
International Journal of Research and Engineering
ISSN: 2348-7860 (O) | 2348-7852 (P) | Vol. 5 No. 9 | September-October 2018 | PP. 494-499

Digital Object Identifier DOI® http://dx.doi.org/10.21276/ijre.2018.5.9.1

Copyright © 2018 by authors and International Journal of Research and Engineering
This work is licensed under the Creative Commons Attribution International License (CC BY).

creativecommons.org/licenses/by/4.0 | |

ORIGINAL
ARTICLE

Time-aware Traffic Shaper using

Time-based Packet Scheduling on Intel I210

Author(s):
 1
*Syed Sahal Nazli Alhady,

1
Wan Amir Fuad Wajdi Othman,

1
Aeizaal Azman Abd Wahab,

1
Aeizaal Azman Abd Wahab,

1
Por Yin Wong

Affiliation(s):
1
School of Electrical & Electronic Engineering, Universiti Sains Malaysia

*Corresponding Author: sahal@usm.my

Abstract - By 2015, the Institute of Electrical and

Electronics Engineers (IEEE) time-sensitive

networking (TSN) task group has released several

TSN standards. Amongst them is 802.1Qbv, also

known as time-aware shaper, aiming to provide

performance assurances of latency and delivery

variation to enable applications in a TSN network.

While there are several products and evaluation

kits that employ 802.1Qbv in the market now, it is

still not widely adopted yet due to the maturity of

the standard. Hardware-enabled 802.1Qbv use

hardware queues and timers to achieve accurate

transmission of packets in the switch and bridge.

This research aims to investigate the feasibility of

using an existing end-station Ethernet controller,

Intel I210, and its launch time control feature

(commonly known as time-based packet

scheduling) to shape traffic compatible to

802.1Qbv-enabled network bridges. A software

solution is developed by implementing a software

configurable gate-control list and employing open-

source Linux RFC patches for per-packet transmit

time specification. By configuring the kernel and

mapping kernel-layer traffic classes to the

hardware queues, packets can be transmitted out at

precise times while attaching 802.1Q VLAN tags,

required by bridges to identify packets. Through

analysis, it is found that this solution will require an

additional 30 μs transmit offset to be used

effectively. That is 55% more time is needed to

transmit a packet in a back-to-back connection and

17.6% on a 3-switch network to improve period

peak jitter performance to just 8.9 μs compared to

1 ms on solutions that send packets out periodically

using software sleep functions.

Keywords: Time-sensitive networking, time-aware

shapers, period jitter, latency

I. INTRODUCTION

Ethernet has been widely used for various consumer

applications due to its cost, availability and throughput

capabilities. Recent interest has increased in using Ethernet

for industrial and automotive applications where existing

communication channels such as CAN and FlexRay are not

capable of providing the bandwidth needed for infotainment

applications and camera-based Advanced Driver Assistance

Systems (ADASs) such as, Lane Departure Warning and

Traffic Sign Recognition (IEEE, March 18 2016) (Bello,

2014). Consolidation of several automotive domains in a

vehicle communication system by primarily using Ethernet

would benefit manufacturers by reducing costs, improving

manageability and reduce the infrastructure complexity (P.

Meyer, 2013).

Several standards were added by the TSN (formerly AVB)

task group including; 802.1Qbv, 802.1Qbu and 802.1Qca.

These specifications provide a framework which industry

players can enhance their Ethernet technology

implementations to be used in time-critical scenarios and

provide the timing guarantees needed for industrial and

automotive applications. In particular, 802.1Qbv aims to

solve the problem of interfering frames in a time-sensitive

network by introducing time-aware shapers (IEEE, March

18 2016) (Bello, 2014). Time-aware shapers are a means to

temporally isolate time-sensitive packet flows as they allow

time-sensitive frames to egress from a bridge port at specific

intervals.

Problem Statement

Conventional Ethernet is inadequate for real-time or

industrial applications due to its non-deterministic behavior

(Lee & Suk Lee, 2002). Under heavy loads, the 802.3 MAC

may become unfair through due to interfering frames and

phenomenon called the capture effect (Decotignie, 2005). In

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Research and Engineering

https://core.ac.uk/display/199472182?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 495

IJRE | Vol. 5 No. 9 | September-October 2018 | S. S. Nazli Alhady et al.

a time-critical applications, Ethernet must deliver data, in a

timely and dependable fashion.

