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ABSTRACT

Aims. In a recent measurement, Meléndez & Barbuy (2009, A&A, 497, 611) report accurate log gf values for 142 important astro-
physical lines with wavelengths in the range 4000 A to 8000 A. Their results include both solar and laboratory measurements. In this

paper, we describe a theoretical study of these lines.

Methods. The CIV3 structure codes, combined with our “fine-tuning” extrapolation process, are used to undertake a large-scale
CI calculation involving the lowest 262 fine-structure levels belonging to the 3d°4s, 3d”, 3d°4s?, 3d°4p, and 3d°4s4p configurations.
Results. We find that many of the 142 transitions are very weak intercombination lines. Other transitions are weak because the dom-

inant configurations in the two levels differ by two orbitals.

Conclusions. The comparison between our log gf values and the experimental values generally shows good agreement for most of
these transitions, with our theoretical values agreeing slightly more closely with the solar than with the laboratory measurements. A
detailed analysis of the small number of transitions for which the agreement between theory and experiment is not as good shows that
such disagreements largely arise from severe cancellation due to CI mixing.

Key words. atomic data — relativistic processes — methods: numerical

1. Introduction

The Goddard High Resolution Spectrograph (GHRC) and the
more recent Space Telescope Imaging Spectrograph (STIS) on-
board the Hubble Space Telescope (HST) have produced many
iron lines, particularly lines of Fe II, over a wide wavelength
range. With the ground-based high-resolution fibre-fed echelle
spectrograph mounted on the 3.6-m telescope at ESO-La Silla
Observatory under the HARPS GTO scheme, new spectroscopic
parameters for different ions, including Fe II, are emerging.
In one such measurement, Sousa et al. (2008) has reported
loggf values for 263 Fe I and 36 Fe II weak lines and were
subsequently used to determine iron abundances. Meléndez &
Barbuy (2009) have presented log gf values for weak 142
Fe II lines. These solar and laboratory measurements, claimed
to be accurate and precise, included the Fe II lines measured
by Sousa et al. (2008). For the transitions in common in these
two independent measurements, there is generally good agree-
ment. In the present investigation, we have undertaken a large-
scale calculation in which we represent the wave functions of
the levels involved in these (and other) transitions by means
of configuration interaction (CI) expansions. We are then able
to compare our calculated oscillator strengths with the experi-
mental results given by Sousa et al. (2008) and by Meléndez &
Barbuy (2009). A preliminary report was given in the proceed-
ings of the XX VIIth ICPEAC conference (Deb & Hibbert 2012).

2. Method of calculation

Our group has undertaken a number of recent CI calculations of
transitions in Fe II. There are many similarities in the approaches

* Visiting Faculty.

Article published by EDP Sciences

we have adopted in these calculations, but the method of optimi-
sation of some of the orbitals has varied from calculation to cal-
culation. Corrégé & Hibbert (2005, 2006) used orbitals up to 7s,
7p, 6d, and 4f to study a number of transitions involving 3d®nl
and 3d4s? or 3d°4sdp states. One of the difficulties that arise
is the significant variation in the form of the optimal 3d func-
tion between different states. For transitions between levels of
these configurations, the 3d orbital that appears in the dipole ma-
trix elements is represented best by the Hartree-Fock orbital of
the 3d%4s °D state. Subsequently, we (Deb & Hibbert 2010a,b,
2011) studied forbidden transitions, but since many of the tran-
sitions involve the 3d” levels, we chose the 3d function to be the
HF function for the 3d” *F state. However, in all our calculations,
the remaining d-functions were used to account for the variation
in the form of the optimal 3d function in different configura-
tions. In the present work we have reverted to the orbitals given
by Corrégé & Hibbert (2005), since the transitions reported by
Meléndez & Barbuy (2009) mostly have the form 3d®4s—3d%4p.

