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1. Introduction

A central aim in an organism’s life-history study is to 
explain its lifetime pattern of growth, development, 
reproductive investment and survival with different 
stages of life-history (Figure 1; Roff, 2002; Lange 
et al., 2016; Ellen et al., 2016; Ramírez-Bautista  
et al., 2016; Tejeda et al., 2016; Qin et al., 2018; Wu et al., 
2018). Because of the physical and physiological 
constraints and the common dependence on limited 
resources in nature, trade-offs have played a key role in 
the development of life-history theory (Stearns, 1989; 
Lu et al., 2011). In particular, investment in one life-
history trait is often traded off against investment in 
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other traits because the trade-offs represent the costs 
paid in the occurrence of fitness (Roff, 2002). There are 
evidences that environmental factors (e.g., temperature, 
rainfall, food supply) and genetic factor affect variation 
in life-history traits (e.g., age structure, body size and 
reproductive investment) in organisms across broad 
environmental ranges (Berven, 1982; Liao et al., 2011a, 
2013a; Liao and Lu, 2012; Huang et al., 2014; Lu  
et al., 2014a; Bülbül et al., 2016; Feilich, 2016; Portik 
and Blackburn, 2016; De Melo  and Masunari, 2017; 
Martínez-Caballero et al., 2017; Yang et al., 2018).

The evolution of life-history traits have been reviewed 
in a number of taxa (fishes: Roff, 1993; amphibians: Bull 
and Shine, 1979; Morrison and Hero, 2003; reptiles: 
Fitch, 1985; Niewiarowski, 1994; birds: Linden and 
Møller, 1989). In recent years a number of studies have 
addressed the variations in life-history traits in anurans 
of China in order to know about energetic allocation 
between reproductive investment and survival (Liao 
and Lu, 2011a,b,c; Mi et al., 2012; Chen et al., 2011a,b, 

Keywords  anurans, age at sexual maturity, body size, longevity, reproductive investment, sexual size dimorphism

1 Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal 
University, Nanchong 637009, Sichuan, China

2 Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, 
Nanchong 637009, Sichuan, China

3 Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong 637009, Sichuan, 
China

Review

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository of Chengdu Institute of Biology, CAS

https://core.ac.uk/display/199410527?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Lange%2C+Rolanda
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Ellen%2C+Esther+D
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Tejeda%2C+Marco+T
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Feilich%2C+Kara+L
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Portik%2C+Daniel+M
https://onlinelibrary.wiley.com/action/doSearch?ContribAuthorStored=Blackburn%2C+David+C
http://booksandjournals.brillonline.com/search?value1=&option1=all&value2=Madson+Silveira+de+Melo&option2=author
https://www.sciencedirect.com/science/article/pii/0169534789901018#%21
https://www.sciencedirect.com/science/article/pii/0169534789901018#%21


Asian Herpetological Research166 Vol. 9

2012, 2013a,b; Liao et al., 2013b, 2014, 2016; Liu et 
al., 2018). Although the increasing evidences suggest 
that environmental stress shape in changes in body size, 
growth rate, reproductive allocation from offspring 
quantity to quality (Liao et al., 2014, 2015), no review, 
however, has been carried out on variation in life histories 
in anurans in China. Herein, we summarize the patterns in 
life-history variations of Chinese anurans in China based 
on the basis of published papers for the last 30 years. 
These life-history traits of anurans mainly include clutch/
egg size, testes size/sperm traits, age at sexual maturity, 
longevity, growth rates, body size, and sexual size 
dimorphism.

2. Clutch size and Egg Size

Clutch size has been regarded as a trait that individuals 
from populations have evolved through time to adapt 
to local environment (Fitch, 1985; Wang et al., 2017). 
Temperature, rainfall and adult activity period may 
indirectly affect clutch size due to food variation and 
energy required for reproduction (Bull and Shine, 1979; 
Heatwole and Taylor, 1987). Egg size is regarded as 
an attribute that affects the size, shape, growth and 
development rates during embryonic development, 
thereby influencing the survival of offspring (Kaplan and 
King, 1997). 

