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Chapter 1 

Preface 

                                                                                  

 

1.1 Packaging 

 

  A definition of packaging is a coordinated system of preparing goods for transport, 

distribution, retailing and use 1), and packages can be defined as specific materials for 

the system. Because this system is used in numerous industries and products, the 

common functions of packages are categorized in several manners 1-3). Containment and 

preservation are, however, always among the most important functions, along with 

transportation, communication, etc. Fig. 1-1 shows the package examples of beer 

industry 4).  

 

 

 

 
 

Fig. 1-1. Example of beverage packages. 
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  The containment and preservation of beverage and food are essential for human daily 

life, which is supported by the fact that ancient cultures had already used specific 

packages for beverage and foods with their accessible techniques. While a wide variety 

of the materials and formats of packages are used based on the nature of products and 

their supply chains, modern beverage and food packages mainly tend to employ 

polymer (plastics), metal, glass, and paper materials 5) as shown in Fig. 1-2. 

  Fig. 1-2 also shows that beverage and food packages can be categorized into rigid and 

flexible packages. The former is often composed of three dimensional containers and 

closures in contact with the contents of beverage and food. The reasons of the use of 

rigid packages can be found in anti-pressure strength required for carbonated beverages, 

and also in fast and economical production. Even though metal cans are able to provide 

a higher throughput in today’s industry, polymer containers, especially made of 

poly(ethylene terephthalate) (PET), are also widely used based on unique properties of 

polymer materials, such as high shapeability, transparency, and softness for sealing and 

unbreakable performance. Based on these properties, the usage of polymer packages has 

been in a growing trend, leading to the increase of their importance. 

 

 

 

Fig. 1-2. Global new products of packaged beverage by materials (statistical data 

provided by courtesy of Mintel Japan, Inc.) 
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1.2 Permeation and polymer packages 

 

  In beverage and food preservation, permeation is a significantly important 

phenomenon for polymer rigid packages as well as polymer flexible packages. Due to 

the nature of polymeric matrix, even a continuous polymer film or container allows gas 

molecules to pass from one side to another as long as the difference in the concentration 

of the gas species exits between both sides. 

  While a high permeability of gas molecules is not necessarily harmful for beverages 

and foods in polymer packages as seen in modified atmospheric packages (MAP) 6), a 

low permeability is often aimed in rigid containers because the passage of oxygen, 

carbon dioxide, and water vapor (and sometimes flavor components) through polymer 

materials tends to deteriorate the quality of the contents of beverage and food. 

  In this context, the property for inhibiting the passage of gas molecules is called gas 

barrier property, and an intended result through a specification or treatment for a higher 

gas barrier property is called gas barrier enhancement. 

 

1.3 Goals of gas-barrier-enhanced polymer packages and thin film approach 

 

  One major goal of the gas barrier enhancement of polymer packages is to achieve the 

above-mentioned performance. The gas barrier property of the package must satisfy 

requirements for the quality of a product, for example, satisfactory flavor for consumers 

and sufficient shelf-life for retailers.  

  Another major goal also lies in sustainability. For a sustainable use of product, the 

products need to use technologies which are acceptable from social, environmental, and 

economical standpoints. For instance, the social acceptance includes an available 

recycling infrastructure and scheme, and the environmental acceptance demands 

material savings and so-called eco-friendly/recyclable materials along with the 

economical acceptance.  

  In order to achieve these goals, thin film formation for gas barrier polymer packages 

is considered as the most promising approach. As described later, quite a small amount 

of thin film materials used in the whole polymer materials in the finished packages 

provide a unique position to this approach, where a high functional improvement, a high 

recyclability, and a low material cost can be expected to a degree that other types of 

approach cannot follow, especially in rigid polymer packages. 
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1.4 Function of thin films on gas barrier polymer packages 

 

  While the primary target of thin film formation in this paper is gas barrier 

enhancement of three dimensional polymer packages, it should be noted that other types 

of modification to polymer properties can be expected through the use of thin films on 

polymer materials.  

  An example can be found in PET bottles. Fig. 1-3 shows typical interactions between 

a PET bottle and its beverage product 7). In addition to gas permeation, sorption tends to 

cause flavor loss from the contents of beverage and food. An enhanced anti-sorption 

property inhibits the sorption of the content molecules onto the inner surface of the 

bottle and the closure, leading to a higher flavor stability of the product, along with an 

impact on gas permeation. Migration also tends to cause off-flavor to the contents of 

beverage and food. Because polymer materials usually involve by-products in their 

synthetic processes and intentional additives, thin films can inhibit the migration of 

these substances into the content. 

Another example can be found in a flexible package where an aluminum thin film not 

only increases gas barrier, but also shields light transmission.  

 

 
 

Fig. 1-3. Typical interactions between a PET bottle and its beverage product. 
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1.5 Methodology of thin films applied to polymer packages 

 

  A thin film used for a polymer package is usually formed as a coating, that is, the 

surface of polymer substrate was exposed to thin film formation treatment after the 

preparation of the polymer substrate. 

  The treatment can be classified into (A) physical vapor deposition (PVD) and (B) 

chemical vapor deposition (CVD) techniques. A typical example of PVD for gas barrier 

packages is electron beam evaporation 8). Also, a typical example of CVD is 

plasma-assisted chemical vapor deposition 9). It should be stressed that while various 

techniques both of PVD and CVD can be seen in flexible packages, quite limited 

techniques can be seen in rigid packages such as PET bottles. This is because direct 

coating onto three dimensional objects involves a technical difficulty in fast and evenly 

distributed deposition, compared to coating onto flat substrates. Coating techniques for 

rigid packages are, however, highly demanded with the spread of blow molding 

processes 10) 

  As described later, only PACVD technologies are available for coating polymer 

containers in today’s beverage and food industry. In these technologies, carbon (often 

called diamond-like carbon, DLC) 11, 12) and silicon oxide (SiOx) 
13, 14) thin films (see 

Figs. 1-4 and 1-5) are applied to PET bottles. With a gradual spread of products using 

these thin film applications, further technical advancements leading to more product 

variety and improved cost performance are expected among this industry. 
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Fig. 1-4. Schematic image of DLC. 

 

 

 

 

 

 

Fig. 1-5. Schematic image of SiOx. 
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1.6 Purpose of this paper 

 

  Based on the technical and market background as describe above, new technical 

methods were studied to widen the practical applications of thin film coating to polymer 

rigid packages. In this study, most of description in this paper was focused on PET 

bottle format for beverage because of the industrial scale of this format. Discussions of 

this study are, however, not limited to the bottle format nor the beverage category, and 

can be generally applied to other package formats and categories such as food 

containers. 

 In chapter 2, a general view of the state-of-art in coated polymer rigid packages is 

described. Also, issues for further practical applications are mainly discussed on the 

expected target (i.e. colorless and physico-chemically stable) of novel thin films for 

gas-barrier-enhanced PET bottles, and on approach to form gas barrier thin films on 

polymer substrates other than PET packages. Especially, new findings on DLC thin 

films formed on different polymer films are described based on the result of positron 

annihilation analysis. The result suggested homogenous coatings were formed on all of 

the used films in spite of their significant difference in the performance of gas barrier 

improvement. 

  In chapters 3 and 4, advanced coating conditions using conventional DLC thin films 

are studied. Chapter 3 describes the methodology to optimize power frequency applied 

to electrodes for the generation of plasma in the inside of a bottle. The results of the 

combination of elastic recoil detection analysis (ERDA) and positron annihilation 

analysis indicated the homogeneity of DLC thin films among the used different power 

frequencies. Also, the results of the measurement of oxygen transmission rate and 

coloring of the coated PET bottles indicated power frequency caused change in spatial 

distribution of plasma inside the bottle, probably due to balance between primary and 

secondary electrons generated with different frequencies. Chapter 4 describes the reason 

of the demand for gas barrier enhancement of polymer closures used with 

gas-barrier-enhanced PET containers, and a practical methodology to form a high gas 

barrier DLC thin film onto the inner surface of a polyethylene (PE) closure is described. 

  In chapters 5 and 6, a novel approach to the above-mentioned target (gas barrier 

coating with colorless and physico-chemically stable thin films) was attempted. A 

unique method to coat a PET bottle using a hot wire CVD technique and the evaluation 

of the obtained thin films composed of silicon, oxygen, carbon and hydrogen (SiOC thin 

films) were described. Interestingly, these films showed the respective advantageous 

properties of both DLC and SiOx coatings on PET bottles, where the oxygen and carbon 
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dioxide barrier properties and stability in contact with water of these films were 

equivalent to DLC films while appearance was virtually colorless like SiOx films. 

Chapter 5 describes the first attempt to apply a hot wire CVD technique specifically for 

coating the inner surface of PET bottles. The resultant thin film was characterized from 

the viewpoints of performance for PET bottles. The Chapter 6 describes the procedure 

and result of screening experiments for useful combinations of wire and material gas 

species. As a result, molybdenum or tantalum wire and vinylsilane gas was selected as 

the candidate combination for the mass production of coated PET bottles. 

  In chapter 7, possible advancement of both DLC and SiOC coatings studied in this 

paper is discussed from the viewpoints of the advantages of each performance and 

corresponding machinery. For the recent demand of the gas barrier enhancement of 

relatively large polymer containers like PET kegs, the DLC coating is considered 

favorable because the use of plasma is likely to provide more efficient means, and the 

tint of the coated containers is less important for products filled in the containers of this 

size. For typical personal size polymer containers like PET bottles, economical 

machinery and colorless appearance facilitate the spread of SiOC coating in the 

beverage and food industry. From a standpoint of coating to various polymer substrates, 

a novel approach to successive wet undercoat with organic silicon as an instance and 

thin film topcoat using either a PACVD or hot wire CVD technique is another target of 

further study. 
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Chapter 2 

General Review and Future Technical Targets in Gas Barrier Thin 
Film Coatings on PET Bottles in Beverage and Food Applications 

                                                                                  

 

2.1 Introduction 

 

2.1.1 General introduction 

 

Polymer materials have unique properties, such as being easy to shape, and are elastic 

to physical impacts compared to other types of materials, like metal, glass, and ceramics, 

and nowadays quite a wide variety of plastic containers are seen in the food and beverage 

industry. For example, poly(ethylene terephthalate) (PET) bottles are the most widely 

used package format in the soft drink segment and further use of PET bottles is expected 

both inside and beyond the soft drink segment 1,2). 

From the view of package performance, light-weight, unbreakable, and transparent 

properties are favorable advantages of common plastic containers. To the contrary to 

these consumer benefits, gas permeability is a remarkable disadvantage of plastic containers 

compared to metal and glass containers 3), which virtually eliminate gas permeation, except 

sealing parts where polymer materials are usually used. It should be mentioned that, in 

this paper, the term of weight is used for expressing the mass of packages. 

Especially, the permeation of oxygen and carbon dioxide molecules often limits the 

shelf-life of sensitive products. One of the most sensitive products to gas permeation is 

beer. Beer is quite sensitive to oxidation, and also sensitive to carbon dioxide release. 

From the view point of shelf-life extension, the degree of gas barrier improvement is 

often expressed by BIF (barrier improvement factor) 4). The value of BIF can be 

calculated based on the gas transmission rate of normal container(s) divided by that of 

barrier improved container(s). Although this calculation provides a relative value, the 

result is often expressed in time(s) in this field, for the perceptual ease of the possible 

extendable period of product shelf-life. In this paper, BIF values are expressed as 

relative values. Empirically, PET bottles of single serve size require 10 or more oxygen 

barrier in BIF for a realistic shelf-life of beer. Furthermore, they require seven or more 

carbon dioxide barrier in BIF if the equivalent shelf-life in glass bottles is demanded. 

Since these sensitive products are seen quite often in our daily diet, like in juice, tea, 

seasoning, edible oil, and wine, as well as beer, significant effort has been made for 

improving the gas barrier performance of plastic containers. Among rigid containers used 
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in the food and beverage industry, PET bottles are the most intensive category of plastic 

containers for gas barrier enhancement study because of their industrial scale of use. It 

should be stressed that the demand for high gas barrier PET bottles has been increasing 

because of the global trend in weight reduction, where thinner bottle walls show less gas 

barrier performance 5), and of a gradual increase of the applications of PET bottle 

formats. 

Based on these backgrounds, this paper reviews the past and recent progress of gas 

barrier enhanced PET bottles, especially gas barrier thin film coated bottles. 

 

2.1.2 Approach to the gas barrier enhancement of PET bottles other than thin film coating 
 

Major technologies to enhance the gas barrier property of PET bottles used in today’s 

industry can be roughly classified into four categories, that is, (i) coating, (ii) multi-layer, 

(iii) blending, and (iv) oxygen scavengers, as illustrated in Table 2-1 6,7). It should be 

noted that different approaches can be combined together. For example, the core layer 

explained below in the multi-layer approach may include oxygen scavengers, or the 

blending additives explained below are added in PET layers of multi-layer walls. 

 

 

 

Table 2-1. Rough classification of the current major gas barrier technologies for PET 

bottles. 

 

Technology Coating Multilayer Blending O2 Scavengers 

Schematic Image 

    

 

O2 Scavengers High Middle Middle High 

Other gas barrier High Middle Middle Low 

Recyclability High Middle Middle Middle 

Installation cost High High Low – 

Operation cost Low High High High 
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The multi-layer approach employs at least one core layer with higher gas barrier 

properties placed between PET layers. The core layer(s) provides the majority of the gas 

barrier property of the whole bottle. Some specific grades of polyamides are often used 

for core layer materials, even though other materials had been attempted 3, 8). While the 

multi-layer approach is widely used in many industrial fields and its process control has 

been well established, economics due to the use of specific injection machines for 

multilayer preforms and of relatively expensive core-layer materials are the barrier to 

further distribution in the PET bottle industry. From a technical standpoint of view, the 

core layers are usually adjusted to occupy several percentages of the whole bottle 

weight to shape the bottle properly, and the core layers of a bottle usually do not exist 

near the mouth part and the center of the bottom part. These factors limit the maximum 

oxygen barrier property of multi-layered bottles compared to oxygen scavengers and 

coating approaches. In Japan, the market share of barrier PET bottles based on this 

approach has been decreasing. 

In the blending approach, higher gas barrier materials are added into melted PET resin 

before the shaping process. The additives increase the gas barrier property of the whole 

bottle depending on the concentration in the PET matrix. Some specific grades of 

polyamides are often used for additive materials 9), even though other materials had been 

attempted 3, 10). Due to the cost of additives and limited barrier performance compared to 

other approaches, the use of this approach is limited in these days in Japan. 

Additionally, in some countries such as Japan, possible mass use of polyamide additives 

is a concern for their recycling systems. 

Oxygen scavengers are a type of additive which reacts with the oxygen permeant and 

results in restricting the passage of oxygen molecules through the bottle wall. The 

addition of a certain polyamide and transition metal complex into the PET matrix is an 

example of this approach 11). In ideal conditions, this approach can inhibit the increase of 

dissolved oxygen in the liquid content of the bottle. However, it makes it difficult for 

bottle manufactures to control the quality of their products as additive concentration and 

shaping conditions of bottles affects to each other. Some application may not accept the 

tint and haze due to typical types of scavenger additives. 

 

2.1.3 Current thin film coatings for the gas barrier enhancement of PET bottles 
 

Coatings in this context refer to techniques which form thin films on the surface of 

PET bottles. Dense structures of the thin films, typically several tens of nanometers in 

thickness, behave like glass or ceramics, and block the passage of gas permeants. The 

current approach generally uses two types of thin film species, that is, (A) carbon thin 

films, often described as diamond-like carbon (DLC) or a-C:H 3, 4), or (B) silicate oxide 
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thin films, often described as SiOx, where x is a number and often somewhere between 

1.5 and 1.8 3, 12). 

While each approach described in the previous chapter has its own advantages and 

disadvantages, the use of coating is an expanding trend, or is expected to expand 13). At 

least in the Japanese market, the trend is remarkable in recent years 14). One of the 

advantages in the coating approach lies in the possibility of the relatively high gas barrier 

enhancement of various gas components including oxygen, carbon dioxide, water vapor, 

and flavors. This favors the quality retention of beverages where quite complex combinations 

of flavors contribute to unique taste and mouth-feeling, for example, seen in wine and beer 
15-17). Another advantage lies in high recyclability. While other categories of the gas 

barrier enhancement approach of PET bottles usually require several percentages of 

foreign materials in the PET matrix in terms of weight, the foreign materials derived from 

coating amount to be, at most, several parts per million in terms of weight. As a result, 

coated bottles are usually no problem in recycling of normal PET bottles even in the case 

of mass use. From an economic point of view, relatively high capital cost to install 

coating machines is disadvantageous to coating, and this can explain the cause of the 

relatively slow increase of the use of coated bottles. On the other hand, relatively low 

operation cost is advantageous, and, in the case with high operational efficiency, coating 

is expected to require the lowest operation cost 6-8). In brief, in the case where a 

remarkable increase of barrier PET bottles happens, especially involved with the mass 

use in beer and carbonated soft drinks, coating approaches are most likely to be 

accepted from the viewpoint of bottle performance, social systems, and economics. In 

other words, at present, coating can be considered to have the largest growth potential 

among the barrier enhancement technologies of PET bottles. 

 

2.1.4 Current methodology to thin film formation onto PET bottle surface 
 

While various techniques are known to form thin films on substrates, plasma-assisted 

chemical vapor deposition (PACVD) techniques are currently available for mass 

production machinery for gas barrier thin film coating of PET bottles. These techniques 

meet the requirements for food and beverage containers. At least several requirements are 

essential, as summarized in Table 2-2. 
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Table 2-2. Basic requirements for thin film coating to PET bottles. 

 
No. Property Reason Corresponding Process Design 

1 High gas barrier 
For the flavor quality of the 
bottle content 

Special configuration in coating 
chambers 

2 Flexible 
To withstand bottle 
deformation 

Limited coating thickness and/or 
use of adhesion layer(s) 

3 Thin and clear 
For recycling and bottle 
appearance 

Limited coating thickness 

4 
Physically and 
chemically stable to the 
bottle content 

For safety to human and the 
flavor quality of the bottle 
content 

Choice of thin film species in case 
of inside coating 

5 Short process time Economics 
Optimization between barrier 
enhancement and throughput 

 

 

 

One of major conceivable reasons of the use of PACVD lies in low heat load to the 

substrate. The deformation of the containers is likely to occur when the temperature of the 

substrate increases above its glass transition temperature which, in the case of 

polyester-based plastic containers like PET and poly(lactic acid) (PLA) bottles is 70–

80°C, and 60–70°C, respectively 18). 

A second conceivable reason is that plasma can relatively readily occur inside a bottle. 

While coating may be applied to the outer surface of a bottle, these types of technologies 

involve some difficulty to protect the physical damage to the coating during production in 

filling lines and transportation to retailers, and also to control coating conditions along 

with accumulating coating dusts inside vacuum chambers. On the other hand, in the case 

of coating on the inner surface of a bottle, the thin film is protected with the bottle wall 

from physical impacts from the outside of the bottle, and most coating dusts can be 

deposited inside the bottle and removed from the vacuum chamber. Physical impacts may 

be a concern even with the internal coating due to known “abuse”, while typical 

production and transportation processes seem harmless to the barrier performance of the 

coating inside the bottle, as far as coated bottles were observed in Japanese market. 

Additionally, it should be noted that dust control is significantly important for continuous 

production which might last 20 hours or longer. In the case of coatings over the inner 

surface of containers, thin films tend to come in contact with food and beverages, and are 

required to have physico-chemical stability which secures the safety to human diet. 
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The third reason is the relatively short process time for thin film formation. Usually, thin 

films of 10–100 nm in thickness are used in current technologies. Coating thickness is 

determined, depending on thin film species, based on economics and the optimal 

thickness for gas barrier properties 2, 12).  

