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A goal in the kinetic characterization of a macromolecular system is the description of its slow re-
laxation processes via (i) identification of the structural changes involved in these processes and (ii)
estimation of the rates or timescales at which these slow processes occur. Most of the approaches
to this task, including Markov models, master-equation models, and kinetic network models, start
by discretizing the high-dimensional state space and then characterize relaxation processes in terms
of the eigenvectors and eigenvalues of a discrete transition matrix. The practical success of such
an approach depends very much on the ability to finely discretize the slow order parameters. How
can this task be achieved in a high-dimensional configuration space without relying on subjective
guesses of the slow order parameters? In this paper, we use the variational principle of conforma-
tion dynamics to derive an optimal way of identifying the “slow subspace” of a large set of prior
order parameters — either generic internal coordinates or a user-defined set of parameters. Using a
variational formulation of conformational dynamics, it is shown that an existing method—the time-
lagged independent component analysis—provides the optional solution to this problem. In addi-
tion, optimal indicators—order parameters indicating the progress of the slow transitions and thus
may serve as reaction coordinates—are readily identified. We demonstrate that the slow subspace
is well suited to construct accurate kinetic models of two sets of molecular dynamics simulations,
the 6-residue fluorescent peptide MR121-GSGSW and the 30-residue intrinsically disordered pep-
tide kinase inducible domain (KID). The identified optimal indicators reveal the structural changes
associated with the slow processes of the molecular system under analysis. © 2013 AIP Publishing

LLC. [http://dx.doi.org/10.1063/1.4811489]

. INTRODUCTION
Conformational transitions between long-lived or
“metastable” states are essential to the function of

biomolecules.'”” These rare transitions are ubiquitously
found in biomolecular processes including folding,®° com-
plex conformational rearrangements between native protein
substates'®!! and ligand binding.'> Rare conformational
transitions can be explicitly traced by either single-molecule
experiments” '>~!1> or by high-throughput molecular dy-
namics (MD) simulations, either realized with few long
trajectories'®!7 or with many shorter trajectories.'®>* MD
simulations are unique in their ability to resolve the dynamics
and all structural features of a biomolecule simultaneously.
When the sampling problem can be overcome and the ap-
propriateness of the force field parameters used is confirmed
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by accompanying experimental evidence, MD simula-
tions are amongst the most powerful tools to investigate
conformational transitions in biomolecules.

A current challenge with high-throughput MD simula-
tions is to extract meaningful information from vast trajec-
tory data in an objective way. To achieve this goal, the last
few years have seen vast activity in the development of com-
putational methods that extract kinetic models from the MD
data. Kinetic models usually first partition the conforma-
tion space into discrete states.”** Subsequently, transition
rates or probabilities can be estimated.*'»*3® The resulting
models are often called transition networks,>%3%3% diffusion
maps,***! master equation models,”*** Markov models*
or Markov state models®”-** (MSM), where “Markovianity”
means that the kinetics are modeled by a memoryless jump
process between states.

The recent integration of classical statistical mechanics
with modern molecular kinetics highlights the crucial role
of the eigenvectors and eigenvalues of the Markov model tran-
sition matrix or master equation rate matrix. This is because
they approximate the exact eigenfunctions and eigenvalues

© 2013 AIP Publishing LLC
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of the propagator of the continuous dynamics.* The fol-
lowing eigenvalue equation is fundamental to conformation
dynamics:

Poi = 1i¢;. (1)

Here, P is the transfer operator that propagates probability
densities of molecular configurations,*>*’ ¢, are its eigen-
functions, and A; are the associated eigenvalues. Equivalent
expressions are obtained by expressing the eigenfunctions in
different weighted spaces, leading to the transfer operator
formulation*® or the symmetrized propagator formulation.?
Equation (1) is fundamental because when solving it for the
largest eigenvalues and associated eigenfunctions, all station-
ary and kinetic quantities are defined by them. For example:

e P is guaranteed to have a unitary stationary eigen-
value and the associated stationary distribution u(x)
= ¢1(x). The ensemble average of an observable o can
be calculated from o(x) and . (x).

e Experimentally measurable relaxation rates of the
system can be computed from the eigenvalues as
ki = —t~'InA;, or from the corresponding timescales
ast; = Kl-_l.

® The metastable states (often referred to as “free energy
basins”—although we will avoid this term as it would
imply the projection onto some pre-defined coordinate
set) can be computed from the sign structure of the
leading eigenfunctions.**48

e The structural transition associated to each relax-
ation timescale is defined by the corresponding
eigenfunction®” and corresponds to a transition be-
tween metastable sets. This fact can be used to as-
sign structural changes to experimentally measurable
timescales.>”

¢ Experimentally measurable correlation functions (e.g.,
fluorescence correlation, intermediate scattering func-
tion in dynamic neutron or X-ray scattering) can be
computed as a sum of single-exponential relaxations
with timescales computed from A; and amplitudes
from the ¢; and the experimental observable.>*-2

® From the largest m eigenvalues and their associated
eigenfunctions, a rank-m propagator can be assembled
that can describe the dynamics slower than timescale
t,,.>3 From this propagator, many properties can be cal-
culated, such as transition pathways between two sets
of configurations.?%3*33

The approximation error of all of the above quantities
can be cast in terms of the approximation error of the eigen-
values and eigenfunctions.**%36:57 Vice versa, all of the
above quantities are easily and precisely computable when the
eigenvalues and eigenfunctions of P have been approximated
with high precision. Consequently, any modeling method that
attempts to compute the above quantities must aim at approx-
imating the eigenvalues and eigenfunctions of P — either ex-
plicitly or implicitly.

Markov models and most of the other aforementioned ki-
netic models require a discretization of configuration space
to be made. This is typically done by choosing representative
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configurations by some data clustering method, and then par-
titioning the configuration space by a Voronoi tesselation. In
contrast to other fields of data analysis, the purpose of clus-
ters is not a classification of configurations, but rather a suf-
ficiently fine discretization of configuration space such that
the eigenfunctions can be well approximated in terms of step
functions on the Voronoi cells.* In order to achieve this, the
metric must be chosen as a fine partition of the relevant “slow”
order parameters, i.e., those which are good indicators of the
slow eigenfunctions ¢;.

