
En vue de l'obtention du

DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE
Délivré par :

Institut National Polytechnique de Toulouse (INP Toulouse)
Discipline ou spécialité :

Réseaux, Télécommunications, Systèmes et Architecture

Présentée et soutenue par :
M. MUHAMMAD ADNAN

le jeudi 21 novembre 2013

Titre :

Unité de recherche :

Ecole doctorale :

ANALYSE PIRE CAS EXACT DU RESEAU AFDX

Mathématiques, Informatique, Télécommunications de Toulouse (MITT)

Institut de Recherche en Informatique de Toulouse (I.R.I.T.)
Directeur(s) de Thèse :
M. CHRISTIAN FRABOUL

M. JEAN LUC SCHARBARG

Rapporteurs :
M. JEAN-JACQUES LESAGE, ECOLE NORMALE SUPERIEURE DE CACHAN

M. THIERRY DIVOUX, UNIVERSITE NANCY 1

Membre(s) du jury :
1 M. GUY JUANOLE, UNIVERSITE TOULOUSE 3, Président
2 M. CHRISTIAN FRABOUL, INP TOULOUSE, Membre
2 M. JEAN-LUC SCHARBARG, INP TOULOUSE, Membre
2 M. JEROME ERMONT, INP TOULOUSE, Membre
2 M. JUAN LOPEZ, AIRBUS FRANCE, Membre
2 Mme ISABELLE AUGE BLUM, INSA LYON, Membre

Acknowledgments

With immense pleasure, I acknowledge the help, guidance and support received from various
quarters during the course of my PhD studies. Pursuit of PhD degree is a long journey which
is very hard to accomplish without the help of others. One of the joys of completion is to look
over the journey past and remember all the friends and family who have helped and supported
me along this long but fulfilling road. Hence, I hereby express my appreciation to one and all.

My sincere and unbounded gratitude to my advisor Christian Fraboul and co-advisors, Jean-
Luc Scharbarg and Jérôme Ermont for their support and guidance. Their vision and suggestions
throughout the thesis period, from choosing the problem, solving it and its presentation, has
been fundamental in completion of the thesis. The joy and enthusiasm they have for the research,
was contagious and motivational for me, even during tough times. Sir, you have been a source
of motivation throughout. I am also very grateful to the remaining members of my dissertation
committee: Professor Guy JUANOLE president of the jury, Jean-Jacques LESAGE and M.
Thierry DIVOUX, my honorable reporters, Mme AUGE-BLUM Isabelle and Mr Juan LOPEZ
from airbus Toulouse, our industrial partner. Their academic support and input and personal
cheering are greatly appreciated. Thank you all.

The members of the research laboratory at ENSEEIHT/IRIT have contributed positively
to my personal and professional learning. The team as a whole, has been a source of friendships
as well as good advice and collaboration. My colleagues here at ENSEEIHT/IRIT Lab deserve
more than a mention. I acknowledge their support and help during my stay in the lab. Their
companionship, help and guidance in both academic and logistic issues is worth the praise. The
lab wouldn’t be as much fun to stay in without you all. I am grateful to Christelle Jacob and
her parents for their hospitality and support on numerous occasions during my stay in France.
I felt at home with you all and will cherish these days all my life.

Every one I met at different academic conferences and gatherings, deserves an honorable
mention for their discussions and inputs on everything academic or otherwise. I have definitely
learned and improved my work with all your suggestions.

My special thanks to all the administrative and secretarial staff, both at the lab and uni-
versity and at my embassy and people back home, for doing all the necessary work they did for
me, so that I was able to concentrate on my research without distractions.

This section would not be complete without the mention of beloved parents whose love and

ii

affection will be treasured throughout. My family members have always been a source of con-
stant support, encouragement and inspiration. Thanking them would be an understatement.
So I would like to conclude my acknowledgments by dedicating this work to my parents.

Muhammad Adnan

University of Toulouse

November 2013

Executive Summary (Resume)

Since the last few decades, Information and Communication Technology (ICT) systems are
evolving rapidly and they are becoming more and more popular and omnipresent. This trend
also exist in aviation domain. Now a days, all modern aircraft have complex suit of on-board
electronic devices used for various purposes commonly referred to as Avionics Systems. Avionics
systems of an aircraft are used in a wide variety of different applications such as flight control,
instrumentation, navigation, communication etc. These avionics systems need to communicate
between themselves and exchange data, hence building "Avionics networks". Over the years,
demand for data exchange has risen rapidly and avionics networks have evolved from dedicated
links to shared buses to switched networks such as Avionics Full-Duplex Switched Ethernet
(AFDX). AFDX is a data network for safety critical applications that utilizes dedicated band-
width while providing deterministic Quality of Service (QoS). AFDX is based on IEEE 802.3
Ethernet technology and utilizes commercial off-the-shelf (COTS) components. It is described
specifically by Part 7 of the ARINC 664 Specification, as a special case of a profiled version of an
IEEE 802.3 network per parts 1 & 2, which defines how Commercial Off-the-Shelf networking
components will be used for future generation Aircraft Data Networks (ADN). The six pri-
mary aspects of AFDX include full duplex, redundancy, deterministic, high speed performance,
switched and profiled network. Like any other communication network being used on-board an
aircraft, it is very important to know the temporal aspects of data flow on AFDX network, such
as communication delay from the source to the destination. These end to end communication
delays are important to determine because they are used to certify avionics systems of the air-
craft. In this context, the main objective of this thesis is to provide methodologies of finding
exact worst case communication delays of AFDX network.

To achieve this goal, different tools and approaches have been analyzed and compared with
existing techniques. New approaches and algorithm were also developed during the research
work of this thesis. At present two main techniques are being used for end to end delay analysis
of AFDX network. These are Network Calculus and Trajectory approach. Both of these are
pessimistic in their results and give us a sure upper bound on the end to end communication
delays instead of exact values. Network Calculus uses Min Plus algebra for its calculations.
The pessimism in results have been reduced by using different techniques such as "grouping".
Trajectory approach uses concept of "busy period" to calculate its bounds for end to end commu-
nication delays. In some cases Network Calculus has better results than the Trajectory approach
while in other cases Trajectory approach gives better results. On average, results of Trajectory
approach are tighter than Network Calculus approach and the margin varies depending upon

iv

the VL path.

In order to evaluate exact end to end communication delays, Model checking has been used
in the context of AFDX network. Before this research work, it was applied to AFDX network as
a proof of concept on a simple configuration. During this work, we have explored Model checking
for end to end communication delays of AFDX network in depth, with models reflecting the
real configuration parameters, such as asynchronous behavior, packet sizes and BAG values.
In this context, existing well established real time model checking tools were explored, such
as UPPAAL and NuSMV. UPPAAL suits better for the end to end communication delays in
AFDX network as compared to NuSMV because NuSMV can only handle pure discrete models.
On the other hand UPPAAL does not have a symbolic representation for the discrete part of the
state space and hence it limits the size of models that can be evaluated in reasonable time and
computation resources. Still, we were able to evaluate AFDX network of considerably larger
sizes than existing approach. We are able to find end to end communication delays of AFDX
network with upto 32 VLs.

In order to overcome limitations of Model Checking approach, the work was done in the
direction of exhaustive simulation using in house developed algorithms and tools based on these
algorithms. The main reason for using this approach was to develop a tool from scratch which
is specifically suited for the task of finding exact end to end communication delay of AFDX
networks. In order to reduce state space for this exhaustive simulation approach, properties of
the AFDX network were exploited and different algorithms were developed which ensure that
we only consider cases which can be candidate for worst case end to end communication delays.
The end result is encouraging and we were able to analyze large AFDX network configurations.
We were also able to analyze part of a real life industrial configuration of the AFDX network
with approximately 1000 VLs and 6400 paths. For more than 60% of these paths we were able
to find exact end to end communication delays while for the rest we were able to find end to
end communication delays which are close to worst case communication delays.

The results obtained from the tool developed during this research were compared with
existing approaches. With exact end to end communication delays calculated by this tool, we
can find exact pessimism in Network Calculus and Trajectory approaches. On average, Network
Calculus is 13% pessimistic in its calculations while Trajectory approach is about 6% pessimistic
in its calculations.

Keywords: AFDX Network, Model Checking, Worst Case Communication Delay, Exhaus-
tive Simulation

List of Personal Publications

[Adnan 2010b] Muhammad Adnan, Jean-Luc Scharbarg, Jérôme Ermont and Christian
Fraboul. Model for worst-case delay analysis of an AFDX network using timed au-
tomata. In Proc. of the 15th ETFA , Bilbao, pp.1-4, 13-16 Septembre 2010. doi:
10.1109/ETFA.2010.5641124 keywords: automata theory;avionics;delays;local area net-
works;scheduling;AFDX network;ARINC 664 standard;avionics full duplex switched
Ethernet;end-to-end communication delays;local scheduling;timed automata;upper
bounds;worst case delay analysis model. URL : http://ieeexplore.ieee.org/stamp/

stamp.jsp?tp=&arnumber=5641124&isnumber=5640954 (Cited on pages 3, 5, 50
and 111.)

[Adnan 2010c] Muhammad Adnan, Jean-Luc Scharbarg, Jérôme Ermont, Christian Fraboul.
Worst-case end-to-end delay analysis of switched Ethernet using timed automata. In
: Junior Researcher Workshop on Real-Time Computing, Toulouse, IRIT, pp. 23-
26,4-5 November 2010. keywords: automata theory;avionics;delays;local area net-
works;scheduling;AFDX network;ARINC 664 standard;avionics full duplex switched
Ethernet;end-to-end communication delays;local scheduling;timed automata;upper
bounds;worst case delay analysis model. (Cited on page 5.)

[Adnan 2011a] Muhammad Adnan, Jean-Luc Scharbarg, Jérôme Ermont and Chris-
tian Fraboul. An improved timed automata model for computing exact worst-
case delays of AFDX periodic flows. In Proc. of the 16th ETFA , Toulouse,
pp.1-4, 5-9 Septembre 2011. doi: 10.1109/ETFA.2011.6059162 keywords:
automata theory;delays;local area networks;real-time systems;AFDX peri-
odic flow;avionics switched Ethernet network;network calculus;timed automata
model;trajectory approach;worst-case end-to-end communication delay;Aerospace elec-
tronics;Analytical models;Automata;Clocks;Computational modeling;Delay;Upper
bound;AFDX network;Timed Automata;UPPAAL Modelling;Worst case delay
analysis. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

6059162&isnumber=6058966 (Cited on pages 5, 76, 77 and 79.)

[Adnan 2011b] Muhammad Adnan, Jean-Luc Scharbarg and Christian Fraboul. Mini-
mizing the search space for computing exact worst-case delays of AFDX periodic
flows. In Proc. of the 6th SIES, Vasteras, pp.294-301, 15-17 June 2011. doi:
10.1109/SIES.2011.5953673 keywords: avionics;delays;local area networks;multi-access
systems;search problems;switching networks;AFDX periodic flow;ARINC 664 stan-
dard;avionics full duplex switched Ethernet;search space minimization;virtual links;worst

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5641124&isnumber=5640954
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5641124&isnumber=5640954
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6059162&isnumber=6058966
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6059162&isnumber=6058966

vi List of Personal Publications

case end-to-end communication delay;Aerospace electronics;Calculus;Computational
modeling;Context;Delay;Silicon;Upper bound;AFDX network;Guided simula-
tion;Schedulability analysis;Worst case delay analysis. URL: http://ieeexplore.

ieee.org/stamp/stamp.jsp?tp=&arnumber=5953673&isnumber=5953643 (Cited on
pages 5 and 58.)

[Adnan 2012] Muhammad Adnan, Jean-Luc Scharbarg, Jérôme Ermont and Christian Fraboul.
An improved timed automata approach for computing exact worst-case delays of AFDX
sporadic flows. In Emerging Technologies Factory Automation (ETFA), 2012 IEEE
17th Conference on, pp. 1-8, 17-21 Septembre 2012. doi: 10.1109/ETFA.2012.6489576
keywords: avionics;local area networks;telecommunication computing;AFDX sporadic
flows;ARINC 664 standardised;avionics full duplex switched Ethernet;end-to-end com-
munication delays;network calculus;periodic AFDX configurations;timed automata
approach;worst-case delay computing;AFDX network;Timed Automata;UPPAAL Mod-
elling;Worst case delay analysis. URL: http://ieeexplore.ieee.org/stamp/stamp.

jsp?tp=&arnumber=6489576&isnumber=6489522 (Cited on pages 5 and 79.)