It should be noted that an excessively thin film lacks in barrier property, and an 

excessively thick film decreases in visual and barrier quality due to the occurrence of 

cracks 2, 19). 

As a result, based on the deposition rates of roughly 2–10 nm per second, 1–5 s are 

taken for thin film deposition under vacuum conditions, such as 1–20 Pa before coating 

and 5–30 Pa during coating. The whole process time ranges from 6–30 s per one bottle 

coating, depending on coating conditions and machine configurations. These process 

conditions are summarized in Table 2-3. 

 

 

 

Table 2-3. Summary of plasma-assisted CVD techniques used for PET bottle coating. 

 

No. Coating process/device Variations 

1 Power frequency 2.45 GHz, 13.56 MHz, or 6.0 MHz 
2 Thin film species Carbon (DLC) or SiOx 
3 Material gas Acetylene, HMDSO, HMDSN 

4 Coating chambers 
With electrodes (capacitive systems), or without electrodes 
(inductive systems) 

5 Vacuum pressure Around 10 Pa 
6 Coating time Around 1–5 sec 
7 Coating surface Inside of bottles 

 Note: HMDSO and HMDSN refer to the abbreviation of hexamethyldisiloxane and 

hexamethyldisilazane, respectively. 
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As a result, high throughput machines with a capacity of up to 40,000 bottles per hour 

have been in operation in soft drink and beer segments based on industrially realistic 

economics. Fig. 2-1 and Table 2-4 show an example of high throughput machine and 

details on coating process and performance, respectively, based on Kirin’s proprietary 

DLC coating method 20).  

 

 

 

 

 

Fig. 2-1. Example of high throughput rotary coating machine for PET bottles (photo 

provided by courtesy of Mitsubishi Heavy Industry Machinery Systems, Ltd., 

Japan). 
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Table 2-4. Typical process conditions for DLC coating to PET bottles. 

 

Process Parameter Conditions 

Power frequency 13.56 MHz, or 6.0 MHz 
Power outlet 300–2500 W 
Material gas Acetylene 
Gas flow rate 10–300 sccm (*) 

Vacuum pressure 5–10 Pa 
Coating time 1–2 sec 

Resultant Properties Performance 

Deposition rate Around 10 nm/sec 

Gas barrier improvement 
Oxygen, carbon dioxide, water 
vapor, and flavor components 

Applicable container 1–5000 mL 
Applicable filling manner Aseptic to hot filling 

 (*) sccm: cubic centimeter at standard temperature and pressure per minute 

 

 

Although differences in processes for coating bottles can be found among the current 

PACVD technologies, they have the basic process concept in common, that is, (i) to place 

a bottle into a vacuum chamber, and to vacuum the chamber; (ii) to supply material gas 

into the bottle; (iii) to apply electromagnetic wave to the inside of the bottle so that the 

material gas is decomposed into a plasma state; (iv) to allow the plasma to form a thin 

film on the inner surface of the bottle; and (v) to release the chamber to the atmospheric 

pressure, and to remove the coated bottle (as summarized in Fig. 2-3). Obviously, these 

processes can be repeated continuously. 
Figs. 2-2 and 2-3 show an example of the coating system and the coating processes 

of Kirin’s proprietary DLC coating method, respectively. In this system, an outer 

electrode functions as a part of vacuum chamber. Moreover, its internal shape similar to 

the bottle shape enables evenly distributed coating over the entire part of the bottle, 

based on that distance between the inner surface of the outer electrode and the bottle can 

control the voltage of the bottle surface and the resultant plasma distribution. 
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Fig. 2-2. Example of the components of coating system for PET bottles:      

(a) schematic model; and (b) the corresponding part of the production machines (photo 

provided by courtesy of Mitsubishi Heavy Industry Machinery Systems, Ltd., Japan). 

 

 

Fig. 2-3. Schematic plasma CVD process for coating plastic bottles in case of Kirin’s 

DLC coating. (a) bottle placement into the coating chamber and vacuuming; (b) 

material gas supply; (c) power application to the coating chamber; (d) thin film 

deposition; and (e) pressure release and bottle removal from the coating chamber. 
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This basic process concept for hollow containers was seen at least as early as the 
1980s, and some coating machines intended for commercial use were introduced early in 
the 1990s 21, 22), and various process conditions, including different material gas species, 
have been tried. As a result, the main difference of the processes among the current 
coating technologies for PET bottles, in general, lies in the material gas species and the 
frequency of power used to create plasma states. 

Nowadays, types of metal oxides and nitrides, as well as carbons, are known to be 

possible to function as gas barrier thin films 23). Carbon and silicate oxide thin films are, 

however, only two thin film materials available for mass production technologies for gas 

barrier enhanced PET bottles. The major reasons for the use of carbon and silicate oxide 

thin films for PET bottle applications lie in safety in food contact, the availability and 

relatively easy handling of material gas, and the economics to achieve sufficient gas 

barrier performance. Although aluminum and aluminum oxide thin films have a long 

history of use for the gas barrier enhancement of film and sheet applications 24), 

appropriate material gas species and coating processes for container applications have not 

yet been found. 

In addition, the current PACVD processes which are practical in the mass production 

can be found in vacuum conditions. Although it has been proved that certain atmospheric 

PACVD techniques can form gas barrier carbon and silicate oxide thin films based on 

dielectric barrier discharge techniques 25), their technical problems, such as dimensional 

limits, remain yet unsolved for the application of three-dimensional objects like PET 

bottles. 

 

2.1.5 Difference in and between carbon and silicate oxide coatings 
 

The current commercial carbon thin films have a slight, brownish to golden, tint 26). 

Although this may restrict applicable product categories of carbon coated PET bottles, 

from the viewpoint of the visual quality of products, the degree of the tint appears to 

position within the scope of consumer acceptance, based on the commercial products of 

white wine (Fig. 2-4) and edible oil categories in the Japanese market.  
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Fig. 2-4. Example of DLC coated bottles for wine. 

 

 

 

 

In case of beverage and liquor market in Japan, carbon coating is more often seen than 

silicate oxide coating in spite of the abovementioned disadvantage to carbon coating. The 

reason might be found in that carbon thin films are readily applicable to various product 

categories because carbon coating is inert to food and beverage solutions as long as the 

PET substrate is stable. On the other hand, some more remarkable limits in applicable 

product properties is known in typical silicate oxide coating. The gas barrier property of 

silicate oxide coatings may be decreased in contact with some solutions, for example, 

beverages of pH close to neutral 27). 

Acetylene (C2H2) is the main material gas for carbon thin films for gas 

barrier-enhanced PET bottles. Derived from the hydrogen contained in acetylene 

molecules, the resultant carbon thin films contain hydrogen components up to 40% in 
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atomic percentage. Elastic Recoil Detection Analysis (ERDA) analyses showed oxygen 

components up to 10% may be present in the carbon thin films 4, 28), which is considered 

to be mainly derived from water vapor from PET substrates. The advantage of the use of 

acetylene lies in high deposition rates and economics, while methane (CH4) is used in many 

studies 4, 26). At least carbon thin films formed with acetylene contain the carbon bonding 

of sp3, sp2, and sp1, based on X-ray photo spectrometry (XPS) and Fourier transform 

infrared spectroscopy (FTIR) studies 22). In the Japanese market, commercial 

carbon-coated PET bottles are derived from the technologies of Kirin’s DLC and Sidel’s 

Actis™ 14). 

Hexamethyldisiloxane (HMDSO) and hexamethydisilazane (HMDSN) are the main 

material gases for silicate oxide thin films with aid of the controlled supply of oxygen. 

Based on the ratio in the mass flow of the material gas to oxygen and other conditions, the 

resultant thin films have different components consisting of silicate, carbon, oxygen, and 

hydrogen 29). The components have impacts on gas barrier properties and stability in 

contact with beverage solutions, and sometimes also on tint. In the case with commercial 

gas barrier silicate oxide, thin films are totally colorless in visual observation.  

  In the Japanese market, silicate oxide-coated PET bottles can be mainly seen in 

domestic edible oil and wine products, and rarely seen in imported carbonated water. 

Those bottles are derived from the technologies of Toyo Seikan’s Sibird™, Toppan’s 

GL-C™, and KHS’s Plasmax™ 14). 

From the viewpoint of the frequency of power used to cause the plasma states of 

material gas supplied, radio frequency (13.56 MHz) and microwave (2.45 MHz) are used 

in commercial technologies. The use of radio frequencies usually leads to a bi-electrode 

system, in other words, a type of capacitively-coupled plasma system, where sheath 

voltage and the resultant ion impact over the surface of the substrate can be controlled 

relatively precise manner 28). It can be expressed that the use of these systems involves 

both merits and demerits to machine users. Examples of the merits are possible 

improvement in the performance of coating and stable application to relatively small or 

large containers, while those of the demerits are the possible increase of the change of 

mechanical parts for the application to containers of different shapes and sizes. 

 

2.1.6 Recent advancement in commercialized technologies for coating plastic containers 
 

In spite of the different nature of carbon and silicate oxide thin films as described 

above, it can be said that the difference between the two thin films is decreasing in the 

recent technical advancement. 

It is obviously conceivable that the optimization of process conditions in parallel to the 

improvement in machinery has been performed in each technology, and as a result, 
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deposition time has been shortened while the barrier properties of PET bottles coated are 

maintained or even improved. It is supposed that typical process conditions, including 

vacuum pressure, gas flow rate, and power application have been optimized. As a result, 

carbon coating has been less colored, and widened its applications (as shown in Fig. 2-4). 

In the same way, silicate oxide coating has clarified and mitigated its limitation in 

applications, and widened its applications. In the case of the Japanese market, the use of 

coating technologies has been rapidly increased in recent years, and at present coating is 

the most abundant among technologies, compared to other gas barrier enhancement 

technologies applied to PET bottles 14). 

An example of technological advancement has been found in the appropriate use of 

dielectric materials along electrodes in Kirin’s DLC coating technology 30), and the 

modification of power frequency as described later in detail (see the chapter 3 of this 

paper). Conventionally, this technology employed 13.56 MHz for power frequency and 

outer electrodes made of metal (conductive materials) parts only. Recently, power 

frequency was confirmed as one of the significant process parameters 28). The use of 6 

MHz for power frequency and outer electrodes fully or partially covered with dielectric 

material parts has been proposed in order to facilitate finding the appropriate process 

conditions for high gas barrier coatings in addition to a decreased change of electrode 

parts for bottles of different shape and size. The results of the observation of coating 

thickness and plasma light emission indicate that the reason why 6 MHz power 

frequency showed the lowest gas barrier performance lies in the optimized spatial 

distribution of plasma. Compared to plasma produced with 13.56 MHz, where the 

plasma tends to concentrate around the neck part of the bottle, it seems that plasma with 

a lower frequency provides higher ion impacts to the PET substrate and the resultant 

secondary electrons modify the spatial distribution of the plasma to the direction of the 

bottom part of the bottle.  

Another example has been found in the modification in the manner of material gas and 

oxygen supply during the coating process of KHS’s Plasmax™. This technology is called 

Plasmax Plus™. Due to an extra carbon-rich layer formed on the conventional silicate 

oxide layer, the resultant coating can be stable in contact with solutions of pH close to 

neutral, which deteriorates the performance of coating based on the conventional process. 

Interestingly, the new coating manner requires no machinery modification 27). 

 

2.1.7 Targets for near future advancements in this field 
 

2.1.7.1 Gas barrier coatings to various polymer substrates, especially polyolefins 

 



 23 
 

The above description in this review mainly covered a brief history of gas barrier 

enhancement of PET bottles through PACVD techniques. On the other hand, a lot of 

effort has been made to other types of plastic containers and novel approaches to gas 

barrier enhancement. 

Although the current era where PET bottles are the most abundant package format of 

rigid plastic containers is likely to last in this and the following decades because of their 

industrially-favorable balance between performance and economics, other plastic 

materials also have demands for functional thin film coating. Some polyolefins, such as 

polyethylene (PE) and polypropylene (PP), with large industrial demands compared to 

PET, are quite useful materials while the lack of oxygen and other barrier properties 

limits their benefits. For possible example, coated PP bottles or jars could keep the flavor 

quality of filled contents for certain extended periods of time in addition to high heat 

resistance, compared to PET containers, which are limited in applications below the 

boiling temperature of water. 

A distinctive commercial benefit of gas barrier coatings onto PE can be found in 

enhancing the oxygen and carbon dioxide barrier of closures used in gas barrier 

enhanced PET bottles. While PE provides economical sealing parts of closures, the 

enhancement of these gas barrier and anti-sorption properties is demanded in the 

beverage industry, especially for beer products in PET containers, as described in detail 

in the chapter 4 of this paper. Other commercial benefits can be found in packages 

sterilized in the boiling temperature of water and above, including medical packages. 

 

2.1.7.2 Novel approach to lower machinery economics and advanced thin film 

properties 

 

  As summarized in Table 2-1, thin film coatings onto PET bottles involve 

advantageous aspects in comparison with current competitive approach. Relatively a 

high installing expenditure for the machinery of PACVD processes, however, inhibits 

the further spread of this approach over the industry.  

  Also, Table 2-2 and the comparison between the current commercialized thin films to 

PET bottles, that is, carbon (DLC) and SiOx coatings, lead to a concept of novel thin 

film species like a colorless carbon coatings. In the thin film species, it is demanded that 

appearance looks like SiOx, and also that a single material gas species can form a high 

gas barrier and physico-chemically stable coating like DLC.  

The chapters 5 and 6 of this paper propose a novel approach to gas barrier thin film 

coating, where a hot wire or catalytic CVD technique is applied to bottle coating in an 

attempt to achieve decreased installing expenditure based on the simple configuration of 

coating machines compared to that of conventional PACVD machines. Furthermore, the 
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application of this technique can produce unique gas barrier coating to PET bottles, like 

an intermediate between carbon and silicate oxide thin films. 

 

2.2 Experiments 

 

Even with the advent of a colorless and physico-chemically stable coating mentioned 

above, polymer substrates are still one of the most important process conditions. As 

described in 2.1.7.1, gas barrier coatings onto substrates made of various polymer 

materials are demanded, and the difference in polymer properties is likely to affect the 

growth of the formed thin films and the resultant functions. However, little is known on 

the influence of the diversity of polymer substrates. 

In order to confirm the fundamental issues to form gas barrier thin film coatings onto 

various polymer substrates, the author compared the degree of oxygen gas barrier 

enhancement with DLC coating formed on various kinds of plastic film substrates, and 

discussed its difference based on the result of the performed positron annihilation study.  

 

2.2.1 DLC film formation onto different polymer substrates 

 

  Commercial plastic film products as listed in Table 2-5 were used for polymer 

substrates. Each sample was cut to 40 mm square size, and placed on the inner surface 

of the center of the body part 500 mL PET bottle.  

  DLC coating was performed based on Kirin’s proprietary method for PET bottles 

illustrated in Fig. 2-2 20, 25). Each sample film of ca. 50 mm square was placed on the 

inner surface of a commercial 500 mL PET bottle and vacuumed to 5.0 Pa. Then, 

acetylene gas was supplied at a flow rate of 80 cubic centimeter at standard pressure and 

temperature per minute (sccm), followed by the application of 1000 W of 13.56 MHz 

radio frequency power for 2.0 sec. 
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Table 2-5. List of plastic materials used for comparing the degree of gas barrier 

enhancement with DLC coating.  

 
Material Abbreviation Manufacturer Type Thickness

Linear low-density 
polyethylene 

LLDPE Toyobo Co., Ltd L6102 30 µm 

Low-density 
polyethylene 

LDPE – Type S-1 40 µm 

High-density 
polyethylene 

HDPE 
Mitsui-Toatsu Pleatec 

Co., Ltd 
Hiburon 25 µm 

Cast polypropylene CPP Toyobo Co., Ltd P1128 18 µm 
Retortable cast 
polypropylene 

rCPP Toyobo Co., Ltd P1153 40 µm 

Oriented polypropylene OPP Toyobo Co., Ltd P2108 40 µm 

Oriented polystyrene OPS 
Toyo Chemical Co., 

Ltd 
Hallen L 25 µm 

Poly(vinyl acetate) EVA 
Kaito Chemical 

Industry Co., Ltd 
Type E-30 30 µm 

Poly(ethylene)-poly(vinyl 
acetate) 

EVOH Kuraray Co., Ltd Eval EF-F 30 µm 

Oriented polyamid ONY Toyobo Co., Ltd N1100 30 µm 

Poly(acrylo nitril) PAN 
Mitsui-Toatsu Pleatec 

Co., Ltd 
Zecron 20 µm 

Poly(lactic acid) PLA 
Mitsubishi Plastics Co., 

Ltd 
– 50 µm 

Oriented poly(ethylene 
terephthalate) 

PET Toyobo Co., Ltd ES100 12 µm 
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2.2.2 Measurement of oxygen transmission rate and calculation of barrier improvement 

factor 

 

  As a nature of polymeric materials, polymer chains pack together to a more or less 

degree based on their different composition. Between polymer chains, the thermal 

motion allows clearance of a several nm order. The total distribution of the clearance at 

a specific time affects the free volume of materials, which is conceived as the pathway 

of gas molecules dissolved in the matrix 31). In a typical case, the dissolved gas 

molecules, occurred based on Henry’s law, diffuse in the matrix based on Fick’s second 

law. The total phenomenon is called permeation, and the rate of the passage of gas 

molecules per unit time is called transmission rate.  

  As a result, the permeability of a polymer material can be expressed as below: 

 
 P = Q・d / A・⊿p・t, where 

P: permeability in cc・mm/m2/day/atm 

Q: permeated gas in cc (STP) 

d: thickness of polymer material in mm 

A: area of polymer material in m2 

⊿p: differential gas pressure in atm 

t: unit time for permeation in day (=24 hr). 

 

In this Chapter, as an index of gas barrier performance, oxygen transmission rate 

(OTR) was used based on room conditions, where measurement temperature is 23oC 

and a pressure difference of oxygen is 0.21 atm (ca. 0.021 MPa) derived from 21% 

oxygen concentration in air. Because this experiment aims to show the degree of 

oxygen gas barrier enhancement with DLC coating, the thickness of each sample was 

not considered in the expression of OTR, and, as a result, OTR in this experiment was 

expressed in the unit of cc (STP) /m2/day. 

OTR was measured with Oxtran 2/21, Mocon Co., Ltd., USA, for 5 hours under the 

conditions of 23oC and 90% relative humidity, based on ASTM D3985 method 32). With 

this device, a steady pressure and volume method was employed, where each side of 

film sample was exposed either to pure oxygen or to pure nitrogen flow. As a result, the 

latter nitrogen flow contained permeant oxygen through a window of 5 cm2 area, and 

was supplied to a coulometric detector as shown in Fig. 2-5. 

As described above, barrier improvement factor (BIF) is often used in the beverage 

and food industry in order to facilitate to infer the degree of the extension of product 

shelf-life. BIF is calculated based on 

BIF = OTR of uncoated samples / OTR of coated samples. 
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Fig. 2-5. Schematic configuration of the measurement of the oxygen transmission rate 

of polymer film samples. 

