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1 
Introduction 

 

1.1  The Soret effect (thermodiffusion) 

 

Mass transport phenomena play central roles in our daily lives and in engineering processes [1]. 

Diverse phenomena such as the transport in living cells, the efficiency of distillation, and dispersal 

of pollutants can be described using diffusion equations [1]. The Soret effect, also known as 

Ludwig-Soret effect, thermodiffusion, thermophoresis or thermal diffusion, describes mass 

transport flows driven by temperature gradients [2–4], whereas the driving force of the mass 

diffusion is the concentration gradient. The Soret effect which results from diffusion in a 

temperature gradient is an example of a cross-effect, in analogy with the thermo-electric effects 

known as Seebeck/Peltier effect [5]. The discovery of thermodiffusion was reported in a one-page 

paper by Ludwig in 1856 [6], which was just one year later after Fick presented the law of 

diffusion in 1855 [7]. After more than 20 years from the first observation by Ludwig, Soret 

reported more systematic studies on thermodiffusion in various salt solutions [8–10]. His name is 

attached to thermodiffusion due to his pioneering works and contributions, although Soret was 

probably not aware of the work of Ludwig, according to the short biography of Soret by Platten 

and Costesèque [11]. 

Although usually the Soret effect does not seem to be apparent to our eyes, this 

phenomenon can be significant depending on the spatial or time scale of the systems. One early 

application was the separation of uranium isotopes during World War II, using Clusius-Duckel 

columns [12,13]. In petroleum reservoirs, the Soret effect changes the oil compositions over 

geological time scales [14–16]. Also, isotope fractionation in silicate melts in magmatic systems 

is assumed to be associated with the Soret effect [17–21]. In addition, the Soret effect as well as 

the mass diffusion is considered to be important to design the solution casting processes to 

fabricate polymer films, where temperature and concentration distributions are formed in the 

casting solutions with micro-nano meter scale thickness [22,23]. As another interesting example, 
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the accumulation of the prebiotic molecules by the combination of the Soret effect and convection 

in hydrothermal pores in ancient sea might explain the unrevealed origin-of-life problem [24–28]. 

The Soret effect in liquid mixtures is still not well understood [2,3]. Thermodiffusion in 

gaseous mixtures can be described by the Chapman-Enskog theory [29–31], but this classical 

theory for gases cannot be applied to liquid systems where interactions make the description 

complexed [2,3]. Therefore, the experimental approach to the Soret effect is important for the 

understanding and applications. In the last twenty years, remarkable progress was made on binary 

systems, including the Fontainebleau benchmark campaign to provide reliable values for the Soret 

coefficient in binary organic mixtures [32]. Experiments were performed on the three binary 

mixtures of 1,2,3,4-tetrahydronaphthalene (THN), isobutylbenzene (IBB), and n-dodecane 

(nC12) with the mass fraction of 0.5 at a temperature of T = 298.15 K, by five groups using 

different methods including the holographic grating technique [33,34] and thermogravitational 

column technique [35–37]. From the result, the benchmark values of the Soret coefficient, 

thermodiffusion coefficient, and the mass diffusion coefficient were proposed. New techniques 

can refer to the benchmark values to confirm the validity. For example, the optical digital 

interferometry (ODI) [38], the optical beam deflection (OBD) [39], thermogravitational micro-

column [40], thermogravitational micro-column applying digital interferometry technique [41] 

and the light scattering from non-equilibrium fluctuations [42] were validated by the measurement 

of the Fontainebleau benchmark systems. Experimental studies on binary systems lead to some 

interesting findings, including the change in signs of the Soret coefficient in water/alcohol 

mixtures [39,43], the molar mass independence of thermodiffusion in polymer solutions [44–46], 

the isotope Soret effect [47–51], and the concept of thermophobicity [52,53]. 

More recently, the research focus has shifted to ternary systems. Measurement of ternary 

mixtures is not straightforward, because there are two independent components and mass 

transport is described by six independent transport coefficients: four diffusion coefficients and 

two thermodiffusion coefficients. In mixtures composed of more than two components, the mass 

flux of one component is influenced by the concentration of other components (cross-diffusion) 

[54]. Due to the cross-diffusion, the flux of the first component can be accelerated by as much as 

an order of magnitude [54]. Because the liquids of practical interest usually contain more than 

two components, approach to ternary mixtures is important to understand mass transport 

phenomena in multicomponent systems. 
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The first systematic measurement of thermodiffusion in ternary systems was performed 

in 2005 on ternary hydrocarbon systems using the convective coupling technique of 

thermogravitational column (TGC) [55–57]. Subsequently, Köhler et al. [58,59] built the two-

color optical beam deflection (OBD) instrument based on the two-color detection scheme 

proposed by Haugen and Firoozabadi [60]. Also, two-color optical experiments of the optical 

digital interferometry (ODI) technique by the Shevtsova group [61] were successfully carried out. 

These techniques contributed to the ternary benchmark campaign [62], which has been promoted 

within the framework of the DCMIX (diffusion coefficient measurements in mixtures) project 

[61,63,64]. The benchmark values of the Soret coefficient, thermodiffusion coefficinet, and 

diffusion eigenvalues were proposed in 2015 [62] for the ternary mixture of THN/IBB/nC12 with 

mass fractions of 0.8/0.1/0.1 at a temperature of T = 298.15 K. Themodiffusion coefficients and 

the Soret coefficients were measured under the ground conditions by the ODI [61], OBD [65], 

and TGC [66] technique. The four diffusion coefficients were measured by the Taylor dispersion 

(TD) technique [61], the open ended capillary (OEC) technique [67], and the sliding symmetric 

tubes (SST) technique [66]. The values of mass diffusion coefficient measured by TD were used 

to calculate thermodiffusion coefficient by ODI technique [61]. Also, Soret coefficient by TGC 

technique were determined using the values of mass diffusion coefficient by SST [66]. In addition 

to these ground experiments, the microgravity experiments to reduce the effect of the convection 

in the SODI (selectable optical diagnostic instrument) installation [61] were conducted and the 

raw interferometric images of ODI were analyzed independently by the four laboratories [61,67–

69]. The Soret coefficient and thermodiffusion coefficient of THN/IBB/nC12 in a broader 

composition range were measured using TGC [70] and OBD [71]. 

Although the situation has significantly improved recently, experimental data for 

complex systems such as ternary mixtures are available for only particular systems. The 

understanding of the Soret effect is still limited and there is as yet no comprehensive microscopic 

description of the Soret effect in multicomponent liquid mixtures. Probably due to this lack of 

understanding, knowledge of the Soret effect is not widely utilized in industry, although the 

thermodiffusion can play dominant roles in some systems. This thesis deals with the development 

of the new instruments to measure the Soret coefficient in complex systems, with the aim to open 

up the option to gain broader knowledge of mass transport phenomena. 
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1.2  Soret coefficients in binary and ternary systems 

 

1.2.1 Linear laws and phenomenological equations 

The description of the mass transport including the Soret effect and the mass diffusion is dealt 

with the linear non-equilibrium thermodynamics. In the following, the relationship between the 

mass transport coefficients and the description based on the non-equilibrium thermodynamics by 

de Groot [5] is briefly outlined. 

 The Fick’s law says that the mass flux is in proportion to the concentration gradient. 

Also, according to the Fourier’s law, the heat flux is in proportion to the temperature gradient. On 

the other hand, the Soret effect describes the mass flux generated by the temperature gradient. 

The mass flux considering the Soret effect can be expressed empirically by adding a term 

concerning the temperature gradient to the equation of the Fick’s law. Also, the heat flux 

considering the Dufour effect, which is known as the transport of heat by the concentration 

gradient, can be described by adding a term of the concentration gradient to the Fourier’s law. 

These empirical formula can be generalized to be the following phenomenological relation (linear 

laws) concerning the independent fluxes Ji and thermodynamic forces Xi. 
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The coefficients Lik are independent of thermodynamic forces and called the phenomenological 

coefficients. Lii are proportionality factors of conjugate flux and force, whereas Lik (i = k) are 

quantities concerning cross effects such as the Soret effect and the Dufour effect. Onsager 

demonstrated the following reciprocal relations [72, 73] in 1931. 

 kiik LL  . (1.2) 

The phenomenological equations on the reduced heat flux J′q, which is the heat flux 

without the contribution of the mass transport, and the mass flux Ji (for component i) in the 

mixtures composed of N components of the temperature T without convection, chemical reactions, 

pressure gradient, and eternal forces can be written in a barycentric reference system as: 
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The phenomenological coefficients Lqq and Lik represent the heat conduction and the mass 

diffusion. Also, Liq and Lqk are related to the Soret effect and the Dufour effect. Because the 

chemical potential k is function of the concentration, k can be described with the mass fraction 

ci: 
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1.2.2 Binary systems 

For the binary systems (N = 2), the reduced heat flux J′q and mass flux Ji can be calculated from 

the Eqs. (1.3)–(1.5). 
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After defining the mass diffusion coefficient D and thermodiffusion coefficient DT as, 
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Eq. (1.6) can be written in a known form which is convenient to describe the actual experiments 

[53]. 

 1 1 1 1(1 ) TD c c c D T      J , (1.10) 

where J1 is the mass flux of the component 1 (J1 + J2 = 0), c1 is the mass fraction of the component 

1 (c1 + c2 = 1), and  is the density. 

 In the stationary state where the mass flux by the mass diffusion and the Soret effect 

balance (J1 = J2 = 0), the ratio of the concentration gradient and the temperature gradient can be 

described as [32]: 
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The Soret coefficient ST is defined as the ratio of DT to D. 
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With the Soret coefficient ST, Eq. (1.11) can be written as Eq. (1.13). 
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The magnitude of the separation by the Soret effect is characterized by the Soret coefficient ST. 

When the sign of the ST is positive, the component 1 is transported to the cold side. 

 

1.2.3 Ternary systems 

In ternary systems, there are two independent components. The mass fluxes of the component 1 

and 2 are described as [62]: 

 TD'cDcD T  1,2121111 J , (1.14) 

 TD'cDcD T  2,2221212 J . (1.15) 

D11 and D22 are the main diffusion coefficient. D12 and D21 are called as the cross diffusion 

coefficient, which characterize the mass diffusion influenced by the concentration of other 

components (cross-diffusion). D′T,i is the thermodiffusion coefficient of the component i. Mass 

flux and mass fraction of the dependent component 3 are described as, 

 3 1 21c c c   , (1.16) 

 
3 1 2  J J J . (1.17) 

The Soret coefficients of the component i are defined as the ratio of the concentration 

gradient to the temperature gradient in the stationary state, as in the binary case (cf. Eq. (1.13)):  
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From Eqs. (1.14) and (1.15) with J1 = J2 = 0, the Soret coefficients can be obtained as: 
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The Soret coefficient and thermodiffusion coefficient of the dependent component 3 are described 

as: 

 ,2,1,3, TTT S'S'S'  2,1,3, TTT D'D'D'  . (1.21) 

Note that thermodiffusion and Soret coefficients with a prime (D′T,i and S′T,i) contain the 
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concentration factor c1 × c2 in a widely accepted definition for ternary systems, while in the binary 

case the concentrations of the two components are usually factored out [58]. The binary 

thermodiffusion coefficient DT and the Soret coefficient ST can be converted to that with a prime 

D′T,1 and S′T,1, using the following equations [58]. 

 TT DccD' )1( 111,  . (1.22) 

 TT SccS' )1( 111,  . (1.23) 

In ternary systems, the positive Soret coefficient also indicates the transport to the cold 

side, as in binary systems. However, the sign of the Soret coefficient S′T,i does not always 

corresponds to that of thermodiffusion coefficient D′T,i in multicomponent systems of more than 

two components, because the sign of the cross diffusion coefficient can be positive or negative. 

 

 

1.3  Experimental findings for binary systems 

 

Although the microscopic mechanism of the Soret effect in liquid is still not well understood, a 

number of interesting findings based on experimental approaches were reported. In the following, 

part of them, mostly limited to binary systems, will be described. 

 

1.3.0 Soret effect in gaseous mixture 

Enskog and Chapman independently derived the thermodiffusion coefficient for gases by the 

Boltzmann equation [29–31]. In this classical theory for hard spheres, it was described that the 

heavier or larger component moves to the cooler region. The theoretical prediction was 

experimentally confirmed by Chapman and Dootson in 1917 [74]. Note that the attempts to extend 

the Chapman-Enskog theory to liquid state have not been successful [75]. 

 

1.3.1 Additive contributions due to difference in mass and moment of inertia 

The effect of deuteration on the Soret coefficient was experimentally investigated by 

Debuschewitz and Köhler [47] for binary mixtures of benzene/cyclohexane and by Wittko and 

Köhler [48–50] for a large number of different organic liquids with cyclohexane. They found that 

the isotope substitution caused constant shift of the Soret coefficient depending neither on the 

composition nor on the mixing partner. It was shown that the Soret coefficient can be split into 
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three terms [47]: 
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where aM and bI are constants, Mi is the molecular mass of species i, Ii is its moment of inertia, 

and S0
T is the so-called ‘chemical’ contribution to the Soret coefficient. Note that the isotopic part, 

the first and second terms of Eq. (1.24), was introduced by Schirdewahn et al. [76] for gaseous 

isotopic mixtures of hydrogen. It is assumed that the chemical contribution S0
T, which includes 

all the compositional dependence of the Soret coefficient, is due to interparticle interactions in the 

system [2]. 

 Hartmann et al. [51] measured the Soret coefficient of the binary mixtures composed of 

the homologous series of halobenzenes and halobenzenes in toluene and cyclohexane, and it was 

shown that the isotopic contribution can be applied not only to truly isotopic systems, but also to 

mixtures of chemically similar molecules.  

 

1.3.2 Thermophobicity concept 

Hartmann et al. [52] measured the Soret coefficients of 41 equimolar mixtures of ten different 

organic solvents and found an additive rule for the heats of transport, which are defined as the 

heat transported by the mass flows.  
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Q′*k,abs is the absolute reduced heat of transport and Q′*k = Q′*k,abs – Q′*n,abs is the reduced heat of 

transport. Jk
abs is the absolute mass flux in the laboratory system, 

 abs
k k k k k   J v J v , (1.26) 

where vk is the absolute velocity of component k in the laboratory system and vk is the barycentric 

velocity. For binary systems, the reduced heat of transport is expressed by the phenomenological 

coefficients as: 
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From Eqs. (1.8), (1.9), (1.12), and (1.27), the reduced heat of transport is related to the Soret 

coefficient as: 
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Using the molar absolute reduced heat of transport Qk,abs, Eq. (1.28) can be expressed as [52]: 
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1 is the activity coefficient of component 1, x1 is the mole fraction of component 1, and R is the 

gas constant.  

 Hartmann et al. [52] showed that a single value of the heat of transport Qk,abs can be 

assigned to every pure substance, which determines its tendency to be transported towards the 

cold side (thermophobicity). It was shown that ten organic solvents [52] (later extended to 23 

solvents [53]) can be sorted according to their thermophobicity based on the heats of transport, 

similar to the standard electrode potential.  

 

1.3.3 Change in signs of Soret coefficient 

In liquid systems with specific interactions such as hydrogen bonds, changes in signs of the Soret 

coefficient at certain temperatures and/or compositions are frequently observed [2,3]. A typical 

example is the mixture of ethanol/water [39,43]. Iacopini et al. [77] reported sign reversals of the 

Soret coefficient as a function of temperature in protein solutions. Prigogine et al. [78] explained 

qualitatively the sign change of the Soret coefficient in alcoholic mixtures of methanol/benzene, 

ethanol/cyclohexane, cyclohexanol/cyclohexane, and ethanol/dioxane using a free energy concept. 

However, this phenomenological approach does not lead to a microscopic understanding of the 

Soret effect [3].  

   

1.3.4 Molar mass independence of thermodiffusion coefficient of polymers 

Schimpf and Giddings [45,46] investigated the influence of molar mass on the thermodiffusion 

coefficient of polystyrene, poly(-methyl)styrene, polymethyl methacrylate, and polyisoprene in 

several solvents, and reported that the thermodiffusion coefficient did not depend on the molecular 

weight of polymers. Brochard and De Gennes [79] gave the explanation of the molar mass 

independence of the thermodiffusion coefficient by the idea based on the combination of non-

equilibrium thermodynamics and hydrodynamic concepts. 
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1.4  Existing experimental techniques to measure Soret coefficient 

 

There are several experimental techniques which have different excitation methods of the Soret 

effect, detection schemes, and diffusion lengths. In the following, existing experimental 

techniques to measure the Soret effect will be overviewed.  

 

1.4.1 Thermogravitational column (TGC) 

The thermogravitational column (TGC) technique is based on the principle of the Clusius-Dickel 

separation discovered in 1938 [12,80], which amplifies the separation of components by coupling 

thermodiffusion and natural convection. In TGCs, a sample mixture is put in a vertically long 

column which consists of two vertical plates or concentric cylinders [4]. Figure 1.1 shows a 

schematic of a parallelepipedic TGC. Copper plates separated by a small gap to create a horizontal 

temperature gradient are maintained at two different temperatures by circulating water. Usually, 

the temperature difference of about 5 K is kept for 24–48 hours [4], before extracting a small 

amount of sample (1–2 mL) from sampling taps to analyze the compositional distribution formed 

vertically by the Clusius-Dickel separation. The analysis of the composition of the extracted 

sample is carried out by the measurement of the refractive index or the density for the 

measurement of binary systems. In the measurement of ternary systems, both the refractive index 

and the density are analyzed to determine the composition [55]. Naumann et al. [40] developed a 

thermogravitational micro-column with an interferometric contactless detection system. Recently, 

Lapeira et al. [41] applied the optical digital interferometry technique to thermogravitational 

micro-column technique, which enabled to determine the complete concentration profile inside 

the micro-column. 

From the Furry-Jones-Onsager theory [81], the vertical concentration gradient ∂ci/∂y 

formed in a TGC is given by [66], 
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
, (1.30) 

where g is the gravity acceleration,  is the kinematic viscosity,  is the cubic thermal expansion 

coefficient. Lx is the gap of the column. In the ternary benchmark campaign, two types of TGCs 

with (i) Lx = 1 + 0.005 mm and the height of Ly = 500 mm, and (ii) Lx = 1.02 + 0.005 mm and Ly 

= 980 mm were employed [66]. 
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Figure 1.1: Schematic of a thermogravitational column (TGC). 

 

It is pointed out that instabilities may make measurements difficult or even impossible 

for the system with the negative Soret coefficient of the denser component [2,82]. In addition, 

mechanical precision of TGCs can affect the reliability of measurements, because uncertainties 

may be generated by the length of the gap Lx, which is included in the form of Lx
4 in Eq. (1.30). 

Note that only thermodiffusion coefficients D′T,i can be obtained by Eq. (1.30) in TGC 

experiments. To determine the Soret coefficient, the mass diffusion coefficient obtained by other 

means is required. 

 

1.4.2 Optical beam deflection (OBD) 

The optical beam deflection (OBD) technique optically detects thermodiffusion in a Soret cell. 

As shown in Figure 1.2, a Soret cell consists of two horizontal parallel plates with different 

temperatures to form a vertical temperature gradient in a sample between the plates. In Soret cells, 

a vertical concentration distribution is formed by the Soret effect. Experimental studies employing 

Soret cells were started in 1920s by Tanner [83,84]. The analytical solution for binary mixtures 

in the Soret cell has been derived by Haugen and Firrozabadi [85]. 
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where y is the vertical position, L is the vertical spacing, and T is the temperature difference 
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between two plates.  

 In the OBD technique, the Soret effect in a Soret cell is detected by the deflection of a 

laser beam which enters the sample horizontally. Due to the vertical refractive index gradient 

induced by the Soret effect, the laser is deflected. The displacement of the deflected laser beam 

at the detector Δy(t) is the function of the refractive index gradient ∂n(t)/∂y. 

 w air

w air

( )
( )

2

d dn t d
y t d

y n n n

 
      

, (1.32) 

where n, nw, nair are the refractive index of the sample, exit window and air, respectively. Also, d, 

dw, dair are the length of the optical path in the sample, thickness of the exit window, and the 

distance between the exit window and the detector, respectively. For binary systems, the refractive 

index gradient ∂n(t)/∂y can be written as [39]: 
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                 
, (1.33) 

∂T(t)/∂y and ∂c1(t)/∂y are calculated from the heat equation and the diffusion equation, 

respectively [39]. Thus, the Soret coefficient can be obtained by analyzing the time history of the 

displacement signal Δy(t). Note that the optical contrast factors ∂n/∂T and ∂n/∂c1 are required to 

determine the Soret coefficient. The optical contrast factors can be measured by an Abbe 

refractometer or interferometric method [33,86]. 

