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ABSTRACT
Introduction: The approved analgesic and anti-
inflammatory drugs ibuprofen and indometacin block
the small GTPase RhoA, a key enzyme that impedes
axonal sprouting after axonal damage. Inhibition of the
Rho pathway in a central nervous system-effective
manner requires higher dosages compared with
orthodox cyclooxygenase-blocking effects. Preclinical
studies on spinal cord injury (SCI) imply improved
motor recovery after ibuprofen/indometacin-mediated
Rho inhibition. This has been reassessed by a meta-
analysis of the underlying experimental evidence,
which indicates an overall effect size of 20.2%
regarding motor outcome achieved after ibuprofen/
indometacin treatment compared with vehicle controls.
In addition, ibuprofen/indometacin may also limit
sickness behaviour, non-neurogenic systemic
inflammatory response syndrome (SIRS), neuropathic
pain and heterotopic ossifications after SCI.
Consequently, ‘small molecule’-mediated Rho inhibition
after acute SCI warrants clinical investigation.
Methods and analysis: Protocol of an investigator-
initiated clinical open-label pilot trial on high-dose
ibuprofen treatment after acute traumatic, motor-
complete SCI. A sample of n=12 patients will be
enrolled in two cohorts treated with 2400 mg/day
ibuprofen for 4 or 12 weeks, respectively. The primary
safety end point is an occurrence of serious adverse
events, primarily gastroduodenal bleedings. Secondary
end points are pharmacokinetics, feasibility and
preliminary effects on neurological recovery, neuropathic
pain and heterotopic ossifications. The primary safety
analysis is based on the incidence of severe
gastrointestinal bleedings. Additional analyses will be
mainly descriptive and casuistic.
Ethics and dissemination: The clinical trial protocol
was approved by the responsible German state Ethics
Board, and the Federal Institute for Drugs and Medical
Devices. The study complies with the Declaration of
Helsinki, the principles of Good Clinical Practice and all
further applicable regulations. This safety and
pharmacokinetics trial informs the planning of a
subsequent randomised controlled trial. Regardless of
the result of the primary and secondary outcome
assessments, the clinical trial will be reported as a
publication in a peer-reviewed journal.

Trial registration number: NCT02096913;
Pre-results.

INTRODUCTION
At present, the effective pharmacological
treatment of acute traumatic spinal cord
injury (SCI) is an unmet medical need.1 The
current opportunities for restitution of
neurological function after SCI are limited to
early surgical decompression, stabilisation,
intensive care, rehabilitation and the preven-
tion or therapy of SCI-specific sequelae.2

Neuroprotective or plasticity-enhancing ther-
apies are under investigation in preclinical
studies and early-phase clinical trials. As yet,
however, none of these approaches could be
translated into clinical routine.2–4

A major reason for the poor prognosis of
central nervous system (CNS) injury is the
incapacity of axons to regrow within the

Strengths and limitations of this study

▪ The SCISSOR study is the first clinical trial on
high-dose application of the globally approved
non-steroidal anti-inflammatory drug (NSAID)
ibuprofen as a ‘small-molecule’ Rho inhibitor
after acute traumatic spinal cord injury (SCI)
within a concept of drug repurposing.

▪ Preclinical evidence for recovery-enhancing
effects of ibuprofen-mediated Rho inhibition after
SCI has been corroborated by systematic review
and meta-analysis.

▪ Limitations of this pilot study inherent to a
phase I trial are small sample size, the lack of a
placebo control group and a relatively wide time
frame for inclusion.

▪ The results of the SCISSOR trial might inform an
interim bed to bench-side translation and subse-
quent randomised controlled trials.
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CNS. Molecular barriers preventing axonal regeneration
after SCI are situated in the environment of the injured
axon, that is, in the scar tissue and myelin or myelin
debris.5 6 The molecules such as chondroitin sulfate pro-
teoglycans (CSPGs), Nogo-A, myelin-associated glycopro-
tein (MAG), oligodendrocyte-myelin glycoprotein
(OMgp), ephrins and repulsive guidance molecule A
(RGMa) are upregulated after CNS injury and interfere
with a repertoire of cognate receptors on the axon mem-
brane as reviewed elsewhere.6 7 Signals from those recep-
tors converge on the Rho pathway. The small GTPase
RhoA is a key molecule in a pathway which, once acti-
vated, leads to the collapse of axonal growth cones and
consequently to the failure of axonal plasticity or regen-
eration.8 Furthermore, myelin debris inhibits the differ-
entiation of oligodendrocyte precursor cells partially
dependent on RhoA-associated pathways9 and thus may
prevent remyelination of spared axons.
Therefore, the Rho pathway constitutes a target for

treatments aiming to overcome molecular obstacles to a
restoration of neuronal connectivity and subsequent
functional recovery. The inhibition of Rho or the
downstream-located Rho-associated coiled kinase (ROCK)
has been demonstrated to foster axonal sprouting or plas-
ticity,10–23 to have neuroprotective effects,10 11 13 14 20 24 25

to promote oligodendrocyte precursor cell differenti-
ation9 or remyelination25 and to enhance neurological
recovery10 11 13 16 18–20 22–24 26 after acute SCI (figure 1).
These findings are backed up with evidence from other
experimental CNS injury conditions as reviewed else-
where.7 27 The reported effects of various Rho/
ROCK-blocking approaches on open-field motor recovery
after experimental SCI have been reassessed by a system-
atic review and meta-analysis including correction for
publication bias.28 Specific Rho inhibition mediated by
the Clostridium botulinum-derived enzyme C3 transferase,
also referred to as BA-210 or Cethrin,29 has been studied
in a recently completed phase I/IIa clinical trial. The
investigators concluded that topically applied BA-210 is
safe and is associated with favourable neurological
outcome.30 However, a confirmatory phase III trial has
not yet been conducted.
Over the last decade, upcoming evidence has assigned

a subset of non-steroidal anti-inflammatory drugs
(NSAIDs) to the group of unspecific Rho inhibitors.
The Food and Drug Administration (FDA)-approved
NSAIDs ibuprofen,11 17 19 21 31 32 indometacin19 31 and
sulindac sulfide31 were shown to inhibit Rho activation
independently of their ‘classical’ mode of action as inhi-
bitors of cyclooxygenases (COXs). It was subsequently
demonstrated that ibuprofen treatment enhances axonal
sprouting,11 17 19 including that of human model
neurons,21 and improves neurological recovery.11 19 It is
noteworthy that ibuprofen-mediated Rho inhibition
involves peroxisome proliferator-activated receptor γ
(PPARγ) activation.17 It remains unclear, however, what
the exact mechanism for this activation is and whether
cofactors are required for PPARγ-associated Rho

inhibition, because other PPARγ activators such as rosi-
glitazone also inhibit Rho,17 33 while other NSAIDs such
as naproxen activate PPARγ strongly34 but do not cause
Rho inhibition.11 17 31

