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Abstract -  By 2015, the Institute of Electrical and 

Electronics Engineers (IEEE) time-sensitive 

networking (TSN) task group has released several 

TSN standards. Amongst them is 802.1Qbv, also 

known as time-aware shaper, aiming to provide 

performance assurances of latency and delivery 

variation to enable applications in a TSN network. 

While there are several products and evaluation 

kits that employ 802.1Qbv in the market now, it is 

still not widely adopted yet due to the maturity of 

the standard. Hardware-enabled 802.1Qbv use 

hardware queues and timers to achieve accurate 

transmission of packets in the switch and bridge. 

This research aims to investigate the feasibility of 

using an existing end-station Ethernet controller, 

Intel I210, and its launch time control feature 

(commonly known as time-based packet 

scheduling) to shape traffic compatible to 

802.1Qbv-enabled network bridges. A software 

solution is developed by implementing a software 

configurable gate-control list and employing open-

source Linux RFC patches for per-packet transmit 

time specification. By configuring the kernel and 

mapping kernel-layer traffic classes to the 

hardware queues, packets can be transmitted out at 

precise times while attaching 802.1Q VLAN tags, 

required by bridges to identify packets. Through 

analysis, it is found that this solution will require an 

additional 30 μs transmit offset to be used 

effectively. That is 55% more time is needed to 

transmit a packet in a back-to-back connection and 

17.6% on a 3-switch network to improve period 

peak jitter performance to just 8.9  μs compared to 

1 ms on solutions that send packets out periodically 

using software sleep functions. 

Keywords: Time-sensitive networking, time-aware 

shapers, period jitter, latency 

I.   INTRODUCTION 

 

Ethernet has been widely used for various consumer 

applications due to its cost, availability and throughput 

capabilities. Recent interest has increased in using Ethernet 

for industrial and automotive applications where existing 

communication channels such as CAN and FlexRay are not 

capable of providing the bandwidth needed for infotainment 

applications and camera-based Advanced Driver Assistance 

Systems (ADASs) such as, Lane Departure Warning and 

Traffic Sign Recognition (IEEE, March 18 2016) (Bello, 

2014). Consolidation of several automotive domains in a 

vehicle communication system by primarily using Ethernet 

would benefit manufacturers by reducing costs, improving 

manageability and reduce the infrastructure complexity (P. 

Meyer, 2013). 

Several standards were added by the TSN (formerly AVB) 

task group including; 802.1Qbv, 802.1Qbu and 802.1Qca. 

These specifications provide a framework which industry 

players can enhance their Ethernet technology 

implementations to be used in time-critical scenarios and 

provide the timing guarantees needed for industrial and 

automotive applications. In particular, 802.1Qbv aims to 

solve the problem of interfering frames in a time-sensitive 

network by introducing time-aware shapers (IEEE, March 

18 2016) (Bello, 2014). Time-aware shapers are a means to 

temporally isolate time-sensitive packet flows as they allow 

time-sensitive frames to egress from a bridge port at specific 

intervals. 

Problem Statement 

Conventional Ethernet is inadequate for real-time or 

industrial applications due to its non-deterministic behavior 

(Lee & Suk Lee, 2002). Under heavy loads, the 802.3 MAC 

may become unfair through due to interfering frames and 

phenomenon called the capture effect (Decotignie, 2005). In 
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a time-critical applications, Ethernet must deliver data, in a 

timely and dependable fashion. 

The 802.1Qbv standard specifies how time-aware shapers 

are “smart shapers” that let frames out based on their size 

and the knowledge of expected times for time-sensitive 

frames. However, it is conventionally implemented at the 

hardware-level. Hardware-based implementations increase 

productions costs and time-to-market intervals. For an end-

station, one possible alternative is by using existing 

hardware to emulate the behavior of the standard by using 

time-based packet scheduling. 