 

 

Figure 1.2: Schematic of a Soret cell. 

 

 

Figure 1.3: Schematic of the two-color optical beam deflection (OBD) apparatus.  
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 As Haugen and Firrozabadi [60] suggested, measurement of ternary systems can be 

carried out by employing two readout lasers of different wavelengths  because the refractive 

index is dependent on the wavelength. For ternary systems, the refractive index gradient ∂n(t)/∂y 

can be written as [58]: 
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. (1.34) 

By using two lead out lasers, independent two displacement signals Δy(t) are obtained. This 

enables to determine the time dependent concentration profiles of all three components [58,60]. 

Figure 1.3 shows the schematic of the two-color OBD apparatus to measure ternary 

systems. In the OBD instruments for ternary systems developed by the group of Köhler [65], the 

readout lasers of  = 405 nm and  = 635 nm have been employed, whereas one readout laser of 

 = 637 nm was used to measure binary mixtures of water/ethanol [39]. Temperature of the copper 

plates is controlled using Peltier elements. In the measurement of the ternary benchmark system 

[65], the time dependent OBD signals in 1–2 h were obtained under the temperature difference 

between two plates T of 1.0 K, using the sample cell with the length of optical path d = 10.0 mm 

and with the vertical spacing of h = 1.43 mm. 

 

1.4.3 Optical digital interferometry (ODI) 

The optical digital interferometry technique also employs a Soret cell, but the cell height is larger 

(5–10 mm) to observe the mass transport by means of the Mach-Zehnder interferometer. The ODI 

technique was developed by Mialdun and Shevtsova for the ESA (European Space Agency) 

project of IVIDIL (influence of vibrations on diffusion in liquids) [87]. 

Figure 1.4 shows the schematic of the ODI apparatus. A beam splitter splits the 

expanded laser beam into two beams. One of them enters the Soret cell and the other is used as a 

reference beam. Two beams interfere at the second beam splitter. The interference fringes are 

observed by a CCD camera. In the measurement of binary benchmark systems [38], a He-Ne laser 

with the wavelength of  = 632.8 nm was employed to detect the mass transport in a Soret cell 

with the cell height of h = 6.3 mm and optical path of d = 18.0 mm. For the binary benchmark 

systems, the characteristic time of the measurement D is calculated by the cell height and the 

diffusion coefficient as D = h/D ≈ 12 h [38], which means that ODI requires more than ten hours 

for the mixtures of small molecules with D in several 10–10 m2s–1 due to the larger diffusion length. 



 

1. Introduction 

 

14 

 

 

Figure 1.4: Schematic of the optical digital interferometry (ODI) apparatus. 

 

 By performing image processing based on 2-D Fourier transform technique to 

interference patterns recorded by a CCD, optical phase information can be extracted. The 

variation of the refractive index is obtained from the phase difference Δ [38], 
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Here, x is the horizontal position perpendicular to the optical axis, y is the vertical position, and d 

is the length of the optical path. The variation of the refractive index is the function of the 

temperature and the mass fraction [38]. 
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. (1.36) 

Thus, the compositional profile over the entire two-dimensional cross section of the cell can be 

traced by the ODI technique. 

 Similar to the OBD technique, ternary systems can be measured by employing another 

probing laser. In the ground measurement of ternary benchmark system, two lasers with the 

wavelengths of  = 670 nm and  = 925 nm were used [61]. Measurement of ternary benchmark 

system by ODI was also performed under microgravity conditions in the selectable optical 

diagnostic instrument (SODI) instrument with the laser wavelengths of  = 670 nm and  = 935 

nm [61]. 
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1.4.4 Thermal field flow fractionation (ThFFF) 

The field flow fractionation is an analytical technique for separating and characterizing 

macromolecules, supramolecular assemblies, colloids and particles [88], which was developed by 

Giddings in 1966 [89]. In this technique, an external field is applied perpendicularly to the 

direction of the flow of solutions or suspensions in a channel. A temperature gradient is used as a 

field in the thermal field flow fractionation (TFFF or ThFFF) technique. 

Figure 1.5 shows the principle of ThFFF. A laminar parabolic flow profile is formed 

when the sample liquid flows through a thin channel under a temperature gradient [88]. Due to 

the Soret effect, sample particles of positive Soret coefficient are forced to the cold wall. As the 

result of the balance of the Soret effect and the mass diffusion, the concentration profile is built 

up in the direction of the temperature gradient. The special distribution of the particles in the 

steady-state is characterized by the effective layer thickness l, which approximately denotes the 

distance between the accumulation wall and the center of gravity of the particles. This parameter 

l and the velocity of the particles are related to the Soret coefficient. The retention ratio R, which 

is defined as the ratio of the average velocity of the analyte zone to the average velocity of the 

carrier liquid, is given by [45], 

 0 1
6 coth 2

2( / )r

t l l
R

t w l w w

  
    

  
, (1.37) 

where w is the thickness of the channel. tr is the retention time and t0 is the passage time without 

external forces. The relationship between l and the Soret coefficient ST is given by [45], 

 
1

( )T

l

w S T


 
, (1.38) 

where  is thermal expansion coefficient, and T is the temperature difference. By the 

measurement of the retention time tr, the Soret coefficient is obtained with Eqs. (1.37) and (1.38). 

In the experiment by Schimpf and Giddings [45], a channel with the thickness of w = 76 m, the 

breadth of 2.3 cm, and tip-to-tip length of 34 cm was employed. The temperature difference 

between the hot wall and the cold wall was T = 30 K [45]. 

 Although ThFFF has been successfully used for polymers solutions, this technique is 

less suitable for mixtures of small molecules because too strong temperature gradients would be 

required [2]. In addition, to determine thermodiffusion coefficient, the mass diffusion coefficient 

should be obtained by other means. 
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Figure 1.5: Principle of the thermal field flow fractionation (ThFFF) technique.  

 

 

Figure 1.6: Instrument of the light scattering from non-equilibrium fluctuations (LS-NEF) 

technique.  

 

 

1.4.5 Light scattering from non-equilibrium fluctuations (LS-NEF) 

When a fluid is subjected to a stationary temperature gradient, long-range non-equilibrium 

fluctuations (NEFs) arise from a coupling between microscopic velocity fluctuations and the 

macroscopic temperature gradient [90]. Experimental analysis of the dynamics of non-

equilibrium fluctuations by light scattering methods enables measurement of the Soret coefficient 

and the mass diffusion coefficient [42].  

 Figure 1.6 shows an optical setup for shadowgraph experiments. The non-equilibrium 

fluctuations in a thermodiffusion cell is observed by a low coherence light with the wavelength  

= 680 ± 10 nm and a charge coupled device (CCD) sensor [42]. The liner polarizer is employed 

to set the beam polarization before the light entering the Soret cell. The second linear polarizer 
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after the cell enables to control the average transmitted light intensity. The Soret cell consists of 

two sapphire plates maintained at different temperatures by Peltier elements. In the measurement 

of binary benchmark systems [42], the cell thickness (length of optical path for sample liquid) 

was d = 1.3 mm or d = 1.53 mm [42] and the temperature difference was 8–20 K.  

 In this technique, shadowgraph images are acquired after reaching the steady state. 

Quantity obtained from the analysis of the images is the so-called structure function which is 

given by [42]: 

   2
( , ) 2 ( ) ( ) 1 ( , ) ( )m sI t A T I ISF t B     q q q q q , (1.39) 

ΔIm(q, Δt) is the spatial Fourier transformation ofΔim(r, Δt), which is the difference of the 

measured intensity Δim(r, Δt) = im(r, t) − im (r, t +Δt) between a delay time Δt (r is the position). 

q is the wave number related to the scattering angle, A is a renormalization constant, Is(q) is the 

ensemble averaged scattered light, T(q) is the transfer function of the imaging optics, and B(q) is 

the noise of the measurement. For binary systems, the intermediate scattering function (ISF) is 

modeled as a single exponential decay due to the concentration NEF [42], 

 ( , ) exp
( )

t
ISF q t

q
 

  
 

, (1.40) 

(q) is the relaxation time constant for the concentration component in the presence of gravity 

[42], 
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, (1.41) 

qc is the gravitational critical wave number which is related to the Soret coefficient as [42]: 
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, (1.42) 

where  is kinematic viscosity, D is the mass diffusion coefficient, and d is the cell thickness. 

1/(∂/∂c) denotes the solutal expansion coefficient. By fitting analysis of the experimental 

structural function with Eqs. (1.39)–(1.42), the Soret coefficient and the mass diffusion coefficient 

can be obtained. 

 Non-equilibrium fluctuations in the ternary benchmark mixture were observed on a 

ground condition [91] and the good agreement between theory developed by Ortiz de Zárate [92] 

and the experiments for the larger wave numbers was obtained, which validated theory for the 

microgravity conditions. It was not possible to distinguish the two eigenvalues of the mass 
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diffusion matrix in the ternary benchmark mixture [91], but the two eigenvalues of the ternary 

polymer mixture composed of polystyrene, toluene, and n-hexane were well separated with the 

accuracy in the order of 1% [93]. 

 

1.4.6 Thermal lensing (TL) 

In thermal lensing (TL) technique, both the excitation and detection of the Soret effect are carried 

out optically. Figure 1.7 shows the principle of thermal lens technique. The absorption of the laser 

generates the refractive index distribution in the sample. Due to the Gaussian profile of the laser 

beam, the refractive index distribution works as a laser induced lens (thermal lens). Following the 

formation of the temperature distribution in the sample, the Soret effect creates the concentration 

distribution, which also acts as a Soret lens. In the experiment by Polyakov and Wiegand [94], an 

infrared laser with the wavelength of  = 980 nm was employed to investigate the Soret effect in 

the sample cell thickness of d = 0.2 mm and 1.0 mm. The distance between the sample cell and 

the beam waist was 3–4 mm [94]. When the sample cell placed 4 mm before the beam waist, the 

beam size  was about 54 m [94]. The temperature difference formed by the laser absorption 

was in the order of 0.05 K [94]. 

The mass transport can be evaluated by the intensity change after the sample on the 

optical axis. The intensity in a thermal lens experiment I(t) is given by [95]: 
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, (1.43) 

th = /(4a) and Soret = /(4D) are characteristic time constants of the formation of thermal lens 

and the Soret lens, respectively, in which  is the beam spot size, a is thermal diffusivity, and the 

D is the mass diffusion coefficient. th and Soret are strengths of thermal and Soret lens, which are 

related to the focal length of each lens [95], 

 

 
Figure 1.7: Principle of thermal lens technique.  
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where  is the absorption coefficient, P is the laser power, d is the cell thickness,  is the density, 

Cp is the specific heat at constant pressure, and  is the wavelength of the laser. The numerical 

factor of 0.52 is introduced when the parabolic lens model gets extended [95,96]. Optical contrast 

factors are required to determine the Soret coefficient. 

Careful consideration of convection is required in thermal lens experiments. In the 

measurement by Voit [97] on the binary benchmark mixutre n-dodecane/1,2,3,4 

tetrahydronaphthalene, the Soret coefficient was 40% smaller than the benchmark value, which 

can be explained by the convection [94]. Measurement of systems with very small mass diffusion 

coefficient can be difficult, because convection might disturbs the concentration distribution by 

the Soret effect before reaching the stationary state [95,98]. In addition, it is pointed out that the 

optical distortion of the probing beam can be a problem [95]. 

 

1.4.7 Holographic grating technique (HGT) 

The transient holographic grating technique is one of all optical techniques, similar to thermal 

lens technique, in which both excitation and detection are performed optically. The laser induced 

dynamic grating [99] is applied to the measurement of the Soret coefficient in this technique. 

Figure 1.8 illustrates the principle of the holographic grating technique. The sinusoidal 

temperature distribution is formed by the absorption of the heating laser beams interfering in the 

sample. The Soret effect is subsequently induced by generated temperature grating with the 

interference fringe. In this process, the sample works as a form of diffraction grating because the 

spatially sinusoidal distribution of a refractive index is generated by the heat and mass transport. 

The mass transport can be evaluated by the intensity of the diffracted beam of a different laser, 

because the diffraction efficiency includes information on the compositional change.  

The first observation of the Soret effect by this technique was reported by Thyagarajan 

and Lallemand on CS2/ethanol mixtures in 1978 [100]. Köhler et al. [101–103] significantly 

improved the transient holographic grating technique using heterodyne detection schemes, and 

their improved method is known as the thermal diffusion forced Rayleigh scattering (TDFRS). 

To convert the interference pattern to the temperature grating, addition of small amount of inert 
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Figure 1.8: Principle of holographic grating technique. 

 

dye to the sample is required in measurement by TDFRS setup employing a heating laser of 

visible wavelength [103]. Wiegand et al. [104] has been developed the infrared thermal diffusion 

forced Rayleigh scattering (IR-TDFRS) setup, employing an infrared laser with the wavelength 

of  = 980 nm. This enables measurement of transparent samples without doping a dye. 

The normalized heterodyne diffraction intensity to be detected in TDFRS experiments 

is given by [103]: 

 
1

0 0
, ,

1
( ) 1 exp (1 )het T

p T p ca D a

t n n
t S c c

c c


  

                     
  

 1 exp 1 expD a
D a

t t 
 

                    
           

, (1.46) 

th = 1/(aq2)–1 and D = /(Dq2) are characteristic time constant of heat and mass diffusion, 

respectivel. q is the wavenumber of grating q = 2/ and  is the fringe spacing. The optical 

contrast factors are required to determine the Soret coefficient. 

TDFRS is very sensitive technique which is able to detect the relative change of 

concentration below 10−5 induced by the temperature grating with the amplitude of 10 to 100 mK 

[103]. The characteristic time of the measurement is very short due to the fringe spacing in m 

order. However, signal averaging in several thousands of times is required to increase the signal 

to noise ratio [2,102]. 

 

Diffracted beam 
(to detector) 
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1.5  Motivation and objectives 

 

Table 1.1 compares the experimental techniques employed to measure the Soret coefficient. Each 

technique has its advantages, but there is no established method feasible to all kinds of samples. 

So far, only three techniques of TGC [55,70], OBD [58,59,71], and ODI [61] have been 

successfully employed to determine the Soret coefficient in ternary systems. Although two 

eigenvalues of the mass diffusion matrix in the ternary polymer solution of polystyrene + toluene 

+ hexane were obtained by the analysis of NEFs, but Soret coefficients were not provided from 

the single wavelength experiments [93]. It is suggested that a two-wavelength shadowgraph 

experiment is required for the determination of the Soret coefficients in ternary systems [93]. The 

two-wavelength technique for ternary systems can be also applied to thermal lens technique [95], 

but no such experiments have been reported.  

 

 

Table 1.1: Comparison of experimental techniques to investigate the Soret effect. 

Method 

Measured 
quantity 

(for binary 
systems) 

Diffusion 
length 

Temperature  
difference 

Temperature 
gradient 

Characteristic 
time of 

measurement 

Sample 
cell 

volume  

TGC DT 
(convection 
coupling)a 

10 K [70] 104 K/m 24–48 h [4] 
30 mL 
[41] 

OBD ST, DT, D 
1.43 mm 

[65] 
1 K [65] ~7×102 K/m ~1 h [65] 

~0.3 mL 
[105] 

ODI ST, DT, D 
6.06 mm 

[38] 
5.994 K [38] ~103 K/m ~16 h [38] 

~0.6 mL 
[38] 

ThFFF ST 76 mb 
[45] 

30 K [45] ~4×105 K/m 
101–102 min 

[88] 
0.65 mLc 

[45] 

LS-NEF ST, DT, D 
2 mm 
[91] 

16 K [91] ~8×103 K/m 
0.035–35 sd 

[91] 
~1 mL 

[91] 

TL ST, DT, D 27 m 
[94] 

~0.05 K  
[94] 

~2×103 K/m ~102 s [95] 
~0.3 mL 

[95] 
HGT 

(TDFRS) 
ST, DT, D ~10 m 

[2] 
10–100 mK 

[103] 
100 –101 K/m 0.03 s [95] 

0.06 mL 
[95] 

a The diffusion length in TGC experiments may not be defined, although the gap between two walls with 

different temperature was, for example, 1 mm [66]. b The thickness of the flow channel. c Sample injection 

volume was 3 L [45]. d Correlation time.  
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The transient holographic grating technique has not been established for ternary systems, 

although this method has been successfully used in the measurement of binary systems, including 

polymer solutions [101,102,106,107], polymer blends [108–110], isotopic systems [47–51], and 

aqueous solutions [28,104,111–120]. One feature of the transient holographic grating technique 

is the very short characteristic time of the measurement, on the order of milliseconds for mixtures 

of small molecules, which is several orders faster than other measurement techniques. In addition, 

it is possible to investigate samples with high viscosity, such as concentrated polymer solutions 

[106,107], which may be difficult to measure with convective coupling techniques such as TGC. 

Moreover, the small amplitude of the temperature modulation (sub-milliKelvin) of the grating to 

induce thermodiffusion allows for measurement of samples close to the critical point, where 

precise temperature control is important [110]. Therefore, measurements of ternary systems by 

the holographic grating technique can contribute to gain broader knowledge of mass transport in 

multicomponent systems. 

The concept of the two-color TDFRS to measure ternary systems was proposed by 

Köhler et al. [58,121]. The result of a single measurement by the two-color TDFRS is available 

in Königer’s PhD thesis [121], although it does not include a schematic or detailed description of 

the experimental apparatus. In the two-color TDFRS experiment using the readout lasers with 

wavelengths of 405 nm and 633 nm [121], the Soret coefficients of the ternary mixture composed 

of THN, IBB, and nC12 were obtained in the same sign and magnitude with the measured values 

by the two-color OBD technique. Königer, however, reported that reliability was limited because 

of some experimental problems [121]. For example, the experiments by the two readout lasers 

were not carried out simultaneously [121]. 

In this study, with the aim to measure the Soret coefficient in ternary systems by the 

optical holographic grating, an experimental apparatus has been developed based on the 

instrument independently built by the group of Nagasaka [122–125] in parallel with the use of the 

forced Rayleigh scattering (FRS) technique to measure thermal diffusivity of liquids [126]. The 

direct (homodyne) detection scheme instead of the heterodyne scheme is adopted, which enabled 

to measure the mass diffusion coefficient by the signal averaging of only 16 times with a simpler 

configuration of the instrument [125]. This technique has been called as the Soret forced Rayleigh 

scattering (SFRS) by the Nagasaka group, although the principle is basically identical to that of 

the TDFRS technique.  
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 The remaining part of this thesis is organized as follows: Chapter 2 describes the 

working equations to measure the Soret coefficient in ternary systems by the Soret forced 

Rayleigh scattering employing the homodyne detection scheme. In addition, the instrument 

designed and built for the simultaneous detection by the two detection lasers with the wavelengths 

of 403 nm and 639 nm is presented. It is important to design the optical path to detect each signal 

of the two probing lasers independently at the same time, because in the two-color detection 

scheme [60], two parameters obtained independently by each signal of the probing laser are used 

together to determine the two independent Soret coefficients. By using the homodyne detection 

scheme of the SFRS technique, design of the optical system for simultaneous detection of two-

wavelength signals can be less complicated, because the reference beam for heterodyne detection 

is not required.  

Chapter 3 describes experiments to evaluate the validity of the newly developed 

instrument, which were carried out on the binary and ternary benchmark systems composed of 

1,2,3,4-tetrahydronaphthalene, isobutylbenzene, and n-dodecane.  