The 802.1Qbv standard specifies how time-aware shapers

are “smart shapers” that let frames out based on their size

and the knowledge of expected times for time-sensitive

frames. However, it is conventionally implemented at the

hardware-level. Hardware-based implementations increase

productions costs and time-to-market intervals. For an end-

station, one possible alternative is by using existing

hardware to emulate the behavior of the standard by using

time-based packet scheduling.

Objective

This paper proposes a solution using an existing,

commercially-available product, the Intel I210 Ethernet

controller which has time-based packet scheduling

capabilities to transmit packets. This paper aims to develop

a functional prototype of a time-aware shaper using time-

based packet scheduling with Intel I210 on a Linux

platform; and to identify the transmit offset required to

effectively implement time-based packet scheduling using a

software gate-control list.

II. IMPLEMENTATION OF TIME-AWARE

SHAPER IN A LINUX SYSTEM

System setup

The proposed solution is positioned as a user-space

application within the system which includes 2 end-stations

and 3 switches with connected as shown in Figure 1.

Analysis is performed either with 2 end-stations connected

directly or over 3 switches. A third host is used for

generating interfering traffic.

System setup

The proposed solution is positioned as a user-space

application within the system which includes 2 end-

stations and 3 switches with connected as shown in

Figure 1. Analysis is performed either with 2 end-

stations connected directly or over 3 switches. A third

host is used for generating interfering traffic.

Figure 1 Full system setup and packet path from host to

client. A PC generates interfering traffic.

In Figure 1, both end stations, client and host, are Linux

4.14 systems running on 4-cores at 1.6GHz and using the

Intel I210 Ethernet controller. The host will construct the

packet and payload. The Intel I210 Ethernet controller

provides the time-based packet scheduling feature and also

comes with hardware receive timestamping capabilities;

which is why the same hardware is used as the client as

incoming packets can be timestamped right at the moment it

reaches its destination.

These two end stations are connected through 3 switches to

introduce a network environment which uses 802.1Qbv for

traffic shaping and prioritization. All 5 components are

connected by a single Ethernet wire from one component to

another, except in the case of the second switch which has 1

additional input port for traffic injection.

Each switch have specific gate-open intervals. In this case,

each switch opens for 24 us and will do so once every 1 ms.

It is the host application’s responsibility to launch packets at

specific intervals based on the switch’s gate-open intervals.

Transmitting packets to reach the switches right before the

switch transmit time for that particular is key to achieving

minimal latency and reducing time wasted waiting at the

switch’s egress queues.

Figure 2 Points where timestamps are indicating.

Figure 2 shows the various software components employed

throughout the network and host in order to transmit the

packets precisely. In a network, each device operates in their

own clock domain as the precision of each clock crystal

differs from one device to another. A Linux utility

(conforming to 802.1As) called “ptp4l” and “phc2sys” from

“linuxptp” (Cochran, 2018) is used to synchronize each

clock to the hosts’ Ethernet controller clock. Using this

utility, the same timestamp and clock domain can be

maintained throughout the network accurate to several

nanoseconds.

Packets are transmitted through user-defined VLAN

(802.1Q) interfaces to attach VLAN headers to the packets.

This allows the switches to identify the packets and its

priority. Priorities can be mapped from the Linux system’s

 496

IJRE | Vol. 5 No. 9 | September-October 2018 | S. S. Nazli Alhady et al.

socket priorities, or traffic classes, to the VLAN priorities

specified by the user. In this research, 3 distinct priorities

are used; in descending orders of priority, time-critical

traffic, interfering traffic and best-effort traffic.

Per-packet scheduling is a hardware feature available on the

Intel I210 Ethernet controller. To schedule packets for

transmission, a user will have to map the packet traffic class

to the respective TBS Qdisc (Corbet, 2018). If the packet

transmit time is placed onto the packet, the Ethernet

controller will wait until the specified time before

transmitting. In this research, a TBS Qdisc is used for both

time-critical and best-effort traffic. For analysis purposes, a

second host with Intel I210 Ethernet controller is used to

timestamp packets as they arrive at the second host. This is

useful for calculating latency and period jitter experienced

by a receiving end-station.

Analysis 1: Performance over 3-switches

The first analysis is performed between 2 end stations with a

direct connection to each other. This analysis is performed

on systems running the proposed solution, and the regular

non-TBS approach of transmitting packets. The two

configurations are to send 480000 packets over 8 minutes to

a client which will timestamp incoming packets as they

arrive and store them in a file for analysis. The key metrics

calculated from the data stored are period jitter and frame

delay variance.

