Supplementary material for the article:

Videnović, M.; Mojsin, M.; Stevanović, M.; Opsenica, I.; Srdić-Rajić, T.; Šolaja, B. Benzothiazole Carbamates and Amides as Antiproliferative Species. Eur. J. Med. Chem. 2018, 157, 1096-1114. https://doi.org/10.1016/j.ejmech.2018.08.067

Supplementary Material - I

Benzothiazole carbamates and amides as antiproliferative species

 Šolaja ${ }^{\text {, \#, }}$,*
 ${ }^{4}$ Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11010 Belgrade, Serbia
${ }^{\text {§ }}$ University of Belgrade - Faculty of Biology, Studentski trg 16, 11158 Belgrade, Serbia
\#Serbian Academy of Sciences and Arts, Knez Mihailova 35, 11158 Belgrade, Serbia
${ }^{\ominus}$ University of Belgrade - Faculty of Chemistry, Studentski trg 16, P.O. Box 51, 11158 Belgrade, Serbia $\perp_{\text {Institute for Oncology and Radiology of Serbia, Pasterova 14, } 11000 \text { Belgrade, Serbia }}$

Table of contents

HPLC purity determination methods S3-S5
General procedures for synthesis S5-S7
Detailed procedures for synthesis and spectral characterization S7-S19
In vitro antiproliferative activity against a 60 cell lines-panel - Table S1 S20
In vitro antiproliferative activity against selected cell lines - Table S2 S22
Evaluation of antiproliferative effects of compounds $\mathbf{2 8}$ and $\mathbf{3 0}$ on NT2/D1 S23
In vivo acute toxicity assay for compound $\mathbf{2 8}$ - Table S3 S24
In vivo acute toxicity assay for compound $\mathbf{3 0}$ - Table S4 S24
References S25

HPLC purity determination. Compounds were analyzed for purity (HPLC) using Agilent 1200 HPLC system equipped with a Quat Pump (G1311B), an injector (G1329B) 1260 ALS, TCC 1260 (G1316A) and a detector 1260 DAD VL + (G1315C). Compounds were dissolved in methanol, final concentrations were $\sim 1 \mathrm{mg} / \mathrm{mL}$. HPLC analysis was performed in two diverse systems for each compound.
Method A. Zorbax Eclipse Plus C18 $4.6 \times 150 \mathrm{~mm}, 1.8 \mu$, S.N. USWKY01594 was used as the stationary phase. Eluent was made of the following solvents: 0.2% formic acid in water (A) and acetonitrile (B). The analysis were performed at 280 nm for compounds $\mathbf{2 4} \mathbf{- 2 6}$ and $\mathbf{2 9 - 3 1}$; at 290 nm for compounds 28, 33, $\mathbf{3 4}$ and 41 and at 320 nm for compounds $\mathbf{4 2 - 4 6}$. Flow rate was $0.5 \mathrm{~mL} / \mathrm{min}$.

Compounds 24-26 and 29-31 were eluted using gradient protocol: $0-0.5 \mathrm{~min} 95 \% \mathrm{~A}, 0.5-3 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow$ $5 \% \mathrm{~A}, 3-13 \min 5 \% \mathrm{~A}, 13-14 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 14-16 \mathrm{~min} 95 \% \mathrm{~A}$.

Compound 28 was eluted using gradient protocol: $0-1.5 \mathrm{~min} 95 \% \mathrm{~A}, 1.5-5 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 5-16 \mathrm{~min} 5 \%$ $\mathrm{A}, 16-18 \min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 18-21 \min 95 \% \mathrm{~A}$.

Compounds $\mathbf{3 3}$ and $\mathbf{3 4}$ were eluted using gradient protocol: $0-1.5 \min 95 \% \mathrm{~A}, 1.5-5 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 5-16$ $\min 5 \% \mathrm{~A}, 16-18 \min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 18-20 \min 95 \% \mathrm{~A}$.

Compound 41 was eluted using gradient protocol: $0-1.5 \mathrm{~min} 95 \% \mathrm{~A}, 1.5-5 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 5-16 \mathrm{~min} 5 \%$ A, 16-18 min $5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}$.

Compounds $42-46$ were eluted using gradient protocol: $0-1 \mathrm{~min} 95 \% \mathrm{~A}, 1-5 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 5-16 \mathrm{~min}$ $5 \% \mathrm{~A}, 16-18 \min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}$.

Method B. Zorbax Eclipse Plus C18 $4.6 \times 150 \mathrm{~mm}, 1.8 \mu$, S.N. USWKY01594 was used as the stationary phase. Eluent was made of the following solvents: 0.2% formic acid in water (A) and methanol (B). The analysis were performed at 280 nm for compounds $\mathbf{2 4}-\mathbf{2 6}$ and $\mathbf{2 9 - 3 1}$; at 290 nm for compounds 28, $\mathbf{3 4}$ and $\mathbf{4 1}$ and at 320 nm for compounds $\mathbf{3 2}$ and $\mathbf{4 2}$ - 46. Flow rate was $0.5 \mathrm{~mL} / \mathrm{min}$.

Compounds 24-26 and 29-31 were eluted using gradient protocol: $0-0.5 \mathrm{~min} 95 \% \mathrm{~A}, 0.5-3 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow$ $5 \% \mathrm{~A}, 3-13 \mathrm{~min} 5 \% \mathrm{~A}, 13-14 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 14-16 \mathrm{~min} 95 \% \mathrm{~A}$.

Compound 28 was eluted using gradient protocol: $0-1.5 \mathrm{~min} 95 \% \mathrm{~A}, 1.5-5 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 5-16 \mathrm{~min} 5 \%$ A, $16-18 \min 5 \% A \rightarrow 95 \% A, 18-21 \min 95 \% A$.

Compound 32 was eluted using gradient protocol: $0-1 \mathrm{~min} 95 \% \mathrm{~A}, 1-5 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 5-14 \mathrm{~min} 5 \% \mathrm{~A}$, $14-15 \min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 15-16 \min 95 \% \mathrm{~A}$.

Compound 34 was eluted using gradient protocol: $0-1.5 \mathrm{~min} 95 \% \mathrm{~A}, 1.5-5 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 5-16 \mathrm{~min} 5 \%$ A, $16-18 \min 5 \% A \rightarrow 95 \% A, 18-20 \min 95 \% A$.

Compounds $41-46$ were eluted using gradient protocol: $0-1 \min 95 \% \mathrm{~A}, 1-5 \min 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 5-16 \mathrm{~min}$ $5 \% \mathrm{~A}, 16-18 \min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}$.

Method C. Zorbax Eclipse Plus C18 $2.1 \times 100 \mathrm{~mm}, 1.8 \mu$, S.N. USUXU04444 was used as the stationary phase. Eluent was made of the following solvents: water (A) and methanol (B). The analysis were performed at 320 nm for compound 32. Flow rate was $0.5 \mathrm{~mL} / \mathrm{min}$.

Compound 32 was eluted using gradient protocol: $0-1 \mathrm{~min} 95 \% \mathrm{~A}, 1-5 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 5-14 \mathrm{~min} 5 \% \mathrm{~A}$, $14-15 \min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 15-16 \min 95 \% \mathrm{~A}$.

Method D. Poroshell 120 EC-C18, $4.6 \times 50 \mathrm{~mm}, 2.7 \mu$, S.N. USCFU07797 was used as the stationary phase. Eluent was made of the following solvents: 0.2% formic acid in water (A) and acetonitrile (B). The analysis were performed at 290 nm for compound $\mathbf{3 3}$ and 280 nm for compounds 27 and $\mathbf{3 8}$. Flow rate was $1 \mathrm{~mL} / \mathrm{min}$.

Compound 33 was eluted using gradient protocol: $0-0.5 \mathrm{~min} 95 \% \mathrm{~A}, 0.5-3 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 3-13 \mathrm{~min} 5 \%$ $\mathrm{A}, 13-14 \min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 14-15 \mathrm{~min} 95 \% \mathrm{~A}$.

Compounds 27 and 38 were eluted using gradient protocol: $0-0.5 \mathrm{~min} 95 \% \mathrm{~A}, 0.5-1.5 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}$, $1.5-8 \min 5 \% \mathrm{~A}, 8-9 \min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 9-10 \min 95 \% \mathrm{~A}$.

Method E. Zorbax Eclipse Plus C18 $4.6 \times 150 \mathrm{~mm}, 1.8 \mu$, S.N. USWKY01594 was used as the stationary phase. Eluent was made of the following solvents: water (A) and acetonitrile (B). The analysis were performed at 280 nm for compound $\mathbf{3 7}$ and at 290 nm for compounds $\mathbf{3 5}$ and $\mathbf{3 6}$. Flow rate was $0.5 \mathrm{~mL} / \mathrm{min}$.

Compounds 35 and 36 were eluted using gradient protocol: $0-1 \min 95 \% \mathrm{~A}, 1-6 \min 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 6-13$ $\min 5 \% \mathrm{~A}, 13-14 \min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 14-17 \mathrm{~min} 95 \% \mathrm{~A}$.

Compound 37 was eluted using gradient protocol: $0-1 \mathrm{~min} 95 \% \mathrm{~A}, 1-5 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 5-16 \mathrm{~min} 5 \% \mathrm{~A}$, $16-17 \min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 17-18 \min 95 \% \mathrm{~A}$.

Method F. Zorbax Eclipse Plus C18 $4.6 \times 150 \mathrm{~mm}, 1.8 \mu$, S.N. USWKY01594 was used as the stationary phase. Eluent was made of the following solvents: water (A) and methanol (B). The analysis were performed at 290 nm for compounds $\mathbf{3 5}$ and $\mathbf{3 6}$ and at 280 nm for compound $\mathbf{3 7}$. Flow rate was $0.5 \mathrm{~mL} / \mathrm{min}$.

Compounds 35 and 36 were eluted using gradient protocol: $0-1 \min 95 \% \mathrm{~A}, 1-6 \min 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 6-13$ $\min 5 \% \mathrm{~A}, 13-14 \min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 14-17 \min 95 \% \mathrm{~A}$.

Compound 37 was eluted using gradient protocol: $0-1 \mathrm{~min} 95 \% \mathrm{~A}, 1-5 \min 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 5-16 \mathrm{~min} 5 \% \mathrm{~A}$, $16-17 \min 5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 17-18 \mathrm{~min} 95 \% \mathrm{~A}$.

Method G. Zorbax Eclipse Plus C18 $2.1 \times 100 \mathrm{~mm}, 1.8 \mu$, S.N. USUXU04444 was used as the stationary phase. Eluent was made of the following solvents: 0.2% formic acid in water (A) and methanol (B). The analysis were performed at 295 nm for compounds $\mathbf{3 9}$ and $\mathbf{4 0}$. Flow rate was $0.5 \mathrm{~mL} / \mathrm{min}$.