Importantly, ibuprofen dose regimes currently applied
in the clinical setting are subtherapeutic as being likely
unable to block the Rho pathway in the CNS compart-
ment sufficiently. Moreover, NSAIDs are usually applied
in a later phase after SCI. Thus, retrospective analysis
studying the effect of lower dose NSAID as being applied
at present cannot address the hypothesis sufficiently
whether ibuprofen-mediated Rho inhibition may elicit
improved neurological recovery when being applied in
sufficient dosage and appropriate time frame.35

Other pharmacological targets of ibuprofen, namely
PPARγ activation,17 34 36 COX-1/2 inhibition37 and
NF-κb inhibition,38 promise a concomitant limitation of
secondary damage by anti-inflammatory actions, but
might also modify the effects of Rho blockade (figure 1).
In more detail, PPARγ activation reduces the cellular39

and soluble inflammatory response,40 which is suggested
to alter tissue pathology after SCI as reviewed by
McTigue.41 In the context of experimental systemic
inflammation, COX-1, which reveals sustained upregula-
tion in the spinal cord after SCI,42 promotes sickness
behaviour.43 COX-related pathways also exert immune
modulation in terms of immune depression44 and
impaired host defence.44 45 These effects might aggra-
vate the maladaptive immune response after SCI46 47

that is associated with increased susceptibility to infec-
tions, which are a risk factor for poorer neurological
outcome after SCI.48 Furthermore, NF-κB, which is acti-
vated after SCI,49 contributes in neurodegenerative
disease to microglia-induced loss of motor neurons.50

Together, antiphlogistic actions of ibuprofen are likely to
reduce neurodegeneration driven by CNS inflamma-
tion,50 51 which is triggered through the COX and/or
NF-κB-related systemic inflammatory response syn-
drome,44 52 or infections.44 45 Besides, NF-κB53 and COX
metabolites such as prostaglandin E2

54 are linked to the
induction of neuropathic pain. Thus, NSAIDs might be
effective in preventing SCI-specific sequelae such as
neuropathic pain,53 55–58 as well as inflammation-related
neurogenic heterotopic ossifications (figure 1).59–61

Ibuprofen is recommended primarily to improve
neurological function through the enhanced plasticity
conferred by its Rho-inhibiting properties. The combin-
ation of Rho inhibition with anti-inflammatory actions
of ibuprofen might, however, dissolve conflicting
aspects of anti-inflammatory therapies after axonal
injury. It has been demonstrated that secondary axonal
damage is reduced when inflammation has been
limited, but this occurs at the expense of the regenera-
tive capacity of the spared axons.62 In this context, an
increased blockade of axonal regrowth capacity as a
side effect of anti-inflammatory neuroprotective therapy
could be prevented by concurrent Rho inhibition
(figure 1).
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In vitro sprouting responses under ibuprofen,11 17 19 21

or indometacin,19 treatment in the presence of myelin
or inhibitory matrix components such as CSPGs are well
reproducible. However, in vivo evidence provided by
some groups for promoting effects of Rho inhibition on
axonal sprouting,11 19 or on neurological recovery,11 19 63 64

has not or has only partially been confirmed by
others.32 65 Reasons for the variability in the results could
be multiple. One possible reason would be differences in
the experimental design, such as in timing of the

experiments, the animal model applied, the route of
drug delivery and assessment tools. On the other hand,
the variability could be a product of chance due to small
sample sizes, which is a general problem in preclinical
studies.66 One approach to address the variability of pre-
clinical studies is to subject them to meta-analysis.66

This work includes a systematic review and meta-
analysis of experiments reporting the effect of
Rho-inhibiting NSAIDs on neurobehavioral recovery
after SCI. The published preclinical evidence and its

Figure 1 Pharmacological targets of ibuprofen. Intracellular signalling cascades converge at the GTPase RhoA, which is

activated after SCI by myelin and scar-associated proteins (for review, see refs. 5, 7 and 29). Downstream to Rho, the activated

ROCK inhibits axonal regrowth, promotes neurodegeneration, contributes to the development of neuropathic pain and tissue loss

and impedes neurorestoration and functional recovery (reviewed by Watzlawick et al).28 This pathway can be blocked by the

ROCK inhibitors Y-27632 and fasudil or the specific Rho inhibitors P21CIP1/WAF1, C3 transferase,28 and by the R(−) and S(−)
enantiomers of ibuprofen,11 17 19 21 31 32 as the most convincing Rho inhibitor among individual drugs from the group of NSAIDs.

Ibuprofen-mediated Rho inhibition depends on the upregulation of PPARγ.17 Treatment with PPARγ agonists was demonstrated

to have anti-inflammatory effects39 40 and to protect tissue and thereby motor function in other CNS injury conditions (reviewed

by McTigue).41 It is not yet clear whether the inhibition of NF-κB as a further target of R(−)/S(+) ibuprofen38 is independent of

PPARγ. Notably, PPARγ inhibits gene expression by antagonising the activities of the proinflammatory transcription factors

NF-κB.39 Another pathway, mainly operated by the S enantiomer of ibuprofen, is the inhibition of COX 1/2 and consequently of

the prostaglandin E2 production, which activates NF-κB or counterregulates it at very high concentrations.54 COX 1/2 and NF-κB
are associated with inflammation-induced neuropathic pain,53 54 neurodegeneration,50 sickness behaviour43 and the systemic

inflammatory response syndrome.44 52 Systemic inflammation contributes to neurogenic heterotopic ossificastions.59 Taken

together, Rho-blocking NSAIDs have the potential to decrease the systemic and acute CNS inflammatory response by targeting

at least two separate pathways, PPARγ and COX 1/2. The suspected side effect of neuroprotective anti-inflammatory therapy,

that is, that it further limits the regeneration capacity of spared axons,62 is suggested to be abrogated by Rho inhibition. CNS,

central nervous system; COX, cyclooxygenase; GDP, guanosine diphosphate; GTP, guanosine triphosphate; NSAIDs,

non-steroid anti-inflammatory drugs; PPARγ, peroxisome proliferator-activated receptor γ; NF-κB, nuclear factor κB; RGMa,

repulsive guidance molecule A; ROCK, Rho-associated coiled kinase; SCI, spinal cord injury.
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positive predictive value, representing the justification of
the current clinical investigation, were challenged by the
meta-analysis. The study protocol of the first clinical trial
on high-dose ibuprofen as a Rho inhibitor after acute
SCI addresses safety, feasibility and pharmacokinetics.
Additionally, the study explores preliminary efficacy,
including aspects of repurposing ibuprofen67 as a com-
pound with multiple pharmacological targets for the
treatment of SCI.