As the non-TBS configuration would not have packet

transmit timestamps, this analysis is performed by storing

the packet construction timestamp into the packet payload

while the packet is being constructed at the host application.

Using this packet construction timestamp and the receive

timestamp, the client application calculates the total latency,

frame delay variance and period jitter. The minimum,

maximum and average values are presented in this paper.

Period jitter is measured to show how the output’s

periodicity is impacted when TBS is used. By calculating

the difference between a packet’s receive timestamp with

the previous packet timestamp the period between packets is

known. Since the ideal period is 1ms, period jitter can then

be found as in equation 1 (Tranchemontagne, 2016).

Period Jitter = Real period – ideal period (1)

The Inter-Packet Delay Variation (IPDV) or Frame Delay

Variance (FDV) can be calculated by comparing a packet’s

latency with the previous packet’s latency. This value can

indicate how much a packet’s latency is changing. Without

TBS, this value should fluctuate significantly. Equations 2

to 4 (A. Morton, 2009) are used to calculate the FDV in this

analysis.

Latency X

= (receive timestamp B – packet construction timestamp B)

– (receive timestamp A - packet construction timestamp A)

(2)

Latency Y

= (receive timestamp C – packet construction timestamp C)

– (receive timestamp B - packet construction timestamp B) (3)

Frame delay variation (FDV) = latency Y – latency X (4)

Using the frame delay variance in total transmission time

and period jitter, both TBS and non-TBS applications can be

compared equally in terms of its determinism. TBS is

expected to perform better and this experiment will show by

what margin.

Analysis 2: Minimum Transmit Offset

This analysis is performed between the host and client with

a direct connection. Transmit offset is the time interval into

the future the host application sets the packet transmit

timestamp. Ideally, an application would set the timestamp

as far into the future as possible, however that is not an

opportunity every platform or system has. Theoretically, it is

possible to transmit packets with minimal delay, however

software timing variances may cause the packets to be

transmitted out several nanoseconds to microseconds later,

resulting in additional jitter. By comparing the receive

timestamp and the packet construction timestamp, the total

transmission time experienced by the packet is known. The

total transmission time is compared between the two

configurations over 8 minutes with 480000 packets.

Firstly a non-TBS system is used to obtain its total

transmission time. Then, the TBS solution is used with the

value obtained as transmit offset. However this value is not

expected to use TBS effectively, there will be occasions

where the packet misses the transmit time when it reaches

the Ethernet controller and still get sent out anyway as there

will be occasions where it was sent too late by the kernel. A

difference of several nanoseconds or even microseconds,

will increase peak-to-peak frame delay variance and period

jitter. So the transmit offset value is incremented until the

period jitter improves to the point similar to the results

obtained in Analysis 1 and this will be the minimum time

that is suitable to be used at the CPU’s existing load and

capability. This value is important because it indicates how

much additional time is required in order to use TBS

effectively in order to gain the benefits indicated by

Analysis 1.

Analysis 3: Latency of High-priority Traffic during

Traffic Interference

 497

IJRE | Vol. 5 No. 9 | September-October 2018 | S. S. Nazli Alhady et al.

This analysis is to verify that high-priority packets are not

interrupted and software gate-control list implementation is

compatible with 802.1Qbv capable switches. This setup is

similar to Analysis 1 except that the second switch being

injected using a regular PC running a traffic generator which

outputs interfering VLAN packets with a different VLAN

ID and priority value set to 3. Every 1ms at the host, a TSN

packet is transmitted and 0.5us later a BE packet is

transmitted. Two packets are transmitted every 1ms. Only

one host configuration with the TBS solution is used in this

test. The analysis is compared with and without traffic

injection. If the previous experiments were conducted

successfully, this experiment will show the proposed

solution is fully functional with physical 802.1Qbv-capable

switches.

Expected results include the frame delay variance and

period jitter or high-priority traffic remaining the same

while low-priority traffic is delayed. Without TBS and using

only software sleep functions, this would not be possible

and TSN traffic would miss the time slices and get delayed

because high-priority traffic is only processed during its

own time slice.

III. RESULTS AND DISCUSSION

Analysis 1: Performance over 3-switches

Results are shown in Table 1. The peak-to-peak in the time

between packets is observed to be higher than the solution

without TBS. Without TBS, packets are being more

inconsistently transmitted out. They have a peak-to-peak of

almost 2 ms compared to only 0.017 μs of the TBS solution.