Compounds 39 and 40 were eluted using gradient protocol: $0-1 \min 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 1-7 \mathrm{~min} 5 \% \mathrm{~A}, 7-8 \mathrm{~min}$ $5 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 8-10 \min 95 \% \mathrm{~A}$.

Method H. Zorbax Eclipse Plus C18 $2.1 \times 100 \mathrm{~mm}, 1.8 \mu$, S.N. USUXU04444 was used as the stationary phase. Eluent was made of the following solvents: 0.2% formic acid in water (A) and acetonitrile (B). The analysis were performed at 295 nm for compound 39. Flow rate was $0.5 \mathrm{~mL} / \mathrm{min}$.

Compound 39 was eluted using gradient protocol: $0-1 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 1-7 \mathrm{~min} 5 \% \mathrm{~A}, 7-8 \mathrm{~min} 5 \% \mathrm{~A} \rightarrow$ $95 \% \mathrm{~A}, 8-10 \mathrm{~min} 95 \% \mathrm{~A}$.

Method I. Poroshell 120 EC-C18, $4.6 \times 50 \mathrm{~mm}, 2.7 \mu$, S.N. USCFU07797 was used as the stationary phase. Eluent was made of the following solvents: 0.2% formic acid in water (A) and methanol (B). The analysis were performed at 280 nm for compounds 27 and 38 and at 295 nm for compound $\mathbf{3 7}$. Flow rate was $0.5 \mathrm{~mL} / \mathrm{min}$.

Compounds 27 and 38 were eluted using protocol: $0-0.5 \mathrm{~min} 95 \% \mathrm{~A}, 0.5-1.5 \mathrm{~min} 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 1.5-8 \mathrm{~min}$ $5 \% \mathrm{~A}, 8-95 \% \mathrm{~A} \rightarrow 95 \% \mathrm{~A}, 9-10 \mathrm{~min} 95 \% \mathrm{~A}$.

Compound 40 was eluted using protocol: $0-1 \mathrm{~min} 95 \% \mathrm{~A}, 1-2 \min 95 \% \mathrm{~A} \rightarrow 5 \% \mathrm{~A}, 2-10 \mathrm{~min} 5 \% \mathrm{~A}, 10-115 \%$ $\mathrm{A} \rightarrow 95 \% \mathrm{~A}, 11-12 \min 95 \% \mathrm{~A}$.

General procedure A for synthesis of 4-(alkylthio)anilines 13 - 16 ${ }^{1}$

The appropriate alkylthiol (1.5 eq) was added to the mixture containing 1 -chloro-4-nitrobenzene (1 eq), potassium hydroxide (3 eq) and PEG as a solvent. The reaction mixture was stirred at $100{ }^{\circ} \mathrm{C}$ for 3.5 h and then poured onto the water. After the extraction with ethyl acetate, combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness. The crude product was subjected to silica gel column chromatography using hexane/ethyl acetate as eluent to afford the final product.
General procedure B for synthesis of 6-(alkylsulfanyl)-1,3-benzothiazol-2-amines $\mathbf{1 9 - 2 2}$: A solution of bromine (1.25 eq) in acetic acid was added to a stirring mixture of an appropriate 4-(alkylthio)aniline (1 eq), ammonium thiocyanate (4 eq), acetic acid and water at $10{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 18 h , and then at $80^{\circ} \mathrm{C}$ for 3 h . After cooling to room temperature, the reaction mixture was poured onto water and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added in order to adjust pH to $5-6$. The reaction mixture was extracted with
ethyl acetate, layers were separated and organic layer was washed with brine. Organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness. The crude product was subjected to silica gel column chromatography using $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{OH}$ (or hexane/EtOAc for 22) as eluent and reversed-phase flash chromatography, Biotage SP 1 , using $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}$ as eluent to afford the final product.
General procedure \mathbf{C} for synthesis of (6-substituted-1,3-benzo[d]thiazol-2-yl)carbamates $\mathbf{2 4} \mathbf{- 2 6 , 2 9 , 3 1}$ and 32: A solution of bromine (1.25 eq) in glacial acetic acid was added to a stirring mixture of an appropriate 4 -substituted aniline (1 eq), ammonium thiocyanate (4 eq), acetic acid and water at $10{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at room temperature for 18 h , and then at $80^{\circ} \mathrm{C}$ for 3 h . After cooling to room temperature, the reaction mixture was poured onto water and $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added in order to adjust pH to $5-6$. The reaction mixture was extracted with ethyl acetate, layers were separated and organic layer was washed with brine. Organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness. The crude product 6substituted benzothiazolamine was used in the next reaction step. An appropriate alkyl chloroformate (1.1 eq) and triethylamine (1.8 eq) were added to a solution of 6 -substituted benzothiazolamine in benzene. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 3 h , and then poured onto cold water and extracted with ethyl acetate. Combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness. The crude product was further purified in a manner provided for each compound.
General procedure D for synthesis of compounds 28, 30 and 33 - 37: An appropriate alkyl chloroformate (1.1 eq) and triethylamine (1.8 eq) were added to a solution of corresponding 6-(alkylsulfanyl)-1,3-benzothiazol-2-amine (1 eq) in benzene. After 3 h of stirring at $80^{\circ} \mathrm{C}$ the reaction mixture was poured onto water and extracted with ethyl acetate. Combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness. The crude product was subjected to silica gel column chromatography and silica gel flash chromatography, Biotage SP1, using hexane/ethyl acetate as eluent to afford the final product.

General procedure E for synthesis of N-[6-(propylsulfanyl)-1,3-benzothiazol-2-yl]alkanamides 41 - 46: The alkanoyl chlorides were prepared according to known procedures using an appropriate commercially available acids and thionyl chloride as starting materials. ${ }^{2}$ A solution of an appropriate alkanoyl chloride (1.3 $\mathrm{eq})$ in benzene was added dropwise into the solution of corresponding benzothiazolamine (1 eq) ($\mathbf{1 9}$ or 20) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ benzene $(1: 1, \mathrm{v} / \mathrm{v})$ at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature until consumption of starting benzothiazolamine (TLC control). The reaction was quenched with cold water. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness. The crude product was subjected to a multiple column chromatography to afford desired compound.

General procedure \mathbf{F} for synthesis of compounds 27 and $38:^{3}$

To a stirring solution of $\mathbf{2 4}(1 \mathrm{eq})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, MCPBA (1 eq for $\mathbf{3 8}$ and 4 eq for 27) was added. After stirring (4 h in the dark for 38 and 16 h for 27) at room temperature, 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution was added. The layers were separated, organic layer was washed with saturated aqueous NaHCO_{3} solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and evaporated to dryness. The crude product was further purified in a manner provided for each compound

General procedure G for synthesis of compounds 39 and 40: ${ }^{4}$ To a solution of $\mathbf{2 8}$ (1 eq) in methanol, acetonitrile (1.5 eq) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.7 \mathrm{eq})$ were added. The mixture is cooled to $0{ }^{\circ} \mathrm{C}$ with vigorous stirring and hydrogen-peroxide (1.2 eq for 39 and 4 eq for $\mathbf{4 0}$) was added dropwise as a solution in methanol over 30 minutes. The reaction was maintained at $0{ }^{\circ} \mathrm{C}$ four hours (for $\mathbf{3 9}$) or at room temperature overnight (for 40). After consumption of starting material, the mixture is poured onto brine and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to dryness. The crude product was further purified in a manner provided for each compound.

4-(Propyl)thioaniline (13)

The general procedure A was followed using 1-propanethiol ($471 \mathrm{mg}, 6.18 \mathrm{mmol}$), 1-chloro-4-nitrobenzene ($650 \mathrm{mg}, 4.12 \mathrm{mmol}$), potassium-hydroxide ($694 \mathrm{mg}, 12.4 \mathrm{mmol}$) and PEG-600 (19 mL) to afford 433 mg of final product as brown oil. Yield 63%. IR (ATR): $3456 \mathrm{~m}, 3349 \mathrm{~s}, 3214 \mathrm{~m}, 3026 \mathrm{~m}, 2961 \mathrm{~s}, 2928 \mathrm{~s}, 2870 \mathrm{~m}, 1620 \mathrm{~s}, 1596 \mathrm{~s}, 1494 \mathrm{~s}, 1457 \mathrm{~m}$, $1377 \mathrm{~m}, 1284 \mathrm{~s}, 1236 \mathrm{~m}, 1176 \mathrm{~m}, 1146 \mathrm{~m}, 1089 \mathrm{~m}, 1011 \mathrm{~m}, 821 \mathrm{~m}, 734 \mathrm{w}, 629 \mathrm{w}, 515 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta\right): 7.23(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.77-2.71(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.54(\mathrm{~m}, 2 \mathrm{H}), 0.97(\mathrm{t}$, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $145.54,133.69,123.78,115.52,38.33,22.62,13.22$.

4-(Butylthio)aniline (14)

The general procedure A was followed using 1-butanethiol ($204 \mu \mathrm{~L}, 1.904 \mathrm{mmol}$), 1-chloro-4-nitrobenzene ($200 \mathrm{mg}, 1.27 \mathrm{mmol}$), potassium-hydroxide ($214 \mathrm{mg}, 3.81$ mmol) and PEG-1000 (6 g) to afford 111.7 mg of final product as brown oil. Yield 49%. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 7.23(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{bs}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.58-1.52$ $(\mathrm{m}, 2 \mathrm{H}), 1.44-1.36(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 145.61,133.67,123.92$, 115.57, 36.05, 31.49, 21.79, 13.63.

[4-(Isobutylthio)phenyl]amine (15)

The general procedure A was followed using 2-methyl-1-propanthiol (516 $\mu \mathrm{L}, 4.75$ mmol), 1-chloro-4-nitrobenzene $(500 \mathrm{mg}, 3.17 \mathrm{mmol}$), potassium-hydroxide (534 mg ,
9.52 mmol) and PEG-600 (15 mL) to afford 110.1 mg of final product as a brown oil. Yield 19%. IR (ATR): $3462 \mathrm{~m}, 3360 \mathrm{~m}, 3217 \mathrm{~m}, 3023 \mathrm{~m}, 2956 \mathrm{~s}, 2926 \mathrm{~m}, 2868 \mathrm{~m}, 1621 \mathrm{~s}, 1598 \mathrm{~s}, 1494 \mathrm{~s}, 1462 \mathrm{~m}, 1282 \mathrm{~m}, 1245 \mathrm{~m}, 1175 \mathrm{~m}$, $822 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $7.22(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{bs}, 2 \mathrm{H})$, $2.66(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.76(\mathrm{sep}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.99(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 145.54, 133.47, 124.42, 115.56, 45.52, 28.18, 21.89. (+)ESI-HRMS: $m / z 182.09943$ corresponds to molecular formula $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NSH}^{+}$(error, -2.02 ppm).

