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Several lines of evidence have strongly implicated inflammatory processes in the

pathobiology of major depressive disorder (MDD). However, the cellular origin of

inflammatory signals and their specificity remain unclear. We examined the phenotype

and glucocorticoid signaling in key cell populations of the innate immune system

(monocytes) vs. adaptive immunity (T cells) in a sample of 35 well-characterized,

antidepressant-free patients with MDD and 35 healthy controls individually matched for

age, sex, smoking status and body mass index. Monocyte and T cell phenotype was

assessed by flow cytometry. Cell-specific steroid signaling was determined by mRNA

expression of pre-receptor regulation (11β-hydroxysteroid dehydrogenase type 1; 11β

-HSD1), steroid receptor expression [glucocorticoid receptor (GR) and mineralocorticoid

receptor (MR)], and the downstream target glucocorticoid-induced leucine-zipper

(GILZ). We also collected salivary cortisol samples (8:00 a.m. and 10:00 p.m.) on

two consecutive days. Patients showed a shift toward a pro-inflammatory phenotype

characterized by higher frequency and higher absolute numbers of non-classical

monocytes. No group differences were observed in major T cell subset frequencies and

phenotype. Correspondingly, gene expression indicative of steroid resistance (i.e., lower

expression of GR and GILZ) in patients with MDD was specific to monocytes and not

observed in T cells. Monocyte phenotype and steroid receptor expression was not related

to cortisol levels or serum levels of IL-6, IL-1β, or TNF-α. Our results thus suggest that

in MDD, cells of the innate and adaptive immune system are differentially affected with

shifts in monocyte subsets and lower expression of steroid signaling related genes.
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INTRODUCTION

Several independent lines of evidence have implicated the
immune system in the pathobiology of mood disorders,
particularly major depressive disorder (MDD) (1–3). Numerous
studies and several meta-analyses have demonstrated higher
levels of circulating cytokines, such as interleukin 6 (IL-6) and
tumor necrosis factor α (TNF-α), inMDD (4, 5). However, serum
levels of cytokines reveal little about the specific cause of immune
dysfunction and the cellular source of inflammation in MDD
remains poorly understood.

Importantly, it is now becoming increasingly clear that MDD
is not simply a state of general immune activation but that
innate and adaptive immune responses might be differentially
affected (6). Considerable evidence points toward activation of
monocytes in MDD (7, 8). In contrast, recent studies have
suggested that adaptive immunity, specifically T cell function,
might be impaired in MDD (9–11).

This implies that immune activation and impaired regulation
of inflammation inMDDmight be limited to certain components
of the immune system. Glucocorticoids (GCs) are among the
most potent endogenous regulators of inflammation, and cell-
specific alterations in steroid signaling are thus promising
candidates in this respect. Several studies have suggested that
leukocyte responsiveness to GCs is blunted in patients withMDD
(7, 8, 12–15). If regulatory pathways of inflammation (such as
glucocorticoid signaling) were indeed affected in a cell-specific
fashion in MDD, this might have implications for developing
tailored pharmacological approaches in the future.

In the current study, we therefore aimed to explore the
interplay between inflammation and stress hormone signaling by
contrasting the phenotype and glucocorticoid signaling of key
cell populations in the innate immune system (monocytes) vs.
adaptive immunity (T cells) in a sample of well-characterized,
antidepressant-free patients with MDD and closely matched
healthy controls (HC). In addition, we explored the association
of these putative immune signatures with serum cytokines,
clinical characteristics of MDD and important risk factors such
as childhood trauma.

MATERIALS AND METHODS

Participants and Clinical Assessments
The study was approved by the local ethics committee
(EA1/096/15). The authors assert that all procedures contributing
to this work comply with the ethical standards of the
relevant national and institutional committees on human
experimentation and with the Helsinki Declaration of 1975,
as revised in 2008. All participants provided written informed
consent and received financial reimbursement for their time and
effort.

Patients with MDD between 18 and 60 years of age were
recruited from our inpatient wards, via onsite psychiatrist
referral, or online advertisements. Healthy controls were
recruited from online advertisements. Patients and controls were
matched pairwise on sex, smoking status, age, and body mass
index (BMI) prior to running any biological analyses.