Anurans can mediate clutch size, egg size and the 
relationship between egg size and clutch size when 
experiencing different environments. For instance, an 
increase in egg size is observed in high altitude/latitude 
with decreasing length of the growth season due to 
adaptive beneficial effects on larval and metamorphic 
performance in frogs (Rana chensinensis: Lu, 1994; 

Rhacophorus omeimontis: Liao and Lu, 2011a; Rana 
kukunoris; Chen et al., 2013b; Yu et al., 2018a; Bufo 
andrewsi: Liao et al., 2014; Liao et al., 2016; Polypedates 
megacephalus: Zhao et al., 2017). In particular, larger 
eggs contain a higher amount of yolk (Komoroski et al., 
1998), which is assumed to be advantageous under the 
high energetic requirements in harsh and unpredictable 
environmental conditions. In addition, clutch size increase 
with altitude in R. kukunoris and P. megacephalus (Chen 
et al., 2013b; Zhao et al., 2017), but not in B. andrewsi 
(Liao et al., 2014; Liao et al., 2016) and Rh. Omeimontis 
(Liao and Lu, 2011a). Life-history theory states that 
investment in larger eggs comes at a cost of decreasing 
egg numbers to improve the relative fitness of both the 
females and the juvenile in harsh environments (Roff, 
2002). Consequently, there should be a trade-off between 
egg size and clutch size in species including B. andrewsi, 
Rh. Omeimontis and R. chensinensis (Lu, 1994; Liao and 
Lu, 2011a; Liao et al., 2014, 2016). However, no trade-off 
exists between them in R. kukunoris and P. megacephalus 
(Chen et al., 2013a,b; Zhao et al., 2017). 

Larger females often produce larger clutches (Roff, 
2002). For most species of anurans, clutch size increase 
with maternal body size (Liao and Lu, 2009; Liao et al., 
2011b, 2016; Lu et al., 2016; Zhao et al., 2017; Yu et al., 
2018a). As females at high altitudes are usually larger, it 
would follow that high-altitude females lay larger clutches 
(Liao et al., 2014). However, this is not always the 
case. High-altitude females have been found to produce 
relatively smaller clutches and larger eggs than their 
lowland counterparts (Kozlowska, 1971; Berven, 1982). 
Relatively smaller clutches and larger eggs in the high-
altitude and -latitude populations can ensure that each egg 
is adequately provisioned in the face of cold climate and 

Figure 1  Environmental changes shape variation in life history traits in organisms.
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short duration of development (Berven, 1982). Smaller 
clutches and larger eggs in the high-altitude have been 
observed in B. andrewsi and Rh. omeimontis (Liao and 
Lu, 2011a; Liao et al., 2014).

However, for P. megacephalus, relatively clutch size 
and egg size from the highest-altitude population was 
larger than those from the lowest-altitude population 
(Zhao et al., 2017). Females living at higher altitudes 
produce larger eggs, but without a concomitant increase 
in female body size or clutch size in R. kukunoris (Chen 
et al., 2013b). By contrast, females with a concomitant 
increase in body size produce larger eggs and more 
offspring in low-altitude or/and latitude populations 
than females in high-altitude and -latitudes do (Yu et al., 
2018a).

3. Testes size and Sperm Traits

Temperature gradients and seasonality often affect activity 
periods, thereby limiting the time for development, 
resource acquisition, and breeding activity (Endler, 
1977). Hence, activity period is often also associated 
with relatively larger clutches produced in a given 
season (Morrison and Hero, 2003). Similarly, variation 
in the activity period is also likely to influence male 
reproductive investments. For instance, direct fitness 
consequences have been caused by the ability to produce 
vast amounts of high-quality sperm within the constraints 
of energy uptake and allocation (reviewed in Simmons, 
2001; Fitzpatrick and Lüpold, 2014; Lüpold et al., 2017; 
Liao et al., 2018). Sperm and testes are at the intersection 
of resource ecology, life-history selection, reproductive 
physiology, and sexual selection (Jin et al., 2016a). As 
a result, studies on variations in testes size and sperm 
traits in frogs can reveal important information about 
adaptation and possible constraints in the reproductive 
investments.

Relative testis mass increases with altitude but not 
latitude or longitude across 25 populations of Fejervarya 
limnocharis along a 1550 km latitudinal and 1400 m 
altitudinal transect in China (Jin et al., 2016a),indicating 
that environmental variation may underlie local 
adaptations to reproductive investments. Meanwhile, 
relative testes size from the high-altitude population 
is larger than that of the low-altitude population in P. 
megacephalus (Chen et al., 2016). By contrast, it is 
reported that relative testis mass decreases with latitude 
and/or altitude in other frog species (Rana temporaria: 
Hettyey et al., 2005; R. kukunoris: Chen et al., 2014; 
Hyla gongshanensis jingdongensis; Jin et al., 2016b; 