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5953673&isnumber=5953643
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5953673&isnumber=5953643
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6489576&isnumber=6489522
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6489576&isnumber=6489522

Contents

Acknowledgments i

Executive Summary iii

List of Personal Publications v

1 Introduction 1

1.1 The Context . 2

1.2 Contribution . 4

2 Background: System Verification and AFDX Network 7

2.1 System Verification . 7

2.1.1 Software Verification . 10

2.1.2 Hardware Verification . 10

2.1.3 Behavioral Verification . 11

2.2 Model Checking . 12

2.2.1 Formal Methods . 12

2.2.2 Model-based Verification . 13

2.2.3 History of Model Checking . 15

2.2.4 Application of Model Checking in Networks 15

2.2.5 Characteristics of Model Checking . 15

viii Contents

2.3 AFDX Network . 18

2.3.1 History of Aircraft Data Networks (ADN) 19

2.3.2 Overview of AFDX . 19

2.3.3 Virtual Links (VL) . 21

3 State of the Art: Methods to Compute the Worst Case End to End Delays
in an AFDX Network 25

3.1 Bounds of Worst Case End-to-End Communication Delays 26

3.1.1 Network Calculus . 26

3.1.2 Trajectory Approach . 32

3.1.3 Pessimism of Network calculus and Trajectory approach 38

3.1.4 Conclusion . 40

3.2 Exact Worst Case End-to-End Communication Delays 40

3.2.1 Model Checking . 40

3.2.2 Exhaustive Simulation . 58

3.2.3 Conclusion . 58

3.3 Conclusion . 59

4 An Improved Method to Compute the Exact Worst Case End-to-End Delay
using Timed Automata 61

4.1 Characteristics of a worst-case scenario . 62

4.1.1 Definition of a scenario . 62

4.1.2 Critical Instance Property . 62

Contents ix

4.2 The modelling based on timed automata . 65

4.2.1 Modelling the VLs . 66

4.2.2 Modelling the Switches . 72

4.2.3 Modelling the Synchronization . 74

4.2.4 Utility Automata: modelling of the buffers 76

4.2.5 Utility Automata: end to end delay computation 77

4.3 Limits of the approach . 79

4.4 Conclusion . 81

5 A New Approach Based on Exhaustive Simulation to Compute the Exact
Worst-Case End to End delays 83

5.1 Modelling of the network and a scenario . 84

5.1.1 Nomenclature and definitions . 85

5.1.2 Modelling of a scenario . 86

5.1.3 Reducing the number of scenarios . 87

5.2 Computing worst case end to end delays using sequences 88

5.2.1 Computation of delay and merging of sequences at a switch output port . 89

5.3 Worst-case end to end delay computations on a simple AFDX network using
sequences . 90

5.3.1 Presentation of the system . 90

5.3.2 Computing the worst case end to end delay of VL under study 90

5.3.3 Computation of the sequences generated at the input of switch S2 92

5.3.4 Computation of the resulting sequences at the output of switch S2 93

x Contents

5.3.5 Computation of the sequences at the input ports of switch S1 94

5.3.6 Computation of the sequences at the output of switch S1 95

5.3.7 Computation of the sequences at the input ports of switch S3 96

5.3.8 Computation of the sequences at the output of switch S3 97

5.4 Evaluation of the sequence based approach . 97

5.5 More Improvements and reduction in scenarios 99

5.5.1 Modeling of Sporadic traffic . 101

5.5.2 Further reduction of scenarios . 102

5.5.3 Candidate scenario for worst case delays 107

5.5.4 Algorithm to further reduce number of cases 107

5.6 Conclusion . 111

6 Case Study 113

6.1 AFDX network system of industrial scale complexity 113

6.1.1 Understanding the complexity of industrial scale AFDX network 113

6.2 Software Architecture . 120

6.3 Results of the Case Study . 120

6.3.1 Comparison of results with Network Calculus and Trajectory approach . . 124

6.4 Conclusion . 124

7 Conclusions and Prospective 127

7.1 Conclusions . 127

Contents xi

7.2 Prospective . 129

A Model Checking Overview 133

A.1 Classification . 133

A.2 List of Model Checkers, Modeling Languages and Specification Languages 135

A.2.1 List of Modeling Languages . 135

A.2.2 List of Property Specification Languages 138

A.3 Relevance/Application to AFDX Network . 138

B Software Architecture 141

B.1 Software Architecture . 141

B.1.1 Parser . 142

B.1.2 Network Pruning . 143

B.1.3 Load Balancer . 144

B.1.4 Compute Module . 145

B.1.5 Control Logic . 146

Bibliography 147

Index 153

List of Abbreviations 155

List of Figures

1.1 The Ariane-5 crash . 2

1.2 AFDX network delays analysis. 4

2.1 Schematic view of system verification process. 8

2.2 Schematic view of Model Checking process. 14

2.3 ARINC 429 vs AFDX architecture . 20

2.4 AFDX network . 22

2.5 AFDX virtual links. 23

2.6 AFDX switch architecture. 23

3.1 A simple system with one input and one output port. 28

3.2 Arrival and service curves. 29

3.3 Network calculus example. 31

3.4 A distributed system. 33

3.5 Model used by Trajectory approach. 34

3.6 AFDX network for Trajectory approach example. 36

3.7 Identification of busy periods. 37

3.8 Maximizing the arrival time in last node. 39

3.9 Schematic view of sample AFDX network for NuSMV model. 44

3.10 NuSMV code for modeling a VL. 45

xiv List of Figures

3.11 Modeling of VLs at the End System and Switch. 46

3.12 NuSMV code for timers. 47

3.13 Output of NuSMV model checker. 48

3.14 Example of AFDX Network configuration. 51

3.15 Offsets between VLs of one ES. 52

3.16 Timed Automata for an end system. 53

3.17 Asynchronous behavior of ESs. 53

3.18 Timed Automata for switch output port. 54

3.19 Functions used for FIFO queue. 54

3.20 Timed Automata for Measuring VL. 55

3.21 Packet arrival instances and how a delay at output port appears as jitter. 56

3.22 Serialization of VLs after passing through an output port. 57

3.23 Timed Automata for Serialized VL. 57

3.24 Worst case scenario for VL1. 57

4.1 Illustration of a worst-case scenario . 63

4.2 Worst-case for a frame x. 65

4.3 AFDX Network architecture for improved timed automata. 67

4.4 Sequence of e1 . 68

4.5 Timed automata of e1 . 69

4.6 Timed automata of e2 . 69

4.7 Timed automata of sporadic VL . 70

List of Figures xv

4.8 Timed automata of e9 . 71

4.9 Timed automata of SW1 . 71

4.10 Timed automata of SW3 . 73

4.11 Timed automata of SW5 . 74

4.12 TA for the measurement . 74

4.13 TA for integer clocks . 76

4.14 A worst case scenario for v1 . 78

4.15 A simple timed automata. 80

4.16 Partial zone graph of the simple timed automata. 80

5.1 AFDX Network architecture. 85

5.2 Property 2. 88

5.3 Merging packet sequences and backlog calculation. 90

5.4 A simple AFDX Network of a small aircraft. 91

5.5 Sequences generated at input of Switch S2. 92

5.6 Construction of sequences at output of Switch S2 Port 1. 93

5.7 Sequences generated at input of Switch S1. 94

5.8 Construction of sequences at output of Switch S1 Port 1. 95

5.9 Construction of sequences at output of Switch S3 Port 1. 96

5.10 Network for reachable end to end delay illustration. 99

5.11 Pessimism of computed upper bounds. 100

5.12 Medium sized AFDX network . 100

xvi List of Figures

5.13 Periodic vs Sporadic traffic . 101

5.14 Sporadic traffic in hyper period . 102

5.15 Order and size of packet in switch output port 103

5.16 Idle time and queuing delay at a switch output port. 103

5.17 Idle time due to leaving VLs and its impact on packet under study. 105

5.18 Idle time and queuing delay at a switch output port. 106

6.1 AFDX Network of Airbus A380 aircraft. 114

6.2 Single VL and its paths with equivalent tree. 115

6.3 Connected Component of a graph which is equivalent to directly and indirectly
interfering VLs. 116

6.4 VL10151 in isolation. 117

6.5 VL10151 directly linked paths. 118

6.6 VL10151 all linked paths. 119

6.7 Software architecture. 121

6.8 Flows of AFDX network of case study. 122

6.9 Results of the case study compared to Trajectory approach. 125

6.10 Pessimism in Trajectory approach. 125

6.11 Results of the case study compared to Network Calculus. 126

6.12 Pessimism in Network Calculus. 126

A.1 Comparison of Model Checking tools. 136

B.1 Software architecture. 142

List of Figures xvii

B.2 JPPF Grid architecture. 144

List of Tables

3.1 Exact worst-case delays. 58

4.1 AFDX network configuration data for improved timed automata 67

4.2 Synchronization among different groups of VLs. 75

5.1 AFDX network configuration data . 84

5.2 End to End worst case delay for VL v3 . 97

5.3 End to End worst case delay under approximation algorithm illustration. 99

5.4 Performance comparison of algorithm. 99

5.5 Configuration example for Algorithm 2. 110

6.1 AFDX network configuration: BAGs and packet sizes 123

6.2 AFDX network configuration: crossed switches number of paths 123

Chapter 1

Introduction

Contents
1.1 The Context . 2
1.2 Contribution . 4

In this era of modern science and technology, we rely heavily on the correct functioning of
many Information and Communication Technology (ICT) systems. This trend is on the rise and
while these systems are becoming more and more complex, at the same time they are massively
encroaching on our daily life via the Internet and all kinds of embedded systems such as smart
cards, hand-held computers, mobile phones, and high-end television sets. It is estimated that
we are confronted with about 25 ICT devices on a daily basis [Baier 2008]. Many services
such as electronic banking, on-line shopping (e-commerce) and smart card transactions are part
of our routine life. The Internet alone accounts for about 1012 million US dollars cash flow.
Modern transportation systems such as cars, trains and airplanes spend about one fourth of their
production costs in ICT systems. ICT systems have become universal and omnipresent. They
play vital role in control of the stock exchange market, they are the heart of telephone switches,
they constitute Internet technology, and they are crucial for several kinds of medical systems,
transportation systems and manufacturing systems. Our heavy reliance on these embedded
systems make them very important and their reliable and correct operation has become a prime
priority. Not only we want a good performance in terms like response times and processing
capacity, but also the absence of annoying errors is one of the major quality demands.

The correct behavior of ICT systems is vital not only for money and comfort but in many
cases, also for our lives. We don’t like when our phones does not work properly or when our
electronic gadgets reacts unexpectedly and wrongly to our issued commands. These software
and hardware errors do not threaten our lives, but may have substantial financial consequences
for the manufacturer. Examples are known where incorrect systems have caused valuable money
loss to companies. The bug in Intel’s Pentium II floating-point division unit in the early nineties
caused a loss of about 475 million US dollars to replace faulty processors, and severely damaged

2 Chapter 1. Introduction

Figure 1.1 – June 4, 1996; The Ariane-5 crashed 36 seconds after the launch due to a conversion
of a 64-bit floating point into a 16-bit integer value.

Intel’s reputation as a reliable chip manufacturer. The software error in a baggage handling
system postponed the opening of Denver’s airport for 9 months, at a loss of 1.1 million US
dollar per day [Baier 2008].

Errors can be catastrophic too. Notorious examples in the past are the fatal defects in the
control software of the Ariane-5 missile (figure 1.1), the Mars Pathfinder, and the airplanes
of the Airbus family. Similarly software are also used for the process control of safety-critical
systems such as chemical plants, nuclear power plants, traffic control and alert systems, and
storm surge barriers. Consequently, bugs in such software can have disastrous impacts. For
example, a software flaw in the control part of the radiation therapy machine “Therac-25" caused
the death of six cancer patients between 1985 and 1987 as they were exposed to an overdose of
radiation [Baier 2008].

All these examples remind us that it is very pertinent for any system to verify its correct
intended operation and behaviour, specially for those which involve human lives. In this thesis,
we strive for verification of an important avionics communication network known as Avionics
Full-Duplex Switched Ethernet (AFDX). We will determine the exact worst case end to end
communication delays of AFDX network. The context of this problem and brief background is
presented in next section.

1.1 The Context

All modern aircraft have complex suit of on-board electronic devices used for various purposes,
commonly referred to as Avionics Systems. Avionics systems of an aircraft are used in a wide

1.1. The Context 3

variety of different applications such as flight control, instrumentation, navigation, communica-
tion etc. These avionics systems need to communicate between themselves and exchange data,
hence building "Avionics networks". Over the years, demand for data exchange has risen rapidly
and avionics networks have evolved from dedicated links to shared buses and from shared buses
to switched networks such as AFDX. Avionics Full-Duplex Switched Ethernet (AFDX) [AR-
INC 664 2005] is an avionics data network for safety critical applications and hence requires a
very strict verification of its correct functioning. One important aspect of this verification is
the maximum end to end communication delay for different devices connected to the network.

