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Abstract Introduction: Hot spot identification is a very relevant problem in a
wide variety of areas such as health care, energy or transportation. A hot spot is
defined as a region of high likelihood of occurrence of a particular event. To identify
hot spots, location data for those events is required, which is typically collected by
telematics devices. These sensors are constantly gathering information, generating
very large volumes of data. Current state-of-the-art solutions are capable of identi-
fying hot spots from big static batches of data by means of variations of clustering
or instance selection techniques that pre-process the original input data, providing
the most relevant locations. However, these approaches neglect to address changes
in hot spots over time.

Method: This paper presents a dynamic bio-inspired approach to detect hot
spots in big data streams. This computational intelligence method is designed and
applied to the transportation sector as a case study to identify incidents in the roads
caused by heavy goods vehicles. We adapt an immune-based algorithm to account
for the temporary aspect of hot spots inspired by the idea of pheromones, which is
then subsequently implemented using Apache Spark Streaming.

Results: Experimental results on real datasets with up to 4.5 million data points
- provided by a telematics company - show that the algorithm is capable of quickly
processing large streaming batches of data, as well as successfully adapting over time
to detect hot spots.
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Conclusions: The outcome of this method is two-fold both reducing data stor-
age requirements and demonstrating resilience to sudden changes in the input data
(concept drift).
Keywords Hot Spots · Road Incidents · Instance Selection · Telematics Data · Big
Data Streams · Computational Intelligence

1 Introduction1

Hot spot identification (HSID) problems are present across several domains, such as2

health care, security, maintenance, energy or transport [4,6,11,25]. A hot spot can be3

defined as a particular area with a high likelihood of occurrence of a certain event.4

Several HSID application opportunities are identifiable. In public health care, for5

instance, algorithms to determine hot spots could be employed for early detection of6

locations of an epidemic outbreak. In security, the government and population benefit7

from knowing specific areas of elevated crime rate. HSID methods can also be applied8

commercially, for example, by using mobile phone data to determine most frequently9

visited places and provide targeted marketing interventions. While these examples10

mostly belong to unrelated disciplines, their commonality is that the establishment11

of a set of hot spots relies on location data. Although the current widespread use of12

mobile devices, sensors and trackers facilitates data gathering, challenges regarding13

data retrieval, fusion and interpretation for HSID arise.14

In this work we are interested in tackling the problem of processing and in-15

terpreting huge influxes of vehicle telematics data for HSID within the intelligent16

transportation systems (ITSs) context [27]. Research in ITSs aims to create meth-17

ods, processes and devices to allow for improvements in driving performance as well18

as road economy and safety [24]. Logistics coupled with large transport networks19

has demanded the use of sensors and tracking devices (telematics) to achieve such20

goals. For vehicle incident HSID, telematics constantly records data on locations,21

date, time, direction, etc, ready to be exploited.22

Traditionally, statistical methods have been employed to establish hot spots from23

historical data [6]. However, these methods may not be suitable for handling big24

amounts of data [31]. Data mining techniques have also been used to address this25

problem [1]. For example, clustering algorithms such as K-means [2] can group inci-26

dents based on distance, with each resulting cluster representing a hot spot. However,27

those clusters may not produce valid hot spots and do not provide information about28

their relevance. More recently, instance selection techniques [17], originally devised29

for data pre-processing [18] in classification tasks, have successfully been used to30

address the hot spot problem.31

In [15], a computational intelligence technique based on immune systems [30],32

namely SeleSup HSID, was proposed to tackle HSID, addressing the main issues33

found with traditional approaches. This method adapted an immune-inspired in-34

stance selection algorithm [13] to detect vehicle incident hot spots and highlight35

their importance by means of a fitness value. Recently, [31] re-conceptualised the Se-36

leSup HSID algorithm as a series of MapReduce-like operations [7] under the Apache37

Spark platform [33] to improve the efficiency of the method when dealing with huge38

volumes of data.39

Despite its efficiency, this type of approach does not cope well with a constant40

influx of data that may vary over time, being unable to provide a timely answer and41
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account for (sudden) changes in the distribution of the data (e.g. due to weather, new42

signalling or works in the road) when measuring the importance of the identified hot43

spots. The large data streams provided by vehicle telematics present new challenges44

[16,21], as they produce an unbounded and ‘potentially infinite’ amount of data that45

it may not be feasible to store and process as one batch, resulting in a need for online46

processing [8,23]. The use of data pre-processing techniques would help reduce the47

amount of data; however, current approaches do not deal effectively with the non-48

stationary characteristics of data streams as discussed in [28], and the SeleSup HSID49

algorithm suffers from the same issue.50

The aim of this paper is to redesign the SeleSup HSID algorithm to tackle huge51

volumes of streaming data for vehicle HSID. We propose an adaptive SeleSup HSID52

algorithm that is inspired by a pheromone-based approach [9] to dynamically deter-53

mine the importance of hot spots based on current and past data, eliminating old hot54

spots, and adding new relevant locations. The algorithm is designed under Apache55

Spark Streaming [34] as a number of MapReduce operations to parallelise the most56

time consuming operations of SeleSup, enabling the detection of hot spots in big57

data streams. We denote this method as PAS3-HSID (Pheromone-based Adaptive58

SeleSup Streaming algorithm for Hot Spot Identification). Developing a dynamic59

HSID technique motivates the global purpose of this work, which can be split into60

three main objectives:61

– To design a hot spot detection technique based on pheromones that is capable of62

dealing with a time-varying scenario and potential concept drift on the stream63

of data.64

– To reduce the size of telematics data that is stored by discarding irrelevant data65

and keeping representative hot spots together with their current relevance [5].66

– To analyse the scalability of the proposed scheme in big data streams of vehicle67

incidents.68

To test the performance of our model, we will conduct a series of experiments69

on big datasets of heavy goods vehicle incidents provided by Microlise1, a UK-based70

company that provides telematics solutions to help fleet operators to reduce their71

costs and environmental impacts. By applying the proposed PAS3-HSID algorithm72

to these datasets, containing millions of HGV incidents, we will investigate the effect73

of different time windows, parameters and scalability capabilities. We also compare74

our method with the existing SeleSup HSID approach, identifying the benefits that75

our pheromone-based mechanism provides.76

The remainder of this paper is organised as follows. Section 2 describes the back-77

ground of HSID, instance selection and big data technologies. Section 3 presents78

the PAS3-HSID algorithm and its main characteristics. Section 4 discusses the ex-79

perimental framework and presents the analysis of results. Finally, in Section 5 we80

summarise our conclusions.81

2 Background82

This section presents all the background information necessary to understand the83

remainder of this paper. Subsection 2.1 defines the hot spot identification problem84