Scutiger boulengeri: Zhang et al., 2018). This is thought 
to be driven by an increasingly short breeding season, 
declining levels of male–male competition for mates, or 
more limited resources to be invested in reproduction 
(Hettyey et al., 2005; Chen et al., 2014). However, the 
relative testis size do not increase with altitude despite an 
increasing male bias in the operational sex ratio (OSR) 
in high altitude is recorded in the Yunnan pond frog 
(Dianrana pleuraden) along an altitudinal gradient (Mai 
et al., 2017). Moreover, the relative testis mass do not 
increase with altitude and the OSR in the swelled vent 
frog Feirana quadranus (Tang et al., 2018). For some 
species of anurans, testes mass is positively correlated 
with body size (Hettyey et al., 2005; Chen et al., 2014; 
Jin et al., 2016a,b; Mai et al., 2017).

Sperm length increases with altitude across F. 
limnocharis populations (Jin et al., 2016a). It is possible 
that the variation in sperm length reflects differential 
selection or constraints associated with effects of 
temperature on sperm motility and longevity (e.g., Alavi 
and Cosson, 2005). Alternatively, sperm length might 
parallel variation in egg size if larger eggs need greater 
force by sperm for penetration and longer sperm can 
generate more powerful propulsion (Katz and Drobnis, 
1990). However, sperm length does not increase with 
altitude in D. pleuraden (Mai et al., 2017) and P. 
megacephalus (Chen et al., 2016). Although the relative 
testis size has a positive effect on sperm length in some 
frogs (Jin et al., 2016a; Liao et al., 2018), which suggests 
that the intensity of sperm competition can account for 
the variation in sperm length (Immler et al., 2011), it 
cannot explain a significant portion of sperm length in 
other (Hettyey and Roberts, 2007; Mi et al., 2012; Mai  
et al., 2017).

4. Age and Growth Rate

Age at sexual maturity is determined by juvenile growth 
rates and body size of mature individuals (Ryser, 1996). 
Because sexual maturity is dependent on body size, 
species with faster growth rates can reach the minimum 
size required for reproduction sooner compared to those 
with slower growth rates, and thus can begin breeding 
at a younger age (Morrison and Hero, 2003). For most 
species of anurans examined China, females have larger 
age at sexual maturity and mean age than males (Li  
et al., 2010; Liao and Lu, 2010a,b; Liao et al., 2010; Chen  
et al., 2011a, 2012; Mi, 2015). Females displaying 
delayed reproduction can achieve larger body sizes than 
males, which results in greater survivorship of parents 
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and the production of larger clutches, or larger offspring 
which may have higher survival rates than smaller 
offspring (Berven, 1982; Begon et al., 1990). However, 
both females and males have same age at sexual maturity 
(Liao, 2011; Liao et al., 2011b; Chen et al., 2011b; Huang 
et al., 2013). In addition, longevity in females is longer 
than males in most anurans species (Lu et al., 2006; Liao 
and Lu, 2010a,b,c; Chen et al., 2011a, 2012; Mao et al., 
2012;  Mi, 2015; Liao et al., 2016). 

As species at higher latitude and/or altitude experience 
shorter growing seasons than those at lower latitudes and/
or altitudes, it takes longer time to reach the minimum 
size required for sexual maturity, and the age at sexual 
maturity is larger (Berven, 1982). For anurans, it is 
generally found that the oldest age at sexual maturity 
and average age exists in species at high latitude and/or 
altitude in both sexes (Table 1; Ma et al., 2009a; Chen  
et al., 2011a; Liao and Lu, 2011c; Liao and Lu, 2012; 
Liao et al., 2016). However, average age of males and 
females does not differ among populations (Liao et al., 
2010; Liao and Lu, 2010c). Moreover, Zhang and Lu 
(2012) found that age at sexual maturity, average age and 
longevity all increase with altitude but not with latitude in 
amphibian groups using the meta-analyses. 