METHODS AND ANALYSIS
Ibuprofen is a drug that has been FDA approved and is
available worldwide for decades. However, in the context
of traumatic injuries, its use is generally restricted to
short-term low-dose administration as an analgesic. The
mid-term high-dose application of ibuprofen, as a
Rho-inhibiting and anti-inflammatory treatment after
SCI, is not an approved indication and information on
its tolerability is not available for the population of
patients with acute SCI. This is relevant because critically
injured patients with SCI require treatment in an inten-
sive care unit, which is a risk factor for gastric ulcers.68

Particularly patients with cervical and high thoracic
SCI might be at risk for damage to the gastric mucosa
due to a disturbance of autonomous innervation.69

Furthermore, pharmacological data on CNS permeabil-
ity are available for non-trauma patients, but little is
known about pharmacokinetics of orally administered
ibuprofen after SCI. Therefore, the SCISSOR study pri-
marily addresses safety, feasibility and pharmacokinetics
under the clinical condition of acute traumatic SCI.
Secondary objectives are neurological recovery and
SCI-specific complications.

Assessment of underlying evidence
In order to reassess the preclinical evidence regarding
Rho-inhibiting NSAIDs and to justify the risks and efforts
of the clinical trial, a systematic review was performed.
Six publications,11 19 32 63–65 containing 11 single ex-
periments with a total of n=255 animals (table 1), were
included for meta-analysis after stepwise study selection
(figure 2).
Preclinical study characteristics were extracted for

each publication and functional outcome was measured
for each experiment in order to perform the meta-
analysis. The method and statistical approach is described
in greater detail elsewhere.28 70 In brief, we used a
random-effects weighted mean difference meta-analysis to
calculate an overall estimate of effect size between treated
and untreated (control) animals based on the final time
point of the assessment of functional recovery. A
random-effects metaregression was used to determine
how much heterogeneity can be explained by study
design characteristics using STATA13 with a significance
level of p<0.05. We checked for possible publication bias
using trim and fill method for funnel plots and Egger
regression in STATA13.
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The effect size in the open-field motor testing of treat-
ments with ibuprofen or indometacin after experimental
SCI was 20.2% (95% CI 10.8% to 29.6%) in the overall
analysis (figure 3) and varied in the single experiments
from −33.2% (−79.2% to 12.8%) to 44.9% (19.5% to
70.4%). Metaregression analyses to identify subgroup
effects regarding the administered drug, the behavioural
assessment tool, the SCI model, the route of drug deliv-
ery or the study quality revealed no statistically signifi-
cant proportion of between-study heterogeneity for any
of the stratifications. Likewise, the tests to detect possible
publication bias implied no missing experiment,
although statistical significance should not be expected
given the study’s small overall size.71

Nevertheless, the design of the studies on ibuprofen
was different from those on indometacin treatment in
terms of the neurobehavioral scales, the animal models
and the route of drug delivery (table 1). The ibuprofen-
treated animals had all been assessed with the Basso,
Beattie and Bresnahan (BBB) score,72 or the Basso Mouse
Scale (BMS),73 whereas modifications of the outdated
Tarlov score74 were applied for the indometacin-treated

animals. Furthermore, the ibuprofen-treated groups
underwent contusion, transection and hemisection
models in contrast with the exclusive use of compression
or contusion experiments in the indometacin-treated
groups, which received the drug intravenously or intraper-
itoneally compared with subcutaneous administration in
the ibuprofen groups. Therefore, differences in effect size
between the two investigated compounds require careful
interpretation and do not allow conclusions on differ-
ences in their potential therapeutic efficacy.
Among the ‘small-molecule’ Rho inhibitors, ibuprofen

is the most feasible for clinical investigation in the indi-
cation of acute traumatic SCI due to its greater quantity
and the higher quality of its preclinical data. All studies
on ibuprofen revealed Rho inhibition in vivo within the
spinal cord after systemic drug administration11 19 32 and
comprise experimental models applicable for transla-
tional research,75 as well as recent behavioural scores.72 73

Study design
The SCISSOR study is designed as a prospective, non-
randomised, open-label phase I study, as this is a well-

Figure 2 Systematic review preclinical study selection chart. To identify animal studies reporting the effect of ibuprofen or

indometacin treatment for neurobehavioral recovery after SCI, the following search term was used for PubMed, EMBASE and ISI

Web of science (search conducted on 18 May 2015): (Ibuprofen OR Indometacin OR NSAID OR nonsteroidal anti-inflammatory

drugs) AND (SCI OR hemisection OR contusion OR dorsal column injury OR transection OR corticospinal tract injury OR

compression OR spinal cord lesion). Search results were limited to animals. Studies were included if they reported the effects of

ibuprofen or indometacin in animal models after various types of SCIs. We included SCI experiments comparing functional motor

outcome between a group of animals receiving treatment and a control group receiving no treatment (sham group).

Non-traumatic models of SCI were excluded, as well as studies reporting only combined treatments. Studies had to report the

number of animals for each group, the mean effect size and its variance. Studies were excluded due to inappropriate outcome

scales, combination of treatments and statistical inconsistencies. SCI, spinal cord injury.
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established design for tolerability and pharmacokinetic
investigations.76 77 Study participants are enrolled con-
secutively in two treatment cohorts characterised by the
duration of therapy as further detailed below and illu-
strated in figure 4.

Setting
The initiating sponsor and coordinator of the trial is
the Department of Experimental Neurology, Clinical
and Experimental Spinal Cord Injury Research
(Neuroparaplegiology) at Charité University Hospital,
Campus Mitte, Berlin, Germany, represented by Professor
Jan Schwab. For contact information, see correspondence
address. Data management and statistics are performed
by the Department of Clinical Epidemiology and Applied
Biostatistics at Eberhard Karls Universität Tübingen,
Germany. The recruiting trial centre is the Treatment
Center for Spinal Cord Injuries at the Trauma Hospital
Berlin, Germany. The study investigators are physicians
trained and experienced in the management and assess-
ment of patients with acute and chronic SCI.
The reference centre for laboratory safety parameters

is the Central Laboratory at the trial centre, Trauma
Hospital Berlin, Germany. The central laboratory is re-
gularly certified for clinical diagnostics. The Department
of Pharmaceutical and Medicinal Chemistry, Institute
of Pharmacy, Eberhard Karls Universität Tübingen,
Germany, will perform the measurement of ibuprofen
concentrations in plasma and cerebrospinal fluid (CSF)
using high-performance liquid chromatography-mass
spectrometry (HPLC-MS). The Labor Berlin—Charité Vivantes

GmbH, a certified laboratory for clinical and research
diagnostics, will run the nephelometric protein measure-
ments in serum and CSF for quantification of post-SCI
blood–spinal cord barrier breakdown.