1 https://www.microlise.com/
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for the case of transportation and describes current approaches for batch data based85

on clustering and instance selection. Subsection 2.2 discusses the existing instance86

selection methods for data streams. Finally, Subsection 2.3 briefly introduces the big87

data technologies employed in this paper.88

2.1 Hot spot identification in transportation89

HSID consists of processing large amounts of location data for a particular problem.90

Because hot spots are established based on the proximity of event occurrences, a91

domain-specific distance measure should be defined. In some cases, this could simply92

be the physical distance between the locations of events; in others, additional con-93

straints may be required when determining whether a specific event contributes to94

a hot spot or not.95

One application of HSID is to transportation problems, and our specific case con-96

cerns heavy goods vehicle (HGV) incidents as the events of interest. These incidents97

indicate the driver’s behaviour in some way; examples of such incidents are speeding,98

harsh braking and harsh cornering. Given a constant data stream of HGV incidents99

containing incident type, date, time and location, those areas of high likelihood of100

incident occurrence should be determined. The distance measure used is the distance101

between incidents, with the additional constraints requiring that incidents occur on102

the same road and have similar bearings.103

HSID has to be accurate for all types of incidents at any location. In addition, it104

is desirable that the method identifies and reflects on the HSID process those changes105

in roads and driving behaviour that occur over time. Additionally, in scenarios such106

as those illustrated in Figure 1, several different indications of hot spots can be de-107

termined; however, not all of them provide satisfactory solutions for our problem,108

as discussed in Figueredo et al. [15]. For instance, those clusters indicated by blue109

circles (such as cluster A) represent good candidate solutions. Clusters B (with one110

instance, not considering neighbour incidents) and C (bigger ellipsis, where road di-111

rection is disregarded and multiple hot spot locations are included) represent invalid112

solutions. The solution to the problem posed should be able to provide only valid113

hot spots.114

Fig. 1: Examples of possible hot spot clusters.
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Statistical methods have often been used for hot spot identification. Three such115

methods are evaluated in [6], namely simple ranking, confidence intervals, and Em-116

pirical Bayes. These approaches all establish likely hot spots by comparing locations117

with sites that have similar characteristics. Simple ranking involves locations being118

ranked in descending order of crash frequency. The confidence interval technique119

determines that a site is unsafe if the observed number of crashes is greater than the120

average observed at similar sites. By taking into account both historical crashes at121

the location in question, and the expected number of crashes at comparable sites,122

Empirical Bayes performs the best of these three methods. However, these statisti-123

cal approaches are not suitable for use with large volumes of data, and also rely on124

identification of comparable locations before hot spot identification can occur.125

As discussed in Figueredo et al [15] the application of spatial clustering meth-126

ods for this problem (such as density-based spatial clustering [12] and other tech-127

niques [19]) is ineffective. These techniques can require a predefinition of the number128

of clusters, which could reduce the accuracy of the hot spots obtained. Furthermore,129

they may produce elliptical clusters, such as that indicated by the red line (cluster130

C) in Figure 1, or require an adaptation for big data problems [29].131

Recent work has employed instance selection techniques for the purpose of hot132

spot identification on large datasets. Instance selection [17] is a data preprocessing133

technique that is normally used to reduce the size of a dataset prior to it being used134

for data mining. This is achieved by removing data points that are redundant or135

noisy, leaving behind a smaller subset that is still representative of the original data,136

resulting in lower storage requirements and more efficient mining without compro-137

mising the accuracy of the results [20]. In the HSID context, the points remaining138

after instance selection are the hot spots.139

An immune-inspired instance selection method, SeleSup [13,14,26], was success-140

fully used in Figueredo et al. [15] to reveal hot spots. This method has an ad-141

vantage over traditional clustering methods in that the number of ‘cluster’ centres142

is self-adaptive, and therefore no predefinition of the number of hot spots is re-143

quired. However, the implementation of the algorithm shows reduced performance144

on datasets with millions of instances. The work done in Triguero et al. [31] aims145

to improve the performance of this algorithm by adapting it for implementation in146

Apache Spark. This implementation indicates the same hot spots for the datasets as147

the previous implementation, and also demonstrates an increase in performance for148

larger datasets, due to the distributed nature of the computation.149

While the SeleSup method and its subsequent implementation in Spark performs150

well for large batch datasets, it is not suitable for HSID in a dynamic streaming en-151

vironment. Our novel approach appropriately tackles the challenges of data streams,152

using instance selection as a technique. The next section discusses some of the ex-153

isting instance selection methods for data streams in the literature.154

2.2 Instance selection for data streams155

Additional challenges become apparent when considering the application of instance156

selection to data streams, due to the dynamic nature of streams. The instances157

retained by the selection method must be representative of the current state of the158

stream and be able to update quickly as the distribution of the data changes over159

time (concept drift) [16]. As recently surveyed in [28], existing instance selection160
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techniques do not cope well with the non-stationary characteristics of data streams.161

Here, we discuss some current approaches and consider whether they could be applied162

to the hot spot problem.163

Klinkenberg [22] compares multiple methods for handling concept drift by se-164

lecting the number of instances to be used. These include an adaptive time window,165

batch selection, and weighting instances with respect to their age. The experiments166

showed that batch selection, where batches of data that seem to include a large167

number of outliers are eliminated, performed best, closely followed by the adaptive168

time window. Weighting instances gave the lowest performance, although was better169

than methods that did not adapt for concept drift. All of these methods use the as-170

sumption that the most recent examples are the most relevant, and do not account171

for recurring concept drift, where concepts that existed previously become relevant172

once more.173

The instance-based learning on data streams (IBL-DS) algorithm proposed in174

[3] was developed to tackle the problem of concept drift for classification on data175

streams. This approach takes into account both the time that instances arrive, and176

the distance between instances to determine redundant or noisy points to remove.177

Older instances are also removed when the size of the case base will exceed a given178

maximum, whilst newer instances are safe from elimination to allow time to deter-179

mine whether they are simply noise, or the beginnings of a new concept. For the180

scenario of hot spot identification, limiting the number of hot spots can have detri-181

mental effects for the accuracy. In addition to this, IBL-DS results in the deletion of182

old instances even if they are still relevant to the current state of the data stream.183