In any communication network, there is an end-to-end communication delay which occurs
from the source generating a given message to the destinations receiving that message. For
each message, this delay is composed of different parts: the transmission delays on links, the
switching delays, the waiting times in output buffers. Knowing these delays is crucial for the
overall system safety and reliability. However, finding the exact worst case delay for a given
message is still an open problem, since every possible scenario has to be considered, leading to
an intractable computation on any industrial configuration. Typically, this situation occurs in
the context of avionics. Existing approaches for the computation of an exact worst-case delay
in the context of the AFDX are based on model checking [Adnan 2010b, Charara 2006a] using
Timed Automata [Alur 1994]. They cannot cope with configuration with more than ten VLs.

Many work has been devoted to the estimation of the worst-case delay for each message. By
using techniques such as simulation and testing, it is possible to observe the network under study
over long periods of times, thus considering a subset of all possible scenarios. Such an approach
has been proposed in [Scharbarg 2009] for avionics networks. It provides an interval for the
delay for each message. However, the delay for a message can be out of the obtained interval,
since the approach does not consider all the possible scenarios. Consequently, simulation and
testing do not provide us with exact worst case delays.

Analytical methods such as network calculus [Charara 2006a, Cruz 1991a] , [Cruz 1991b,
Fraboul 2002a, Le Boudec 2001, Li 2010] and trajectory approach [Bauer 2009, Bauer 2010,
Martin 2006a] are used to compute an upper bound on the maximum delay for each flow. They
guarantee that the delay can never be more than the calculated upper bound. These computed
bounds are used for network certification but are pessimistic and cause under utilization of the
network. The exact worst case delay for each flow is somewhere between the maximum observed
delay and the calculated upper bounds, as shown in figure 1.2. In [Bauer 2010], authors have
done analysis of this pessimism by the computation of an under approximation of this delay
and comparing it with the results of sure upper bounds calculated by Network Calculus and
Trajectory approaches. In figure 1.2, the difference between exact maximum delay and under

4 Chapter 1. Introduction

Time

D
is
tr
ib
u
ti
o
n

U
pp

er
 B

ou
nd

E
xa

ct
 m

in
im

um
 d

e
la

y

E
xa

ct
 m

ax
im

um
 d

el
ay

O
bs

er
ve

d
m

in
 d

el
ay

O
bs

er
ve

d
m

ax
 d

el
ay

Worst case guarantee

Exact worst case

R
ea

ch
ab

le
 d

el
ay

 g
e

ne
ra

te
d

by

 A
lg

or
ith

m

PessimismOptimism

Figure 1.2 – AFDX network delays analysis.

approximation is the measure of optimism in algorithm used for under approximation while
the difference between exact maximum delay and upper bound is the measure of pessimism
in Network Calculus and Trajectory approaches used to calculate this bound. Without the
knowledge of exact maximum delay, the difference between under approximation and upper
bound is sum of optimism and pessimism between corresponding techniques. This gives us an
estimation of pessimism in Network Calculus and Trajectory approaches.

Our aim, in this thesis, is to find exact worst case end to end communication delays. For this
purpose we have explored existing tools and methodologies as well as developed new algorithms
and tools where existing methods were not suitable for this task. The overview of this work is
presented in the contribution section.

1.2 Contribution

The main objective of this thesis is to find exact worst case end to end communication delays of
an AFDX network. For AFDX network, end to end communication delays can be approximated
by using simulations, or they can be upper bounded by using analytical techniques such as
Network Calculus or Trajectory approach. For computation of exact worst case delays, at
present, we have only model checking approach but the model checking approach is limited
only to small sized, proof of concept type networks and cannot analyze real life large sized
industrial networks. These methods will be discussed in more detail in Chapter 3. Then, the
problem is how to find exact worst case communication delays of large AFDX networks. Or, in
other words, how can we improve models so that we are able to handle large networks. Also,
another objective is to add local scheduling at the end systems in the computations which
existing model checking approach doesn’t incorporate.

1.2. Contribution 5

Starting with the first model checking approach in [Charara 2006b], this approach can be
improved: instead of analyzing the whole AFDX network simultaneously, only a part of the
network can be considered and "divide and conquer" method can be used. This have been done
in [Adnan 2010a] and presented in [Adnan 2010b, Adnan 2010c].The idea is to consider one
output port at a time and compute worst case delay at the port under study. This approach is
successful in handling larger networks than the existing approach but it does not compute exact
worst case delays for every scenario. Due to the port by port analysis approach, it is optimistic
in certain cases where worst case delay on one port does not lead to overall end to end worst
case delay. This is discussed in further detail in Chapter 3.

In this PhD Thesis, we propose to improve the Timed Automata models in two directions.
First, scheduling of VLs at a local end system using offsets and asynchronous behaviour among
all end systems have been added into the model, making the model of the AFDX network more
realistic. Secondly, to make models efficient in resource (memory + computation) usage and to
reduce search space, in order to cope with larger AFDX networks. In this context, we exploit
AFDX network properties to reduce search space by considering only those cases which can be
candidate for the worst case end to end delay. A first implementation considering this search
space reduction has been presented in [Adnan 2011a, Adnan 2012]. A general purpose model
checker, UPPAAL, is used for the developed timed automata models.

The models are detailed enough to capture periodic and sporadic flows with any BAG values.
They also support local scheduling at each end system by using offsets. AFDX network with
upto 32 VLs can be handled with this approach. This work is presented in more detail in
Chapter 4.

At this point, we were still not able to compute worst case end to end delays of a real life
industrial scale AFDX network by model checking. This is due to inherent exponential increase
of state space in any model checking approach. But we were convinced that use of a general
purpose model checker is also hampering our efforts to analyze larger networks. Therefore, we
decided to use an approach which is more suited to AFDX network analysis. For this purpose,
we started to develop a tool from scratch, which will allow us to exhaustively check all the cases
which can be candidate for the worst case end to end delays in the AFDX network. This tool
uses the same methodology and algorithms of state space reduction as used in Timed Automata
based modeling approach discussed before. This work was presented in [Adnan 2011b]. The
results are much better as compared to Timed Automata approach using UPPAAL software.
We are able to compute end to end communication delays of a network which is twice the size
of what Timed Automata based approach can handle. This approach is discussed in detail in
Chapter 5.

6 Chapter 1. Introduction

We continued to pursue our main goal to analyze an industrial size AFDX network. With
home made tool, we are at liberty to modify and change the software as required. We developed
some algorithms and exploited more properties of AFDX network in order to reduce the search
space to an extent where we were able to analyze industrial configuration of the AFDX network.
We used this tool to study the end to end communication delays of a real life AFDX network,
used on Airbus A380 aircraft. We are now able to compute end to end communication delays of
an industrial sized network with about 1000 VLs having 6412 individual paths and more than
100 end systems. We are able to analyze all the VLs of this industrial AFDX network but not
all the paths. We can analyze more than 60% paths. The reduction of state space is discussed
in Chapter 5.5 and the case study of Airbus A380 network is presented in Chapter 6.

Our contribution in this thesis is to be able to find exact worst case end to end communication
delays for large industrial size AFDX network and compare it with existing results to evaluate
real pessimism of corresponding approaches.

Chapter 2

Background: System Verification
and AFDX Network

Contents
2.1 System Verification . 7

2.1.1 Software Verification . 10
2.1.2 Hardware Verification . 10
2.1.3 Behavioral Verification . 11

2.2 Model Checking . 12
2.2.1 Formal Methods . 12
2.2.2 Model-based Verification . 13
2.2.3 History of Model Checking . 15
2.2.4 Application of Model Checking in Networks 15
2.2.5 Characteristics of Model Checking . 15

2.3 AFDX Network . 18
2.3.1 History of Aircraft Data Networks (ADN) 19
2.3.2 Overview of AFDX . 19
2.3.3 Virtual Links (VL) . 21

In this chapter we will discuss about system verification and different methodologies available
for this purpose. We will also talk about AFDX network in detail; how it works and what are
the main building blocks.

2.1 System Verification

The complexity of ICT systems has increased with the advancement in technology. They have
evolved from standalone systems to distributed systems; connecting and interacting with several

8 Chapter 2. Background: System Verification and AFDX Network

System Specifications

Design Process

Prototype

Properties

Verification

Error No Error

Figure 2.1 – Schematic view of system verification process.

other components and systems. This makes them more prone to errors as the probability and
number of defects increases exponentially with the number of interacting system components.
Increased complexity also makes it difficult for developers to debug and check systems for
potential errors. In particular, phenomena such as concurrency and non-determinism that are
central to modeling interacting systems turn out to be very hard to handle with standard
techniques. Hence a lot of research is being carried out and efforts are being put in order to
check Hardware and Software for correctness as well as compliance to it’s specifications. These
efforts are generally referred to as “System Verification" and is an active topic of research.

System verification techniques are integral part of all ICT system developments. Currently,
the emphases of scientific community is on developing more reliable and accurate system ver-
ification techniques. In simple words, system verification is used to establish that the design
or product under consideration satisfies certain properties. The properties to be validated are
mostly obtained from the system’s specification and can be quite elementary, e.g., to verify that
the system should never be able to reach a situation in which no progress can be made (a dead-
lock scenario). The specifications describe what the system has to do and what not, and thus
constitutes the basis for any verification activity. A defect is found once the system does not
fulfill one of the specification’s properties. The system is considered to be “correct" whenever
it satisfies all properties obtained from its specification. So correctness is always relative to a
specification, and is not an absolute property of a system. A schematic view of verification
process is depicted in figure 2.1.

Today’s systems are very complex in it’s nature and mostly comprise of interconnected sub
systems. System verification is a vast field and can be further subdivided into major domains
such as:

2.1. System Verification 9

• Software verification

• Hardware verification

• Behavioral verification

There are different methodologies being used for system verification. These methodologies can
be specific to one domain or applicable to more than one domain. These include:

• Measurements

• Tests

• Simulations

• Model Checking

In the context of this thesis, the verification of worst case end to end communication delays
falls under behavioral verification domain. For this verification, all of the above mentioned
methodologies can be used with varying degree of confidence or surety. Measurements are the
quantitative indicators of the properties and performance criteria of the system under study.
They can be very useful during the development phase or for troubleshooting. Tests are integral
part of any system development. A system undergoes many tests from its inception to final
product. At each state different tests are performed. Results of these tests dictates the progress
to next level of development. Simulation is replication of a real world process or system over
time. This replication should be as close to real world system as possible for better results.
Simulations are used to investigate behaviour of the system and to validate proper functionality
without using the actual system. Tests and simulations are quite similar in nature except that in
tests, actual system is used. All of the above mentioned methodologies i.e measurements, tests
and simulations only provide data at a particular instance under specific conditions, which means
it does not verify system for all possible situations or scenarios. Therefore these methodologies
can discover many anomalies in the system understudy but they can not verify that all the
possible situations and scenarios have been covered. There is always a chance that a rare
anomaly or event has not been tested. For covering all possible cases or scenarios, model checking
is used. Model checking, for a given model of a system, exhaustively and automatically checks
whether this model meets a given specification. Simulation can also check all possible cases or
scenarios, and such simulation is referred to as Exhaustive Simulation. So, for 100% coverage
of all possible scenarios, model checking and exhaustive simulation are the two methodologies
which can be used. In the context of this thesis, for exact worst case end to end communication

10 Chapter 2. Background: System Verification and AFDX Network

delays, we will use both model checking and exhaustive simulation. These methodologies will
be discussed in more detail in the next sections.

2.1.1 Software Verification

Software verification is a process of checking system’s software for it’s compliance with specifi-
cations and expected requirements. Peer reviewing and testing are the major “software verifi-
cation" techniques used in practice. A “peer review" refers to a software inspection carried out
by a team of software engineers that preferably has not been involved in the development of
software under review. The code of software is not executed but analyzed statically. Empirical
studies indicate that peer review provides an effective technique that catches around 60% of
the errors [Boehm 2001]. Despite its almost complete manual nature, peer review is thus a
rather useful technique. Due to its static nature, experience has shown that subtle errors such
as concurrency and algorithm defects are hard to catch using peer review.

“Software testing" is a significant part of any software engineering project [Whittaker 2000].
As opposed to peer review, which analyzes code statically without executing it, testing is a
dynamic technique that actually runs the software. Testing takes the piece of software under
consideration and provides its compiled code with inputs, called tests. Correctness is thus deter-
mined by forcing the software to traverse a set of execution paths, sequences of code statements
representing a run of the software. Based on the observations during test execution, the actual
output of the software is compared to the output as documented in the system specification.
Although test generation and test execution can partly be automated, the comparison is usu-
ally performed by human beings. The main advantage of testing is that it can be applied to
all sorts of software, ranging from application software (e.g., e-business software) to compilers
and operating systems. As exhaustive testing of all execution paths is practically in-feasible;
in practice only a small subset of these paths is treated. Testing can thus never be complete.
That is to say, testing can only show the presence of errors, not their absence.