Intervention
The study medication is ibuprofen in the galenic prepar-
ation of water-soluble lysine salt. Ibuprofen lysine salt is
absorbed faster, leading to earlier peaks of plasma con-
centrations compared to the free acid.78 The brand name
of the study medication is Dolormin extra. Ibuprofen is
applied as tablets administered orally for 4 weeks in
cohort I or 12 weeks in cohort II (figure 4). The daily
dose of 2400 mg is administered as three single doses of
800 mg. In the case of swallowing disorders, which occur
in 16% of tetraplegic patients with acute SCI,79 it is
recommended that the tablets be disaggregated in water
and the medication administered via stomach tube.
The proton pump inhibitor pantoprazole is used as a

concomitant medication in a dosage 40 mg/day. This
reduces the risk of damage to the gastrointestinal
mucosa. After 4 weeks of treatment and individual risk–
benefit assessment, the dosage of pantoprazole may be
reduced to 20 mg/day during the following weeks of
treatment (applicable to cohort II).

Dose estimation
Ibuprofen doses of 60–70 mg/kg/day have been used in
preclinical trials.11 19 32 65 To estimate the pharmacologic-
ally active dose (PAD) in humans, we applied a conversion
model which is feasible for systemically administered

Figure 3 Meta-analysis of preclinical effects on motor recovery. Improvement in neurobehavioral score is ranked by effect size

(ES). The overall number of included animals was n=255 (median n=12, range 8–73). Black dots represent studies using

ibuprofen and white dots show indometacin studies. The horizontal bar represents the 95% CI of the ES. Details on the design of

the included studies are summarised in table 1.
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active substances of a small molecular size, provided that
further pharmacological properties of the compound
have been taken into account.80 The human equivalent
dose (HED), converted from the PAD in rats, is about
11.3 mg/kg/day (rat PAD of 70 mg/kg/day/6.2=HED
11.3 mg/kg/day). The binding capacity for ibuprofen in
vitro is higher in human albumin than it is in rat albumin.
At identical concentrations, the free bioactive ibuprofen
fraction in human albumin solution is lower by a factor of
about 3.81 82 We therefore multiplied the HED by that
factor to achieve an estimate of comparable bioactive con-
centrations. Assuming an average body weight of 70 kg,
the estimated PAD in humans is 34 mg/kg regardless of
individual body weight. The daily dose of ibuprofen in
this trial was therefore set at 2400 mg/day. This is within
the FDA-approved range of up to 3200 mg/day for adults.

Outcome measures
The primary end point of the study is the safety of
high-dose ibuprofen application after SCI as measured by
the occurrence of serious adverse events (SAEs) related
to the study medication. In particular, severe gastroduode-
nal bleeding attributable to the study medication is the
primary safety parameter (table 2). SAE definitions are in
accordance with the International Council for
Harmonisation (ICH) guidelines.83 All other adverse
events (AEs) that do not fulfil these definitions are docu-
mented on AE documentation sheets, and type, severity,
relatedness, treatment and outcome are recorded.

Secondary end points are all further AEs including
SAE and suspected unexpected serious adverse reac-
tions (SUSARs). Clinical, laboratory and technical
safety examinations facilitate the detection of AEs that
can be expected as well as the assessment of their caus-
ality (table 2). In addition, the sensitive measurement
of neuropathic pain and spasticity is also relevant for
safety reasons, since the course of those very frequent
SCI-specific sequelae might be altered by plasticity-
enhancing therapies. The Neuropathic Pain Scale84 85

and the Modified Ashworth Scale86 are therefore
applied for assessment of pain and muscle tone,
respectively. The pharmacological laboratory end
points are ibuprofen levels in plasma and CSF as mea-
sured at the time of expected peak levels.87 The neuro-
logical examination is performed according to the
International Standards for Neurological Classification
of Spinal Cord Injury (ISNCSCI) definitions of 2011.88

The ISNCSCI comprises the American Spinal Injury
Association (ASIA) Impairment Scale (AIS) as a
measure for completeness and severity of SCI, the ASIA
motor scores for upper and lower extremity motor
function, the ASIA sensory scores for residual pin prick
and light touch sensation, the motor and sensory
neurological level, as well as the zone of partial preser-
vation, if applicable. Optional elements such as non-key
muscles for determination of the AIS are not applied
in this study.88 Neurogenic heterotopic ossifications
constitute a further clinical end point. These will be
identified with an ultrasound screening of the hip

Figure 4 Longitudinal clinical trial design. Diagram of frequency and scope of trial procedures. The evaluation for eligibility

should start as early as possible after acute SCI. The baseline will be obtained at the day of the inclusion from day 4 and latest at

day 21 post trauma, in any case as early as possible. Start of the study medication is directly after the baseline assessment. The

duration of the intervention is 4 weeks for cohort I and 12 weeks for cohort II. Frequent safety laboratory measurements are

performed. Samples for pharmacokinetic measurements are collected two times in cohort I and three times in cohort II. The

follow-up visits for the determination of secondary end points are performed at week 4 (±3 days) and after the end of the

intervention at week 24 (±14 days). Final safety laboratory measurements will be performed 4 weeks after the end of the study

medication. SCI, spinal cord injury.
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joints,89 followed by MRI if heterotopic ossifications are
suspected (table 2).
Data on adverse effects of perioperative NSAIDs on

bone healing in terms of pseudoarthrosis after spinal
fusion have been discussed in the past.90 These data,
however, are based on different types of NSAIDs and
from retrospective cohort studies, the results of which
are sometimes conflicting.91 92 In this study, all spinal
surgeries during the follow-up period will be documen-
ted. In combination with data from routinely performed
spinal imaging procedures, relevant impairment of bone
healing can be detected and would be documented as
SAE.

Enrolment
In the study centre, we expect to be screening about 40–
60 SCI admitted patients per year, about 6–8 of whom are
estimated to meet eligibility criteria. The investigators will
evaluate patient eligibility as soon as possible after admis-
sion to the trial centre. The investigators will conduct an
interview with each patient to verify the inclusion and
exclusion criteria as related to individual medical history
as well as to inform the patient about the trial and its
potential risks and benefits. Prior to inclusion, written
informed consent will be obtained from the patient. If
the patient is willing to consent but is unable to sign, a

witness independent from the trial team must confirm
the verbal informed consent by providing his/her signa-
ture. A written announcement of recruitment will be sent
out to the sponsor by the investigators.