A different approach to instance selection for classification is to store only those184

instances that define the boundaries between classes, reducing the memory require-185

ments of the model. One such example is presented in [35], where a data stream186

classification algorithm based on an artificial endocrine system is proposed. As the187

stream progresses, the maintained instances change, representing the evolving class188

boundaries. Although this mechanism works well for classification, it would not be189

suitable for hot spot identification, where there are no such boundaries to find.190

In summary, existing instance selection techniques for data streams are not suit-191

able for application to the hot spot identification problem. We require a method that,192

while adapting with respect to the most recently arrived instances, can also take into193

account previously established hot spots and incorporate them in the current set of194

hot spots in some way. It is also essential that the method does not rely on removing195

long-standing hot spots after a fixed time period, as these can be significant areas for196

HGV incidents. Instead, hot spots should be deleted based on an alternative measure197

of their importance.198

2.3 Big data technologies199

MapReduce [7] was developed by Google for the parallel processing of data across200

large clusters, and has a popular open-source implementation, Apache Hadoop.201

MapReduce computations are described in terms of two user-specified functions:202

map and reduce. These functions work on key/value pairs, defined based on the data203

to be processed. The map stage applies the given function to each input pair. The204

data is then shuffled so that all values for a particular key are grouped together, the205

result of which is then passed to the reduce function. This merges the values assigned206
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to a key together, usually returning a single value per key. There are some cases for207

which Hadoop is not the most suitable choice, such as for iterative algorithms where208

data needs to be reused across computations, a task which it does not efficiently209

accomplish.210

Other data processing frameworks exist that overcome these drawbacks. Apache211

Spark is one such example, introducing a distributed memory abstraction known as212

Resilient Distributed Datasets (RDDs) [33]. A Spark cluster consists of a driver node213

alongside multiple worker nodes, and RDDs allow data to be cached, or persisted, in214

main memory of these nodes, resulting in more efficient data reuse. The Spark pro-215

gramming interface provides several MapReduce-like operations that can be applied216

to RDDs, such as map, reduce and filter. There are also methods for moving data217

between nodes. These include collect, which fetches all elements of an RDD back to218

the driver node, and broadcast, which sends a read-only variable to all nodes.219

Spark Streaming is an extension to Spark that treats data streams as a se-220

quence of microbatches on which to perform computations [34]. It provides dis-221

cretized streams (DStreams) as a programming model. DStreams are fundamentally222

a series of RDDs, with each RDD of the input DStream representing one batch,223

or interval. The programmer defines a sequence of operations to be applied to the224

incoming data, which Spark Streaming will apply as the data arrives. Intervals can225

be processed independently of each other, or alternatively window operations can226

be used to allow operations to be applied to multiple consecutive batches at once.227

Stateful transformations are also available and facilitate the sharing of data between228

intervals.229

3 PAS3-HSID: Pheromone-based approach for adaptive HSID230

Here we present our immune-inspired, pheromone-based adaptive SeleSup algorithm231

(PAS3-HSID) for hot spot identification in data streams. This algorithm is based232

on the existing SeleSup HSID method [15], with the additional consideration of how233

to establish a set of hot spots that can change over time in response to incidents234

arriving. We assume that the stream is split into time intervals, and that incidents235

arriving within one interval are allocated to one batch that is processed at the end236

of that interval.237

The algorithm is designed with three main requirements in mind:238

– Identification of hot spots from streamed incident data, taking into account the239

temporal nature of this data.240

– Reduction of the volume of data that needs to be stored at each interval of the241

stream. Instead of storing all incidents that arrive per interval, the hot spots242

identified must represent a reduction in this data, resulting in lower storage243

requirements.244

– Suitability for parallelisation, to enable an implementation that can efficiently245

compute hot spots for large batches. This is required because there is the po-246

tential for data to be arriving in very large batches due to the quantity being247

generated through HGV telematics, which would result in poor performance from248

a sequential implementation.249

We first explain the algorithm from a general perspective in Subsection 3.1, before250

providing specific details of our Spark-based implementation, designed to process251

large batches of incident data in parallel, in Subsection 3.2.252
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3.1 PAS3-HSID details253

The PAS3-HSID algorithm works by maintaining a state of current hot spots between254

time intervals of a data stream. At each interval, the algorithm receives as input a255

batch of new incidents I to be reduced. Using these incidents, as well as the hot256

spots from the previous interval, an updated set of hot spots is produced. Figure 2257

shows how the state is repeatedly updated and fed into PAS3-HSID to determine258

future hot spots.259

Fig. 2: Representation of how PAS3-HSID updates the hot spot state at each time
interval of the data stream and then uses the state in the process of producing a new
set of hot spots.

Each hot spot in the state is associated with a fitness value representing the260

strength of that hot spot. Higher fitness values indicate hot spots that have relatively261

recently gained a large number of incidents, whilst lower values represent hot spots262

with a smaller number of incidents, or those that have not been updated with new263

incidents for a while. A lower fitness value suggests that a hot spot is becoming less264

relevant to the current state of the data stream.265

The fitness values FV1, FV2, ..., FV#HS are initialised to the number of incidents266

included within the respective hot spot when it is first discovered, similar to how267

fitness values are decided in [15]. The state is updated at each interval through a268

pheromone-based mechanism that alters the fitness values accordingly. Any hot spots269

with a fitness value below a given threshold are discarded, ensuring that the set of hot270

spots remains representative of the current distribution of incidents. Using fitness271

values to determine when to remove hot spots ensures that they are not deleted272

based purely on how long they have existed for. Instead, we are also considering273

their relevance to the current state of the stream; in other words, whether a hot spot274

has recently had any incidents occurring in its vicinity.275

Our use of pheromones is inspired by a similar mechanism utilised in ant colony276

optimisation (ACO) [9], a technique for finding short paths through graphs, based on277

the behaviour of ants in nature that deposit pheromones whilst finding food. In ACO,278

this idea is used to iteratively construct solutions to the shortest path problem, by279

getting a population of artificial ants to deposit pheromones on the edges of a graph.280
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The higher the pheromone value of an edge, the greater the probability of it being281

selected by ants at future iterations. Ants that generate good solutions will deposit282

larger amounts of pheromones than those that find worse solutions. In addition, an283

evaporation rate is also set, so that the pheromone values will decrease over time.284

We can apply the pheromone idea to the fitness values of hot spots. Fitness values285

must be increased at each interval in relation to the number of incidents added to286

each hot spot, similar to depositing pheromones of the edges of the graph in ACO.287

Just as the edges that contribute to shorter paths receive more pheromone, hot spots288

that gain more incidents in a given interval will see their fitness value increase by289

a larger amount. We also require the fitness values to decrease over time, so that290

eventually hot spots will be removed after not gaining new incidents for some time.291

This ensures that the current set of hot spots is truly representative of the present292

state of the roads, and is equivalent to the evaporation of pheromones.293

Algorithm 1: PAS3-HSID, a pheromone-based adaptive hot spot identification
algorithm for data streams.