 

 

 

 

 

2.2.3 Detection of free volume in polymer and thin film matrix 

   

  The positron annihilation method 33) is based on a phenomenon where positrons 

implanted into a condensed matter annihilate with an electron and emits two 511-keV γ 

quanta. The spectra of γ energy, including the Doppler shift, are characterized by the S 

parameter (see Fig. 2-6) 34), which mainly reflects changes due to the annihilation of 

positron-electron pairs with a low-momentum distribution. For amorphous materials, 

positronium (Ps: a hydrogen-like bound state between a positron and an electron) may 

form in open spaces. As a result, smaller S parameter, as well as shorter positron 

lifetime, shows denser structure in terms of free volume 35, 36). 
The S parameter of the DLC coating and substrate polymer of each sample was 

detected through a positron annihilation using 22Na. For details, see the method 

described in a previous paper written by Uedono et. al 37).  
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                       (a)                               (b) 

 

Fig. 2-6. Schematic illustration of (a) positron annihilation and γ quanta emission, and 

(b) the definition of S value as the ratio of quanta counts within the Doppler shift range 

over the total counts. 

 

 

 

 

 

2.3 Results and Discussion 

 

  A remarkable difference in the degree of oxygen gas barrier enhancement with DLC 

coating formed on various kinds of plastic film substrates, as seen in BIF values shown 

in Fig. 2-7. Although all of polymer substrates showed the increase of BIF, that is, the 

decrease of OTR, the values of BIF varied in a range from 1, that is, almost no decrease 

in OTR, to 12, significant decrease in OTR. In detail, while relatively higher BIF values 

were obtained in PET and polystyrene samples, relatively lower BIF values were seen 

over types of PE and PP samples. 
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Fig. 2-7. Comparison of (a) the oxygen transmission rate (OTR), and (b) BIF of 

DLC coating on different plastics films. For abbreviations of these plastics, see 

Table 2-5. 

 

 

 

 

However, the performed positron annihilation indicated that, on these substrates, 

DLC coatings were formed homogeneously in terms of free volume, as shown in Fig. 

2-8. In this figure, it is clearly shown that DLC films, with positron energy of less than 

1 keV, has a small S parameter, compared to polymer substrates, with positron energy 

of more than 3 keV, and that thin films of small free volume function as barriers against 

gas permeation.  
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Fig. 2-8. Depth profile of the positron annihilation of DLC coated samples. The S 

parameter of DLC coating (see the region of less than 1.5 keV) and plastics substrates 

(see the region of more than in 5.0 keV) was measured. For abbreviations of these 

plastics, see Table 2-5. 

 

 

 

 

Empirically, packages made of PE and PP tend to have relatively rough surface, and 

rough surface is considered to lead to significant defects in coating. When the surface of 

them and PET bottles is observed using an atomic force microscopy, the Ra of 1 μm 

square is usually 30–100 nm and less than 1 nm, respectively. A result of wet coating 

approach in which the author previously engaged 38) supports this concept, where a 

specific type of organosilane materials placed between DLC thin films and PP 

substrates remarkably enhanced oxygen barrier property, even though the organosilane 

layer itself did not have a significant barrier property to the PP substrate. It should be 

noted that, when the surface of the organosilane layer is observed with an atomic force 



 31 
 

microscopy, the Ra of 1 μm square is usually around 1 nm. In this case, the smoothed 

surface with an increased anti-crack property due to the organosilane layer caused the 

enhancement of the gas barrier performance of the coating.  

It should be also noted that a similar behavior was observed in a recent approach with 

ultraviolet curable resin both for under- and top-coating, also in which the author 

engaged 39), and seems to occur without the existence of cracks in DLC thin films. A 

supporting report indicates that although any cracks and other defects were not observed 

in the formed thin films, some structural difference sensitive to plasma etching had a 

correlation to gas barrier enhancement 40). 

These results suggest the interface between thin films and substrates plays a crucial 

role on the enhancement of gas barrier property with dense thin film coating, leading to 

a concept similar to cavity model by Inagaki 41). Technologies for surface conditions are 

considered to be a key for the future commercialization of coated containers made of 

various plastics such as PE and PP. 

 
2.4 Conclusions 

 

  This chapter reviewed the current situations and high potentials surrounding gas 

barrier thin film technologies for PET bottle applications, and depicted the issues for the 

advancements of this approach as below: 

 

(a) to improve plasma control inside bottles for faster and higher gas barrier coatings, 

leading to enhanced performance to product quality including shelf-life and 

appearance, and economics in gas barrier enhanced bottles. 

 

(b) to provide appropriate substrate surface for various kinds of polymer materials, 

leading to expand applications not only within but also beyond beverage containers.  

 

(c) to develop a novel coating methodology for improved machinery economics and/or 

performance compared to current carbon or SiOx coatings. 

 

  Especially regarding the issue (b) above, a fundamental study was made in an attempt 

to confirm how DLC coating can enhance the oxygen barrier property on different kinds 

of polymer materials, based on the combination of OTR (BIF) and positron annihilation 

behavior. As a result, (1) OTR based BIF values of DLC coated substrates were 

remarkably different from one polymer material to another. (2) In spite of this behavior, 

S values obtained in positron annihilation indicated virtually homogenous DLC thin 
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films were formed in the various substrates. 

  These results lead to a conclusion that the interface between a thin film and its 

substrate has a key function to express the gas barrier enhancement effect in coated 

polymer packages. In specific cases with PE sealing parts of closures for PET bottles, 

direct coating onto these parts is likely to require surface modification for gas barrier 

enhancement. 
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Chapter 3 

Impact and Optimization of the Difference in Power Frequency 
on Diamond-Like Carbon Thin Film Coating over 
Three-Dimensional Objects 
                                                                                  

 

3.1 Introduction 

 

Diamond-like carbon (DLC) refers to materials consisting of amorphous carbon (and 

hydrogen) network 1, 2). This material has inert and stable physico-chemical properties, 

and is used in a wide range of industrial applications such as mechanical tools and 

medical devices. As described in the previous chapter, the nano-layer of DLC is also 

applied to polymer packages for beverage and food. In these applications, DLC thin 

films can function as gas barrier coatings, and decrease gas transmission rate through 

plastic materials. In cases of poly(ethylene terephthalate) (PET) bottles, the enhanced 

gas barrier properties can be used for the extension of the shelf life of products sensitive 

to gas permeation, such as beer, wine, and carbonated soft drinks 3, 4). The coatings for 

three dimensional objects like PET bottles require different devices from those for flat 

(two dimensional) substrates like wafers and sheets. 

One method to coat the inner surface of PET bottles with DLC is to employ a 

capacitively-coupled PACVD technique by using a specially designed device for this 

application, as described in the previous chapter 3). In its early applications, the high 

frequency power of 13.56 MHz was supplied to produce plasma to form DLC layers. 

Another industrially known method is an inductively-coupled PACVD technique, where 

microwave (2.45 GHz) is used to produce plasma 4). Similar techniques have been 

invented to coat other three dimensional objects such as tanks, vials, and syringes, and 

therefore the importance of this kind of plasma techniques has increased in the 

industrial applications.  

It is generally known that, in capacitively-coupled PACVD techniques, power 

frequency applied to the electrodes has an impact on the deposition rate and properties 

of the obtained thin films 5). In case of PET bottle application, questions arise in what 

power frequency will provide the optimized industrial performance such as gas barrier, 

bottle appearance, and coating adhesion, and also in what kind of difference lies in DLC 

formed with varied power frequency. From the standpoint of safety issue in medical and 

food/beverage applications, another more important question arises in how the 
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homogeneity of DLC can be clarified in case the power frequency is slightly different 

among devises and the resultant applications. If the homogeneity can be maintained, the 

use of different frequencies would be easy to spread in these industries. 

The difference in DLC formed in different frequencies may exist in physical structure 

and chemical composition. To infer the micro-structure of DLC, positron annihilation is 

considered to be the most appropriate technique, because it is an established technique 

for investigating point defects in materials 6, 7), including carbon thin film 8). This is a 

non-destructive and very sensitive technique to detect difference in the structure of 

nano-layers, and applicable to detect the existence of free volume 9). Free volume is 

considered to provide the pathway of gas molecules which permeates through the 

matrix of polymers and thin films, and known to be measurable with positron 

annihilation techniques 10, 11). 

It is known that PACVD can employ various power frequencies to generate plasma, 

from kHz to GHz 4, 12, 13). Difference in frequency affects ion-bombardment, and 

secondary electron scattering. This may lead to plasma with significantly different 

characteristics, and change in the resultant structure of DLC films. 

In this study, different power frequencies were used to form DLC thin film on the 

surface of PET bottles, and the important properties of coated bottles such as oxygen 

transmission rate and tint were compared, especially to the case with 13.56 MHz power 

frequency. Because this frequency is used in conventional capacitively-coupled PACVD 

devices including the industrial coating machines for PET bottles, enhanced properties 

with different frequencies lead to improvement in industrial performance. Positron 

annihilation and other analyses were employed in order to confirm the homogeneity of 

DLC coating over the different power frequencies, and to infer the reason of the 

improved properties.  

 

3.2 Experiments 

 

3.2.1 Preparation of PET bottles 

 

  PET bottles were produced using typical commercial PET resin. PET preforms of 29 

g in weight were produced using an injection machine, KS100T, Kata System Co, Ltd., 

Japan. The resultant preforms were formed into PET bottles of 500 mL in volume (Fig. 

3-1) with an averaged thickness of ca. 0.035 mm.  
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Fig.3-1. Appearance of PET bottles used. The shape of the bottle is typical for 

carbonated soft drinks. The bar represents 10 mm. 

 

 

 

 

3.2.2 DLC coating 

 

     DLC nano-layer was formed on the surface of sample bottles with a device, PNS-1, 

Youtec Co., Ltd., Japan, specifically designed for PET bottle coating 3). As shown in Fig. 

3-2, each bottle sample was placed onto the bottom part of the outer electrode in order 
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to be enclosed in the vacuum chamber, parts of which were consisted of the outer 

electrode, and to be subjected to subsequent processes for PACVD. The vacuum 

chamber was closed and vacuumed to 5.0 Pa. For the material gas of DLC, acetylene 

was supplied into the bottle at a rate of 80 cubic centimeter at standard pressure and 

temperature per minute (sccm). High frequency power of 1000 W was applied with a 

power supply to produce acetylene plasma between the inner and the outer electrodes. 

The plasma was maintained for 2.0 seconds. For 13.56 MHz input, a power supply, 

RFK30-UT1, Kyosan Electric Manufacturing Co., Ltd., Japan, was used. For 2.50-7.00 

MHz input, a power supply with frequency-variable function, NR1.5F5-7M-01., Noda 

RF Technologies, Co., Ltd., Japan, was used. Consequently, DLC coating was formed 

over the inner surface of the sample bottles.  

 

 

 

 

Fig. 3-2. Basic components of DLC coating system. The outer electrode functions as an 

electrode for plasma occurrence and a part of vacuum chamber. The bottom part of the 

outer electrode is movable for placing the bottle into the chamber and removing it out of 

the chamber. 
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3.2.3 Measurement of the gas barrier property of PET bottles 

 

  To represent gas barrier property, the oxygen transmission rate (OTR) of uncoated 

and coated bottles was measured basically in the same manner as that of polymer films 

described in the previous chapter (for details applied to containers, see ASTM F-1307) 

using an Oxtran 2/21 device, Mocon Co, Ltd., USA, under conditions of 23°C and 90% 

relative humidity.  

Barrier improvement factor (BIF) was used as an index of barrier enhancement with 

DLC coating, which is calculated by the following formula: 

 

 BIF = OTR of uncoated bottle / OTR of coated bottle 

 

3.2.4 Detection of free volume in DLC coating 

 

  Free volume in DLC coating on each sample was detected through a positron 

annihilation using 22Na based on a method described in a previous paper written by 

Uedono et. al 14).  

  Samples were cut from the body part of coated PET bottles as shown in Fig. 3-3. The 

body part had a cylindrical side wall, and was located in the middle of the upper part 

tapering to the mouth opening and the bottom part tapering to the bottom base. 

  The degree of free volume was represented in S parameter, where lower value 

indicates denser electron cloud in DLC and PET matrix, and thus indicates the denser 

DLC structures 14). 

 

3.2.5 Analysis of composition and structure of DLC 

 

  The chemical composition of DLC was measured with the combination of high 

resolution Rutherford backscattering spectrometry (HR-RBS) and elastic recoil 

detection analysis (HR-ERDA) using HRBS500, Kobe Steel Ltd, Japan. 

  The chemical structure of DLC was measured with X-ray photoelectron spectroscopy 

(XPS) using MgKα radiation with JPS-9000MC, JEOL, Japan. The peak position of C1s 

spectral regions was calibrated based on the C1s peak of 284.6 eV. The ratio of sp2 and 

sp3 fractions of carbon were calculated based on the deconvolution of C1s core-level 

spectra through peak fitting using Spec XPS, where the binding energies of 284.5 eV 

and 285.3 eV correspond to energy derived from graphite (sp2) and diamond (sp3), 

respectively. 
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Fig. 3-3. Schematic model of a PET bottle and its portion for sample cutting. Each 

sample was cut from the middle of each part in terms of height direction. The bar 

represents 10 mm. 

 

 

 

 

 

3.2.6 Measurement of deposition rate of DLC coating 

 

The deposition rate of thin film formed in the above mentioned manner was measured 

as described in our previous study 12). Partially masked silicon wafers placed on the 

inner surface of the center of the sealing part of closures, and the difference in height 
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between the unmasked and the masked parts is detected using a contact-type thickness 

meter, α-step, KLA-Tencor Corporation, USA. 

  

3.2.7 Measurement of tint caused by DLC coating 

 

  The color tint of PET bottles caused by DLC coating was quantified based on the 

increase of b* value (⊿b value) in the L-*a*-b* color quantifying system 15). DLC has 

its own metallic golden or yellowish tint caused by light absorption at various 

wavelength due to the amorphous nature of DLC matrix (mainly due to the various 

bond-length between adjourning carbon atoms). As a result, the ⊿b* value is effective 

to compare the thickness of the tint of DLC coatings formed with different frequencies, 

because the positive b* value represents the degree of yellowish tint. 

  To measure the ⊿b* value, each sample cut from PET bottles was placed in a 

spectrometer, U-3900, Hitachi High-Technologies Corporation, Japan, and b* value was 

calculated based on the light transmission of each wavelength ranging from 380 nm to 

780 nm. Samples were cut from the shoulder and body parts shown in Figure 3-3. The 

difference of ⊿b* values between both parts was examined in order to observe the 

uniformity of color tint over the bottle, because the uniformity has an industrial value 

for PET bottles. 

 

3.2.8 Examination of adhesion stability between DLC coating and PET substrate 

 

  Adhesion stability between DLC coating and PET substrate was quantified based on 

anti-caustic resistance. When a PET bottle is filled with a caustic solution, PET causes 

hydrolysis where longer polymer chains chemically break into shorter polymer 

segments. Caustic treatment leads to the loss of adhesion of DLC layer to PET surface. 

A simple explanation to this loss of the adhesion is that, as polymer chains break, 

residual stress inside the DLC layer gradually exceeds adhesion force along the 

interface between the DLC layer and the PET substrate, leading to cracks in the DLC 

layer, and finally to the physical separation of the DLC layer (and some PET segments) 

from the PET substrate.  

  For this purpose, 0.01% sodium hydroxide (NaOH) solution was prepared. Each 

bottle samples was filled with the prepared solution, and stored at 65°C. The duration of 

coating adhesion was determined based on daily visual observation, and the occurrence 

of visible flakes of DLC coating in the solution was judged as the loss of adhesion.  
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3.3. Results and Discussion 

 

3.3.1. Homogeneity of DLC layers formed at different power frequency 

 

As shown in Table 3-1 and Fig. 3-4, DLC coating formed at any power frequency 

ranging from 2.50 MHz to 13.56 MHz remarkably enhanced the barrier property of PET 

bottles. As the used frequency was increased from 2.50 MHz to 6.00 MHz, the obtained 

OTR was gradually decreased. The use of higher frequencies had an increasing trend of 

OTR. As a result, the minimum OTR and consequently the maximum BIF was obtained 

at 6.00 MHz. 

 

 

 

Table 3-1. OTR of uncoated bottles and coated bottles using different power 

frequencies.  

 

     Frequency (MHz)      OTR (cc(STD)/day/bottle)  BIF (relative value) 

     Uncoated     0.0314     1 

2.50   0.0038    8.3 

3.00   0.0035    9.0 

3.50   0.0033    9.5 

4.00   0.0028   11.2 

4.50   0.0023   13.7 

5.00   0.0020   15.7 

5.50   0.0017   18.5 

6.00   0.0015   20.9 

6.50   0.0021   15.0 

7.00   0.0020   15.7 

13.56   0.0023   13.7 
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Fig. 3-4. OTR as function of power frequency ranging from 2.50 MHz to 13.56 MHz. 

PET bottles were coated with DLC using different power frequency. The same 

conditions of material gas supply and plasma deposition time were used. 

 

 

 

 

 

In Fig. 3-5, the horizontal axis of positron energy represents the relative depth of 

samples from the DLC coated surface because the DLC coated surface was placed to 

face the positron source, and the positron energy determines how deep positrons enter 

into the DLC coating and its substrate. The positron energy of less than and more than 

ca. 3.0 keV was considered to provide the S values of DLC coating and its substrate, 

respectively, because two regions of remarkably different S values were distributed 

above and below this energy in all the samples examined.  
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Fig. 3-5. S parameter profile of coated PET. PET bottles were coated with DLC using 

different power frequency. The same conditions of material gas supply and plasma 

deposition time were used. The interface between DLC layer and PET substrate is 

considered to be located around 3 keV. 

 

 

 

 

  In the substrate region, the S values of ca. 0.51 refer to the relative free volume of 

PET substrate, that is, biaxially-oriented PET matrix for bottle shaping. The positron 

annihilation technique was accurate enough to provide the equal S value of the PET 

substrates for all examined samples. It is considered that the small variance of S values 

among PET samples was caused by the difference in the crystalline parts of PET, often 

due to the degree of orientation in the bottle blowing process. In the DLC coating region, 

the behavior of positron annihilation was virtually same, indicating the formation of 



 47 
 

homogeneous DLC thin films, among the samples of any power frequency except that 

of 7.00 MHz. Except this power frequency, the S value of the DLC layer formed on the 

inner surface of sample bottles was interpreted to be ca. 0.50, which were given in the 

lowest value in the peak between the surface and the PET substrate positions. It should 

be noted that the decrease of the S values near the uppermost surface of DLC layers is 

considered to be caused by the positrons which moved and annihilated in the outside of  

the DLC layers. It is also considered that the decrease of the S values between the DLC 

and PET layers was caused by the occurrence of mixing layers (PET layers including 

DLC components). The different positron annihilation behavior in the case with 7.00 

MHz suggests unknown structural difference. However, its details were yet to be 

describable. Fig. 3-6 shows the result of positron annihilation of different positions of 

the sample bottle, indicating that the exceptional S values were not due to a positional 

effect, but to unique to the power frequency of 7.00 MHz. 

 

 

 
 

Fig. 3-6. S parameter profile of bottle parts coated with DLC thin films. The sample 

bottle was coated with DLC using 7.00 MHz, and each portion was cut to compare with 

one coated using 13.56 MHz in terms of S parameter, in order to observe positional 

impact on the value of S parameter inside the bottle. 
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Table 3-2 supports the result of the homogeneity of DLC coatings mentioned above, 

from the viewpoint of chemical composition. DLC thin films formed both with 13.56 

MHz and 6.00 MHz were mainly composed of ca. 70 atomic percentages of carbon and 

almost 30 atomic percentages of hydrogen, and their compositions were not 

significantly different.  

Figs. 3-7 and 3-8 also provided support data, from the viewpoint of chemical and 

physical properties, respectively, where both XPS spectra and sp3/sp2 ratio were not 

significantly different along the examined frequencies.  