The CIV3 program of Hibbert (1975), Hibbert et al. (1991)
has been used to carry out the present structure calculation of
Fe II. The form of the CI wave functions is, in LSJ coupling,

M
W) = Z aDi(a;:LiS ). (1)

i=1

In (1), ®; represents a configuration state function (CSF) which
is constructed from a common set of one-electron orbitals of the
form

1
~Pu(r) Y (0, $)xm () 2

where Y is a spherical harmonic, y a spin function (often denoted
by @ or Bformg = 1 or —1, respectively), and the radial functions
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in (2) are expressed in analytic form as linear combinations of
normalised Slater orbitals (STOs):

k

Pu(r) = ) €jutjm(r), 3)

=1

and where the STOs take the form

(2 ) Hini=1
(21!

Also in (1), a; represents the angular momentum coupling
scheme and other necessary labelling, and q; is the correspond-
ing component of the eigenvector, associated with this wave
function, of the diagonalised Hamiltonian matrix whose typical
element is Hij = <(DZ|H|(D]>

We have sought to represent the 262 fine-structure levels
belonging to the 3d%4s, 3d’, 3d74s2, 3d64p, and 3d54s4p con-
figurations with energies up to 88615 cm™!. We treat this set
of configurations as our reference set. Beyond this energy, lev-
els of the 3d®5p configuration begin to appear in the spectrum,
and some of the wave functions require careful treatment of
CI mixing, particularly between 3d°5p and 3d>4s4p. The work of
Corrégé & Hibbert (2005) was specifically focussed on this type
of mixing, but the transitions reported by Meléndez & Barbuy
(2009) involve levels lying well below any of the 3d®5p lev-
els. Below energies of 88615 cm~!, there are a few levels that
belong to the 3d°4d and 3d®5s configurations, but they do not
show any significant coupling with the even levels considered
in the present calculations. Similarly, because we have not in-
cluded 3d®5p in the reference set, the mixing between 3d°5p
and 3d>4s4p will not be correctly represented.

Corrégé & Hibbert (2005, 2006) were able to include only
a few sextet and quartet states, in order to keep the configu-
ration size manageable, and so no doublets were included in
their calculation. Nor did they include the 3d’ configuration. In
the present calculation, we include all doublets, quartets, sex-
tets, and one octet belonging to the above configurations and be-
low 88615 cm™!. The configuration set in the present calculation
is therefore significantly larger that those in Corrégé & Hibbert
(2005, 2006).

The set of configurations was chosen in two steps: (a) keep-
ing subshells up to 3p filled, we included single and double re-
placements of orbitals from the outer shells by any of the avail-
able orbitals, for each configuration in the reference set; (b) then
we included configurations formed by replacing up to two or-
bitals (in total) from the 3s and 3p subshells by available orbitals
up to n = 6. This produced a large number of separate configu-
ration state functions (CSFs).

For each LS7 symmetry, we first undertook a calculation in
LS coupling. We found that a significant number of the CSFs
had very small eigenvector components, so we deleted those
whose |a;| had a value less than 0.001. In previous calculations,
we found that such a cut-off made very little difference to the
calculated energies or to the eigenvector components of the re-
maining CSFs.

Relativistic effects were introduced in the Breit-Pauli ap-
proximation, with the following operators: mass correction and
Darwin terms, and a modified spin-orbit term H, that allows for
both the nuclear spin-orbit effect and the main part of the spin-
other-orbit effect:

) N
Ho =22 Dy, )
i=1

2 r
1

12
njnl(r) = [ } rhi exp(_é:jnlr)' 4)

A32, page 2 of 5

Table 1. Number of CSFs used.

J Even Odd

0.5 7862 27070
1.5 14180 45494
25 17132 52187
3.5 14514 50820
45 11141 43433
5.5 5620 31340
6.5 1913 17909
7.5 6569

where () is a parameter that only depends on the /-value of
the interacting electrons in the Breit-Pauli Hamiltonian matrix
element. The values of the parameters (/) were chosen so that,
for certain key CSFs, the matrix element of Hy, reproduces the
sum of the matrix elements of the full spin-orbit and spin-other-
orbit operators. This process is then independent of the numbers
or types of the CSFs included in the CI expansions. The most
suitable parameters were found to be {(s) = 0.0, {(p) = 0.88,
{(d) = 0.59242, and £(f) = 0.52908. The number of CSFs in-
cluded in our calculation, for each J-value, is given in Table 1.