4-(Pentylthio)aniline (16)

The general procedure A was followed using 1-pentanethiol ($472 \mu \mathrm{~L}, 3.80 \mathrm{mmol}$), 1-chloro-4-nitrobenzene ($400 \mathrm{mg}, 2.54 \mathrm{mmol}$), potassium-hydroxide ($428 \mathrm{mg}, 7.63$ mmol) and PEG-600 (12 mL) to afford 156 mg of final product as yellow oil. Yield 31%. IR (ATR): 3459 m , $3362 \mathrm{~s}, 3213 \mathrm{~m}, 3026 \mathrm{~m}, 2956 \mathrm{~s}, 2927 \mathrm{~s}, 2857 \mathrm{~s}, 1621 \mathrm{~s}, 1597 \mathrm{~s}, 1495 \mathrm{~s}, 1462 \mathrm{~m}, 1378 \mathrm{w}, 1336 \mathrm{~m}, 1283 \mathrm{~s}, 1177 \mathrm{~m}$, $1111 \mathrm{w}, 1094 \mathrm{w}, 822 \mathrm{~m}, 518 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $7.22(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, 2H), $3.72(\mathrm{bs}, 2 \mathrm{H}), 2.76(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.39-1.26(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}, \delta\right)$: 145.62, 133.65, 123.91, 115.56, 36.34, 30.86, 29.06, 22.24, 13.95. (+)ESIHRMS: $m / z 196.11548$ corresponds to molecular formula $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NSH}^{+}$(error, +0.15 ppm).

6-(Propylsulfanyl)-1,3-benzothiazol-2-amine (19)

The general procedure B was followed using solution of bromine ($215 \mu \mathrm{~L}, 4.20$ mmol) in acetic acid (1.4 mL), 4-(propylthio)aniline ($562.7 \mathrm{mg}, 3.364 \mathrm{mmol}$), ammonium thiocyanate $(1.02 \mathrm{~g}, 13.4 \mathrm{mmol})$, acetic acid (5.6 mL) and water $(0.3 \mathrm{~mL})$ to afford 617.2 mg of final product as pale yellow solid. Yield 82%. M.p. $=(115-117)^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{ATR}): 3369 \mathrm{~s}, 3290 \mathrm{~m}, 3092 \mathrm{~s}, 2962 \mathrm{~s}$, 2924s, 2863m, 2753m, 1641s, 1589m, 1532s, 1445s, 1300m, 1268m, 1117m, 1001w, 894w, 876w, $810 \mathrm{~m} \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 7.60(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=\right.$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \delta\right): 166.69,151.66,131.89,128.24,126.78,122.76,117.93,36.32,22.04,13.04 .(+)$ ESI-HRMS: m / z 225.05194 corresponds to molecular formula $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, +2.10 ppm).

6-(Butylsulfanyl)-1,3-benzothiazol-2-amine (20)

The general procedure B was followed using solution of bromine (209 $\mu \mathrm{L}, 4.08$ mmol) in acetic acid (2.1 mL), 4-(butylthio)aniline 14 ($593 \mathrm{mg}, 3.27 \mathrm{mmol}$), ammonium thiocyanate ($995.6 \mathrm{mg}, 13.08 \mathrm{mmol}$), acetic acid (8.5 mL) and water (0.45 mL) to afford 725 mg of final product as pale yellow solid. Yield 93%. M.p. $=(96-98)^{\circ} \mathrm{C}$. IR (ATR): 3397s, 3277m, 3084m, 2962s, $2928 \mathrm{~s}, 2871 \mathrm{~m}, 2736 \mathrm{w}, 1635 \mathrm{~s}, 1591 \mathrm{~m}, 1529 \mathrm{~s}, 1453 \mathrm{~s}, 1299 \mathrm{~m}, 1271 \mathrm{~m}, 1110 \mathrm{~m}, 809 \mathrm{~m}, 766 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR (500
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 7.61(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.34\left(\mathrm{dd}, J_{1}=8.3 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.21$ (bs, 2H), $2.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.40(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 165.77,150.85,132.32$, 129.71, 129.18, 123.12, 119.36, 35.27, 31.35, 21.84, 13.61. $(+)$ ESI-HRMS: $m / z 239.06740$ corresponds to molecular formula $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, +1.18 ppm).

6-(Isobutylthio)-1,3-benzothiazol-2-amine (21)

The general procedure B was followed using solution of bromine ($36 \mu \mathrm{~L}, 0.70 \mathrm{mmol}$) in acetic acid (0.4 mL), 4-(isobutylthio)aniline 15 ($83 \mathrm{mg}, 0.56 \mathrm{mmol}$), ammonium thiocyanate $(170.3 \mathrm{mg}, 2.237 \mathrm{mmol})$, acetic acid $(1.5 \mathrm{~mL})$ and water $(70 \mu \mathrm{~L})$ to afford 72.2 mg of final product as yellow solid. Yield 54%. M.p. $=(129-131)^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{ATR}): 3354 \mathrm{~m}, 3290 \mathrm{~m}, 3234 \mathrm{~m}$, $3080 \mathrm{~s}, 2959 \mathrm{~s}, 2748 \mathrm{w}, 1642 \mathrm{~s}, 1588 \mathrm{w}, 1526 \mathrm{~s}, 1440 \mathrm{~s}, 1365 \mathrm{w}, 1332 \mathrm{w}, 1301 \mathrm{~m}, 1269 \mathrm{~m}, 1114 \mathrm{~m}, 821 \mathrm{~m} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $7.61(\mathrm{bs}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.3-7.32(\mathrm{~m}, 1 \mathrm{H}), 5.47(\mathrm{bs}, 2 \mathrm{H}), 2.78(\mathrm{~d}, J$ $=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{sep}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 165.83$, 150.80, 132.31, 130.16, 129.10, 123.02, 119.35, 44.68, 28.24, 21.94. (+)ESI-HRMS $m / z 239.06666$ corresponds to molecular formula $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, -1.89 ppm).

6-(Pentylsulfanyl)-1,3-benzothiazol-2-amine (22)

The general procedure B was followed using solution of bromine ($42 \mu \mathrm{~L}, 0.82$ $\mathrm{mmol})$ in acetic acid (0.5 mL), 4-(pentylthio)aniline 16 ($129 \mathrm{mg}, 0.660 \mathrm{mmol}$), ammonium thiocyanate ($201 \mathrm{mg}, 2.64 \mathrm{mmol}$), acetic acid $(2 \mathrm{~mL})$ and water $(0.1 \mathrm{~mL})$ to afford 68.8 mg of final product as yellow oil. Yield 56%. IR (ATR): $3429 \mathrm{~m}, 3279 \mathrm{~m}, 3075 \mathrm{~s}, 2957 \mathrm{~s}, 2927 \mathrm{~s}, 2859 \mathrm{~s}, 2730 \mathrm{~m}, 1643 \mathrm{~s}$, $1588 \mathrm{~m}, 1526 \mathrm{~s}, 1452 \mathrm{~s}, 1372 \mathrm{~m}, 1338 \mathrm{~m}, 1319 \mathrm{~m}, 1298 \mathrm{~m}, 1271 \mathrm{~m}, 1106 \mathrm{~m}, 1045 \mathrm{w}, 894 \mathrm{w}, 814 \mathrm{~m} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 7.61(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33\left(\mathrm{dd}, J_{1}=8.2 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $5.46(\mathrm{~s}, 2 \mathrm{H}), 2.89-2.86(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.28(\mathrm{~m}, 4 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $165.85,150.89,132.32,129.70,129.17,123.11,119.35,35.57,30.88,28.95,22.21$, 13.93. (+)ESI-HRMS: $m / z 235.08255$ corresponds to molecular formula $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, -0.85 ppm).

Ethyl [6-(ethylsulfanyl)-1,3-benzothiazol-2-yl]carbamate (24)

The general procedure C was followed using a solution of bromine ($101 \mu \mathrm{~L}, 1.97$ mmol) in glacial acetic acid (1 mL), 4-(ethylthio)aniline hydrochloride (300 mg , 1.58 mmol), ammonium thiocyanate ($481 \mathrm{mg}, 6.32 \mathrm{mmol}$), glacial acetic acid (4 $\mathrm{mL})$ and water $(0.15 \mathrm{~mL})$. The crude product was dissolved in benzene $(5 \mathrm{~mL})$ and subjected to the next reaction step including ethyl chloroformate ($165 \mu \mathrm{~L}, 1.73 \mathrm{mmol}$) and triethylamine ($395 \mu \mathrm{~L}, 2.83 \mathrm{mmol}$). 179.4 mg of the final product was obtained after crystallization from benzene as pale yellow solid. Yield 40%. M.p. $=$
($162-165)^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{ATR}): 3432 \mathrm{w}, 3400 \mathrm{w}, 3162 \mathrm{~m}, 3124 \mathrm{~m}, 3079 \mathrm{~m}, 3045 \mathrm{~m}, 2973 \mathrm{~s}, 2924 \mathrm{~s}, 2776 \mathrm{~m}, 1720 \mathrm{~s}$, $1599 \mathrm{~s}, 1557 \mathrm{~s}, 1444 \mathrm{~s}, 1364 \mathrm{~m}, 1290 \mathrm{~s}, 1250 \mathrm{~s}, 1119 \mathrm{~m}, 1070 \mathrm{~m}, 1048 \mathrm{~m}, 1021 \mathrm{w}, 820 \mathrm{~m}, 757 \mathrm{~m} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \delta\right): 7.96(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $4.24(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.98(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \delta\right): 159.53,153.88,147.84 ; 132.61,130.26,127.58,121.85,120.52,61.94,27.48,14.30$. $(+)$ ESI-HRMS: $m / z 283.05655$ corresponds to molecular formula $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, -1.38 ppm). HPLC purity, method $A: t_{R}=8.695$, area 99.27%. Method $B: t_{R}=9.906$, area 96.29%.