 

 

 

 

 

Table 3-2. Chemical composition of DLC coating. 

 

   Frequency:  6.00 MHz 13.56 MHz 

  Atomic %: C  72.9   69.3 

   H  26.3   28.1 

   O   0.8    2.6 

   N not detected not detected 
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Fig. 3-7. XPS spectra on C1s core level of DLC coating. Examples of the spectra of 

DLC coatings on PET bottles using the power frequencies of (a) 13.56 MHz, (b) 6.00 

MHz, and (c) 3.00 MHz were shown. 
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Fig. 3-8. Ratio of sp3/sp2 vs frequency. For the reference of chemical and physical 

properties of DLC coating on PET bottles, sp3/sp2 ratios correspondent to the power 

frequency ranging from 3.00 MHz to 13.56 MHz were calculated. 

 

 

 

 

  It should be mentioned that the peaks in at the positron energy of ca. 3 keV in Fig. 

3-5 were found in close positions among different frequencies except 7.00 MHz. This 

indicates that coating thickness is almost same over all the examined frequencies, 

probably including 7.00 MHz. The almost equivalent thickness of DLC layers was 

supported by the result of measurement with a contact-type thickness meter, as shown in 

Fig. 3-9. For reference, the thickness of DLC coated with 13. 56 MHz was 19 nm. 

These results indicate that the combination of positron annihilation, ERDA and XPS 

techniques was turned out to be a powerful method to infer the physical and chemical 

identity of carbon-based materials such as PET and DLC. The results obtained in this 

study also indicated that DLC layers formed at different power frequencies ranging 

from 2.50 MHz to 13.56 MHz were basically homogeneous in terms of structure for gas 

permeation and chemical composition, except 7.00 MHz.. 
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Fig. 3-9. Deposition rate of DLC coating. Partially masked silicon wafers on the inner 

surface of PET bottles were coated with DLC using different power frequencies. The 

same conditions of material gas supply and deposition time were used. The resultant 

surface profile of coated and un-coated areas on the wafers was used for the calculation 

of the deposition rate. Bars represent standard deviation. 

 

 

 

 

 

3.3.2. Background of optimization through power frequency 

 

Regarding gas barrier enhancement, it can be explained that the higher gas barrier 

property obtained at around 6.00 MHz power frequencies was caused by the appropriate 

distribution of plasma between the inner and outer electrodes of the coating machine. 

Theoretically, in the plasma occurrence conditions used in this study, a lower frequency 

leads to less primary electrons in the plasma due to the decrease of electro-magnetic 
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oscillation, and more secondary electrons due to increase of the ion impact to the 

substrate 5). It is likely that secondary electrons are produced at the inner surface of a 

PET bottle and therefore that more secondary electrons force the plasma to concentrate, 

that is, to increase electron density, inside the bottle. On the other hand, it is also likely 

that less secondary electrons, for example in the case with 13.56 MHz power frequency, 

lead to plasma concentration in the middle of the inner and outer electrodes, that is, the 

space close to the bottle mouth and shoulder parts. A schematic image of this positional 

shift of plasma concentration inside a bottle was drawn in Fig. 3-10. The shift in the 

concentration of plasma along with power frequency was at least partially observed in 

light emission through transparent windows placed along with the exhaust line of the 

coating machine. 

 It should be noted that high electron density and ion impact are one of factors to 

form dense DLC structure. Based on both factors, we can assume a trade-off relation to 

enhance the barrier property of DLC coated containers, where a higher power frequency 

favors higher electron density while a lower power frequency favors higher ion and 

impact and more even plasma distribution inside the substrate containers.  

This assumed trade-off relation is supported by the results of color tint and adhesion 

stability described later. Thinner tint of the shoulder part of the sample bottles can be 

interpreted as the occurrence of less concentrated plasma around the mouth and the 

shoulder part, as shown in Fig. 3-11.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 53 
 

 

 

 

Fig. 3-10. Schematic image of plasma concentrated position with power frequency of 

(a) 13.56 MHz and (b) 6.00 MHz. 

 

 
 

Fig. 3-11. Tint of PET bottles. As an indicator of tint, b* value in the L*-a*-b* system 

was used. The shoulder and body parts were used to represent the degree of even 

distribution of coating thickness. 
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Furthermore, it is considered that the thicker tint of the body part in lower frequency 

was caused by higher ion impact, because higher ion impact may cause the increased 

occurrence of graphite structure, which is likely to enhance the tint of DLC 16). As 

shown in Fig. 3-12, the duration of the adhesion of DLC coating in contact with NaOH 

caustic solution had a decreasing tendency as the used power frequency decreased. It is 

considered that the earlier loss of the adhesion of DLC coating obtained in the case with 

a power frequency less than 5.50 MHz was caused by the occurrence of higher ion 

impact, because higher ion impact more likely breaks polymer chains to weaken the 

adhesion stability of DLC coating. However, it seems that the polymer breakage due to 

ion impact cannot be clearly shown in the results of this study. The resultant change in 

free volume in the interface region between DLC layer and PET substrate may be too 

small to be detected with the used positron annihilation technique. In other case, higher 

residual stress in DLC coating due to higher ion impact may be the reason for the 

weakened adhesion stability. 

 

 

 

 
 

Fig. 3-12. Duration of the adhesion of DLC coating to PET substrate. Sample bottles 

were filled with 0.01% sodium hydroxide, and daily observed for the adhesion of DLC 

layer to PET bottle wall. Bar represents standard deviation. 
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3.3.3. Significance in practical use of optimized power frequency 

 

From the industrial standpoint of view, compared to the use conventional power 

frequency of 13.56 MHz, the use of the power frequency of 6.00 MHz for DLC coating 

on PET containers was turned out to enable favorable gas barrier, tint, and adhesion 

stability when the above-mentioned capacitively-coupled PACVD technique was 

employed. Similar optimization of power frequency with lower frequency than widely 

used 13.56 MHz can be applied to other capacitively-coupled PACVD systems and the 

resultant coated three dimensional objects in various industrial applications.   

For beverage and food polymer containers, this optimization can be used for quality 

improvement in terms of shelf-life extension and/or bottle appearance. Also, the 

optimized coating conditions for gas barrier enhancement can be utilized for a shorter 

coating time, leading to an improved economics. 

 

3.4. Conclusions 

 

  In this study, the optimization of the power frequencies of a capacitively-coupled 

PACVD machine was conducted to enhance the gas barrier property of DLC layers on 

the inner surface of PET containers. 

  Power frequencies ranging from 2.50 MHz to 13.56 MHz were used. As the used 

frequency was increased from 2.50 MHz to 6.00 MHz, the obtained OTR was gradually 

decreased, and the use of higher frequencies had an increasing trend of OTR. As a result, 

with the use of power frequencies between 5.00 MHz and 7.00 MHz, decreased OTR 

was obtained, compared to the use of conventional 13.56 MHz (OTR: 0.023 cc 

(STP)/day/bottle). Especially, the use of 6.00 MHz provided the minimum OTR, 0.015 

cc (STP)/day/bottle. 

The results of the obtained positron annihilation property, chemical composition, and 

chemical structure indicated that virtually homogeneous DLC coatings were formed 

with the examined frequencies, except that the power frequency of 7.00 MHz provided 

somewhat different positron annihilation property. As a result, the combination of 

positron annihilation, ERDA and XPS techniques showed a powerful manner to infer 

the physical and chemical identity of carbon-based materials. It is expected, for 

instances, that the use of these techniques can facilitate to secure food safety and to 

execute quality control. 

  Tint caused by DLC coatings and the adhesion property of DLC coatings in contact 

with caustic solution were also examined. The use of power frequency of 6.00 MHz 
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provided the minimum difference in tint between the shoulder and body parts of coated 

PET bottles. The use of higher and lower frequencies had tendencies of thicker shoulder 

and body, respectively. Also, the duration of adhesion had a decreasing tendency as the 

used frequency decreased. These results support that the modification of power 

frequency causes a shift of spatial distribution of plasma concentration inside the PET 

container.  

Form the industrial viewpoint, the power frequency of 6.00 MHz provided the most 

optimized properties for DLC coated PET containers in terms of gas barrier, tint and 

adhesion stability. These properties can be utilized for the improvements of product 

quality and cost performance. 
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Chapter 4 

Gas and Flavor Barrier Diamond-Like Carbon Thin Film Coating 
to Plastic Closures 
                                                                                  

 

4.1 Introduction 

 

4.1.1 Required properties of plastic bottles for beer 

 

As mentioned in the previous chapters, poly(ethylene terephthalate) (PET) bottles are 

the most intensive polymer packages for gas barrier enhancement study 1, 2), the 

application of diamond-like carbon (DLC) coating is used to reduce gas permeation of 

PET bottles in beverage and food industry. The use of coating enables practical 

shelf-life extension for beer and other sensitive products 3).  

The potential huge market of DLC coated PET bottles lies in beer, and both gas and 

flavor barrier properties are required for its containers. Beer is known as extremely 

sensitive to oxidation, and oxygen permeation through polymer packages accelerates the 

oxidative deterioration in terms of taste quality. When normal PET bottles are used for 

typical packaged products in retailers, the occurrence of off-flavor caused by beer 

oxidation leads to a quite limited shelf-life 4). This is the reason why DLC coating and 

other equivalent applications for gas barrier enhancement 1, 5-8) are demanded for the 

practical shelf-life of these products. Furthermore, beer is also a type of carbonated 

beverage, and the decrease of carbon dioxide content caused by permeation may lose 

the total flavor balance of the product. Also, in the brewing process of beer, ingredients 

with strong flavor such as hops, herbs, and fruits, are used. The use of these ingredients 

sometimes leads to the requirement of barrier property against flavor components, 

so-called anti-sorption property, for beer containers. Sorption is highly related to flavor 

scalping 9), and relates to permeation through and dissolution into polymer packages. 

Because sorption can cause the loss of subtle balance among various organic 

compounds in beer, it affects the flavor quality of the product. 

Juice is also widely packaged in gas-barrier-enhanced PET bottles, because the 

permeation of oxide (and, in case with carbonated juice, carbon dioxide) deteriorates the 

flavor of juice products. Sorption also affects the flavor quality of packaged juice 

products. 
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4.1.2 Increasing demand of plastic closures with high gas and flavor barrier properties 

  

  As the performance of PET bottles is enhanced, the performance of plastic closures 

used with PET bottles has been more important to determine the overall performance of 

the package. Thin film coatings can provide the effective inhibition of both gas 

permeation through PET bottles and sorption into PET bottle wall. On the other hand, 

the sealing parts of the most of these plastic closures are made of polyethylene (PE) due 

to its suitable rigidity and shapeability. In some cases, perforated PE sealing parts with 

PET uppermost layers or poly(vinyl chloride) sealing parts, which may perform with 

effective anti-sorption functions, are used. The use of these closures was, however, quite 

limited in today’s industry because of increased production cost or environmental 

concern with the use of chloride. The enhancement of gas barrier and anti-sorption 

properties of PE is, therefore, the key for extended shelf-life and quality extension of 

sensitive products in a PET bottle 

  In attention to anti-sorption property as well as gas barrier property, the attempt in 

this paper was made to form practical DLC thin film coating to the inner surface of PE 

sealing parts. It should be stressed that the gas barrier enhancement of PE with thin film 

coating is a challenging effort because of the rough surface and/or weak adhesion 

properties of substrates shaped with PE, derived from the nature of this polymer 

material. To the contrary, Tashiro et. al. reported that, for the oxygen barrier 

enhancement of PE and other polymeric films, use of specific organic silane compounds 

as a undercoat of DLC coating was effective in enhanced adhesion and gas barrier 

enhancement 10). In this report, DLC coating was formed in 35 second to about 80 nm 

thickness, and, therefore, a shorter and thinner coating demanded in today’s industry is 

still a challenging effort. Because one of these organic silane compounds, 

3-aminopropyltrimethoxysilane (3APTMS), is known as a relatively safe compound, the 

author applied a modification of this technique to plastic closures in order to enhance 

the overall performance of the package composed of a coated PET bottle with a PE 

closure.  

 

4.2 Experiments 

 

4.2.1 Package components 

 

4.2.1.1 PET bottles 
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For manufacturing 500 ml PET bottles of typical shape and weight (34 g) for 

carbonated soft drinks as shown in Fig. 4-1, a preform injection machine, KS100T Kata 

System Co., Ltd., Japan, and a blow molding machine, FRB-1, Frontier Co., Ltd., Japan, 

were used. The resultant bottles had ca. 190.4 mm in height, ca. 66 mm in diameter, and 

0.035 mm in thickness. 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4-1. Appearance and parts of PET bottles. The bar represents 10 mm. 
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4.2.1.2 Plastic closures 

 

  A variation of commercial two-piece plastic closures developed for PET bottles for 

beer products were used as shown in Fig. 4-2. These closures were designed to fit to the 

PET bottle mouth part which had 33.1 mm in outer diameter, and were composed of PE 

sealing parts (1.19 g per one part) and polypropylene shell parts as shown in Fig. 4-2. 

The inner area of the inner ring of the sealing part had 27.4 mm in diameter and 1.1 mm 

in thickness. 

 

 

 

 

 

 

 

 
 

Fig. 4-2. Appearance of a two-piece closure. A sealing part, assembled sealing and shell 

parts, and a shell part are shown from left to right. The bar represents 10 mm. 
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4.2.2 DLC and its pretreatment coating to package components 

 

4.2.2.1 DLC coating to PET bottles 

 

  In order to clearly observe the performance of plastic closures and evaluate the 

overall performance of packages composed of closures and bottles, DLC coated PET 

bottles were used. It should be mentioned DLC coating provides enhanced anti-sorption 

property as well as gas barrier property to coated plastic substrate 11). 

  DLC coating to PET bottles was performed as described in the previous chapter of 

this paper 12). DLC thin films were formed on the inner surface of PET bottles or PE 

sealing parts with a device, PNS-1, Youtec Co., Ltd., Japan, specifically designed for 

PET bottle coating. Fig. 4-3 (a) shows an example of coating to a PET bottle. Each 

bottle sample was placed onto the bottom part of the outer electrode in order to be 

enclosed in the vacuum chamber, and to be subjected to subsequent processes for a type 

of PACVD technique. The vacuum chamber was closed and vacuumed to 5 Pa. 

Acetylene gas was supplied into the bottle at a rate of 80 cubic centimeters at standard 

pressure and temperature per minute (sccm). 13.56 MHz high frequency power of 1000 

W was applied to the outer electrode so that acetylene plasma was produced between 

the inner and outer electrodes. The plasma was maintained for 2.0 seconds. 
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Fig. 4-3. Schematic illustration of DLC coating devices for (a) PET bottles and (b) 

plastic closures. The exchange of outer electrodes enables coating to different bottles 

and closures in a single device. The above Fig. 4-3 (b) illustrate a closure can be coated 

with a specific movable part of the outer electrode. It should be mentioned that outer 

electrodes function as a part of vacuum chambers and the movement of the movable 

parts of the outer electrodes enables the introduction and removal of uncoated and 

coated substrates, respectively. 

 

 

 

4.2.2.2 DLC coating to plastic closures 

 

  DLC coating to plastic closures were performed basically in the same manner as that 

to PET bottles, and applied to the inner surface (the surface in contact with the content 

of PET bottles) of sealing parts. In order to coat a sealing part of closure, the bottom 
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part of the outer electrode was modified to fit the shape of the closure as shown in Fig. 

4-3 (b). 

  For the pretreatment of 3APTMS undercoating, 70 μL of 3APTMS, supplied by 

Shin-Etsu Silicon Chemicals Co., Ltd., Japan, was dropped to the center of the inner 

ring of a sealing part and distributed over the surface based on a spin-coating technique 

using 3000 rpm in a draft chamber under 23oC. The resultant 3APTMS undercoating 

was dried at a room temperature around 23oC or immediately applied to DLC coating 

without any specific drying process.  

 

4.2.3 Measurement of oxygen barrier property of package components 

 

4.2.3.1 Oxygen barrier property of PET bottles 

 

Oxygen transmission rate (OTR) was measured with Oxtran 2/21. Mocon Co., Ltd., 

USA, for 72 hours under the conditions of 23oC and RH 90%, based on ASTM F-1307 

method 13). ASTM F-1307 is a type of a constant pressure and volume method for the 

measurement of oxygen permeation through containers.  

In this method, the mouth part of a sample bottle is hermetically sealed to a metal 

pipe system with two ends. One end is connected to the source of nitrogen carrier gas 

source, and another end is connected to the oxygen detector of the device. With a steady 

carrier gas flow, the inside of the sample bottle has virtually no oxygen except permeant 

oxygen through bottle wall, and the outside is surrounded by air. The surface area and 

the wall thickness of the sample bottle, and oxygen pressure difference are kept constant. 

The oxygen detector detects the permeant oxygen concentration in the steady carrier 

flow and converts into the OTR through the bottle sample. 

 

4.2.3.2 Oxygen barrier property of plastic closures 

 

  The OTR of plastic closures was measured basically in the same manner as that of 

PET bottles. Instead of that bottle samples were sealed to the metal pipe system, closure 

samples were hermetically screwed to a metal thread port which was shaped into the 

same dimension as the mouth part of PET bottles. Because clearance between the 

sealing and shell parts of a closure was large enough in terms of permeation, the oxygen 

detector detected only the permeant oxygen through the sealing parts and the interface 

between the sealing and mouth parts. 
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4.2.4 Measurement of deposition rate on closures 

 

The deposition rate of thin films formed in the manner mentioned above was 

measured, as described in the previous chapter of this paper 12). Partially masked silicon 

wafers placed on the inner surface of the center of the sealing part of closures, and the 

difference in height between the unmasked and the masked parts is detected using a 

contact-type thickness meter, α-step, KLA-Tencor Corporation, CA, USA. The average 

of deposition rate obtained from three samples was adopted. It should be noted that 

above-mentioned coating conditions for PET bottles resulted in the deposition of DLC 

thin films of ca. 19 nm thickness in the center of the body part, leading to the deposition 

rate of ca. 9.5 nm/sec. 

 

4.2.5 Measurement of surface roughness 

 

  The surface roughness of substrate or coating was measured based on Ra over the 

square area of 10 μm × 10 μm using an atomic force microscopy, AFM5100N, Hitachi 

High-Technologies Co., Japan. 

 

4.2.6. Chemical characterization of thin film 

 

In order to confirm the formation of DLC over 3APTMS undercoat, Raman 

spectroscopy was performed using a Raman spectrometer, LabRAM HR Evolution, 

Horiba, Ltd., Kyoto, Japan, in conditions of a photo excitement at 532 nm under room 

temperature. For this analysis, DLC coating was deposited to 80 nm on sample 

substrates. It should be noted that in an attempt to apply thicker DLC coating in order to 

avoid the influence of substrate chemical structures, DLC coatings tend to be 

spontaneously cracked with the thickness of 100 nm and more. The deposition of 80 nm 

thickness was, therefore, employed for this experiment.  

To complement the above Raman spectrometry, XPS analysis was also performed. 

The depth profile of the chemical composition of the coated surface was analyzed using 

a scanning XPS microprobe, Quantera II, Physical Electronics, Inc., OR, USA, with the 

AlKα radiation (1486.6 eV) was used for the spectral regions of Si2p, O1s, and C1s. 

N1s was omitted in consideration of the previous results with no detection of nitrogen in 

DLC coatings 6). For samples of this analysis, thin films of ca. 20 nm in thickness were 

formed on the sealing parts of plastic closures. 