While this outcome is expected, this experiment shows the

margin of improvement when using time-based packet

scheduling.

Without using time-based packet scheduling the solution is

showing a maximum of additional 1 ms in time between 2

packets. This is highly undesirable in a time-sensitive

environments. Key takeaways from this experiment shows

that the solution is successfully developed to utilize the

time-based packet scheduling feature. Period jitter

performance is significantly improved compared to a

solution which uses regular sendmsg() calls without the TBS

feature.

Additionally, when not using TBS the average period is

consistent, most of the data is. However there are 112

occasions, within the 480000 data collected, where the TSN

packets are out of sync with the gate control lists. This

causes the peak-to-peak jitter to spike by up to 1ms of delay.

When a TSN packet misses the time slice in the switch it has

to wait in queue until the next window opens, only then it

will transmit out immediately along with another packet that

was intended in that time slice.

This observation is crucial as it shows how without TBS a

packet has a higher probability of missing the time slice and

being delayed at the switches’ transmit gates. In a TSN and

real-time system, this behavior could be highly undesirable.

Analysis 2: Minimum transmit offset required to

specify transmit time

This analysis involves observing the impacts of using TBS

with minimum transmit offset. In the previous analysis, the

program is given 500 μs to place the packet into the qdisc

and the hardware queue, which in reality (as this analysis

found) only requires about 60 μs to occur. The overhead is

used to provide a buffer to eliminate the software variations

when performing analysis.

Results shown in Table 2 display a consistent minimum

jitter of 3 ns, this is normal in a system as a miniscule

amount of jitter is still expected due to link properties.

Without using time-based packet scheduling, there is an

average total transmit time of 58 μs. Using this value as

reference, the experiment starts from scheduling packets 65

μs to the future to 85 μs. This is because the program

requires ~5 μs to wake up and start constructing the packet.

The experiment is repeated with four other transmit offset

values until a stable minimum period jitter is observed.

497

Table 1

Period jitter calculated using total transmission time and receive time

 Time since last packet (ns) 1ms Period Jitter (ns) Frame Delay Variance (ns)

 TBS No TBS TBS TBS No TBS TBS

Average 1,000,000 1,000,000 25 486 25 1,771

Minimum 991,204 6,880 3 3 3 0

Maximum 1,008,884 2,000,088 8,884 1,000,088 8,884 1,001,304

Peak-to-peak 17,680 1,993,208

 498

IJRE | Vol. 5 No. 9 | September-October 2018 | S. S. Nazli Alhady et al.

From Table 2, at 85us, significant period jitter improvement

is observed. At 65 μs and 75 μs, the period jitter is not

improved even though the application is configured to use

time-based packet scheduling. While there is an

improvement over the original configuration where no TBS

is used, there is still a variance which occurs intermittently.

Hence this experiment shows that even when TBS is

enabled, there could still be intermittent jitters due to the

system’s software and hardware uncertainties and an

additional overhead buffer time is required.

From this experiment, it is concluded that on a no-load end

station environment, the recommended transmit offset is 95

μs. This is of course still subjective to the implementer and

the hardware available as these results could easily be

affected by the CPU and its processes. The higher amount of

delay is always recommended where possible.

This result shows that this test methodology can be used to

evaluate at which point a system can reliably send out

packets with an effective and current TBS implementation.

As explained in the previous paragraph, 95 μs is the best

minimum transmit offset value for this configuration. This

indicates that the system requires a minimum of 30 μs of

transmit offset before TBS is used effectively by the system.

This also shows that the TBS solution would take 55%

longer in average total transmission time to effectively use

TBS compared to non-TBS solutions in back-to-back

connections. On a 3-switch setup that would be 17.6%.

Analysis 3: Latency during traffic interference

The last analysis shows how an interfering traffic injected to

the 3-switch system will compromise low-priority traffic

without affecting the high-priority traffic. Results tabulated

in Table 3 show that with interference, BE packets have a

much higher peak-to-peak total transmission time, more

than 1ms more than TSN packets. This environment shows

how in a real-world scenario a TSN traffic can be protected

from latencies using 802.1Qbv switches and also

demonstrates that the proposed solution is able to work with

these switches with minimal input and modifications.

Figure 4-1 (Left) TSN and BE packets are sent without

notable latency variances. (Right) BE traffic is shown to be

affected by the interfering traffic, latency varies up to 200us

more.