Ethyl [6-(propylsulfanyl)-1,3-benzothiazol-2-yl]carbamate (25)

The general procedure C was followed using a solution of bromine ($63 \mu \mathrm{~L}, 1.2$ $\mathrm{mmol})$ in glacial acetic acid (0.5 mL), 4-(propylthio) aniline hydrochloride (200 $\mathrm{mg}, 0.982 \mathrm{mmol}$), ammonium thiocyanate ($299 \mathrm{mg}, 3.93 \mathrm{mmol}$), glacial acetic acid $(2.5 \mathrm{~mL})$ and water $(0.1 \mathrm{~mL})$. The crude product was dissolved in benzene $(5 \mathrm{~mL})$ and subjected to the next reaction step including ethyl chloroformate $(103 \mu \mathrm{~L}, 1.08 \mathrm{mmol})$ and triethylamine ($246 \mu \mathrm{~L}, 1.76 \mathrm{mmol}$). The crude product was subjected to silica gel column chromatography using hexane/ethyl acetate as eluent, to afford 60 mg of final product as pale yellow solid. Yield 21%. M.p. $=(158-162)^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{ATR}): 3135 \mathrm{w}, 3076 \mathrm{w}$, $2957 \mathrm{~m}, 2909 \mathrm{~m}, 2869 \mathrm{~m}, 2782 \mathrm{~m}, 1725 \mathrm{~s}, 1597 \mathrm{~s}, 1561 \mathrm{~s}, 1453 \mathrm{~s}, 1428 \mathrm{~m}, 1270 \mathrm{~s}, 1243 \mathrm{~s}, 1110 \mathrm{~m}, 1069 \mathrm{~m}, 1045 \mathrm{~m}$, $1022 \mathrm{~m}, 816 \mathrm{~m}, 759 \mathrm{~m}, 707 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \delta\right): 12.00(\mathrm{bs}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36\left(\mathrm{dd}, J_{l}=8.5 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.24(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(50 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \delta\right)$: $159.85,154.23,148.00,132.89,130.76,127.84,122.09,120.78,62.20,35.57,22.22,14.52,13.34 .(+) E S I-$ HRMS: $m / z 297.07191$ corresponds to molecular formula $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, -2.30 ppm). HPLC purity, method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=9.194$, area 99.67%. Method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=10.528$, area 99.44%.

Propyl (6-ethoxy-1,3-benzothiazol-2-yl)carbamate (26)

The general procedure C was followed using a solution of bromine ($93 \mu \mathrm{~L}, 1.8$ $\mathrm{mmol})$ in glacial acetic acid (0.5 mL), 4-ethoxyaniline ($188 \mu \mathrm{~L}, 1.46 \mathrm{mmol}$), ammonium thiocyanate ($444 \mathrm{mg}, 5.83 \mathrm{mmol}$), glacial acetic acid $(2.5 \mathrm{~mL})$ and water $(0.1 \mathrm{~mL})$. The crude product was dissolved in benzene $(5 \mathrm{~mL})$ and subjected to the next reaction step including propyl chloroformate ($180 \mu \mathrm{~L}, 1.6 \mathrm{mmol}$) and triethylamine ($366 \mu \mathrm{~L}, 2.63 \mathrm{mmol}$). The crude product was subjected to silica gel column chromatography using hexane/ethyl acetate as eluent. After the crystallization from benzene 100.7 mg of final product was obtained as pale yellow solid. Yield 25%. M.p. $=$ (168-169) ${ }^{\circ} \mathrm{C}$. IR (ATR): 3161w, 3081m, 2977s, 2933m, 2802m, 1718s, 1612s, 1562s, 1463s, 1391m, 1272s, 1242s, 1212s, 1113m, 1057s, $971 \mathrm{w}, 941 \mathrm{~m}, 792 \mathrm{~m}, 760 \mathrm{~m} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \delta\right): 11.83$ (bs,
$1 \mathrm{H}), 7.56(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.97\left(\mathrm{dd}, J_{I}=8.7 \mathrm{~Hz}, J_{2}=2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.14(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.04(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.33(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, (CD $\left.\left.)_{2}\right)_{2} \mathrm{SO}, \delta\right): 157.46,155.12,143.28,132.76,120.81,114.97,105.47,67.16,63.62,21.73$, 14.70, 10.13. (+)ESI-HRMS: $m / z 281.09541$ corresponds to molecular formula $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{SH}^{+}$(error, -0.10 ppm). HPLC purity, method $A: t_{R}=8.520$, area 99.48%. Method $B: t_{R}=9.741$, area 96.69%.

Ethyl [6-(ethanesulfonyl)-1,3-benzothiazol-2-yl]carbamate (27)

The general procedure F was followed using $24(50 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL) and MCPBA ($122 \mathrm{mg}, 0.707 \mathrm{mmol}$). The 30.5 mg of final product was obtained as pale yellow solid. Yield 55%. M.p. $=(257-259)^{\circ} \mathrm{C}$. IR: 3121 m , $3072 \mathrm{w}, 2979 \mathrm{~m}, 2944 \mathrm{~m}, 2775 \mathrm{w}, 1721 \mathrm{~s}, 1602 \mathrm{~m}, 1556 \mathrm{~s}, 1450 \mathrm{~m}, 1307 \mathrm{~s}, 1254 \mathrm{~m}$, 1150s, $1103 \mathrm{w}, 1044 \mathrm{w}, 1018 \mathrm{w}, 830 \mathrm{w}, 786 \mathrm{w}, 757 \mathrm{w}, 715 \mathrm{w} \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \delta\right): 12.37$ (bs, $1 \mathrm{H}), 8.58(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.85(\mathrm{~m}, 2 \mathrm{H}), 4.28(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.31-3.28(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \delta\right): 163.77,153.80,152.94,132.42$, $132.16,125.29,122.37,120.27,62.05,49.76,14.12,7.18$. (+)ESI-HRMS: $m / z 315.04662$ corresponds to molecular formula $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, -0.48 ppm). HPLC purity, method $\mathrm{D}: \mathrm{t}_{\mathrm{R}}=4.187$, area 95.46%. Method $\mathrm{I}: \mathrm{t}_{\mathrm{R}}=4.662$, area 95.51%.

Propyl [6-(propylsulfanyl)-1,3-benzothiazol-2-yl]carbamate (28)

The general procedure D was followed using propyl chloroformate ($854 \mu \mathrm{~L}$,
 $7.60 \mathrm{mmol})$, triethylamine ($1.75 \mathrm{~mL}, 12.4 \mathrm{mmol}$), $19(1.55 \mathrm{~g}, 6.91 \mathrm{mmol})$ and benzene (18 mL). The final product was obtained as pale yellow solid. The yield was $778 \mathrm{mg}(47 \%)$. M.p. $=(138-140){ }^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{ATR}): 3167 \mathrm{~m}, 3062 \mathrm{~m}$, 2960s, $2932 \mathrm{~m}, 2876 \mathrm{~m}, 1724 \mathrm{~s}, 1598 \mathrm{~s}, 1562 \mathrm{~s}, 1449 \mathrm{~m}, 1447 \mathrm{~s}, 1308 \mathrm{~m}, 1273 \mathrm{~s}, 1244 \mathrm{~s}, 1047 \mathrm{~m}, 962 \mathrm{w}, 888 \mathrm{w}, 805 \mathrm{~m}$, $782 \mathrm{~m}, 755 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \delta\right): 12.01(\mathrm{bs}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.36\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.15(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.63$ $(\mathrm{m}, 2 \mathrm{H}), 1.61-1.54(\mathrm{~m}, 2 \mathrm{H}), 0.98-0.92(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \delta\right): 159.54,154.00,147.74$, 132.61, 130.49, 127.58, 121.82, 120.49, 67.28, 35.38, 21.99, 21.68, 13.09, 10.10. (+)ESI-HRMS: m/z 311.08810 corresponds to molecular formula $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, -0.47 ppm). HPLC purity, method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=$ 11.532, area 98.23%. Method $B: \mathrm{t}_{\mathrm{R}}=13.159$, area 98.53%.

Ethyl [6-(butylsulfanyl)-1,3-benzothiazol-2-yl]carbamate (29)

The general procedure C was followed using a solution of bromine $(90 \mu \mathrm{~L}$, 1.8 mmol) in glacial acetic acid (1 mL), 4-(butylthio)aniline (14) (253.9 mg , 1.400 mmol), ammonium thiocyanate ($426 \mathrm{mg}, 5.60 \mathrm{mmol}$), glacial acetic acid $(4 \mathrm{~mL})$ and water $(0.15 \mathrm{~mL})$. The crude product was dissolved in benzene $(5 \mathrm{~mL})$ and subjected to the next reaction step including ethyl chloroformate $(147 \mu \mathrm{~L}, 1.54 \mathrm{mmol})$ and triethylamine ($351 \mu \mathrm{~L}, 2.52 \mathrm{mmol}$). The crude product was subjected to silica gel column chromatography using hexane/ethyl acetate as eluent. The final product was obtained after crystallization from benzene as 83.2 mg of pale yellow solid. Yield 19%. M.p. $=$ (138-140) ${ }^{\circ} \mathrm{C}$. IR (ATR): 3139m, 3072s, 2983s, 2954s, 2931s, 2865s, 2794s, 1724s, 1603s, 1570s, 1452s, $1366 \mathrm{~m}, 1340 \mathrm{~m}, 1313 \mathrm{~m}, 1293 \mathrm{~s}, 1274 \mathrm{~s}, 1250 \mathrm{~s}, 1113 \mathrm{~m}, 1070 \mathrm{~m}, 1048 \mathrm{~m}, 1022 \mathrm{~m}, 816 \mathrm{~s}, 781 \mathrm{~m}, 760 \mathrm{~s}, 708 \mathrm{~m} \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 11.90(\mathrm{bs}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.40\left(\mathrm{dd}, J_{I}=\right.$ $\left.8.4 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.41(\mathrm{q}, ~ J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.41(\mathrm{~m}$, $5 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \delta\right): 161.39,153.81,147.21,132.40,131.82$, $128.33,122.21,120.81,62.88,34.73,31.28,21.89,14.46,13.63$. (+)ESI-HRMS: $m / z 311.08801$ corresponds to molecular formula $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, -0.76 ppm). HPLC purity, method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=9.757$, area 97.08%. Method B: $\mathrm{t}_{\mathrm{R}}=11.594$, area 96.14%.