Objective 

This paper proposes a solution using an existing, 

commercially-available product, the Intel I210 Ethernet 

controller which has time-based packet scheduling 

capabilities to transmit packets. This paper aims to develop 

a functional prototype of a time-aware shaper using time-

based packet scheduling with Intel I210 on a Linux 

platform; and to identify the transmit offset required to 

effectively implement time-based packet scheduling using a 

software gate-control list. 

II. IMPLEMENTATION OF TIME-AWARE 

SHAPER IN A LINUX SYSTEM 

 

System setup 

The proposed solution is positioned as a user-space 

application within the system which includes 2 end-stations 

and 3 switches with connected as shown in Figure 1. 

Analysis is performed either with 2 end-stations connected 

directly or over 3 switches. A third host is used for 

generating interfering traffic. 

System setup 

The proposed solution is positioned as a user-space 

application within the system which includes 2 end-

stations and 3 switches with connected as shown in 

Figure 1. Analysis is performed either with 2 end-

stations connected directly or over 3 switches. A third 

host is used for generating interfering traffic. 

Figure 1 Full system setup and packet path from host to 

client. A PC generates interfering traffic. 

 

In Figure 1, both end stations, client and host, are Linux 

4.14 systems running on 4-cores at 1.6GHz and using the 

Intel I210 Ethernet controller. The host will construct the 

packet and payload. The Intel I210 Ethernet controller 

provides the time-based packet scheduling feature and also 

comes with hardware receive timestamping capabilities; 

which is why the same hardware is used as the client as 

incoming packets can be timestamped right at the moment it 

reaches its destination. 

 

These two end stations are connected through 3 switches to 

introduce a network environment which uses 802.1Qbv for 

traffic shaping and prioritization. All 5 components are 

connected by a single Ethernet wire from one component to 

another, except in the case of the second switch which has 1 

additional input port for traffic injection. 

 

Each switch have specific gate-open intervals. In this case, 

each switch opens for 24 us and will do so once every 1 ms. 

It is the host application’s responsibility to launch packets at 

specific intervals based on the switch’s gate-open intervals. 

Transmitting packets to reach the switches right before the 

switch transmit time for that particular is key to achieving 

minimal latency and reducing time wasted waiting at the 

switch’s egress queues. 

 

Figure 2 Points where timestamps are indicating. 

 

Figure 2 shows the various software components employed 

throughout the network and host in order to transmit the 

packets precisely. In a network, each device operates in their 

own clock domain as the precision of each clock crystal 

differs from one device to another. A Linux utility 

(conforming to 802.1As) called “ptp4l” and “phc2sys” from 

“linuxptp” (Cochran, 2018) is used to synchronize each 

clock to the hosts’ Ethernet controller clock. Using this 

utility, the same timestamp and clock domain can be 

maintained throughout the network accurate to several 

nanoseconds. 

 

Packets are transmitted through user-defined VLAN 

(802.1Q) interfaces to attach VLAN headers to the packets. 

This allows the switches to identify the packets and its 

priority. Priorities can be mapped from the Linux system’s 
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socket priorities, or traffic classes, to the VLAN priorities 

specified by the user. In this research, 3 distinct priorities 

are used; in descending orders of priority, time-critical 

traffic, interfering traffic and best-effort traffic.  

 

Per-packet scheduling is a hardware feature available on the 

Intel I210 Ethernet controller. To schedule packets for 

transmission, a user will have to map the packet traffic class 

to the respective TBS Qdisc (Corbet, 2018). If the packet 

transmit time is placed onto the packet, the Ethernet 

controller will wait until the specified time before 

transmitting. In this research, a TBS Qdisc is used for both 

time-critical and best-effort traffic. For analysis purposes, a 

second host with Intel I210 Ethernet controller is used to 

timestamp packets as they arrive at the second host. This is 

useful for calculating latency and period jitter experienced 

by a receiving end-station. 