How can the slow order parameters be identified with-
out already having a high-precision Markov model? It has
been noted that a priori order parameters such as the root
mean square distance (RMSD) to a single reference struc-
ture, the radius of gyration, or pre-selected distances or angles
are often not good indicators of the slow eigenfunctions, and
thus bear the danger of disguising the slow kinetics.>>3!3%38
In order to avoid this, Markov model construction has fo-
cused in the last years on the other extreme — using general
metrics that are capable of describing every sort of config-
urational change. Most notable is the minimal RMSD met-
ric, which assigns to each pair of configurations their mini-
mal Euclidean distance subject to rigid-body translation and
rotation.”® Minimal RMSD has been used successfully in
many examples, especially protein folding (see Refs. 49 and
60 and references therein). Recent applications include fold-
ing of MR121-GSGS-W peptide,* folding of FiP35 WW do-
main, GTT, NTL9, and protein G,%' and discovery of cryp-
tic allosteric sites in B-lactamase, interleukin-2, and RNase
H.%2 However, minimal RMSD tends to fail in situation where
the largest-amplitude motions are not the slowest (an example
of this is the intrinsically disordered kinase inducible domain
(KID) peptide analyzed below). Principal component analysis
(PCA) is a frequently used method to reduce the dimension
of an order parameter space by projecting it on its linear sub-
space of the largest-amplitude motions.®> PCA has also been
used successfully in Markov model construction, 2% how-
ever, it suffers from the similar limitations as minimal RMSD,
as there is no general guarantee that large-amplitude motions
are associated with slow transitions.

It is an important challenge to find a metric that provides
a good indicator of the slow processes, such that a good ap-
proximation of the eigenfunctions ¢; is feasible with a mod-
erate number of clusters. The aim of this paper is to identify
such a method. To be more precise, let r;,...,r; € R be a
possibly large set of d order parameters of a molecular sys-
tem, which are a priori specified by the user. Typical exam-
ples of order parameter include intramolecular distances and
torsion angles. However, complex order parameters like the
instantaneous dipole moment of a molecule, or an experimen-
tally measurable quantity such as a Forster resonance energy
transfer (FRET) efficiency may also be included. Given this
set of order parameters, we aim to

1. Find the linear combination of order parameters, which
optimally approximates the dominant eigenvalues and
eigenfunctions, such that a high-precision Markov
model can be built in these order parameters with direct
clustering.
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2. Identify the m order parameters that are best and least
redundant indicators for the m dominant eigenfunctions,
thus providing the user a direct physical interpretation
whose structural changes are associated with the slowest
relaxation timescales (feature selection).

Here we use the variational principle of conformation
dynamics*’ to derive an optimal solution for problem 1, and
show that an existing extension to PCA solves this problem:
time-lagged independent component analysis (TICA) com-
bines information from the covariance matrix and a time-
lagged covariance matrix of the data.’* See Ref. 65 for a
detailed description of the method. TICA has recently been
applied in the analysis of MD data. Naritomi and Fuchigami®®
used TICA to investigate domain motion of the Lysine-,
arginine-, ornithine-binding (LAO) protein and compared it to
PCA. Mitsutake et al.®’ used relaxation mode analysis, a re-
lated technique, to analyze the dynamics of Met-enkephalin.
Both studies showed that the slow modes were not necessar-
ily associated with large amplitudes, and time-lagged mode
analyses were thus better suited to detect them than PCA.
While revising this manuscript, another successful application
of TICA to Markov model building by the group of Pande and
Schwantes®® has appeared.

Here, we demonstrate the usefulness of TICA coordi-
nates for constructing Markov models for two rather different
molecular processes: the conformational dynamics of (i) the
small fluorescent peptide MR121-GSGSW, for which good
Markov models can be built using a variety of methods, and
(ii) the intrinsically disordered 30-residue peptide KID mod-
eled through a large ensemble of explicit-solvent MD simula-
tions.

We also propose a way to approach problem 2 (see above)
identifying the optimal indicators of the slowest processes.
These indicators inform the user of the structural process that
is governing the slow relaxations of the macromolecule. Opti-
mal indicators help in understanding what comprises the slow
kinetics, and dramatically the user time to “search” for a struc-
tural character of the slow processes from a Markov model.

Il. THEORY

We first summarize the variational principle of con-
formation dynamics stating that the true eigenfunctions are
best approximated by a Markov model when the estimated
timescales are maximized. We then derive a way to optimally
approximate the true eigenfunctions in terms of a linear com-
bination of the original order parameters. It is shown that this
method is identical to the TICA that is an established method
in statistics. This establishes a new connection between TICA
and the optimal approximation of the molecule’s relaxation
timescales. As a result, TICA provides the optimal linear way
of projecting simulation data in order to build Markov mod-
els. The TICA problem can easily be solved by subsequently
solving two simple eigenvalue problems.

A. Exact dynamics in full configuration space

We start by providing an expression for the propagator
of exact continuous molecular dynamics, and show that in or-
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der to approximate its long-time behavior, its largest eigenval-
ues and associated eigenfunctions must be well approximated.
The following paragraphs are a short and educative summary
of results from Ref. 46. See also Ref. 49 for more details.

We use x; to denote the full molecular configuration at
time ¢ (if velocities are available, x; denotes a point in full
phase space) in state or phase space 2. We assume that the
molecular dynamics implementation is Markovian in Q (i.e.,
the time step to X,+. is computed based on the current value
of x, only), and gives rise to a unique stationary density p(x),
usually the Boltzmann density:

pix) = 271,

where H is the Hamiltonian, Z is the partition function, and
B = (kgT)~! is the inverse temperature. We also assume that
the dynamics are statistically reversible, i.e., that the molecu-
lar system is simulated in thermal equilibrium. Let us denote
a probability density of molecular configurations as p,, and
let us subsume the action of the molecular dynamics imple-
mentation into the propagator P(t). The propagator describes
the probability that a trajectory that is at configuration x, at
time ¢ will be found at a configuration X, . a time t later. In
an ensemble view, the propagator takes a probability density
of configurations, p;, and predicts the probability density of
configurations at later time, p; 4 :

Pz = P(T)pr.