Figure 3 shows a graphical representation of the TSN and

BE traffic latency. When traffic is introduced the low-

priority traffic (BE) is delayed consistently by ~200 μs

while the high-priority traffic is not affected at all by the

traffic injected by the system. Key takeaway from this

experiment includes the successful testing of the application

on a network with traffic injected to the system,

demonstrating the effectiveness of the time-aware shaper.

Table 2

Period jitter calculated using total transmission time and receive time

 Total transmit time (ns)

 No TBS TBS 65 μs TBS 75 μs TBS 85 μs TBS 90 μs TBS 95 μs

Average 58,182 60,235 70280.32 80345 85,298 90,197

Minimum 15,925 53,555 53816 61213 67,133 70,048

Maximum 88,708 81,161 86044 84170 85,739 90,688

 Period Jitter (ns)

Average 1,421 16 11 10 10 10

Minimum 3 3 3 3 3 3

Maximum 91,741 21,053 24963 5724 828 21

Table 3

Total transmission time with and without traffic interference

 With interference No interference

Total transmission time (ns) TSN BE TSN BE

Average 112,173 312,352 112,182 93,268

Minimum 111,549 92,168 111,588 91,986

Maximum 121,966 137,4825 120,641 102,849

Peak-to-Peak 10,417 1,282,657 9,053 10,863

 499

IJRE | Vol. 5 No. 9 | September-October 2018 | S. S. Nazli Alhady et al.

IV. CONCLUSION

The proposed solution was successfully developed and

tested on a 3-switch network. Packets are sent at their

respective specified transmit times and is shown to be

compatible with network switches enabled with gate-

control.

On average, a minimum additional transmit offset of 30 μs

is required for a host to schedule packets far enough into the

future to effectively use time-based packet scheduling. This

is 55% more time needed in a back-to-back connection

while 17.6% more on a 3-switch network. Analysis showed

that period jitter performance across switches peak at 8.9 μs

compared to up to 1 ms by solutions using software sleep

functions. Future works may involve developing the

solution to conform closer to the 802.1Qbv specifications,

specifically on handling transitions between different gate

control lists. Combining with transmission selection

algorithms from other specifications such as 802.1Qav

credit-based shapers is also a possible avenue to provide

users with more control over the transmission bandwidth.

V. ACKNOWLEDGMENT

The authors gratefully acknowledge use of service and

facilities of their colleagues in Intel Microelectronics

Malaysia, funded alongside by USAINS.

REFERENCES

[1] A. Morton, B. C. (2009, March). Packet Delay

Variation Applicability Statement. Retrieved July

2018, from https://ietf.org/rfc/rfc5481.txt

[2] Bello, L. L. (2014). Novel trends in automotive

networks: A perspective on Ethernet and the

IEEE Audio Video Bridging. Proceedings of the

2014 IEEE Emerging Technology and Factory

Automation (ETFA). Barcelona.

[3] Cochran, R. (2018, April). Linuxptp. Retrieved

May 2018, from

https://github.com/richardcochran/linuxptp

[4] Corbet, J. (2018, March). Time-based packet

transmission. (Eklektix, Inc) Retrieved May

2018, from https://lwn.net/Articles/748879/

[5] Decotignie, J. D. (June 2005). Ethernet-Based

Real-Time and Industrial Communications. IEEE,

vol. 93(no. 6), pp. 1102-1117.

[6] IEEE. (March 18 2016). "IEEE Standard for

Local and metropolitan area networks -- Bridges

and Bridged Networks - Amendment 25:

Enhancements for Scheduled Traffic" in IEEE

802.1Qbv-2015. New York: IEEE Standards

Association.

[7] Kyung Chang Lee, S. L. (2002). Performance

evaluation of switched Ethernet for real-time

industrial communications. Computer Standards

& Interfaces, 24(5), 441-423.

[8] P. Meyer, T. S. (2013). Extending IEEE 802.1

AVB with time-triggered scheduling: A

simulation study of the coexistence of

synchronous and asynchronous traffic. IEEE

Vehicular Networking Conference, , (pp. pp. 47-

54.). Boston, MA, 2013, .

[9] Tranchemontagne, M. (2016, June). Jitter Basics,

Advanced, and Noise Analysis. Retrieved July

2018, from

https://www.ieee.li/pdf/viewgraphs/jitter_basics_

advanced.pdf

499