Eligibility criteria
The inclusion and exclusion criteria (box 1) were
chosen with regard to scientific, ethical and practical
considerations specific to SCI.93 Inclusion in the trial is
possible from day 4 up to day 21 postinjury, but should
be performed as soon as possible, mainly dependent
on the patient’s ability to give his/her informed con-
sent. Key inclusion criteria are acute traumatic motor-
complete SCI, classified as AIS A or AIS B, and a neuro-
logical level of Th4–C4. Only in this group of patients is
a realistic assessment of neurogenic gastrointestinal
bleedings possible, because this classification is most
likely to be associated with an autonomic complete
lesion,94 which in the acute stage can cause damage to
the gastroduodenal mucosa.69 The imbalance between
the altered sympathetic outflow through the splanchnic
nerve and the intact parasympathetic innervation
through the vagus nerve69 may increase the ‘baseline’
risk posed by the general post-traumatic and ventilation-
triggered stress response.68

Table 2 Clinical trial outcome measures

Parameter Assessments/measures Timing (see also figure 4) Safety issue

Primary end point

Gastroduodenal bleeding SAE report Continuous observation Yes

Secondary end points

Adverse events Adverse event monitoring, SAE/SUSAR

report

Continuous observation Yes

Spasticity Modified Ashworth Scale, antispastic

medication

Follow-up 1 and 2 Yes

Neuropathic pain Neuropathic Pain Scale, pain medication Baseline, follow-up 1 and 2 Yes

Severity of SCI ASIA Impairment Scale Baseline, follow-up 1 and 2 No

Motor function Upper and lower extremity motor score Baseline, follow-up 1 and 2 No

Sensory function Pin prick, light touch Baseline, follow-up 1 and 2 No

Lesion height Motor and sensory level, zone of partial

preservation, if applicable

Baseline, follow-up 1 and 2 No

Ibuprofen levels Blood and CSF collection Pharmacokinetics 1, 2 and 3* No

Serum/CSF protein levels Blood and CSF collection Pharmacokinetics 1, 2 and 3* No

Heterotopic ossifications Ultrasound of the hip joints, MRI, if

applicable

Baseline, follow-up 1 and 2 No

Other end points

Laboratory abnormalities Blood and urine collection Safety 1, 2, 3 and 4* Yes

Cardiac arrhythmia ECG Baseline, follow-up 1 and 2 Yes

Deep vein thrombosis Ultrasound of pelvic and lower extremity

veins

Baseline, follow-up 1 and 2 Yes

Circulatory disturbance Blood pressure and heart rate Baseline, safety 1, 2 Yes

Clinical observation Epigastric pain/pain projected to the

shoulder tip

Baseline, safety 1, 2 and 3* Yes

Feasibility of recruitment Screening protocol Screening No

Differences between the cohorts are based on the course of an extended intervention. In cohort II, additional pharmacokinetic and safety
assessments are scheduled (indicated by asterisks).
ASIA, American Spinal Injury Association; CSF, cerebrospinal fluid; SAE, serious adverse event; SCI, spinal cord injury; SUSAR, serious
unexpected suspected adverse reaction.
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In order to limit risk to patients, the exclusion criteria
comprise all absolute contraindications of the study
medication according to the summary of product
characteristics. The exclusion criteria also include drug
interactions or other conditions mandating precaution.
To ensure reliable assessment of safety and preliminary
efficacy, patients with concomitant injury to the CNS, pre-
existing neurological diseases or severe psychiatric

disorders are excluded from the trial. Other exclusion
criteria assure the adherence to legal requirements
(box 1).

Individual timeline
Patient evaluation and inclusion will be performed
within 21 days after SCI. The Case Report Form (CRF)
at baseline comprises the eligibility criteria, the

Box 1 Clinical trial eligibility criteria

Inclusion criteria
▸ Acute spinal cord injury (SCI) of the cervical spine due to trauma
▸ Time frame of 4–21 days post trauma
▸ Motor-complete injury AIS (American Spinal Injury Association (ASIA) Impairment Scale) A and B
▸ Neurological level of the lesion C4–Th4
▸ No participation in a different clinical trial according to German Medicinal Products Act 1 month before and during participation in the

current trial
▸ The patient has been informed and his/her written consent has been obtained
▸ Age: 18–65 years
▸ For women of reproductive age: negative pregnancy test and highly effective contraception (defined as Pearl Index <1) or sexual abstin-

ence during participation in the trial
Exclusion criteria
▸ Multifocal lesions of the spinal cord
▸ Penetrating SCI
▸ Accompanying traumatic brain injury (TBI) with visible structural lesions including intracranial haemorrhage on diagnostic images
▸ Significant accompanying injury to the peripheral nervous system, particularly plexus lesions
▸ Acute or chronic systemic diseases accompanied by neurological deficits or that have caused permanent neurological deficits which may

overlay or hinder the registration of sensorimotor functions (eg, multiple sclerosis, Guillain-Barré syndrome, HIV infection, Lues, etc)
▸ Malignant neoplasms, except if these are in complete remission
▸ Mental diseases or dementia which, in the investigator’s opinion, limit the patient’s cooperation in respect of the intake of the study medi-

cation and/or significantly hinder the registration of follow-up parameters
▸ Haemophilia
▸ History of myocardial infarction or stroke
▸ Current and persistent misuse of illegal drugs or alcohol
▸ Hypothermia below 35°C
▸ Pregnancy and lactation
▸ All further contraindications to the study medication, including other ingredients of the pharmaceutical form according to the Summary

of Product Characteristics
– known hypersensitivity to the active substance ibuprofen or one of the ingredients of the drug
– known reactions by way of bronchospasm, asthma, rhinitis or urticaria after the intake of acetylsalicylic acid or other non-steroidal

anti-inflammatory drugs (NSAIDs) in the past
– unexplained haematopoietic disorders,
– peptic ulcers or haemorrhagia: either at the present time or occurred repetitively in the past (at least two different episodes of proven

ulceration or haemorrhage)
– gastrointestinal haemorrhage or perforation in the patient’s medical history in connection with previous treatment with NSAIDs
– cerebrovascular or other active haemorrhage
– severe disturbance of liver function (with coagulation disorder due to reduced protein synthesis)
– severe renal function disorder (defined as chronic renal insufficiency, including post-kidney transplantation or acute renal failure,

defined as elevated creatinine values and/or oliguria for several days with a limited glomerular filtration rate (GFR))
– severe myocardial insufficiency (New York Heart Association (NYHA) grades III–IV)
– severe dehydration (caused by vomitus, diarrhoea or insufficient volume resuscitation).