 



 67 
 

4.2.7 Sorption test 

 

4.2.7.1 Sample preparation 

 

  1.00 mL of commercial orange juice including 29.2 μg d-limonene (C10H16) / ml was 

dropped to the inside of the inner ring of a sealing part, and stored at 35oC for 24 hours, 

assuming product storage and distribution at a high temperature season. Three each of 

(1) uncoated, (2) DLC coated, and (3) 3APTMS (undercoat) and DLC (top coat) coated 

samples were prepared. After the storage, each sample was gently rinsed with distilled 

water, and dried at room temperature. 

   

4.2.7.2 Quantitative analysis of d-limonene 

 

  As an index of the sorption of d-limonene to the sealing part of a plastic closure, the 

total amount of d-limonene released from a sealing part sample detected in a gas 

chromatography system with a flame ionization detector, GC-2010 AF, Shimadzu 

Corporation, Japan. Each sample containing fragments of an individual sealing part in a 

glass vial was hermetically transferred to the detector controlled at 250oC, using helium 

for a constant carrier gas flow. Before the measurement of these samples, it was 

confirmed that blank samples (empty or containing fragments of a fresh sealing part) 

did not show any significant detection of d-limonene above the background level. The 

content of d-limonene in the orange juice was measured in the same manner. 

 

4.2.8 Sample description 

  In this paper, the coated sealing part samples prepared were described in the 

following manner. PE, PE/DLC, PE/3APTMS, PE/3APTMS/DLC refers to uncoated 

samples, sealing parts directly coated with DLC thin films, sealing parts coated with 

3APTMS, and sealing parts coated with 3APTMS followed by DLC thin films, 

respectively. 

 

4.3 Results and discussion 

 

4.3.1 DLC coating to closures and resultant OTR 

 

  It was observed in plastic closures that a gas-barrier-enhanced performance of DLC 

coating was achieved when 3APTMS undercoating was applied. Fig. 4-4 shows the 
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visual appearance of each sample. Because of slight flow lines from the center to the 

peripheral directions caused by the spin-coating of 3APTMS, the appearance of 

PE/3APTMS/DLC was slightly white, compared to PE/DLC. 3APTMS and DLC layers. 

The thickness of the 3APTMS and DLC layers was measured as 1.3 μm, and 21.6 nm, 

respectively. 

 

 

 

 

 

 

 

 

 
 

Fig. 4-4. Visual appearance of coated and uncoated sealing parts of plastic closures. 

Samples of PE, PE/DLC, and PE/3APTMS/DLC were shown from left to right. The bar 

represents 10 mm. 
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  The OTR of the prepared samples were shown in Fig. 4-5. The abbreviation of cc 

(STP) represents cubic centimeter at standard temperature and pressure. For PE/DLC 

and PE/3APTMS samples, OTR was slightly decreased, from 0.011 cc (STP) / closure / 

day (PE samples) to 0.009 cc (STP) / closure / day (PE/DLC samples) and 0.010 cc 

(STP) / closure / day (PE/3APTMS samples), respectively. On the other hand, the OTR 

of the closure was decreased by about two thirds, to 0.003 cc (STP) /closure / day 

(PE/3APTMS/DLC samples) with the introduction of the 3APTMS undercoating layer. 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4-5. Oxygen transmission rate of uncoated and coated closures. 
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  The overall OTR of the package composed of a bottle and a closure was calculated.  

For the OTR of uncoated and DLC coated PET bottles, 0.0375 and 0.0030 cc (STP) / 

package / day, respectively, was employed. As shown in Fig. 4-6, compared to the set of 

uncoated bottle and closure, the OTR was remarkably reduced for the set of the coated 

bottle and uncoated closure. In the latter set, the majority of oxygen permeation 

occurred through the closure part. On the other hand, compared to the set of coated 

bottle and uncoated closure, the majority of the OTR of the set of coated bottle and 

closure occurred through the bottle part. In other words, the overall OTR of the package 

composed of the coated bottle and closure was decreased by about one half, compared 

to the case with the uncoated closure and DLC coated bottle (from 0.014 to 0.006 cc 

(STP) / package / day). With this oxygen barrier enhancement, a corresponding 

significant shelf-life extension and quality improvement against the oxidation of the 

content of the package can be expected. 

 

 

 

 
 

Fig. 4-6. Calculated total oxygen transmission rate of the whole packages. Compared to 

a set of uncoated bottle and closure, the OTR of a set of DLC coated bottle and 

uncoated closure was decreased to about 34%. Also, the OTR of a set of DLC coated 

bottle and closure was decreased to about 15%. 
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4.3.2 Mechanism of enhanced gas barrier property with 3APTMS undercoating 

 

  The reason of enhanced gas barrier performance of PE/3APTMS/DLC closure 

samples was studied from the viewpoint of surface roughness and the chemical structure 

of DLC layers. 

As summarized in Table 4-1, it was observed that DLC coating directly applied to PE 

surface was deposited basically along the surface morphology of the substrate. 

Interestingly, 3APTMS undercoating had a significant effect to increase surface 

roughness, and did not show any leveling effect. Despite of the rough undercoating, the 

oxygen barrier was enhanced with DLC coating on the 3APTMS layer. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-1. Surface roughness of uncoated and coated sealing parts of closures.  

 

Sample Surface roughness (Ra, nm) 

(1) PE  21.15 ± 3.93 

(2) PE/DLC 13.27 ± 2.21 

(3) PE/3APTMS  192.73 ± 32.45 

(4) PE/3APTMS/DLC 61.10 ± 6.85 
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 As an analysis to the chemical structure of DLC layers, Raman spectrometry was 

conducted for the PE/3APTMS/DLC sample in comparison with a PET bottle sample 

treated with the same DLC coating. Because the spectrum obtained appeared to contain 

the influence of substrate as shown in Fig. 4-7 (a), especially with the sample using PET, 

the fitting of G and D peaks were calculated without the influence of peaks around 1730 

cm-1, 1610 cm-1, and 1290 cm-1. The resultant spectrum of G and D peaks was shown in 

Figs. 4-7 (b) and (c), and the ratio of these peaks indicates equivalent DLC coating was 

formed as shown in Table 4-2. 
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Fig. 4-7. Raman spectra of DLC coatings, (a) formed on PET (red line) and 

PE/3APTMS (blue line), (b) formed on PET (blue line), fit to G and D bands (red and 

green lines, respectively), and (c) formed on PE/3APTMS (blue line), fit to G and D 

bands (red and green lines), respectively. 
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Table 4-2. Ratio of G and D band peaks. 

 

Sample 

Peak position of 

bands (cm-1) 

Height 

(relative value)

Ratio 

(relative value)

(1) PET/DLC 
G:  1531.2 1155 

0.49 
D:  1339.1 567 

(2) PE/3APTMS/DLC 
G:  1529.8 590 

0.51 
D:  1337.9 303 

 

 

 

 

 

 

 

 

  It is considered that similar DLC coatings were formed on the samples of PET/DLC 

and PE/3APTMS/DLC, because the ratio of G and D band peaks was 0.49 and 0.51, 

respectively.  

  In order to confirm whether the atomic composition of the DLC layer formed on 

PE/3APTMS/DLC samples was affected by the components of 3APTMS layer, the 

surface depth profile of the DLC layer was analyzed with an XPS technique. Fig. 4-8 

clearly shows that one layer composed of carbon only was formed on another layer 

containing carbon, silicon and oxygen. In this figure, the purple line for silicon is almost 

overlapping on the blue line for oxygen, except the uppermost depth. Although the 

accurate depth or etching rate of different layers was unknown, the carbon layer was 

empirically deduced to be around 20 to 30 nm in thickness based on the conducted XPS 

analysis conditions, and also matched with the deposition rate of DLC coating 

mentioned above.  
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Fig. 4-8. Depth atomic profile of PE/3APTMS/DLC. From left to right, the uppermost 

surface of DLC coating (to be in contact with the content of the package) to the 

interface with 3APTMS was shown. Blue, red, and purple lines represent oxygen, 

carbon, and silicon, respectively. It should be noted that the purple line for silicon is 

almost overlapping on the blue line for oxygen, except the uppermost depth. 

 

 

 

In this study, the combination of Raman spectrometry and XPS was employed to 

observe the possible homogeneity of DLC thin films, in consideration of a previous 

report which indicated silicon or nitrogen doped into DLC thin films affected the 

resultant Raman spectrometry 14). Based on the conducted Raman and XPS analyses, it 

can be concluded that homogeneous DLC thin films were formed either on PET or 

3APTMS substrates. Interestingly, in spite of the fact that in the PE/3APTMS/DLC, 

DLC layers were formed on wet substrates, the dense structure of DLC thin films was 

formed in similar to the cases with other solid polymer substrates. 

The quite limited oxygen barrier enhancement of the PE/DLC samples indicated the 

importance of interface conditions between polymers and DLC thin films for restricting 

permeation. The rough surface of the 3APTMS layers indicates that the principle of gas 

barrier enhancement with the DLC coating was different from the typical effect of 
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undercoating, that is, the leveling of surface. It should be added that the surface of PE / 

3APTMS or PE / 3APTMS / DLC was empirically rough enough to obtain little gas 

barrier enhancement with thin film formation. Tsuji et. al 15, 16) reported that plasma 

treatment using such as oxygen or nitrogen modified the surface of 3APTMS layers into 

high gas barrier structures. It was reported that this plasma-assisted chemical 

modification caused the relative increase of silicon and oxygen contents in the 

uppermost surface layer. Even though the conducted XPS analysis showed the 

examined surface region was mainly composed of carbon at any depth, and any 

significantly silicon or oxygen rich layer was not observed, similar gas barrier 

enhancement through some chemical affinity, for example, dense chemical bonds, 

between DLC and 3APTMS layers appeared to occur. The reason of the missing silicon 

or oxygen rich layer probably lies in the PACVD technique used. A possible explanation 

is that the modification was not clear in the obtained XPS profile because a quite thin 

layer of 3APTMS was modified due to a shorter exposure to plasma. Slightly fluctuated 

curves in the depth between 35 and 40 in the profile shown in Fig. 4-8 may be the result 

of the modification, and provide an effective interface for gas barrier enhancement 

using DLC coating. 

 

4.3.3 DLC coating to closures and resultant anti-sorption property 

 

Table 4-3 shows d-limonene amounts detected from three different sample groups of 

sealing parts stored in contact with the orange juice used under the same conditions. A 

significant decrease of d-limonene was observed with PE/3APTMS/DLC samples, 

compared to uncoated PE samples (from 2.1 × 103 to 2.8 × 102 ng / sealing part). 

Interestingly, another coated samples of PE / DLC also showed a significant decrease of 

d-limonene detection (to 4.3 × 102 ng / sealing part), in spite of its quite limited oxygen 

gas barrier enhancement as mentioned above (from 0.011 to 0.009 cc (STP) / closure / 

day). This highly suggests that permeation and sorption can proceed differently, even 

though these phenomena are likely to have some principles in common such as 

dissolution and diffusion. A possible explanation is that large and polarized molecules of 

limonene compared to oxygen molecules are difficult to enter into the matrix of DLC 

layer, and, as a result, defects of DLC coating allow the passage of oxygen molecules 

while these defects still significantly restrict the entrance of limonene molecules into 

DLC and subsequent substrate layers. 
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Table 4-3. Sorption of d-limonene to the sealing parts of plastic closures. 

 

Sample Detected d-limonene (ng / sealing part ) 

(1) PE  2.1 × 103 

(2) PE / DLC 4.3 × 102 

(3) PE / 3APTMS / DLC 2.8 × 102 

 

 

 

 

In total, it was suggested that the package composed of the DLC coated closure and 

bottle significantly inhibited the sorption of d-limonene, leading to an effective quality 

improvement against the scalping, for example, of hops or fruit flavors. The importance 

of this kind of quality improvement lies especially in consideration of substituting a 

PET bottle format for other package formats such as glass bottles and aluminum cans. 

  Because 3APTMS is known to be a useful sealant adhesive for food packages, it can 

be expected that the combination of 3APTMS and DLC can be used for food and 

beverage packages in safe manners. 

  In brief, thin film coatings can be considered as promising practical means to enhance 

the gas and flavor barrier property of plastic closures, like in the cases with existing 

coatings onto PET bottles. Especially from a standpoint where both gas and flavor 

barrier enhancement can be achieved, approach with thin film coating can be expected 

to be advantageous over other conventional types of approach such as the use of 

perforated PE sealing parts laminated with thin PET sheets, multilayer, oxygen 

scavengers, in terms of performance and economics. 

 

4.3.4 Possible further quality and economical improvements 

 

  The technique of this study is applicable to functional coating onto two or three 

dimensional objects because the results of this study suggest approaches to coatings 

with little defects over typical rough objects. In this study, DLC coating was used in 

consideration of direct contact with food and beverage, while 3APTMS coating treated 



 78 
 

with nitrogen or oxygen plasma 15) has an advantage in requiring virtually a single 

material and a simple process in machinery. 

  While several technical approaches are proposed to form a smooth surface of molded 

materials such as hot and cool molding 17, 18), these appears to be difficult to perform in 

an economical manner required for such as plastic closures for beverage products, daily 

necessities, and expendable parts. Wet undercoating is, therefore, likely to provide more 

universal approach. Other combinations of wet and dry process can be also expected, 

for instances, through the use of coupling agents or photo hardening compounds, and 

plasma or radical treatments, respectively. 

 

4.4 Conclusions 

 

  DLC coating was applied to plastic closures used for PET bottles. When the coating 

was applied directly onto the surface of PE sealing parts of the closures, oxygen gas 

barrier property was not significantly enhanced (the OTR of closures was decreased 

from 0.011 cc was 0.009 cc (STP) / closure / day). On the other hand, the anti-sorption 

property of d-limonene, a representative substance in the study of sorption to polymer 

materials, was significantly enhanced (the detected concentration from sealing parts was 

decreased from 2.1 × 103 to 2.8 × 102 ng / sealing part). Also, a significant enhancement 

of oxygen gas barrier property as well as anti-sorption property was achieved with the 

aid of undercoating using a type of organosilane, 3APTMS (the OTR of these samples 

was 0.03 cc (STP) / closure / day). The large and polarized molecules of d-limonene, 

compared to oxygen molecules, were considered to involve difficulty to enter the matrix 

of DLC matrix. It is also considered that the difference in the difficulty of the entrance 

into DLC matrix caused the different behavior between gas permeation and sorption. In 

order to confirm the chemical structure of the formed DLC thin films on 3APTMS layer, 

Raman spectrometry analysis was conducted. The result indicated that equivalent DLC 

thin films were formed on the surface of 3APTMS and PET layers. The conducted XPS 

profile analysis also confirmed that silicon and oxygen was not contained in the DLC 

thin film formed on the surface of the 3APTMS layer. 

  Both with gas and flavor barrier enhancement function of DLC coated plastic 

closures with 3APTMS, it was expected that corresponding quality improvement and 

shelf-life extension to products filled in gas barrier enhanced PET bottles such as beer.  
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Chapter 5 

Novel Gas Barrier SiOC Coating to PET Bottles through a Hot 
Wire CVD Method 

                                                                                  

 

5.1 Introduction 

 

As stated in chapter 2, thin film coatings are one of technical approach for the 

sensitive food and beverage products in poly(ethylene terephthalate) (PET) bottles. The 

advantages of thin film approach lie in the relatively high degree of gas barrier 

enhancement and the relatively wide coverage of product categories as well as the 

relatively high degree of the recyclability of PET bottles, compared to other approaches 

such as multi-layer 1-4). On the other hand, relatively high capital expenditure for the 

installment of specific machines based on plasma-assisted chemical vapor deposition 

(CVD) processes is the disadvantage of current coating technologies. In these situations, 

a novel process for thin film coating which provides possible reduced capital 

expenditure as well as conventional gas barrier performance is demanded. 

The author conceived that one possible approach to the novel process was an 

application of a hot wire CVD technique. With this technique, relatively simple device 

configuration can be expected because some expensive and complex components, for 

examples, frequency power supplies, matching boxes, and electromagnetic shield parts, 

used in plasma-assisted CVD devices are not needed,  

The key technique in the hot wire CVD lies in the combination of wire and material 

gas species 5). As some of hot wire CVD processes are called catalytic CVD 

(CAT-CVD), when hot wires have catalytic behavior 6), the choice of wire species is 

important for the decomposition of material gas. Also, the choice of material gas species 

has an important influence on the consequent decomposed species for thin film 

formation.  Some proposals have been made in hot wire techniques such as the 

combination of tungsten and silane gas 7), and tungsten and hexametyldisilazane 8, 9). 

However, the explosive nature of silane gas involves the practical difficulty in use inside 

the factories of typical PET bottle manufactures in terms of safety and related legal 

restrictions 10). Also, PET bottles lack in the heat resistance required or sufficient 

deposition rate, for the formation of the barrier coating based on the tungsten and 

hexametyldisilazane approach mentioned above. As a result, a novel combination of hot 

wire and material gas species which is applicable to PET bottles in a safe manner is 
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demanded in the hot wire CVD approach. 

For a novel process, coatings with improved performance is demanded, compared to 

carbon 1, 4, 11-13) and SiOx 
1, 4, 14, 15) coatings synthesized with the current plasma-assisted 

CVD techniques. Because these coatings are formed on the inner surface of transparent 

PET bottles, both visual appearance and stability in direct contact with filled beverage 

liquids have impact on the quality of coated bottles. The carbon coating has a certain 

metallic carbon color tint, which may lead to the avoidance of use due to psychological 

impact on container appearance, while it is stable in contact with typical beverages. 

Also, the SiOx coating, while it is colorless, tends to show a certain limited barrier 

performance and the resultant limited applications, because of instability in contact with 

some beverage liquids close to the neutral in terms of pH 16). Some types of tea are 

example of these liquids. In brief, a novel coating technique is demanded for a thin film 

which is colorless and physico-chemically stable in contact with various beverage 

liquids. 

In this context, the author empirically conceived a possible gas barrier coating with 

colorless and physico-chemically stable properties can be found in a type of thin film 

composed of the mixture of silicon, carbon, and oxygen and hydrogen. This type of thin 

films is often shortly described as SiOC in the industry. In the matrix of SiOC, silicon 

and carbon are expected to provide a basic skeleton of dense structure, oxygen is 

expected to reduce the absorption of visible light, and carbon is expected to increase the 

stability in contact with beverage liquids. 

For the material gas for the synthesis of SiOC thin films, organosilane is often used. 

A useful type of organosilane for this study is neither highly explosive nor poisonous, 

and can form gas barrier thin films with appropriate hot wire. The author conceived the 

use of vinylsilane for material gas in consideration of the modification of the chemical 

structure of silane. As shown in Fig. 5-1, vinylsilane has a silyl function in the molecule, 

and in this sense, a similar chemical structure to mono-silane, a known material gas for 

remarkably high gas barrier films, for example, SiNx, as mentioned above. The vinyl 

function in vinyl silane, however, can increases chemical stability, and provides no 

explosive nature under atmospheric conditions. This chemically more stable nature of 

vinylsilane is practically expected to enable a safe operation in PET bottle 

manufacturing factories. We paid attention to these characteristic aspects and attempted 

to form a gas barrier thin film onto a PET bottle.  
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Fig. 5-1. Chemical structure of vinylsilane. 

 

 

  For wire species used in this study, useful hot wires can be heated to decompose 

material gas, and is not poisonous. Because of a heat resistance up to 2200oC and the 

general safe properties observed in medical applications 17), tantalum was chosen. 

 

5.2 Experiments 

 

5.2.1 Preparation of PET bottles 

 

500 mL PET bottles of typical shape and weight (29 g) for carbonated soft drinks 

were manufactured using a preform injection machine, KS100T Kata System Co., Ltd., 

Japan, and a blow molding machine, LB01E, KHS, Germany. The resultant bottle had 

ca. 210 mm in height, ca. 66 mm in diameter, and ca. 0.035 mm in thickness. Fig. 5-2 

shows the appearance of the bottles manufactured, which is the same picture used in the 

chapter 3 of this paper 18).  