 

Analysis 1: Performance over 3-switches 

 

The first analysis is performed between 2 end stations with a 

direct connection to each other. This analysis is performed 

on systems running the proposed solution, and the regular 

non-TBS approach of transmitting packets. The two 

configurations are to send 480000 packets over 8 minutes to 

a client which will timestamp incoming packets as they 

arrive and store them in a file for analysis. The key metrics 

calculated from the data stored are period jitter and frame 

delay variance. 

 

As the non-TBS configuration would not have packet 

transmit timestamps, this analysis is performed by storing 

the packet construction timestamp into the packet payload 

while the packet is being constructed at the host application. 

Using this packet construction timestamp and the receive 

timestamp, the client application calculates the total latency, 

frame delay variance and period jitter. The minimum, 

maximum and average values are presented in this paper.  

 

Period jitter is measured to show how the output’s 

periodicity is impacted when TBS is used. By calculating 

the difference between a packet’s receive timestamp with 

the previous packet timestamp the period between packets is 

known. Since the ideal period is 1ms, period jitter can then 

be found as in equation 1 (Tranchemontagne, 2016). 

 

Period Jitter = Real period – ideal period (1) 

 

The Inter-Packet Delay Variation (IPDV) or Frame Delay 

Variance (FDV) can be calculated by comparing a packet’s 

latency with the previous packet’s latency. This value can 

indicate how much a packet’s latency is changing. Without 

TBS, this value should fluctuate significantly. Equations 2 

to 4 (A. Morton, 2009) are used to calculate the FDV in this 

analysis. 

 

Latency X  

= (receive timestamp B – packet construction timestamp B) 

– (receive timestamp A - packet construction timestamp A)           

(2) 

 

 

Latency Y  

= (receive timestamp C – packet construction timestamp C)  

– (receive timestamp B - packet construction timestamp B)       (3) 

Frame delay variation (FDV) = latency Y – latency X                     (4) 

 

Using the frame delay variance in total transmission time 

and period jitter, both TBS and non-TBS applications can be 

compared equally in terms of its determinism. TBS is 

expected to perform better and this experiment will show by 

what margin. 

 

Analysis 2: Minimum Transmit Offset 

This analysis is performed between the host and client with 

a direct connection. Transmit offset is the time interval into 

the future the host application sets the packet transmit 

timestamp. Ideally, an application would set the timestamp 

as far into the future as possible, however that is not an 

opportunity every platform or system has. Theoretically, it is 

possible to transmit packets with minimal delay, however 

software timing variances may cause the packets to be 

transmitted out several nanoseconds to microseconds later, 

resulting in additional jitter. By comparing the receive 

timestamp and the packet construction timestamp, the total 

transmission time experienced by the packet is known. The 

total transmission time is compared between the two 

configurations over 8 minutes with 480000 packets.  

 

Firstly a non-TBS system is used to obtain its total 

transmission time. Then, the TBS solution is used with the 

value obtained as transmit offset. However this value is not 

expected to use TBS effectively, there will be occasions 

where the packet misses the transmit time when it reaches 

the Ethernet controller and still get sent out anyway as there 

will be occasions where it was sent too late by the kernel. A 

difference of several nanoseconds or even microseconds, 

will increase peak-to-peak frame delay variance and period 

jitter. So the transmit offset value is incremented until the 

period jitter improves to the point similar to the results 

obtained in Analysis 1 and this will be the minimum time 

that is suitable to be used at the CPU’s existing load and 

capability. This value is important because it indicates how 

much additional time is required in order to use TBS 

effectively in order to gain the benefits indicated by 

Analysis 1.  

 

Analysis 3: Latency of High-priority Traffic during 

Traffic Interference 
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This analysis is to verify that high-priority packets are not 

interrupted and software gate-control list implementation is 

compatible with 802.1Qbv capable switches. This setup is 

similar to Analysis 1 except that the second switch being 

injected using a regular PC running a traffic generator which 

outputs interfering VLAN packets with a different VLAN 

ID and priority value set to 3. Every 1ms at the host, a TSN 

packet is transmitted and 0.5us later a BE packet is 

transmitted. Two packets are transmitted every 1ms. Only 

one host configuration with the TBS solution is used in this 

test. The analysis is compared with and without traffic 

injection. If the previous experiments were conducted 

successfully, this experiment will show the proposed 

solution is fully functional with physical 802.1Qbv-capable 

switches.  