▸ Known hypersensitivity to the active substance contained in the concomitant medication pantoprazole or one of the components of the
drug

▸ Intake of ibuprofen or intake of other active substances from the group of NSAIDs (eg, diclofenac, indometacin) or the intake of NSAIDs
in maximum recommended daily doses for more than 1 week prior to enrolment in the trial

▸ Simultaneous intake of salicylates, particularly acetylsalicylic acid
▸ Simultaneous intake of oral anticoagulants, or heparinisation in therapeutic dosage
▸ Simultaneous intake of systemic glucocorticoids
▸ Unwilling to consent to storage and transfer of pseudonymised medical data for the purpose of the clinical trial
▸ Admitted to an institution by a court or official order
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assessment of injury date and time, medical history, con-
comitant injury and surgical interventions. Furthermore,
the clinical, laboratory and technical safety parameters
as well as the ISNCSCI are assessed at baseline (figure 4,
table 2).
Since the intervention in cohort II is of longer dur-

ation, more frequent safety and pharmacokinetic assess-
ments will be performed in this arm during the
intervention and follow-up (figure 4). In addition to the
continuous monitoring of AEs, safety data comprise
laboratory measures, and clinical observations will be
collected in tightly scheduled safety assessments up to
24 weeks after inclusion. This time frame seems reason-
able for the recognition of the major safety end
points. Further safety issues such as spasticity and neuro-
pathic pain are part of the follow-up documentation
(figure 4) that also includes the neurological end points
and possible confounders such as comedications or
infections.48

Overall duration
A recruitment period of 24 months is scheduled. Each
patient will be followed up to 24 weeks post trauma.
After completion of recruitment and follow-up, a further
6-month period is planned for clearing the database, the
statistical evaluation and preparation of the trial report.
The trial was activated in June 2013 but was not recruit-
ing. After completion of trial registration and instruction
of the recruiting center, enrolment started in April 2014.
Expected enrolment completion date is the second
quarter of 2016. Publication of the trial report is sched-
uled for the year 2017.

Sample size estimation
The sample size of 12 patients and the analysis strategy
are justified by the fact that—given that the number of
gastrointestinal ulcerations/bleedings after SCI is 3.5%
in the first month as reported by Kewalramani69—the
probability of the occurrence of more than one event is
6.1%. Consequently, observation of more than one event
provides evidence of safety problems of ibuprofen in the
indication of acute SCI and probably limits its use in
subsequent phases of the clinical trial. The occurrence
of further bleedings in months 2 and 3 or during
follow-up calls for the same consequences. Nevertheless,
based on the above-mentioned frequency of gastrointes-
tinal ulcerations, the probability of the occurrence of an
event is low (0.7% probability) in a sample of 12 patients
with SCI.69 However, the upper bound of the CI for the
probability of an event is 38.5%; for zero events, it is
26.5%. This mandates implementing additional safety
criteria if subsequent study phases are considered, and a
placebo control should be taken into consideration. In
our pilot study, a comparison with patients receiving
placebo would have a clear lack of statistical power, so
no placebo group is scheduled.

Data management
All study documents including personal identifiers are
stored at the recruiting trial centre in locked file cabi-
nets in a room with restricted access. Data are collected
on a paper CRF (pCRF) and pCRFs and all patient data
are managed with a six-digit pseudonym. At the spon-
sor’s study office, the trial coordinators check the pCRFs
for completeness and consistency. Implausible or
missing data may be corrected or added after consulting
the investigator at the trial site through the sponsor
(Queries). The corrected documents will be archived
together with the completed pCRFs. Data are entered
twice to allow double check for correctness and are
stored electronically in a database (Oracle). Access to
the database is restricted, and regular data backups are
performed. The principal investigator/sponsor and the
trial statistician will have full access to the data set.

Sample handling
Peripheral blood and urine samples collected for labora-
tory safety measures are analysed immediately after
sample collection at the central laboratory of the trial
centre, and the results are available for the study in-
vestigators at once. This facilitates the timely recognition
of AEs.
Blood and CSF samples for pharmacological and

protein analyses are collected under sterile conditions.
The samples are labelled with the six-digit pseudonym,
and any personal information of the participants is
removed. All samples are processed for storage as soon
as possible, at the latest within 8 hours of withdrawal by
centrifugation at 3000 g for 10 min. Serum, heparin
plasma and CSF supernatants are stored at the sponsor’s
institution at −80°C, with central temperature control
up to subsequent batch analysis.

Statistical analysis
The analysis will be based on the safety population, as
this is a pilot study for safety and feasibility designed to
enable planning of a subsequent study. The primary ana-
lysis is based on the incidence of severe gastrointestinal
bleedings. If more than one event is observed in the
study population (n=12), the principal investigator/
sponsor on recommendation of the independent Data
and Safety Monitoring Board (DSMB) will perform a
new risk–benefit assessment and will decide the inter-
ruption or early termination of the trial. Additional
safety analyses, mainly descriptive and casuistic, will be
performed. The descriptive analysis will be according to
the scale and distribution of the data, using frequencies
and means, medians, quartiles and ranges. Linear
regression will be used as appropriate.

Quality assurance
Adherence to (1) the recruitment rate, (2) the selection
criteria (3) the treatment in accordance with the proto-
col and (4) the investigation time points is regarded as a
quality indicator for the course of the trial. An
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independent monitor is responsible for reviewing study
progress, verifying adherence to the protocol, compli-
ance with ICH/GCP and national regulations, and fur-
thermore for handling any problems that arise. The
monitor will visit the clinical study sites on a regular basis,
first after the start of enrolment, then after completion
of recruitment into cohort I and finally at study
completion.
Key study data will be checked in all patients. This per-

tains to patients’ demographic data, signed informed
consent, adherence to inclusion and exclusion criteria,
documentation on primary objectives and AEs. Source
data verification will be performed for ∼25% of the
data. Any unclear and/or incomplete data will elicit
increased in-depth monitoring.

Data and Safety Monitoring Board
An independent DSMB addresses patient safety and per-
forms risk–benefit assessments to ensure that for the
patients there is no unavoidable risk or harm. All DSMB
members reviewed the trial protocol prior to study acti-
vation in order to ensure the implementation of safety
end points and procedures necessary to fulfil the
DSMB’s assignment. In accordance with its operating
procedures, the DSMB reviews accumulating data from
the trial to fulfil the safety monitoring. Additionally, the
DSMB will assess trial progress, study integrity and
design aspects. The DSMB provides the sponsor with
recommendations regarding study modification, con-
tinuation or termination. The DSMB consists of three
members: a biostatistician, a neurologist and an intern-
ist, all of whom have practical experience in the work of
a DSMB. The DSMB will perform an interim review for
safety reasons when the entire cohort I has completed
week 4 follow-up and after the completion of enrolment
and, if necessary, on request of the sponsor and/or prin-
cipal investigator.