We can write the propagator by expanding it in terms of
its eigenvalues,

M(m)y=en,

and its eigenfunctions ¢; as

o0
P (¥) =P(p(X) = D e i (Y. p)gi.  (2)
i=1

where the eigenfunctions ¢;(x) take the role of basis func-
tions with which probability densities p can be constructed.
The first eigenvalue is A; = 1 and the remaining eigenvalues
have a norm strictly smaller than 1. Thus, the first timescale
is t; = oo and corresponds to the stationary distribution,
while all other timescales ¢; are finite relaxation timescales.
¥i(x) = u~H(X)gi(X) are the eigenfunctions weighted by the
inverse of the stationary density. Equation (2) has a straight-
forward physical interpretation: the scalar product (V¥;, p;)
measures the overlap of the starting density p, with the ith
eigenfunction and thus determines the amplitude by which
this eigenfunction contributes to the dynamics. At any time
7, the new probability density p; ; , is composed of a set of
basis functions ¢;. With increasing time, the contributions of
all basis functions ¢; with i > 1 vanish exponentially with a
timescale given by #;. After infinite time T — o0, only the first
term with #; = oo (and hence, exp (—1/t;) = 1) is left, and the
stationary density is reached: lim;_, o, P(7)p; = ¢1 = u. Sta-
tionarity implies that u will not be changed under the action
of the propagator:

P()n = p.

Suppose we are interested in slow timescales t > t,, 4 ;.
At such large times, the dynamics is governed by the m largest
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timescales #; and eigenfunctions of the propagator:

>l

i=I

Przc = P(D)pr = (Vi p1)¢,

All kinetic properties at this timescale and all stationary prop-
erties can be accurately computed when the dominant m
eigenvalues and eigenfunctions are approximated. This is our
goal.

B. Approximation of slowest timescales and the
related eigenfunctions

We can make a few general statements on how to ap-
proximate the true timescales #; and eigenfunctions following
Ref. 47. These general properties can be used to derive a gen-
eral method that achieves the aim of this paper: the identifica-
tion of the slowest order parameters in a molecule. Since ¢;
and ; are interchangeable using the weights p, the approxi-
mation problem can be described using either kind of eigen-
function. Subsequently, we will always refer to the problem
of approximating the weighted eigenfunctions ;.

Consider some function of the molecular configuration,
f(x). From Eq. (2), we can express the time-autocorrelation
function of f'as a function of t as

© T
(FE)f Kol =Y e (i, f)2. 3)
i=1
Suppose we would know the true eigenfunction v;(x). It is
now easy to show*’ that the time-autocorrelation function
of ¥;(x) yields the exact ith eigenvalue, and thus the model
timescale z‘l.i is identical to the exact ith timescale ¢;:

M@ = WiV () =7
i _ T
In [ (7))
where model variables are denoted with a double dagger (})

(see Fig. 1 for illustration).

However, in reality we will not know the exact eigenfunc-
tion ¥;. Suppose that we would guess a model function lﬂ%
that is supposed to be similar to {,. When we make sure that
1/f2i is appropriately normalized, the variational principle of
conformation dynamics*’ shows that the time-autocorrelation

function of w; approximates the true eigenvalue, and the true
timescale from below:

W)V X)) < e,

o<,

i =1,

“

where equality only holds for ﬁ = y,. Thus, we have a
recipe for finding an optimal approximation to the second
timescale and its associated eigenfunction. We must seek a
function wzi that has the maximum timescale tg .

Similar inequalities can be shown for the other eigenval-
ues and timescales t3, ..., t,,. We can show that if one pro-
poses a model function wii that is orthogonal to the exact
eigenfunctions 1 through i — 1, we also have

tt

1

<. (5)
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FIG. 1. Scheme illustrating different approximations to the dominant eigen-
function v, of the molecular dynamics propagator, and the associated ap-

proximations to the slowest relaxation timescale #,. TICA (wéT , blue) approx-

imates the eigenfunction v, (black) as a linear combination of molecular
observables, and the TICA timescale t§ associated to the TICA eigenvalue

)é underestimates (usually strongly) the true timescale #,. The estimate is
then improved by building a Markov model in TICA space, which approxi-
mates the eigenfunction ¥, by a step function (¢, red) that is constant on
the Markov model clusters. The corresponding Markov model estimate of
the relaxation timescale, 7, is thus typically larger than the TICA timescale
tzi and a better estimate of the true timescale #,.

This variational principle of conformation dynamics is analo-
gous to the variational principle in quantum mechanics.

C. Best approximation of the eigenfunctions

What is the relation of the variational principle above to
Markov models? Since the eigenfunctions ; are initially un-
known and difficult to guess, it is reasonable to approximate
them by functions 1//1.i that are assembled from a linear com-
bination of basis functions,

Vi = bux(x), (6)

which must be defined a priori, and the optimization problem
then consists of finding the optimal parameters b; that we
will denote by vectors b; € R”, where we have chosen the
dimension of the basis set, n, to be equal to the number of
basis functions. The Ritz method® provides the optimal set
of coefficients for an orthonormal basis set. Formally, if we
define the covariance matrix between Ansatz functions as

C,?(j(f) = (X (X)X Kro )

and we require that the basis functions are orthogonal—which
is equivalent to them being uncorrelated at lag time 0:

(Xis X = (DX X)) = ¢5(0) = 85, )

then the optimal set of coefficients is then given by the eigen-
vectors b; of the following eigenvalue problem:

CX(t)b; = b;A (7). (8)

Let us now consider the more general case that the Ansatz
functions are not orthonormal, i.e., (x;, x;), # &;. In this
situation, we must first orthonormalize the basis coordinates
before. This is done via a generalization to Eq. (8). For a
non-orthonormal basis set, the optimal approximation to the
true eigenvalues and eigenfunctions is obtained by solving the
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generalized eigenvalue problem:
C*(1)b; = C* ()b A (x). ©)

One may formally rewrite Eq. (9) as D(t)b; = )Lljfbi, where
D(t) = (CX(0))~'CX(7) is an orthonormal basis set. Numer-
ically, the matrix inversion of C*(0) is often poorly condi-
tioned and should therefore be avoided. The results (8) and (9)
are well known from variational calculus. The supplementary
material’’ contains an illustrative derivation of Eq. (9) rele-
vant to the special choice of basis set used in this paper.