 Chapter 4 reports the application of this technique to the measurement of three Soret 

coefficients of ternary mixtures dissolving a polymer, which has not been successfully achieved 

by any techniques so far. Understanding the thermophysical properties of polymer solutions is of 

great significance in engineering, because polymer materials are generally dissolved in solvents 

in fabrication process of polymer films, fibers and other products [127]. In solution casting to 

make polymer films, sometimes two or more solvents are used to control the drying rate, which 

affects the quality of the products. Because mass transport phenomena can play dominant roles in 

the drying process [23], knowledge of the mass transport properties is important to optimize the 

fabrication process. The ternary polymer solutions of practical interest in engineering were 

selected as samples in this study, which were composed of cellulose acetate butyrate (CAB), 

styrene monomer, and 2-butanone. CAB is widely used material for functional polymer films [125, 

128,129], and styrene monomer and 2-butanone are good solvents of CAB. 

Chapter 5 describes the development of another instrument employing a CO2 laser to 

measure the Soret coefficient in aqueous systems. Understanding of the Soret effect in aqueous 

systems, where the mass transport can be complicated due to the presence of hydrogen bonding, 

is considered to promote applications in the field of biotechnology. In drug delivery systems, for 

instance, knowledge of the Soret effect can help the design of drug delivery vehicles which are 
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targeted to warmer sites of inflammation. Although SFRS instrument presented in Chapter 2 

requires addition of dye for the absorption of the heating laser with visible wavelength, it is 

difficult to find a suitable dye for aqueous systems. Employing an infrared wavelength as the 

heating laser can solve this problem. The validity of this IR-SFRS technique employing the 

homodyne detection scheme is tested by the measurement of a binary solution of water/ethanol, 

as a first step to examine more complexed systems. The IR-SFRS can be potentially extended to 

measure the Soret coefficient in ternary systems, by applying the two-wavelength detection 

technique. 

Lastly, chapter 6 presents the conclusion of this study. 
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2 
Design and construction of instrument for 

ternary systems 
 

2.1  Concept 

 

The strategy to measure the Soret coefficient in ternary system in this study is based on the 

integration of the two-wavelength detection scheme [60] and the holographic grating technique 

of the Soret forced Rayleigh scattering (SFRS) developed by Nagasaka et al., which adopts the 

homodyne detection scheme [125]. Figure 2.1 illustrates the concept of the SFRS with two-

wavelength detection scheme for measurement of ternary systems.  

 

 

Figure 2.1: Concept of Soret forced Rayleigh scattering (SFRS) technique with two-wavelength 

detection scheme for measurement of ternary systems. 
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In the holographic grating technique, the probing laser detects the contrast of the 

refractive index grating modulated by the temperature and concentration gratings which are 

formed by the heating laser [103,125]. Typical examples of the signal intensity in SFRS 

experiments, which is proportional to the diffracted light intensity at the detector, are also shown 

in Figure 2.1. The sharp intensity change after the start of the heating (t = 0) indicates the 

formation of the temperature distribution corresponding to the interference fringe. The relatively 

slow change after the formation of the temperature distribution indicates the formation of the 

concentration distribution by the Soret effect. The sharp descent after the end of the heating 

indicates the decay of the temperature distribution. The gradual descent after the decay of the 

temperature distribution indicates the decay of the concentration distribution due to the mass 

diffusion. Because of the dependence of the refractive index on wavelength, two independent 

signals can be obtained by employing two probing laser of different wavelengths, which enables 

the measurement of the Soret coefficients in ternary systems. 

 In this chapter, the working equations for homodyne detection schemes and the SFRS 

instrument with two probing lasers of different wavelengths developed for ternary systems will 

be presented. A detailed description of the working equations is important for the evaluation of 

the uncertainty based on the GUM (guide to the expression of uncertainty in measurement) [130]. 

 

 

2.2  Working equations for binary systems 

 

Because the SFRS instrument of the Nagasaka group adopting homodyne detection scheme was 

not validated for the measurement of the Soret coefficient, the working equations to measure the 

Soret coefficient in binary systems should be presented before moving on to ternary systems. For 

the measurement of the Soret coefficient, the formation signals due to the Soret effect as well as 

the relaxation signals due to the mass diffusion should be analyzed, while only relaxation signals 

were evaluated in the previous SFRS technique to obtain the mass diffusion coefficient in binary 

systems [125], which inherited the FRS technique to measure the thermal diffusivity from the 

relaxation signals due to the heat diffusion [126]. The idea to improve the SFRS technique to 

investigate the Soret effect is to analyze the formation signal to determine the Soret coefficient, 

with the value of the mass diffusion coefficient obtained in advance from the analysis of the 
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relaxation signal. 

 In the SFRS technique, the intensity of the diffracted beam of the probing laser for the 

Bragg condition is in proportion to the squares of the amplitude of the refractive index grating 

n(t) [125,131]. For small temperature and concentration modulation in binary systems, n(t) is 

given by [103, 125]: 
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, (2.1) 

where T(t) and c(t) are the amplitude of the sinusoidal temperature distribution and 

concentration distribution, respectively. ∂n/∂T and ∂n/∂c are so-called optical contrast factors 

related to the dependence of the refractive index n on the temperature T and the mass fraction c 

at constant pressure p, respectively. 

  

2.2.1 Formation process by Soret effect 

The amplitude of the temperature distribution T(t) after the start of the heating at t = 0 can be 

calculated by the one-dimensional heat conduction equation in an x-coordinate, under the 

assumption that the fringe spacing is small compared with the sample thickness, the absorption 

length of the sample, and the diameter of the heated area [126]: 
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where T(x,t) is the temperature, t is the time, a is the thermal diffusivity,  is the absorption 

coefficient at the wavelength of the heating laser,  is the density, and Cp is the specific heat at 

constant pressure. Ih(x) is the intensity of the heating beams by the two interfering heating laser 

beams of equal intensity Ih,0/2, 

 h h,0( ) (1 cos )I x I qx  , (2.3) 

where q = 2/ is the wavenumber of the interference pattern with the fringe spacing . The 

solution of Eq. (2.2) is obtained as [125]: 

 m 0( , ) ( ) ( ) cosT x t T t T t qx T    , (2.4) 

T0 is the initial uniform temperature, and Tm(t) is the mean temperature rise of the sample in the 

course of laser heating, 
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The amplitude of the temperature T(t) in Eq. (2.4) is described as: 
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wherea is the decay time constant of heat conduction, 
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The amplitude of the concentration distribution c(t) can be obtained by the following 

one-dimensional diffusion equation in an x-coordinate [125]: 
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in which c(x,t) is the mass fraction of the solute. D is the diffusion coefficient and DT is the 

thermodiffusion coefficient. For small concentration change in SFRS experiments, c(x,t){1 – 

c(x,t)} ≈ c0(1 – c0), with c0 being the initial mass fraction. By solving Eq. (2.8), the solution is 

given by [125]:  
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where D is the decay time constant of mass diffusion,  
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. (2.10) 

Under reasonable assumptions for liquid mixtures D   a (D  a), Eq. (2.9) for a sufficient 

amount of time after the formation of the temperature distribution (t  a) can be sufficiently 

approximated by [125], 
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0 0 0( , ) (1 ) 1 exp cosT a

p D

I t
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. (2.11) 

Comparing Eq. (2.11) to Eq. (2.12), the amplitude of the concentration distribution c(t) is given 

by Eq. (2.13) [125], 

 0( , ) ( )cos( )c x t c t qx c   , (2.12) 
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From Eqs. (2.1), (2.6) and (2.13), the intensity of the diffracted light I(t)[n(t)]2 in 

the formation process of the concentration distribution by the Soret effect (t  a) is expressed 

as follows: 
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, (2.14) 

where ST = DT/D is the Soret coefficient. 

 

2.2.2 Relaxation process by mass diffusion 

For simplicity, time t = 0 is set at the end of heating, when describing the relaxation process after 

the heating laser is switched off. After the heating laser pulse duration time th, the relaxation of 

the thermal grating is expressed by [125]: 
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. (2.15) 

The relaxation of the concentration grating following the decay of the thermal grating (t a) is 

expressed by [125]: 
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
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. (2.16) 

 Similarly to the formation process, the intensity of the diffracted light I(t) in the 

relaxation process of the concentration distribution by the mass diffusion is expressed as follows 

[125]: 
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I t

τ
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. (2.17) 

 

2.2.3 Fitting models for data evaluation 

In the analysis of the detected signal obtained in the SFRS experiments, the effect of the coherent 

and incoherent scattered light superimposed over the diffracted light should be considered. The 

output voltage V(t), which is proportional to the light intensity at the detector, is described as [99]: 
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 c c inc( ) ( ) 2 ( ) cosV t I t I t I ψ I I    , (2.18) 

where Ic is the intensity of the coherent scattered light and Iinc is that of the incoherent scattered 

light.  is the phase difference between the diffracted light and the coherent scattered light. 

From Eqs. (2.17) and (2.18), the fitting model of the output intensity for the relaxation 

process by the mass diffusion (t  a) is given by [125]: 

 sc

2
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D D

t t
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, (2.19) 

with 

 sc 2 ( ) cosD AV   . (2.20) 

Here, A is the amplitude factor for the diffracted light and Dsc is that for the coherent scattered 

light. V(∞) is the output voltage, which is proportional to the total scattered light. The fitting 

parameters are A, Dsc, V(∞), and the decay time constant of mass diffusion D. After evaluating D 

by the fitting analysis, the mass diffusion coefficient can be determined by Eq. (2.10). 

The output for the formation process by the Soret effect (t  a) can be derived from 

Eq. (2.14) and Eq. (2.18) as: 
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with 
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, (2.22) 

in which A′ is the factor of proportionality. Using the values of D, A, Dsc, and V(∞) determined 

from the analysis of the relaxation process by the mass diffusion, the number of the fitting 

parameters can be reduced to two: ST and A′. The optical contrast factors ∂n/∂T and ∂n/∂c should 

be evaluated by a refractometer in advance.  

 After evaluating the Soret coefficient, the thermodiffusion coefficient DT can be 

determined by the relationship DT = ST･D (Eq. (1.12)). 
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2.3  Derivation of Working equations for ternary solutions by direct 

detection scheme 

 

In the following, the working equations on the formation and relaxation process for ternary 

systems will be derived, in a similar way to the binary systems. The data evaluation method to 

determine the Soret coefficient and the thermodiffusion coefficient in ternary systems, applying 

the two-wavelength detection technique, will be also presented.  

 The intensity of the diffracted beam Iλ(t) of the probing laser with the wavelength λ is 

in proportion to the square of the amplitude of the sinusoidal refractive index distribution Δnλ(t). 

Δnλ(t) in the experiments on the ternary systems can be expressed as: 
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, (2.23) 

where ci is the mass fraction of the component i. 

 

2.3.1 Formation process by Soret effect 

The extended diffusion equations for ternary systems in the x-axis are described as: 
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in which t is the time, ci(x,t) is the mass fraction of the component i, Dij is the diffusion coefficient, 

and D′T,i is the thermodiffusion coefficient. The concentration amplitudes Δci(t) for a sufficient 

amount of time after the formation of the temperature distribution (t   a, t = 0 is set at the start 

of heating) are obtained by solving the diffusion equations of Eqs. (2.24), (2.25): 
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in which D̂1 and D̂2 are the eigenvalues of the diffusion matrix [62]. 
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Substituting the concentration amplitudes in Eqs. (2.26) and (2.27) and the temperature amplitude 

in Eq. (2.6) into Eq. (2.23), Δnλ(t) can be calculated. From the relation of Iλ(t)  {Δnλ(t)}2, the 

intensity of the diffracted beam Iλ(t) during the formation process of the concentration distribution 

by the Soret effect can be derived as: 
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Here, P′S, and P′T, are defined as follows: 
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Note that the terms in the square bracket of Eq. (2.30) are in the same form as the heterodyne 

signal of TDFRS (Eq.(23) in Ref. 59), when normalized. Also, P′S, and P′T, are related to the 

asymptotic plateau a, and the initial slope b in Ref. 59, respectively. 

 

2.3.2  Relaxation process by mass diffusion 

The concentration amplitudes Δci(t) in the relaxation process of the concentration distribution (t 

  a) are obtained as Eqs. (2.33) and (2.34). For simplicity, time t = 0 is set at the end of heating, 
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when describing the relaxation process after the heating laser is switched off. 
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Δci(th) on the right-hand side of Eqs. (2.33) and (2.34) are the concentration amplitudes formed 

during the heating time th. Substituting t = th into Eqs. (2.26) and (2.27), Δci(th) in Eqs. (2.33) and 

(2.34) are obtained. The intensity of the diffracted beam Iλ(t) for the diffusion signal can be 

calculated in the same way as the formation process: 
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where the normalized weight W is expressed as 
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, , and 1,(th) are described as  
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Note that Eqs. (2.36)–(2.39) are expressed in forms similar to the equations used in the Rayleigh 

and Gouy optical interferometric technique [132, 133], and the Taylor dispersion technique [134] 

for the measurement of the ternary diffusion coefficients. 
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2.3.3 Fitting models for data evaluation 

Considering both homodyne and heterodyne contributions, the fitting model of the output 

intensity for the relaxation process by the mass diffusion (t  a) can be derived from Eqs. (2.18) 

and (2.35) as: 
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in which A is the amplitude factor for the diffracted light, and Dsc is that for coherent scattered 

light. V(∞) is the baseline output due to the scattered light. The fitting parameters are D̂1, D̂2, W, 

A, Dsc, and V(∞).   

For the formation process by the Soret effect (t  a), the fitting model can be derived 

from Eqs. (2.18) and (2.30): 
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with  
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The fitting parameters are P′S,, P′T,, D̂1, D̂2, A/Dsc, V(∞), and the factor of proportionality A′. 

However, they can be reduced to three: P′S,, P′T,, and A′, after determination of D̂1, D̂2, A/Dsc, 

and V(∞) in the analysis of the relaxation signal with Eq. (2.40). The optical contrast factor 

∂n/∂T should be evaluated by a refractometer in advance. 

 

2.3.4 Determination of transport coefficients using the two-wavelength technique 

With one probing laser, only the diffusion eigenvalues D̂1, D̂2 and the parameters P′S,, P′T, can 

be obtained. In contrast, using two probing lasers of different wavelengths, P′S, and P′T, of each 

wavelength can be obtained, which enables to determine the Soret coefficient and thermodiffusion 

coefficient. From the definition of the P′S, and P′T,in Eqs. (2.31) and (2.32), the linear 

combinations can be described as Eqs. (2.43) and (2.44). 
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with 
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Since the elements of the matrix Nc can be measured by a refractometer, the Soret coefficients 

S′T,i and the thermodiffusion coefficients D′T,i can be calculated by Eqs. (2.43) and (2.44), 

respectively. Note that the measurement becomes difficult when the condition number of the 

matrix Nc is large (ill-conditioned) [135]. The Soret coefficient and thermodiffusion coefficient 

of the third (dependent) component can be obtained by Eq. (1.21). 

 After obtaining the values of D̂1, D̂2, S′T,i and D′T,i, the diffusion coefficients Dij are 

theoretically calculated with Eqs. (1.19), (1.20), (2.28) and (2.29) . 

 

 

2.4 Design of instrument for ternary systems 

 

In this section, the SFRS instrument for ternary systems newly designed to detect the mass 

transport simultaneously by two-wavelength lasers with wavelengths of  = 403 nm and  = 639 

nm will be presented. 

 

2.4.1 Selection of probing wavelengths 

In the previous study by the Nagasaka group [125], a red probing laser of with the wavelength of 

 = 632.8 nm and a green heating laser of = 514.5 nm were employed. The new instrument 

developed in this study for ternary systems is based on that instrument. As the heating laser, CW 

solid-state laser (Verdi G5 SLM, Coherent) with the wavelength of 531.8 nm, the maximum power 

of 5 W, and the beam waists of 2.39 mm (horizontal) and 2.17 mm (horizontal) was introduced in 
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this study. The narrow line width (within 5 MHz) of this laser enables easy formation of an almost 

ideal interference pattern with high visibility.  

 A red laser of  = 639 nm (OBIS637-140LX-HTK) was selected as one of the two 

probing lasers to inherit the experimental know-how of the instrument. After the following 

considerations, another probing laser of  = 403 nm (OBIS405-100LX-HTK) was selected from 

limited choices of commercially available laser wavelengths in visible light region (about 400–

800 nm). For example, continuous wave (CW) solid-state laser of OBIS LX/LS (Coherent) are 

available from UV to IR, with wavelengths at 375, 405, 413, 422, 445, 458, 473, 488, 505, 514, 

520, 532, 552, 561, 594, 637, 640, 647, 660, 685, 730, 785, 808 and 980 nm. 

 As the first thing to consider, the sensitivity of the detector strongly depends on the 

wavelength. The diffracted beam is typically very weak, and the sensitivity significantly affects 

the measurement. Photomultiplier tubes are employed in SFRS experiments to detect the 

diffracted beam of the probing laser because of their high sensitivity and quick responsiveness. 

Typical photomultiplier tubes for visible light show peak sensitivity around  = 400 nm. 

 Second, the absorption of the sample at the probing wavelength needed to be small, 

although the addition of the dye is necessary to convert the interference pattern of the heating 

laser to the temperature distribution. Absorption of the probing laser causes the temperature of 

the sample to rise at the laser spot, and reduces the intensity of the diffracted light. A sample 

including the dye (quinizarin) shows an absorption peak at around  = 470 nm (Figure 2.2). Thus, 

the wavelength in this strongly absorbing range should not be used as the probing laser. Note that 

it is not easy to find other suitable dye besides quinizarin. For example, dye which shows strong 

red fluorescence affects the measurement. 

 In addition, most importantly, two probing wavelengths should be separated to utilize 

the optical dispersion. When the difference of the contrast factors ∂n/∂ci by the two wavelengths 

is very small, the matrix Nc can become ill-conditioned. In this case, small error of the 

experimentally obtained parameters can generate large error of the Soret coefficient and the 

thermodiffusion coefficient. Therefore, the elements of matrix Nc significantly affect the 

reliability of measurement by the two-wavelength technique. From the Cauchy’s equation, which 

is an empirical relationship between the refractive index and wavelength in the visible wavelength 

region, the contrast factor is given by [136]: 
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where Ai and Bi are dispersion coefficients. As an example, the condition numbers of the ternary 

benchmark mixture of THN/IBB/nC12 for possible combinations of two wavelengths in visible 

light region were calculated as listed in Table 2.1. In this calculation, values of Ai and Bi from Ref. 

136 (listed in Table 2.2) were used. When the = 405 nm is selected as the second wavelength to 

be used with the first wavelength of = 639 nm, the smallest condition number of 78 was obtained. 

This value is as small as the condition number of 62 calculated for the most separated combination 

in visible light region  = 403 nm and = 785 nm. 

 

 

  

Figure 2.2: Absorption spectrum of the sample (binary benchmark mixture THN/nC12 with the 

dye of quinizarin).  
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Table 2.1: Condition numbers calculated for the ternary benchmark mixture of 

THN/IBB/nC12 with the mass fractions of 0.8/0.1/0.1. 

Wavelength 1, nm Wavelength 2, nm Condition number (1-norm), – 

639 403 78 

639 594 601 

639 660 1464 

639 785 267 

 

Table 2.2: Coefficients of dispersion equations for the ternary benchmark mixture of 

THN/IBB/nC12 with the mass fractions of 0.8/0.1/0.1 [136]. 

 Ai, – Bi, nm2 

∂n/∂c1 0.1291 6.092 × 103 

∂n/∂c2 0.0779 4.557 × 103 

 

 Accordingly, the wavelength of  = 403 nm was adopted as the second wavelength to 

take advantage of the optical dispersion and avoid the absorption peak of quinizarin. This choice 

is reasonable in terms of the sensitivity of the photomultiplier tubes. Although quinizarin has little 

absorption at  = 403 nm, this effect becomes negligible after introducing the “pulse probing” 

techinique (see Section 2.4.4 and 3.1.2). Note that the selected combination of  = 403 nm and 

639 nm is consequently almost identical to the two wavelengths of  = 405 nm and 637 nm 

employed in the OBD technique [58], and  = 405 nm and 633 nm in the TDFRS technique [121]. 