Require: HotSpots; Incidents; DecayRate; DeleteThreshold; MileageRange; PercentInitHotSpots

STAGE 1
if HotSpots.isEmpty then

HotSpots← take percentInitHotSpots · |Incidents| from Incidents
forall HotSpots do FVh = 1; nh = 0;
Incidents← Incidents−HotSpots

else
forall HotSpots do nh = 0;

end if
for all i in Incidents do

for all h in HotSpots do
d← calculate distance between h and i w.r.t distance measure
if d < MileageRange then

Incidents← Incidents− i
nh += 1
break

end if
end for

end for

STAGE 2
forall Incidents do FVi = 1; isCentrei = false; n = 0;
for all i in Incidents where !isCentrei do

for all j != i in Incidents do
d← calculate distance between i and j w.r.t distance measure
if d < MileageRange then

Incidents← Incidents− i
nj += 1; isCentrej = true;
break

end if
end for

end for

STAGE 3
newHotSpots← HotSpots + Incidents
for all h in newHotSpots do

FVh ← FVh · (1−DecayRate) + nh

if FVh < DeleteThreshold then
newHotSpots = newHotSpots− h

end if
end for
return newHotSpots to be available at next interval
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Fig. 3: Overview of the PAS3-HSID algorithm at a single time interval T . The hot
spots that are output at the end of the interval can be visualised, processed or stored
as required.

The algorithm consists of three main stages, as shown in Algorithm 1 and Figure294

3, that take place at each interval of the stream. Figure 4 illustrates the process of295

determining current hot spots from a set of incidents and pre-existing hot spots.296

1. The first stage of the streaming algorithm is based on Stage 2 of the original297

SeleSup HSID and involves using the existing hot spots HS to reduce the new298

batch of incidents I. This determines the incidents that can be discarded as299

their location in the road is already represented as a hot spot. Each incident i300

is compared with each hot spot h in turn, using a distance measure to decide301

how close i is to h. The distance measure used for vehicle incident HSID takes302

into account the incident location (latitude/longitude coordinates), bearing and303

address. Bearings must be within sixty degrees of each other, whilst the distance304

between locations is calculated as the Haversine distance [32]. If i is similar305

enough to any h, then i is said to be reduced by h; the presence of h in the hot306

spot set sufficiently represents the location of i, and therefore i is discarded as a307

redundant instance. Throughout Stage 1, we keep track of a value nh for each h.308

This value is initialised to zero at the start of every interval, and is incremented309

each time h reduces an incident in the current batch. It is then used later in Stage310

3 when recalculating the fitness value of h. Note that it is not necessary to ensure311

that an incident is reduced by the closest hot spot, as we are not aiming to find a312

precise location for the hot spot centre; rather, we want to find the general areas313

of the road where there are a high frequency of incidents. Therefore, an incident314

is reduced by the first hot spot found that it is close enough to, with respect to315

the distance measure. This has the additional advantage of being generally faster316

than finding the closest hot spot, which is important in the context of processing317

big data streams.318
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(a) (b)

(c) (d)

Fig. 4: Example of how PAS3-HSID computes hot spots at a time interval T .

There is also a special case of Stage 1, occurring at intervals when HS contains no319

hot spots. This is always the case in the first interval of the stream but may also320

happen at other points if there is a very low number of incidents for a prolonged321

period of time. In this situation an additional step is performed prior to the main322

part of Stage 1. This step replaces the empty HS with a small number of incidents323

randomly selected from I; these can then be used as if they were hot spot centres,324

to reduce the remainder of the incidents. This process is similar to that used at325

the start of the original method proposed in [15], where the recommendation is326

to use a low number of initial hot spots as it has no impact on the final number327

of hot spots and often results in a quicker runtime. Hence, we typically select328

10% of I to be included in this set; however, this is a user-defined parameter and329

can be changed as desired. Any redundancies within these initial hot spots are330

removed, before Stage 1 proceeds as normal.331

At the end of Stage 1, the incidents remaining in I are those that could not be332

reduced by any existing hot spots. These incidents are passed onto the next stage333

of the algorithm.334

2. Stage 2 operates on those incidents that are left in the incident set I after Stage335

1. These are incidents that could not be reduced by the existing hot spots, and336

therefore potentially represent new hot spot locations. The purpose of this second337

stage is to identify such new hot spots. The process used is similar to that used338

for the final step of the SeleSup HSID method. Each incident i is compared to339
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every other remaining incident, until an incident j is found that is close enough340

to reduce i, with respect to the distance measure. We then establish j as a new341

hot spot centre, and discard the redundant i. Note that once again, the aim is342

not to find the precise locations of hot spots, and therefore knowing that some343

i is within range of j is enough to declare j as a hot spot. For each incident j344

that becomes a new hot spot centre, a value nj is incremented to indicate the345

number of incidents reduced by j. The result of Stage 2 is a set of new hot spot346

centres, representing road locations that have only recently had a high frequency347

of incident occurrence. These will be added to the hot spot state in the next348

stage.349

3. The third and final stage performs the state update, using the information ac-350

quired from Stages 1 and 2 to produce a new hot spot state. Existing hot spots in351

the state have their fitness values recalculated using the pheromone-based mech-352

anism. We define the following fitness value update formula, based upon the ACO353

pheromone update formula in [10]:354

FVh = FVh · (1− dr) + nh (1)
First, each fitness value is decayed with respect to the decay rate dr, representing355

the decrease in relevance of hot spots over time. Then, the fitness values of those356

hot spots that reduced incidents in Stage 1, and are therefore still active, are357

increased by the value nh (the number of incidents reduced by hot spot h). The358

new hot spots identified in Stage 2 are added to the state, with their fitness values359

initialised nh. Finally, any hot spot with a fitness less than a specified deletion360

threshold delTh is deemed to no longer be a hot spot, and is discarded. The361

resulting state will feed into the next stream interval to be used in the process362

of deciding the next set of hot spots.363

Further filtering on the hot spot state can then be performed, to produce a364

subset containing those hot spots with a fitness value greater than a given hot spot365

threshold hsTh. This subset is then returned as the output hot spots of the algorithm366

at the current stream interval, to be stored and possibly used in further processing367

or visualisation. Hot spots with delTh < FV < hsTh are not returned but are kept368

in the state and given a chance to develop a higher fitness value in the future.369