D. Optimal linear combination of input
order parameters

We are now ready to make the main theoretical step of the
present contribution. Based on the above results, we can now
formulate a method to find a linear combination of molecular
order parameters r = (r(X), ..., r4(x)), which best resolves
the slow relaxation processes. This is done by finding the op-
timal coefficients for Eq. (6). For this, we define the basis
function x; to be identical to the mean-free coordinate r;(x)
(if the original order parameters r;(x) are not mean-free, then
we simply subtract the mean, r;(x) = r/(X) — (r;(X)),):

Xi (%) = ri(x). (10)

Thus, our basis set has n = d dimensions. Now let us compute
the correlation matrix of normalized order parameters as

i (0) = (rX)rj X)) = ¢f5(o).

Then solving Eq. (9) with the correlation matrix for lag times
0 and 7 will provide us with the linear combination of in-
put order parameters that optimally approximates the exact
propagator eigenfunctions. See the supplementary material’’
for a sketch of the usual derivation of Eq. (9) for the case
of TICA. It so happens that Eq. (9) with the choice of coor-
dinates (10) is known as the TICA in statistics.®*% This in-
sight establishes that TICA is an optimal approach (amongst
the linear projection methods) to approximate molecular re-
laxation timescales, and therefore ideally suited to construct
Markov models. A robust algorithm to solve Eq. (9) is known
as AMUSE algorithm’! and will be given below.

The eigenfunction approximations via Eq. (6) using the
coefficients b; are the optimal approximation to the true
eigenfunctions and will give an optimal approximation of
the timescales. As a result of the variational principle, )Liz(t)
< Ay(7) and

T
T <n
In A5 (1)

H(r) = —

according to Eq. (4). However, since the true eigenfunctions
are generally nonlinear functions of the original order param-
eters, and the basis set used in Eq. (10) is linear in the orig-
inal order parameters, it cannot be expected that v, ~ w; is
true, and therefore the variational principle can at this point
not be extended to further timescales than #,. In other words,
the TICA timescales t3i, b may be both under- or over-
estimated.

J. Chem. Phys. 139, 015102 (2013)

E. Markov models and implied timescales

We do not intend to use the TICA timescales directly, but
rather use the TICA subspace in order to construct a Markov
model by finely discretizing this space. What can be said
about the timescales of the resulting Markov model? We can
use the variational principle summarized above to bound the
timescales of the Markov model. Classical Markov models
operate by assigning a configuration x uniquely to one of the
n-geometric clusters used to construct them. It can be shown®
that this operation is equivalent to use the basis functions

Xi(X) = w,
VT
i.e., each basis function i is a step function with has a con-
stant value on the configurations belonging to the ith clus-
ter and is zero elsewhere. This basis is an orthonormal basis
set: (Xi» Xj)u = TL’l-_l xeS; u(x) dx = §;;. Thus, the direct Ritz
method applies and as shown in Ref. 47, Eq. (8) becomes

TP, = ¥ (7), (11)

where T(t) is the Markov model row-stochastic transition
matrix, ¥ = [l;],...,lzn] are its right eigenvectors, and
Xi(7) is the eigenvalue estimated form the Markov model
(from now on variables with tilde denote quantities estimated
via the Markov model). To relate Eqgs. (8) and (11), we have

used the definition C*(t) = /%Tij(t), i.e., the covariance
7

matrix between Ansatz functions y is the symmetrized tran-
sition matrix as given in Ref. 29.

Thus, a Markov model is the Ritz method for the choice
of a step-function basis on the clusters used to build it, and
thus gives an optimal step-function approximation to the
eigenfunctions and maximal eigenvalues amongst all choices
of functions that can be supported by the clustering. It fol-
lows from Eq. (4) that at least the second timescale will then
be underestimated. When the Markov model is sufficiently
good in approximating the slowest processes, all of the first
m timescales will be underestimated as given by Eq. (5). It
was shown’® that this estimation error becomes smaller when
T is increased. Prinz et al.’’ showed that it decreases with 7.
As a result, when plotting the estimated timescales 7;(t) as a
function of t, one obtains the well-known implied timescale
plots shown in Figs. 2 and 4, where the estimated timescales
f;(r) slowly converge to the true timescale when 7 is
increased.

We have now seen that both the TICA eigenvalue Ag and
the corresponding timescale 1‘2i are underestimated, as well
as the Markov model eigenvalue A, and the corresponding
timescale 7. Unfortunately, we cannot make a rigorous state-
ment of how tg and 7, are related to each other. However,
we can make the ad hoc statement that we intend to cluster
the dominant TICA subspace “sufficiently fine.” Thereby the
Markov model step functions of the dominant TICA com-
ponent allow the nonlinear eigenfunction ¥,(x) to be ap-
proximated better than by the linear combination of order
parameters (10) directly. For example, it is typical that the
eigenfunction ¥,(x) stays almost constant over a large part of
configuration space and then changes abruptly to a different
level in the transition state.*>*° Such a behavior can be much
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better described by a step function than by a linear fit. There-
fore, we shall here assume that the estimates of the dominant
timescale as t23t < I < tp: the dominant TICA timescale t2i isa
lower bound to the true timescale f,, but typically a poor lower
bound. The Markov model timescale 7, is typically larger, and
thus a better estimate of the true timescale #,. This concept is
illustrated in Fig. 1.

ll. METHODS

A. Principal component analysis and time-lagged
independent component analysis

In the present paper, we use PCA in two ways: (1) as a
direct dimension reduction tool to yield a subspace for cluster-
ing and subsequent Markov model construction in that space,
and (2) to transform the original data into the full set of prin-
cipal components, thus arriving at a decorrelated coordinate
set as an input for the subsequent transform into time-lagged
independent components.