 

2.4.2 Optical system for simultaneous detection of two-wavelength signals 

A. Incidence angle of lasers 

The incident angle of the probing lasers B, should satisfy the Bragg condition, which depends 

on the wavelength of lasers [99]. 

 
1

B, sin
2
     
  . (2.47) 

The incident angle of the two heating laser beams h, which symmetrically enter to the normal 
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direction of the sample cell surface, is adjusted to satisfy the designed interference fringe spacing 

, 

 
1 h

h sin
2

     
  , (2.48) 

in which h is the wavelength of the heating laser. 

 Figure 2.3 shows the incident optical path to the sample cell designed for the typical 

fringe spacing of  = 5 m in SFRS experiments, in which the two probing lasers enter from 

opposite sides with respect to the normal vector. In addition, the use of a dichroic mirror, which 

reflects the heating laser and transmits the two probing lasers, enables alignment such that the 

three lasers can enter the sample cell simultaneously, although the difference in the incident angles 

of lasers is small.  

 

 

 

Figure 2.3: Incident beam path designed for simultaneous detection of two-wavelength signals. 
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Figure. 2.4: Soret forced Rayleigh scattering instrument developed for ternary systems. 

 

B. Optical system 

Figure 2.4 is a schematic of the designed instrument of the Soret forced Rayleigh scattering 

technique for ternary systems. 

 In the heating laser system, a Faraday isolator (FI-530-5SV; Qioptiq) is used to protect 

the heating laser with the wavelength of = 531.8 nm (Verdi G5 SLM; Coherent). Since the 

isolator rotates the polarization, a half-wavelength plate (#85-037; Edmund Optics) is employed 

to adjust the polarization to the specification of the acousto-optic modulator (M1133-aQ80L-2; 

Isomet), which generates the diffracted beam while the modulation voltage is applied. The 

diffracted beam from the acousto-optic modulator is split into two beams by a non-polarizing 

beamsplitter, and they interfere in the sample. The two heating beams symmetrically enter to the 

normal direction of the sample surface. The interference pattern is observed by the laser beam 

profiler with a resolution of 11.4 nm (NanoScan; Ophir). The sample in the quartz cell of the 0.5-
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mm optical path is mounted on the copper block cell holder [125], in which the water from the 

thermostat bath (NCB-3100; Tokyo Rikakikai) circulated. 

 The two probing lasers passing through the optical isolators (IO-5-405-LP/M and IO-3-

633-LP/M; Thorlabs) enter the sample under the Bragg condition. A dichroic mirror (#47-950; 

Edmund Optics) is used to reflect the heating laser and transmit the two probing lasers. To detect 

the diffracted beams of the two-wavelength probing lasers independently, the diffracted beams 

are aligned so as to enter the different photomultiplier tubes (R9110 for both beams; Hamamatsu 

Photonics), which were installed in the housings with the bandpass filters (FF01-400/40-25 and 

FF01-637/7-25; Semrock).  

 Although in the TDFRS instrument, the diffracted beam was detected after passing 

through a single-mode optical fiber [103], any fibers are not used here. The single-mode optical 

fiber is employed in the TDFRS technique to suppress incoherent background light, which is 

advantageous for heterodyne detection schemes [103]. Königer [121] reported that the lack of a 

single-mode fiber for = 405 nm might cause problems in two-color TDFRS experiments. The 

SFRS instrument for the direct (homodyne) detection scheme developed in this study is free from 

this problem because it was designed without fibers. 

 

2.4.3 Real-time observation and analysis 

A real-time observation and analysis for two-wavelength signals can be performed by this 

instrument. The signals are observed in real time by digital oscilloscopes (DPO3014 and 

TDS3032B; Tektronix). Variable gain current−voltage amplifiers (DLPCA-200; Femto) amplify 

the output current from the photomultiplier tubes. By connecting the output signals from two 

photomultiplier tubes to the multichannel oscilloscopes, the two-wavelength signals can be 

displayed simultaneously. Signals in the formation and relaxation processes are observed 

independently via the two oscilloscopes. This enables flexible settings of the intensity and time 

ranges of the oscilloscope for the relaxation signals. The S/N ratio of the relaxation signals are 

increased compared to the single oscilloscope observation of both the formation and relaxation 

process, because of the vertical resolution of the oscilloscope. Data analysis and control of the 

instruments, including the digital oscilloscopes and the function synthesizers, are carried out by 

LabVIEW software on a PC. In the SFRS technique, signal acquisition is carried out at intervals 
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of 4 s, and typically 16–100 signals are averaged to improve the S/N ratio. Measured values can 

be checked on a PC after every signal averaging and analysis. 

 

2.4.4 Control of probing time (pulsed probing) 

The sample with dye (quinizarin) shows little absorption at  = 403 nm (Figure 2.2). As Königer 

[121] pointed out, absorption of the CW probing laser could affect measurements. To reduce this 

effect, the irradiation time of the probing lasers can be controlled. Figure 2.5 shows an example 

of the timing chart for the output of function synthesizers, which control the heating and probing 

time. Output channel 1 of the function synthesizer 1 (WF1956; NF Corp.) is used to control the 

heating time. The irradiation time of the probing lasers are controlled by output channel 2 of 

function synthesizer 1, and the output of function synthesizer 2 (SG-4105; Iwatsu). The emission 

of the probing lasers begins before the heating, and ends after the observation of the mass 

diffusion. The effect of the pulsed probing will be described in the next chapter (Section 3.1.2). 

 

 

Figure. 2.5: Example of timing chart of function synthesizer output to control laser irradiation 

time. 
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3  
Validation of instrument by measurement of 

Soret coefficient in benchmark mixtures 
 

3.1  Binary benchmark mixtures 

 

Before moving on to experiments on ternary systems, measurements on the binary benchmark 

systems [32] were carried out by the apparatus developed in this study, which was presented in 

the previous chapter. The validity of the simultaneous detection of the two-wavelength signals by 

this instrument was evaluated by comparing the experimental result with the benchmark values, 

which were proposed by Platten et al. [32].  

 

3.1.1 Sample  

The binary benchmark mixtures were composed of 1,2,3,4-tetrahydronaphthalene (THN, >98%; 

Acros Organics), isobutylbenzene (IBB, 99.5%; Acros Organics), and n-dodecane (nC12, 99%; 

Acros Organics), with an equal mass fraction (c = 0.500). The chemical structures of components 

in benchmark mixtures are shown in Figure 3.1. The three components of the benchmark mixtures 

were chosen by Platten et al. [32] as the representative of hydrocarbons contained in petroleum 

reservoir (alkan, one-ring, and two-ring type). Because the Soret effect affects the spatial 

compositional distribution in an oil reservoir, the study of the Soret effect in this system has been 

motivated by the oil industry [32]. Note that crude oils contain thousands of different chemical 

compounds including alkanes, cycloalkanes, and aromatic hydrocarbons [137]. The chemical 

composition differs depending on producing regions, and aromatic hydrocarbons are usually less 

abundant than the saturated hydrocarbons [137]. Examples of the composition of crude oils are 

presented in Table 3.1.  
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Figure 3.1: Components of benchmark systems. 

 

 

Table 3.1: Composition of three crude oils [137]. 

Component Prudhoe Bay South Louisiana Kuwait 

Naphtha fraction (wt %) 23.2 18.6 22.7 

Alkanes 12.5 8.8 16.2 

Cycloalkanes 7.4 7.7 4.1 

Aromatic hydrocarbons 3.2 2.1 2.4 

Benzenes 0.3 0.2 0.1 

Touluene 0.6 0.4 0.4 

C8 aromatics 0.5 0.7 0.8 

C9 aromatics 0.06 0.5 0.6 

C10 aromatics – 0.2 0.3 

C11 aromatics – 0.1 0.1 

Indans – – 0.1 

High-boiling fraction (wt %) 76.8 81.4 77.3 

Saturates 14.4 56.3 34.0 

n-Alkans 5.8 5.2 4.7 

Isoalkans – 14.0 13.2 

1-ring cycloalkans 9.9 12.4 6.2 

2-ring cycloalkanes 7.7 9.4 4.5 

3-ring cycloalkans 5.5 6.8 3.3 

4-ring cycloalkans 5.4 4.8 1.8 

5-ring cycloalkans – 3.2 0.4 

6-ring cycloalkans – 1.1 – 
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Table 3.1: (Continued) 

Component Prudhoe Bay South Louisiana Kuwait 

Aromatic hydrocarbons (wt %) 25.0 16.5 21.9 

Benzenes 7.0 3.9 4.8 

Indans and tetralins – 2.4 2.2 

Dinaphthenobenzenes – 2.9 2.0 

Naphthalenes 9.9 1.3 0.7 

Acenapthenes – 1.4 0.9 

Phenanthrenes 3.1 0.9 0.3 

Acenaphthalenes – 2.8 1.5 

Pyrenes 1.5 – – 

Chrysenes – – 0.2 

Benzothiophenes 1.7 0.5 5.4 

Dibenzothiophenes 1.3 0.4 3.3 

Indanothiophenes – – 0.6 

Polar material (wt %) 2.9 8.4 17.9 

Insolubles 1.2 0.2 3.5 

 

 

 A small amount (c = 0.0004) of inert dye (quinizarin) was added in samples for 

absorption of the heating laser. The influence of the addition of quinizarin on experiments by the 

holographic grating technique was examined by Köhler et al. [103] and Niwa et al. [125], and it 

was found to be negligible. All chemicals were used without further purification.  

 

3.1.2 CW (continuous wave) and pulsed laser probing 

Simultaneous detection of two-wavelength signals was performed on one of the binary benchmark 

systems: THN/nC12 with the mass fraction of c = 0.500 at a temperature of T = 298.2 K. In the 

experiment, the fringe spacing was  = 4.93 m. Without controlling of the irradiation time of 

the probing lasers (CW probing), signals were obtained as shown in Figure 3.2. Detected signals 

were normalized by the intensity contributed by the formation of the temperature gratings. The 

difference of the normalized signals on the probing wavelengths in the Soret effect process were 

observed after the formation of temperature grating, which was due to the difference in the optical 
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contrast factors ∂n/∂ci and ∂n/∂T on the wavelength . 

 As mentioned in subsection 2.4.4, absorption of the probing laser could affect a 

measurement. The pulsed probing technique to reduce this problem was tested on the same sample 

used in the CW probing experiments (THN/nC12, c = 0.500, T = 298.2 K). The irradiation time 

of the probing lasers was controlled based on the timing chart shown in Figure 2.5: the irradiation 

started 10 ms before the heating, and ended 20 ms after the heating laser was switched off. The 

signals by the pulsed probing are shown in Figure 3.3. The Soret effect and the mass diffusion 

were observed, as in the case of the CW probing shown in Figure 3.2.  

 The effect of the pulsed probing was checked by the measurement of the mass diffusion 

coefficient. Here, only relaxation signals due to the mass diffusion were focused on, because the 

mass diffusion coefficient is obtained by the analysis of the relaxation signals before the analysis 

of the formation signals due to the Soret effect (see section 2.2). To evaluate the effect of the 

absorption of the probing laser, the dependency of the mass diffusion coefficient on the power of 

the probing laser was investigated. In the experiment, the power of the probing laser with  = 403 

nm was changed, while that of the other probing laser ( = 639 nm), which is hardly absorbed in 

 

 

Figure. 3.2: Simultaneously detected two-wavelength signals by CW probing for binary mixture 

of THN/nC12 (c = 0.500, T = 298.2 K). (a) Signals in formation and relaxation process; (b) Signals 

in formation process versus logarithmic time to clarify two modes.   
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Figure. 3.3: Simultaneously detected two-wavelength signals by pulsed probing for binary 

mixture of THN/nC12 (c = 0.500, T = 298.2 K). (a) Signals in formation and relaxation process; 

(b) Signals in formation process versus logarithmic time to clarify two modes.  

 

 

the sample, was fixed. The mass diffusion coefficients were obtained by the analysis of the mass 

diffusion signals based on Eq. (2.19). 

 As shown in Figure 3.4, the diffusion coefficient obtained by CW probing showed a 

positive trend with the increase of the probing power of  = 403 nm. Since the diffusion coefficient 

usually trends positive with a rise in temperature [1], this increase by CW probing is considered 

to be caused by the temperature rise at the laser spot, which is due to the absorption of the probing 

laser of  = 403 nm. On the other hand, the diffusion coefficient measured by pulsed probing was 

in excellent agreement as the probing power was changed. In addition, there was good agreement 

between the diffusion coefficients by the two probing lasers. Therefore, it is possible to reduce 

the effect of the absorption of the probing laser by controlling the probing time. From Eq. (2.5), 

temperature rise by the absorption of the probing laser of  = 403 nm was estimated to be within 

0.02 K, when the probing power density was 1.3 W/cm2 and the probing time was 30 ms. 
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Figure 3.4: Diffusion coefficient D measured by CW and pulsed probing on binary mixtures of 

THN/nC12 (c = 0.500, T = 298.2 K) with changing power density of a probing laser ( = 403 nm). 

Error bars are the standard deviation of measurement.  

 

 

3.1.3 Soret and mass diffusion signals 

Pulsed probing measurements were performed on the three binary benchmark mixtures, after 

confirming the effectiveness. Figure 3.5 compares the signals in the formation process of the three 

binary benchmark mixtures. Each signal acquisition was repeated 16 times and the signals were 

averaged to improve the S/N ratio. It was observed that the signals reflected the difference of the 

transport properties (D, ST) and the optical properties (∂n/∂T, ∂n/∂c) on samples. The Soret 

coefficient ST is related to the magnitude of the intensity change in the formation process. 

Before the signal analysis of the Soret signals in the formation process based on Eqs. 

(2.21) and (2.22), the mass diffusion part of the signals was analyzed by using Eq. (2.19) to obtain 

the mass diffusion coefficient. The examples of the mass diffusion signals are shown in Figure 

3.6. The fitting curves of the Soret signals were goodly agreed with the experimental data. The 

deviation was within 2% (Figure A.2 in Appendix). In the analysis, the part of the signals after 

0.1 ms from the start or end of the heating were analyzed to satisfy t  a for the fitting models 

of Eqs. (2.19) and Eqs. (2.21), (2.22).   
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Figure 3.5: 16 times averaged Soret signals of the binary benchmark mixtures at T = 298.2 K.  
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Figure 3.6: 16 times averaged mass diffusion signals of the binary benchmark mixtures at T = 

298.2 K.   
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3.1.4 Results of signal analysis 

Table 3.2 lists the measured values and the uncertainties of the mass diffusion coefficient, the 

Soret coefficient, and the thermodiffusion coefficient of the binary benchmark mixtures. The 

experimental results by the two-wavelength probing lasers in the present study were in excellent 

agreement: within 2.0% for the diffusion coefficient, 3.1% for the Soret coefficient, and 5.0% for 

the thermodiffusion coefficient. 

 

A. Evaluation of Uncertainties 

The standard uncertainties of the diffusion coefficient, the Soret coefficient, and the 

thermodiffusion coefficient were evaluated based on the Guide to the Expression of Uncertainty 

in Measurement (GUM) [130]. Since the diffusion coefficient D is represented by the fringe 

spacing Λ and the decay time constant of concentration τD in Eq. (2.10), the combined standard 

uncertainty of diffusion coefficient uc(D) is expressed by the law of propagation of uncertainty: 

 

2 2
2 2( ) ( ) ( )D D

c D
D

f f
u D u u


           

, (3.1) 

where fD = (1/D)·{Λ/(2π)}2 is the functional relationship between the measured D and the input 

quantities. The uncertainty of fringe spacing u(Λ) was estimated to be 9.32 nm from the resolution 

of the beam profiler and the variance of the measurement of Λ at the same condition. The 

uncertainty of the decay time constant of concentration grating u(D) was estimated from the 

variance of D obtained by the analysis of the mass diffusion signals at the same interference 

fringe Λ. Table 3.3 lists the uncertainty budgets for the mass diffusion coefficient measured by 

the probing laser of  = 403 nm (uncertainty budgets for  = 639 nm is listed in Table A.1 in 

Appendix). The uncertainties u(D) for THN/IBB and IBB/nC12 were larger than that for 

THN/nC12, which was due to the contribution of u(D) affected by the S/N ratio of the signals. It 

should be noted that u(D) can be reduced even further by increasing the number of repetitions for 

the signals averaging, which was only 16 times in the experiments. 

In the curve-fitting analysis of the formation signals to obtain the Soret coefficient based 

on Eqs. (2.21) and (2.22), the fitting programs evaluate the product of ST, c0(1–c0), ∂n/∂c, and 

(∂n/∂T)–1, which is defined as  in Eq. (3.2).  
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Table 3.2: Experimental result and standard uncertainties of diffusion coefficient D, Soret 

coefficient ST, and thermodiffusion coefficient DT of binary benchmark mixtures (c = 0.500) at T 

= 298.2 K. 

Sample 

, 

nm 

D,  

10–10 m2s–1 

u(D)a, 

10–10 m2s–1 

ST, 

10–3 K–1 

u(ST)a, 

10–3 K–1
 

DT, 

10–12 m2s–1K–1 

u(DT)a, 

10–12 m2s–1K–1
 

THN/ 

nC12 

403 6.58 0.03 

(0.4%) 

9.11 0.06 

(0.7%) 

5.99 0.05 

(0.8%) 

639 6.59 0.03 

(0.5%) 

9.21 0.06 

(0.7%) 

6.07 0.05 

(0.8%) 

THN/ 

IBB 

403 8.41 0.11 

(1.3%) 

3.20 0.03 

(0.8%) 

2.70 0.04 

(1.6%) 

639 8.26 0.09 

(1.1%) 

3.11 0.03 

(0.9%) 

2.57 0.04 

(1.4%) 

IBB/ 

nC12 

403 10.1 0.12 

(1.2%) 

3.92 0.04 

(0.9%) 

3.95 0.06 

(1.5%) 

639 9.89 0.06 

(0.6%) 

3.88 0.03 

(0.9%) 

3.84 0.04 

(1.0%) 

au(D), u(ST), and u(DT) are the standard uncertainties of the mass diffusion coefficient, the Soret coefficient, 

and the thermodiffusion coefficient in the measurement. 

 

Table 3.3: Uncertainty budgets for the mass diffusion coefficient in measurement of the binary 

benchmark mixtures (c = 0.500) by the probing laser of = 403 nm at T = 298.2 K. 

Sample 
Uncertainty  
element xi 

Value of xi u(xi) 
Sensitivity  
coefficient 

|cD|a 

Contribution to  
uncertainty of D 

|cD| × u(xi), 10–10 m2s–1 

THN/ 
nC12 

D 9.45 × 10–4 s 1.30 × 10–6 s 6.97 × 10–7 0.009 

 4.96 × 10–6 m 9.32 × 10–6 m 2.66 × 10–4 0.025 

     u(D) = 0.03 × 10–10 m2s–1 

THN 
/IBB 

D 7.40 × 10–4 s 9.52 × 10–6 s 1.13 × 10–6 0.108 

 4.96 × 10–6 m 9.32 × 10–6 m 3.39 × 10–4 0.032 

     u(D) = 0.11 × 10–10 m2s–1 

IBB/ 
nC12 

D 6.10 × 10–4 s 6.95 × 10–6 s 1.65 × 10–6 0.115 

 4.93 × 10–6 m 9.32 × 10–6 m 4.09 × 10–4 0.038 

     u(D) = 0.12 × 10–10 m2s–1 

aThe sensitivity coefficient cD denotes ∂fD/∂xi in Eq. (3.1) with the uncertainty element xi.  
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From Eq. (3.2), the Soret coefficient can be expressed as, 
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Considering the uncertainties of Γ, ∂n/∂c, and ∂n/∂T, the combined standard uncertainty of the 

Soret coefficient uc(ST) is expressed by Eq. (3.4). 
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where fs is the functional relationship between the measured ST and the input quantities. The 

uncertainties of c0 can be neglected. u() was estimated from the variance of  in the experiment. 