As mentioned in chapter 1, the term of weight is used for expressing the mass of 

packages in this paper. 
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Fig. 5-2. Appearance of PET bottles used in this study. The bar represents 10 mm. 

 

 

 

 

5.2.2 Thin film formation onto a PET bottle 

 

Tantalum wire of 0.5 mm in diameter supplied by Pransee Japan Co., Ltd., was cut to 

be a pair of 420 mm and 440 mm in length. The wire pair was set to a coating device 

originally designed for PET bottle coating (Fig. 5-3). Inside a bottle, each wire was 

supported in an insulated state with a gas inlet pipe made of ceramic (alumina) of 6.0 

mm in the outer diameter and of 4.0 mm in the inner diameter, and crossly placed to 

each other in a non-contact manner, so that the wire surface is placed in a position 

generally 20 mm apart from the most parts of the bottle inner bottle wall. The bottle 

substrate, the wires, and the gas inlet pipe were set inside the vacuum chamber 

connected to vacuum pumps, EH500IND and E2M80, Edwards Co., Ltd., USA. 
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Fig. 5-3. Schematic structure of the coating device used in this study. Inside a bottle 

placed in a vacuum chamber, hot filaments connected to a power supply were fixed 

along a gas supply pipe connected to a material gas container. (A) Supplied material gas 

is decomposed in contact with the hot wire, and (B) the decomposed molecules form a 

thin film on the inner surface of a PET bottle. 

 

 

 

 

 

  Vinylsilane (H3Si-CH=CH2, Fig. 5-1), which is gaseous under the atmospheric 

pressure or below at room temperature, was synthesized by Japan Advanced Chemicals 

Co., Ltd., Japan. The flow rate of gas was controllable through a mass flow controller in 

cubic centimeter under standard temperature and pressure per minute (sccm) unit, which 

is installed in the middle of the gas inlet pipe and a gas cylinder.  

Thin film was formed through heating the wires with a DC power supply, HX0500-30, 

Takasago Ltd., Japan. The temperature of the heated wires was measured with a handy 
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radiation thermometer, TR-630A, Konica Minolta Inc., Japan, through a window made 

of Pyrex® glass which forms a part of the chamber.  

For thin film formation, the vacuum chamber including a PET bottle and tantalum 

wires was vacuumed to 5.0 Pa. The wires were then heated inside the PET bottle to ca. 

2000oC using a radiation thermometer. The supply of vinylsilane to the inside of the 

bottle was adjusted using a mass flow controller to a flow rate ranging from 30 cubic 

centimeter at standard temperature and pressure per minute (sccm) to 90 sccm, and kept 

for 6.0 seconds, followed by the termination of the heating of the wires and the 

vacuuming of the chamber. 

When the resultant bottle was removed from the chamber after the pressure release of 

the chamber, no tangible deformation was observed in the shape of the coated PET 

bottles, in spite of vacuuming and heating processes described above. 

The formation of a thin film coating was confirmed through visual observation based 

on a slight golden tint.  

 

5.2.3 Measurement of deposition rate 

 

The deposition rate of the thin film formed in the above mentioned manner was 

measured using partially masked silicon wafers placed on the inner surface of the center 

of the body part of PET bottles as described in a previous study 18). The difference in 

height between the unmasked and the masked parts was detected using a contact-type 

thickness meter, α-step, KLA-Tencor Corporation, USA. 

 

5.2.4 Measurement of oxygen barrier property of PET bottles 

 

The oxygen transmission rate (OTR) of a PET bottle was measured based on ASTM 

F-1307 using an Oxtran 2/21 device, Mocon Co., Ltd., USA, under conditions of 23oC 

and 90% relative humidity. This is a type of a constant pressure and volume method for 

containers. In this method, the mouth part of a sample bottle is hermetically sealed to a 

metal pipe system. One end of the system is connected to the nitrogen gas source, and 

the other is connected to the oxygen detector of the device. Because pure nitrogen 

constantly passes through the inside of the bottle, the sample volume (including the 

surface area and the wall thickness) and the difference of oxygen pressure between the 

inside and outside of the sample are controlled to be constant. The resultant OTR, 

therefore, reflects oxygen permeation through the bottle only. It should be mentioned 

that the degree of gas barrier enhancement is often expressed in barrier improvement 
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factor (BIF), as previously described in the chapter 2 of this paper. The value of BIF is 

calculated based on the OTR of an uncoated bottle divided by the OTR of a coated 

bottle to that of an uncoated bottle, from the view of shelf-life extension of commercial 

products. 

  

5.2.5 Morphological characterization of thin film coating 

 

  The surface images of the thin film formed on the PET substrate was observed with a 

scanning electron microscope, JSM-7600F, JEOL Ltd., Japan. The samples were cut 

from the center of the body part of PET bottles, and coated with vaporized osmium. To 

observe the surface images, the magnification was set to 100,000 times under the 

condition of 5 kV for the electron acceleration. 

 

5.2.6 Chemical characterization of thin films 

 

For the chemical composition and structure of thin films, X-ray photoelectron 

spectroscopy (XPS) analysis was performed. Samples were cut from the center of the 

body part of coated PET bottles, and the spectral regions of Si2p, O1s, C1s, and N1s 

were measured using QuanteraSXM, Physical Electronics, Inc., USA, based on the 

AlKα radiation (1486.6 eV).  

 

5.2.7 Measurement of water vapor barrier property of PET bottles 

 

The water vapor transmission rate of a PET bottle was determined based on the 

average rate of the decrease in the weight (mass fraction) of bottles filled with 500 mL 

distilled water, stored under the conditions of 23oC and 50% relative humidity. The 

weight of each filled sample was regularly measured using an electronic balance. The 

resultant weight loss rate includes water vapor permeation both through bottle and 

closure parts. 

 

5.3 Results and discussion 

 

5.3.1 Oxygen barrier property of coated PET bottles 

 

The result of OTR measurement was shown in Fig. 5-4. The OTR of coated bottles 

were decreased when the flow rate of material gas was increased from 30 sccm to 50 
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sccm, and then gradually increased when the flow rate was increased from 50 sccm to 

90 sccm. It is considered that appropriate balance between the supply amount of 

material gas and the pressure inside the bottle (the length of mean free path) is 

important for high gas barrier enhancement. As a result, the highest oxygen gas barrier 

was achieved at the flow rate of 50 sccm. Because the OTR of the resultant bottle and 

an uncoated bottle was 0.0025 and 0.0350 cubic centimeter at standard temperature and 

pressure (cc (STP)) / day / bottle, BIF value was calculated as 15.2. This oxygen gas 

barrier enhancement of more than 10 in BIF indicates a highly practical oxygen barrier 

enhancement for food and beverage applications. Fig. 5-5 shows coating thickness 

obtained with different gas flow rates. The coating thickness was increased as the flow 

rate of material gas increased. It is considered that thicker coatings obtained with the 

flow rates of 70 and 90 sccm were not dense, compared to that obtained with the flow 

rate of 50 sccm. Based on the result in Fig. 5-5, with the flow rate of 50 sccm, the 

deposition rate of the thin film in the center part of the bottle was ca. 6.4 nm/sec. In the 

following experiments, the gas flow rate of 50 sccm was used for thin film coating. 

 

 

 

 

Fig. 5-4. Dependence of the oxygen barrier of coated bottles on gas flow rate. OTR 

refers to oxygen transmission rate. Gas flow rate of vinylsilane was arranged between 

30 and 90 sccm, and the resultant OTR of coated bottles was measured. The value of 

OTR at the gas flow rate of 0 sccm shows the OTR of uncoated bottles. 
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Fig. 5-5. Dependence of coating thickness on gas flow rate. The thickness of thin films 

formed at coating time of 6.0 sec was measured. 

 

 

 

 

5.3.2 Observation of thin film coating 

 

To confirm the influence of coating time on oxygen barrier property, thin film was 

formed under conditions of the gas flow rate of 50 sccm and coating time of 2.0 sec. 

The OTR and consequent BIF of the bottle was OTR of 0.0032 cc (STP) / day / bottle, 

and 11.0, respectively. Fig. 5-6 shows the microscope images of uncoated and coated 

surface of PET bottles. As sown in this figure, the tint of coating was remarkably 

reduced, and the appearance of the coated bottles was virtually colorless. 

  The surface of the thin coated film prepared under the same conditions as the sample 

(c) of Fig. 5-6 was observed with scanning electron microscopy (SEM), in order to 
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characterize the surface morphology of the obtained coating. Fig. 5-7 (a) and (b) shows 

the SEM images of uncoated and coated surface of PET bottles, and the coated surface 

observed was smooth, equivalent to the uncoated surface. 

 

 

 

 
 

Fig. 5-6. The tint derived from thin film coating. Pictures show the body part of (a) 

uncoated, (b) coated for 2.0 sec, and (c) coated for 6.0 sec PET bottles. The bar 

represents 10 mm. 

 

 

 

 

 
 

Fig. 5-7. The surface images of (a) uncoated and (b) coated PET bottles. The bar 

represents 1 μm. 

(a) (b) (c)

(a) (b)
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  It should be mentioned that when we removed the coating with caustic agents from 

the substrate as described in author’s previous study 17), we confirmed the fragments 

separated from the bottles had a slight tint, and the remnant PET substrate was colorless. 

This indicated that the slight tint of coated bottles was caused the coating itself. 

 

5.3.3 Chemical identity of thin films 

 

XPS analysis was conducted in order to confirm the chemical composition and 

structure of the formed thin film. Table 5-1 shows the result of chemical composition 

obtained with XPS analysis. The film contained silicon, carbon, oxygen, and hydrogen, 

and could be expressed as a type of SiOC film. Nitrogen component was not detected. 

Fig. 5-8 shows XPS spectra of the film. Interestingly, the obtained spectra indicated that 

the SiOC film contained Si-Si bonds (99.0 keV) at least in its outer surface. 

 

 

 

 

 

 

 

 

Table 5-1. Composition of thin film obtained based on XPS analysis. 

 

Atomic percentage 

Silicon      33.0 

Oxygen      29.5 

Carbon      37.5 

   Nitrogen         not detected 
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Fig. 5-8. XPS spectra on (a) Si2p, (b) O1s, and (c) C1s and (d) the wide scan of the 

surface of thin film obtained. 

 

 

It is considered that oxygen atoms contained in the SiOC thin film were derived from 

water vapor released from PET substrate rather than oxygen molecules remained in the 
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vacuum chamber through the vacuuming process, because the tint of the SiOC thin film 

was not affected when the pressure of the vacuum chamber before coating was 

decreased to 0.5 Pa. 

The presence of Si-Si bonds in the SiOC thin film revealed in XPS analysis suggests 

hydrogen atoms associated with the silicon atom in vinylsilane molecules were, 

partially or totally, disassociated in contact with hot tantalum wire and produced active 

fragments such as radicals.  

 

5.3.4 Water vapor barrier property of coated PET bottles 

 

To confirm the stability of the gas barrier property of the thin film described above, a 

storage test was performed based on water vapor permeation. In this test, PET bottles 

were filled with distilled water and sealed with typical commercial plastic closures. 

Fig. 5-9 shows the change of the weight (mass fraction) of filled bottle along time 

lapse. The weight was gradually decreased due to water vapor permeation. For a 

specific weight loss percentage, coated samples took about three times longer, compared 

to uncoated samples. This indicates that a highly practical water vapor barrier 

enhancement was achieved with the coated bottles. It should be mentioned that the 

steady rate of the weight loss of the coated bottles due to water vapor permeation during 

the storage period strongly suggests the stability of the thin film coated on the surface of 

PET bottles in water close to neutral in terms of pH, and that the storage period over 1 

year indicates a highly practical stability in contact with food and beverage applications. 

As a result, it is expected that these bottles do not have the restriction of applications 

seen in SiOx coated bottles, which tend to show the decrease of gas barrier properties in 

contact with neutral water solutions such as still water and tea products. 

 

 

 

 

 

 

 

 

 

 

 



 95 
 

 

 

 

 

Fig. 5-9. Water vapor loss from sealed PET bottles. 500 g of distilled water was filled in 

coated and uncoated PET bottles, and the decrease in the weight derived from water 

vapor permeation was measured regularly. The weight loss of -1.0% refers to 5.0 g 

decrease from the initial weight. 

 

 

 

 

5.4 Conclusions 

 

A unique hot wire CVD technique using tantalum wire and vinylsilane gas was 

developed which is applicable to the surface coating of PET bottles. With this technique, 

the obtained thin film coating was virtually colorless, and enhanced the gas barrier 

properties of PET bottles. The oxygen barrier improvement factor of coated bottles 

could be increased above 10, and their increased water vapor barrier property was stable 

in contact with water over one year. As a result, the SiOC coating obtained in this study 

is likely to share the advantages of carbon (high gas barrier against oxygen, carbon 

dioxide, and water vapor even in contact with neutral water solutions) and SiOx 
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(colorless) coatings. The result of the conducted XPS analysis indicated that the 

obtained thin film was composed in 32.9% silicon, 29.4% oxygen, and 37.4% in atomic 

percentage, and characteristically contained Si-Si bonds in its surface. As a result, the 

formed thin film was confirmed as a type of SiOC thin film. 

  It can be expected the obtained coating is highly practical in the applications of food 

and beverage PET containers, because of high gas barrier, virtually colorless, and 

physico-chemically stable properties mentioned above. 
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Chapter 6 

Research for Hot Wire and Material Gas Species for a Novel Hot 
Wire CVD (Cat-CVD) Technique Applicable to Gas Barrier SiOC 
Thin Film Coatings onto PET Bottles 
                                                                                  

 

6.1 Introduction 

 

In the original hot wire technique described in the previous chapter 5, a unique 

combination of tantalum and vinylsilane was used, and demonstrated to form a thin film 

composed of silicon, carbon, and oxygen (SiOC thin film). While some study reported 

SiOC films may be formed as porous 1), the obtained SiOC thin film had a smooth 

morphology on the inner surface of PET bottles, and functioned as gas barrier coating 2). 

It should be noted that, in the field of gas barrier thin film formation, an intensive study 

was made with tungsten hot wire. For example, some proposals for gas barrier thin 

films include the use of the combination of tungsten and a mixture of silane and 

ammonium 3), and tungsten and hexametyldisilazane 4), respectively. These instances are 

considered to utilize catalytic behaviors of metal wires, and specifically referred to as 

catalytic CVD or Cat-CVD 5). 

In this chapter, in attempt to find out the practical application and basic mechanism of 

this original coating, a series of screening experiments were made with different wire 

and material gas species. As summarized in Fig. 6-1, in the first step, thin film forming 

onto the inside of PET bottles was attempted using various wire species in contact with 

vinylsilane gas, based on author’s previous study 2). In the second step, using the 

selected wire species which provided the highest oxygen gas barrier property in the first 

step, material gas species available for gas barrier coating were screened, based on the 

rapid measurement of oxygen transmission rate (OTR). In the last step, additional 

material gas species were synthesized with a certain similarity in their chemical 

structures to the screened compounds in the previous step, and then used for extra 

measurements and analyses in order to infer the mechanism of gas barrier thin film 

formation. 
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Fig. 6-1. Experimental scheme of this chapter. 

 

 

 

 

6.2 Experiments 

 

6.2.1 Materials 

 

Tantalum wire was supplied by Pransee Japan Co., Ltd., Japan, and other kinds of 

wire used in this paper were supplied by Furuya Metal Co., Ltd., Japan, and other 

commercial suppliers. Vinylsilane (H3Si-CH=CH2) and other kinds of materials were 

prepared by Japan Advanced Chemicals Co., Ltd., Japan. 

 

6.2.2 Preparation of PET bottles 

 

As described in the previous chapters, for manufacturing PET bottles (500 mL in 
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volume, ca. 210 mm in height, ca. 66 mm in diameter, and 0.035 mm in thickness) of 

typical shape and weight (29 g) for carbonated soft drinks, a preform injection machine, 

KS100T Kata System Co., Ltd., Japan, and a blow molding machine, LB01E, KHS, 

Germany, were used. 

 

6.2.3 Thin film formation onto a PET bottle 

 

An originally designed device, as described in the previous chapter of this paper (Fig. 

6-2), for coating the inner surface of plastic containers was used for forming thin film 

onto PET bottles 4). In a coating chamber for a single container, a pair of metal wires of 

0.5 mm in diameter, and 42 cm and 44 cm in length, was crossly set in a non-contact 

manner to insulated supports around a gas inlet pipe made of ceramic (alumina) of 6.0 

mm in the outer diameter and of 4.0 mm in the inner diameter so that the most parts of 

the inner wall of PET bottle set to this chamber are placed ca. 20 mm apart from the 

nearest wire portion. The bottle substrate, the wires, and the gas inlet pipe were set 

inside the vacuum chamber connected to vacuum pumps, EH500IND and E2M80, 

Edwards Co., Ltd., USA. In this device, wires of different materials can be set for 

electrical heating with a DC power supply, and also material gas of different chemicals 

can be supplied through a mass flow controller installed in the middle of the gas inlet 

pipe and a gas cylinder. The temperature of heated wires was controlled through applied 

voltage to the wires, and measured with a handy radiation thermometer, through a 

window made of Pyrex® glass which forms a part of the chamber. 
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Fig. 6-2. Schematic illustration of a hot wire CVD chamber designed for PET bottle 

coating. Hot wires through electrical heating with DC power decompose material gas 

inside the bottle and thin films are formed over the inner surface of PET bottles. 

 

 

 

 

6.2.4 Measurement of deposition rate 

  

The deposition rate of thin films formed in the manner mentioned above was 

measured as described in author’s previous study 4). Partially masked silicon wafers 

placed on the inner surface of the center of the body part of PET bottles, and the 

difference in height between the unmasked and the masked parts is detected using a 

contact-type thickness meter, α-step, KLA-Tencor Corporation. 
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6.2.5 Chemical characterization of thin films 

 

The chemical bonds of the surface of thin films were analyzed using an X-ray 

photoelectron spectroscopy (XPS) technique. In the XPS analysis, QuanteraSXM, 

Physical Electronics, Inc., MN, USA, based on the AlKα radiation (1486.6 eV) was 

used for the spectral regions of Si2p, O1s, and C1s. For samples of this analysis, thin 

films of ca. 50 nm in thickness were formed on silicon wafers. 

 

6.2.6 Measurement of gas barrier property of PET bottles 

 

For the screening of wire and material gas species available for gas barrier coating in 

the steps 1 and 2 mentioned in Fig. 6-1, the degree of oxygen barrier property of PET 

bottles was measured with APET-200, Youtec Co., Ltd., Japan. The principle used in 

the device for the detection of gas concentration in carrier gas is described in ISO 

15106-6 16). While this methodology covers the measurement of the transmission rate of 

film or sheet samples, this device used was designed and modified for a rapid 

measurement of plastic containers, as shown in Fig. 6-3.  

The measurement of OTR with APET-200 was, therefore, performed based on 

ASTM F-1307 method 7), which covers the measurement of the transmission rate of 

container samples. For rapid measurement, sample bottles were heated up to 50oC for 2 

hours and then cooled down to 23oC. For the detection of oxygen concentration in argon 

carrier gas, an atmospheric pressure ionization mass spectrometer API-10A, Nippon 

API, Co., Ltd., Japan, was used. This device can measure 4 bottles at once through 

switching carrier gas flow. Coated bottle samples were always measured with uncoated 

samples in order to obtain barrier improvement factors (BIF) based on the following 

equation, from the viewpoint of shelf-life extension. 