Finally, we adopted our customary practice of “fine-tuning”,
whereby we make small adjustments to the Hamiltonian matrix
elements so as to bring the calculated energy differences (i.e.,
above the ground state) as closely as possible into line with ex-
perimental values.

3. Results and discussions

The oscillator strengths determined by Meléndez & Barbuy
(2009) are all weak. Most correspond either to intercombination
lines (E1 transitions that in LS coupling would be zero but be-
come non-zero when spin-orbit mixing is introduced, resulting
in the upper and lower levels of the transitions being described
by wave functions containing CSFs with the same J but differ-
ent L or S) or to transitions in which the dominant CSFs of the
two levels differ by more than one orbital. In the latter case, a
single configuration approximation would again result in a zero
oscillator strength, assuming orthogonal orbitals, but configura-
tion mixing makes a non-zero result possible. Moreover, in the
calculation of many of these transitions, configuration mixing
results in cancellation of contributions from different CSFs, and
in some cases this cancellation is substantial, lowering the oscil-
lator strength by one or occasionally more orders of magnitude.

An interesting and important example is provided by the
three transitions of multiplet 42. These are usually described
as 3d74s? 655/2—3d64p 6P3, with J = 3/2, 5/2, 7/2: a notionally
two-electron change between upper and lower levels. The non-
zero nature of the calculated oscillator strength arises because
of mixing of the dominant CSF of the lower level with 3d>4p>
and the dominant CSF of the upper level with 3d°4s4p CSFs,
primarily the latter. These additional CSFs have direct dipole in-
teractions with the dominant CSF of the opposite parity and are
the main contributors to the oscillator strengths. The calculated
oscillator strengths are therefore very sensitive to the degree of
this mixing.

Some comparative results for the three transitions are dis-
played in Table 2. Our work is in very close agreement with the
experimental determinations of Meléndez & Barbuy (2009). The
earlier calculations of Raassen & Uylings (1998, 1999) give gf
values that are almost a factor of two lower than ours, and
are somewhat similar to the values given previously by Kurucz
(1988) and in later revisions of his database, though these are
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Table 2. log gf values for the multiplet 42 transitions.

Upper state

Source °py, °PY, °P,
This work -1.29 -1.12 -1.03
Meléndez & Barbuy (2009) -1.26 -1.10 -1.00
Kroll & Kock (1987) -1.24 -0.87
Schnabel et al. (2004) -1.21 —-0.87
Raassen & Uylings (1999)  -1.50 -1.35 -1.25
Kurucz (1988) -1.56 -1.40 -1.30
Kurucz & Bell (1995) -1.32 -122 -0.87

even lower. On the other hand, the current (2013) tabulation
on the CD of Kurucz & Bell (1995) shows values that have
been substantially revised; although these are closer to ours, the
ratios of the three oscillator strengths (or differences between
log gf values) do not match either those of other authors or of
the present calculation. Our work therefore shows a clear pref-
erence for the results of Meléndez & Barbuy (2009), and the
closeness of the agreement is encouraging, given the sensitivity
to CI mixing in our work.

The full comparison between our results and the experimen-
tal results of Meléndez & Barbuy (2009) is shown in Table 3.
The close agreement between theory and experiment seen for the
multiplet 42 continues for many of the 142 transitions displayed
in Table 3, even though the calculated values involve substan-
tial CI mixing and often CI cancellation. For some transitions,
the agreement between calculated and experimental oscillator
strengths is within 10%, though for many transitions the results
differ by around 25%, which is still good for such weak tran-
sitions. In any case for some transitions, this size of difference
occurs between the results of Meléndez & Barbuy (2009) and of
Sousa et al. (2008). For some, though, there is a difference of
about a factor of two, while in two cases, there are greater dis-
crepancies: at 16433, the difference is two orders of magnitude;
at 16508, the difference is more than four orders of magnitude.