Stopping rules
The discontinuation criteria defined for premature
dropout of a patient from the trial include cases of
emergency or circumstances associated with increased
risk for the participant, as well as a patient’s individual
wish (box 2). Patients who have dropped out of the trial
prematurely should be examined from the time of dis-
continuation of treatment according to the scheduled
programme, provided the patient has given his/her
consent to such examination. At least the final examin-
ation should be performed as far as possible.
Decisions on the discontinuation of the entire trial

will be taken if the risk–benefit assessment demonstrates
unjustifiable risks and toxicities, or new scientific conclu-
sions during the clinical trial could compromise the
safety of the study participants. The decision-making
body consists of the sponsor and principal investigator
and acts, if appropriate, also on recommendation of the
DSMB.

ETHICS AND DISSEMINATION
The study protocol (V.1.2, date 06 May 2013) was approved
by the Ethics Board of the Landesamt für Gesundheit und
Soziales (LaGeSo), Berlin, Germany (13/0127-EK13), and
the Federal Institute for Drugs and Medical Devices
(BfArM). The protocol amendment (V.2.0, date 12 August
2015) was related to changes of the Summary of Product
Characteristics of the study medication ibuprofen and on
a recent advice of the European Medicines Agency
(EMA).95 Two further exclusion criteria were added to the
protocol: (1) severe dehydration and (2) history of
myocardial infarction or stroke. The above-mentioned
regulatory authorities approved the amendment.
Participants will be informed about the trial and its

anticipated risks and benefits, orally and in written form,
using patient information sheets. Patients’ written
informed consent will be obtained prior to inclusion.
This study complies with the Declaration of Helsinki, the
principles of Good Clinical Practice (GCP), the German
Medicinal Products Act (AMG) and the Personal Data
Protection Act. The study with the full official title ‘The
Rho-Inhibitor Ibuprofen for the Treatment of Acute
Spinal Cord Injury: Investigation of Safety, Feasibility
and Pharmacokinetics’ has been registered in the
ClinicalTrials.gov database (NCT02096913). The registra-
tion data are summarised in table 3.

Risk–benefit assessment
In a large number of patients, traumatic SCI signifies a
severe lifelong physical disability. A standard treatment

Box 2 Clinical trial stopping rules

Premature dropout of a patient
▸ Gastrointestinal ulceration with or without haemorrhage and/or

perforation
▸ A drop in haemoglobin levels below 5 mmol/L consistent after

receiving more than eight red blood cell concentrates
▸ Acute renal failure, defined as an increase in creatinine levels

by more than 50% of the baseline value and/or oliguria (urine
volume <500 mL/day) persisting for several days after exclu-
sion of extra renal causes

▸ Any hypersensitivity reaction that the investigator attributes to
the trial medication

▸ Neurological progression of SCI with ascending paralysis with
a loss of more than two motor levels

▸ Cerebrovascular haemorrhage
▸ Myocardial infarction or stroke
▸ Any new injury to the spine affecting the spinal cord
▸ The additional intake of more than 1200 mg/day ibuprofen for

more than 1 week or the intake of maximal daily doses of
other non-steroid anti-inflammatory drugs (NSAIDs) for more
than 2 weeks during the intervention

▸ The patient’s personal wish
▸ Any other situation which, according to the investigator, would

be such that further participation in the clinical trial not be in
the best interests of the patient

▸ The onset of pregnancy
▸ Later occurrence of exclusion criteria
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to promote neuronal plasticity after SCI is not yet
available. Based on preclinical investigations in estab-
lished animal models, a better recovery of neurological
function in cases of acute SCI is anticipated from
making use of ‘small-molecule’ Rho inhibition. The sys-
tematic review of preclinical data revealed 11 eligible
studies on effects of Rho-inhibiting NSAIDs with motor
function as behavioural end point. These studies were
conducted in six laboratories and used four different
SCI models in three rodent species. The meta-analysis
demonstrated an overall effect size of 20.2%. This is
backed up by pervious analyses including studies on spe-
cific Rho/ROCK inhibitors that have demonstrated
overall effect sizes of 21% or 15% after correction for

publication bias, respectively.28 Ibuprofen is an estab-
lished, globally approved drug available for clinical inves-
tigation of its ability to improve neurological function by
Rho inhibition. Furthermore, preventive treatments for
inflammation-triggered SCI-specific complications in
terms of neuropathic pain53–58 and neurogenic heteroto-
pic ossifications after SCI59–61 are not well established.
Favourable effects on these threatening sequelae can be
anticipated from ibuprofen treatment by the reduction
of COX-mediated and NF-κB-mediated inflammation in
the CNS and the peripheral soft tissue.
The appraised benefits of the intervention have to be

weighed against its potential risks, some of which may be
serious. Gastrointestinal ulcers accompanied by

Table 3 Trial registration overview

Data category Information

Primary registry and trial

identifying number

ClinicalTrials.gov NCT02096913

Date of registration in primary

registry

24 March 2014

Secondary identifying numbers 2011-000584-28

Sources of monetary or material

support

Charité Universitätsmedizin Berlin, Else Kröner-Fresenius Foundation

Primary sponsor Charitè Universitätsmedizin Berlin, Professor Jan M. Schwab MD, PhD

Contact for public queries Professor Jan M. Schwab MD, PhD ( jan.schwab@charite.de)

Marcel A. Kopp MD (marcel.kopp@charite.de)

Contact for scientific queries Professor Jan M. Schwab MD, PhD ( jan.schwab@charite.de)

Marcel A. Kopp MD (marcel.kopp@charite.de)

Public title Safety Study of Ibuprofen to Treat Acute Traumatic Spinal Cord Injury

Scientific title The Rho-Inhibitor Ibuprofen for the Treatment of Acute Spinal Cord Injury: Investigation of

Safety, Feasibility and Pharmacokinetics

Countries of recruitment Germany

Health conditions or problem

studied

Spinal cord injury

Interventions Ibuprofen (Dolormin extra), 2400 mg/day (400 mg 2–2–2) applied orally for 4 weeks (arm I;

n=6) or 12 weeks (arm II, n=6)

Key inclusion criteria Acute traumatic SCI; neurologic level C4–Th4; AIS A or B; inclusion at day 4–21 post

injury; no participation in another clinical trial; written consent; age 18–65 years; no

pregnancy of female participants during trial conduction

Key exclusion criteria Multifocal lesions; penetrating injury; TBI with visible structural lesions; accompanying

injury to the peripheral nervous system (plexus lesions); acute or chronic diseases

causing/including neurological deficits; malignant neoplasms; significant mental disease or

dementia; haemophilia; history of myocardial infarction/stroke; drug abuse; hypothermia

below 35°C; pregnancy/lactation; contraindications/hypersensitivity to study medication;

current intake of ibuprofen or other NSAIDs or previous intake of maximum doses during

1 week prior to enrolment; intake of salicylates, systemic glucocorticoids, oral

anticoagulants or therapeutic heparinisation; no consent to storage and transfer of

trial-based data; admittance to institution by court or official order

Study type Interventional; phase I; open label

Study activation 20 June 2013

First patient in 07 April 2014

Target sample size 12

Recruitment status Recruiting

Primary outcomes Severe gastroduodenal bleedings

Key secondary outcomes Spasticity; neuropathic pain; AIS; ISNCSCI/ASIA motor and sensory score; documentation

of adverse events; plasma and cerebrospinal fluid ibuprofen level; heterotopic ossifications

AIS, ASIA Impairment Scale; ASIA, American Spinal Injury Association; ISNCSCI, International Standards for Neurological Classification of
Spinal Cord Injury; NSAID, non-steroidal anti-inflammatory drug; SCI, spinal cord injury; TBI, traumatic brain injury.