2.1.2 Hardware Verification

“Hardware Verification" is vital for preventing errors in hardware design. Hardware is subject
to high fabrication costs; fixing defects after delivery to customers is difficult, and quality
expectations are high. Whereas software defects can be repaired by providing users with patches
or updates, hardware bug fixes after delivery to customers are very difficult and mostly require
re-fabrication and redistribution. This has immense economic consequences. As mentioned

2.1. System Verification 11

earlier, the replacement of the faulty Pentium II processors caused Intel a loss of about $ 475
million. It is not surprising that chip manufacturers invest a lot in getting their designs right.
Hardware verification is a well-established part of the design process. Emulation, simulation,
and structural analysis are the major techniques used in hardware verification.

“Structural analysis" comprises several specific techniques such as synthesis, timing analysis,
and equivalence checking. “Emulation" is a kind of testing. A re-configurable generic hardware
system (the emulator) is configured such that it behaves like the circuit under consideration
and is then extensively tested. As with software testing, emulation amounts to providing a set
of stimuli to the circuit and comparing the generated output with the expected output as laid
down in the chip specification. To fully test the circuit, all possible input combinations in every
possible system state should be examined. This is impractical and the number of tests needs to
be reduced significantly, yielding potential undiscovered errors. With “simulation", a model of
the circuit at hand is constructed and simulated. Models are typically provided using hardware
description languages such as V erilog or V HDL that are both standardized by IEEE. Based
on stimuli, execution paths of the chip model are examined using a simulator. These stimuli
may be provided by a user, or by automated means such as a random generator. A mismatch
between the simulator’s output and the output described in the specification determines the
presence of errors. Simulation is like testing, but is applied to models. It suffers from the same
limitations, though: the number of scenarios to be checked in a model to get full confidence
goes beyond any reasonable subset of scenarios that can be examined in practice.

2.1.3 Behavioral Verification

Behavior of a system refers to it’s expected outputs for a given set of assumed inputs. In simple
words, Behavioral Verification is the process of verification of system’s “behavior" under given
conditions. System’s behavior is combined effect of its software and hardware functioning. Even
though a system is verified separately for it’s software and hardware, it is equally important
to verify the system at more abstract and conceptual levels. For example, communication
protocols, compliance of specified rules, and interaction among subsystems must be verified
before starting development of hardware and software for each individual subsystem. Behavioral
verification requires a “model" of the system. This model is a formal way of describing the
system over which we can use certain queries and properties to verify it’s behavior. Different
tools incorporating various techniques exist which help in modeling a system for it’s behavioral
verification such as TINA, NuSMV, SPIN, UPPAAL etc. A comprehensive list of such tools
can be consulted in Appendix A.

12 Chapter 2. Background: System Verification and AFDX Network

It must be noted that none of the software and hardware verification techniques described
earlier gives us the 100% confidence about system correctness due to the same limitation of
unreasonably large set of possible scenarios. If we need absolute surety of our design, then we
must find a way to test all possible scenarios and that’s where model checking helps us. Model
checking approach searches all possible scenario exhaustively to prove correctness of the model
under test. An important aspect of model checking is that it’s as good as the model itself, i.e we
must ensure that the model correctly represents the system before we start the model checking.
In the following sections, basic theory of model checking is presented. The details of available
model checking software, called “model checkers", and their application to AFDX network is
described in Chapter 3.2 and Chapter 4 respectively. Further discussion about model checking
is presented in Appendix A.

2.2 Model Checking

In general more time and effort are spent on verification than on construction in software and
hardware design of complex systems. Naturally, many techniques are sought to reduce and
ease the verification efforts while increasing their coverage. One such technique is the use of
“Formal methods" which is known to offer a large potential to obtain an early integration of
verification in the design process, to provide more effective verification techniques, and to reduce
the verification time.

2.2.1 Formal Methods

To put it in a nutshell, formal methods can be considered as“the applied mathematics for model-
ing and analyzing ICT systems". Their aim is to establish system correctness with mathematical
rigor. Their great potential has led to an increasing use by engineers of formal methods for the
verification of complex software and hardware systems. Besides, formal methods are one of the
“highly recommended" verification techniques for software development of safety critical systems
according to, e.g., the best practices standard of the IEC (International Electro-technical Com-
mission) and standards of the ESA (European Space Agency). The resulting report [Baier 2008]
of an investigation by the FAA (Federal Aviation Authority) and NASA (National Aeronautics
and Space Administration) about the use of formal methods concludes that “Formal methods
should be part of the education of every computer scientist and software engineer, just as the
appropriate branch of applied maths is a necessary part of the education of all other engineers."

2.2. Model Checking 13

During the last two decades, research in formal methods has led to the development of
some very promising verification techniques that facilitate the early detection of defects. These
techniques are accompanied by powerful software tools that can be used to automate various
verification steps. Investigations have shown that formal verification procedures would have
revealed the exposed defects in, e.g., the Ariane-5 missile, Mars Pathfinder, Intel’s Pentium II
processor, and the Therac-25 therapy radiation machine.

2.2.2 Model-based Verification

Model-based verification techniques are based on models describing the possible system behavior
in a mathematically precise and unambiguous manner. It turns out that prior to any form of
verification, the accurate modeling of systems often leads to the discovery of incompleteness,
ambiguities, and inconsistencies in informal system specifications. Such problems are usually
only discovered at a much later stage of the design. The system models are accompanied by
algorithms that systematically explore all states of the system model. This provides the basis for
a whole range of verification techniques ranging from an exhaustive exploration (model checking)
to experiments with a restrictive set of scenarios in the model (simulation), or in reality (testing).
Due to unremitting improvements of underlying algorithms and data structures, together with
the availability of faster computers and larger computer memories, model-based techniques that
a decade ago only worked for very simple examples are nowadays applicable to realistic designs.
As the starting point of these techniques is a model of the system under consideration, we have
as a given fact that any verification using model-based techniques is only as good as the model
of the system.

Model checking is a verification technique that explores all possible system states, commonly
known as state-space, in a brute-force manner. Similar to a computer chess program that checks
possible moves, a model checker, the software tool that performs the model checking, examines
all possible system scenarios in a systematic manner. In this way, it can be shown that a given
system model truly satisfies a certain property. It is a real challenge to examine the largest
possible state spaces that can be treated with current means, i.e., processors and memories.
State-of- the-art model checkers can handle state spaces of about 108 to 109 states with explicit
state-space enumeration. Using clever algorithms and tailored data structures, larger state
spaces (1020 up to even 10476 states) can be handled for specific problems [Straunstrup 2000].
Even the subtle errors that remain undiscovered using emulation, testing and simulation can
potentially be revealed using model checking.

Typical properties that can be checked using model checking are of a qualitative nature: Is

14 Chapter 2. Background: System Verification and AFDX Network

Requirements System

Formalizing Modeling

Property Specification System Model

Model Checking

Satisfied Violated Simulation Error Location

Figure 2.2 – Schematic view of Model Checking process.

the generated result OK?, Can the system reach a deadlock situation? e.g., when two concurrent
programs are waiting for each other and thus halting the entire system? But also timing
properties can be checked: Can a deadlock occur within 1 hour after a system reset?, or, Is a
response always received within 8 minutes? Model checking requires a precise and unambiguous
statement of the properties to be examined. As with making an accurate system model, this
step often leads to the discovery of several ambiguities and inconsistencies in the informal
documentation. For instance, the formalization of all system properties for a subset of the
ISDN user part protocol revealed that 55% (!) of the original, informal system requirements
were inconsistent [Holzmann. 1994]. The system model is usually automatically generated from
a model description that is specified in some appropriate dialect of programming languages like
C or Java or hardware description languages such as Verilog or VHDL. Note that the property
specification prescribes what the system should do, and what it should not do, whereas the
model description addresses how the system behaves. The model checker examines all relevant
system states to check whether they satisfy the desired property. If a state is encountered that
violates the property under consideration, the model checker provides a counterexample that
indicates how the model could reach the undesired state. The counterexample describes an
execution path that leads from the initial system state to a state that violates the property
being verified. With the help of a simulator, the user can replay the violating scenario, in this
way obtaining useful debugging information, and adapt the model (or the property) accordingly
(see Figure 2.2).

2.2. Model Checking 15

2.2.3 History of Model Checking

Model checking originates from the independent work of two pairs in the early eighties: Clarke
and Emerson [Clarke 1981] and Queille and Sifakis [Queille 1982]. The term model checking
was coined by Clarke and Emerson. The brute-force examination of the entire state space
in model checking can be considered as an extension of automated protocol validation tech-
niques by Hajek [Hajek 1978] and West [West 1978, West 1989]. While these earlier techniques
were restricted to checking the absence of deadlocks or livelocks, model checking allows for the
examination of broader classes of properties. Introductory papers on model checking can be
found in [Clarke 1996a, Clarke 2000, Clarke 1996b, Merz 2001, Wolper 1995]. The limitations
of model checking were discussed by Apt and Kozen [Apt 1986]. More information on model
checking is available in the earlier books by Holzmann [Holzmann 1990], McMillan [McMil-
lan 1993], and Kurshan [Kurshan 1994] and the more recent works by Clarke, Grumberg, and
Peled [Clarke 1999], Huth and Ryan [Huth 1999], Schneider [Schneider 2004], and Bérard et
al. [Bérard 2001]. Automated analysis of designs, in particular verification by model checking,
has recently been described by Ruys and Brinksma in [Ruys 2003].

2.2.4 Application of Model Checking in Networks

Model checking has been used for verification of different systems in the past. In the do-
main of networks, it has been used to verify redundant media extension of Ethernet PowerLink
[Steve 2007]. It has also been used in networked automation systems [Ruel 2008] and in func-
tional analysis of real-time protocol in an networked control system [Fidge 2006]. For Integrated
Modular Avionics (IMA)[ARINC 653 1997] , the bounds on end to end functional delays have
been studied in [Lauer 2010]. All these applications of model checking are different than what
we do in this thesis. None of the above approaches find exact worst case communication delays
over the network. Most of these approaches use either an abstraction of the network with basic
functionality such as NetworkOK, NetworkCongested, OnTime, TooLate as in [Fidge 2006] or
they use upper bounds of network communication delays calculated by Network Calculus or
Trajectory approach as in [Lauer 2010].

2.2.5 Characteristics of Model Checking

Model Checking can be defined as “an automated technique that, given a finite-state model of
a system and a formal property, systematically checks whether this property holds for (a given

16 Chapter 2. Background: System Verification and AFDX Network

state in) that model." The next section briefly explains the general process of model checking
followed by it’s advantages, limitations and role in system development cycle.

2.2.5.1 Model Checking Process

Model checking process can be divided in following different phases:

• Modeling phase:

– model the system under consideration using the model description language of the
model checker at hand;

– as a first sanity check and quick assessment of the model perform some simulations;

– formalize the property to be checked using the property specification language.

• Running phase: run the model checker to check the validity of the property in the system
model.

• Analysis phase:

– is property satisfied? If yes then check next property (if any);

– is property violated? If yes then system did not respect its specification. Therefore:

1. analyze generated counterexample by simulation;
2. refine the model, design, or property;
3. repeat the entire procedure.

– out of memory? If yes then try to revise the abstraction level of the model to reduce
its size and try again.

2.2.5.2 Strengths and Weaknesses of Model checking

Following are the main strengths of model checking approach:

• It is a general verification approach that is applicable to a wide range of applications such
as embedded systems, software engineering, and hardware design.

• It supports partial verification, i.e., properties can be checked individually, thus allowing
focus on the essential properties first. No complete requirement specification is needed.

2.2. Model Checking 17

• It is not vulnerable to the likelihood that an error is exposed; this contrasts with testing
and simulation that are aimed at tracing the most probable defects.

• It provides diagnostic information in case a property is invalidated; this is very useful for
debugging purposes.

• It is a potential “push-button" technology; once the model has been developed, the use of
model checking tools requires neither a high degree of user interaction nor a high degree
of expertise.

• It enjoys a rapidly increasing interest by industry; several hardware companies have started
their in-house verification labs, job offers with required skills in model checking frequently
appear, and commercial model checkers have become available.

• It can be easily integrated in existing development cycles; its learning curve is not very
steep, and empirical studies indicate that it may lead to shorter development times.

• It has a sound and mathematical underpinning; it is based on theory of graph algorithms,
data structures, and logic.

Following are the weaknesses of model checking:

• It is mainly appropriate to control-intensive applications and less suited for data intensive
applications as data typically ranges over infinite domains.