Like PCA, TICA®* uses a linear transform to map the
original order parameters r(¢) to a new set of order parame-
ters z(#)—the independent components (ICs). Unlike PCs, ICs
have to fulfill two properties:

1. They are uncorrelated.
2. Their autocovariances at a fixed lag time T are maximal.

The time-lagged covariance matrix C.(7) is defined by
¢(0) = (r(D)r(t + D),

and the estimator for trajectory data containing N time steps
is given by
N-t

m ; V,'([)}’j(t + 7).

cl j(‘L’) =
The elements of C'(r) are time-lagged autocovariances if
i = j, and time-lagged cross covariances if i # j. As shown
in the supplementary material,”” this matrix is symmetric un-
der the assumption of reversible dynamics and in the limit
of good statistics. For a finite dataset, symmetricity must be
enforced.

We seek a transformation matrix U = [uy, ..., uy] that
diagonalizes C"(0) (to fulfill property 1), and maximizes the
autocorrelations cf,(t) = uiTC’(r)ui for every column u; of
U (to fulfill property 2). As described in Sec. II D, this is ac-
complished by solving

C’(0)u; = C O)u; Al (7). (12)

Equation (12) is equivalent to Eq. (9). See the supplemen-
tary material’’ for an illustrative derivation of (12). As de-
scribed in Sec. II D, the second-largest estimated eigenvalue
is a lower bound for the real second-largest propagator eigen-
value: )é(r) < (7).

ICs are now ordered according to the magnitude of the
autocovariance Xf(t), and the IC’s with the largest autoco-

variances Af(r) will be called dominant. Since the dominant
m IC’s yield the linear subspace in which most of the slow
processes are contained, it is reasonable to now perform a
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direct clustering in this subspace, thus aiming at approxi-
mating the nonlinear behavior of the slowest m eigenfunc-
tions with step functions. This will yield a better approxi-
mation to the m slowest timescales. Rewriting Eq. (12) in
matrix form, and with the matrix of autocorrelations, Ai(r)
= diag(kf(t), c oy Ay(D)) yields

C’(t)U = C'(0)UA* (7). (13)

In order to transform an original coordinate vector r into in-
dependent components, we perform

zf =r’U. (14)

How can (13) be solved? If C"(0) or C"(r) were in-
vertible, the generalized eigenvalue problem could be trans-
formed into a normal eigenvalue problem. But as we expect
some of our original order parameters to be highly correlated,
the determinants of C" and C'(r) will be nearly zero, pro-
hibiting this option. Alternatively, one can seek the solution
of (12) via generalized eigensolvers.

However, there is a simple and efficient alternative to this:
Problem (13) can also be solved by solving two simple eigen-
value problems using the AMUSE algorithm.”! It consists of
the following steps:

1. Use PCA to transform mean-free data r(¢) into principal
components y(¢).

2. Normalize principal components: y'(¢) = > ly(o).

3. Compute the symmetrized time-lagged covariance ma-
trix C’il = %[C? + (C‘?)T] of the normalized PCs.

4. Compute an eigenvalue decomposition of C/i/ obtain-
ing eigenvector matrix V, and project the trajectory y'(¢)
onto the dominant eigenvectors to obtain z(z).

This only works when the eigenvectors of C’ir are uniquely
defined, i.e., if the eigenvalues are not degenerated.® The
main idea of this algorithm is that properties 1 and 2 can be
fulfilled one after the other. First, steps 1 and 2 use PCA to
produce decorrelated and normalized trajectories y'(¢), also
known as whitening the data. Then steps 3 and 4 maximize
the time lagged autocovariances. Because the matrix V, which
is used in step 4, is unitary, it preserves scalar products be-
tween the vectors y'(¢). Now if y'(¢) are chosen to be un-
correlated (and properly normalized), then also z(¢) will be
uncorrelated.

In summary, the transformation equation (14) can be
written as a concatenation of three linear transforms:

7)) =r"OU=r")WX V. (15)

TICA will be used as a dimension reduction technique. Only
the dominant TICA components will be used to construct a
Markov model.

B. Markov model construction

Having identified the “slow” linear combinations of in-
put order parameters, the hope is that clustering in a low-
dimensional linear subspace will provide a useful clustering
metric for the accurate and efficient construction of Markov
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models with a moderate number of clusters. For cluster-
ing and Markov model construction of molecular dynamics
data, the packages EMMA,’> MSMbuilder,”* Wordom,’* and
METAGUI” are currently available. Here, we use the EMMA
package.

Markov models are constructed by first performing a data
clustering and subsequently converting the trajectory files into
discrete trajectory files containing the sequence of cluster in-
dexes visited. For the sake of the current paper, the main anal-
ysis is the behavior of the relaxation timescales that are im-
plied by the estimated Markov model.

The k-means algorithm’® has been used with 1000 cen-
ters for clustering in the different coordinate spaces that
spanned by the input order parameters r, a set of normal-
ized PCA sub-spaces (y'), and a set of TICA sub-spaces (z).
For comparison, the data have also been clustered using the
widely used minimal normalized Euclidean distance (short:
minimal RMSD-metric>®) in the full Cartesian space (x) us-
ing a distance cut-off that produces an equivalent number of
clustercenters. Both algortihms are available via the EMMA
command mm_ cluster.

Subsequent to the identification of cluster centers, the
state space is partitioned by assigning each trajectory frame
to its closest cluster center according to the same metric
used for clustering. The discretization obtained this way is
a Voronoi tessellation of the observed coordinate space, so
that the Voronoi cells form a complete partition of the con-
formation space. This is carried out via the EMMA command
mm_assign.

Ultimately, Markov model estimation is done as pro-
posed in Ref. 49 using the maximum probability estimator
of reversible transition matrices with a weak neighbor prior
count matrix (EMMA default). Both the transition matrix es-
timation and its diagonalaization are performed by the com-
mand mm_timmescales.

The transition matrix T(z) has the right eigenvectors Vi,
the left eigenvectors @;, and the eigenvalues X; according to
the following eigenvalue equations:

TV = Mi(D)¥;,
I T(r) = Xi(0)@! .

