sigma model curvature constant, though the most interesting boundary conditions turn
out to be possible for noncompact sigma model coset space whose curvature scalar is restricted
to lie in a finite range in units of the D = 3 Planck length, as discussed in Section 5. In the
case of flat sigma model manifold, we find a connection between the model of [10] and that of
Izquierdo and Townsend [9].
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We have seen that there are several subtleties in choosing the boundary conditions for the mat-
ter fields. In particular, we find that both regular and irregular boundary conditions can be
imposed on the matter fields as a consequence of the fact that scalar fields with sufficiently
negative mass-squared can be associated with CFT operators of two possible dimensions on
the boundary. In fact, this phenomenon has already been observed in [15] in the context of
AdS5 × T 1,1 compactification of Type IIB string theory. Here, we provide another example of
this phenomenon, and we find the resulting CFT supergravity plus matter symmetry transfor-
mations. Somewhat surprisingly, we also find an interesting conformal supermultiplet structure
on the boundary that involve fields which do not have definite Weyl weights but rather mix
with other fields of the multiplet under dilatations. In this novel multiplet the superconformal
symmetry is also realized in an unconventional fashion.

In the case of irregular boundary conditions the analysis had to be restricted for certain values
of the sigma model radius, referred to as Case 1 in Section 5, such that the effects of the
nonlinear contributions from the regular fields to the transformations of the irregular fields were
omitted. The inclusion of both regular and irregular fields is necessary for the interpretations
of the AdS/CFT correspondence. The study of these effects is intimately connected with the
identification of the boundary conformal field theory, which lies beyond the scope of this paper.

We conclude by commenting on some of the interesting open problems. Firstly, it is clearly
desirable to find an M-theoretic origin of the model studied here. The structure of the conformal
supermultiplets that we have found on the boundary provide information on a class of operators
which the boundary CFT must contain but do not provide the full data required to specify
uniquely the the CFT in question. It is conceivable that an M-theoretic origin of the model
exists only for a certain critical value of the sigma model curvature constant. At any rate, many
of the features encountered in the analysis of the (2, 0), AdS3 supergravity plus matter system
studied here are likely to arise in the (4, 4), AdS3 supergravity plus matter system which arises
in the AdS3 × S3 compactification of (2, 0), D = 6 supergravity coupled to tensor multiplets,
whose embedding in M-theory is known. We hope that the results presented here may give a
flavor of what to expect in that case. Indeed, these results may also prove useful in analysing
higher dimensional AdS supergravity plus matter systems as well.

It would also be interesting to extend the above analysis to a generalized setup in which the
boundary conditions are imposed on a surface which is a finite distance away from the AdS
boundary. This is expected to provide an understanding of how a supergravity plus matter sys-
tem can be localized on a brane worldvolume in a Randall-Sundrum like scenario. This leads to
normalizable bulk modes which correspond to fluctuating boundary modes. The boundary CFT,
which is dual to the matter coupled supergravity in the bulk, should therefore be supplemented
by an off-shell Lagrangian for the (fluctuating) boundary supergravity/matter modes. Thus, the
total dynamics is that of the boundary CFT plus the localized, matter coupled bulk supergravity.
In this context the unexpected result of Section 5.3, in the form of the on-shell constraint given
in (5.36), indicates that ordinary off-shell as well as chiral two-dimensional matter systems may
be localized on the brane. We finally remark that we expect the proper vacuum for this setup
to be the black string (domain wall) solution of [10], rather than the anti-de Sitter vacuum. It
would therefore be interesting to extend the bulk theory by the inclusion of two-form potentials
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and to give the supersymmetric coupling of these black strings to the bulk supergravity [20]
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