We briefly examine three specific transitions, to see why
such a variation in difference occurs.

3.1. 16416.91 A

For this transition, our result is almost identical to that of
Meléndez & Barbuy (2009). It corresponds to the transi-
tion 3d°(*D)4s *Ds/,—3d°(D)4p 4P‘5’/2, with the levels labelled
by the dominant CSF in each case. With the assumption of or-
thogonal orbitals, the oscillator strength would be zero, because
of the different resultant angular momenta of the two 3d® cores.
The actual non-zero result of our calculations arises through the
mixing of 3d°(°D)4p *P¢,, with 3d°CD)4p *Pg 15> even though
the ai2 for the second CSF is only 0.02. This second CSF in the
odd parity state has a direct dipole interaction with the dominant
even parity CSF. All other such interactions are minor in compar-
ison. The agreement with the experimental result suggests that
our fine-tuning process is successful in obtaining mixing coeffi-
cients that are reasonably accurate.

3.2. 14515.33 A

This transition corresponds to 3d°(*F2)4s *Fs»—3d°(°D)dp
4F§ o Our oscillator strength is more than double the value of
Meléndez & Barbuy (2009). The lower level exhibits strong

mixing with 3d°(F1)4s *Fs,, (the 3d cores can also be written
in terms of seniority as iF and gF). This mixing gives contribu-
tions to the dipole matrix element that are additive, and if the
strength of the mixing were in error, there would be little effect
on the total. However, these contributions arise from the mix-
ing of both 3d6(3F2)4p 4F§ n and 3d6(3F1)4p 4Fg n in the wave
function for 3d°(°D)4p *Fs ,. Again, this mixing has an additive
effect on the oscillator strength, which makes it less sensitive to
errors in the CI mixing coefficients. Other mixing in the lower
level with 3d®(°D)4s *D and 3d’ *F has a smaller but again non-
cancelling effect on the oscillator strength. It would seem that
the calculated oscillator strength could only be reduced through
the CI mixings being too strong, though changes by a factor of
two would be surprising.

3.3. 16508.12 A

This is the transition for which our oscillator strength is four
orders of magnitude below the experimental value determined
by Meléndez & Barbuy (2009). It corresponds to the transi-
tion 3d°(D)4p 4Fg /2—3d54s2 4Dj/,. There are two orbitals that
are different in the dominant CSFs of the two levels so that again
the single configuration result for the oscillator strength would
be zero: the non-zero result is obtained through CI mixing.

To compare the effects of mixing arising from different
CSFs, it is convenient to define

2AE\'?
Fij= (3—g1) ala" (®/|Op|@*)

where [ and u denote the lower and upper levels of the transition,
AE is the transition energy, and Op is the appropriate dipole op-
erator. Then the oscillator strength is given simply by

/- [z20]

For this particular transition, the main contributions to the dipole
integral are displayed in Table 4.

There is severe cancellation within the final four inter-
actions owing to the interaction between 3d°(°D)4p *F with
3d%(°D)4p *D, resulting in a net contribution of 0.009 to the to-
tal of 100F;;. A similar degree of cancellation occurs amongst
the first three interactions listed, with a combined contribution
of —0.049, resulting in a total of —(0.040 for these seven interac-
tions, which is a factor of more than 20 smaller than the largest of
the individual contributions. At this point, other contributions of
a similar magnitude to the total of these seven make a significant
contribution: with the seven alone, the oscillator strength would
be 1.6 x 1077, whereas when all contributions are included, the
oscillator strength reduces still further to 2.1 x 107°.

One possible source of error in the calculation is therefore
the loss of significant figures arising from these cancellations.
Moreover, the relevant mixing coefficients are themselves small.
Their values are shown in Table 5.