Among anurans species, body size and age exhibit 
a positive relationship in both sex, and females often 
display a larger growth rate than males (Li et al., 2010; 
Liao and Lu, 2010a, 2011a, 2012; Liao et al., 2010; 
Chen et al., 2012; Lou et al., 2012). The relationship 
between body size and age, and growth rate changes 
with environmental conditions among populations. 
For instance, Nanorana parkeri from high-altitude 
populations exhibit lower growth rate than frogs from 
low-altitude populations (Ma et al., 2009b). For R. 
nigromaculata, age is non-significantly correlated with 
body size for both sexes in the high-altitude population, 
and for males in the low-altitude population. For both 
R. nigromaculata populations, individuals from high 
altitude show a higher growth rate than that from low 
altitude (Liao et al., 2010). For B. andrewsi, growth is 
more rapid in females compared to males for shorter 
growth seasons, while males have higher growth rates 
than females in longer growth seasons (Liao et al., 2016). 
In addition, growth rates in male Odorrana grahami 
from the lowest altitude are the highest, whereas growth 
rates of females at high altitudes are the highest (Li  
et al., 2013). For male Rh. omeimontis, the growth rates 
decrease with increasing altitudes, while females from 
the high altitude site exhibit higher growth rates than 

their conspecifics from low-altitude sites (Liao and Lu, 
2011c). Hence, anuran species and individuals from high-
latitude and/or -altitude populations grow slower and 
consequently tend to have older age and larger body when 
breeding for the first time compared to those species and 
individuals found in tropical lowlands (Morrison and 
Hero, 2003).

5. Body Size

Body size of anurans is an important life-history trait 
that determines fitness and thus experiences the natural 
selection (Liao and Lu, 2012). In particular, females have 
larger age at sexual maturity, mean age, and longevity than 
males, thereby larger body in anuran species (Lu et al., 
2006; Ma et al., 2009b; Li et al., 2010, 2013; Chen et al., 
2012; Liao and Lu, 2012; Liao et al., 2016). The effects 
of cold temperatures on anuran larval and juvenile growth 
and development rates have follow-on effects on the 
timing of maturity and subsequently, the body size of 
adults (Berven, 1982). As a result of these effects, high-
altitude and -latitude anurans should be generally larger 
than the low-altitude and tropical individuals. Body 
size variation across an environmental gradient has 
been formulated as the Bergmann’s rule: the tendency 
for animals to be larger in colder climates (Bergmann, 
1847). There are evidences that individuals from 
higher altitudes are larger in body size than their lower-
altitude conspecifics, conforming to the Bergmann’s 
rule (Table 1; Lu et al., 2006; Ma et al., 2009b; Liao  
et al., 2010; Liao and Lu, 2010b,c, 2012; Liu et al., 2012). 
However, body size from low altitude and/or latitude 
is larger than high altitude and/or latitude for three 
anuran species, and the data conforms to the converse 
to Bergmann’s rule (Ma et al., 2009a; Liao et al., 
2010; Liu et al., 2018a). In addition, variations in body 
size do not change consistently with altitude and/or 
latitude for some species, which is disagreement with 
the Bergmann’s rule (Table 1; Liao and Lu, 2011c; Lou  
et al., 2012; Li et al., 2013; Feng et al., 2015; Liao et al., 
2016; Jin et al., 2017). Liao and Lu (2012) inferred that 
the relative effects of annual growth rate and longevity 
related to local environments will determine which cline 
rule a species will exhibit. In the Bergmann’s rule case, 
later sexual maturity and longer longevity should play 
a larger role in enlarging body in contrast with slower 
growth in decreasing it. By contrast, in the converse 
to Bergmann’s cline, growth rate is contained so much 
that any prolonged time spent in growing will fail to 
compensate the effect of slow growth on body size. 

https://link.springer.com/article/10.1007/s10682-011-9501-y#CR9


  Maojun ZHONG et al.     Life History Evolution in FrogsNo. 3 169
Ta

bl
e 

1 
 T

he
 re

la
tio

ns
hi

p 
be

tw
ee

n 
lif

e-
hi

st
or

y 
tra

its
 a

nd
 a

lti
tu

de
 o

r l
at

itu
de

 w
ith

in
 e

ac
h 

sp
ec

ie
s w

he
re

 a
pp

lic
ab

le
.