Propyl [6-(butylsulfanyl)-1,3-benzothiazol-2-yl]carbamate (30)

The general procedure D was followed using propyl chloroformate (713 $\mu \mathrm{L}, 6.34 \mathrm{mmol})$, triethylamine ($1.45 \mathrm{~mL}, 10.4 \mathrm{mmol}$), $20(1.37 \mathrm{~g}, 5.77$ mmol) and benzene (29 mL). The final product was obtained as yellow solid. The yield was 543 mg (29\%). M.p. $=130^{\circ} \mathrm{C}$. IR (ATR): 3169m, 3068m, 2960s, 2926s, $2785 \mathrm{~m}, 1725 \mathrm{~s}$, $1601 \mathrm{~m}, 1564 \mathrm{~m}, 1451 \mathrm{~m}, 1288 \mathrm{~m}, 1247 \mathrm{~m}, 1070 \mathrm{w}, 818 \mathrm{w}, 752 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 11.35$ (bs, $1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.30(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 2 \mathrm{H}), 2.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 161.06,153.80,147.35,132.54,131.83$, 128.42, 122.29, 120.83, 68.53, 34.77, 31.31, 22.14, 21.91, 13.65, 10.32. (+)ESI-HRMS: $m / z 325.10408$ corresponds to molecular formula $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, +0.56 ppm). HPLC purity, method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=10.371$, area 96.76%. Method $B: t_{R}=12.388$, area 98.58%.

Butyl [6-(propylsulfanyl)-1,3-benzothiazol-2-yl]carbamate (31)

The general procedure C was followed using a solution of bromine ($94 \mu \mathrm{~L}$, 1.8 mmol) in glacial acetic acid (1 mL), 4-(propylthio)aniline
hydrochloride ($300 \mathrm{mg}, 1.47 \mathrm{mmol}$), ammonium thiocyanate ($448 \mathrm{mg}, 5.88 \mathrm{mmol}$), glacial acetic acid (4 mL) and water $(0.15 \mathrm{~mL})$. The crude product was dissolved in benzene $(5 \mathrm{~mL})$ and subjected to the next reaction step including butyl chloroformate ($205 \mu \mathrm{~L}, 1.61 \mathrm{mmol}$) and triethylamine ($369 \mu \mathrm{~L}, 2.65 \mathrm{mmol}$). The crude product was subjected to silica gel column chromatography using hexane/ethyl acetate as eluent and then crystallized from benzene as pale yellow solid. The yield was $133 \mathrm{mg}, 28 \%$. M.p. $=(74-80){ }^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{ATR}): 3170 \mathrm{~m}$, $3070 \mathrm{~m}, 2961 \mathrm{~s}, 2931 \mathrm{~s}, 2872 \mathrm{~m}, 1721 \mathrm{~s}, 1602 \mathrm{~s}, 1562 \mathrm{~s}, 1456 \mathrm{~m}, 1293 \mathrm{~s}, 1248 \mathrm{~s}, 1074 \mathrm{w}, 814 \mathrm{w}, 762 \mathrm{wcm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \delta\right): 7.94(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35\left(\mathrm{dd}, J_{l}=8.5 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.19(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.41-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \delta\right): 159.60,154.04,147.74,132.63,130.53$, $127.60,121.84,120.51,65.59,35.43,30.34,22.02,18.50,13.55,13.11$. (+)ESI-HRMS: $m / z 325.10391$ corresponds to molecular formula $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, +0.05 ppm). HPLC purity, method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=10.346$, area 99.78%. Method $B: t_{R}=11.916$, area 99.36%.

Propyl [6-(ethylsulfanyl)-1,3-benzothiazol-2-yl]carbamate (32)

 The general procedure C was followed using a solution of bromine ($101 \mu \mathrm{~L}, 1.80$ mmol) in glacial acetic acid (1 mL), 4-(propylthio) aniline hydrochloride (300 mg , 1.58 mmol), ammonium thiocyanate ($481 \mathrm{mg}, 6.32 \mathrm{mmol}$), glacial acetic acid (4 $\mathrm{mL})$ and water $(0.15 \mathrm{~mL})$. The crude product was dissolved in benzene $(7 \mathrm{~mL})$ and subjected to the next reaction step including propyl chloroformate ($195 \mu \mathrm{~L}, 1.73 \mathrm{mmol}$) and triethylamine ($396 \mu \mathrm{~L}, 2.84 \mathrm{mmol}$). The crude product was subjected to silica gel column chromatography using hexane/ethyl acetate as eluent and reversedphase flash chromatography, Biotage SP1, using $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}$ as eluent to afford 125 mg of final product as pale yellow solid. Yield 27%. M.p. $=(137-138)^{\circ} \mathrm{C}$. IR (ATR): 3062m, 2968s, 2922s, 1717s, 1600m, 1562m, $1445 \mathrm{~m}, 1396 \mathrm{w}, 1287 \mathrm{~m}, 1248 \mathrm{~m}, 1072 \mathrm{w}, 1044 \mathrm{w}, 759 \mathrm{w}, \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, \delta\right): 12.01(\mathrm{bs}, 1 \mathrm{H})$, $7.95(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.15(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.98(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, (CD $)_{2}$ SO, δ): $160.13,154.54,148.24,133.06,130.67,128.02,122.27,120.93,67.73,27.93,22.12$, 14.74, 10.56. (+)ESI-HRMS: $m / z 297.07243$ corresponds to molecular formula $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, -0.57 ppm). HPLC purity, method $B: t_{R}=12.996$, area 95.61%. Method $C: t_{R}=14.178$, area 95.09%.

Ethyl [6-(pentylsulfanyl)-1,3-benzothiazol-2-yl]carbamate (33)

The general procedure D was followed using ethyl chloroformate ($78 \mu \mathrm{~L}$, $0.82 \mathrm{mmol})$, triethylamine ($186 \mu \mathrm{~L}, 1.33 \mathrm{mmol}$), $22(188 \mathrm{mg}, 0.745 \mathrm{mmol})$ and benzene $(4 \mathrm{~mL})$. The final product was obtained as pale yellow solid. The yield was $51.4 \mathrm{mg}(21 \%)$. M.p. $=(137-138)^{\circ} \mathrm{C}$. IR (ATR): 3175m, 3152m, 3123m, 3058m, 2956s, 2924s,
$2854 \mathrm{~s}, 1724 \mathrm{~s}, 1597 \mathrm{~s}, 1550 \mathrm{~s}, 1460 \mathrm{~s}, 1370 \mathrm{~m}, 1296 \mathrm{~s}, 1241 \mathrm{~s}, 1069 \mathrm{~m}, 818 \mathrm{~m}, 766 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta\right): 11.60(\mathrm{bs}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40\left(\mathrm{dd}, J_{l}=8.5 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.40(\mathrm{q}, ~ J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.39(\mathrm{~m}, 5 \mathrm{H}), 1.37-1.29(\mathrm{~m}$, $2 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 161.19,153.75,147.25,132.47,131.85,128.37$, 122.22, 120.82, $62.90,35.01,30.93,28.88,22.23,14.46,13.94$. (+)ESI-HRMS: $m / z 325.10435$ corresponds to molecular formula $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, +1.40 ppm). HPLC purity, method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=12.206$, area 98.52%. Method $\mathrm{D}: \mathrm{t}_{\mathrm{R}}=4.563$, area 98.28%.

Propyl [6-(pentylsulfanyl)-1,3-benzothiazol-2-yl]carbamate (34)

The general procedure D was followed using propyl chloroformate $(92 \mu \mathrm{~L}$, $0.82 \mathrm{mmol})$, triethylamine ($186 \mu \mathrm{~L}, 1.33 \mathrm{mmol}$), $22(188 \mathrm{mg}, 0.745 \mathrm{mmol})$ and benzene $(4 \mathrm{~mL})$. The final product was obtained as yellow solid. The yield was $101.4 \mathrm{mg}(40 \%)$. M.p. $=(116-118)^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{ATR}): 3170 \mathrm{~m}, 3127 \mathrm{~m}, 3062 \mathrm{~m}, 2956 \mathrm{~s}, 2923 \mathrm{~s}, 2853 \mathrm{~s}$, $2784 \mathrm{~m}, 1725 \mathrm{~s}, 1601 \mathrm{~s}, 1562 \mathrm{~s}, 1451 \mathrm{~m}, 1393 \mathrm{~m}, 1309 \mathrm{~m}, 1289 \mathrm{~s}, 1248 \mathrm{~s}, 1069 \mathrm{~m}, 821 \mathrm{~m}, 752 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 11.72(\mathrm{bs}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=\right.$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.45-$ $1.39(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.29(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 161.31,153.88,147.26,132.43,131.80,128.37,122.23,120.77,68.50,35.03,30.92,28.87,22.22$, 22.11, 13.93, 10.30. (+)ESI-HRMS: m/z 339.12006 corresponds to molecular formula $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, $+1.51 \mathrm{ppm})$. HPLC purity, method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=13.079$, area 96.82%. Method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=14.812$, area 95.51%.

Ethyl \{6-[(2-methylpropyl)sulfanyl]-1,3-benzothiazol-2-yl\}carbamate (35)

The general procedure D was followed using ethyl chloroformate ($34 \mu \mathrm{~L}, 0.36$ mmol), triethylamine ($82 \mu \mathrm{~L}, 0.58 \mathrm{mmol}$), $21(77 \mathrm{mg}, 0.32 \mathrm{mmol})$ and benzene (1.8 mL) to afford 19.1 mg of final product as white solid. Yield 23%. M.p. $=(159-160){ }^{\circ} \mathrm{C} . \operatorname{IR}(\mathrm{ATR}): 3139 \mathrm{~m}, 3081 \mathrm{~m}, 2968 \mathrm{~s}, 2914 \mathrm{~s}, 2866 \mathrm{~m}, 1722 \mathrm{~s}, 1599 \mathrm{~s}, 1560 \mathrm{~s}, 1458 \mathrm{~m}, 1275 \mathrm{~s}$, 1246s, $1111 \mathrm{~m}, 1070 \mathrm{~m}, 1049 \mathrm{~m}, 1019 \mathrm{~m}, 820 \mathrm{~m}, 789 \mathrm{~m}, 762 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 11.47 (bs, $1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.41(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.85(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{sep}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $161.25,153.77,147.18,132.44,132.27,128.30,122.13,62.88,44.10,28.32$, 22.01, 14.46. (+)ESI-HRMS: $m / z 311.08796$ corresponds to molecular formula $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, -0.92 ppm). HPLC purity, method $E: \mathrm{t}_{\mathrm{R}}=12.189$, area 99.00%. Method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=13.873$, area 99.59%.