 In this study, the values of ∂n/∂T and ∂n/∂c measured by Gebhardt et al. [138] ( = 

405 nm, 633 nm) were used in the analysis of the formation signals. The wavelengths for the 

measurement of optical contrast factors in Ref. 138 are slightly different from the probing 

wavelengths of the instrument in this study, which might cause systematic errors. However, this 

can be ignored because the shift of optical contrast factors due to the deference of the wavelength 

in a few nanometers is estimated to be small [136] compared to the measurement uncertainties of 

the optical contrast factors. The uncertainties of the optical contrast factors are not presented in 

Ref. 138, but it was assumed that they were identical to the errors (4 × 10–4 for ∂n/∂c, and 2 × 

10–6 for ∂n/∂T) described in the paper by Wittko and Köhler [33], which reported the optical 

contrast factors of the benchmark mixtures measured by the same technique. 

 Table 3.4 lists the uncertainty budgets for the Soret coefficient measured by the probing 

laser of  = 403 nm (uncertainty budgets for  = 639 nm is listed in Table A.2 in Appendix). The 

contributions of ∂n/∂c and ∂n/∂T to u(ST) were comparable to that of u() which was evaluated 

by the experimental data of SFRS. Therefore, not only the performance of the SFRS apparatus 

but also the accuracy of the optical contrast factors are important to obtain the Soret coefficient 

with small uncertainties.  

 The uncertainty of the thermodiffusion coefficient DT = ST･D was calculated by the law 

of propagation of uncertainty. 

    2 2( )c T Tu D u D u S  . (3.5) 
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Table 3.4: Uncertainty budgets for the Soret coefficient in measurement of the binary benchmark 

mixtures (c = 0.500) by the probing laser of = 403 nm at T = 298.2 K. 

Sample 

Uncertainty  

element xi Value of xi u(xi) 

Sensitivity  

coefficient 

|cS|a 

Contribution to  

uncertainty of ST 

|cS| × u(xi), 10–3K–1  

THN/ 

nC12 

 –0.659 2.50 × 10–3 1.38 × 10–2 0.035 

∂n/∂c 0.1337b 0.0004c 6.81× 10–2 0.027 

∂n/∂T –4.62×10–4K– 1b 0.02×10–4 K–1 c 19.7 0.039 

     u(ST) = 0.06 × 10–3 K–1 

THN/ 

IBB 

 

 –0.0955 3.00 × 10–4 3.35 × 10–2 0.010 

∂n/∂c 0.0601b 0.0004c 5.33 × 10–2 0.021 

∂n/∂T –5.04×10–4 K–1 b 0.02×10–4 K–1 c 6.35 0.013 

     u(ST) = 0.03 × 10–3 K–1 

IBB/ 

nC12 

 

 –0.157 9.31 × 10–4 2.50 × 10–2 0.023 

∂n/∂c 0.0758b 0.0004c 5.17 × 10–2 0.021 

∂n/∂T –4.73×10–4 K–1 b 0.02×10–4 K–1 c 8.28 0.017 

     u(ST) = 0.04 × 10–3 K–1 

aThe sensitivity coefficient cS denotes ∂fS/∂xi in Eq. (3.4) with the uncertainty element xi. bThe optical 

contrast factors measured by Gebhardt et al. [138]. cThe uncertainties of the optical contrast factors were 

assumed to be identical to the errors reported by Wittko and Köhler [33]. 

 

 

 The experimental results indicated that the measurement of D, ST, and DT were 

performed with small uncertainties: the relative uncertainties were within 1.4%, 1.0%, and 1.6%, 

respectively. 

 

B. Comparison to benchmark values 

The experimental results of D, ST, DT are compared to the binary benchmark values [32] in Figures 

3.7–3.9. There was good agreement between the benchmark values and the experimental results 

in the present study. The experimental results on the binary benchmark mixtures showed that the 

simultaneous two-wavelength observation of the Soret effect and mass diffusion were reasonably 

performed.   



 

3. Validation of instrument by measurement of Soret coefficient in benchmark mixtures 
 

 

55 

 

Figure 3.7: Mass diffusion coefficient D of binary benchmark mixtures (c = 0.500) at T = 298.2 

K. (a) Absolute value. (b) Deviation between experimental result and benchmark value. Error bars 

for SFRS are standard uncertainties. 

 

 

Figure 3.8: Soret coefficient ST of binary benchmark mixtures (c = 0.500) at T = 298.2 K. (a) 

Absolute value. (b) Deviation between experimental result and benchmark value. Error bars for 

SFRS are standard uncertainties.  
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Figure 3.9: Thermodiffusion coefficient DT of binary benchmark mixtures (c = 0.500) at T = 

298.2 K. (a) Absolute value. (b) Deviation between experimental result and benchmark value. 

Error bars for SFRS are standard uncertainties.  

 

 

3.2  Ternary benchmark systems 

 

After confirming the validity of the simultaneous detection of two-wavelength signals by the 

developed instrument, experiments were carried out on the ternary benchmark mixture to evaluate 

the performance of the apparatus. 

 

3.2.1 Sample  

The ternary benchmark mixture was composed of 1,2,3,4-tetrahydronaphthalene (>98%; Acros 

Organics), isobutylbenzene (99.5%; Acros Organics), and n-dodecane (99%; Acros Organics), 

with mass fractions of c = 0.80, 0.10, and 0.10, respectively. The benchmark values were proposed 

by Bou-Ali et al. [62] for this ratio, which is a relatively well-conditioned composition for ODI 

technique [139] contributed to the benchmark campaign. Quinizarin with the mass fraction of c = 

0.0004 was added in a sample for laser absorption. These chemicals were used without further 

purification.   
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Figure 3.10: Simultaneously detected two-wavelength signals of ternary benchmark mixture 

THN/IBB/nC12 with mass fractions of 0.80/0.10/0.10 at T = 298.2 K. The signal intensity was 

normalized by the intensity of the temperature grating contribution. (a) Signals in formation and 

relaxation process; (b) Signals in formation process versus logarithmic time. 

 

 

3.2.2 Detected signals 

Figure 3.10 shows an example of simultaneously obtained two-wavelength signals of the ternary 

benchmark mixture, which were 16-times averaged. The differences in formation signals on the 

probing wavelength due to the difference of the optical contrast factors on the wavelength were 

observed, as in the case of binary benchmark mixtures. The Soret effect signals in the formation 

process have two modes caused by D̂1 and D̂2 for ternary systems (see Eq. (2.30)), but the detected 

signals showed the quasi-binary form with one mode, because the two eigenvalues are similar 

values (D̂1 = (5.48 ± 0.03) ×10–10 [m2s–1] and (D̂2 = 6.61 ± 0.03) ×10–10 [m2s–1] [62]) for the ternary 

benchmark mixture. 

 

3.2.3 Curve fitting 
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fitting analysis based on Eq. (2.40). Figure 3.11 shows an example of the mass diffusion signals 

and the fitting curves. The relaxation signals also showed the quasi-binary form and it was 

difficult to distinguish the two decaying time constants related to the diffusion eigenvalues. As 

discussed by Gebhardt and Köhler [59], the individual diffusion eigenvalues cannot be reliably 

obtained for mixtures of small molecules with similar diffusion eigenvalues, such as the ternary 

benchmark system. 

 The obtained diffusion eigenvalues D̂1 (= D̂2) of (5.91± 0.06) ×10–10 [m2s–1] for  = 403 

nm and (± 0.06) ×10–10 [m2s–1] for  = 639 nm in this study were comparable to the average of 

the benchmark values of two diffusion eigenvalues. When the fitting analysis was carried out 

using values of D̂1 and D̂2 fixed to be the benchmark values, the fitting curve also agreed with the 

detected signals (Figure 3.12). Therefore, reasonable mass diffusion signals were detected in the 

experiments, although the diffusion eigenvalues were not separately obtained. 

 

 
 

 

  

 

 

Figure 3.11: Mass diffusion signals and fitting curves of ternary benchmark mixture 

THN/IBB/nC12 with mass fractions of 0.80/0.10/0.10 at T = 298.2 K. Same values of eigenvalues 

D̂1 = D̂2 = 5.88 ×10–10 [m2s–1] for  = 403 nm and D̂1 = D̂2 = ×10–10 [m2s–1] for  = 639 nm 

were obtained by fitting analysis of presented signals. 
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Figure 3.12: Mass diffusion signals and fitting curves of ternary benchmark mixture 

THN/IBB/nC12 with mass fractions of 0.80/0.10/0.10 at T = 298.2 K. Fitting curves were 

obtained by analysis using the benchmark values [62] of the diffusion eigenvalues, D̂1 = 5.48 × 

10–10 [m2s–1] and D̂2 = 6.61 ×10–10 [m2s–1]. 

 

 

 Since the eigenvalues were not separately evaluated from the mass diffusion signals, the 

benchmark values of D̂1 and D̂2 were used for the analysis of the Soret effect signals of the ternary 

benchmark mixture in this study, although D̂1 and D̂2 obtained by the signals in relaxation process 
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of a polymer and two solvents (discussed in the next chapter). Such ternary mixtures can be 

measured by the SFRS instrument without requirement of the diffusion eigenvalues measured by 

other techniques, after the optical contrast factors are carefully obtained. 

 The fitting analysis of the Soret effect signals based on Eqs. (2.41) and (2.42) were 

carried out with the benchmark values of D̂1 and D̂2 [62], and the optical contrast factors of 
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0 0.002 0.004 0.006

2

4

6

6

8

10

12

14

Time (after end of heating), s

In
te

n
si

ty
, 

1
0−

9 
W

In
te

n
sity, 1

0
−

9 W

Detected signal ( = 403 nm)
Detected signal ( = 639 nm)
Fitting curve

0 0.002 0.004 0.006

−20

0

20

Time (after end of heating), s

D
e

vi
a

tio
n

, 
%



 

3. Validation of instrument by measurement of Soret coefficient in benchmark mixtures 
 

 

60 

[65]. As shown in Figure 3.13, the fitting curves goodly agreed with the experimental data. The 

parameters P′S, and P′T, obtained from the formation signals of the ternary benchmark mixtures 

are listed in Table 3.5. 

 

  

 

 

 

 

Figure 3.13: Soret effect signals and fitting curves of ternary benchmark mixture THN/IBB/nC12 

with mass fractions of 0.80/0.10/0.10 at T = 298.2 K.  

 

 

Table 3.5: Experimental result and standard uncertainties of parameters P′S, = (∂n/∂c1)S′T,1 + 

(∂n/∂c2)S′T,2 and P′T, = (∂n/∂c1)D′T,1 + (∂n/∂c2)D′T,2 of ternary benchmark mixture 

THN/IBB/nC12 with mass fractions of 0.80/0.10/0.10 at T = 298.2 K. 

Probing wavelength ,  

nm P′S,, 10–4 K–1 u(P′S,), 10–4 K–1 

P′T,,  

10–14 m2s–1K–1

u(P′T,),  

10–14 m2s–1K–1 

403 1.58 0.009 

(0.5%) 

9.59 0.07 

(0.7%) 

639 1.37 0.007 

(0.5%) 

8.28 0.06 

(0.7%) 
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 The combined standard uncertainty of P′S, is expressed by Eq. (3.6):  
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where fP is the functional relationship between P′S, and the uncertainty elements. uSD(P′S,) is the 

uncertainty due to the scattering of P′S, in the experimental trials, which is calculated by the 

standard deviation (SD) of P′S, (A-type evaluation [130]). The standard uncertainty u(P′T,) is 

described by almost the same equation (P′T, instead of P′S,). The standard uncertainties of P′S, 

and P′T, were estimated by taking into account relative uncertainties of 0.5% for u(D̂1) [62], 0.5% 

for u(D̂2) [62], 0.2% for u(), 0.4% for u(∂n/∂T) [33], 0.5% for uSD(P′S,), and 0.7% for uSD 

(P′T,). 

 

3.2.4 Soret coefficient and thermodiffusion coefficient 

With the values of experimentally obtained P′S, and P′T,, the Soret coefficient S′T,i and the 

thermodiffusion coefficient D′T,i were determined by Eqs. (2.43) and (2.44), respectively. The 

optical contrast factors ∂n/∂ci by Gebhardt and Köhler [65] were used in this calculation. From 

three possible choices of independent concentration variables, the combination of c1 = cnC12 and 

c2 = cTHN with the smallest condition number (2-norm) of 50 [65] was adopted.  

 Table 3.6 shows the experimental results of the Soret coefficient and thermodiffusion 

coefficient on the ternary benchmark mixture. Note that the thermodiffusion and Soret coefficients 

with a prime contain the concentration factor c1 × c2 [58]. Therefore, when comparing the absolute 

values of ST, DT in binary systems (Table 3.2) to S′T,i, D′T,i in ternary systems (Table 3.6), the 

binary Soret coefficient ST, and thermodiffusion coefficient DT should be converted using Eqs. 

(1.22) and (1.23). 
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Table 3.6: Experimental results and standard uncertainties of Soret coefficient S′T,i and 

thermodiffusion coefficient D′T,i of ternary benchmark mixture THN/IBB/nC12 with mass 

fractions of 0.80/0.10/0.10 at T = 298.2 K. 

Component i S′T,i, 10–3 K–1
 u(S′T,i), 10–3 K–1 D′T,i, 10–12 m2s–1K–1

 u(D′T,i), 10–12 m2s–1K–1 

1 (nC12) –0.83 0.16  

(19%) 

–0.54 0.11 

(20%) 

2 (THN) 1.14 0.26 

(23%) 

0.64 0.19 

(30%) 

3 (IBB) –0.30 0.30 

(100%) 

–0.095 0.22 

(232%) 

 

 

 The combined standard uncertainty of the Soret coefficient uc(S′T,i) for independent 

components of i = 1,2 (nC12 and THN) is expressed by 
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where fS is the functional relationship between the measured S′T,i and the uncertainty elements. 

The standard uncertainty of the thermodiffusion coefficient is described by almost the same 

equation (P′T, replaces P′S,). The combined standard uncertainties of the Soret coefficient uc(S′T,i) 

and the thermodiffusion coefficient uc(D′T,i) are not small (e.g., 23% for uc(S′T,THN) and 30% for 

uc(D′T,THN)), although in the measurement of the binary benchmark mixtures, the uncertainties of 

the Soret coefficient are within 1% (Table 3.2). The contributions of the uncertainty elements to 

the uncertainty of the Soret and thermodiffusion coefficients of THN are presented in Table 3.7 

(uncertainty budgets of S′T,i and D′T,i of nC12 and IBB are listed in Tables A.3 and A.4 in 

Appendix). The uncertainties of P′S, and P′T, and the optical contrast factors ∂n/∂ci were less 

than 1%, but rather large sensitivities produced uncertainties of S′T,i and D′T,i that were not small. 

Because the Soret coefficient and the thermodiffusion coefficient of the third components IBB 
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were obtained by Eq. (1.21), the uncertainties of them were evaluated using uncertainties for nC12 

and THN (Table A.4). This is why the uncertainties u(S′T,IBB) and u(D′T,IBB) were relatively large. It 

should be noted that small errors in uncertainty elements, including the optical contrast factors, 

can cause large uncertainties of S′T,i and D′T,i in the measurement of ternary systems with the two-

wavelength probing technique. 

 

 

Table 3.7: Uncertainty budgets for the Soret coefficient and thermodiffusion coefficient of 

1,2,3,4-tetrahydronaphthalene (THN) in measurement of the ternary benchmark mixture of 

nC12/THN/IBB with mass fraction c1 = cnC12 = 0.10 and c2 = cTHN = 0.80 at T = 298.2 K. 

Uncertainty 

element xi Value of xi u(xi) 

Sensitivity 

coefficient 

to S′T,THN 

cS,i
a 

Contribution 

to uncertainty 

of S′T,THN 

|cS,i| × u(xi), 

10–3 K–1 

Sensitivity 

coefficient 

to D′T,THN 

cT,i 

Contribution to 

uncertainty of 

D′T,THN 

|cT,i| × u(xi), 

10–12 m2s–1K–1 

∂n/∂c1 –0.1059 [65] 0.0004 [33] –0.142 0.06 –9.29×10–11 0.04 

∂n/∂c2 0.0609 [65] 0.0004 [33] 0.199 0.08 1.09×10–10 0.04 

∂n/∂c1 –0.0881 [65] 0.0004 [33] 0.170 0.07 1.12×10–10 0.05 

∂n/∂c2 0.0555 [65] 0.0004 [33] –0.239 0.10 –1.31×10–10 0.05 

P′S, 1.58 ×10–4 

(K–1) 

0.009 ×10–4 

(K–1) 

–172 0.15 – – 

P′S, 1.37 ×10–4 

(K–1) 

0.007 ×10–4 

(K–1) 

207 0.15 – – 

P′T, 9.59 ×10–14 

(m2s–1K–1) 

0.07 ×10–14 

(m2s–1K–1) 

– – –172 0.12 

P′T, 8.28 ×10–14 

(m2s–1K–1) 

0.06 ×10–14 

(m2s–1K–1) 

– – 207 0.12 

   uc(S′T,THN) 0.26 uc(D′T,THN) 0.19 

aThe sensitivity coefficient cS,i denotes ∂fS/∂xi in Eq. (3.7) with the uncertainty element xi. 
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 Figures 3.14 and 3.15 compares the ternary benchmark values and the experimental 

result. The values measured by the SFRS instrument in this study agreed with the benchmark 

values within 7.5% for the Soret coefficient, and 13% for the thermodiffusion coefficient. The 

results by the optical digital interferometry (ODI) [61], the optical beam deflection (OBD) [65], 

and the thermogravitational column (TGC) [66] are also plotted in Figures 3.14 and 3.15. Note 

that the error bars of the SFRS are the standard uncertainties evaluated based on GUM, while the 

experimental standard deviations were used for optical techniques of ODI [61] and OBD [65]. As 

for TGC [66], the uncertainties were determined by taking the errors of the experimental 

parameters such as the width of the gap in the column into account. Because the contribution of 

the uncertainties of optical contrast factors are not negligible in the two-wavelength scheme, the 

error bars for ODI and OBD are considered likely to increase when all dominant uncertainty 

elements are considered.  The experimental results in the present study agreed with the 

benchmark values within the range of the uncertainties, and the validity of the SFRS instrument 

developed for ternary systems was confirmed. 

 

  
 

Figure 3.14: Soret coefficient S′T,i of ternary benchmark mixtures of THN/IBB/nC12 with mass 

fractions of 0.80/0.10/0.10 at T = 298.2 K. Experimental results of this work (SFRS) are plotted 

with benchmark values [62]. Experimental results by the optical digital interferometry (ODI) [61], 

the optical beam deflection (OBD) [65], and the thermogravitational column (TGC) [66] are also 

plotted. Error bars of SFRS are standard uncertainties. 
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Figure 3.15: Thermodiffusion coefficient D′T,i of ternary benchmark mixtures of THN/IBB/nC12 

with mass fractions of 0.80/0.10/0.10 at T = 298.2 K. Experimental results of this work (SFRS) 

are plotted with benchmark values [62]. Experimental results by the optical digital interferometry 

(ODI) [61], the optical beam deflection (OBD) [65], and the thermogravitational column (TGC) 

[66] are also plotted. Error bars of SFRS are standard uncertainties. 
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4 
Measurement of Soret coefficient in ternary 

polymer solutions 
 

4.1  Sample 

 

As an application of the SFRS technique developed in this study, experiments were performed on 

the ternary polymer solutions of practical interest in engineering, which were composed of 

cellulose acetate butyrate (CAB), styrene monomer, and 2-butanone. CAB is widely used material 

for functional polymer films [125,128,129], and styrene monomer and 2-butanone are good 

solvents of CAB. The chemical structures of the components are shown in Figure 4.1. To prepare 

samples, commercially available CAB provided from Eastman Chemical (CAB-531-1, acetyl 

content of 2.8 wt%, butyryl content 50 wt%, and hydroxyl content 1.7 wt%) and small amount (c = 

0.0004) of quinizarin were dissolved by ultrasonication in solvents of styrene (Wako, 99.0%) and 

2-butanone (Wako, 99.0%). All chemicals were used without further purification. The weight-

average molecular weight Mw and the polydispersity Mw/Mn were measured by the gel permeation 

chromatography (GPC) and found to be Mw = 49900 and Mw/Mn = 2.91. In this study, several 

compositions of CAB/styrene/2-butanone with CAB mass fraction of cCAB = 0.10 at a temperature 

T = 298.2 K were investigated (Figure 4.2).  