Sp
ec

ie
s

A
ge

 a
t s

ex
ua

l m
at

ur
ity

M
ea

n 
ag

e
Lo

ng
ev

ity
B

od
y 

si
ze

C
lu

tc
h 

si
ze

Eg
g 

si
ze

Te
st

es
 si

ze
Sp

er
m

 si
ze

m
al

es
fe

m
al

es
m

al
es

fe
m

al
es

m
al

es
fe

m
al

es
m

al
es

fe
m

al
es

Am
ol

op
s m

an
tz

or
um

un
ch

an
ge

ab
le

in
cr

ea
se

d
un

ch
an

ge
ab

le
un

ch
an

ge
ab

le
in

cr
ea

se
d

in
cr

ea
se

d
in

cr
ea

se
d

in
cr

ea
se

d

Rh
ac

op
ho

ru
s 

om
ei

m
on

tis
in

cr
ea

se
d

in
cr

ea
se

d
in

cr
ea

se
d

in
cr

ea
se

d
in

cr
ea

se
d

in
cr

ea
se

d
un

ch
an

ge
ab

le
un

ch
an

ge
ab

le
de

cr
ea

se
d

in
cr

ea
se

d

Bu
fo

 a
nd

re
w

si
in

cr
ea

se
d

in
cr

ea
se

d
in

cr
ea

se
d

in
cr

ea
se

d
in

cr
ea

se
d

in
cr

ea
se

d
in

cr
ea

se
d

in
cr

ea
se

d
de

cr
ea

se
d

in
cr

ea
se

d

Fe
je

rv
ar

ya
 li

m
no

ch
ar

is
un

ch
an

ge
ab

le
un

ch
an

ge
ab

le
un

ch
an

ge
ab

le
un

ch
an

ge
ab

le
un

ch
an

ge
ab

le
un

ch
an

ge
ab

le
un

ch
an

ge
ab

le
un

ch
an

ge
ab

le
in

cr
ea

se
d

in
cr

ea
se

d

Ra
na

 n
ig

ro
m

ac
ul

at
a

un
ch

an
ge

ab
le

un
ch

an
ge

ab
le

un
ch

an
ge

ab
le

un
ch

an
ge

ab
le

un
ch

an
ge

ab
le

un
ch

an
ge

ab
le

de
cr

ea
se

d
de

cr
ea

se
d

Pe
lo

ph
yl

ax
 p

le
ur

ad
en

un
ch

an
ge

ab
le

un
ch

an
ge

ab
le

un
ch

an
ge

ab
le

un
ch

an
ge

ab
le

Ra
na

 c
he

ns
in

en
si

s
in

cr
ea

se
d

in
cr

ea
se

d
in

cr
ea

se
d

in
cr

ea
se

d
in

cr
ea

se
d

in
cr

ea
se

d
in

cr
ea

se
d

in
cr

ea
se

d
de

cr
ea

se
d

in
cr

ea
se

d

N
an

or
an

a 
pa

rk
er

i
in

cr
ea

se
d

in
cr

ea
se

d
in

cr
ea

se
d

in
cr

ea
se

d
in

cr
ea

se
d

in
cr

ea
se

d
de

cr
ea

se
d

de
cr

ea
se

d

H
yl

a 
an

ne
ct

an
s 

ch
ua

nx
ie

ns
is

in
cr

ea
se

d
un

ch
an

ge
ab

le
in

cr
ea

se
d

in
cr

ea
se

d
in

cr
ea

se
d

in
cr

ea
se

d
un

ch
an

ge
ab

le
in

cr
ea

se
d

Po
ly

pe
da

te
s 

m
eg

ac
ep

ha
lu

s
un

ch
an

ge
ab

le
un

ch
an

ge
ab

le
in

cr
ea

se
d

un
ch

an
ge

ab
le

de
cr

ea
se

d
in

cr
ea

se
d

H
yl

a 
go

ng
sh

an
en

si
s 

jin
gd

on
ge

ns
is

de
cr

ea
se

d
un

ch
an

ge
ab

le

Ra
na

 k
uk

un
or

is
un

ch
an

ge
ab

le
in

cr
ea

se
d

un
ch

an
ge

ab
le

un
ch

an
ge

ab
le

in
cr

ea
se

d
un

ch
an

ge
ab

le
in

cr
ea

se
d

un
ch

an
ge

ab
le

un
ch

an
ge

ab
le

in
cr

ea
se

d
de

cr
ea

se
d

Fe
ir

an
a 

qu
ad

ra
nu

s
un

ch
an

ge
ab

le

Sc
ut

ig
er

 b
ou

le
ng

er
i

de
cr

ea
se

d



Asian Herpetological Research170 Vol. 9

6. Sexual Size Dimorphism

Sexual size dimorphism (SSD) has been commonly 
regarded as an outcome of sex-specific patterns of sexual 
and natural selection (Fairbairn, 1997; Liao et al., 2013c; 
Zhang and Lu, 2013; Zhao et al., 2016; Rohner et al., 
2016). According to the Rensch’s rule, SSD decreases 
when females are the larger sex, and increases with 
increasing body size when males are the larger sex 
(Rensch, 1950). The evolution of SSD and the Rensch’s 
rule can be proposed by sexual selection and fecundity 
selection (Fairbairn, 1997; Liao et al., 2013c). SSD in 
anurans is widespread (Shine, 1979; Wells, 2007), and 
females are the larger sex in 90% of species (Shine, 
1979). The fecundity selection on large females can result 
in female-biased SSD in anurans (Monnet and Cherry, 
2002; Han and Fu, 2013). Not surprisingly, interspecific 
studies of anurans have shown that the variations of SSD 
do not obey the Rensch’s rule, but rather its inverse (Han 
and Fu, 2013; De Lisle and Rowe, 2013; Liao et al., 
2013c).