The magnitude of at least one of the a; in each of the key
interactions is itself very small, and is perhaps open to change if
more CSFs were to be added to the wave function expansions. In
view of the extent of the cancellation effects, the calculated os-
cillator strength for this particular transition is much less reliable
than those of other transitions in Table 3.

A32, page 3 of 5
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Table 3. Comparison of our log gf values with solar (S) and laboratory (L) measurements of Meléndez & Barbuy (2009).

T e e e AGL Wb pen
. . . . . . -
4670.18 —4.095 —4.08 6383.72 2245 239 fégg'g _i'g?)L _;'?i
4720.15 —448°5 —3.92 638545 2595  —2.58 457634 2958 319
482574 4875 —4.83 641691 —2.645 —2.63 138283 3188 905
4831.13 —4.895 —479 6433.81 2375  —4.41 458383 103 178
4833.19 —4.645 455 6442.95 2445 .45 160137 dadgt  43d
4833.86 —5.115  —5.02 644641 —1975 —1.84 162050 321L 367
4839.99 475  —4.66 645583 —2.925  —3.06 162580 235h o4l
485555 —4.46°5 427 645638 —2.055  —1.94 462933 234 219
487127 -425° -3.93 648220 1785  —1.71 163531 L4t 175
4893.82 —4215 411 649124 2765 —2.84 165698 3605 351
492492 4905 —4.80 6493.03 -2.555  -2.61 166675 328 _3.03
4991.12  —4.55  —4.05 650633 —2.685  —2.66 473145 3105 298
499335 -3.62°5 —3.50 6508.12 3455  —7.90 199390 1268 129
500074 —4.615  —4.00 6517.01 2735 274 01844 —L10- L1
5036.92 —4.675  —4.53 656220 -2.835  -2.84 S169.03 100~ 103
5100.66 4175  —4.07 6586.69 -2.745 273 S19757 2mb 917
512035 —4.245 412 659830 —3.05°  —3.09 ) I8 16
5132.66 —4.08 —3.87 7301.56 -3.63% 3.4l 526481 313 279
5136.80 —4.435  —4.25 7479.69 -3.615 -3.34 : o :

S 527600 —2.01%  —2.08
5146.12  -3.915  -3.87 31661 187 185
5150.94 —4.48 438 4087.28 —457%  —4.23 531678 274 238
515440 —4.135  —4.08 4122.66 326 294 30555 316k 308
516118 —4.475  —4.42 412874 -3.63-  -3.54 e
5171.64 4545 470 417346 —2.65- 259 36286 25T 208
523862 —5.115 —5.12 4178.86 251 230 S41407 358 335
525693 —4.06° —4.07 423317 —197%  —1.94 S2525 390l 330
5284.10 -3.115  -3.07 4258.15 333 326 s512 397 37
543296 3385 334 427332 338 3.8 562749 410  _3.95
5534.84 275  -2.56 427876 373" -3.60 S657.93 403 376
559136 —4.445 436 429657 2.9 261 S15.06 476 456
599137 -3.545 -3.52 4303.17  —2.56%  —2.45 7y 460 498
6084.11 —3.79°5 372 435176 225 215 R1367 251L 46
611332 —4.145 408 436941 -3.65° 3.0 03830 260- 251
611605 —4.675 —4.63 438431 —344- 339 636046 411 406
612970 —4.645  —4.55 438538 —2.66%  —2.59 643268 35T 351
614774 —2.69°5 259 4413.60 -3.79%  —3.74 651608 _331° 325
614925 —2.69°5 —2.62 4416.83 —2.65% 252 239 306 316
6150.00 4735  —4.69 447292 336  -3.19 rids  320- 306
617938 —2.625 -2.57 4489.18 -2.96- 255 130807 303 292
618492 —3.725  —3.45 449140 271 247 731021 3374 331
6233.53 2515 285 450828 —2.44- 222 110065 393k 313
6239.95 -3.415 334 451533  —2.608 2.4 44933 3975 333
624735 -1.98  -2.15 452022 -2.65¢ 231 246040 274 268
624755 2305 —2.19 4522.63 225  —2.06 51583 339 339
624890 267 —2.63 453416 328"  -3.08 765548 356 _3.55
6317.98 -1.96° —2.08 454152 298 296 LT 250 249
633195 —1.88 —1.97 4549.19 —1.62%  —-1.86 : : :