All participants were free of significant medical illness
(e.g., diabetes, autoimmune or infectious illnesses),
immunomodulatory treatment [e.g., non-steroidal anti-
inflammatory drugs (NSAIDs), glucocorticoids or antibiotics],
pregnancy, and recent (<3 months) vaccinations. Inclusion
criteria specific to MDD patients were a clinician-confirmed
diagnosis of MDD, a minimum antidepressant-free period
of 2 weeks and absence of comorbid psychiatric disorders
(e.g., substance abuse in the past 12 months) except for mild-
to-moderate anxiety disorders. Inclusion criteria specific to
healthy controls were absence of any form of psychiatric illness,
a Montgomery Asberg Depression Rating Scale (MADRS)
score <7 and no clinically confirmed diagnosis of any affective
disorder in a first-degree relative.

Diagnosis of MDD was confirmed by experienced
psychiatrists (DP, CO). In addition, during the study visit,
the Mini-International Neuropsychiatric Interview (16) and
the MADRS (17) was conducted by a trained clinical rater
(HH). Self-report questionnaires were obtained to quantify
levels of anxiety (Beck Anxiety Inventory, BAI) (18), depression
severity (Beck Depression Inventory II, BDI-II) (19) and adverse
childhood experience (Childhood Trauma Questionnaire, CTQ)
(20).

Blood and Saliva Collection
A sample of 70ml of venous blood was collected in heparinized
tubes (BD, Germany). To control for circadian rhythms
and other potential confounds, samples were obtained
between 8.00 a.m. and 9:30 a.m. after 12 h overnight fasting.
Peripheral blood mononuclear cells (PBMCs) were immediately
isolated and cryopreserved until assayed (see below for
details).

Serum was collected in serum separator tubes (BD, Germany)
and allowed to clot for 30min at room temperature in the
dark. Next, samples were centrifuged for 5min, after which
serum was aliquoted and stored at −20◦C until analysis. Saliva
samples were collected on 2 consecutive days at 8:00 a.m. and
10.00 p.m. using Sarstedt salivettes (Sarstedt, Germany) at home
by the participants (within a week of their clinical visit) and
shipped back to the lab in pre-stamped envelopes provided by
the study team. All samples arrived within 7 days and were
immediately processed and stored until assayed (see below for
details).

Isolation of Peripheral Blood Mononuclear
Cells (PBMCs)
All blood samples were processed within 1 h of collection.
PBMCs were isolated from heparin venous blood samples
via density gradient centrifugation. In brief, samples were
carefully layered on top of density medium (Biocoll, Biochrome,
Germany). After centrifugation, PBMCs were harvested from
the interphase, washed twice in phosphate-buffered saline (PBS)
and taken up in RPMI-1640 + GlutaMax medium (Gibco,
ThermoFisher Scientific, Germany) supplemented with 25%
heat-inactivated fecal calf serum (FCS) (Biochrome, Germany)
and 10% dimethylsulfoxide (Applichem GmbH, Germany) for
cryopreservation. Cells were frozen at a concentration of 107
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cells/ml at −80◦C in a pre-cooled freezing container. After 24–
48 h, cells were transferred to liquid nitrogen and stored at
−196◦C until analysis.

For thawing, the cryo vials were transferred to a water
bath pre-warmed to 37◦C. After 5min, 107 cells were
transferred into 10ml of thawing medium (RPMI-1640 +

GlutaMax containing 10% FCS at 37◦C). Cells were then
washed in medium, counted and prepared for phenotyping by
flow cytometry or magnetic-activated cell separation (MACS
Microbead Technology, Miltenyi Biotec, Germany) as described
below.

Flow Cytometry
Antibody panels used for this study are presented in Table S1 (all
Biolegend, UK). All monoclonal antibodies were pretested and
titrated to optimal concentrations using PBMCs from healthy
donors. All steps were conducted at room temperature unless
otherwise specified.