 

Expected results include the frame delay variance and 

period jitter or high-priority traffic remaining the same 

while low-priority traffic is delayed. Without TBS and using 

only software sleep functions, this would not be possible 

and TSN traffic would miss the time slices and get delayed 

because high-priority traffic is only processed during its 

own time slice. 

III. RESULTS AND DISCUSSION  

 

Analysis 1: Performance over 3-switches 

Results are shown in Table 1. The peak-to-peak in the time 

between packets is observed to be higher than the solution 

without TBS. Without TBS, packets are being more 

inconsistently transmitted out. They have a peak-to-peak of 

almost 2 ms compared to only 0.017 μs of the TBS solution. 

While this outcome is expected, this experiment shows the 

margin of improvement when using time-based packet 

scheduling. 

Without using time-based packet scheduling the solution is 

showing a maximum of additional 1 ms in time between 2 

packets. This is highly undesirable in a time-sensitive 

environments. Key takeaways from this experiment shows 

that the solution is successfully developed to utilize the 

time-based packet scheduling feature. Period jitter 

performance is significantly improved compared to a 

solution which uses regular sendmsg() calls without the TBS 

feature. 

 

 

 

 

 

Additionally, when not using TBS the average period is 

consistent, most of the data is. However there are 112 

occasions, within the 480000 data collected, where the TSN 

packets are out of sync with the gate control lists. This 

causes the peak-to-peak jitter to spike by up to 1ms of delay. 

When a TSN packet misses the time slice in the switch it has 

to wait in queue until the next window opens, only then it 

will transmit out immediately along with another packet that 

was intended in that time slice. 

This observation is crucial as it shows how without TBS a 

packet has a higher probability of missing the time slice and 

being delayed at the switches’ transmit gates. In a TSN and 

real-time system, this behavior could be highly undesirable. 

Analysis 2: Minimum transmit offset required to 

specify transmit time 

This analysis involves observing the impacts of using TBS 

with minimum transmit offset. In the previous analysis, the 

program is given 500 μs to place the packet into the qdisc 

and the hardware queue, which in reality (as this analysis 

found) only requires about 60 μs to occur. The overhead is 

used to provide a buffer to eliminate the software variations 

when performing analysis. 

Results shown in Table 2 display a consistent minimum 

jitter of 3 ns, this is normal in a system as a miniscule 

amount of jitter is still expected due to link properties.  

Without using time-based packet scheduling, there is an 

average total transmit time of 58 μs. Using this value as 

reference, the experiment starts from scheduling packets 65 

μs to the future to 85 μs. This is because the program 

requires ~5 μs to wake up and start constructing the packet. 

The experiment is repeated with four other transmit offset 

values until a stable minimum period jitter is observed. 
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Table 1 

Period jitter calculated using total transmission time and receive time 

 Time since last packet (ns) 1ms Period Jitter (ns) Frame Delay Variance (ns) 

 TBS No TBS TBS TBS No TBS TBS 

Average 1,000,000 1,000,000 25 486 25 1,771 

Minimum 991,204 6,880 3 3 3 0 

Maximum 1,008,884 2,000,088 8,884 1,000,088 8,884 1,001,304 

Peak-to-peak 17,680 1,993,208     
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From Table 2, at 85us, significant period jitter improvement 

is observed. At 65 μs and 75 μs, the period jitter is not 

improved even though the application is configured to use 

time-based packet scheduling. While there is an 

improvement over the original configuration where no TBS 

is used, there is still a variance which occurs intermittently. 

Hence this experiment shows that even when TBS is 

enabled, there could still be intermittent jitters due to the 

system’s software and hardware uncertainties and an 

additional overhead buffer time is required.  