• Its applicability is subject to decidability issues; for infinite-state systems, or reasoning
about abstract data types (which requires undecidable or semi-decidable logics), model
checking is in general not effectively computable.

• It verifies a system model, and not the actual system (product or prototype) itself; any
obtained result is thus as good as the system model. Complementary techniques, such as
testing, are needed to find fabrication faults (for hardware) or coding errors (for software).
This highly depends on the level of abstraction in the model of the system.

• It checks only stated requirements, i.e., there is no guarantee of completeness. The validity
of properties that are not checked cannot be judged.

• It suffers from the state-space explosion problem, i.e., the number of states needed to
model the system accurately may easily exceed the amount of available computer memory.
Despite the development of several very effective methods to combat this problem, models
of realistic systems may still be too large to fit in memory.

18 Chapter 2. Background: System Verification and AFDX Network

• Its usage requires some expertise in finding appropriate abstractions to obtain smaller
system models and to state properties in the logical formalism used.

• It is not guaranteed to yield correct results: as with any tool, a model checker may contain
software defects.

• It does not allow checking generalizations: in general, checking systems with an arbitrary
number of components, or parameterized systems, cannot be treated. Model checking
can, however, suggest results for arbitrary parameters that may be verified using proof
assistants.

Model checking has great potential in system verification and removing rare to find bugs.
It can formally verify properties of the system, and it can be used to check correct behavior of
the system. Model checking is the choice when we want a complete verification of the system
which simulations can not provide. Model checking considers all possible cases, and hence we
can apply it to AFDX network in order to find exact end to end communication delays. We
will discuss the application of this technique to find exact end to end communication delays of
AFDX network [ARINC 664 2005] in coming sections (Chapter 3.2.1, Chapter 4), but first let’s
describe AFDX Network.

2.3 AFDX Network

All modern aircraft have complex suit of on-board electronic devices used for various purposes,
commonly referred to as Avionics Systems. Avionics systems of an aircraft are used in a wide
variety of different applications such as flight control, instrumentation, navigation, communi-
cation etc. These avionics systems need to communicate between themselves and exchange
data, hence building "Avionics networks". Over the years, demand for data exchange has risen
rapidly and avionics networks have evolved from dedicated links to shared buses to switched
networks such as AFDX. Avionics Full-Duplex Switched Ethernet (AFDX) [ARINC 664 2005]is
a data network for safety critical applications that utilizes dedicated bandwidth while providing
deterministic Quality of Service (QoS). AFDX is based on IEEE 802.3 Ethernet technology
and utilizes commercial off-the-shelf (COTS) components with certain constraints applied. It is
described specifically by Part 7 of the ARINC 664 Specification, as a special case of a profiled
version of an IEEE 802.3 network per parts 1 & 2, which defines how Commercial Off-the-Shelf
networking components will be used for future generation Aircraft Data Networks (ADN). The
six primary aspects of AFDX include full duplex, redundancy, deterministic, high speed perfor-
mance, switched and profiled network.

2.3. AFDX Network 19

2.3.1 History of Aircraft Data Networks (ADN)

Prior to AFDX, Aircraft Data Networks utilized primarily the ARINC 429 standard. This
standard, developed over thirty years ago and still widely used today, has proven to be highly
reliable in safety critical applications. This ADN can be found on a variety of aircraft from
both Boeing and Airbus, including the B737, B747, B757, B767 and Airbus A330, A340, A380
and the upcoming A350. ARINC 429 utilizes a unidirectional bus with a single transmitter and
up to twenty receivers. A data word consists of 32 bits communicated over a twisted pair cable
using the Bipolar Return-to-Zero Modulation. There are two speeds of transmission: high speed
operates at 100 kbit/s and low speed operates at 12.5 kbit/s. ARINC 429 operates in such a
way that its single transmitter communicates in a point-to-point connection, thus requiring a
significant amount of wiring which amounts to added weight.

Another standard, ARINC 629, introduced by Boeing for the 777 provides increased data
speeds of up to 2 Mbit/s and allowing a maximum of 120 data terminals. This ADN operates
without the use of a bus controller thereby increasing the reliability of the network architecture.
The drawback of this system is that it requires custom hardware which can add significant cost
to the aircraft. Because of this, other manufacturers did not openly accept the ARINC 629
standard.

ARINC 664 is defined as the next-generation aircraft data network (ADN). It is based upon
IEEE 802.3 Ethernet and utilizes commercial off the shelf hardware thereby reducing costs
and development time. AFDX builds on this standard, as is formally defined in Part 7 of the
ARINC 664 specification. AFDX was developed by Airbus Industries for the A380. It has since
been accepted by Boeing and is used on the Boeing 787 Dreamliner. AFDX bridges the gap
on reliability of guaranteed bandwidth from the original ARINC 664 standard. It utilizes a
cascaded star topology network, where each switch can be bridged together to other switches
on the network. By utilizing this form of network structure, AFDX is able to significantly
reduce wire runs thus reducing overall aircraft weight. Additionally, AFDX provides dual link
redundancy and Quality of Service (QoS). Figure 2.3 compares basic architecture of ARINC
and AFDX networks.

2.3.2 Overview of AFDX

AFDX adopted concepts (token bucket) from the telecom standard, Asynchronous Transfer
Mode (ATM), to fix the shortcomings of IEEE 802.3 Ethernet such as in-deterministic behavior
of ”Carrier sense multiple access with collision detection (CSMA/CD)". By adding key elements

20 Chapter 2. Background: System Verification and AFDX Network

Figure 2.3 – ARINC 429 vs AFDX architecture (courtesy condor engineering inc.)

2.3. AFDX Network 21

from Asynchronous Transfer Mode (ATM) to those already found in Ethernet, and constraining
the specification of various options, a highly reliable Full-Duplex deterministic network is cre-
ated providing guaranteed bandwidth and Quality of Service. Through the use of Full-Duplex
Ethernet, the possibility of transmission collisions is eliminated. A highly intelligent switch,
common to the AFDX network, is able to buffer transmission and reception packets. Through
the use of twisted pair or fiber optic cables, Full-Duplex Ethernet uses two separate pairs or
strands for transmit and receiving data. AFDX extends standard Ethernet to provide high data
integrity and deterministic timing. Further a redundant pair of networks is used to improve
the system integrity. Figure 2.4 depicts a generic AFDX network. It specifies inter-operable
functional elements at the following OSI Reference Model layers:

• Data Link (MAC and Virtual Link addressing concept);

• Network (IP and ICMP);

• Transport (UDP and optionally TCP)

• Application (Network) (Sampling, Queuing, SAP, TFTP and SNMP).

The main elements of an AFDX network are:

• AFDX End Systems

• AFDX Switches

• AFDX Links

2.3.3 Virtual Links (VL)

The central feature of an AFDX network are its Virtual Links (VL). In one abstraction, it is
possible to visualize the VLs as an ARINC 429 style network each with one source and one or
more destinations as shown in figure 2.5. Virtual Links are unidirectional logic path from the
source end-system to all of the destination end-systems. Unlike that of a traditional Ethernet
switch which switches frames based on the Ethernet destination or MAC address, AFDX routes
packets using a Virtual Link ID. The Virtual Link ID is a 16-bit Unsigned integer value that
follows the constant 32-bit field. The switches are designed to route an incoming frame from one,
and only one, End System to a predetermined set of End Systems. There can be one or more
receiving End Systems connected within each Virtual Link. Each Virtual Link is allocated

22 Chapter 2. Background: System Verification and AFDX Network

Figure 2.4 – AFDX network (courtesy condor engineering inc.)

dedicated bandwidth known as Bandwidth Allocation Gap (BAG) with the total amount of
bandwidth defined by the system integrator. However total bandwidth can not exceed the
maximum available bandwidth on the network. Bi directional communications must therefore
require the specification of a complimentary VL. Each VL is frozen in specification to ensure
that the network has a designed maximum traffic, hence performance. Also the switch, having
a VL configuration table loaded, can reject any erroneous data transmission that may otherwise
swamp other branches of the network. Additionally, there can be sub-virtual links (sub-VLs)
that are designed to carry less critical data. Sub-virtual links are assigned to a particular Virtual
Link. Data is read in a round robin sequence among the Virtual Links with data to transmit.
Also sub-virtual links do not provide guaranteed bandwidth or latency due to the buffering, but
AFDX specifies that latency is measured from the traffic regulator function anyway.

A generic AFDX switch architecture is shown in figure 2.6. Each switch has filtering,
policing, and forwarding functions that should be able to process at least 4096 VLs (this seems
like a system specific derived requirement in part 7). Therefore, in a network with multiple
switches (cascaded star topology), the total number of Virtual Links is nearly limitless. There
is no specified limit to the number of Virtual Links that can be handled by each End System
(except the one imposed by the VL ID field size in the packet header), although this will be
determined by the BAG rates and max frame size specified for each VL versus the Ethernet
data rate. However, the number sub-VLs that may be created in a single Virtual Link is limited
to four. The switch must also be non-blocking at the data rates that are specified by the system
integrator, and in practise this may mean that the switch shall have a switching capacity that
is the sum of all of its physical ports.

2.3. AFDX Network 23

Figure 2.5 – AFDX virtual links.

Figure 2.6 – AFDX switch architecture.

24 Chapter 2. Background: System Verification and AFDX Network

The AFDX network is being adapted in many modern aircraft. At present it is being used in
Airbus A380, Boeing 787, Airbus A400M, Airbus A350, Sukhoi Superjet 100, AgustaWestland
AW101, AgustaWestland AW149 and some others.

Chapter 3

State of the Art: Methods to
Compute the Worst Case End to
End Delays in an AFDX Network

Contents
3.1 Bounds of Worst Case End-to-End Communication Delays 26

3.1.1 Network Calculus . 26

3.1.2 Trajectory Approach . 32

3.1.3 Pessimism of Network calculus and Trajectory approach 38

3.1.4 Conclusion . 40

3.2 Exact Worst Case End-to-End Communication Delays 40
3.2.1 Model Checking . 40

3.2.2 Exhaustive Simulation . 58

3.2.3 Conclusion . 58

3.3 Conclusion . 59

For certification purpose, it is mandatory to prove maximum latency in the airline avion-
ics network, such as AFDX. Indeed, with respect to real-time characteristics of avionics sys-
tems, communication infrastructure among avionics equipment need to guarantee that when
one equipment sends a message to another equipment, the transmission delay does not exceed
a maximum value. This transmission delays depends on different possible scenarios, i.e. the
instant when each message is sent, the position of the message in the queue, etc. In order to
find the maximum transmission delay, we need to compute the worst-case configuration which
leads to this delay.

In this chapter we will present these techniques and methods which are being used for worst
case delay analysis for an AFDX network. We can broadly categorize the techniques to find

26
Chapter 3. State of the Art: Methods to Compute the Worst Case End to End

Delays in an AFDX Network

worst case communication delays in AFDX network into two main categories:

• Techniques which give a sure upper bound on end to end communication delays.

– Network calculus and Trajectory approach

• Techniques which evaluate exact end to end communication delays.

– Model checking and Exhaustive simulation

At present, Network calculus is actually used for AFDX certification, because it was one of the
first efforts in this direction, but other methods should be considered and will be presented in
the following sections.

3.1 Bounds of Worst Case End-to-End Communication Delays

To guarantee the maximum transmission delays, a first approach consists in finding the bounds
of the worst case end to end delays. Two methods can be applied in this context and they will
be presented in this section: Network calculus and Trajectory approach.

3.1.1 Network Calculus

Network calculus (NC) is a theoretical framework that provides deep insights into flow prob-
lems encountered in networking. The foundation of network calculus lies in the mathematical
theory of dioids, and in particular, the Min-Plus dioid (also called Min-Plus algebra) [Jean-Yves
Le Boudec 2001]. Network calculus is extensively used for analyzing performance guarantees in
computer networks. Network calculus was first applied to AFDX network by Christian Fraboul
et al. in [Fraboul 2002b, Frances 2006], which lead to the certification of AFDX Network on
Airbus A380 aircraft. In following sections, network calculus theory and it’s application to
AFDX network is presented.

3.1.1.1 Network Calculus Theory

In this section a brief overview of network calculus is presented. A more detailed presentation
can be found in [Jean-Yves Le Boudec 2001].