3.2 Spark Streaming-based implementation370

In this section we present the implementation details of PAS3-HSID in Apache Spark371

Streaming, parallelising most of the operations. We have chosen Spark Streaming as372

the big data framework with which to implement our algorithm, due to the algo-373

rithm’s iterative nature; as previously stated, this is not well suited to Hadoop.374

The implementation makes use of an RDD of key/value pairs to represent hot375

spots in the state, with each pair corresponding to a single hot spot. Hot spots are376

identified by a tuple < lat, long > containing the latitude and longitude of the hot377

spot centre (the key). The value associated with a hot spot’s key is any additional378

information about that hot spot required by the algorithm, such as its fitness value,379

bearing and address. The pseudocode for the Spark-based implementation of PAS3-380

HSID can be seen in Algorithm 2, and the source code is available on GitHub2.381

2 https://github.com/beccatickle/PAS-HSID
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Algorithm 2: Spark Streaming-based implementation of PAS3-HSID
Require: HotSpotsRDD (from previous interval); Incidents; DecayRate; DeleteThreshold;

HotSpotThreshold; MileageRange; InitNumHotSpots; NumPartitions
1: IncidentsDStream← textFile(Incidents)
2: IncidentPairs← IncidentsDStream.map(i⇒ < (lati, lngi), infoArri >)

STAGE 1
3: if HotSpotsRDD.isEmpty then
4: HotSpotsBC ← broadcast(IncidentPairs.takeSample(InitNumHotSpots))
5: else
6: HotSpotsBC ← broadcast(HotSpotsRDD.collect())
7: end if
8: ReducedIncidents← IncidentPairs.mapPartitions(data⇒ ReduceWithHotSpots(data,

MileageRange, HotSpotsBC))
9: HotSpotUpdates← ReducedIncidents.filter(i⇒ isReducedi).reduceByKey((a, b)⇒

na + nb)
10: RemainingIncidents← ReducedIncidents.filter(i⇒ !isReducedi)

STAGE 2A
11: NewHotSpots← RemainingIncidents.mapPartitions(data⇒

RemoveRedundanciesInPartition(data, MileageRange))
STAGE 2B

12: for i = 0 to NumPartitions do
13: partitionBC ← broadcast(partitioni.collect())
14: NewHotSpots← NewHotSpots.mapPartitions(data⇒

ReduceWithPartitionI(data− partitioni, partitionBC, MileageRange))
15: end for

STAGE 3
16: HotSpotsRDD.map(h⇒ FVh · (1−DecayRate))
17: IntermediateState← HotSpotsRDD.union(HotSpotUpdates.union(NewHotSpots))
18: AggregatedFitness← IntermediateState.reduceByKey((a, b)⇒ FVa + FVb)
19: NewStateRDD ← AggregatedFitness.filter(h⇒ FVh > DeleteThreshold).cache()
20: return NewStateRDD.filter(h⇒ FVh > HotSpotThreshold)

Stage 1 of the algorithm identifies those incidents that can be reduced by existing382

hot spots, and are therefore redundant and can be removed. The current set of hot383

spots is stored as an RDD and so is distributed across nodes. This is also true of the384

RDD containing the incidents for the present interval, which is created by reading385

from a streaming source. Here, we simply load newly arrived incidents from a text386

file, but any Spark input source could be used.387

In order for all hot spots to be available at each node, they must first be collected388

back to the driver, before being broadcast to all workers. Typically, the set of hot389

spots should be small enough that it can be held in main memory of all the worker390

nodes. When the set of hot spots is empty at the start of Stage 1, we precede this391

with a takeSample operation that collects 10% of the incidents back to the driver392

node to form an initial hot spot set. We then sequentially remove any redundancies393

within this set before broadcasting it.394

The Spark transformation mapPartitions is then used to apply a function Re-395

duceWithHotSpots to each partition of the incidents RDD. This function iterates396

through the incidents within a single partition, comparing them to the broadcast397

hot spots. If an incoming incident is similar enough to any existing hot spot, then398

that incident’s information is effectively replaced by the hot spot’s key and value,399

although with a count nh = 1 instead of the fitness value. This signifies a single inci-400

dent being added to the hot spot. Details of this function can be found in Algorithm401

3. Any incidents that are not successfully reduced by a hot spot maintain their own402

information.403

The resulting RDD is then split using two filter operations to separate the hot404

spot updates and the remaining incidents. The remaining incidents are operated on in405
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Algorithm 3: The ReduceWithHotSpots function for a partition P

Require: IncidentsP ; HotSpotsArr; MileageRange
1: result← []
2: for all i in IncidentsP do
3: if there exists h in HotSpotsArr similar enough to i then
4: result← result + < keyh, (infoArrh, nh = 1, isReducedh = true) >
5: else
6: result← result + < keyi, (infoArri, ni = 1, isReducedi = false) >
7: end if
8: end for
9: return result

the next stage, whilst the hot spot updates undergo a reduceByKey operation. The406

RDD reduceByKey function is similar to the MapReduce reduce; however, instead407

of returning a single value which is the result of combining all items of an RDD in408

some way, reduceByKey returns one value per key that exists in the RDD. Here, the409

count nh is accumulated for each key (i.e. each hot spot h), representing the number410

of incidents reduced by each h. This creates an RDD containing the keys of existing411

hot spots that have reduced incidents in this interval, alongside the number of such412

incidents. This information is used in Stage 3 to update the state.413

We present two different implementations of Stage 2, a decision also taken in414

[31]. The first is a sequential version, that makes the assumption that the majority415

of incidents are reduced in Stage 1. This is tested later in the experimental study to416

establish if it is a valid assumption to make. Therefore, the set left over to be reduced417

is sufficiently small to collect back to the driver and operate on sequentially. Each418

incident i is compared against all other incidents, until one that is close enough is419

found, at which point i is removed and the fitness value of the corresponding incident420