First, PBMCs were incubated with a live/dead marker
(Zombie NIR Fixable Viability Kit, BioLegend, UK) and the
CCR7 antibody in PBS for 15min. Next, antibody premixes
were added in staining buffer (PBS + 0.5% bovine serum
albuminMiltenyi Biotec, Germany+ 0.02% sodium azide Sigma-
Aldrich, Germany) and incubated for an additional 15min.
Cells were then washed and resuspended in staining buffer
and immediately analyzed on a FACSCanto II (BD, Germany).
Matched HC/MDD pairs were analyzed in the same run on
the same day to avoid any systematic variation due to technical
variability.

The gating strategies to identify PBMC subpopulations
are depicted in detail in Figures S1, S2. Briefly, leukocyte
identification followed recommendations for general
immunophenotyping in humans (21, 22).

Results from manual analysis of flow cytometric data were
further validated by means of an unsupervised clustering
algorithm (CITRUS, as implemented in the cloud-based
Cytobank software, Cytobank Inc. USA). This approach
accounts for the continuous nature of immune subsets (e.g.,
monocyte subpopulations) and has been shown to better reflect
pathophysiologic conditions than gating-based, threshold-driven
manual analysis of distinct subtypes (23). Briefly, CITRUS
performs hierarchical clustering of cellular populations based on
phenotypical similarity and automatically identifies stratifying
features between groups (24). In our analysis, we defined
CD3− non-T cells as input population after removing debris,
doublets and dead cells. CITRUS was run with CD14, CD16,
CD20, CD56, and HLA-DR as clustering channels on 104

events sampled per file with a minimum cluster size threshold
of 1.5%. The correlative model SAM was used to detect
associations between the relative cluster abundance of each
sample and the study groups (HC or MDD). Using a false
discovery rate of 1%, significant clusters were exported as FCS
files, concatenated for the whole study cohort and projected
on viSNE maps of the total non-T cell population. The
viSNE algorithm reduces multi-dimensional flow cytometry
data to two dimensions (tSNE1 and tSNE2 = t-Distributed

Stochastic Neighbor Embedding) while retaining the single-cell
representation of the data (25).

Cell Sorting, RNA Isolation, cDNA
Synthesis, and Real-Time Reverse
Transcription-Polymerase Chain Reaction
(RT-qPCR)
For analysis of cell-specific gene expression, T cells and CD14+

monocytes after thawing were purified from PBMCs following
manufacturer’s instructions using magnetic-activated cell sorting
(CD3 and CD14MicroBeads, Miltenyi Biotec, Germany). Briefly,
107 were resuspended in 80 µL MACS buffer (PBS, 0.5% BSA,
and 2mM EDTA) and 20 µL of CD3 or CD14 MicroBeads,
respectively, and incubated for 15min at 4◦C in the dark.
After washing with 2mL MACS buffer per 107 cells, cells were
resuspended in 500 µL MACS buffer before proceeding to
magnetic separation on MACS LS columns. Cell purity was
checked using flow cytometry. In our hands, this yields a purity
of 96.5± 1.2% for T cells and 92.3± 1.7% for CD14+ monocytes.
RNA was isolated from purified cells using Qiagen RNeasy
Plus Mini Kit (Qiagen, Germany) following manufacturer’s
instruction. Purity and concentration were determined using a
NanoDrop spectrophotometer (NanoDrop 2000c, ThermoFisher
Scientific, Germany). Average RNA yield was similar across
groups for T cells [MDD: 581.1 ± 480 ng; HC: 631.9 ±

383 ng; T(34) = 0.61; p = 0.55] and monocytes [MDD:
815 ± 1358 ng; HC: 685 ± 524.6 ng; T(34) = 0.67; p =

0.51] All steps were conducted at room temperature. Isolated
RNA was directly transcribed to complementary DNA (cDNA)
without intermittent freezing using the RevertAid H Minus
First Strand cDNA Synthesis Kit (ThermoFisher Scientific,
Germany) according to manufacturer’s instructions and stored
at −80◦C until analysis. cDNA was amplified on a StepOne
Real-Time PCR system (Applied Bioscience, Germany) using
TaqMan Gene Expression Assays (ThermoFisher Scientific,
Germany) for GR (Hs00353740_m1), MR (Hs01031809_m1),
GILZ (Hs00608272_m1), 11ß-HSD1 (Hs01547870_m1). Gene
expression was normalized using two housekeeping genes:
Importin 8 (IPO8; Hs00183533_m1) and TATA Box Binding
Protein (TBP; Hs00427620_m1). All RT-qPCRs reactions were
performed in triplicates with a patient and matching control
sample on the same plate. Gene transcript levels were assessed
relative to IPO8 and TBP using the 11CT method.