3.1. Bounds of Worst Case End-to-End Communication Delays 27

To provide guarantees to data flows in a network, it is necessary that the network has some
kind of bounds on its resources. This means that all sources must have guarantees on maximum
traffic emission and all service providing elements must have guarantees on capacity. To model
the data generated by network elements (sources), with a given data rate constraint, a concept
of arrival curve is used. In order to provide reservations, network nodes in return need to offer
some guarantees to flows. This is done by packet schedulers. The details of packet scheduling
are abstracted by using the concept of service curve. Below we describe these concepts of net-
work calculus.
Consider a simple system S as shown in figure 3.1. It has one input and one output. Figure
3.1a shows the number of bits entering the system S at any time instant t and number of bits
exiting the system S at any time t. Figure 3.1b shows the same system S but the input and
output traffic is cumulative instead of being instantaneous. This means that the graphs display
sum of number of bits received or sent till time t. We can see that with cumulative traffic, the
graph is always increasing because of the summation of bits and is easier to understand. In
network calculus, such graphs are best represented by the use of cumulative functions.
Cumulative Functions: Network calculus models data flows, as cumulative functions which
can be both continuous time and discrete time. A cumulative function R(t) is defined as the
number of bits in the flow during time interval [0, t]. Function R(t) is always a wide-sense
increasing function. Generally it is assumed that R(0)=0, unless stated otherwise. In figure
3.1b, both the input traffic and output traffic is an example of cumulative function. Cumulative
functions describe the relationship between total number of bits and time; they give us sum of
all bits arrived (or left) till a time instant t.
Input and Output Function: Let’s consider a system S as a black-box. S receives input
data and after processing it transmits the data at output. If input is defined by cumulative
function R(t), then the output is defined by another cumulative function R∗(t) called as output
function. Figure 3.1c shows an example of input and output functions. The graph in black
represents input function and graph in red represents corresponding output function. The hor-
izontal distance d(t) between input and output function graph represents the delay that an
input traffic will experience while the vertical distance x(t) between input and out function
represents the total number of bits present in the system as backlog. R1(t) and R∗1(t) show a
continuous function of continuous time (fluid model); we assume that packets arrive bit by bit,
for a duration of one time unit per packet arrival. Functions R2(t) and R∗2(t) show continuous
time with discontinuities at packet arrival times (times 1, 4, 8, 8.6 and 14); we assume here that
packet arrivals are observed only when the packet has been fully received.
Arrival Curve: Arrival curve is a way to constrain data emitted by sources. Given a wide-
sense increasing function α defined for t ≥ 0, we say that a flow defined by cumulative function
R is constrained by α if and only if for all s ≤ t:

28
Chapter 3. State of the Art: Methods to Compute the Worst Case End to End

Delays in an AFDX Network

(a) Instantaneous traffic at any given instance t.

(b) Cumulative traffic till time t.

(c) Examples of Input Output cumulative functions.

Figure 3.1 – A simple system with one input and one output port.

3.1. Bounds of Worst Case End-to-End Communication Delays 29

(a) A leaky bucket arrival curve. (b) A rate latency service curve.

Figure 3.2 – Arrival and service curves.

R(t)−R(s) ≤ α(t− s) (3.1)

The equation implies that α is an arrival curve for function R, or R is α smooth. In simple
words, α is an upper bound on R. A well known example of arrival curve is a leaky bucket
arrival curve γr,b shown in figure 3.2a where b represents initial burst of data and r represents
steady rate. It is defined as:

γr,b(t) =

 0 if t < 0
rt+ b otherwise

(3.2)

Service Curve: Consider a system S and a flow through S with input and output function
R and R∗ respectively. We say that S offers to the flow α a service curve β if and only if β
is wide sense increasing, β(0) = 0 and R∗ ≥ R ⊗ β, where ⊗ is min-plus convolution operator.
This definition implies that β is also a wide sense increasing function and for all t ≥ 0 we have:

R∗(t) ≥ inf
s≤t

(R(s) + β(t− s)) (3.3)

This means that the system S offers a minimum guaranteed service characterized by β to inputs.
A well known example of service curve is rate latency service curve βR,T shown in figure 3.2b
where R represents rate and T represents the bound on maximum initial delay for the bits of
input flow. It is defined as:

βR,T (t) =

 0 if t < T
R(t− T) otherwise

(3.4)

Network Calculus Bounds: Network calculus has three main results. These are bounds for

30
Chapter 3. State of the Art: Methods to Compute the Worst Case End to End

Delays in an AFDX Network

lossless systems with service guarantees. The first result is about backlog bound. It states that
the vertical distance between arrival curve and service curve presents upper bound on backlog.
More precisely, if a flow R constrained by arrival curve α traverses a system that offers a service
curve β then the backlog R(t) − R∗(t) (the difference between input and output function) for
all values of time t satisfies the following:

R(t)−R∗(t) ≤ sup
s≥0
{α(s)− β(s)} (3.5)

The second result is about delay bound. It states that the horizontal distance between the
arrival curve and service curve presents upper bound on the delay experienced by the traffic.
More precisely, if a flow R constrained by arrival curve α traverses a system that offers a service
curve β then the delay d experienced by the flow R is bounded by the maximum horizontal
distance between the curve α and β (denoted by h(α, β)). The delay d(t) for all values of time
t satisfies the following:

d(t) ≤ h(α, β) = sup
z≥0
{β−1(z)− α−1(z)} (3.6)

The third result is about output flow. It states that the output flow of a system can be con-
strained with an arrival curve α∗, obtained by min-plus deconvolution (�) of arrival curve α
and service curve β. i.e:

α∗ = α� β (3.7)

Concatenation: Another important result of network calculus is about concatenation of nodes.
It states that if a flow passes from two or more systems in sequence, then we can merge these
systems into a single system. More precisely, assume a flow traverses systems S1 and S2 in
sequence. Assume that S1 offers a service curve β1 and S2 offers a service curve β2 to the flow.
Then the concatenation of the two systems offers a service curve of β1 ⊗ β2 to the flow.

3.1.1.2 Application to AFDX

To use network calculus on AFDX network, the traffic must respect some constraints. As
discussed in 2.3, a virtual link (VL) is a static mono-sender multicast flow. A VL is constrained
by minimum frame size Smin, maximum frame size Smax and a minimum interval between two
consecutive frames called BAG. Therefore, a VL can be modeled in network calculus as a leaky
bucket arrival curve γSmax

BAG
,Smax

. Similarly, a switch output port can be modeled as rate latency
service curve βR,T where R is the throughput of Ethernet link and T is the switching latency

3.1. Bounds of Worst Case End-to-End Communication Delays 31

(a) Delay at node s1.

(b) Delay at node s2.

Figure 3.3 – Network calculus example.

of the AFDX switch. The results can be propagated through the entire network by using the
output flow equation 3.7. The output of one switch becomes input of the next switch. This
approach was applied to industrial configuration of the AFDX network by Christian Fraboul et
al. in [Fraboul 2002b, Frances 2006]. In order to explain how the network calculus can be used
to find communication delays, we will consider a simple example.

Network Calculus Example: Let’s consider a simple example where two flows f1 and f2
pass through two nodes s1 and s2 as shown in figure 3.3. Assuming that flows are represented
by leaky bucket arrival curve and nodes offer a rate latency service curve, we can find the delay
experienced by flow f1 in both nodes s1 and s2 graphically, as shown in figure 3.3. At node
s1, there are two flows entering the node. We can aggregate these flows to a single flow which
is equivalent to f1 + f2 whose arrival curve is shown as black line in figure 3.3a. This arrival
curve is deconvoluted with service curve of node s1 (shown as green line) to get the arrival curve
at the output of node s1 (dotted black line). The bound on maximum delay at this node is the
maximum horizontal distance between arrival curve of f1 + f2 (black line) and service curve of

32
Chapter 3. State of the Art: Methods to Compute the Worst Case End to End

Delays in an AFDX Network

s1 (green line). The output of node s1 is input of node s2. Therefore at node s2, output arrival
curve of node s1 (dotted black line) is taken as input arrival curve, and the service curve for
node s2 is used for calculations at this node, as shown in figure 3.3b. The bound on maximum
delay at this node is the maximum horizontal distance between arrival curve (dotted black line)
and service curve of s2 (green line). The end to end delay for flow f1 is sum of delays at node
s1 and s2.

This worst case delay analysis is obviously pessimistic. The Network Calculus is a holistic
approach[Tindell 1994] and the worst case scenario is considered on each node visited by a
flow, taking into account maximum possible jitters introduced by previously visited nodes.
This approach can indeed lead to impossible scenarios. There are also other pessimism causes,
intrinsic to the Network Calculus theory, as envelops are used instead of the exact arrival curve
and service curves.

3.1.2 Trajectory Approach

The Trajectory approach has been developed to get deterministic upper bounds on end-to-end
response times in distributed systems [Martin 2004, Martin 2006a, Martin 2006b, Migge 1999].
This approach considers a set of sporadic flows with no assumption concerning the arrival
times of packets. Thus the obtained upper bounds are valid for every possible arrival times
of packets. Trajectory approach considers the sequence of nodes visited by a frame along it’s
trajectory. Unlike the holistic approach in network calculus, the Trajectory approach is based
on the analysis of the worst case scenario experienced by a packet on its trajectory and not on
any visited node. This timing analysis approach enables to focus on a packet from a given flow,
and to construct the packet sequences in each crossed node. The resulting jitters and delays
lead to an end-to-end communication delay computation, which can then be compared to the
upper bounds obtained by deterministic Network Calculus approach.

3.1.2.1 Trajectory Theory

In order to explain the theory behind Trajectory approach, we will consider a simple example.
Suppose the architecture of a distributed system depicted in figure 3.4 [Martin 2006a]. Such a
system is composed of a set of processing nodes (seven in figure 3.4) with some links between
them. Each flow crossing this system follow a static path which is an ordered sequence of nodes.
In the example of figure 3.4, there are two flows τ1 and τ2. τ1 follows the path P1 = {4,5,6,7}.
Node 4 is the entry point of flow τ1 in this system, and is often referred to as ingress node. The

3.1. Bounds of Worst Case End-to-End Communication Delays 33

Figure 3.4 – A distributed system.

Trajectory approach assumes, with regards to any flow τi following path Pi, that any flow τj

following path Pj , with Pj 6= Pi and Pj ∩ Pi 6= ∅, never visits a node of path Pi after having
left this path. In the example of figure 3.4, P2 = {1,5,6,3} and P1 ∩ P2 = {5,6} and the flow τ2

never joins path of flow τ1 after leaving it at node 6.

All flows are scheduled with a FIFO(First In First Out) algorithm in every visited node (non
preemptive policy). Each flow τi has a minimum gap time between two consecutive packets at
ingress node h, denoted as Ti, a maximum release jitter at the ingress node denoted as Ji (it is the
duration between the packet arrival time and the time it is taken into account by the scheduler),
an end-to-end deadline Di which is the maximum end-to-end response time acceptable and a
maximum processing time Ch

i on each node h, with h ∈ Pi. The transmission time of any packet
on any link between nodes has known lower and upper bounds Trmin and Trmax (corresponding
to the minimum packet size Smin and maximum packet size Smax respectively) and there are
neither collisions nor packet losses on links. This is illustrated in figure 3.5.

The end-to-end response time of a packet is the sum of the times spent in each crossed nodes
and the transmission delays on links. The transmission delays on links are upper bounded by
Trmax. Considering the FIFO scheduling, the time spent by a packet m in a node h depends
on the pending packets in h at the arrival time of m in h (because all these pending packets
have a higher priority than m due to FIFO scheduling and, thus, will be processed before m).
The problem is then to upper bound the overall time spent in the visited nodes. The solution
proposed by the Trajectory approach is based on the busy period concept. A busy period of
level L is a time interval [t,t′] within which jobs of priority L or higher are processed throughout
the period [t,t′] but no jobs of priority L or higher are present just before and after the period
[t,t′]. In simple words, busy period can be considered as the time duration during which port

34
Chapter 3. State of the Art: Methods to Compute the Worst Case End to End

Delays in an AFDX Network

Figure 3.5 – Model used by Trajectory approach.

is busy continuously.

The Trajectory approach considers a packet m from flow τi generated at time t, it identifies
the busy period and the packets impacting its end-to-end delay on all the nodes visited by m.
It enables the computation of the latest starting time of m on its last node. This computation
will be illustrated in the context of AFDX network in next section.

3.1.2.2 Application to AFDX

The Trajectory approach is applied to AFDX network in the following way:

• Each AFDX switch output port including the output link becomes a node of Trajectory
approach.

• The switching latency of AFDX switches is represented by links of trajectory approach.

• A VL path of AFDX network corresponds to a flow in Trajectory approach.

Assumptions of Trajectory approach are satisfied in AFDX network:

3.1. Bounds of Worst Case End-to-End Communication Delays 35

• AFDX switch output ports implement FIFO service discipline, which satisfies the assump-
tion of FIFO service discipline used in Trajectory approach.

• AFDX switching latency is upper bounded by a fixed value (16 µs), hence L=Lmin=Lmax=16
µs.

• There are no collisions on the AFDX networks due to Full Duplex links and buffers are
dimensioned so that no packet is lost.