(now established as a hot spot centre) is incremented to keep track of the number421

of incidents it includes. Incidents that are unable to be reduced become hot spot422

centres in their own right, with an initial fitness value of 1.423

The alternative version of Stage 2 parallelises the computation. This version424

performs more efficiently when the set of incidents left over is very large and would425

take too long to process in a sequential manner. First, each partition of the RDD426

is reduced individually in a similar way to the sequential version, identifying hot427

spot centres within individual partitions (Figure 5a). We then iterate through the428

partitions one by one (Figure 5b). At each iteration, the current suppressing partition429

is broadcast to all nodes. All other partitions are then reduced with respect to the430

hot spots contained within the suppressing partition, removing individual incidents431

as appropriate, if a hot spot is found close enough.432

By the end of Stage 2, two RDDs have been formed which together contain all433

the information necessary to update the state. One contains keys of already existing434

hot spots that have had incidents added to them within the current interval (formed435

in Stage 1), whilst the other contains keys of newly identified hot spot centres. Both436

RDDs also store the number of incidents nh reduced by each hot spot this interval.437

The third stage involves the combination of these two RDDs with the current438

state RDD, to generate an RDD containing the new state. The fitness values for each439

hot spot key are calculated according to the formula given in Subsection 3.1, with440

the first step being to decay the fitness of the current hot spots by the specified decay441

rate. Union operations are then used to join the current state with the two RDDs442

produced in Stages 1 and 2, before a reduceByKey operation is performed. The443
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(a) (b)

Fig. 5: Parallelisation of Stage 2 of PAS3-HSID. Partitions are reduced individually
(a), before being iteratively reduced with respect to the other partitions (b). Note
how the size of the partitions reduces throughout Stage 2 as redundant incidents are
removed.

reduce function provided sums the fitness values for identical keys, thus increasing444

the fitness value of each hot spot by nh. The initial fitness value for a newly identified445

hot spot is therefore simply the number of incidents that it covers.446

The final step for updating the state is to remove those hot spots with a fitness447

value less than a given deletion threshold, achieved using a filter operation. The448

resulting RDD represents the new state and is cached in memory so that it can be449

efficiently accessed at the next time interval. In order to determine the set of hot450

spots to return as the output for this interval, the state RDD can be further filtered451

to leave only those hot spots with a fitness value that is greater than the specified452

hot spot threshold. This set can then be saved to files as required.453

4 Experimental Study454

In this section, we investigate and assess the behaviour of the proposed PAS3-HSID455

algorithm. To do this, we first define the following experimental set-up. We employ456

two different sets of telematics data for HGV incidents within the UK. Initially, we457

were provided with data from a three-month period covering speeding, harsh corner-458

ing, harsh braking and contextual speeding incidents. The speeding and contextual459

speeding categories differ in how the speed limit is determined. For speeding inci-460

dents, vehicles have exceeded the limit specified by the road signs. For contextual461

speeding, other factors are also taken into account. For example, if it is raining, then462

HGVs may be required to travel slower due to the road being wet. The location,463

bearing, address and date/time of occurrence are given for each incident.464
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We have split these datasets into batches covering various time periods, namely465

12 hour-long, day-long and week-long batches. Additionally, they were also each split466

into ten equally-sized batches. Dividing the data in this way allows us to examine467

the behaviour of the algorithm with a variety of batch sizes, ranging from very small468

to much larger. Table 1 shows the average number of incidents per batch for each469

batch length and dataset.470

Table 1: Average number of incidents per batch for the original datasets

Dataset 12 Hours Day Week Equal Total
Speeding 17 34 230 313 3139

Harsh Cornering 73 146 970 1359 13592
Harsh Braking 1149 2298 16032 21369 213696

Contextual Speeding 3881 7762 53453 72187 721878

A larger dataset collected over nine months is also employed to further assess471

the robustness of the method. This contained speeding, harsh cornering and harsh472

braking incidents, with 2,283,305, 2,285,088 and 4,515,990 data points, respectively.473

Analysis of this dataset shows that the number of incidents each day is no greater474

than in the original dataset, and so we decided to only split these into ten batches475

of equal size to enable an evaluation of how the algorithm performs running on a476

cluster with larger batch sizes.477

When characterising the behaviour of the algorithm, we discuss both the run-478

time and the influence of a variety of parameter settings on the number of hot spots479

retained. The parameters considered are shown in Table 2. These values have been480

empirically adjusted over a number of preliminary experiments. Each batch is par-481

titioned into a number of partitions, located on different nodes. From the runtime482

perspective, we test various numbers of partitions in the experiments carried out on483

the cluster. In addition to this, we compare the two implementations of Stage 2 of484

the algorithm (sequential and parallel) in order to establish in which scenarios it is485

best to pick one implementation over the other.486

Table 2: Parameter values investigated in the experiments.

Parameter Values tested
dr 0.1, 0.3, 0.5

delTh 0.9, 1.9
hsTh 3, 5, 7

#partitions 4, 8, 12, 24, 48

We also aim to show the advantages of our pheromone-based algorithm in com-487

parison to other HSID approaches. Due to the lack of methods available in the488

literature for HSID on big data streams, we are limited in the comparisons we can489

make. We therefore focus on the differences between PAS3-HSID, with its pheromone490

mechanism for determining hot spots and their relevance, and the original SeleSup491

HSID algorithm, without such a mechanism. We use two alternative ways of applying492

SeleSup HSID to the data for the comparison, namely:493
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– Applying SeleSup HSID to each dataset as a whole, allowing us to compare494

against a HSID method that does not account for hot spots changing over time.495

We refer to this approach as SeleSup-HSID-D.496

– Applying SeleSup HSID to each streaming interval individually. This enables497

comparison with a method that should identify changes over time, but without498

a way of considering previous hot spots when establishing the current hot spot.499

We refer to this approach as SeleSup-HSID-I.500

The parameters chosen for these experiments are displayed in Table 3. Mileage501

ranges of interest were given and their effect discussed in [31] as {0.5, 2, 5} miles502

for contextual speeding and speeding data, and {0.1, 0.2, 0.5} for harsh cornering503

and harsh braking. We run our experiments with the greatest mileage from each of504

these sets: 5 miles for the speeding datasets, and 0.5 miles for harsh braking and505

cornering.506

Table 3: Parameters used for all the algorithms involved in the comparison experi-
ments.