Analysis of Salivary Cortisol
Circadian peak and nadir measures of hypothalamus-pituitary
adrenal (HPA) axis activity were estimated by salivary cortisol
levels at 8:00 a.m. and 10:00 p.m. collected on 2 consecutive
days. After collection, saliva tubes were centrifuged for 5min and
aliquots stored at −20◦C until analysis. Samples were analyzed
in duplicates using an enzyme-linked immunosorbent assay
(ELISA) (IBL, Germany) following manufacturer’s instructions.
Matched HC/MDD pairs were measured on the samemicroplate.
Standard curves were fitted using 4-parameter logistics. This
method has a detection sensitivity of 0.135 nmol/L and intra- and
inter-assay coefficients of variation <10%.
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Analysis of Serum Cytokines
Serum interleukin-6 (IL-6), interleukin 1 beta (IL-1β) and tumor
necrosis factor alpha (TNF-α) levels were analyzed in duplicates
using commercially available high sensitivity ELISA kits (R&D
Systems Europe, UK) following manufacturer’s instructions.
Matched HC/MDD pairs were measured on the samemicroplate.
Optical density was determined on a CLARIOStar microplate
reader (BMG Labtech, Germany). Standard curves were fitted
using 4-parameter logistics. Calculated cytokine concentrations
< 0.5 x limit of quantification (LOQ, i.e. lowest standard
concentration) were set to 0.5 x LOQ. Themean limit of detection
for IL-6, IL-1β, and TNF- α as provided by the manufacturer is
0.031, 0.033, and 0.022 pg/mL, respectively. Intra- and inter-assay
coefficients of variation were <10%.

Routine Blood Tests
Serum CRP analysis by particle-enhanced turbidimetric
immunoassay (PETIA) and a differential blood cell count to
enumerate circulating leukocyte subsets were conducted by a
clinically licensed diagnostic lab (Labor Berlin—Charité Vivantes
GmbH, Germany).

Statistics
Cell population specific parameters were expressed as either
absolute cell counts or percentages normalized to suitable
reference populations. Continuous variables were analyzed with
paired-sample t-tests due to the close matching based on four
variables (age, sex, smoking, BMI, see Table S2) between patients
and healthy controls (26). Dichotomous variables were analyzed
with McNemar’s test. Associations with clinical variables and
immune markers were explored using Spearman’s correlation
coefficients. A two (group = MDD vs. HC) × four (time =

day 1 morning vs. day 1 evening vs. day 2 morning vs. day 2
evening) repeated-measures analysis of variance (ANOVA) was
run to investigate group differences in saliva cortisol levels. Effect
sizes were calculated as Hedges’ g for t-tests and partial eta²
(ηp²) for ANOVAs (27). Statistical analyses were conducted in
SPSS version 21 (IBM Inc., USA) and GraphPad Prism version
7 (GraphPad Software Inc., USA). Flow cytometry data were
analyzed using FlowJo version 10.1 (Treestar Inc., USA) and
Cytobank analysis software (Cytobank Inc., USA).

RESULTS

Demographic and clinical characteristics of patients and controls
are displayed in Table 1. The majority of MDD patients were
inpatients (n =18) and had a recurrent disease course (n = 28)
with a mean of 3.75 previous episodes (range: 1–7, standard
deviation 1.7 episodes).MeanMADRS scores indicatedmoderate
depression severity.

As expected, the MDD group showed higher levels of anxiety
and childhood trauma. There were no differences in any of the
measured demographic or lifestyle variables (Table S2).

Immune Phenotype
When examining the phenotype of cell subsets in the innate and
adaptive immune system, we observed a significantly reduced
relative frequency of classical monocytes [T(34) = 4.81; p <

TABLE 1 | Sample characteristics.