 

BIF = OTR of an uncoated bottle / OTR of a coated bottle. 

 

In this paper, this BIF calculation was used in the screening of the steps 1 and 2 

mentioned in Fig. 6-2, and high gas barrier coating refers to 3 or higher BIF values. 

For bottles with high gas barrier coating obtained in the step 3 mentioned in Fig. 6-2, 

accurate OTR was measured with Oxtran 2/21, Mocon Co., Ltd., Japan, for 72 hours 

under the conditions of 23oC and 90% relative humidity, based on ASTM F-1307 

method. 

It should be noted that ASTM F-1307 is a type of a constant pressure and volume 
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method for containers. In this method, the mouth part of a sample bottle is hermetically 

sealed to a metal pipe system. One end of the system is connected to carrier gas source, 

for example nitrogen, and the other is connected to the oxygen detector of the device. 

Because pure carrier gas constantly passes through the inside of the bottle, the sample 

volume (including the surface area and the wall thickness) and the oxygen pressure 

difference between the inside and outside of the sample are controlled to be constant. 

The resultant OTR, therefore, reflects oxygen permeation through the bottle only. 

 

 

 

 

 
 

Fig. 6-3. Schematic illustration of the devices (A-PET / Oxtran) used for the 

measurement of the oxygen transmission rate of PET bottles. The inside of PET bottles 

set in (a) storage chambers under constant temperature (programmable temperature 

control / constant temperature control) is subjected to (b) constant carrier gas flow 

(argon / nitrogen). As a result, the concentration of (c) permeant oxygen contained in (d) 

the exhausted carrier gas flow can be precisely detected with (e) oxygen detectors 

(atmospheric pressure ionization mass spectrometer / Ni-Cd electrodes). 
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6.2.7 Storage test of PET bottles filled with carbonated water 

 

In attempt to confirm the performance of coated PET bottles for carbonated drinks, 

carbonated water was filled with 500 mL PET bottles of 23 g. These bottles were chosen 

from commercial PET bottles which were shaped in a typical two stage method as 

described above, and had an anti-pressure base shape for use in carbonated soft drinks. 

All samples were filled with carbonated water, and capped with typical commercial 

plastic closures designed for the typical bottle mouth finish of PCO 1810 specification. 

Carbonated water was prepared through a mixture of sodium bicarbonate and citric acid 

so that the initial carbon dioxide content was 0.33 MPa. Because inner pressure derived 

from the carbon dioxide content creeps (irreversibly expands) the bottles, filled bottles 

were stored under 38oC for 5 days, assuming a warming process in filling facilities for 

avoiding dew condensation before packing filled bottles into paper boxes. Some of the 

resultant bottles were measured in terms of the carbon dioxide content of filled water 

and the whole volume expansion. The rest of the resultant bottles were stored under 

35oC for 60 days, assuming remarkably high distribution temperature, for observing the 

decrease of carbon dioxide content derived from carbon dioxide permeation. 

The carbon dioxide content of filled water was measured using a gas volume analyzer, 

GVA-700, Kyoto Electronics Manufacturing Co., Ltd, Japan. This method usually 

involves an accuracy of pressure values within 0.01 MPa when samples prepared in the 

same conditions are measured. 

The whole volume of bottles was calculated based on the weight and temperature of 

pure water which could be filled in each sample. 

 

6.2.8 Color characterization of thin film coating 

 

Samples for color characterization were cut from the center of the body part of the 

same coated and uncoated PET bottles used in the storage test, and placed in a 

spectrometer, U-3900, Hitachi High-Technologies Corporation, Japan. For 

characterizing the tint of coated PET bottles, the transmission of each wavelength of 

visible light ranging from 380 nm to 780 nm was compared between coated and 

uncoated samples. 

 

6.2.9 TEM observation 

 

Samples for transmission electron microscope (TEM) observation were cut from the 
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center part of the body of a coated PET bottle. The resultant samples were then 

embedded in epoxy resin matrix of Epok 812 supplied by Oken Shoji Co., Ltd., Japan, 

under 40oC for 72 hours. Longitudinal sections of ca. 50 nm thickness were sliced from 

the embedded polymer blocks using an ultramicrotome, MT-XL, RMC Boeckeler 

Instruments, Inc., USA, and observed with a Tecnai Spirit TEM, FEI Company, USA, in 

a condition of 120 eV. 

 

6.3 Results and discussion 

 

6.3.1 Screening of metal species in hot wire CVD with vinylsilane (Step 1) 

  

In addition to tantalum, following eight metal species with high melting points were 

chosen for this experiment: tungsten, niobium, vanadium, molybdenum, hafnium, 

iridium, rhenium, and platinum (40%) - rhodium (60%) alloy. With a combination of 

vinylsilane, three metal species of tantalum, tungsten, and molybdenum were selected 

as candidate wire materials, based on their significant oxygen barrier enhancement 

effects with thin film formation onto PET bottles. 

Wires of each metal species and a PET bottle were set to the coating device used in 

hot wire CVD to PET bottles as described above. After the coating chamber was 

vacuumed to 5.0 Pa, the supply of vinylsilane to the inside of the bottle was started, and 

adjusted to 50 cubic centimeter at standard pressure and temperature per minute (sccm) 

with a mass flow controller. The wires were then heated inside the PET bottle for 6.0 

seconds. As a result, coating was started at 7.2 Pa. As higher temperature is considered 

to be effective to gas barrier enhancement through hot wire CVD, the temperature of 

heated wires was adjusted to ca. 2000oC using a radiation thermometer in consideration 

of heat load to PET bottles. In case the used metal species were not resistant to 2000oC, 

these metal species were heated to lower temperature. The resultant bottle was removed 

from the chamber after the pressure release of the chamber, and deposition rate and 

oxygen barrier measurements were performed.  

Table 6-1 summarizes the used wire species and the results of oxygen barrier 

measurement. In addition to tantalum, tungsten, and molybdenum can be categorized as 

effective for high gas barrier coating because, using these species, thin film coatings 

with significant oxygen barrier enhancement effects were formed, based on the criteria 

of the oxygen barrier enhancement of 3 and more BIF values. While thin film coatings 

were formed using hafnium and niobium, the oxygen barrier of the resultant bottles was 

not significantly enhanced. The use of other metal species did not appear to form 
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coatings based on the results of visual observation and deposition rate measurement. 

Because molybdenum provided the highest gas barrier enhancement, this metal 

species was selected to use in the following experimental steps. 
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Table 6-1. List of wire species used for screening test. 

 

No. Name of wire 

species 

Name of 

material 

gas 

Melting 

points 

Temperature 

of wires 

BIF 

(relative 

value) 

1 Tungsten 

Vinylsilane

3380oC 2000oC 7.7 

2 Niobium 2477oC 1800oC 1.6 

3 Vanadium 1910oC 1600oC <1.1 

4 Molybdenum 2623oC 2000oC 20.2 

5 Hafnium 2233oC 2000oC <1.1 

6 Iridium 2443oC 2000oC <1.1 

7 Rhenium 3186oC 2000oC <1.1 

8 Platinum (40%) - 

Rhodium (60%)  

ca. 1650oC 1600oC <1.1 

Reference Tantalum 2980oC 2000oC 11.9 

Note: BIF is calculated based on “OTR of an uncoated bottle / OTR of a coated bottle” 

as described in materials and methods. 
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6.3.2 Screening of material gas species in hot wire CVD with molybdenum (Step 2) 

 

The material gas species prepared for the screening experiment for high gas barrier 

coating are summarized in Table 6-2.  

PET bottles were coated using molybdenum wires in the same manner in the previous 

experimental steps 1 as mentioned in Fig. 6-1. After the chamber was vacuumed to 5.0 

Pa, the supply of material gas to the inside of the bottle was started, and adjusted either 

with a mass flow controller or with the temperature of a material container depending 

on that material species were gaseous, or liquid in room temperature, respectively. 

When the container of a material was placed at room temperature, and any thin film 

formation did not appear to occur, then, the container was warmed in order to use 

relatively higher pressure. As a reference, the chamber pressure used was recorded for 

each material species.  

Table 6-3 summarizes the result of these measurements. Two material species, that is, 

vinylsilane and disilacetylene, can be categorized as effective for high gas barrier 

coating because they provided significantly higher BIF values than the criteria of 

oxygen gas barrier enhancement (BIF values of 3 and more).  
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Table 6-2. List of material gas species and their abbreviation. 

 

No. Name of compounds Abbreviation Chemical structure Status at 

room 

temperature 

1 Vinylsilane VS 

 

Gas 

2 Monomethylsilane MMS 

 

Gas 

3 Dimethylsilane DMS 

 

Gas 

4 Trimethylsilane  TMS 

 

Gas 
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Table 6-2. List of material gas species and abbreviation (continue 1). 

 

No. Name of compounds Abbreviation Chemical structure Status at 

room 

temperature 

5 Disilylacetylene DSA 

 

Liquid 

6 Dimethoxymethyl 

vinylsilane 

DMVS 

 

Liquid 

7 Hexamethyldisilane HMDS 

 

Liquid 

8 Hexamethyldisiloxane HMDSO 

 

Liquid 
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Table 6-2. List of material gas species and abbreviation (continue 2). 

 

No. Name of compounds Abbreviation Chemical structure Status in 

room 

temperature 

9 Hexamethyldisilazane HMDSN 

 

Liquid 

10 Phenylsilane PS 

 

Liquid 

11 Methyltrimethoxy 

sillane 

MTMOS 

  

Liquid 

12 Octamethylcyclotetrasi

loxane 

OMCTS 

 

Liquid 
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Table 6-3. List of material species used for screening test. 

 

No.  Material gas BIF 

(relative 

value) 

Deposition 

rate 

(nm/sec)  

Pressure after 

gas supply 

(Pa) 

Remarks 

1 VS 11.9 6.4 6.0 BIF≧3 

2 MS <1.1 <1.0 6.0  

3 DMS <1.1 3.0 6.0  

4 TMS <1.1 6.3 7.2  

5 DSA 34.1  6.8 6.1 BIF≧3, vaporized at 

23oC 

6 DMVS <1.1 1.4 5.9 vaporized at 23oC 

7 HMDS <1.1 <1.0 6.0 vaporized at 23oC 

8 HMDSO <1.1 6.0 6.2 vaporized at 23oC 

9 HMDSN <1.1 5.7 5.7 vaporized at 23oC 

10 PS <1.1 <1.0 5.8 vaporized at 23oC 

11 HTMOS <1.1 5.9 5.8 vaporized at 23oC 

12 OMCTS <1.1 13.6 5.8 vaporized at 60oC 

Note: BIF is calculated based on “OTR of an uncoated bottle / OTR of a coated bottle” 

as described in materials and methods. 
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6.3.3 Generalization of the effective chemical structure of material gas species (Step 3) 

  

Based on the result of Table 6-3, it was inferred that the chemical structure of 

material species is highly influential on the formation of gas barrier thin films. While 

both vinylsilane and disilylacetylene were shown as effective materials for gas barrier 

coating, some similar species such as methylsilane, which also have one or two silyl 

groups in their molecules, could not form gas barrier coating. In consideration of 

organic structure bonded to a silyl group, three chemical compounds, that is, 1, 

4-disilabutane, methylvinylsilane, and n-butylsilane were additionally prepared. 

These compounds, which have slightly different chemical structures from vinylsilane 

and disilylacetylene, were used for the hot wire CVD process described above. 

Table 6-4 summarizes the oxygen transmission rate of coated PET bottles using these 

five chemical compounds as material gas species and uncoated bottles. 
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Table 6-4. Chemical structures of material gas species used in step 3. 

 

No. Name of 

compounds 

Chemical structure Remarks in 

chemical 

structure 

OTR 

(cc(STP)/bottle/day)

A 1,4-Disilabutane 

(DSB) 

 

- Two silyl 

functions 

- Single 

bonded 

carbons 

0.0016 

(high gas barrier 

enhancement) 

B Methylvinylsilane 

(MVS) 

 

- No silyl 

groups 

- Double 

bonded 

carbons 

0.0292 

(low gas barrier 

enhancement) 

C n-Butylsilane - One silyl 

group 

- Single 

bonded 

carbons 

0.0298 

(low gas barrier 

enhancement) 

Ref. 

1 

Vinylsilane 

 

- One silyl 

group 

- Double 

bonded 

carbons 

0.0025 

(high gas barrier 

enhancement) 

Ref. 

2 

Disilylacetylene 

 

- Two silyl 

groups 

- Triple 

bonded 

carbons 

0.0018 

(high gas barrier 

enhancement) 

Ref. 

3 

Control (uncoated) - - 0.0350 
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Based on the results of coating experiments mentioned above, the chemical structure 

of material gas species which enabled high gas barrier coating can be generalized as 

shown in Fig. 6-4. The chemical structure of these species has in common one or two 

silyl groups which bond to one of two carbons like either H3-Si-C-C-, H3-Si-C=C- or 

H3-Si-C≡C-. Based on the comparison of the results with vinylsilane and 

methylvinylsilane, it is suggested that the substitution of a hydrogen of a silyl group 

with a methyl group inhibit the formation of a high gas barrier thin film, while a 

relatively high deposition rate (5.5 nm/sec) was obtained with methylvinylsilane. It is 

also suggested that, based on the comparison of the results with vinylsilane, 

1,4-disilabutane, disilylacetylene, methylsilane, and n-butylsilane, two (and maybe 

three) carbon atoms associated to a silyl group are essential to the formation of a high 

gas barrier thin film. This suggests compact radicals are considered to be effective for 

the formation of the dense structures of gas barrier thin films. A precedent study by 

Toukabri and Shi 8) leads to an inference that the cleavage of hydrogen from Si-H bond 

and the resultant occurrence of Si radical associated with a single Si-C bond is 

important for the formation of high gas barrier thin films. Also, the reason of the higher 

oxygen barrier enhancement with the use of either 1,4-disilabutane or disilylacetylene, 

compared to the use of vinylsilane, may lie in that two silyl groups per molecule 

facilitate the formation of the dense thin film structure, for example, through an active 

chemical reaction of the silyl groups with the formed radicals. 

 

 

 

Fig. 6-4. Schematic illustration of the generalized chemical structure of material gas 

which enabled high gas barrier SiOC coatings in this study. The dotted line represents 

either a single, double, or triple bond between carbons. X refers to the number of 

hydrogen (from 0 to 2) depending on carbon bonds and the type of function Y. Y refers 

to either SiH3 or H. 
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6.3.4 Chemical identity of gas barrier thin films 

 

Even in cases where thin films were formed at a relatively high deposition rate, some 

combination of wire and material gas species did not significantly enhance the gas 

barrier property of PET bottles. 

XPS analysis was conducted with the formed thin film samples in order to find 

difference on the chemical structure of the films with or without gas barrier 

enhancement effect. 

Samples obtained from seven material gas species, that is, vinylsilane, 

disilylacetylene, 1,4-disilabutane, methylsilane, dimethylsilane, trimethylsilane, and 

dimethylvinylsilane were prepared for this XPS analysis study. Figs. 6-5 (a) - (c) and 

Table 6-5 show each sample has peaks in the spectra of Si2p, O1s, and C1s, respectively. 

As shown in Fig. 6-5 (a), the obtained Si2p spectra indicated that the thin films with 

high gas barrier contained significant Si-Si bonds (99.0 keV) at least in their outer 

surface, while the thin films without high gas barrier did not show any significant or 

weaker peak signal to these bonds. Therefore, it is indicated that these thin films were 

composed of silicon, oxygen, and carbon, and can be expressed as SiOC in short. 
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Fig. 6-5. XPS spectra on (a) Si2p, (b) O1s, and (c) C1s of the surface of thin films 

obtained from different organic silicon compounds. The results with VS, DSA, DSB, 

MMS, DMS, TMS, and DMVS are shown from top to bottom. For abbreviations, see 

Tables 6-2 and 6-4. For the peaks of dotted lines, see lists in Table 6-5. 
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Table 6-5. Peak areas of XPS analysis 

 

Peak area (%) 

Material 

gas species 

Silicone 

Si-Si SiC SiO2C2 SiO3C1 SiO2 etc 

  SiO1C3 SiO etc Si2O3 etc   

  Si2O etc.       

99.0 eV 
100.5 

eV 
101.7 eV 102.7 eV

103.6 

eV  

VS 50.3 22.5 20.5 6.6 0.0 

DSA 46.8 41.8 9.8 1.6 0.0 

DSB 48.5 34.4 12.9 4.2 0.0 

MMS 12.9 43.5 35.0 8.6 0.0 

DMS 7.6 36.7 45.3 10.3 0.1 

TMS 10.1 48.8 33.5 7.6 0.0 

DMVS 0.0 5.1 57.2 33.9 3.9 

Material 

gas species 

Oxygen 

SiOC SiO2 

C=O etc C-O-C 

  etc 

531.7 

eV 

532.9 

eV     

VS 86.4 13.6

DSA 89.3 10.7

DSB 85.5 14.5

MMS 91.2 8.8

DMS 91.3 8.7

TMS 91.2 8.8

DMVS 81.8 18.2

Material 

gas species 

Carbon 

SiC SiO2C2 SiO3C1 C-O etc C=O etc O=C-O 

SiO1C3 etc C-C     etc 

etc   C-H etc       

283.1 283.9 284. 8 286.3 eV 287.5 288.7 eV 
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eV eV eV eV 

VS 39.5 37.0 18.4 4.4 0.7 0.0 

DSA 62.8 16.4 18.3 2.5 0.0 0.0 

DSB 49.3 22.8 24.6 3.2 0.0 0.0 

MMS 35.2 53.0 9.1 2.3 0.0 0.4 

DMS 29.0 49.0 20.0 1.4 0.6 0.0 

TMS 40.3 48.2 10.0 1.5 0.0 0.0 

DMVS 4.2 53.3 20.3 20.1 2.2 0.0 

 

 

 

 

 

In brief, the specific combinations of wire and material gas species were required for 

the barrier enhancement of PET bottles in the coating system described above, and the 

resultant barrier SiOC coating had unique Si-Si bonds. These facts indicate specific wire 

species under certain temperature could promote the formation of gas barrier SiOC thin 

films. Based on the requirement of specific wire species for the formation of gas barrier 

thin films in addition to the common unique chemical bonds in these films, the authors 

concluded that this process is a type of catalytic CVD process 3).  

 

6.3.5 Storage test 

  

With the combination of molybdenum and vinylsilane, the hot wire CVD process 

described above was applied to 500 mL PET bottles of 23 g in weight. Based on the 

conducted XPS analysis, coating used was composed of silicon, oxygen, and carbon at a 

ratio of 36.5, 27.5, and 36.0 in atomic percentage, respectively. Fig. 6-6 shows the 

microscope image and the transmission spectra of the visible light of the uncoated and 

coated PET samples. While the coating was practically colorless, the use of 

molybdenum provided visually slightly golden tint, similar to the use of tantalum 4). Fig. 

6-7 shows the TEM image of the cross section of coated PET bottles. As shown in the 

figure, the existence of a thin film could be observed as a roughly 20-30 nm thick layer 

which was evenly distributed on the PET substrate.  
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Fig. 6-6. Visual appearance of uncoated and coated PET bottles. For coating, 

vinylsilane and molybdenum was used. The transmission of visible light of uncoated 

and coated samples was shown dotted blue and solid red lines, respectively. Also, the 

optical microscope images of uncoated and coated samples were shown in left and right 

in the embedded picture, respectively. 
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Fig. 6-7. TEM image of a coated PET bottle. A cross section of the thin film layer was 

shown between PET substrate and embedding layers. Bar represents 100 nm. 