Algorithm Parameters
PAS3-HSID dr = 0.3, delTh = 1.9, hsTh = 5

SeleSup-HSID-I Percentage of Initial Points = 10, Hot Spot Threshold = 5
SeleSup-HSID-D Percentage of Initial Points = 10, Hot Spot Threshold = 5

Due to the random component of PAS3-HSID and SeleSup HSID, where an initial507

set of hot spots is established by randomly selecting a given percentage of the newly508

arrived incidents, the behaviour of the algorithm can differ when presented with the509

same data. Therefore, we run all experiments twenty times, and average the results510

of all executions.511

The experiments with the original datasets (3 months data from [15,31]) have512

been carried out in a single node with an Intel(R) Xeon(R) CPU E5-1650 v4 processor513

(12 cores) at 3.60GHz, and 64 GB of RAM. In terms of software, we have used the514

Cloudera’s open-source Apache Hadoop distribution (Hadoop 2.6.0-cdh5.14.2) and515

Spark 2.0.0. In our experiments, we have set a total number of 8 concurrent tasks.516

The experiments on the larger datasets have been carried out in a cluster composed517

of 14 computing nodes managed by the master node. Each one of these nodes has 2518

Intel Xeon CPU E5-2620 processor, 6 cores (12 threads) per processor, 2 GHz and519

64 GB of RAM. The network is Infiniband 40Gb/s. This hardware was configured to520

provide a maximum number of current tasks to 256. In terms of software, every node521

runs on Cent OS 6.5, and uses Cloudera’s open-source Apache Hadoop distribution522

(Hadoop 2.6.0-cdh5.8.0) and Spark 2.2.1.523

The following subsections present the results of these experiments. Subsection 4.1524

discusses the impact of different parameter choices on the behaviour of the algorithm,525

whilst in Subsection 4.2 we perform a comparison with alternative HSID approaches.526

Finally, Subsection 4.3 covers the experiments executed on the cluster.527
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4.1 Analysis of algorithm behaviour528

PAS3-HSID has multiple parameters that can be altered in order to influence the hot529

spots being identified. There is no exact measurement of what amounts to a satis-530

factory number of obtained hot spots. Instead, our aim here is to provide a detailed531

analysis of how parameter choices can impact upon the behaviour of the algorithm.532

We discuss the effects of the decay rate, delete threshold and hot spot threshold533

parameters, which are further introduced and discussed below. These experiments534

have been run using eight partitions, although this should have no impact on the535

behaviour of the algorithm in terms of hot spots identified.536

(a) (b)

(c) (d)

Fig. 6: Comparison between different decay rates for PAS3-HSID. The datasets used
were split into daily batches of incidents, and the experiments were run with 8
partitions.

The effect of setting different decay rates (0.1, 0.3 and 0.5) when the algorithm537

is applied to daily batches is shown in Figure 6, alongside the distributions of the538

original incidents. We can observe that for datasets with a more regular pattern539

of incidents, the number of hot spots that are identified increases throughout each540

week before decreasing over the weekends when there are naturally fewer incidents.541

The method is also able to adapt quickly to the sudden changes in the irregular542

distribution of the speeding dataset. A decay rate of 0.1 seems to be suitable for the543
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smaller datasets; however, for the contextual speeding data it results in a general544

increase in hot spots over time, suggesting that old hot spots are not forgotten quickly545

enough. A rate of 0.3 is able to handle a short period of time with very few incidents,546

such as the few days in early May (Figure 6d) where there was a sudden decrease547

in batch size for contextual speed; 0.3 resulted in a larger proportion of previous548

hot spots being retained over these days than 0.5, which lost the majority of all hot549

spots that were stored.550

The algorithm relies on two thresholds relating to the fitness of hot spots. The551

first, the delete threshold delTh, establishes at what point it is no longer worth552

storing a hot spot in the state, resulting in its deletion. The hot spot threshold553

hsTh, determines when we would consider a hot spot to be significant enough for554

us to know about. Such hot spots are returned at the respective streaming interval,555

and can subsequently be visualised or further processed if required. Figure 7 shows556

one such visualisation of hot spots identified over five days in a small region for the557

harsh braking dataset. We can observe how some hot spots with a low fitness value558

are only present for a short time, whilst those with a large fitness value, representing559

a consistently high number of incidents, are more long-term.560

Fig. 7: Hot spots obtained by PAS3-HSID in Southampton, UK over a five-day period
in April 2015, showing fitness values changing and the addition and deletion of hot
spots over time. (Harsh braking data split into daily batches, hsTh=3)

For these experiments, we have tested various values for both thresholds. For561

the hot spot threshold, it is clear that increasing the threshold results in fewer hot562

spots being returned at a given time interval whilst the number of hot spots in the563

state is unaffected (Table 4). Values chosen for hsTh may vary depending on the564
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approximate expected size of incident batches. For example, for very small batches565

(speeding and harsh cornering datasets), a lower threshold is likely to be preferable566

due to fewer hot spots, generally with lower fitness values. Conversely, a higher value567

for hsTh is more suitable for the harsh braking and contextual speeding data, as568

with a high number of hot spots stored in the state, those with lower fitness values569

are less significant.570

Table 4: Number of hot spots found for various hot spot thresholds, averaged per
streaming interval. The datasets are split into week-long batches.

Dataset hsTh FV > delTh FV > hsTh

Speeding
3 82 54
5 83 33
7 82 23

Harsh Cornering
3 246 133
5 246 65
7 246 40

Harsh Braking
3 5361 3245
5 5360 1596
7 5356 931

Contextual Speeding
3 6275 5106
5 6273 3902
7 6276 3222

The delete threshold directly impacts the hot spots that are maintained in the571

state between streaming batches. Figure 8 shows the effect of two delete thresholds572

(0.9 and 1.9) on both the number of hot spots in the state, and the number with573

a fitness greater than a hot spot threshold of 5. It can be seen that increasing574

the value of delTh to 1.9 considerably reduces those in the state, while having a575

relatively small impact on the number with FV > hsTh; this behaviour is consistent576

across all datasets. The main difference between these threshold values is that 0.9577

will keep isolated incidents that could not be allocated to a hot spot within the578

interval in which they arrive, thus giving them a chance to become a hot spot later.579

Alternatively, using 1.9 ensures that any isolated incidents are removed within the580

same interval that they arrive. From this, we can conclude that the majority of581

these isolated incidents do not subsequently become hot spots. We suggest a delete582

threshold of 1.9 so that such incidents are removed immediately, resulting in a smaller583

state being maintained between batches.584

Table 5: Average runtime per streaming interval, in seconds, for each dataset and
split. #partitions=8, dr=0.3, delTh=1.9, hsTh=5.