• AFDX network is configured so that a VL path never crosses another VL path more than
once.

• Routing of the VLs is statically defined.

• VL parameters match the definition of flow in Trajectory approach i.e. Ti = BAG, Ch
i =

Smax/R, Ji = 0 and R = 100 Mb/s

To explain how the trajectory approach works on AFDX network, a simple example will be used
to illustrate the concept.
Trajectory Approach Example: Let’s consider an example of AFDX network shown in
figure 3.6, in order to illustrate the Trajectory approach theory. We consider that:

• All the flows have identical characteristics : BAG = 4000µs and Smax = 4000bits.

• The entire network works at R = 100Mb/s and the technological latency in an output
port is L = 16µs.

• There are five end systems (e1 to e5) which are sending data and two end systems which
are receiving the data (e6 and e7).

• Each sending end system emits one VL. All VLs arrive at end-system e6, except for v2
which ends at end-system e7.

As discussed before, Trajectory approach is based on the busy period concept, therefore we
must determine busy periods of the AFDX network shown in figure 3.6. Figure 3.7 shows an
arbitrary scheduling of the packets of AFDX network in figure 3.6. The packet of a VL vi is
denotes as i. Packet 3 is under study. Time of origin is chosen as the arrival time of packet
3 on node e3 (denoted as ae3

3). After being processed in node e3 and after a 16µs switching
latency delay, the packet arrives at node S2 at time aS2

3 = 56µs. Packet 4 arrives on node S2
at time aS2

4 = 20µs and is immediately processed. As packet 3 arrived after packet 4 it has to
wait until the output port is freed by packet 3. Packet 4 arrives at node S3 at time aS3

4 = 76µs

36
Chapter 3. State of the Art: Methods to Compute the Worst Case End to End

Delays in an AFDX Network

Figure 3.6 – AFDX network for Trajectory approach example.

where it is processed after packet 1 and packet 5 which arrived before it at time aS3
1 = 5µs and

aS3
5 = 38µs respectively. Packet 3, which is the last packet to be processed in the busy period
bpS3 arrives at node S3 at time aS3

3 = 116µs.

Packet 3 from flow v3 crosses three busy periods (bpe3, bpS2 and bpS3) on its trajectory. Let
us consider bpS3 , the busy period of level corresponding to the priority of packet 3 in which
packet 3 is processed on node S3. Let f(S3) be the first packet processed in bpS3 with priority
higher than or equal to this packet 3. As the flows may follow different paths in the network
depending upon the static routing defined by AFDX network, therefore it is possible that packet
f(S3) do not come from the same previous node as packet 3 (which is true in this example,
because packet 1 comes from node S1 and packet 3 comes from node S2). We then define p(S2)
as the first packet processed between f(S3) and packet 3 that comes from the same node as
packet 3 (here p(S2) is packet 4 from node S2). Packet p(S2) has been processed on node S2 in
a busy period bpS2 of level corresponding to the priority of p(S2). f(S2) is then the first packet
processed in bpS2 with a priority higher or equal to the priority of p(S2). Here, we have f(S2)
= p(S2), which is not always the case. The same naming process is applied backwards until the
ingress node of the VL is reached: the busy period bpe3 on node e3, of level corresponding to
the priority of packet p(e3) in which f(e3) is processed.

Let ah
m be the arrival time of packet m on node h and consider the arrival time of packet

f(e3) in node e3 as time of origin, then ae3
f(e3) = 0. By adding parts of the busy periods

crossed by packet 3 on it’s path, we can express the latest starting time of packet 3 in node
S3. The calculation of which part of busy period to add is bit tricky to understand. This part
is calculated in a node h, as the processing times of the packets between f(h) and p(h) minus
the difference between the arrival time of p(h − 1) (denoted as ah

p(h−1)) and f(h) (denoted as
ah

f(h)). Hence, part of the busy period to consider = ∑
Ch

m − (ah
p(h−1) − a

h
f(h)) where Ch

m is the
processing time or transmission time of packet m in node h. Let us apply this to our example
in 3.7.

3.1. Bounds of Worst Case End-to-End Communication Delays 37

Figure 3.7 – Identification of busy periods.

38
Chapter 3. State of the Art: Methods to Compute the Worst Case End to End

Delays in an AFDX Network

• In node e3, f(e3) = p(e3) and it is first node therefore ae3
p(e3−1) − a

e3
f(e3) = 0, so we count:

Ce3
3

• In node S2, f(S2) = p(S2). Thus, we count: CS2
4 − (aS2

p(e3) − a
S2
f(S2))

• In node S3, there is no packet p(S3). Thus, we count the packets from f(S3) until the
packet before packet 3: CS3

1 + CS3
5 + CS3

4 − (aS3
p(S2) − a

S3
f(S3))

• Finally, if we add the transmission times between the nodes, we can get the latest starting
time of packet 3 on node S3, which is :

aS3
3 = Ce3

3 +L+CS2
4 − (aS2

p(e3) − a
S2
f(S2)) +L+CS3

1 +CS3
5 +CS3

4 − (aS3
p(S2) − a

S3
f(S3)) (3.8)

For our example, we have Cm
h = C = Smax/R = 40µs and Lmin = Lmax = L = 16µs.

Using these values in equation 3.8, we get:

aS3
3 = 5C + 2L− (aS2

p(e3) − a
S2
f(S2))− (aS3

p(S2) − a
S3
f(S3))

= 5× 40 + 2× 16− (56− 20)− (76− 5)

= 125µs

(3.9)

For the worst case scenario we need to maximize this latest starting time of packet 3.
According to the Trajectory approach presented in [Martin 2006a], we can do this by ignoring
term (ah

p(h−1)−a
h
f(h)) for every node h on the considered path. This means that the arrival time

of every packet coming from another preceding node should be postponed in order to increase
the departure time of packet 3 in it’s last node. The effect of this postponing is illustrated in
figure 3.8. More precisely, the arrival time of packet 4 at node S2 has been postponed to the
arrival time of packet 3 at node S2 (aS2

4 = aS2
3 = 56µs). In node S3, packets 1 and 5 have

been postponed in order to arrive between packet 4 and 3, therefore: aS3
4 ≤ aS3

1 ≤ aS3
5 ≤ aS3

3 .
The worst case end-to-end delay of packet m is the sum of it’s latest starting time on it’s last
visited node and the processing time of the packet in this last node. Thus the maximum end-
to-end delay of m is: L + Ce3

3 + CS2
4 + L + (CS3

1 + CS3
5 + CS3

4) + CS3
3 = 6C + 2L = 272µs.

Trajectory approach, like Network calculus, is pessimistic and can lead to impossible scenarios.
Nonetheless, it does provide sure upper bounds on worst case end to end communication delays
of AFDX network.

3.1.3 Pessimism of Network calculus and Trajectory approach

Lot of research has been made since the first application of network calculus to AFDX network
in order to improve the results. In this regard, the results were further improved by tightening

3.1. Bounds of Worst Case End-to-End Communication Delays 39

Figure 3.8 – Maximizing the arrival time in last node.

the end to end bounds by Marc Boyer and Christian Fraboul in [Boyer 2008] by using the
"grouping" technique. In this technique, we "group" the VLs that exit from the same switch
output port and enter another switch together, i.e. Virtual Links that share two segments of
path at least. The key issue is that the frames of those VLs are serialized once exiting the
first multiplexer and thus they don’t have to be serialized again in the following switches. This
optimization always gives tighter bounds. Another improvement in network calculus for AFDX
was done by Xiaoting Li in [Li 2010] where the authors incorporated the local scheduling in
the end systems into network calculus by using offsets. This resulted in further reduction in
bounds of end to end delays calculated by network calculus.

The Trajectory approach was first applied to AFDX network in [Bauer 2009]. Later on
the results were further improved in [Bauer 2010] by using the concept of "grouping", just like
network calculus where VLs that share same segments of the network are grouped together.
On average, Trajectory approach calculates tighter bounds as compared to network calculus
(but in some cases, Network calculus has tighter bounds than Trajectory approach) and hence
it improves the end-to-end delays of AFDX network calculated earlier with help of network
calculus. Still, the results of Trajectory approach are pessimistic, and the measure of this
pessimism was estimated in [Bauer 2010] and concluded that the trajectory approach is at
least two times less pessimistic than the Network Calculus approach. Also, the upper bound of
pessimism in Trajectory approach varies from 0% to 33% with average of about 7% (remember
that without knowing the exact worst case delay, it is not possible to find exact pessimism as
illustrated in figure 1.2).

40
Chapter 3. State of the Art: Methods to Compute the Worst Case End to End

Delays in an AFDX Network

3.1.4 Conclusion

Network calculus and Trajectory approach have relatively less computational complexity in
algorithms used for calculations but both methods calculate pessimistic sure upper bounds on
end to end communication delays. Presently, network calculus is being used for certification on
commercial aircraft such as Airbus A380 because it was the first approach used for calculating
end to end communication delay bounds. Trajectory approach, on average, gives better results as
compared to network calculus. Both methods don’t provide us exact end to end communication
delays, therefore, we need other methods to find exact communication delays. In the next
section, we will talk about the methods which give us exact end to end communication delays.

3.2 Exact Worst Case End-to-End Communication Delays

A second approach to guarantee the maximum transmission delay in AFDX network is to find
the exact worst case end to end communication delays. Finding exact worst case communication
delays can be classified into two main approaches: a formal methods approach of model checking
and exhaustive simulation approach. Both approaches require some form of modeling in order
to transform AFDX network into a model which underlying approach can work with. In simple
words, in order to find exact worst case communication delays, one must check all possible cases
or scenarios. These cases or scenarios are often referred to as state-space . Theoretically, the
state-space of AFDX communication network is infinite (because of continuous real-time nature
of the network) therefore these approaches also require some kind of state-space reduction. In
the following sections, we will present these approaches.

3.2.1 Model Checking

Model checking can be used to find exact worst case communication delays of AFDX network.
We need to model the AFDX network using model description language of the model checker
being used for this purpose. Then, we need to formalize some properties using the property
specification language of the tool/model checker being used. And finally, we run the model
checker to check the property we have formalized by using the AFDX network model.

3.2. Exact Worst Case End-to-End Communication Delays 41

3.2.1.1 Application of Model checking on AFDX Network

As we have seen in section 2.3 that an AFDX network is a real-time system which requires
timing constraints. So to model an AFDX network, we need to model time. Also we are
interested in finding exact end to end communication delays, therefore we must model how
the communication works in AFDX network. This includes the behavior of each end system
which generates packets to be transmitted on the AFDX network. To model these entities of
the AFDX network we need:

• A language to model the behavior of the system i.e AFDX network (including time,
communication and end system etc).

• A language to describe the properties which we want to verify, such as what will be the
maximum delay from the transmission of a packet from the source to the reception of this
packet at the destination? This can be different than the modeling language of the system
or it can be same.

• A tool to check that the system model satisfies the property we desire to verify.

For this purpose, two kind of model checkers can be used for AFDX network communication
delay analysis: Real-time model checkers and Simply timed (or discrete time) model checkers.
Further detail about these types and related software can be found in Appendix A. AFDX
network can be modeled as simply timed system. Hence we can use both real-time model
checkers and Plain or un-timed model checkers with Explicit time model checking approach.
But AFDX network is a large real time system and its not feasible to use Plain model checkers
with explicit time technique for AFDX network due to huge state space contributed by explicit
modelling of time [Adnan 2010a]. This section will not describe each model checker listed in the
table A.1 of Appendix A but will focus only on model checkers with potential for use in AFDX
network communication delay analysis. Two prominent model checkers suit best for this job:
Timed Automata based model checkers (using UPPAAL [UPPAAL] tool) from real-time model
checkers category and NuSMV [NuSMV] from simply timed (discrete clock) model checkers.
In the following sections we will see how to model AFDX network in these tools and how to
evaluate worst case end-to-end communication delays.

3.2.1.2 NuSMV and AFDX Network

NuSMV is a symbolic model checker developed as a joint project between the Formal Methods
group in the Automated Reasoning System division at ITC- IRST, the Model Checking group

42
Chapter 3. State of the Art: Methods to Compute the Worst Case End to End

Delays in an AFDX Network

at Carnegie Mellon University , the Mechanized Reasoning Group at University of Genova and
the Mechanized Reasoning Group at University of Trento. NuSMV is a reimplementation and
extension of SMV, the first model checker based on BDDs (Binary Decision Diagrams). NuSMV
has been designed to be an open architecture for model checking, which can be reliably used
for the verification of industrial designs, as a core for custom verification tools, as a testbed for
formal verification techniques, and applied to other research areas. NuSMV2, combines BDD-
based model checking component that exploits the CUDD library developed by Fabio Somenzi
at Colorado University and SAT-based model checking component that includes an RBC-based
Bounded Model Checker, connected to the SIM SAT library developed by the University of
Genova.