 

 

 

 

 

These coated bottles were then filled with carbonated water for storage test in order to 

confirm the practical performance for carbonated drinks. 

Some of the bottles were destroyed for measuring the change in the whole volume of 

bottles after 5 days under 38oC. The results were shown in Fig. 6-8. Interestingly, the 

volume expansion of coated bottles was slightly small, compared to that of uncoated 

bottles. It is considered that the dense structure of the thin film could restrict the creep 

of PET wall. 
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Fig. 6-8. Bottle volume before and after creeping treatment. PET bottles were coated 

using vinylsilane and molybdenum. Left and right bars of each pair represent the 

volume of uncoated and coated PET bottles, respectively. The difference between left 

and right pairs showed the increase of bottle volume due to the creeping treatment of 

storage at 38oC for 5 days. Bars represent the standard deviation of each sample set. 

 

 

 

The rest of PET bottles was stored under 35oC for 60 days, and regularly measured 

the decrease of carbon dioxide content in the filled water. As shown in Fig. 6-9, coated 

bottles with plastic closures slowly released carbon dioxide content by the factor of 

about 2.3, compared to uncoated bottles with the same plastic closures. The steady 

decrease of carbon dioxide content observed in this storage test supports the coating 

formed was stable in carbonated water and other drinks.  

It should be also noted that neither visible color change nor decrease in carbon 

dioxide barrier was observed. This is probably because a relatively high content of 

carbon in the coating inhibited the oxidation of the coating due to oxygen in air or 

water.  

In brief, gas barrier enhancement shown in this storage test was quite likely to be 

practical for the extension of shelf-life extension and the light-weighting of bottles. 
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Fig. 6-9. Retention of carbon dioxide content of carbonated water filled in uncoated and 

coated PET bottles. Molybdenum and vinylsilane were used for coating. Square and 

circular plots represent the carbon dioxide content of uncoated and coated PET bottles. 

Note that each sample was stored at 38oC for the first 5 days for creeping treatment and 

then at 35oC for the rest of storage period. 

 

 

 

 

 

6.3.6 Practical coating to plastic containers in food and beverage field 

  

The systematic approach described above clearly showed the specific chemical 

structure of material gas was required for the formation of high gas barrier SiOC thin 

films using hot molybdenum and a series of organic silicon gas. 

Based on the discussion above, the chapters 5 and 6 of this paper propose a unique 
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Cat-CVD process which can form gas barrier SiOC coatings to three dimensional 

plastic substrates. Due to a low heat load to the substrate, this coating can be applied to 

plastic containers like PET bottles. Furthermore, based on the experience in thin films 

produced through plasma-assisted CVD, gas barrier SiOC coating is readily applicable 

to PET containers for beverage and food from both viewpoints of safety issue and visual 

appearance (virtually colorless transparent coating can maintain the transparent 

appearance of PET containers). These characteristics, in addition to relative advantages 

of Cat-CVD process compared to other CVD processes such as economical coating 

device, and ease to enlarge coating area, favor the use of the proposing process in 

beverage and food fields among different industrial fields.  

While a series of wire and material gas are useful to form the gas barrier SiOC thin 

film described above, the combination of tantalum or molybdenum with vinylsilane is 

likely to be most practical. For a hot wire CVD system for beverage plastic containers 

like PET bottles, both tantalum and molybdenum are a useful material for hot wires 

because they have the heat resistance of above 2200oC in the device described above 

and are known as a generally safe material for human dietary 9). While tantalum seems 

more resistant with oxidation, molybdenum is likely to be more economical. The 

question which is more appropriate for this CVD system remains yet to be answered.  

  From a viewpoint of material gas species, organic silicon gas was chosen in the aim 

to achieve colorless and physico-chemically stable coating which can be used in contact 

with various beverage and food. Based on the properties of a material gas and its 

subsequent thin film, it is considered that vinylsilane is the most appropriate material 

gas for the beverage industry because it can provide relatively high gas barrier coating 

and can be synthesized in the most economical manner. It should be mentioned that 

vinylsilane is at a gaseous status under room temperature and atmospheric pressure, and 

also of no explosive nature in contact with oxygen, not like (mono-)silane. Both 

properties can be utilized for the relatively easy handing of material gas in terms of 

safety and economics. 

  Based on the specific use of hot wire and material gas, gas barrier coatings in this 

study can provide an appropriate system to understand the catalytic production of active 

atoms and molecules for deposition onto polymer substrate, as seen in the study on 

free-radical reaction chemistry 10). 

 

6.4 Conclusions 

 

Based on the result of the study described in the previous chapter 5 of this paper, 
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where a novel high gas barrier coating on PET bottles was formed through an original 

hot wire CVD process using tantalum and vinylsilane, a series of screening experiments 

were made with different wire and material gas species for appropriate gas barrier SiOC 

coating onto PET bottles, and attempted to clarify the basic mechanism of the gas 

barrier SiOC coating. As a result, it was found the specific combination of wire and 

material gas species produced the high gas barrier coatings with rich Si-Si bonds in their 

SiOC structure. For wire species, tungsten and molybdenum in addition to tantalum 

were effective for gas barrier coatings. Also, for material gas species, 1,4-disilabutane, 

or disilylacetylene in addition to vinylsilane were effective, and the author could 

generalize these effective chemical structures, where one or two silyl groups bond to 

one of two carbons like either H3-Si-C-C-, H3-Si-C=C- or H3-Si-C≡C-. These specific 

combinations, especially the requirement of specific hot wire species, led to a 

conclusion that this coating system is a type of catalytic CVD process. 

Also, the result of the conducted storage test showed that PET bottles coated with the 

Cat-CVD technique could maintain a high gas barrier performance in direct contact with 

carbonated water. When PET bottles were coated using molybdenum and vinylsilane, 

the carbon dioxide gas barrier property of the set of a coated bottle and an uncoated 

closure was increase by about 2.3 in BIF through the test period. Also, the coated bottles 

showed slightly restricted bottle creep (substrate stretch), compared to uncoated bottle. 

It is expected that the unique simple device for the coating system compared to the 

current plasma assisted CVD processes can be developed into an economical technique, 

for instances, for high gas barrier PET bottles for sensitive beverages and foods. 
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Chapter 7 

General Conclusion 

                                                                                  

 

7.1 Review of each chapter 

 

  This paper describes studies for the advancement of functional thin film techniques 

applied to three dimensional polymer packages. 

 

  The chapter 1 describes the background of studies in this paper, including the general 

function of packages, the examples of the function of thin film coatings used in polymer 

packages, and the recent trends of packages in beverage and food industry. As one of the 

recent trends, demand for the gas and flavor barrier enhancement of three dimensional 

polymer packages has increased in the beverage and food industry as well as other 

industries, in an increasing attention to the environmental, economical, and social 

sustainability of packaging. In other expression, the sustainability is the goal of the 

advancement of the thin film techniques in the studies of this paper. 

 

  The chapter 2 proposes approaches to the issues of gas barrier enhancement 

technologies used in beverage polymer containers, along with the description of the 

detailed background of the technologies. Thin film coating approaches are considered as 

most effective among several gas-barrier-enhancement technologies because of the 

degree and coverage of gas barrier enhancement, and recyclability. Because the majority 

of packaged beverage products are filled in containers made of poly(ethylene 

terephthalate) (PET), the studies in this paper were mainly focused on the applications 

to beverage products filled in PET bottles. In order to achieve the sustainable goal, 

original approaches using diamond-like carbon (DLC) and other coatings were 

proposed in this chapter, including (1) the improvement of current techniques, (2) 

challenge to the use of different polymer substrates in addition to PET, and (3) challenge 

to a novel coating method. 

  The purpose of the approach (1) lies in the improvement of the visual appearance 

and gas barrier properties of DLC coated PET bottles. Regarding the visual appearance, 

the tint of thin films is an issue for the wide spread of the use of DLC coating. The 

reduction of the tint of DLC thin films can, therefore, increase the psychologically 
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acceptable products of coated bottles. Also, regarding the gas barrier property, the 

financial expenditure of specific coating machines is an issue for the wide spread of the 

current plasma-assisted chemical vapor deposition (PACVD) techniques including DLC 

coating. The increase of the degree of gas barrier enhancement, therefore, makes 

possible a shorter coating time and a higher cost performance of the coating machines. 

  The purpose of the approach (2) lies in the extension of applicable polymer substrates 

in addition to PET substrates. Because most of the current products using thin film 

coated polymer containers are PET bottles and little is known about the use of 

containers made of other polymers, various polymer substrates were coated with DLC 

thin films with the same conditions. The barrier improvement factor (BIF) of oxygen 

barrier enhancement was quite different, ranging from ca. 1 (almost no barrier 

enhancement) to ca. 12 (a high gas barrier enhancement for beverage applications), 

depending on the used substrates. In order to infer the reason of this difference, positron 

annihilation analysis was conducted. Because almost the same S parameter around 

0.495 was detected in the analysis among the DLC layers coated on the various polymer 

substrates, it was considered that the structure of DLC thin films was equivalent on 

these substrates and the variance of the BIF values was caused by difference in the 

interface between DLC and substrate layers. This inference led to the employ of 

organosilane undercoating described in the chapter 4. 

  The purpose of the approach (3) lies in the development of a novel coating technique 

to provide the decrease of machine expenditure and the improvement of coating 

performance, compared to the current PACVD techniques. As mentioned above in the 

approach (1) of this chapter, the decrease of machine expenditure is an issue of the 

current thin film coating techniques. For the improvement of coating performance, in 

addition to the useful properties of DLC such as high gas barrier property and 

physico-chemical stability in contact with filled liquids, the coating is demanded to have 

more useful properties such as colorless appearance.  

 

The chapter 3 relates to the approach (1) mentioned above in this chapter. The 

optimization of the power frequencies of a capacitively-coupled PACVD machine was 

conducted to enhance the gas barrier property of DLC layers on the inner surface of 

PET containers. 

  Power frequencies ranging from 2.50 MHz to 13.56 MHz were used to coat PET 

bottles. Compared to the use of conventional 13.56 MHz (OTR: 0.023 cc 

(STP)/day/bottle), the use of 6.00 MHz provided the minimum OTR of 0.015 cc 

(STP)/day/bottle. 
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The results of the obtained positron annihilation property, chemical composition, and 

chemical structure indicated that virtually homogeneous DLC coatings were formed 

with the examined frequencies, except the power frequency of 7.00 MHz. 

  Tint caused by DLC coatings and the adhesion property of DLC coatings in contact 

with caustic solution were also examined. The use of power frequency of 6.00 MHz 

provided the minimum difference in tint between the shoulder and body parts of coated 

PET bottles. The use of higher and lower frequencies had tendencies of thicker shoulder 

and body, respectively. Also, the duration of adhesion had a decreasing tendency as the 

used frequency decreased. With these results, the modification of power frequency was 

considered to cause a shift of spatial distribution of plasma concentration inside the PET 

container.  

  Form the industrial viewpoint, the power frequency of 6.00 MHz provided the most 

optimized properties for DLC coated PET containers in terms of gas barrier, tint and 

adhesion stability. These properties can be utilized for the improvements of product 

quality and cost performance. Furthermore, this method is easy to install in the 

conventional machines because no modification of machine configuration is required. 

Based on the result of the optimization of power frequency, 3 L PET kegs for beer have 

already been commercialized (Fig. 7-1). Long neck PET bottles for wine are another 

candidate for commercialization using this method (Fig. 7-2). In these containers, 

evenly distributed coating was confirmed to achieve with the use of power frequency of 

6.00 MHz, compared to the use of conventional 13.56 MHz. 
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Fig. 7-1. An example of recently commercialized DLC coated products for beer. The left 

part of this figure shows a keg of three litter volume, made of PET. The slight tint of a 

keg in the middle part shows that this keg is coated with a DLC thin film. The middle 

and right part shows that these kegs are used in the beer dispensers.   

 

 

 
Fig. 7-2. An example of pre-commercialized DLC coated products for wine. The left 

was coated using conventional 13.56 MHz. The right bottle was coated using 6.00 MHz, 

and evenly distributed coating was achieved especially in mouth and neck parts, 

compared to the left bottle. 
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  The chapter 4 relates to the approach (2) mentioned above in this chapter. DLC 

coating was applied to plastic closures used for PET bottles. When the coating was 

applied directly onto the surface of PE sealing parts of the closures, the OTR of closures 

of these samples was 0.009 cc (STP) / closure / day, and almost same as that of 

uncoated samples (0.011 cc (STP) / closure / day). On the other hand, the anti-sorption 

property of d-limonene, a representative substance in the study of sorption to polymer 

materials, was significantly enhanced (the detected concentration from sealing parts was 

decreased from 2.1 × 103 to 2.8 × 102 ng / sealing part). Also, a significant enhancement 

of oxygen gas barrier property as well as anti-sorption property was achieved with the 

aid of undercoating using a type of organosilane, 3APTMS (the OTR of these samples 

was 0.03 cc (STP) / closure / day). The large and polarized molecules of d-limonene, 

compared to oxygen molecules, were considered to cause the difference of the behavior 

between gas permeation and sorption. The conducted Raman spectrometry and XPS 

analyses indicated that equivalent DLC thin films were formed on the surface of 

3APTMS and PET layers. The results of the measurement of OTR and the thin film 

analyses supported the result of positron annihilation analysis described in the chapter 2, 

and the significant role of interface between thin films and substrates for oxygen barrier 

enhancement. 

 It is suggested that surface modification with wet treatment, for example, using 

organosilane, can be an effective technique for gas barrier thin film formation to three 

dimensional polymer substrates. It can be also speculated that effective wet agents can 

be found not only in silane coupling agents but also in ultra violet curable agents, and 

that the topcoating to thin films can enhance the function of thin film coating as well as 

undercoating 3-5).  

  Both with gas and flavor barrier enhancement function of DLC coated plastic 

closures with 3APTMS, it was expected that corresponding quality improvement and 

shelf-life extension to products filled in gas barrier enhanced PET bottles such as beer.  

A possible extension of the study in this chapter is to design a coating device that can 

process wet treatment and thin film coating in the same chamber. This kind of integrated 

process is expected to easily and rapidly handle various types of polymer substrates 

including three dimensional polymer packages. 

 

The chapter 5 relates to the approach (3) mentioned above in this chapter. A unique 

hot wire CVD technique using tantalum wire and vinylsilane gas was developed which 

is applicable to the surface coating of PET bottles. With this technique, the obtained thin 

film coating was virtually colorless, enhanced the oxygen barrier properties of PET to 
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the oxygen barrier improvement factor of more than 10, and stable in contact with water 

over 1 year in terms of water vapor barrier enhancement. The result of the conducted 

XPS analysis indicated that the obtained thin film was composed in 33.0% silicon, 

29.5% oxygen, and 37.5% in atomic percentage, and characteristically contained Si-Si 

bonds in its surface. As a result, the formed thin film was confirmed as a type of SiOC 

thin film. Because the obtained coating is likely to share the advantages of carbon (high 

gas barrier against oxygen, carbon dioxide, and water vapor even in contact with neutral 

water solutions) and SiOx (colorless) coatings, the practical use of this coating can be 

highly expected for beverage and food PET containers. 

 

  The chapter 6 relates to the approach (3) mentioned above in this chapter. Based on 

the results of the chapter 5, further study was made with extensive wire and material gas 

species, in order to find out the practical process and mechanism of gas barrier 

enhancement coating. Interestingly, specific combinations of wire and material gas 

species were turned out to form gas barrier enhancing SiOC thin films on PET bottles. 

The conducted XPS analysis indicated that these thin films had unique Si-Si bonds in 

common. Also, a generalized chemical structure of material gas species which can be 

used to form the gas barrier SiOC thin films was conceived, where one or two silyl 

groups bond to one of two carbons like either H3-Si-C-C-, H3-Si-C=C- or H3-Si-C≡C-. 

These findings indicated that this coating system was a type of catalytic CVD, 

(Cat-CVD) because only specific hot wire species were effective to form the gas barrier 

SiOC thin films. 

The result of the conducted storage test confirmed that the thin film formed with this 

technique using molybdenum and vinylsilane showed stability in direct contact with 

carbonated water. Also, the resultant coated bottles showed slightly restricted bottle 

creep (bottle expansion due to inside pressure), compared to uncoated bottles. 

 

From the results of the chapters 5 and 6, it is concluded that the combination of 

tantalum (or molybdenum) and vinylsilane is likely to provide highly practical coatings 

in terms of gas barrier enhancement, human safety, and economics. The resultant 

coatings showed high gas property and stability in contact with water solution. It is 

considered that the commercialization of a coating technique like this is highly 

demanded in food and beverage industry. Fig. 7-2 shows a schematic image of a mass 

production machine using the technique described in the chapters 5 and 6. 
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Fig. 7-3. A schematic image of mass production system based on the process described 

in the chapters 5 and 6, by courtesy of Kirin Techno System Co., Ltd., Japan. 

 

 

 

 

7-2 Comparison of DLC and SiOC coating processes and their future perspective 

  

  Table 7-1 summarizes the comparison of thin film coatings studied in this paper, 

where DLC coating is performed using the current PACVD processes, and SiOC coating 

is performed using the novel Cat-CVD process described in this paper. Green 

highlighted boxes showed the main expected advantages of the latter coating in practical 

use for PET bottles. 

It is conceivable that the current DLC coating technology used in this study will have 

an advantageous position for the gas and flavor barrier enhancement of polymer 

packages, even after the commercialization of the above-mentioned Cat-CVD process 

(SiOC coating). For example, a recent trend of increasing polymer kegs mainly for beer 

can be handled with the DLC coating technique described in this paper, because this 

technique is applicable to PET containers larger than 3 L as shown in Fig. 7-1. On the 

hand, Cat-CVD process is likely to involve difficulty such as the low throughput of 

coating machines in coating to large containers where the increase of distance between 

hot wires and substrates tend to the decrease of the concentration of active molecules in 

contact with the unit area of substrates. 
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Table 7-1. Comparison of DLC and SiOC coatings. 

 

*: Beverages refer to water solution of pH 7 and less 

**: Coating time of 2.0 sec for SiOC coating resulted in more than 10 of BIF value 

for oxygen gas barrier enhancement, while most of experiments with SiOC 

coating was performed with coating time of 6.0 sec. 

***: Unnecessity of electromagnetic shield enables an economical process of multiple 

bottle coating in a single chamber, which is difficult in plasma assisted CVD 

 

Properties DLC SiOC 

Thin film 

composition 

except hydrogen 

Carbon 

Carbon 

Silicone 

Oxygen 

Material gas Acetylene Vinylsilane 

Oxygen barrier (BIF) > 10, compared to uncoated bottles 

Color Golden to Brown tint 
Slightly golden to 

invisible tint 

Adhesion in contact 

with beverages* 
Stable 

Process type Plasma-assisted CVD Catalytic CVD 

Power supply 
Radio frequency supply 

(with a matching unit) 

Direct current supply 

(without a matching unit) 

Principle of 

deposition 

Electromagnetic field 

inside the bottle 

Catalyst and heat on hot 

wires inside the bottle 

Pressure to coat 5 Pa 

Coating time 2.0 sec (– 6.0 sec**) 

configuration of 

a coating chamber 

Less compact 

(Double walled) 

More compact 

(Single walled***) 
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In conclusion, expected further studies are on (1) interfacial control to widen the 

applications of thin film coating to gas-barrier-enhanced polymer packages, and (2) the 

commercialization of Cat-CVD process for gas-barrier-enhanced polymer packages. 

These advancements are likely to enable the wider spread of thin film coating to 

polymer packages including three dimensional containers. 
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