We order eigenvalues by descending norm. When T(7) is con-
nected (irreducible), it will have a unique eigenvalue of norm
1. The corresponding eigenvector can be normalized to yield
the stationary distribution 7 :

x’ =aTT().

Since T(r) fulfills detailed balance, the left and right
eigenvectors are related by

¢: = diag(r)¥;.
The estimated (implied) relaxation timescales of the Markov
model are given by
- T
_M’

which are — ignoring statistical errors — related to the true re-
laxation timescales by 7; < #; (see Sec. II), and are typically
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larger than the timescales implied by the TICA eigenvalues
(see Sec. II and Fig. 1).

C. Optimal indicators

Given the final Markov model transition matrix T(7), we
can now establish a simple way to quantify how well each
of the order parameters r; serving as an input serves as an
indicator of the slow process described by the eigenvector
¥;: We simply compute the correlation between all pairs of
order parameters and eigenvectors, and then, for each eigen-
vector, choose those order parameters that have a maximum
correlation:

ropt(i) = arg max Corr(ry, ¥;), (16)
rk

where the correlation is in practice computed either via a time
or MSM-based ensemble average. For the time-average (used
here), let s(¢) be the trajectory of microstates, i.e., the trajec-
tory that contains at each time point the microstate number
that is assigned to the configuration visited at that time point.
Then, we approximate the correlation by

Corr(ry, &1) — (rk'(//i,s(t)>t - (j’k)z(Wi,s(tﬂt ’
(rATCT7Y

while for the MSM-based ensemble average, we compute the
average value of r; for every microstate j, obtaining 7y ;, and
obtain

A7)

n - 7 n — n i
Dt T Wi = D Tk D i TV

Corr(ry, 1};): - > - 5
\/Zj:l il Zj:l Y

(18)

IV. RESULTS

The proposed methodology is demonstrated on two
different peptide systems: the fluorescent peptide MR121-
GSGSW and the 30-residue intrinsically disordered peptide
KID. See the supplementary material’’ for the statistical un-
certainties of both data samples.

MR121-GSGSW is a well-studied fluorescent peptide
that has been extensively characterized by experiments,’’
simulations,’® and also by Markov models.*>7 Here, a data
set of two explicit solvent simulations of 4 us each is used, a
set that is publicly accessible as a benchmark dataset for the
EMMA software package (see http://simtk.org/home/emma).
The details of the simulation setup are described in Ref. 49.

The slowest relaxation timescale of the MR121-GSGSW
data set has been estimated to be between 20 and 30 ns, and
it has been found that the slowest processes are dominated by
the interaction between MR121 and the tryptophan residue
(Trp).>° The data set is used as a benchmark system to test
whether Markov model construction in PCA or TICA coordi-
nates manages to identify the slow parameters, approximates
the slow processes, and assigns the correct timescales.

Figure 2(al) shows a sample structure of MRI121-
GSGSW. Figure 2(b) shows a benchmark for the relaxation
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FIG. 2. MR121-GSGSW peptide and its dominant relaxation timescales cal-
culated via different Markov model construction methods. (al) Sample struc-
ture of the peptide. (a2) Illustration of the Trp coordinates used. The cen-
ter position of the Trp and the orientation vectors are given in a coordinate
system defined by the MR121 principal axes. (b) Relaxation timescales us-
ing regular space RMSD clustering with 1000 clusters. (c)—(e) Relaxation
timescales using k-means with 1000 clusters and Euclidean metric but oper-
ating on different subspaces: (c1) Intramolecular distances between all C,’s
and ring centers. (c2) Center position and orientation coordinates of the Trp
moiety in the MR121 coordinate system. (c3) Combined coordinate set in-
cluding intramolecular distances and Trp coordinates. (d1)-(d3) Dominant
PCA subspace of the combined coordinate set using 1, 4, and 10 dimensions.
(e1)—(e3) Dominant TICA subspace of the combined coordinate set using 1,
4, and 10 dimensions.

timescales computed by a regular-space clustering in pair-
wise minimal RMSD metric using 1000 cluster centers. The
slowest processes are found at about 25 ns, 12 ns, and 8 ns,
slightly larger—and thus more accurate according to the vari-
ational principle in Eq. (4)—than by the coarser Markov
model in Ref. 50. To set up the direct clustering, two inter-
nal coordinate sets are considered: (i) the set of 66 distances
between 12 coordinates defined by the 5 C,’s and the 7 ring
centers involved, and (ii) the center position and the orien-
tation vector coordinates of the Trp sidechain in a coordi-
nate set defined by the MR121 principal axes (see Fig. 2(a2)
for an illustration). We refrain from using dihedral angles
as input coordinates given that the tertiary interactions be-
tween MR121 and Trp (and not the flexible linker) are re-
sponsible for the metastability. Figures 2(c1)-2(c3) show the
results of direct k-means clustering with 1000 cluster cen-
ters in the space of 66 intramolecular distances Fig. 2(cl),
only the 9 Trp coordinates Fig. 2(c2), and the combined set
Fig. 2(c3). It is clearly seen that the intramolecular distances
are not suited to resolve the slowest processes, while the Trp
coordinates resolve them very well. This can be understood
from the structural arrangements shown in Fig. 3, which are
dominated by the relative orientation of the Trp sidechain with
respect to the MR121 ring system. Especially the slowest pro-
cess, the stacking-order exchange of the two ring systems,
cannot be well described by the intramolecular distances that
are similar when the Trp is “above” or “below” the MR121.
Figure 2(c3) shows that discretizing the combined coordinate
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set resolves the slowest processes with similar timescales as
in the 9 Trp-coordinate set alone. This is not always expected,
as increasing the dimensionality of the space to be clustered,
while keeping the number of clusters constant will often re-
duce the resolution.

In the subsequent PCA and TICA analysis different lin-
ear subspaces of the combined coordinate set were consid-
ered. Interestingly, clustering the principal components re-
duces the quality of the Markov model significantly. This is
explained by the fact that the largest-amplitude motion in the
present system is the transition between structures in which
Trp and MR121 are in contact, and open structures. How-
ever, open structures have a very low population giving rise
to a rather fast timescale of the opening/closing process. The
slowest processes, involving different arrangements and ori-
entations of the Trp and MR121 while being in contact, give
rise to comparatively small amplitude motions. Using one and
four PCA components (Figs. 2(d1) and 2(d2)), the three slow-
est processes are not found. Using ten PCA components, the
two slowest processes are found, although slightly underesti-
mated, while the third-slowest process is not found.