                       

Figure 4.1: Components of ternary polymer solutions. 

Cellulose acetate 

butyrate (CAB) 

Styrene 

2-butanone 
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Figure 4.2: Compositions of ternary polymer solutions of CAB/styrene/2-butanone investigated 

in this work. 

 

 

4.2  Optical contrast factors 

 

As described in Chapter 2, optical contrast factors ∂n/∂ci, ∂n/∂T are needed to obtain the Soret 

coefficient.  

 

4.2.1 Concentration derivative and condition numbers 

In ternary mixtures, the refractive index with the small change of the mass fractions ci can be 

expressed by Eq. (4.1) [58]: 

 

2 1

1 1 2 2 1 2 1 2
1 2, , , ,

( , ) ( , )
p T c p T c

n n
n c c c c n c c c c

c c
   

    
           

. (4.1) 

The concentration derivatives ∂n/∂ci were determined by the measurement of the refractive index 

with one of the two independent concentration is fixed and the other is changed. For example, to 

determine ∂n/∂c1, c1 (and the dependent concentration c3) was changed, while c2 was fixed.  

 Refractive induces were measured at two wavelengths with a multi-wavelength Abbe 

refractometer (DR-M2, Atago). As the light source,  = 633 nm from a halogen lamp unit of the 

refractometer with an interference filter (RE-3526-2, Atago) and  = 401 nm from a laser diode 
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module (CPS405, Thorlabs) were employed. The results of the measurement of refractive index 

are listed in Table A.5 in Appendix. From the slope of the fitting curve in the graph of n vs ci 

shown in Figures A.3–A.5 in Appendix, ∂n/∂ci were determined as listed in Tables 4.1–4.3. 

Directions for (∂n/∂cstyrene)c_CAB,T,p, (∂n/∂cCAB)c_2-butanone,T,p, and (∂n/∂cCAB)c_styrene,T,p at the 

composition of cCAB = 0.1, cstyrene = 0.1, and c2-butanone = 0.8, as an example, are illustrated in Figure 

4.3. 

 

 

 

Figure 4.3: Directions for concentration derivatives ∂n/∂ci of CAB/styrene/2-butanone with the 

mass fractions of 0.1/0.1/0.8.   
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Table 4.1: Optical contrast factors (∂n/∂cstyrene)c_CAB,T,p of ternary polymer solutions of 

CAB/styrene/2-butanone at T = 298.2 K. 

   = 401 nm = 633 nm

cCAB cstyrene c2-butanone ∂n/∂cstyrene u(∂n/∂cstyrene)a ∂n/∂cstyrene u(∂n/∂cstyrene) 

0.10 0 0.90 0.1992 0.0022 0.1629 0.0016 

0.10 0.10 0.80 0.2014 0.0021 0.1642 0.0015 

0.10 0.20 0.70 0.2036 0.0022 0.1655 0.0016 

0.10 0.30 0.60 0.2058 0.0024 0.1668 0.0017 

0.10 0.40 0.50 0.2080 0.0027 0.1681 0.0019 

0.10 0.50 0.40 0.2102 0.0030 0.1694 0.0021 

0.10 0.60 0.30 0.2124 0.0033 0.1707 0.0023 

0.10 0.70 0.20 0.2146 0.0037 0.1720 0.0026 

0.10 0.80 0.10 0.2168 0.0040 0.1732 0.0029 

0.10 0.90 0 0.2190 0.0044 0.1745 0.0031 

au(∂n/∂cstyrene) is the standard uncertainties of the optical contrast factor. 

 

 

Table 4.2: Optical contrast factors (∂n/∂cCAB)c_styrene,T,p of ternary polymer solutions of 

CAB/styrene/2-butanone at T = 298.2 K.  

   = 401 nm = 633 nm

cCAB cstyrene c2-butanone ∂n/∂cCAB u(∂n/∂cCAB)a ∂n/∂cCAB u(∂n/∂cCAB) 

0.10 0 0.90 0.0829 0.0079 0.0819 0.0061 

0.10 0.10 0.80 0.0949 0.0075 0.0945 0.0034 

0.10 0.20 0.70 0.1044 0.0132 0.0991 0.0139 

0.10 0.30 0.60 0.1179 0.0165 0.1083 0.0090 

0.10 0.40 0.50 0.1208 0.0085 0.1100 0.0056 

0.10 0.50 0.40 0.1269 0.0105 0.1201 0.0077 

0.10 0.60 0.30 0.1333 0.0109 0.1214 0.0066 

0.10 0.70 0.20 0.1410 0.0135 0.1285 0.0132 

0.10 0.80 0.10 0.1362 0.0078 0.1222 0.0114 

0.10 0.90 0 – – – – 

au(∂n/∂cCAB) is the standard uncertainties of the optical contrast factor.   
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Table 4.3: Optical contrast factors (∂n/∂cCAB)c_2-butanone,T,p of ternary polymer solutions of 

CAB/styrene/2-butanone at T = 298.2 K.  

   = 401 nm = 633 nm

cCAB cstyrene c2-butanone ∂n/∂cCAB u(∂n/∂cCAB)a ∂n/∂cCAB u(∂n/∂cCAB) 

0.10 0 0.90 – – – – 

0.10 0.10 0.80 –0.1056 0.0032 –0.0721 0.0019 

0.10 0.20 0.70 –0.1082 0.0069 –0.0740 0.0065 

0.10 0.30 0.60 –0.0942 0.0071 –0.0643 0.0032 

0.10 0.40 0.50 –0.0917 0.0062 –0.0556 0.0139 

0.10 0.50 0.40 –0.0751 0.0017 –0.0478 0.0027 

0.10 0.60 0.30 –0.0750 0.0000 –0.0426 0.0057 

0.10 0.70 0.20 –0.0777 0.0213 –0.0503 0.0177 

0.10 0.80 0.10 –0.0728 0.0118 –0.0454 0.0108 

0.10 0.90 0 –0.0740 0.0203 –0.0478 0.0136 

au(∂n/∂cCAB) is the standard uncertainties of the optical contrast factor.  

 

 

 The elements of the matrix Nc defined in Eq. (2.45) are the optical contrast factors 

∂n/∂ci determined here. Nc is the coefficient matrix in the simultaneous linear equations of Eqs. 

(2.43) and (2.44) to determine the Soret coefficient and the thermodiffusion coefficient, 

respectively. The error amplification of the solution of a simultaneous linear equation Ncx = b can 

be estimated from the condition number of the matrix Nc [135]. In this case, the solution vector is 

x = t(S′T,1, S′T,2) or x = t(D′T,1, D′T,2) and the data vector is b = t(P′S,P′S,) or b = t(P′T,P′T,). 

The condition number of Nc is defined as Eq. (4.2) [65].  

 1cond( )  c c cN N N , (4.2) 

ǁ Nc ǁ is the spectral matrix norm of Nc. A problem of Ncx = b with a high condition number of Nc 

is said to be ill-conditioned, in which small errors in the data vector can cause significant errors 

of the solution vector. According to the estimation of Gebhardt and Köhler [65], the condition 

number (2-norm) should not significantly exceed 102. 

 Since there are three combinations of the independent mass fractions c1 and c2, the 

following three matrices can be constructed: 



 

4. Measurement of Soret coefficient in ternary polymer solutions 
 

 

71 

 
401 CAB 401 styrene

1
633 CAB 633 styrene

/ /

/ /

n c n c

n c n c

   


   
 
  

cN , (4.3) 

 401 CAB 401 2-butanone
2

633 CAB 633 2-butanone

/ /

/ /

n c n c

n c n c

   


   
 
  cN , (4.4) 

 
401 styrene 401 2-butanone

3
633 styrene 633 2-butanone

/ /

/ /

n c n c

n c n c

   


   
 
  

cN . (4.5) 

Nci with lowest condition number should be used to obtain the Soret coefficient and the 

thermodiffusion coefficient with small uncertainties. The calculated values of the condition 

number of the matrix are listed in Table 4.4 and compared in Figure 4.4. It was found that the 

condition number is minimum when c1 = cstyrene and c2 = c2-butanone are selected. In this case the 

condition numbers are lower than 21, and it can be said that the ternary systems of CAB/styrene/2-

butanone investigated in this study are not ill-conditioned. Note that the condition number (2-

norm) for ternary benchmark mixtures of THN/IBB/nC12 was 50 for  = 405 nm and 635 nm 

[65]. 

 

 

Table 4.4: Condition numbers (1-norm) of Nc for ternary polymer solutions of CAB/styrene/2-

butanone at T = 298.2 K. 

cCAB cstyrene c2-butanone 

Nc1 Nc2 Nc3 

c1 = cCAB,  

c2 = cstyrene 

c1 = cCAB,  

c2 = c2-butanone 

c1 = cstyrene,  

c2 = c2-butanone 

0.10 0 0.90 31 40 12 

0.10 0.10 0.80 39 41 14 

0.10 0.20 0.70 46 45 18 

0.10 0.30 0.60 48 29 15 

0.10 0.40 0.50 34 41 17 

0.10 0.50 0.40 44 29 16 

0.10 0.60 0.30 41 44 20 

0.10 0.70 0.20 47 41 20 

0.10 0.80 0.10 31 40 12 

0.10 0.90 0 39 41 14 
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Figure 4.4: Condition numbers (1-norm) of Nc for ternary polymer solutions of CAB/styrene/2-

butanone with cCAB = 0.10 at T = 298.2 K.  

 

 

Table 4.5: Optical contrast factors ∂n/∂T of ternary polymer solutions of CAB/styrene/2-

butanone at T = 298.2 K. 

   = 401 nm = 633 nm

cCAB cstyrene c2-butanone 
∂n/∂T,  

10–4K–1 

u(∂n/∂T)a, 

10–4K–1 

∂n/∂T,  

10–4K–1 

u(∂n/∂T), 

10–4K–1 

0.10 0 0.90 –5.36 0.10 –5.20 0.07 

0.10 0.10 0.80 –5.49 0.12 –5.25 0.06 

0.10 0.20 0.70 –5.50 0.07 –5.19 0.09 

0.10 0.30 0.60 –5.94 0.12 –5.44 0.12 

0.10 0.40 0.50 –5.88 0.06 –5.45 0.12 

0.10 0.50 0.40 –6.18 0.14 –5.50 0.06 

0.10 0.60 0.30 –5.80 0.10 –5.35 0.06 

0.10 0.70 0.20 –5.99 0.10 –5.42 0.08 

0.10 0.80 0.10 –6.06 0.10 –5.43 0.10 

0.10 0.90 0 –6.29 0.07 –5.61 0.07 

au(∂n/∂T) is the standard uncertainties of the optical contrast factor.   
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4.2.2 Temperature derivative 

To determine the temperature derivative ∂n/∂T of the ternary polymer solutions of 

CAB/styrene/2-butanone, the temperature dependence of the refractive index was measured with 

the Abbe refractometer within the temperature range of (283.2 to 313.2) K. The results of the 

measurement of refractive index are listed in Tables A.6 and A.7 in Appendix. From linear 

regression to the relationship between n and T, ∂n/∂T were determined as listed in Table 4.5. 

 

 

4.3  Result of measurements 

 

Two-wavelength signals of the ternary polymer solutions of CAB/styrene/2-butanone were 

detected by the experimental apparatus developed in this study at T = 298.2 K. Figure 4.5 

compares the normalized signals on the compositions. As the ratio of the mass fraction of styrene 

increased, the magnitude of intensity change in the Soret effect signals decreased and the slope 

turned to be negative.   
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Figure 4.5: Detected signals of CAB/styrene/2-butanone at T = 298.2 K. The mass fraction of 

CAB was fixed to be cCAB = 0.10 and the ratio of the solvents was changed. (a)  = 403 nm; (b)  

= 639 nm.  
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4.3.1 Analysis of mass diffusion signals in relaxation process 

Figure 4.6 shows examples of mass diffusion signals of the ternary polymer solutions of 

CAB/styrene/2-butane. Relaxation signals due to mass diffusion were observed except for 

samples with close mass fractions of two solvents (Figure 4.6(b)). Fitting analysis of the mass 

diffusion signals based on Eq. (2.40) was carried out to obtain the diffusion eigenvalues D̂1 and 

D̂2, whereas Eq. (2.19) was employed for the binary polymer solutions of CAB/styrene and 

CAB/2-butanone with cCAB=0.10. 

   

 

 

 

 
 

Figure 4.6: Example of mass diffusion signals of CAB/styrene/2-butanone at T = 298.2 K.  

(a) mass fractions of 0.10/0.30/0.60; (b) mass fractions of 0.1/0.50/0.40. 
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 Table 4.6 lists the result of fitting analysis, in which the two eigenvalues were obtained 

in different order: 10–10 [m2s–1] for D̂1 and 10–9 [m2s–1] for D̂2. The slower relaxation mode 

characterized by D̂1 can be attributed to mass diffusion of polymer into solvent, because obtained 

values of D̂1 were comparable to the binary mass diffusion coefficient listed in Table 4.7 and D̂1 

changed between the two mass diffusion coefficients, as shown in Figure 4.7. The faster mode 

characterized by another eigenvalue D̂2 can be attributed to mass diffusion of solvents. Note that 

the relaxation mode due to the heat diffusion was sufficiently faster than the two mass diffusion 

modes and it can be separated, as shown in Figure 4.8. Obtained value of D̂2 for cstyrene = 0.6 in 

Figure 4.7 may not seem to agree with the compositional tendency, which is probably due to the 

small intensity of the detected signals at this composition. 

 A fitting curve obtained by the analysis using the fitting model for binary systems Eq. 

(2.19) is also shown in Figure 4.8, which did not reproduce the faster mass diffusion mode 

characterized by D̂2. On the other hand, the fitting curve obtained using Eq. (2.40) agreed with 

the experimental data. Therefore, it was shown that the two mass diffusion modes due to D̂1 and 

D̂2, which are characteristic to ternary systems, was reasonably evaluated by the mass diffusion 

signals obtained by the experimental apparatus developed in this study.  

 

 

Table 4.6: Diffusion eigenvalues D̂i of CAB/styrene/2-butanone at T = 298.2 K. 

   D̂1, 10–10m2s–1 D̂2, 10–9m2s–1 

cCAB cstyrene c2-butanone  = 403 nm  = 639 nm  = 403 nm  = 639 nm 

0.10 0.10 0.80 1.72 ± 0.04a 1.74 ± 0.03 2.78 ± 0.21 2.75 ± 0.23 

0.10 0.20 0.70 1.67 ± 0.03 1.67 ± 0.04 2.62 ± 0.09 2.47 ± 0.18 

0.10 0.30 0.60 1.64 ± 0.06 1.61 ± 0.04 2.60 ± 0.08 2.43 ± 0.06 

0.10 0.40 0.50 – 1.54b – 2.25b 

0.10 0.60 0.30 – 1.46 ±0.02 – 2.28 ± 0.15 

0.10 0.70 0.20 1.22 ± 0.02 1.21 ± 0.02 1.37 ± 0.11 1.46 ± 0.23 

0.10 0.80 0.10 0.980 ± 0.012 0.969 ± 0.012 1.51 ± 0.06 1.61 ± 0.07 

aStandard deviation (SD) of measurement. bFitting result of one signal and SD is not described. 
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Table 4.7: Mass diffusion coefficient D of CAB/2-butanone and CAB/styrene at T = 298.2 K. 

   D, 10–10m2s–1 

cCAB cstyrene c2-butanone  = 403 nm  = 639 nm 

0.10 0 0.90 1.89 ± 0.05a 1.89 ± 0.02 

0.10 0.90 0 0.562 ± 0.028 0.571 ± 0.013 

aStandard deviation of measurement.  

 

 

 
 

 

 

Figure 4.7: Diffusion eigenvalues D̂i of CAB/styrene/2-butanone with cCAB = 0.10 at T = 298.2 

K. (a) D̂1 (mass diffusion coefficient D of CAB/Styrene and CAB/2-butanone are also plotted); 

(b) D̂2. Error bars are standard deviation of measurement.  
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Figure 4.8: Relaxation signal after the end of heating for CAB/styrene/2-butanone with mass 

fractions of 0.10/0.30/0.60 at T = 298.2 K detected by the probing laser of  = 403 nm. Relaxation 

mode due to heat diffusion can be separated from relaxation due to mass diffusion. Although 

fitting result using Eq. (2.19) for binary systems did not agree the mass diffusion signal, fitting 

result using Eq. (2.40) for ternary systems reproduced it. 

 

 

4.3.2 Analysis of Soret effect signals in formation process 

After the optical contrast factors and the diffusion eigenvalues were obtained, the Soret effect 

signals were analyzed based on Eqs. (2.41) and (2.42) for ternary polymer solutions. Since the 

diffusion eigenvalues were measured by the two probing lasers, average values of them were used 

in this analysis. The parameters P′S, and P′T, obtained from the Soret effect signals are listed in 

Table 4.8. The dependency of P′S, and P′T, on the composition is shown in Figures 4.9 and 4.10 

respectively. As described in section 2.3.1, P′S, and P′T, are related to the asymptotic plateau, 

and the initial slope in the formation process of the concentration grating. The signs and trends of 

P′S, and P′T, agreed with the appearance of the Soret effect signals shown in Figure 4.5. 
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Table 4.8: P′S, and P′T, of CAB/styrene/2-butanone at T = 298.2 K. 

   P′S,, 10–4K–1 P′T,, 10–13m2s–1K–1 

cCAB cstyrene c2-butanone  = 403 nm  = 639 nm  = 403 nm  = 639 nm 

0.10 0.10 0.80 3.96 ± 0.07a 3.89 ± 0.07 1.32 ± 0.07 1.39 ± 0.07 

0.10 0.20 0.70 2.86 ± 0.04 3.00 ± 0.02 1.35 ± 0.04 1.45 ± 0.04 

0.10 0.30 0.60 2.03 ± 0.12 2.22 ± 0.20 1.45 ± 0.09 1.37 ± 0.03 

0.10 0.40 0.50 0.76 ± 0.12 1.28 ± 0.14 0.839 ± 0.136 0.909 ± 0.107 

0.10 0.60 0.30 –1.81 ± 0.06 –0.542 ± 0.019 –0.125 ± 0.030 0.123 ± 0.022 

0.10 0.70 0.20 –2.90 ± 0.10 –1.66 ± 0.03 –0.574 ± 0.027 –0.302 ± 0.019 

0.10 0.80 0.10 –4.70 ± 0.11 –2.85 ± 0.03 –0.778 ± 0.046 –0.477 ± 0.038 

aStandard deviation of measurement. 

 

 

Figure 4.9: P′S, of CAB/styrene/2-butanone with cCAB = 0.10 at T = 298.2 K. Error bars are 

standard deviation of measurement. 
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Figure 4.10: P′T, of CAB/styrene/2-butanone with cCAB = 0.10 at T = 298.2 K. Error bars are 

standard deviation of measurement. 

 

4.3.3 Soret coefficient and thermodiffusion coefficient 

With the values of experimentally obtained P′S, and P′T,and optical contrast factors, the Soret 

coefficient S′T,i and the thermodiffusion coefficient D′T,i of the ternary polymer solutions were 

determined by Eqs. (2.43) and (2.44), respectively. Tables 4.9 and 4.10 lists S′T,i and D′T,i obtained 

in this study, and the compositional dependency of S′T,i and D′T,i is shown in Figures 4.11 and 4.12, 

respectively.  

 It should be noted that obtained values of S′T,i and D′T,i for the ternary systems (cstyrene = 

0.10–0.80 with cCAB = 0.10) were comparable to that for the binary systems (cstyrene = 0 with cCAB 

= 0.10 or cstyrene = 0.90 with cCAB = 0.10), despite the working equations to determine S′T,i and D′T,i 

are quite different between binary and ternary systems. It was found that the Soret coefficient S′T,i 

of CAB is positive and S′T,i of styrene and 2-butanone is negative for the investigated conpositions, 

which means that CAB is transported to the colder region and the two solvents are transported to 

the warmer region under a temperature gradient.   
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Table 4.9: Soret coefficient S′T,i of CAB/styrene/2-butanone at T = 298.2 K. 