MDD (n = 35) HC (n = 35) Test statistic p-value*

Age, years 31.7 (11.2) 31.7 (10.2) T(df=34) = 0 >0.99

BMI, kg/m2 23.9 (3.6) 23.5 (3.2) T(df=34) = 1.27 0.21

% Females (n) 71.4 (25) 71.4 (25) x²(df=1) = 0 >0.99

% Current smokers

(n)

34.3 (12) 34.3 (12) x²(df=1) = 0 >0.99

MADRS 24.9 (5.3) 1.2 (1.8) T(df=34) = 26.31 <0.01

BDI-II 29.9 (6.5) 2.9 (3.4) T(df=34) = 21.65 <0.01

BAI 20.7 (12.4) 3.8 (2.9) T(df=34) = 7.41 <0.01

CTQ Total Score 40.9 (15.9) 32.9 (9.8) T(df=34) = 2.32 0.03

% Comorbid anxiety

disorder (n)

28.6 (10) – – –

% MDD subtype (n) 60 (21) – – –

% Melancholic (n) 54.3 (19) – – –

% Atypical (n) 5.7 (2) – – –

BAI, Beck Anxiety Inventory; BDI-II, Beck Depression Inventory II; BMI, body mass

index; CTQ, Childhood Trauma Questionnaire; HC, healthy control; MADRS, Montgomery

Asberg Depression Rating Scale; MDD, major depressive disorder.

Unless specified otherwise, values represent mean (standard deviation).
*Paired-samples t-test for continuous and McNemar’s test for dichotomous variables.

0.0001; Hedges’ g = 0.88] and, conversely, elevated levels of
“non-classical” monocytes [T(34) = 4.33; p = 0.0001; Hedges’ g
= 0.80] in MDD patients compared to controls (Figure S3B).
When expressed as absolute cell counts, significantly higher
numbers in MDD were only detected for non-classical and
intermediate monocytes (Figure 1A). There were no statistically
significant differences in circulating numbers of leukocyte
subsets (Figure S3A) or relative frequencies of major lymphocyte
populations (Figures S3C,D) between the groups.

To validate monocyte subset results, we applied an
unsupervised clustering algorithm (CITRUS), which
automatically identifies differentially abundant cell clusters
between groups. This analysis yielded one major cluster with
two subclusters (A, B, C) corresponding to the non-classical and
intermediate monocyte cell populations (Figures 1B,C). Further
confirming the results from the manual gating, no additional
group differences were detected by this algorithm (Figure 1B).

Cell-Specific Expression of
Steroid-Signaling-Related Genes
In a next step, we explored cell-specific alterations in
glucocorticoid signaling in monocytes and T cells. Purified
CD14+ monocytes from MDD patients expressed significantly
lower mRNA levels of GR [T(34) = 2.49; p = 0.018; Hedges’ g
= 0.21] as well as its downstream target GILZ [T(34) = 2.08;
p = 0.045; Hedges’ g = 0.39] (Figure 2A). In contrast, no
group differences in monocyte expression of MR or 11β-HSD-1
were observed (all p-values > 0.05). There were also no group
differences in T cell expression levels of any of the genes
examined (GR, GILZ,MR, or 11β-HSD-1) (Figure 2B).

HPA Axis Activity
Saliva samples were available from n = 30 patient/control pairs.
Analysis of cortisol levels revealed no group x time interaction or
main effect of group [group × time: F(3;84) =1.19, p = 0.32, ηp²
= 0.04; group: F(1;28) < 0.01, p = 0.93, ηp² <0.01]. As expected,
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FIGURE 1 | Immune phenotype in MDD patients and matched healthy controls. (A) Absolute cell counts of monocyte subtypes (mean ± S.E.M) in MDD patients

compared to matched healthy controls. Gating strategy for identification of classical (CD14++/CD16−), intermediate (CD14++/CD16+) and non-classical