Figures 2(el)-2(e3) show that the TICA coordinates per-
form indeed very well. Using only the single slowest TICA
coordinate does resolve the slowest process well and gives
rise to a timescale of 20-25 ns, close to the expected value.
Using the four slowest TICA coordinates resolves the two
slowest processes well, while somewhat underestimating the
third process. With ten TICA coordinates all slow processes
are well resolved, and the timescales are found to be 27 ns,
13 ns, and 10 ns at a lagtime of T = 10 ns—slightly larger
than in any of the other choices of metrics.

Figure 3(a) illustrates the structural transition involved in
the two slowest processes occurring at around 27 and 13 ns
computed from the ten-dimensional TICA Markov model. We
display the 1000 microstates in a visualization that we shall
call kinetic map, where the coordinates are given by the two
slowest left eigenvectors qzz, (33. For example, a cluster i is
drawn at a position (¢, ¢3;) with its area proportional to
its stationary probability ;. The map is termed “kinetic” be-
cause similar positions in eigenvector spaces mean that the
states can relatively quickly reach one another, while distant
positions only exchange on timescales #, on the horizontal
and on timescale 73 on the vertical axis. The left eigenvec-
tors are chosen instead of the right eigenvectors because the
left eigenvectors are weighted by the stationary distribution:
q}k,,- =7 &k,i. Thus, points on the border of the map tend
to have larger stationary probability. Therefore, the extremal
points are at the same time populous and kinetically distant,
and can roughly be associated with the most stable “free en-
ergy minima,” while the smaller clusters connecting them
correspond to transition states. The structures, shown for the
most populous and kinetically distinct clusters, indicate that
the slowest relaxations are associated with a stacking-order
exchange of the MR121 and Trp groups, and a rotation of the
Trp group with respect to the MR121 group (see “marker”
atom shown as a blue sphere).

Figure 3(b) illustrates the optimal indicators of the slow-
est processes, i.e., the input order parameters that have the
largest correlation with the individual right Markov model
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FIG. 3. (a) Kinetic map of the two slowest relaxation processes of MR121-GSGSW (around 27 ns and 13 ns) calculated from the Markov model shown in
Fig. 2(e3). The grey discs mark the coordinates of the 1000 microstates in the space of the left eigenvectors @, $3. The slowest relaxation of the system
thus takes place on the horizontal axis, the second-slowest one on the vertical axis, and distances are associated with kinetic separation. The area of a disc
is proportional to the stationary probability of the corresponding microstate. Some representative (kinetically distant and populous) microstates are shown as
molecular structures. (b) Optimal indicators of the slow processes. The scatter plots show the correlation between the second and third right Markov model
eigenvectors 1}2, 1/73 and the order parameters most correlated with them. The arrows in the structures show the optimal indicators. (bl) The Trp z-position
mediates the stacking order exchange and has a correlation coefficient of 0.81 with the second eigenvector ¥ (timescale 27 ns). (b2) The smallest Trp axis of
inertia mediates the rotation of the side-chain and has a correlation coefficient of 0.59 with the third eigenvector 1/; 3 (timescale 13 ns).

eigenvectors ¥, and 3. The correlation plots show that the
respective order parameters attain clearly different values at
the end-states of the transition, i.e., for the minimal and max-
imal values of the respective eigenvector. At intermediate
values of the eigenvectors, i.e., transition states, the order
parameter can access many different values. This is easily
seen in the slowest process (Fig. 3(bl)), where the best in-
dicator is the Trp z-position that mediates the stacking or-
der exchange (correlation coefficient —0.81 with the second
eigenvector ¥,). While the value of the Trp z-position is
clearly defined in the transition end-states, where the Trp is
located “above” and “below” the MR121 moiety, the tran-
sition states include open configurations where the Trp and
the MR121 are not in contact at all, and therefore all values
of the z-position are accessible in these states. A similar be-
havior is seen for the second-slowest process (Trp sidechain
rotation).

We now turn to the other molecular system. Here, an
extensive set of simulations of the KID in explicit solvent

was investigated. KID is part of the cAMP response element-
binding protein (CREB). CREB is a transcription factor in-
volved in processes as important as glucose regulation and
memory, and it binds the CREB-binding protein (CBP), a
well-known cancer-related molecular hub with around 300
interacting protein partners.’’ KID belongs to a large and
important class of intrinsically disordered peptides, encom-
passing many hormones, domains, and even whole proteins.3!
Unstructured regions perform their function even though they
lack a well-defined secondary or tertiary structure in solution.
Although standardized algorithms exist to detect unstructured
regions on the basis of the primary amino acid sequence,
the structural details of how disordered regions exert their
function are still elusive. For example, some unstructured
domains, including KID, become folded upon binding;82 it
is therefore of much interest (e.g., for the druggability of
protein-protein interactions) to investigate whether the pres-
ence of pre-formed elements causes folded conformations to
be selected from the ensemble (conformational selection),®?
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FIG. 4. KID peptide and its estimated dominant relaxation timescales using different Markov model construction methods. (a) Sample structure of KID. (b)
Relaxation timescales using regular space RMSD clustering with 1000 clusters. (c)—(e) Relaxation timescales using k-means with 1000 clusters and Euclidean
metric but operating on different subspaces. (c) All C, — C, distances. (d1)—(d3) Dominant PCA subspace of C, — C, distances using 1, 4, and 10 dimensions.
(e1)—(e3) Dominant TICA subspace of C, — Cy distances using 1, 4, and 10 dimensions.

or whether the binding rather occurs through induced-fit
mechanics.®*

To shed light on this problem, we set up an ensemble of
all-atom simulations of the phosphorylated KID (pKID) do-
main. We have performed 7706 all-atom explicit-solvent sim-
ulations of 24 ns each using the ACEMD software®> on the
GPUGRID distributed computing platform,? yielding a total
of 185 us simulation data. However, due to the short simu-
lations, only short lagtimes could be used presenting a chal-
lenge to the Markov model construction. The detailed simu-
lation setup is described in the supplementary material.”