   S′T,i, 10–3K–1 

cCAB cstyrene c2-butanone CAB styrene 2-butanone 

0.10 0 0.90 5.20 ± 0.26a – –5.20 ± 0.26 

0.10 0.10 0.80 3.88 ± 0.56 0.14 ± 0.28 –4.02 ± 0.28 

0.10 0.20 0.70 4.82 ± 0.30 –1.02 ± 0.17 –3.80 ± 0.14 

0.10 0.30 0.60 4.58 ± 1.09 –1.59 ± 0.59 –2.99 ± 0.51 

0.10 0.40 0.50 4.35 ± 1.00 –2.12 ± 0.60 –2.24 ± 0.41 

0.10 0.60 0.30 5.39 ± 0.23 –4.32 ± 0.17 –1.07 ± 0.06 

0.10 0.70 0.20 5.11 ± 0.57 –4.61 ± 0.42 –0.51 ± 0.17 

0.10 0.80 0.10 6.82 ± 0.97 –6.69 ± 0.68 –0.15 ± 0.29 

0.10 0.90 0 11.8 ± 0.42 –11.8 ± 0.42 – 

aStandard deviation of measurement. 

 

 

Table 4.10: Thermodiffusion coefficient D′T,i of CAB/styrene/2-butanone at T = 298.2 K. 

   D′T,i, 10–12m2s–1K–1 

cCAB cstyrene c2-butanone CAB styrene 2-butanone 

0.10 0 0.90 0.97 ± 0.04a – –0.97 ± 0.04 

0.10 0.10 0.80 1.87 ± 0.47 –0.23 ± 0.26 –1.64 ± 0.22 

0.10 0.20 0.70 2.50 ± 0.29 –0.59 ± 0.15 –1.91 ± 0.14 

0.10 0.30 0.60 1.56 ± 0.51 –0.18 ± 0.32 –1.37 ± 0.19 

0.10 0.40 0.50 1.61 ± 0.93 –0.52 ± 0.57 –1.09 ± 0.36 

0.10 0.60 0.30 1.35 ± 0.13 –0.92 ± 0.09 –0.43 ± 0.04 

0.10 0.70 0.20 1.26 ± 0.12 –1.08 ± 0.08 –0.19 ± 0.04 

0.10 0.80 0.10 1.13 ± 0.27 –1.11 ± 0.18 –0.02 ± 0.09 

0.10 0.90 0 0.75 ± 0.03 –0.75 ± 0.03 – 

aStandard deviation of measurement. 
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Figure 4.11: Soret coefficient S′T,i of CAB/styrene/2-butanone with cCAB = 0.10 at T = 298.2 K. 

Error bars are standard deviation of measurement. 

 

 

 

Figure 4.12: Thermodiffusion coefficient D′T,i of CAB/styrene/2-butanone with cCAB = 0.10 at T 

= 298.2 K. Error bars are standard deviation of measurement.  
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 From this result, the behavior of detected signals shown in Figure 4.5 can be interpreted. 

From Eq. (2.23), the amplitude of the refractive index distribution is expressed as Eq. (4.6), when 

c1 = cstyrene and c2 = c2-butanone. 

 styrene2-butanone

styrene 2-butanone
styrene 2-butanone , ,, ,

( ) ( ) ( )

( )

p T cp T c

n n
n t c t c t

c c

n
T t

T

 




    
           

    

 (4.6) 

Three terms on the right-hand side of Eq. (4.6) contribute to the signal intensity, which is 

proportional to the square of n(t). From the measurement of the refractive induces, the signs of 

the optical contrast factors were found: ∂n/∂cstyrene > 0, ∂n/∂c2-butanone < 0, and ∂n/∂T < 0. On the 

other hand, signs of cstyrene(t) and c2-butanone(t) are positive at the constructive interference regions 

of T(t) > 0, because S′T,styrene and S′T,2-butanone are negative. Therefore, the first, second and third 

term on the right-hand side of Eq. (4.6) are positive, negative, and negative, respectively. Note 

that the signs of two terms due to compositional changes are different. As shown in Figure 4.5, 

the intensity of the Soret effect signals increased when the ratio of c2-butanone was larger than that 

of cstyrene, because the contribution of the second term on the right-hand side of Eq. (4.6) was 

dominant. As the ratio of cstyrene increased, the contribution the first term on the right-hand side of 

Eq. (4.6) increased, which lead to the decrease of the intensity of the Soret effect signals. When 

the mass fractions of 2-butanone and styrene were close, the intensity change in the Soret effect 

signals was small because two compositional contributions to the contrast of the refractive index 

grating cancel each other. This caused the intensity of the mass diffusion signals to be small and 

difficult to analyze (Figure 4.6(b)). 

 The result of the measurement showed that the Soret coefficient of CAB is positive, 

which means CAB is transported to colder region under a temperature gradient. On the other hand, 

the Soret coefficient was found to be negative and changed from almost zero to the values of 

binary mixture composed of CAB and the solvent, as S′T,styrene and S′T,2-butanone compensate each 

other. As it is known that the Soret coefficient of the heavier component is typically positive in a 

binary liquid mixtures [3], this trend for a ternary system was experimentally confirmed by the 

measurement in this study.  

 Unfortunately, a theoretical description which can be conveniently compared with the 

experimental data in this study was not found. An attempt was made to examine the relationship 
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of the Soret coefficient S′T,i and the solubility parameters. The Hildebrand solubility parameter t 

is defined as the square root of the cohesive energy per unit volume [140]. By using Hansen 

parameters of d, p and h, the Hildebrand parameter is expressed as [140]: 

 2 2 2 2
t d p h      , (4.7) 

where d is the energy from dispersion forces, p is the energy from dipolar intermolecular force, 

and h is the enegy from hydrogen bonds. When the difference of each solubility parameter 

between the components of fluid is small, the components are more likely to dissolve into each 

other. On the other hand, the tendency to separate is large, when the difference of solubility 

parameters is large. In this case, intuitively, it is likely that the components easily separate in a 

temperature gradient, which corresponds to a large Soret coefficient [3]. As an actual example, 

Kita et al. [141] confirmed the positive correlation between the Hildebrand parameter and the 

Soret coefficient in the experiments on binary solutions of Poly(N-isopropylacrylamide) and 

alcohols. Table 4.11 lists the solubility parameters of CAB, styrene, and 2-butanone. The 

Hildebrand parameter of two solvents, styrene and 2-butanone, are same, which might be related 

to the small dependency of the Soret coefficient in Figure 4.11 on the compositional ratio of 

styrene and 2-butanone. Further systematic experiments are required to discuss more about the 

tendency of the Soret coefficient. 

 

Table 4.11: Solubility parameters of CAB, styrene, and 2-butanone. 

 MPa)1/2 dMPa)1/2 pMPa)1/2 hMPa)1/2

CAB 171a [142] 20.7 16.2 6.6 11.3 

Styrene [140] 19.0 18.6 1.0 4.1 

2-butanone [140] 19.0 16.0 9.0 5.1 

aAcetyl content of 29.5 wt%, butyryl content 17.0 wt%, and hydroxyl content 1.5 wt% 
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 In this chapter, the applicably and usefulness of the experimental apparatus developed 

in this study to the measurement of Soret coefficient in ternary polymer solutions was shown. 

Note that the Soret coefficient in ternary polymer solutions were obtained without the diffusion 

eigenvalues measured by other techniques, because two diffusion eigenvalues were separately 

obtained by the analysis of the mass diffusion signals. To the best of the author’s knowledge, three 

Soret coefficients in ternary polymer solutions of practical interest in engineering have been 

presented for the first time. It is expected that this technique can contribute to understanding 

unrevealed mass transport phenomena in multicomponent systems. 
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5 
Development of Infrared Soret forced 

Rayleigh scattering (IR-SFRS) apparatus 
 

5.1  Concept of IR-SFRS using CO2 laser 

In the previous chapters, it was shown that measurement of Soret coefficient in binary and ternary 

organic mixtures can be performed by using the inert dye of quinizarin to convert the interference 

pattern of the heating laser with  = 532 nm to the temperature grating. However, the situation is 

quite different in the measurement of aqueous systems, in which quinizarin is not be dissolved. 

Because absorption spectra due to dyes depend on pH, ionic strength, and other parameters, it is 

more difficult to find a suitable dye for aqueous systems [104].  

 Wiegand et al. [104] developed the thermal diffusion forced Rayleigh scattering setup 

for aqueous systems, employing a near infrared laser with the wavelength of = 980 nm. Due to 

the absorption of water, the use of a near-infrared laser as the heating laser enabled to create the 

temperature grating directly in a sample without dye. This technique, which is known as the 

infrared thermal diffusion forced Rayleigh scattering (IR-TDFRS), has been employed for the 

investigation of the Soret effect in various aqueous systems [111–120]. 

 In addition, an experimental apparatus based on the holographic grating technique 

employing a CO2 laser with the wavelength of  = 10.6 m as the heating laser was built in 

Nagasaka group [143]. This apparatus, called as the infrared Soret forced Rayleigh scattering (IR-

SFRS), was developed with the aim to measure of the mass diffusion coefficient of aqueous 

methanol solutions in polymer electrolyte membranes (PEMs) for direct methanol fuel cells 

(DMFCs). However, it was difficult to obtain reasonable signals due to the scattered light 

generated at the polycrystalline diamond window in the sample cell [143]. 

 Because IR-SFRS technique with a CO2 laser basically works on the same principle as 

the SFRS technique using the green laser of  = 532 nm described in the previous chapters, it has 

the potential to measure the Soret coefficient in aqueous systems. In addition, the use of a CO2 
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laser could enable the measurement of Soret coefficient in heavy water, which cannot be 

performed by the IR-TDFRS setup with the heating laser of  = 980 nm due to the absence of an 

absorption band [119]. Soret coefficient of protein in heavy water is important to examine solute-

solvent interactions based on the concept of “hydration layer changes upon bio-macromolecular 

complex formation probed by thermodiffusion” proposed by Neither et al. [119]. 

 This chapter will describe the development of IR-SFRS apparatus using a CO2 laser 

with the aim to measure the Soret coefficient in binary systems, as the first step to examine more 

complexed systems. 

 

 

5.2  Design of IR-SFRS apparatus 

 

5.2.1 Sample cell 

A. Selection of window materials 

In an IR-SFRS experiment, a quartz cell cannot be used as a sample cell, because the IR beam of 

the CO2 laser is absorbed by quartz. Therefore, development of a sample cell suitable for IR-

SFRS experiments was needed. Two optical windows were required to interpose aqueous solution 

samples between them in a sample cell. The window for the incidence side must transmit both the 

heating laser and the probing laser.  

 In the previous study in Nagasaka group [143], a polycrystalline diamond window was 

employed for the incidence side, but found it difficult to obtain reasonable signals due to the 

scattered light of probing beam of  = 661 nm generated at the window, as the scattered light 

coherent with the first order diffracted beam affected the signals.  

 A ZnSe window transmits both the IR heating laser and the red probing laser, but it 

reacts under an acidic environment. In this study, a single crystal diamond window was introduced 

as a window for the incidence side to reduce the effect of the scattered light. It was experimentally 

confirmed that the intensity of the scattered light with the single crystal diamond window was 

about 1/150 that of the polycrystalline diamond window, and was similar to a quartz glass window. 

In addition, a single crystal diamond window is stable under an acidic environment. 

 Although a glass window, which absorbs IR beams, is not suitable for the incidence side, 

it can be used as the exit side window. Figure 5.1 compares the appearance of the single crystal 
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diamond window, the polycrystalline diamond window, and the glass window. 

 

B. Configuration of sample cell 

Figure 5.2 shows the new sample cell designed by Daichi Tokuda (collaborator) to introduce the 

single crystal diamond window (145-500-0390, Element Six), which is 4.5 × 4.5 mm in size, and 

0.5-mm thick. The sample is interposed between a glass window and a single crystal diamond 

window, which was held in a Cu plate with a square hole. Silicone gaskets are used for sealing. 

This sample cell has a screw cap structure that is easy to assemble. The exit side parts such as the 

glass window had two holes in addition to a center hole for the optical path, so that the cell could 

be filled with the sample liquid after assembly. The sample cell is set on a copper mount that 

contained thermostatically controlled circulating water.  

 

 
Figure. 5.1: Appearance of optical windows. 

 

  

 

 

 

 

 

 

 

 

Figure. 5.2: Sample cell for IR-SFRS, in which a single crystal diamond window was employed 

as the incident side window (designed by collaborator Daichi Tokuda).  
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Figure. 5.3: Experimental apparatus of the infrared Soret forced Rayleigh scattering (IR-SFRS) 

technique. 

 

5.2.2 Optical system 

Figure 5.3 is a schematic of the experimental apparatus of the IR-SFRS technique designed and 

built for the homodyne (direct) detection scheme. As the heating laser, a variable-wavelength CO2 

laser (L20G, Access Laser Company) which emits beam of the wavelength of 9.183–9.733 m 

and 10.125–10.811m was employed. This laser was introduced to adjust the emitting 

wavelength to use the absorption range due to the CO stretching of methanol, for the measurement 

of mass diffusion coefficient of aqueous methanol solutions in PEMs. In this study, the heating 

wavelength of  = 9.714 m was selected after the consideration of the emitting power and the 

stability.  

 A half-wavelength plate (#85-123; Edmund Optics) was employed to adjust the 

polarization to the acousto-optic modulator (1209-7-1064M, anti-reflective coating for 9.7 m; 

Isomet), which generated the diffracted beam while the modulation voltage was applied to the 

driver (RFA241; Isomet). The diffracted beam from the acousto-optic modulator was split into 

two beams by a non-polarizing beamsplitter (PIB-5005Z; Lambda Research Optics). The two 

beams crossed in the sample. 

 The two heating laser beams entered symmetrically to the normal direction of the sample 

surface. The incident angle of the heating laser h was adjusted to satisfy the designed interference 

fringe spacing (typically about 30 m) based on Eq. (2.48). 

 A Faraday isolator (IO-3-633-LP/M; Thorlabs) was used to prevent backreflection into 

the probing laser (OBIS637-140LX-HTK) with the wavelength of  = 639 nm. The probing laser 
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entered the sample vertically, because the Raman-Nath condition for diffraction [144] was 

adopted in the IR-SFRS experiment due to the short absorption length (micrometer order) of the 

infrared heating laser; meanwhile, the Bragg condition was adopted in the SFRS apparatus using 

visible light lasers as described in Chapter 2. The first order diffracted beam was aligned so as to 

enter the photomultiplier tube (R9110; Hamamatsu Photonics), which was installed in the housing 

with a bandpass filter (FF02-632/22-25; Semrock).  

 A variable gain current–voltage amplifier (DLPCA-200; Femto) amplified the output 

current from the photomultiplier tube. The output signal was then observed in real time using 

digital oscilloscopes (DPO3014 and TDS3032B; Tektronix). Data analysis and control of the 

instruments, including the digital oscilloscopes, were carried out using LabVIEW software on a 

PC. 

 

 

5.3  Measurement of fringe spacing 

 

The interference pattern of the IR heating laser cannot be observed by a beam profiler for visible 

wavelengths. To determine fringe spacing the diffraction angle of the ±1st mode 1 was 

evaluated. The relationship between and 1 can be described as: 

 
p

1sin




  , (5.1) 

where p is the wavelength of the probing laser (p = 639 nm). 

 After the mirrors M1–M4 of the heating laser system and M5 and M6 of the probing 

laser system were aligned as shown in Figure 5.3, a 1-mm thick acrylic plate was mounted at the 

sample position. The interference grating was then written on the acrylic plate by the heating laser 

so that stationary emitted diffracted beams were observed. The distance between the 1st order and 

–1st order diffracted beams at each position from the acrylic plate was measured. The diffraction 

angle of the ±1st mode 1 is described as: 

 
1

1

/ 2
tan

l

L
     

 
, (5.2) 

where l is the distance between the ±1st order diffracted beams, and L is the distance from the 
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acrylic plate (Figure 5.4).  

 To determine the position of the diffracted beams, a probing needle (mechanical pencil 

lead with a diameter of0.2 mm) mounted on a manual linear translation stage was used. The 

position of the needle was adjusted so that its shadow on the screen was at the center of the 

diffracted beams. Figure 5.5 shows a typical measurement result of l/2 vs. L. From Eq. (5.2), the 

diffraction angle 1 was determined by the slope of the fitting line in Figure 5.5. In this case, 

fringe spacing  was determined to be 29.5 m from Eq. (5.1), with the standard uncertainty 

evaluated to be within 1.0%. 

 

 

Figure. 5.4: Measurement method to determine the diffraction angle of ±1st mode 1. After 

writing an interference grating in an acrylic plate by the heating laser, the distance between the 

±1st order diffracted beams l is measured. 

 

 
Figure. 5.5: A typical relationship of a half of the distance between the ±1st order diffracted 

beams l/2 and the distance between the acrylic plate and the probing needle L, which were 

measured to determine the fringe spacing . 
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5.4  Measurement of aqueous ethanol solution to confirm the validity 

 

Although there are no standard values or benchmark values of Soret coefficient in aqueous 

systems, some experimental data to be compared with are available for aqueous ethanol solutions 

[39,104]. Therefore, measurement of Soret coefficient of a binary aqueous ethanol solution was 

carried out to check the validity of the IR-SFRS apparatus developed in this study. The aqueous 

ethanol solution was composed of 10 wt% of ethanol (>99.5%, Wako) and 90 wt% of purified 

water (Wako). 

 Figure 5.6 shows the detected signal. The Soret effect was observed after the formation 

of the temperature gratings. Because the diffraction efficiency is proportional to the square of the 

amplitude of the refractive index distribution n(t) in the case of Raman-Nath diffraction [144], 

as in the case with the Bragg diffraction, detected signals can be analyzed using the working 

equations described in Chapter 2. Mass diffusion signals were analyzed based on Eq. (2.19) and 

the Soret effect signals were analyzed based on Eqs. (2.21) and (2.22), with the optical contrast 

factors measured by Königer et al. [39]: ∂n/∂c = 0.0700 and ∂n/∂T = –1.274 × 10–4 [K–1]. 

Fitting curves for both the mass diffusion signals and the Soret effect signals agreed with the 

detected signals with the deviation within 2%, as shown in Figures 5.7 and 5.8.  

 

Figure. 5.6: Detected signal of aqueous ethanol solution cethanol = 0.10 at T = 298.2 K. (a) Signals 

in formation and relaxation process; (b) Signals in formation process versus logarithmic time to 

clarify two modes. 
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Figure. 5.7: 16 times averaged mass diffusion signal and fitting curve of aqueous ethanol solution 

with cethanol = 0.10 at T = 298.2 K. 

 

 

 

 

 

Figure. 5.8: 16 times averaged Soret effect signal and fitting curve of aqueous ethanol solution 

with cethanol = 0.10 at T = 298.2 K.  
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Table 5.1: Experimental result and standard uncertainties of mass diffusion coefficient D, Soret 

coefficient ST, and thermodiffusion coefficient DT of binary aqueous ethanol solution (cethanol = 

0.10) at T = 298.2 K. 

 

D,  

10–10 m2s–1 

u(D)a, 

10–10 m2s–1 

ST, 

10–3 K–1 

u(ST)a, 

10–3 K–1
 

DT, 

10–12 m2s–1K–1 

u(DT)a, 

10–12 m2s–1K–1
 

This work 9.68 0.25 

(2.6%) 

6.86 0.14 

(2.0%) 

6.61 0.22 

(3.3%) 

Königer et al. [39] 9.60 – 6.75 – 6.48 – 

Wiegand et al. [104] 9.48 – 6.32 0.30 

(4.7%) 

5.99 – 

au(D), u(ST), and u(DT) are the standard uncertainties of the mass diffusion coefficient, the Soret coefficient, 

and the thermodiffusion coefficient in the measurement. 

 

 

 In Table 5.1, the mass diffusion coefficient D, the Soret coefficient ST, and the 

thermodiffusion coefficient DT obtained in this study are compared to the experimental data 

available on literature. They agreed well within the range of the uncertainties. Therefore, the 

validity of the IR-SFRS apparatus using a single crystal diamond window in the newly designed 

sample cell was confirmed for the measurement of Soret coefficient in binary aqueous solutions. 