Propyl \{6-[(2-methylpropyl)sulfanyl]-1,3-benzothiazol-2-yl\}carbamate (36)

The general procedure D was followed using propyl chloroformate ($33 \mu \mathrm{~L}$, $0.29 \mathrm{mmol})$, triethylamine ($67 \mu \mathrm{~L}, 0.29 \mathrm{mmol}$), $21(63.9 \mathrm{mg}, 0.268 \mathrm{mmol})$ and benzene (1.5 mL) to afford 53.7 mg of final product as pale yellow solid. Yield 62%. M.p. $=(139-141)^{\circ} \mathrm{C}$. IR (ATR): $3172 \mathrm{~m}, 3131 \mathrm{~m}, 3074 \mathrm{~m}, 2919 \mathrm{~s}$, $2852 \mathrm{~m}, 1722 \mathrm{~s}, 1599 \mathrm{~m}, 1565 \mathrm{~m}, 1456 \mathrm{~m}, 1282 \mathrm{~s}, 1245 \mathrm{~s}, 1074 \mathrm{~m}, 818 \mathrm{~m}, 760 \mathrm{~m} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\delta): 11.60-11.58(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.40\left(\mathrm{dd}, J_{l}=8.4 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.30(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.77(\mathrm{~m}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.99(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 161.18, 153.85, 147.23, 132.47, 132.25, 128.33, 122.16, 120.79, $68.49,44.11,28.31,22.00,10.30$. (+)ESI-HRMS: $m / z 325.10387$ corresponds to formula $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{H}^{+}$ (error, -0.08 ppm). HPLC purity, method $E: t_{R}=12.787$, area 98.08%. Method $F: t_{R}=14.618$, area 99.74%.

Butyl [6-(butylsulfanyl)-1,3-benzothiazol-2-yl]carbamate (37)

The general procedure D was followed using butyl chloroformate (175 $\mu \mathrm{L}, 1.35 \mathrm{mmol})$, triethylamine ($309 \mu \mathrm{~L}, 2.21 \mathrm{mmol}$), $20(293.7 \mathrm{mg}, 1.232$ mmol) and benzene (5 mL) to afford 131 mg of final product as yellow solid. Yield 32%. M.p. $=(120-121)^{\circ} \mathrm{C}$. IR (ATR): 3143m, 3077m, $2953 \mathrm{~s}, 2928 \mathrm{~s}, 2866 \mathrm{~m}, 1727 \mathrm{~s}, 1598 \mathrm{~s}, 1452 \mathrm{~m}, 1276 \mathrm{~m}, 1246 \mathrm{~m}, 1108 \mathrm{w}, 1074 \mathrm{w}, 820 \mathrm{~m}, 782 \mathrm{w}, 756 \mathrm{~m} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 11.64-11.41(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40\left(\mathrm{dd}, J_{l}=\right.$ $\left.8.6 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.35(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.61(\mathrm{~m}$, $2 \mathrm{H}), 1.50-1.38(\mathrm{~m}, 4 \mathrm{H}), 0.97-0.91(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 161.50,153.95,147.22$, $132.39,131.77,128.33,122.25,120.76,66.76,34.75,31.28,30.76,21.88,18.99,13.66 .(+) E S I-H R M S: m / z$ 339.12048 corresponds to molecular formula $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, +2.77 ppm). HPLC purity, method $\mathrm{E}: \mathrm{t}_{\mathrm{R}}=$ 12.749 , area 95.92%. Method $\mathrm{F}: \mathrm{t}_{\mathrm{R}}=14.577$, area 98.25%.

Ethyl [6-(ethanesulfinyl)-1,3-benzothiazol-2-yl]carbamate (38)

The general procedure F was followed using $24(42.5 \mathrm{mg}, 0.151 \mathrm{mmol}), \mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$ and MCPBA $(26.0 \mathrm{mg}, 0.151 \mathrm{mmol}) . \mathrm{Na}_{2} \mathrm{SO}_{4}$, The crude product was purified by reversed-phase flash chromatography, Biotage SP1, using $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}$ as eluent affording 12.6 mg of white solid. Yield 28%. M.p. $=195^{\circ} \mathrm{C}$. IR (ATR): $3359 \mathrm{~m}, 3175 \mathrm{~m}$, $3056 \mathrm{~m}, 2924 \mathrm{~s}, 2853 \mathrm{~s}, 1713 \mathrm{~s}, 1658 \mathrm{~m}, 1634 \mathrm{~m}, 1602 \mathrm{~s}, 1564 \mathrm{~s}, 1448 \mathrm{~m}, 1366 \mathrm{~m}, 1301 \mathrm{~s}, 1276 \mathrm{~m}, 1250 \mathrm{~s}, 1103 \mathrm{~m}$, $1072 \mathrm{~m}, 1044 \mathrm{~m}, 891 \mathrm{w}, 827 \mathrm{w}, 794 \mathrm{~m}, 761 \mathrm{~m}, 708 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $10.94(\mathrm{bs}, 1 \mathrm{H}), 8.13$ (d, $J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.43(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.00-$
$2.93(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.81(\mathrm{~m}, 1 \mathrm{H}), 1.43(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 163.04,153.58,150.90,138.24,132.77,121.84,121.18,117.98,63.26,50.76,14.47,6.14 .(+) E S I-$ HRMS: $m / z 299.05162$ corresponds to molecular formula $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, -0.81 ppm). HPLC purity, method $\mathrm{D}: \mathrm{t}_{\mathrm{R}}=4.087$, area 95.52%. Method $\mathrm{I}: \mathrm{t}_{\mathrm{R}}=4.668$, area 95.14%.

Propyl [6-(propane-1-sulfinyl)-1,3-benzothiazol-2-yl]carbamate (39)

The general procedure G was followed using $28(30.3 \mathrm{mg}, 0.098 \mathrm{mmol})$,
 methanol (0.5 mL), acetonitrile ($8 \mu \mathrm{~L}, 0.1 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{mg}, 0.07 \mathrm{mmol})$ and solution of hydrogen-peroxide ($12 \mu \mathrm{~L}, 0.12 \mathrm{eq}$) in methanol (0.5 mL). The crude product was subjected to silica gel column chromatography using hexane/ethyl acetate as eluent to afford 8.4 mg of final product as white solid. Yield 26%. IR (ATR): 3165 m , $3127 \mathrm{~m}, 3057 \mathrm{~m}, 2964 \mathrm{~s}, 2933 \mathrm{~s}, 2876 \mathrm{~s}$, 2780m, 1724s, 1601s, 1557s, 1449s, 1404m, 1292s, 1274s, 1249s, 1066s, $1032 \mathrm{~m}, 966 \mathrm{~m}, 890 \mathrm{~m}, 829 \mathrm{~m}, 784 \mathrm{~m}, 754 \mathrm{~m}, 708 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta$): $12.21(\mathrm{bs}, \mathrm{N}-\mathrm{H}), 8.28-$ $8.26(\mathrm{~m}, 1 \mathrm{H}), 7.84-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.64(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.95-2.77(\mathrm{~m}, 2 \mathrm{H}), 1.70-$ $1.47(\mathrm{~m}, 4 \mathrm{H}), 0.97-0.92(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta\right): 161.76,154.08,151.19,138.54,132.39$, $121.86,120.73,118.13,67.47,57.75,21.63,15.32,12.91,10.09$. (+)ESI-HRMS: $m / z 327.08293$ correspond to molecular formula $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, -0.72 ppm). HPLC purity, method $\mathrm{G}: \mathrm{t}_{\mathrm{R}}=5.365$, area 97.49%. Method $\mathrm{H}: \mathrm{t}_{\mathrm{R}}=3.559$, area 96.03%.

Propyl [6-(propane-1-sulfonyl)-1,3-benzothiazol-2-yl]carbamate (40)

The general procedure G was followed using $28(42.2 \mathrm{mg}, 0.136 \mathrm{mmol})$, methanol (0.5 mL), acetonitrile ($10 \mu \mathrm{~L}, 0.2 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(13 \mathrm{mg}, 0.095 \mathrm{mmol})$ and solution of hydrogen-peroxide ($54 \mu \mathrm{~L}, 0.54 \mathrm{mmol}$) in methanol $(0.5 \mathrm{~mL})$. The crude product was subjected to silica gel column chromatography using hexane/ethyl acetate as an eluent and reversed-phase flash chromatography using $\mathrm{CH}_{3} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}$ as an eluent to afford 22.5 mg of final product as white solid. Yield 48%. M.p. $=270^{\circ} \mathrm{C}$. IR (ATR): $3169 \mathrm{~m}, 3125 \mathrm{~m}, 2971 \mathrm{~s}$, 2936m, 2880m, 2771w, 1730s, 1598m, 1550s, 1454m, 1405w, 1346w, 1306s, 1279s, 1231s, 1147s, 1103m, $1072 \mathrm{~m}, 942 \mathrm{w}, 825 \mathrm{w}, 784 \mathrm{~m}, 757 \mathrm{~m}, 710 \mathrm{wcm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta$): 12.37 (bs, N-H), $8.57-8.56$ $(\mathrm{m}, 2 \mathrm{H}), 7.88-7.84(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.30-3.26(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.53(\mathrm{~m}$, $2 \mathrm{H}), 0.96-0.89(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta$): $164.40,154.55,153.40,133.75,132.65,125.91$, 123.03, 120.99, 68.09, $57.20,22.11,16.76,12.99,10.57$. (+)ESI-HRMS: $m / z 343.07768$ corresponds to molecular formula $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, -1.16 ppm). HPLC purity, method $\mathrm{G}: \mathrm{t}_{\mathrm{R}}=5.253$, area 98.21%. Method $\mathrm{I}: \mathrm{t}_{\mathrm{R}}=5.480$, area 97.67%.

N-[6-(propylsulfanyl)-1,3-benzothiazol-2-yl]pentanamide (41)

The general procedure E was followed using a solution of pentanoyl chloride ($87.2 \mathrm{mg}, 0.723 \mathrm{mmol}$) in benzene $(1.5 \mathrm{~mL})$ and a solution of 19 ($124.8 \mathrm{mg}, 0.556 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ benzene ($2 \mathrm{~mL}, 1: 1, \mathrm{v} / \mathrm{v}$). The reaction mixture was stirred for 4 h and worked up according to general procedure. The crude product was subjected to silica gel column chromatography using hexane/ethyl acetate and reversed-phase flash chromatography, Biotage SP1, using methanol/water as eluent to afford 35.3 mg of final product as pale yellow solid. Yield 21%. M.p. $=$ $113{ }^{\circ} \mathrm{C} . ~ I R ~(A T R): ~ 3276 \mathrm{~m}, ~ 3178 \mathrm{~m}, ~ 3128 \mathrm{~m}, ~ 3064 \mathrm{~m}, ~ 2960 \mathrm{~s}, 2930 \mathrm{~m}, 2870 \mathrm{~m}, 1660 \mathrm{~s}, 1594 \mathrm{~s}, 1538 \mathrm{~s}, 1439 \mathrm{~m}$, 1374w, 1345m, 1295m, 1266m, 1192w, 1087w, 815w, 774w cm ${ }^{-1}$. ${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 10.66$ (bs, $1 \mathrm{H}), 7.81(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44\left(\mathrm{dd}, J_{l}=8.5 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.94(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.04(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 171.64, 158.91, 146.43, 132.89, 132.38, 128.68, 122.46, 120.58, 36.91, 36.26, 26.97, 22.54, 22.19, 13.64, 13.38. (+)ESI-HRMS: $m / z 309.10813$ corresponds to molecular formula $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{OS}_{2} \mathrm{H}^{+}$(error, -2.76 ppm). HPLC purity, method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=11.671$, area 97.05%. Method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=$ 13.245, area 98.01%.