 

From this experiment, it is concluded that on a no-load end 

station environment, the recommended transmit offset is 95 

μs. This is of course still subjective to the implementer and 

the hardware available as these results could easily be 

affected by the CPU and its processes. The higher amount of 

delay is always recommended where possible.  

 

This result shows that this test methodology can be used to 

evaluate at which point a system can reliably send out 

packets with an effective and current TBS implementation. 

As explained in the previous paragraph, 95 μs is the best 

minimum transmit offset value for this configuration. This 

indicates that the system requires a minimum of 30 μs of 

transmit offset before TBS is used effectively by the system. 

This also shows that the TBS solution would take 55% 

longer in average total transmission time to effectively use 

TBS compared to non-TBS solutions in back-to-back 

connections. On a 3-switch setup that would be 17.6%. 

 

Analysis 3: Latency during traffic interference 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The last analysis shows how an interfering traffic injected to 

the 3-switch system will compromise low-priority traffic 

without affecting the high-priority traffic. Results tabulated 

in Table 3 show that with interference, BE packets have a 

much higher peak-to-peak total transmission time, more 

than 1ms more than TSN packets. This environment shows 

how in a real-world scenario a TSN traffic can be protected 

from latencies using 802.1Qbv switches and also 

demonstrates that the proposed solution is able to work with 

these switches with minimal input and modifications. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-1 (Left) TSN and BE packets are sent without 

notable latency variances. (Right) BE traffic is shown to be 

affected by the interfering traffic, latency varies up to 200us 

more. 

 

Figure 3 shows a graphical representation of the TSN and 

BE traffic latency. When traffic is introduced the low-

priority traffic (BE) is delayed consistently by ~200 μs 

while the high-priority traffic is not affected at all by the 

traffic injected by the system. Key takeaway from this 

experiment includes the successful testing of the application 

on a network with traffic injected to the system, 

demonstrating the effectiveness of the time-aware shaper. 

 

 

 

 

 

 

 

 

 

 

Table 2  

Period jitter calculated using total transmission time and receive time 

 Total transmit time (ns) 

  No TBS TBS 65 μs TBS 75 μs TBS 85 μs TBS 90 μs TBS 95 μs 

Average 58,182 60,235 70280.32 80345 85,298 90,197 

Minimum 15,925 53,555 53816 61213 67,133 70,048 

Maximum 88,708 81,161 86044 84170 85,739 90,688 

 Period Jitter (ns) 

Average 1,421 16 11 10 10 10 

Minimum 3 3 3 3 3 3 

Maximum 91,741 21,053 24963 5724 828 21 

 

 

Table 3  

Total transmission time with and without traffic interference 

 With interference No interference 

Total transmission time (ns) TSN BE TSN BE 

Average 112,173 312,352 112,182 93,268 

Minimum 111,549 92,168 111,588 91,986 

Maximum 121,966 137,4825 120,641 102,849 

Peak-to-Peak 10,417 1,282,657 9,053 10,863 
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IV. CONCLUSION 

 

The proposed solution was successfully developed and 

tested on a 3-switch network. Packets are sent at their 

respective specified transmit times and is shown to be 

compatible with network switches enabled with gate-

control. 

 

On average, a minimum additional transmit offset of 30 μs 

is required for a host to schedule packets far enough into the 

future to effectively use time-based packet scheduling. This 

is 55% more time needed in a back-to-back connection 

while 17.6% more on a 3-switch network. Analysis showed 

that period jitter performance across switches peak at 8.9 μs 

compared to up to 1 ms by solutions using software sleep 

functions. Future works may involve developing the 

solution to conform closer to the 802.1Qbv specifications, 

specifically on handling transitions between different gate 

control lists. Combining with transmission selection 

algorithms from other specifications such as 802.1Qav 

credit-based shapers is also a possible avenue to provide 

users with more control over the transmission bandwidth. 
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