4. Conclusions

In the previous section we discussed three exemplars of tran-
sitions, all of which (as E1 transitions) might normally be ex-
pected to be strong but which in fact are weak, sometimes very
weak. The type of accuracy that can be expected of theoreti-
cal results depends, not on the wavelength of the transition, but
on the make-up of the wave functions of the levels involved in

A32, page 4 of 5

each transition and, in particular, on the angular momenta of
the 3d” cores.

The characteristic feature of transitions such as the
6416.91 A line (Sect. 3.1) is that the 3d° cores, while having dif-
ferent LS symmetries in the 4s and 4p states, are mixed mainly
with CSFs containing the other symmetry. That is, the main
mixing in the 3d°(L;S;)4s level is with 3d®(L,S,)4s, while the
one for 3d%(L,S,)4p is with 3d°(L;S;)4p. The close agreement
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Table 4. Main contributions F;; to the dipole integral in line
16508.12 A.

Lower level CSF Upper level CSF  100F;;
3d°(D)4p *F 3d°(D)4s “D 0.232
3d3(“D) 4s4p('P) *F 3d%4s “D —0.863
3d°(*D) 4s4p('P) “D 3d°4s “D 0.582
3d°(D)4p *F 3d°CD)4s “D —0.115
3d°(°D)dp *F 3d3¢Dyp? ‘D -0.163
3d°(CD)4p ‘D 3d°(°D)4s ‘D 0.119
3d°CD)4p D 3d°(*D)4p? D 0.168

Table 5. Significant CI mixing coefficients relevant to the line
16508.12 A.

CSF a;

3d°(°D)4p ‘D -0.43918
3d5(“D) 4s4p('P)*D  0.02559
3d5(D)dp *F 0.83224
3d5¢“D) 4s4p('P)“F  0.02124
3d°(D)ds “D 0.00894
3d°(D)4d “D 0.00110

3d°(“D)4s? “D
3d°(“D)dp” ‘D

—0.92205
0.16055

between our oscillator strengths and those of Meléndez &
Barbuy (2009) encourages us to believe that, for such lines, we
have obtained this mixing accurately and therefore also the os-
cillator strengths.

The characteristic feature of transitions such as 4515.33 A
(Sect. 3.2) is that, in addition, the core angular momenta LS
and/or L,S, can occur with more than one seniority, and this
introduces a further CI mixing that is usually very strong (in
that case *F2 and *F1). Our experience is that such mixing is

difficult to achieve accurately. When this occurs, we would be
more hesitant about the accuracy of the oscillator strengths.

Lines such as 6508.12 A (Sect. 3.3) are characterised by a
two-electron change between the main CSFs of the two levels
(3d4p — 4s?). Frequently for such lines there is severe cancella-
tion in the dipole matrix elements due to strong CI mixing, giv-
ing rise to calculated oscillator strengths that can be abnormally
low (by several orders of magnitude). Then, different calcula-
tions may give very different results, pointing to a need to un-
dertake more extensive and perhaps more focussed calculations
for such lines.

In Table 3 we have not given the usual labels for the levels in-
volved in the transitions. In the near future, we plan to submit for
publication our full set of results, comprising oscillator strengths
of all transitions between levels of the configurations 3d%4s, 3d’,
3d°4s2, 3d%4p, 3d34s4p, and also 3d°5p. The labels of the lower
and upper levels of each transition will then be specified.

Acknowledgements. The authors would like to thank STFC, UK, for support
under the Rolling Grant PP/D00103X/1.
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