N-[6-(butylsulfanyl)-1,3-benzothiazol-2-yl]pentanamide (42)

The general procedure E was followed using a solution of pentanoyl chloride $(69.6 \mathrm{mg}, 0.58 \mathrm{mmol})$ in benzene $(1 \mathrm{~mL})$ and a solution of $20(86 \mathrm{mg}, 0.36$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ benzene ($2.2 \mathrm{~mL}, 1: 1, \mathrm{v} / \mathrm{v}$). The reaction mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$, then 13 h at room temperature and worked up according to general procedure. The crude product was subjected to silica gel column chromatography using hexane/ethyl acetate and reversed-phase flash chromatography, Biotage SP1, using methanol/water as eluent to afford 32.6 mg of final product as white solid. Yield 28%. M.p. $=117{ }^{\circ} \mathrm{C}$. IR (ATR): 3144m, 3116m, 3036m, 2958s, 2927s, 2870s, 1694s, 1590s, 1542s, $1443 \mathrm{~m}, 1380 \mathrm{~m}, 1349 \mathrm{~m}, 1306 \mathrm{w}, 1269 \mathrm{~s}, 1172 \mathrm{~m}, 1099 \mathrm{w}, 1052 \mathrm{w}, 976 \mathrm{w}, 892 \mathrm{w}, 810 \mathrm{~m}, 769 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 10.15(\mathrm{bs}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=\right.$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.46(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.34$ (m, 4H), $0.94-0.89(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 171.61, 158.86, 146.39, 132.87, 132.45, 128.53, $122.31,120.55,36.22,34.53,31.21,26.94,22.16,21.86,13.61,13.59$. (+) ESI-HRMS: $m / z 323.12407$ corresponds to molecular formula $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OS}_{2} \mathrm{H}^{+}$(error, -1.73 ppm). HPLC purity, method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=12.200$, area 96.72%. Method $B: t_{R}=13.409$, area 98.18%.

N-[6-(butylsulfanyl)-1,3-benzothiazol-2-yl]-2-methoxyacetamide (43).

The general procedure E was followed using a solution of methoxyacetyl chloride ($51.5 \mathrm{mg}, 0.474 \mathrm{mmol}$) in benzene (1 mL) and a solution of $\mathbf{2 0}$ ($70.7 \mathrm{mg}, 0.296 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ benzene ($2.2 \mathrm{~mL}, 1: 1, \mathrm{v} / \mathrm{v}$). The reaction mixture was stirred for 4 h at $0^{\circ} \mathrm{C}$, then 13 h at room temperature and worked up according to general procedure. The crude product was subjected to silica gel column chromatography using hexane/ethyl acetate as eluent to afford 41.3 mg of final product as pale yellow solid. Yield 45%. M.p. $=62{ }^{\circ} \mathrm{C}$. IR (ATR): 3382 w , $3207 \mathrm{w}, 2956 \mathrm{~m}, 2929 \mathrm{~m}, 2871 \mathrm{w}, 1703 \mathrm{~m}, 1594 \mathrm{~m}, 1537 \mathrm{~s}, 1448 \mathrm{~m}, 1272 \mathrm{~m}, 1196 \mathrm{w}, 1119 \mathrm{~m}, 994 \mathrm{w}, 817 \mathrm{w}, 745 \mathrm{w}$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 9.86(\mathrm{bs}, 1 \mathrm{H}), 7.79-7.78(\mathrm{~m}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43\left(\mathrm{dd}, J_{I}=\right.$ $\left.8.5 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.16(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 2.97-2.94(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.42(\mathrm{~m}$, $2 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 168.07, 156.52, 146.85, 133.03, 132.65, 128.58, $122.18,121.26,71.25,59.57,34.55,31.24,21.89,13.61$. (+)ESI-HRMS: $m / z 311.08743$ corresponds to molecular formula $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, -2.62 ppm). HPLC purity, method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=10.999$, area 98.02%. Method B: $\mathrm{t}_{\mathrm{R}}=12.336$, area 98.37%.

3-Methoxy- N-[6-(propylsulfanyl)-1,3-benzothiazol-2-yl]propanamide (44)

The general procedure E was followed using a solution of 3methoxypropionyl chloride ($106 \mathrm{mg}, 0.869 \mathrm{mmol}$) in benzene $(1.5 \mathrm{~mL})$ and a solution of $\mathbf{1 9}(150 \mathrm{mg}, 0.67 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ benzene ($2 \mathrm{~mL}, 1: 1, \mathrm{v} / \mathrm{v}$). The reaction mixture was stirred for 18 h and worked up according to general procedure. The crude product was subjected to silica gel column chromatography using hexane/ethyl acetate as eluent, reversed-phase flash chromatography, Biotage SP1, using ethanol/water as eluent and NH flash chromatography, Biotage SP1, using hexane/ethyl acetate as eluent to afford 63.2 mg of final product as white solid. Yield 30%. M.p. $=111{ }^{\circ} \mathrm{C}$. IR (ATR): $3270 \mathrm{w}, 3118 \mathrm{~m}, 3038 \mathrm{~m}, 2962 \mathrm{~s}$, 2922s, $2811 \mathrm{~m}, 1704 \mathrm{~m}, 1591 \mathrm{~s}, 1544 \mathrm{~s}, 1447 \mathrm{~m}, 1394 \mathrm{~m}, 1270 \mathrm{~s}, 1174 \mathrm{~m}$, $1120 \mathrm{~m}, 1067 \mathrm{~m}, 810 \mathrm{~m} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $10.26(\mathrm{bs}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43\left(\mathrm{dd}, J_{I}=8.5 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.76(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 1 \mathrm{H}), 2.93(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 2.77(\mathrm{t}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right)$: 169.86, 157.57, 146.97, 133.08, 132.12, 128.67, 122.39, 121.02, 67.67, 59.20, 36.96, 36.90, 22.56, 13.37. $(+) E S I-H R M S: m / z 311.08741$ corresponds to molecular formula $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, -2.67 ppm). HPLC purity, method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=10.325$, area 98.09%. Method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=11.326$, area 99.00%.

N-[6-(butylsulfanyl)-1,3-benzothiazol-2-yl]-3-methoxypropanamide (45)

The general procedure E was followed using a solution of 3methoxypropionyl chloride ($163.8 \mathrm{mg}, 1.342 \mathrm{mmol}$) in in benzene (2 mL) and a solution of $\mathbf{2 0}(200 \mathrm{mg}, 0.839 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ benzene $(4.4 \mathrm{~mL}, 1: 1$, v / v). The reaction mixture was stirred for 6 h at $0^{\circ} \mathrm{C}$, then 16 h at room temperature and worked up according to general procedure. The crude product was subjected to silica gel column chromatography using hexane/ethyl acetate and multiple reversed-phase column chromatography using methanol/water as eluent to afford 86.9 mg of final product as pale yellow solid. Yield 32%. M.p. $=99^{\circ} \mathrm{C} . ~ I R(A T R): ~ 3147 \mathrm{~s}, 3046 \mathrm{~m}, 2953 \mathrm{~s}, 2924 \mathrm{~s}, 2875 \mathrm{~s}$, $2814 \mathrm{~m}, 1703 \mathrm{~s}, 1592 \mathrm{~s}, 1536 \mathrm{~s}, 1451 \mathrm{~m}, 1417 \mathrm{~m}, 1395 \mathrm{~m}, 1332 \mathrm{~m}, 1267 \mathrm{~s}, 1160 \mathrm{~s}, 1116 \mathrm{~s}, 1068 \mathrm{~m}, 988 \mathrm{~m}, 960 \mathrm{~m}$, $808 \mathrm{~m}, 793 \mathrm{~m}, 757 \mathrm{~m} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): $10.33(\mathrm{bs}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42\left(\mathrm{dd}, J_{l}=8.5 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.77-3.74(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 2.97-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.78$ $-2.75(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.42(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .13 \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 169.88,157.62,146.90,133.07,132.24,128.55,122.24,121.00,67.67,59.18,36.90,34.60,31.26$, 21.89, 13.62. (+) ESI-HRMS: $m / z 325.10332$ corresponds to molecular formula $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, -1.77 ppm). HPLC purity, method $A: t_{R}=10.636$, area 96.78%. Method $B: t_{R}=12.682$, area 98.30%.

2-Methoxy- N -[6-(propylsulfanyl)-1,3-benzothiazol-2-yl]acetamide (46)

The general procedure E was followed using a solution of methoxyacetyl chloride ($60.9 \mathrm{mg}, 0.561 \mathrm{mmol}$) in benzene (1 mL) and a solution of 19 (96.8 $\mathrm{mg}, 0.431 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ benzene ($2 \mathrm{~mL}, 1: 1, \mathrm{v} / \mathrm{v}$). The reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ and worked up according to general procedure. The crude product was subjected to silica gel column chromatography using hexane/ethyl acetate as eluent to afford 28.9 mg of final product as pale yellow solid. Yield 23 \%. M.p. $=62^{\circ} \mathrm{C}$. IR (ATR): 3170m, 3062m, 2966m, 2938m, 2829w, 1688m, 1590m, $1534 \mathrm{~s}, 1453 \mathrm{~m}, 1273 \mathrm{~s}, 1197 \mathrm{~m}, 1119 \mathrm{~m}, 992 \mathrm{w}, 809 \mathrm{w}, 772 \mathrm{w}, 744 \mathrm{w} \mathrm{cm}{ }^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 9.80$ (bs, 1H), $7.79(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.44\left(\mathrm{dd}, J_{l}=8.5 \mathrm{~Hz}, J_{2}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.16(\mathrm{~s}, 2 \mathrm{H})$, $3.52(\mathrm{~s}, 3 \mathrm{H}), 2.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.03(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}, \delta\right): 168.01,156.40,146.99,133.09,132.48,128.67,122.32,121.32,71.22,59.54,36.90,22.53,13.35$. $(+) E S I-H R M S: m / z 297.07173$ corresponds to molecular formula $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{H}^{+}$(error, -2.91 ppm). HPLC purity, method $\mathrm{A}: \mathrm{t}_{\mathrm{R}}=10.423$, area 97.81%. Method $\mathrm{B}: \mathrm{t}_{\mathrm{R}}=11.602$, area 98.30%.