 

 

5.5  Potential of IR-SFRS apparatus 

 

Although experiments were performed only on a binary aqueous ethanol solution by the IR-SFRS 

apparatus developed in this study, this technique has a potential to measure various aqueous 

solutions not only for binary systems, but also for ternary systems. Two wavelength detection 

scheme can be integrated to the IR-SFRS apparatus by adding another probing laser. Because 

addition of dye is not required in experiments by the IR-SFRS technique, the probing wavelength 

is not limited by the absorption spectrum of the dye. Therefore, IR-SFRS apparatus employing 

more than two probing wavelengths can be designed, which could reduce the uncertainties of the 

measurements. 

 The IR-SFRS technique also has a potential to investigate the Soret effect in membranes, 
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by utilizing its unique principle that both inducement and detection of the Soret effect and mass 

diffusion can be performed optically. For example, the Soret effect of aqueous alcohol solutions 

in polymer electrolyte membranes (PEMs), which is known as the thermo-osmosis [145], could 

be investigated.  
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6 
Conclusion 
 

As discussed in the introduction, mass transport phenomena including the Soret effect, which is 

driven by the temperature gradient, play significant roles in many natural systems and engineering 

processes. Since there is as yet no comprehensive microscopic description of the Soret effect in 

multicomponent liquid mixtures, gaining knowledge by experimental approaches is important. 

Compared to binary systems, the Soret effect in multicomponent systems composed of more than 

two component is poorly understood due to the complexity. 

 This study dealt with the development of the optical holographic grating technique 

which is called as the Soret forced Rayleigh scattering (SFRS). To measure the Soret coefficient 

in binary and ternary systems by the SFRS technique employing homodyne detection scheme, 

working equations were derived. It involved the application of the two-wavelength detection 

technique which utilizes the dependence of the refractive index on the wavelength. An 

experimental apparatus which enabled the simultaneous detection by two probing lasers was 

designed and built. As the wavelengths of the detection lasers, = 403 nm and = 639 nm were 

selected, whereas the heating laser of = 532 nm was employed to induce the Soret effect in a 

sample. By controlling the irradiation time of the probing lasers, the effect of absorption of the 

probing laser to the sample with dye (quinizarin), which is added to convert the interference 

pattern of the heating laser of= 532 nm to the temperature grating, can be reduced. 

 The result of the measurement of the Soret coefficient and the mass diffusion coefficient 

in binary benchmark mixtures composed of 1,2,3,4-tetrahydronaphthalene (THN), 

isobutylbenzene (IBB), and n-dodecane (nC12) showed that the simultaneous two-wavelength 

observation of the Soret effect and the mass diffusion were adequately performed. To evaluate the 

performance in the measurement of ternary systems, experiments were carried out on the ternary 

benchmark mixtures of THN/IBB/nC12 with the mass fractions of 0.800/0.100/0.100 at a 

temperature of 298.2 K. The Soret coefficient and thermodiffusion coefficient agreed with the 

ternary benchmark values within the range of the standard uncertainties (23% for the Soret 
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coefficient of THN and 30% for the thermodiffusion coefficient of THN). 

 After the validation, this technique was applied to the measurement of ternary polymer 

solutions composed of cellulose acetate butyrate (CAB), styrene, and 2-butanone at a temperature 

of 298.2 K. Before the SFRS experiments, the optical contrast factors were determined by the 

measurement of the refractive induces using a multi-wavelength Abbe refractometer. It was found 

that the condition numbers (1-norm) for CAB/styrene/2-butanone were lower than 21 and this 

system is not ill-conditioned. By analyzing the relaxation signals due to the mass diffusion, two 

diffusion eigenvalues were separately obtained. It was found that the Soret coefficients of CAB 

were positive and that of solvents were negative at examined compositions in which the mass 

fractions of CAB is 0.1. To the best of the author’s knowledge, three Soret coefficients in ternary 

polymer solutions of practical interest in engineering were presented for the first time. 

 Another experimental apparatus employing a CO2 laser as the heating laser was 

developed with the aim to measure the Soret coefficient in aqueous systems. This technique, 

called as the infrared Soret forced Rayleigh scattering (IR-SFRS), enables measurements without 

addition of dye to samples. As the incident side window in a newly designed sample cell, a single 

crystal diamond window, which transmits both the heating laser with the wavelength of = 9.714 

m and the probing laser with the wavelength of = 639 nm, was selected. The validity of the 

instrument for binary systems was confirmed by the measurement of the Soret coefficient of a 

binary aqueous ethanol solution with the mass fraction of ethanol 0.1 at a temperature 298.2 K.  

 In this thesis, two new experimental apparatus based on the SFRS technique were 

presented. The two-wavelength detection technique was successfully integrated to the first one, 

which enabled the measurement of the Soret coefficient in ternary systems by the SFRS technique. 

The development of another one with an infrared laser was started for the measurement of aqueous 

systems and validated for binary systems, as a first step. This IR-SFRS apparatus can be extended 

to measurement of ternary systems, by applying the two-wavelength detection scheme. Although 

the experimental techniques of the Soret coefficient in ternary systems were limited to three 

(thermogravitational column, optical beam deflection, optical digital interferometry) and they 

have both their advantages and drawbacks, the development of SFRS technique described in this 

thesis added another option to measure the Soret coefficient in multicomponent systems. By 

utilizing its unique principle, it is expected that the SFRS technique will be used as a helpful tool 

to examine Soret effect in complexed systems which were not accessed by other techniques, for 
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example, concentrated ternary polymer solutions with high viscosity or samples close to the 

critical point. Obtaining experimental data in wide temperature and concentration range by the 

SFRS technique should promote applications of the knowledge on the Soret effect to optimization 

of engineering processes such as solution casting for polymer films. In addition, systematic 

experiments by the SFRS technique will provide data to be compared with theoretical models. It 

would be interesting to apply the SFRS technique to the measurement of ternary solutions 

including polystyrene, which has been relativity well studied for binary systems.  
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Appendix 
  

A.1  Binary benchmark systems 

  

      

 

 

 

 

 

 

 

 

 

Figure A.1: Mass diffusion signals and fitting curves of the binary benchmark mixtures at T = 

298.2 K.  
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Figure A.2: Soret effect signals and fitting curves of the binary benchmark mixtures at T = 298.2 
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Table A.1: Uncertainty budgets for the mass diffusion coefficient in measurement of the binary 

benchmark mixtures (c = 0.500) by the probing laser of = 639 nm at T = 298.2 K. 

Sample 
Uncertainty  
element xi 

Value of xi u(xi) 
Sensitivity  

coefficient |cD| 

Contribution to  
uncertainty of D 

|cD| × u(xi), 10–10 m2s–1 

THN/ 
nC12 

D 9.43 × 10–4 s 2.45 × 10–6 s 6.99 × 10–7 0.017 

 4.96 × 10–6 m 9.32 × 10–6 m 2.66 × 10–4 0.025 

     u(D) = 0.03 × 10–10 m2s–1 

THN 
/IBB 

D 7.54 × 10–4 s 7.88 × 10–6 s 1.10 × 10–6 0.086 

 4.96 × 10–6 m 9.32 × 10–6 m 3.33 × 10–4 0.031 

     u(D) = 0.09 × 10–10 m2s–1 

IBB/ 
nC12 

D 6.22 × 10–4 s 2.66 × 10–6 s 1.59 × 10–6 0.042 

 4.93 × 10–6 m 9.32 × 10–6 m 4.01 × 10–4 0.037 

     u(D) = 0.06 × 10–10 m2s–1 

 

Table A.2: Uncertainty budgets for the Soret coefficient in measurement of the binary benchmark 

mixtures (c = 0.500) by the probing laser of = 639 nm at T = 298.2 K 

Sample 

Uncertainty  

element xi Value of xi u(xi) 

Sensitivity  

coefficient 

|cS| 

Contribution to  

uncertainty of ST 

|cS| × u(xi), 10–3K–1  

THN/ 

nC12 

 –0.599 2.38 × 10–3 1.54 × 10–2 0.037 

∂n/∂c 0.1155 0.0004 7.98× 10–2 0.032 

∂n/∂T –4.44 × 10–4 K–1 0.02 × 10–4 K–1 20.7 0.041 

     u(ST) = 0.06× 10–3 K–1 

THN/ 

IBB 

 

 –0.0889 3.35 × 10–4 3.50 × 10–2 0.012 

∂n/∂c 0.0547 0.0004 5.68 × 10–2 0.023 

∂n/∂T –4.78 × 10–4 K–1 0.02 × 10–4 K–1 6.50 0.013 

     u(ST) = 0.03× 10–3 K–1 

IBB/nC

12 

 

 –0.133 4.85 × 10–4 2.92 × 10–2 0.014 

∂n/∂c 0.0625 0.0004 6.21 × 10–2 0.025 

∂n/∂T –4.56 × 10–4 K–1 0.02 × 10–4 K–1 8.51 0.017 

     u(ST) = 0.03× 10–3 K–1 
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A2.  Measurement of ternary benchmark systems 

 

Table A.3: Uncertainty budgets for the Soret coefficient and thermodiffusion coefficient of n-

dodecane (nC12) in measurement of the ternary benchmark mixture of nC12/THN/IBB with mass 

fraction c1 = cnC12 = 0.100 and c2 = cTHN = 0.800 at T = 298.2 K. 

Uncertainty 

element xi Value of xi u(xi) 

Sensitivity 

coefficient 

to S′T,nC12 

cS,i
a 

Contribution 

to uncertainty 

of S′T,nC12 

|cS,i| × u(xi), 

10–3 K–1 

Sensitivity 

coefficient 

to D′T,nC12 

cT,i 

Contribution to 

uncertainty of 

D′T,nC12 

|cT,i| × u(xi), 

10–12 m2s–1K–1 

∂n/∂c1 –0.1059 [65] 0.0004 [33] –0.089 0.04 –5.85×10–11 0.02 

∂n/∂c2 0.0609 [65] 0.0004 [33] 0.125 0.05 6.88×10–11 0.03 

∂n/∂c1 –0.0881 [65] 0.0004 [33] 0.098 0.04 6.42×10–11 0.03 

∂n/∂c2 0.0555 [65] 0.0004 [33] –0.137 0.05 –7.55×10–11 0.03 

P′S, 1.58 ×10–4 

(K–1) 

0.009 ×10–4 

(K–1) 

–108 0.09 – – 

P′S, 1.37 ×10–4 

(K–1) 

0.007 ×10–4 

(K–1) 

119 0.08 – – 

P′T, 9.59 ×10–14 

(m2s–1K–1) 

0.07 ×10–14 

(m2s–1K–1) 

– – –108 0.07 

P′T, 8.28 ×10–14 

(m2s–1K–1) 

0.06 ×10–14 

(m2s–1K–1) 

– – 119 0.07 

   uc(S′T,nC12) 0.16 uc(D′T,nC12) 0.11 

aThe sensitivity coefficient cS,i denotes ∂fS/∂xi in Eq. (3.7) with the uncertainty element xi. 
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Table A.4: Uncertainty budgets for the Soret coefficient and thermodiffusion coefficient of 

isobutylbenzene (IBB) in measurement of the ternary benchmark mixture of nC12/THN/IBB with 

mass fraction c1 = cnC12 = 0.100 and c2 = cTHN = 0.800 at T = 298.2 K. 

Uncertainty 

element xi Value of xi u(xi) 

Sensitivity 

coefficient 

to S′T,IBB 

cS,i
a 

Contribution 

to uncertainty 

of S′T,IBB 

|cS,i| × u(xi), 

10–3 K–1 

Sensitivity 

coefficient 

to D′T,IBB 

cT,i 

Contribution to 

uncertainty of 

D′T,IBB 

|cT,i| × u(xi), 

10–12 m2s–1K–1 

S′T,nC12 –0.83 ×10–3 

(K–1) 

0.16 ×10–3 

(K–1) 

1 0.16 – – 

S′T,THN 1.14 ×10–3 

(K–1) 

0.26 ×10–3 

(K–1) 

1 0.26 – – 

D′T,nC12 –0.54 ×10–12 

(m2s–1K–1) 

0.11 ×10–12 

(m2s–1K–1) 

– – 1 0.11 

D′T,THN 0.64×10–12 

(m2s–1K–1) 

0.19 ×10–12 

(m2s–1K–1) 

– – 1 0.19 

   uc(S′T,IBB) 0.30 uc(D′T,IBB) 0.22 

aThe sensitivity coefficient cS,i denotes ∂fS/∂xi in Eq. (3.7) with the uncertainty element xi. 
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A3. Measurement of refractive indecus of ternary polymer solutions 

 

Table A.5: Refractive induces of CAB/styrene/2-butanone measured at T = 298.2 K. 

cCAB cstyrene c2-butanone 
 = 

401 nm 

 = 

633 nm 
cCAB cstyrene c2-butanone 

 = 

401 nm 

 = 

633 nm 

0 0.000 1.000 1.3895 1.3753 0.100 0 0.900 1.3962 1.3826 

0 0.100 0.900 1.4078 1.3899 0.100 0.100 0.800 1.4160 1.3987 

0 0.200 0.800 1.4270 1.4062 0.100 0.200 0.700 1.4361 1.4150 

0 0.300 0.700 1.4457 1.4212 0.100 0.300 0.600 1.4571 1.4317 

0 0.400 0.600 1.4663 1.4383 0.100 0.399 0.501 1.4772 1.4486 

0 0.500 0.500 1.4866 1.4538 0.100 0.500 0.400 1.4987 1.4654 

0 0.600 0.400 1.5061 1.4704 0.100 0.600 0.300 1.5188 1.4823 

0 0.700 0.300 1.5265 1.4863 0.100 0.700 0.200 1.5413 1.5000 

0 0.800 0.200 1.5487 1.5049 0.100 0.800 0.100 1.5631 1.5174 

0 0.900 0.100 1.5694 1.5213 0.100 0.900 0 1.5837 1.5337 

0 1.000 0 1.5908 1.5386 0.150 0.000 0.850 1.4011 1.3868 

0.050 0.000 0.950 1.3917 1.3783 0.150 0.100 0.750 1.4210 1.4036 

0.050 0.100 0.850 1.4115 1.3944 0.150 0.200 0.650 1.4411 1.4197 

0.050 0.200 0.750 1.4305 1.4099 0.150 0.300 0.550 1.4625 1.4370 

0.050 0.300 0.650 1.4509 1.4264 0.150 0.400 0.450 1.4831 1.4537 

0.050 0.400 0.550 1.4719 1.4432 0.150 0.500 0.350 1.5048 1.4711 

0.050 0.500 0.450 1.4922 1.4595 0.150 0.600 0.250 1.5259 1.4882 

0.050 0.600 0.350 1.5133 1.4766 0.150 0.700 0.150 1.5479 1.5055 

0.050 0.700 0.250 1.5349 1.4940 0.150 0.800 0.050 1.5693 1.5230 

0.050 0.800 0.150 1.5560 1.5106 0.150 0.850 0 1.5794 1.5311 

0.050 0.950 0.00 1.5877 1.5364 0.20 0.00 0.80 1.4059 1.3918 
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Table A.5: continued. 

cCAB cstyrene c2-butanone 
 =  

401 nm 

 =  

633 nm 
cCAB cstyrene c2-butanone 

 = 

 401 nm 

 =  

633 nm 

0.200 0.100 0.70 1.4273 1.4092 0.25 0.50 0.25 1.5200 1.4850 

0.200 0.200 0.60 1.4473 1.4254 0.25 0.60 0.15 1.5409 1.5019 

0.200 0.300 0.50 1.4681 1.4423 0.25 0.70 0.05 1.5623 1.5192 

0.200 0.400 0.40 1.4911 1.4607 0.25 0.75 0.00 1.5727 1.5270 

0.200 0.5000 0.30 1.5115 1.4776 0.30 0.00 0.70 1.4180 1.4037 

0.200 0.600 0.20 1.5327 1.4944 0.30 0.10 0.60 1.4386 1.4201 

0.200 0.7000 0.10 1.5545 1.5120 0.30 0.20 0.50 1.4609 1.4382 

0.200 0.800 0.00 1.5761 1.5292 0.30 0.30 0.40 1.4838 1.4571 

0.250 0.000 0.75 1.4111 1.3967 0.30 0.40 0.30 1.5048 1.4738 

0.250 0.100 0.65 1.4320 1.4142 0.30 0.50 0.20 1.5257 1.4906 

0.250 0.200 0.55 1.4555 1.4335 0.30 0.60 0.10 1.5465 1.5076 

0.250 0.300 0.45 1.4780 1.4503 0.30 0.70 0.00 1.5661 1.5230 

0.250 0.400 0.35 1.4977 1.4670 – – – – – 

 

 

Figure A.3: Refractive index vs cstyrene for CAB/styrene/2-butanone at T = 298.2 K (cCAB is fixed). 
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Figure A.4: Refractive index vs cCAB for CAB/styrene/2-butanone at T = 298.2 K (cstyrene is fixed). 

 

 

Figure A.5: Refractive index vs cCAB for CAB/styrene/2-butanone at T = 298.2 K (c2-butanone = 

cMEK is fixed). 
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Table A.6: Temperature dependence of refractive induces of CAB/styrene/2-butanone ( = 401 

nm). 

   Temperature, K 

cCAB cstyrene c2-butanone 283.2 288.2 293.2 298.2 303.2 308.2 313.2 

0.10 0 0.90 1.4041 1.4015 1.3991 1.3962 1.3935 1.3909 1.3880 

0.10 0.10 0.80 1.4243 1.4217 1.4189 1.4160 1.4131 1.4108 1.4079 

0.10 0.20 0.70 1.4446 1.4413 1.4387 1.4361 1.4337 1.4304 1.4279 

0.10 0.30 0.60 1.4659 1.4622 1.4594 1.4571 1.4538 1.4507 1.4477 

0.10 0.40 0.50 1.4866 1.4834 1.4798 1.4772 1.4744 1.4717 1.4687 

0.10 0.50 0.40 1.5077 1.5036 1.5006 1.4987 1.4948 1.4921 1.4884 

0.10 0.60 0.30 1.5286 1.5260 1.5222 1.5188 1.5167 1.5141 1.5113 

0.10 0.70 0.20 1.5500 1.5470 1.5438 1.5413 1.5377 1.5349 1.5321 

0.10 0.80 0.10 1.5718 1.5684 1.5656 1.5631 1.5598 1.5564 1.5534 

0.10 0.90 0 1.5932 1.5898 1.5872 1.5837 1.5805 1.5775 1.5743 

 

Table A.7: Temperature dependence of refractive induces of CAB/styrene/2-butanone ( = 633 

nm). 

   Temperature, K 

cCAB cstyrene c2-butanone 283.2 288.2 293.2 298.2 303.2 308.2 313.2 

0.10 0 0.90 – 1.3873 1.3851 1.3826 1.3798 1.3770 1.3745 

0.10 0.10 0.80 1.4063 1.4040 1.4017 1.3987 1.3956 1.3937 1.3907 

0.10 0.20 0.70 1.4226 1.4200 1.4176 1.4150 1.4125 1.4100 1.4068 

0.10 0.30 0.60 1.4399 1.4363 1.4343 1.4317 1.4288 1.4260 1.4233 

0.10 0.40 0.50 1.4567 1.4537 1.4510 1.4486 1.4455 1.4428 1.4403 

0.10 0.50 0.40 1.4735 1.4701 1.4675 1.4654 1.4623 1.4599 1.4564 

0.10 0.60 0.30 1.4905 1.4883 1.4851 1.4823 1.4797 1.4773 1.4747 

0.10 0.70 0.20 1.5076 1.5049 1.5024 1.5000 1.4965 1.4940 1.4915 

0.10 0.80 0.10 1.5250 1.5221 1.5198 1.5174 1.5144 1.5114 1.5086 

0.10 0.90 0 1.5423 1.5393 1.5369 1.5337 1.5309 1.5283 1.5255 
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Figure A.6: Temperature dependence of refractive index of CAB/styrene/2-butanone (cCAB = 

0.10). 
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