Figure 4 shows the performance of different metrics in
their ability to resolve the slowest processes of KID. KID is a
more difficult case than the MR121-GSGSW peptide because
its natively unstructured nature gives rise to many fast large-
amplitude motions, which will conceal the slow processes in
most ad hoc metrics. Figures 4(b) and 4(c) show that neither
regular-space clustering in minimal pairwise RMSD metric
nor direct clustering in C, — C, distances yield a converged
estimated of the timescales up to lagtimes of 10 ns. Between
these two, regular-space RMSD is better, reaching a timescale
of about 170 ns at T = 10 ns, while the direct clustering pro-
duces a timescale below 100 ns at T = 10 ns. Higher choices
of lagtimes were avoided as they lead to a severe reduction
of the usable data because the connected set of clusters drops
significantly below 100% after that point. Figures 4(d1)—4(d3)
show that the performance of principal components is even
worse than direct clustering giving rise to timescale estimates
below 20 ns for one principal component and below 50 ns

for ten principal components. This confirms that the largest-
amplitude motions are not the slowest in KID.

Figures 4(el)-4(e3) show the performance of the TICA
coordinates using one, four, and ten dimensions. Using only
the slowest TICA coordinate, a slow process of >200 ns is
found, that has not been resolved by the clustering in any of
the other metrics, however, this timescale does not converge
for lagtimes up to 10 ns. Using only the four slowest TICA co-
ordinates, there are already three processes resolved that are
above 100 ns, and the convergence behavior improves. Us-
ing the ten slowest TICA coordinates, five processes slower
than 100 ns are resolved. The slowest process converges to a
timescale around 220 ns and does so already at a lagtime t of
2-5 ns. Thus, the lagtime needed is a factor of 50-100 smaller
than the timescale of the process, indicating a very good dis-
cretization of the corresponding process.

Figure 5(a) illustrates the structural transitions associated
with the two slowest relaxation processes of KID as identified
by the Markov model using ten-dimensional TICA model. We
have decided to focus on the two slowest processes around
200 and 220 ns relaxation time, because they are somewhat
separated from the next-slowest processes occurring at around
100 ns. As the peptide has great structural variability, it is
of little value to plot all relevant structures. Therefore, we
have plotted the positions of the microstates again in a ki-
netic map using the coordinates of the two dominant left
eigenvectors 52, (1;3. It is seen that at the slowest timescales,
the system rearranges mostly between open and disordered
structures (left), structures with one helix folded or partially
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FIG. 5. (a) Kinetic map of the two slowest relaxation processes of the KID peptide (around 200 ns and 220 ns) calculated from the Markov model shown in Fig.
4(e3). The grey discs mark the coordinates of the 1000 microstates in the space of the left eigenvectors ¢, ¢3. The slowest relaxation of the system thus takes
place on the horizontal axis, the second-slowest one on the vertical axis, and distances are associated with kinetic separation. The area of a disc is proportional to
the stationary probability of the corresponding microstate. Some representative (kinetically distant and populous) microstates are shown as molecular structures.
(b) Optimal indicators of the slow processes. The scatter plots show the correlation between the second and third right Markov model eigenvectors V2, ¥3 and
the order parameters most correlated with them. The colored lines show all five best indicators. The slowest process may thus be described as opening/closing
of the hinge between the two helical domains of KID (timescale 220 ns), while hinge-closing is associated with at least partial N-terminal helix formation (red).
The second-slowest process may be described as partial helix formation in the “blue” region (timescale 200 ns).

folded (top right), and hairpin-like structures (bottom right).
Thus, the system has some residual helical structure, although
it is not very stable in absence of a stabilizing binding partner.

Figure 5(b) illustrates the optimal indicators of the slow-
est processes, i.e., the input order parameters that have the
largest correlation with the resulting right Markov model
eigenvectors 1/72 and 1[73. Like for MR121-GSGSW, the cor-
relation plots show that the respective order parameters are
mainly able to distinguish the end-states of the transition,
but unlike for MR121-GSGSW, multiple C,—C,, distances
are almost equally good indicators for the same process.
Figure 5(b) shows correlation plots of the best indicators of
¥, and ¥ 3, but indicates the five best correlations in the struc-
ture. It is seen that the slowest process (timescale 220 ns)
is best described by a hinge opening and closing, where the
closed hinge appears to induce at least partial formation of the
N-terminal helix (red, see Fig. 5(b2)). This is consistent with

nuclear magnetic resonance (NMR) experiments that have
shown the N-terminal region to be approximately 50% heli-
cal in the apo-form.’¢ The second-slowest process (timescale
200 ns) is best described by partial helix formation of the C-
terminal part (blue) of the protein.

V. DISCUSSION

In the present study we have derived a method to find
the optimal linear combination of input coordinates for ap-
proximating the slowest relaxation processes in complex con-
formational rearrangements of molecules. It is shown that an
implementation for this method is already known in statistics
as the TICA method, which is combined here with Markov
modeling in order to construct models of the slow relax-
ation processes and precise estimates of the related relax-
ation timescales. It is shown that this approach of constructing
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Markov models yields slower timescales, and thus a more pre-
cise approximation to the true relaxation processes than pre-
vious approaches. This is also achieved for the intrinsically
disordered peptide KID where established approaches such
as direct clustering in distance space, minimal-RMSD-based
clustering, or clustering in PCA space did not perform well
because the largest-amplitude motions were not good indica-
tors of the slowest relaxation processes.

Beyond having an approach to construct quantitatively
accurate Markov models in a way that is more robust than
most previous approaches, we readily obtain a way to find best
indicators of the slowest transitions. Best indicators are those
molecular order parameters that are best correlated with the
Markov model eigenvectors describing the slowest processes,
and thus serve as candidates for good reaction coordinates.
Being able to point out such indicators provides a way to make
the sometimes complex structural rearrangements readily un-
derstandable.
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