12 Kopp MA, et al. BMJ Open 2016;6:e010651. doi:10.1136/bmjopen-2015-010651

Open Access

group.bmj.com on November 1, 2016 - Published by http://bmjopen.bmj.com/Downloaded from 

http://bmjopen.bmj.com/
http://group.bmj.com


haemorrhage or by perforation are the most prominent
side effect of NSAIDs. According to FDA estimates from
1987, gastrointestinal haemorrhage due to peptic ulcers
or perforation occurred in 1–2% of patients under sus-
tained 3-month intake of NSAIDs.96 The factors that
increase the risk of gastrointestinal haemorrhage are as
follows: advanced age, high daily doses, a medical history
of ulcers, simultaneous intake of systemic corticosteroids
and the intake of anticoagulants.97 Within the group of
NSAIDs, ibuprofen has a comparatively low gastrointes-
tinal toxicity.97 A Cochrane database review summarised
results from recent clinical trials on long-term high-dose
ibuprofen administered to reduce respiratory complica-
tions in cystic fibrosis. The studies showed an overall posi-
tive benefit–risk profile.98 However, a clinical database
analysis comparing 1365 ibuprofen-treated patients with
8960 controls demonstrated a low overall risk but a
higher annual incidence of gastrointestinal bleeding in
the ibuprofen group of 0.37% vs 0.14%.99 In the acute
phase, acute injury to the cervical and upper thoracic seg-
ments of the spinal cord is probably an additional risk
factor for gastroduodenal ulceration,69 which is why the
gastrointestinal safety of ibuprofen treatment in the
context of SCI is the primary end point of this trial.
Under normal conditions, acute renal failure due to

NSAIDs is a rare but serious adverse reaction. The risk
for acute renal failure increases in critically ill patients
with a volume deficiency, myocardial insufficiency or
pre-existing renal insufficiency; the same holds true for
simultaneous administration of other nephrotoxic sub-
stances such as aminoglycosides, angiotensin-converting
enzyme inhibitors and angiotensin II receptor antago-
nists.100 Acute renal failure caused by NSAIDs such as
ibuprofen, a substance with a short half-life and rapid
achievement of effective levels, commonly manifests
within a few days. After early diagnosis and discontinu-
ation of the treatment, renal function usually returns to
normal within 1 week. Only if renal failure is not diag-
nosed in time may the condition progress rapidly to
dependence on dialysis. Compared with other NSAIDs,
an intermediate level of nephrotoxicity is reported for
ibuprofen.101 Acute SCI is generally not associated with
a disturbance of renal function. However, due to the
traumatic aetiology of paraplegia, renal function may be
transiently limited in some cases due to a volume defi-
ciency or rhabdomyolysis. In those cases, renal side
effects of ibuprofen might be observed more frequently.
In order to limit the anticipated risks in the

Ibuprofen-Spinal Cord Injury (SCI)-Safety trial, its exclu-
sion criteria comprise known risk factors such as age
>65 years, relevant comorbidities, history of critical
events, particularly peptic ulcerations, as well as drug
interactions. In addition, the trial will be conducted
under in-hospital conditions of acute care and rehabili-
tation. In-hospital monitoring and carefully scheduled
laboratory investigations allow for early awareness of AEs
and their immediate medical treatment. In case that a
patient suffers harm from his trial participation,

compensation will be covered by a clinical trial-specific
insurance of the sponsor’s institution. After completion
of the trial, the patients will receive further treatment
according to the general principles of long-term
rehabilitation of SCI and therapy of related secondary
complications.

Limitations
Limitations of the clinical trial protocol are its small
sample size, the lack of a placebo control group and a
relatively wide time frame for inclusion. This design,
chosen with regard to the primary safety end point and
feasibility of the pharmacokinetic issues, restricts efficacy
evaluation. The time frame of inclusion extended until
day 21 after SCI was incorporated for ethical reasons in
order to enable the patients to give informed consent
before the start of the intervention. However, a late start
of the intervention might diminish therapeutic efficacy
because recovery-promoting effects of Rho inhibiton,23

as well as anti-inflammatory effects of ibuprofen,102

depend on the timing of the intervention, and an early
start of the treatment seems favourable.
The meta-analysis of published preclinical experi-

ments is limited by the relatively low number of studies
specific to ibuprofen/indometacin-mediated Rho inhib-
ition; thus, they hardly enable metaregression or adjust-
ment for publication bias. Yet, our analysis is in line with
a larger previous meta-analysis that also includes studies
on specific Rho/ROCK inhibitors that demonstrated
relevant effect sizes after correction for publication
bias.28 A limitation of the single in vivo experiments on
ibuprofen is that they lack dose–response curves, and all
research groups have applied the drug in comparable
dosages. Administration of even higher doses would still
be within FDA-approved range for application in
humans and might have larger effects. Confirmative pre-
clinical analyses should therefore also consider dose–
response curves to show functional recovery.

Possible consequences
The explorative safety evaluation, feasibility aspects of
recruitment and treatment regime in the acute phase
after SCI will inform the planning of a subsequent ran-
domised controlled trial (RCT) in a larger sample. Of
particular relevance in the clinical trial are the treat-
ment timing and the CNS availability of the systemically
delivered compound behind the blood–spinal cord
barrier after acute SCI. An interim bed to bench-side
translation based on the clinical pharmacological data
and preliminary efficacy end points could be valuable
for adjustment of the treatment schedule before
embarking on an RCT.
Improved neurological recovery anticipated after SCI,

which is proposed as the main objective of a subsequent
RCT, might lead to an improvement of aspects of daily
living, even if the recovery has affected only two seg-
ments of the spinal cord. For example, regaining more
than one neurological motor level can be considered as
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a notable difference with influence on physical inde-
pendence103 and long-term survival.104 Prevention of
SCI-related complications might contribute additionally
to improved quality of life.
Regardless of the result of the primary and secondary

outcome assessments, the clinical trial will be reported
as a publication in a peer-reviewed journal, compliant
with reporting and authorship criteria according to the
principles of Good Scientific Practice.
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