Intraspecific tests of variations in SSD and the 
Rensch’s rule among populations in frogs have been 
reported in recent years. For example, using data on 
body size and age in 27 populations of R. chensinensis 
and body size from 40 populations and age from 31 
populations in F. limnochari covering the full known 
size range of the species, the level of SSD increased with 
increasing mean size, supporting the inverse of Rensch's 
rule (Liao and Chen, 2012; Liao, 2013). The fecundity 
selection hypothesis assuming increased reproductive 
output in large females can explain the occurrence of the 
inverse of Rensch’s rule. Most variations in SSD can be 
also explained in terms of differences in age between the 
sexes (Liao and Lu, 2012; Liao, 2013). For B. andrewsi, 
the degree of SSD increased with increased female size, 
following the inverse of Rensch’s rule. Selection for 
large males and differences in age between the sexes is 
unlikely to be an important source of variations in SSD. 
However, fecundity selection is likely to explain the 
observed inverse of Rensch’s rule (Liao et al., 2015). 
In addition, Lu et al. (2014b) also found that pattern of 
SSD variation supports the inverse Rensch’s rule in two 
frog species. However, variations in SSD of R. kukunoris 
support neither the Rensch's rule nor its inverse (Feng  
et al., 2015).

7. Future Directions

Variations in life-history traits of organisms are affected 

by ultimate (genetic) factors, environmental factors, 
metabolic acceleration and brains (Berven, 1982; Lüpold 
et al., 2016; Pontzer et al., 2016). Three aspects need 
to be addressed in future study. Firstly, it would be 
interesting and feasible to test the adaptive significance 
experimentally using transplant experiments by 
collecting frogs in high- and low-altitude populations. 
In particular, it would be possible to address whether 
sperm performance between longer and shorter sperm 
(from different altitudes) differ within a species (given 
there is sexual selection on sperm length). Meanwhile, 
because phenotypic variation in a trait results from 
either environment change during development or 
genetic adaptation to local environment, it is important 
to test the relative effect of the two factors for research 
on geographical variation in larval development rates. 
Secondly, the trade-off can provide the costs paid in 
the currency of fitness when a beneficial variation in 
one trait is associated with a detrimental variation in 
another (Stearns, 1989). Although brain size is positively 
correlated with age at sexual maturity and longevity 
(Barton and Capellini, 2011; Street et al., 2017; Yu et 
al., 2018b), it would be possible to address whether 
the other organs (i.e., heart, lungs, livers, gut, skin, 
and kidneys) correlate with life-history traits among 
populations within species or between species in order 
to test the energy trade-off hypothesis. Thirdly, Pontzer  
et al .  (2016) found that the humans experience 
acceleration in metabolic rate, providing energy for 
larger brains and faster reproduction without sacrificing 
maintenance and longevity. Hence, it would be possible to 
test the hypothesis that for anurans an increased metabolic 
rate, along with variations in energy allocation, is crucial 
in the evolution of enlarged brains and life-history traits.

8. Conclusions

Environmental changes along geographical gradients 
can promote life-history traits differentiation in anurans. 
Life-history theory suggests that increased environmental 
stress results in a shift in reproductive allocation from 
offspring quantity (clutch size and testes mass) to quality 
(egg size and sperm length) and a stronger trade-off 
between offspring quantity and offspring quality. High-
altitude/latitude individuals have higher investments 
per offspring to compensate for the increased mortality 
rates of their offspring than their low-altitude/latitude 
counterparts. The trade-off between offspring quantity 
and quality occurs due to resource limitation. Also, 
environmental changes shape variations in age at sexual 
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maturity, mean age, longevity, growth rate, body size 
and SSD. Growth rate and longevity determine whether 
body size variation follows the Bergmann's rule among 
populations along geographical gradients. Moreover, 
variation in SSD and Rensch’s rule among populations or 
species of anurans are mainly determined by differences 
in age between males and females, sexual selection and 
fecundity selection.   
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