Table S1. In vitro antiproliferative activity $\left(\mathrm{GI}_{50}, \mu \mathrm{M}\right)$ against a panel of 60 cell lines ${ }^{\text {a }}$

Panel/Cell line	24	25	26	28	29	30	33
Leukemia							
CCRF-CEM	26.8	3.33	>100	2.98	0.66	0.39	0.63
HL-60 (TB)	22.4	1.17	>100	0.26	0.27	0.31	0.35
K-562	2.48	0.39	>100	0.40	0.29	0.28	0.39
MOLT-4	3.07	3.26	>100	0.94	0.60	0.47	0.85
RPMI-8226	32.4	2.91	>100	1.56	1.29	0.50	1.04
SR	10.9	0.54	>100	0.43	0.27	0.19	0.27
Non-Small Cell Lung Cancer							
A549/ATCC	17.1	0.83	>100	0.98	0.67	0.64	2.37
EKVX	N.T.	N.T.	N.T.	N.T.	N.T.	1.27	0.56
HOP-62	20.8	3.80	>100	35.5	4.72	0.82	0.49
HOP-92	N.T.	N.T.	N.T.	0.39	1.04	0.41	1.44
NCI-H226	32.2	15.2	>100	>100	1.53	1.03	1.95
NCI-H23	53.7	6.92	>100	>100	4.48	0.90	1.15
NCI-H322M	24.1	6.37	>100	1.97	2.06	0.95	5.10
NCI-H460	18.7	2.44	>100	0.46	0.42	0.40	0.52
NCI-H522	14.0	0.31	>100	1.00	0.93	0.32	0.24
Colon Cancer							
COLO 205	38.5	1.75	>100	0.80	0.38	0.26	0.53
HCC-2998	35.8	8.33	>100	>100	37.8	6.80	4.88
НСТ-116	22.0	0.79	>100	0.47	0.43	0.37	0.47
НСТ-15	20.1	0.67	>100	0.50	0.41	0.44	0.38
HT29	11.5	0.38	>100	0.40	0.38	0.34	0.35
KM12	16.3	0.76	>100	0.41	0.38	0.37	0.41
SW-620	11.7	0.55	>100	0.41	0.37	0.37	0.45
CNS Cancer							
SF-268	29.4	4.60	>100	18.5	1.45	15.8	0.87
SF-295	17.8	1.53	>100	0.64	0.34	0.39	0.39
SF-539	31.2	1.99	>100	0.56	0.27	0.33	0.40
SNB-19	24.9	5.12	>100	1.57	0.62	0.61	0.78
SNB-75	18.6	2.07	34.8	1.65	0.12	0.23	0.41
U251	19.6	1.62	>100	0.68	0.49	0.46	0.41
Melanoma							
LOXIMVI	N.T.	N.T.	N.T.	1.13	0.63	0.56	0.46
MALME-3M	24.6	2.70	>100	0.52	N.T.	6.06	0.51
M14	28.6	0.62	>100	0.56	0.32	0.34	0.45
MDA-MB-435	1.48	0.20	17.5	0.17	0.12	0.07	0.19
SK-MEL-2	N.T.	N.T.	N.T.	0.63	0.44	0.31	0.43
SK-MEL-28	27.4	5.46	>100	2.72	0.96	2.81	66.2
SK-MEL-5	30.9	1.81	>100	1.25	0.39	0.37	0.66
UACC-257	39.0	2.70	>100	>100	0.87		>100
UACC-62	20.0	1.32	>100	0.42	0.55	0.44	0.32
Ovarian Cancer							
IGROV1	23.8	3.19	>100	0.62	1.46	1.30	0.94
OVCAR-3	20.4	1.87	>100	0.44	0.35	0.37	0.35
OVCAR-4	30.6	6.94	>100	>100	2.45	0.87	
OVCAR-5	43.7	6.75	>100	18.4	6.84	1.81	2.73
OVCAR-8	28.2	4.16	>100	>100	1.76	1.78	4.85
NCI/ADR-RES	23.1	0.95	>100	0.61	0.45	0.40	0.36
SK-OV-3	22.7	5.32	>100	2.47	0.64	0.40	0.54

Renal Cancer							
786-0	29.1	4.56	>100	2.32	0.53	0.39	0.54
A498	13.7	0.67	>100	0.27	0.13	0.12	1.22
ACHN	42.3	7.19	>100	36.0	0.91	0.82	0.91
CAKI-1	40.2	3.54	>100	N.T.	0.59	0.59	0.63
RXF 393	0.21	N.T.	23.0	>100	0.90	0.88	1.03
SN12C	23.7	3.10	>100	0.91	0.65	0.73	0.96
TK-10	22.8	4.48	>100	>100	8.44	2.91	2.25
UO-31	27.3	4.28	>100	2.22	1.05	0.60	1.39
Prostate Cancer						0.73	0.55
PC-3	26.9	4.64	>100	0.96	2.37	1.27	1.72
DU-145	28.4	5.75	>100	>100	0.80		
Breast Cancer	15.7	0.88	27.6	0.47	0.35	0.31	0.30
MCF-7	14.8	2.37	>100	0.94	1.28	0.58	0.95
MDA-MB-231/ATCC	19.4	2.17	>100	1.38	0.45	0.52	0.94
HS 578T	29.9	2.23	>100	0.72	0.76	0.42	0.49
BT-549	33.3	3.55	>100	17.6	1.68	0.24	0.58
T-47D	16.4	1.26	0.20	0.55	0.30	0.49	0.56
MDA-MB-468					0.74	0.58	0.83
MID	19.9	2.13	81.2	2.14	0.74		

${ }^{\text {a }}$ Five dose assay was performed against 60 cancer cell lines treated with selected compounds for 48 hours using SRB procedure
${ }^{\mathrm{b}}$ MID $=$ Mean GI_{50} values for each compound against full 60-cell panel
N.T. - not tested

Table S2. IC 50 values calculated for 25, 26, $\mathbf{2 8}-\mathbf{3 0}, \mathbf{3 2}, \mathbf{3 3 - 3 7}$ and $\mathbf{4 1}-\mathbf{4 6}$ using MTT assay ${ }^{\text {c }}$

Comp.	Structure	$\begin{gathered} \text { MCF-7 } \\ (\text { IC50, } \mu \mathrm{M}) \end{gathered}$	$\begin{gathered} \mathbf{A 3 7 5} \\ (\text { IC50, } \mu \mathrm{M}) \end{gathered}$	$\begin{gathered} \text { K562 } \\ (\text { IC50, } \mu \mathrm{M}) \end{gathered}$	$\begin{gathered} \hline \text { NT2/D1 } \\ (\mathbf{I C 5 0 , ~} \boldsymbol{\mu \mathrm { M }}) \\ \hline \end{gathered}$	$\begin{gathered} \text { MRC-5 } \\ (\text { IC50, } \mu \mathrm{M}) \end{gathered}$
25		61.4 ± 4.2	85.0 ± 5.6	>100	>1	-
26		>100	>100	>100	-	-
28		24.2 ± 3.1	>100	>100	$\mathbf{0 . 2} \pm 0.03$	> 300
29		>100	91.6 ± 6.0	>100	>1	-
30		>100	45.2 ± 3.4	>100	$\mathbf{0 . 1} \pm 0.01$	>300
32		>100	-	-	>1	-
34		>100	-	-	>1	-
35		>100	-	-	>1	-
36		>100	>100	7.7 ± 2.0	>1	-
37		>100	-	-	>1	-
39		> 100	-	-	-	-
40		> 100	-	-	-	-
41		30.5 ± 2.5	77.5 ± 4.5	53.2 ± 4.0	>1	> 300
42		>100	>100	>100	>1	-
43		>100	>100	>100	>1	-
44		95.5 ± 5.5	>100	66.3 ± 4.2	>1	-
45		92.5 ± 5.0	>100	44.2 ± 3.3	>1	-
46		>100	>100	>100	>1	-
Doxorubicin		0.4	-	2	-	-
Cisplatin		-	-	-	1.11 ± 0.17	-

${ }^{\mathrm{c}} \mathrm{IC}_{50}$ values were calculated after 48 h treatment of selected cell lines with five concentrations of investigated compounds using MTT assay. The measurements were performed in triplicate.

Evaluation of antiproliferative effects of compounds 28 and 30 on NT2/D1 cell line

Figure S1. Cell cycle phase distribution after 24 h treatment of NT2/D1 cells with compounds 28 and $\mathbf{3 0}$ (M1 sub G1, M2-G0/G1, M3 - S, M4 - G2/M).

Figure S2. Mitochondrial membrane potential (MMP) in NT2/D1 cells after 48 h treatment with 28 and 30 compared to control cells' MMP

Figure S3. Intracellular ROS level in NT2/D1 cells after 48 h treatment with compounds $\mathbf{2 8}$ and $\mathbf{3 0}$ at $1 \mu \mathrm{M}$ compared to control cells.

Table S3. Non-tumored animal toxicity assay for compound $\mathbf{2 8}$

NOTE: All treatment was administered according to exact body weight.

Table S4. Non-tumored animal toxicity assay for compound $\mathbf{3 0}$

[^0]
References

[^1]
[^0]: NOTE: All treatment was administered according to exact body weight

[^1]: ${ }^{1}$ Duan, Z.; Ranjit, S.; Lin, X. One-pot synthesis of amine-substituted aryl sulfides and benzo[b]thiophene derivatives. Org. Lett. 2010, 12, 2430-2433
 ${ }^{2}$ Tietze, L. F.; Güntner, C.; Gericke, K. M.; Schuberth, I.; Bunkoczi, G. A Diels-Alder reaction for the total synthesis of the novel antibiotic antitumor agent mensacarcin. Eur. J. Org. Chem, 2005, 2459-2467
 ${ }^{3}$ Rennison, D.; Conole, D.; Tingle, M. D.; Yang, J.; Eason, C. T; Brimble, M. A. Synthesis and methemoglobinemia-inducing properties of analogues of para-aminopropiophenone designed as humane rodenticides. Bioorg. Med.Chem. Lett. 2013, 23, 6629-6635
 ${ }^{4}$ Bulman Page, P. C.; Graham, A. E.; Bethell, D.; Park, K. A simple and convenient method for the oxidation of sulphides. Synth. Commun. 1993, 23, 1507-1514