(CD14+/CD16++) monocytes is depicted in Figure S1. (B) Results of manual gating were confirmed by means of an automated clustering algorithm (CITRUS) which

identified group differences in the abundance of clusters A, B and C corresponding to monocytes expressing CD16. (C) In order to visualize these stratifying subsets

on single cell viSNE maps, FCS files of cluster A (containing all events from clusters B and C) were exported per subject, concatenated and projected on the total

input population (=Non-T cells). HC, Healthy Controls; MDD, Major Depressive Disorder; DCs, Dendritic Cells, NKc, cytotoxic NK cells, NKreg, regulatory NK cells.
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FIGURE 2 | Cell-specific steroid signaling in MDD patients and matched healthy controls. Steroid-related gene expression (mean ± S.E.M) in purified (A) monocytes

and (B) T cells in MDD patients compared to matched healthy controls. GR, Glucocorticoid Receptor; MR, Mineralocorticoid Receptor; 11β-HSD1,

11β-Hydroxysteroid Dehydrogenase Type 1; GILZ, Glucocorticoid-Induced Leucine Zipper Gene; HC, Healthy Controls; MDD, Major Depressive Disorder. Gene

expression is depicted as fold change relative to housekeeping genes.

there was a main effect of time [F(3,84) = 36.8, p < 0.01; ηp² =
0.57] across groups, showing the typical circadian rhythm of HPA
axis activity with higher cortisol levels after awakening compared
to evening levels in both groups (Figure S4).

Serum Immune Markers
No significant group differences were observed for high
sensitivity CRP levels (MDD: 1.67 ± 1.7 mg/L; HC: 1.46 ±

1.5mg/L). Moreover, MDD patients and controls did not differ in
serum levels of the cytokines IL-6, IL-1β, or TNF-α (Figure 3).
There were also no significant associations between serum
cytokine levels and monocyte subset counts (see Figure 3).

Clinical Correlates
To examine the relationship of steroid-related gene expression
and immune phenotype with clinical variables, we ran correlation
analyses. Out of 64 correlation coefficients computed, only two
reached statistical significance, which is well within the range of
chance findings (all p-values > 0.05; Table S3).

DISCUSSION

Our study has three main results. First, patients with MDD
showed a shift toward non-classical monocytes with no group
differences in major T cell subset frequencies and phenotype,
B cells or NK cells. Second, expression of key steroid-signaling
genesGR andGILZ was lower in monocytes obtained fromMDD
patients with no group differences observed in T cells. Third,
monocyte phenotype and steroid receptor expression was not
related to circulating levels of cortisol or circulating levels of the
cytokines IL-6, IL-1β, or TNF-α.

Human monocytes can be divided into classical, intermediate
and non-classical subsets that are functionally heterogeneous.
Increasing evidence suggests that a higher frequency of the non-
classicalmonocyte subtype is conducive to chronic inflammation,
as seen in various illnesses (28–30). Here, we observed a
significant shift among monocytes in patients with MDD.
Intriguingly, non-classical monocytes are also associated with
several somatic conditions that commonly co-occur in MDD
patients (31), including coronary artery disease (32). Since
patients in our MDD cohort were free of overt comorbid
cardiovascular or metabolic disorders, our data suggest that
monocyte subset shifts in MDD are not necessarily the
consequence of comorbid somatic disorders but might occur
independently or at least prior to such comorbidities in
MDD. In contrast to our results, earlier studies in depressed
patients did not find a link between depression and monocyte
frequencies or phenotype (33) (34), although direct comparisons
are hampered by differences in methodology (e.g., insufficient
monocyte characterization) and study populations (e.g., elderly
patients). Using an approach similar to ours, Suzuki et al. (35)
recently reported no group differences in classical and non-
classical monocytes between patients with MDD and healthy
controls. In the study by Suzuki et al. (35) patients with MDD
had a significantly higher BMI (close to obesity) compared
to the control group. This is important because BMI can
have a profound effect on immune responses, including major
lymphocyte (36) and monocyte populations (37). Moreover,
more than half of MDD patients in the study by Suzuki
were only mildly depressed or in partial remission, while our
sample consisted of patients with a well-described episode of
at least moderate severity and many of our patients were
currently hospitalized due to MDD. Thus, the exact relationship
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FIGURE 3 | Serum cytokine levels in MDD patients and matched healthy controls (mean + S.E.M.). Serum cytokine levels of IL-6 (A), IL-1β (B), and TNF-α (C)

quantified using a high sensitivity ELISA and association between serum cytokine levels and absolute cell counts of non-classical monocytes. Dotted lines represent

the limit of detection 55% of IL-1β values from HC and 58% of IL-1β values from MDD patients were < 0.5 × limit of quantification (LOQ, dotted line) and thus set to

0.5 × LOQ. rs = Spearman’s rho.

between comorbidities, demographic variables, clinical severity,
and monocyte subsets should be explored in detail in the future
to determine the dynamics of immune alterations over the course
of MDD.