Dataset 12 Hours Day Week Equal
Speeding 0.449 0.412 0.509 0.561

Harsh Cornering 0.430 0.420 0.656 0.800
Harsh Braking 0.703 0.952 4.498 6.161

Contextual Speeding 0.975 1.279 4.164 5.582
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Fig. 8: Comparison of hot spots detected by PAS3-HSID with different delTh values.
Note that Number of Hot Spots refers to the average number per streaming interval.
Datasets are split into ten equal size batches.

Table 5 shows the average runtime per streaming interval for all datasets and585

splits used in the experiments. We can observe that all batch sizes included here are586

processed in a short time. In some cases, contextual speeding batches are processed587

quicker than harsh braking, despite having more than three times the number of588

incidents per batch. This is due to different mileages used to define hot spots for589

these incident types, a behaviour also observed in [31].590

From the results presented here, we can conclude:591

– When run on a single node, our Spark-based implementation can efficiently pro-592

cess batches containing tens of thousands of incidents.593

– The algorithm can quickly adapt over time, detecting a number of hot spots that594

is representative of the current incidents.595

– The choice of parameters should depend on the data at hand, including rough596

estimates of the batch size expected in general. For example, smaller decay rates597

and threshold values are more likely to be suitable for batches containing fewer598

incidents, and vice versa.599
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– Future work could perhaps look at incorporating some automatic adaptation of600

these parameters as the algorithm runs, in response to changes in the nature601

of the data arriving. This would avoid them having to be fixed at the start of602

execution.603

4.2 Comparison with other methods604

We now compare our algorithm to the two alternative approaches defined above605

(SeleSup-HSID-D and SeleSup-HSID-I), to show the differences achieved by incorpo-606

rating some mechanism to maintain hot spot information across streaming intervals607

into the HSID process for data streams.608

(a) (b)

(c) (d)

Fig. 9: Incident distributions and hot spots found by PAS3-HSID and the two com-
parison approaches, SeleSup-HSID-D and SeleSup-HSID-I.

The results in terms of hot spots obtained are shown in Figure 9. From these609

plots, we can conclude:610

– SeleSup-HSID-D clearly provides no information regarding how hot spots change611

over time. In contrast, PAS3-HSID adapts and the number of hot spots obtained612

reflects changes in the incident distribution.613
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– Whilst SeleSup-HSID-I does provide some indication of the dynamic nature of hot614

spots, it uses no input from previous intervals when establishing the current set615

of hot spots, therefore finding fewer than our algorithm. On days when there are616

very few incidents, it is unable to identify any hot spots at all; this is frequently617

seen on weekends.618

– There is a significant reduction in the amount of data kept by our algorithm619

in comparison to SeleSup-HSID-D, visible on the plots by how much higher the620

green lines are.621

4.3 Performance on larger datasets622

Here, we present the results of the experiments performed on the larger datasets and623

executed on a cluster, as detailed previously. We vary the number of partitions used624

in order to understand the influence they have on the runtime, as well as comparing625

the two alternative implementations of Stage 2.626

Table 6: Results in terms of number of hot spots obtained (averaged per interval) for
the fully parallel version of PAS3-HSID. The datasets used are the larger datasets,
each split into ten batches of equal size.

Dataset FV > delTh FV > hsTh

Speeding 6374 3460
Harsh Cornering 36343 18624
Harsh Braking 64493 31514

The average number of hot spots found per interval is shown in Table 6. Despite627

containing a relatively similar number of incidents per batch, speeding and harsh cor-628

nering give significantly different numbers of hot spots; this is due to these datasets629

each having a different specified mileage range. As shown in [31], a larger mileage630

reduces the hot spots identified, due to each hot spot covering a larger section of the631

road.632

Figure 10 displays the average runtime per interval of the two different imple-633

mentations of the algorithm: one where Stage 2 is done sequentially, and one where634

it is parallelised (fully parallel). We can observe that there is a significant reduction635

in the runtime when the fully parallel version is used for very large batch sizes, such636

as in the harsh braking data. In Figure 11 we provide further details of the runtimes637

of the various algorithm stages, focusing on harsh braking as the largest dataset. It638

can be seen that when Stage 2 is implemented in a sequential manner, it dominates639

the overall runtime. Parallelising Stage 2 speeds it up to the extent that it takes less640

time than Stage 1. Increasing the number of partitions reduces the runtime, although641

we do observe the beginning of a plateau, suggesting that using a greater number of642

partitions would not give much performance gain, at least for a dataset of this size.643

We can conclude that the Spark-based implementation of our proposed algorithm is644

capable of efficiently handling batches containing hundreds of thousands of incidents,645

and we advise employing the fully parallel implementation in such scenarios.646
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Fig. 10: Comparing the average runtime per interval for the two alternative versions
of PAS3-HSID: one with sequential Stage 2 and one with parallel Stage 2. The parallel
version shows a significantly better runtime, particularly on larger batch sizes. These
experiments were executed with 48 partitions.
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Fig. 11: Comparing average runtimes per interval for each stage of PAS3-HSID, for
the two different implementations of Stage 2. Results are obtained for the large harsh
braking dataset.

5 Conclusions647

In this work we have presented an approach for vehicle hot spot identification in data648

streams, adapting an existing instance selection method, SeleSup, with a pheromone-649
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based mechanism that ensures the hot spots found are reflective of the recent incident650

distribution. Our experiments have shown that our bio-inspired approach successfully651

determines hot spots within a dynamic stream, and when implemented in Apache652

Spark Streaming is capable of processing large batch sizes of hundreds of thousands653

of incidents in a timely manner. Furthermore, the algorithm successfully reduces the654

volume of data retained at each interval of the stream, decreasing storage require-655

ments.656

Hot spot identification can be of use in several areas, such as those mentioned657

at the start of this paper. Further analysis of the applicability of the PAS3-HSID658

algorithm to domains other than transportation is of interest for future work. Ad-659

ditionally, there are possibilities for improvements to be made to the method itself.660

For example, we have already mentioned in the previous section the inclusion of661

automatic parameter adaptation. In terms of the HGV incident scenario specifically,662

further investigation into supplementary conditions for defining hot spots could be663

done. For instance, taking into account that number of lorries in geographical regions664

in order to determine suitable localised thresholds.665
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