Our second main result was that lower expression of steroid
signaling related genes (i.e., GR and GILZ) was restricted to
monocytes and not observed in T cells. Thus, our findings both
replicate and expand previous studies (7, 8). More specifically,
they suggest that monocytes in MDD are characterized by a
reduction ofGR expression (andmore downstream,GILZ) rather
than changes inMR or cortisol bioconversion.

Previous findings of functional steroid resistance as obtained
by mitogen-stimulated proliferation assays (13) have often been
attributed to reduced GR expression, however, evidence for this
in peripheral immune cells is mixed (38). To our knowledge, no
study to date has assessed GR expression or other GC-related
genes in T cells specifically. Studies examining functional steroid

resistance have typically used proliferation assays or cytokine
production in whole blood (13, 39) or PBMC culture systems
(38, 40, 41). Our findings of unalteredGR andGILZ expression in
T cells would suggest that functional steroid resistance in T cells
as indicated by proliferation assays is unlikely to be explained by
reduced steroid receptor expression in T cells but may either be
due to alterations in other components of the signaling cascade or
mediated indirectly via other cell populations such as monocytes.

Finally, healthy controls and the MDD group showed similar
circadian HPA axis activity, CRP levels, and circulating levels of
IL-6, IL-1β, or TNF-α, which did not correlate with monocyte
phenotype. A similar pattern of reduced GR expression and
sensitivity in PBMCs without HPA axis hyperactivity was
found in coronary heart disease patients with depression (42).
Interestingly, evidence from studies with chronically stressed
caregivers also suggests that blunted steroid signaling and
altered inflammatory gene expression in monocytes can occur
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independently of HPA axis output (43, 44). Taken together, this
suggests that MDD-associated changes in monocyte phenotype
and steroid signaling gene expression do not require the presence
of detectable differences in cortisol or cytokines such as IL-6,
IL-1β, or TNF-α.

Strengths of our study include careful matching of patients
and controls, in-depth manual as well as algorithm-based
characterization of lymphocytes and monocytes and cell-specific
investigation of steroid-related gene expression. Yet, several
limitations need to be acknowledged. For example, we did
not include cell-specific functional readouts, such as cytokine
production. Our study adds relevant new information by
providing direct evidence for specificity of steroid-signaling
gene expression within the immune system of MDD patients.
However, we acknowledge that our analysis of gene expression
in pan-monocytes (CD14+) and pan-T cells (CD3+) still
includes heterogeneous cell populations within each lineage.
Some limitations also concern the clinical characteristics of our
sample. Our main concern here was to control for somatic
comorbities, antidepressant medication, age, sex and BMI. This is
important to limit the impact of such confounds on the variables
of interest in case-control studies. However, this approach also
limits generalizability to the MDD population at large. Similarly,
we were likely underpowered in the exploratory analyses of
clinical correlates and the non-significant results in this area
should be interpreted with caution. Lastly, we did not measure
several lifestyle factors such as physical activity, diet, sleep (45),
that may affect cell-mediated immunity. However, given the close
matching for BMI, at least major metabolic effects due to group
differences in physical activity or diet appear unlikely.

In summary, our results suggest that in MDD, shifts in
monocyte phenotype and altered expression of genes involved
in steroid signaling, can occur in the absence of HPA axis
hyperactivity or elevated levels of circulating cytokines such as
IL-6, IL-1β, or TNF-α. This provides evidence for a possible

divergence in steroid signaling-related gene expression between
monocytes and T cells inMDD and could provide a starting point
for further research into the role of monocyte subsets in major
depression.
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