The main features of NuSMV are:

• Functionalities. NuSMV allows for the representation of synchronous and asynchronous
finite state systems, and for the analysis of specifications expressed in Computation Tree
Logic (CTL) and Linear Temporal Logic (LTL), using BDD-based(Binary Decision Dia-
gram) and SAT-based(Boolean Satisfiability) model checking techniques. Heuristics are
available for achieving efficiency and partially controlling the state explosion. The in-
teraction with the user can be carried on with a textual interface, as well as in batch
mode.

• Architecture. A software architecture has been defined. The different components and
functionality of NuSMV have been isolated and separated in modules. Interfaces between
modules have been provided. This reduces the effort needed to modify and extend NuSMV.

• Quality of the implementation. NuSMV is written in ANSI C, is POSIX compliant, and
has been debugged with Purify in order to detect memory leaks. Furthermore, the system
code is thoroughly commented. NuSMV uses the state of the art BDD package developed
at Colorado University, and provides a general interface for linking with state-of the-art
SAT solvers. This makes NuSMV very robust, portable, efficient, and easy to understand
by people other than the developers.

The input language of NuSMV is designed to allow for the description of Finite State
Machines (FSMs) which range from completely synchronous to completely asynchronous, and
from the detailed to the abstract. One can specify a system as a synchronous Mealy machine, or
as an asynchronous network of non-deterministic processes. The language provides for modular
hierarchical descriptions, and for the definition of reusable components. Since it is intended
to describe finite state machines, the only data types in the language are finite ones: Boolean,
scalars and fixed arrays. Static data types can also be constructed.

3.2. Exact Worst Case End-to-End Communication Delays 43

The primary purpose of the NuSMV input is to describe the transition relation of the FSM;
this relation describes the valid evolution of the state of the FSM. In general, any propositional
expression in the propositional calculus can be used to define the transition relation. This
provides a great deal of flexibility, and at the same time a certain danger of inconsistency. For
example, the presence of a logical contradiction can result in a deadlock; a state or states with
no successor. This can make some specifications vacuously true, and makes the description
unimplementable. While the model checking process can be used to check for deadlocks, it is
best to avoid the problem when possible by using a restricted description style. The NuSMV
system supports this by providing a parallel-assignment syntax. The semantics of assignment
in NuSMV is similar to that of single assignment data flow language. By checking programs
for multiple parallel assignments to the same variable, circular assignments, and type errors,
the interpreter insures that a program using only the assignment mechanism is implementable.
Consequently, this fragment of the language can be viewed as a description language, or a
programming language. Comprehensive details of NuSMV input language can be found in
[NuSMV].

To model AFDX network in NuSMV, we need to abstract basic and necessary characteristics
of AFDX network. We should not model every minute detail of AFDX network because it will
result in huge model which will not be good for model checking. On the other hand, too much
of abstraction can lead to incomplete model and hence will give false results. Therefore it is
very important to model the AFDX network in best possible way for model checking purposes.
In the paragraphs below, the modeling approach is described for NuSMV along with the results.

Modeled Characteristics. Basic characteristics for the AFDX network, necessary for mod-
eling purpose are:

• End Systems

– Output port

– Scheduling at output port

– Packet size

• Switches

– Input buffer

– Output port

– Packet queues and FIFO functionality

44
Chapter 3. State of the Art: Methods to Compute the Worst Case End to End

Delays in an AFDX Network

ES1

ES2

ES3

SW1 SW3

ES4

ES5

VL1,VL2,VL3

VL4,VL5,VL6

VL7,VL8,VL9

VL10,VL11,VL12

VL1,VL2,VL3,
VL4,VL5,VL6

SW2

VL7,VL8,VL9,
VL10,VL11,VL12

Figure 3.9 – Schematic view of sample AFDX network for NuSMV model.

Functionality of each End System is modeled with help of different NuSMV modules. For
example, each VL is modeled as a separate module in NuSMV. Similarly functionality of Switch
is also modeled with different modules. Each path within the switch from input to output port
for each VL is modeled with a module. The process is explained with help of sample AFDX
network in figure 3.9. Please note that values for VL periods and packet sizes (equivalent
transmission times) are not strictly coherent with AFDX standard. They were chosen differently
for purely comparative study purpose. There are five end systems and three switches. End
system ES1 to ES4 transmit 3 VLs each and end system ES5 receives all of these VLs through
switch SW3. AFDX network is modeled with the analogy of CPU tasks, working on basis of
request and granted mechanism with dependency structure. Each end system implements a
scheduling of its VLs, as illustrated in Figure 3.11a. Frames are generated in a known order with
offsets between their generation times. It corresponds to the modelling of the Network Calculus
approach proposed in [Li 2010] as mentioned in paragraph 3.1.1.2.So, each end system sends its
first VL packet and then wait for the offset period before sending the next VL packet and so
on. Offsets are modeled in NuSMV with timers and at the end of each timer, the corresponding
VL task is triggered.

Each VL model in NuSMV has four parameters; timeout, processor_granted, request and
finish. timeout is used with internal variable state to trigger the start of VL. state is also used
to count the execution time. In NuSMV,each transition takes one unit time, so length of state
represents execution time of the VL, or in this case it represents transmission time of the VL.
processor_granted is used to indicate that output port is free so VL can start its transmission.
request is used to model the readiness of the VL and finish is used to indicate when VL has
transmitted its data. This is shown in code snippet in figure 3.10. For VLs, modules are named
as V Lnm where n represents end system number and m represents the VL number of this end
system, e.g V L11 means first VL of end system ES1. Initial state is 0, defined by line 16 in
figure 3.10. Module stays in this state till the timeout signal is received (this signal is coming

3.2. Exact Worst Case End-to-End Communication Delays 45

Figure 3.10 – NuSMV code for modeling a VL.

from the timer to indicate that VL is ready to transmit according to the scheduling of VLs, as
shown in figure 3.11a). As soon as timeout signal is received, the module starts, indicated by
start defined on line 9 in figure 3.10 and goes to state 1 as defined on line 18. The module will
continue to increase state by one (line 22) whenever it has the processor_granted signal (line
20). In the case where this VL is interrupted due to the higher priority VL, the module will
wait in its current state (line 20). Since the V L11 in code snippet in figure 3.10 has execution
time of 3 time units, the state variable has length ranging from 0 to 3. When we have reached
state 3, the module indicates that VL has finished its transmission, indicated by line 10 and
we go back to initial state (line 19) and wait for the next period (next activation of timeout
signal).

One timer is used for each end system to control the transmission of first packet by the end
system, e.g for ES1 the timer timeoutT1 is used. After the transmission of first packet of a given
end system (e.g VL1 of ES1), the first offset timer is triggered, in above case P11finish triggers
offset11 timer which models the offset between VL1 and VL2. Similarly, end of offset11 timer
triggers transmission of VL2 which in turn triggers offset12 timer (representing offset between
VL2 and VL3) and so on. This process repeats for all VLs of the end system in an infinite loop.
The process is shown in figure 3.11a. The packet size of each VL is modeled as execution time
of the task modeled for this VL.

Similar methodology is adopted for the model of AFDX Switch with a major difference
of task priorities. In models of end system, all VLs have fixed sequence and offsets between

46
Chapter 3. State of the Art: Methods to Compute the Worst Case End to End

Delays in an AFDX Network

VL1 VL2 VL3

timeoutT1 offset11finish offset12finish

offset11 offset12 . . .

(a) Model of End System

VL1

VL2

VL3

VLs in order of priority

SW1 output

VL6

.

.

.

(b) Model of Switch

Figure 3.11 – Modeling of VLs at the End System and Switch.

them, ensuring that there will never be a simultaneous access for the output port, hence there
is no need of priority and port access mechanism. But in case of switch, more than one VL
from different end systems can arrive simultaneously, hence we need to model the port access
mechanism so that there is no conflict and collisions. In real AFDX network this is done with
FIFO buffers, so VLs are stored in order of their arrival and transmitted sequentially. To model
this functionality in NuSMV, we make some assumptions to simplify the model (we can model
FIFO in NuSMV but it makes model more complicated and large for verification). We assume
that instead of a FIFO we have priorities and hence a VL with higher priority is transmitted
first if there is a case of simultaneous arrivals. This is depicted in figure 3.11b. SW1 output
port is shared by VL1 to VL6 and access is granted to any VL if the port is not busy. In case of
simultaneous access, the higher priority VL gets the access first e.g if VL V L1 and V L3 arrive
together, then V L1 will be transmitted first and V L3 later. We assume that the overall traffic
load is light and hence there will not be a case where a low priority VL will always be waiting
for access. This property is also verified with model checker.

Each end system has its own clock and it is not synchronized with other end systems or
switches, so there is no synchronization among end systems and switches. This fact can also
be modeled with NuSMV by initializing the end system timers with a set of all possible values,
which in the case of AFDX network will translate into a set of integers with values from zero
to the highest period in the network, theoretically it is 128 ms. This is shown in code snippet
in figure 3.12 line 13 to 15.

Finally the whole model is checked and delay is calculated using NuSMV verification lan-
guage, such as queries below find the minimum and maximum time between start of VL1 at
ES1 and reception of VL1 at ES5.
COMPUTE MIN[SW11.start, sw3P13finish]
COMPUTE MAX[SW11.start, sw3P13finish]

3.2. Exact Worst Case End-to-End Communication Delays 47

Figure 3.12 – NuSMV code for timers.

The resulting output of NuSMV model checker is shown in figure 3.13. Total running time
was around two hours on 3.3 GHz Intel Core 2 Duo machine with 4 GB ram. The calculated
delays are in terms of reference time step which in this case is 1ms. NuSMV is good tool but not
well suited to AFDX communication delay calculations. Main limitations are the lack of clock
assignments, because NuSMV does not have clock variables. The input language of NuSMV
is designed to allow for the description of Finite State Machines, and it is assumed that each
transition takes unit time for execution. Hence, by counting the number of transitions and
states we can measure the number of time units elapsed between two states. This also means
that for modeling of large time interval or duration, number of states will increase accordingly.
Also, modeling of asynchronous behavior in NuSMV has been deprecated according to latest
release (version 2.5) of NuSMV 1. According to its user manual, on page 33, it states that:
“Since NUSMV version 2.5.0 processes are deprecated. In future versions of NUSMV processes
may be no longer supported, and only synchronous FSM will be supported by the input language.
Modeling of asynchronous processes will have to be resolved at higher level."

3.2.1.3 Timed Automata and AFDX Network using UPPAAL

UPPAAL is an integrated tool environment for modeling, simulation, validation and verifica-
tion of real-time systems modeled as networks of Timed Automata, extended with data types

1http://nusmv.fbk.eu/NuSMV/userman/v25/nusmv.pdf

48
Chapter 3. State of the Art: Methods to Compute the Worst Case End to End

Delays in an AFDX Network

Figure 3.13 – Output of NuSMV model checker.

(bounded integers, arrays, etc.). The tool is developed in collaboration between the Department
of Information Technology at Uppsala University, Sweden and the Department of Computer Sci-
ence at Aalborg University in Denmark. It is appropriate for systems that can be modeled as
a collection of non-deterministic processes with finite control structure and real-valued clocks,
communicating through channels or shared variables. Typical application areas include real-
time controllers and communication protocols in particular, those where timing aspects are
critical.

UPPAAL consists of three main parts; a description language, a simulator and a model-
checker.

• The description language is a non-deterministic guarded command language with data
types (e.g. bounded integers, arrays, etc.). It serves as a modeling or design language to
describe system behavior as networks of automata extended with clock and data variables.

• The simulator is a validation tool which enables examination of possible dynamic execu-
tions of a system during early design (or modeling) stages and thus provides an inexpen-
sive mean of fault detection prior to verification by the model-checker which covers the
exhaustive dynamic behavior of the system.

• The model-checker can check invariant and reachability properties by exploring the state-

3.2. Exact Worst Case End-to-End Communication Delays 49

space of a system, i.e. reachability analysis in terms of symbolic states represented by
constraints.

The two main design criteria for UPPAAL have been efficiency and ease of use. The ap-
plication of on-the-fly searching technique has been crucial to the efficiency of the UPPAAL
model-checker. Another important key to efficiency is the application of a symbolic technique
that reduces verification problems to that of efficient manipulation and solving of constraints.
To facilitate modeling and debugging, the UPPAAL model-checker may automatically generate
a diagnostic trace that explains why a property is (or is not) satisfied by a system descrip-
tion. The diagnostic traces generated by the model-checker can be loaded automatically to the
simulator, which may be used for visualization and investigation of the trace.

Since its first release in 1995, UPPAAL has been applied in a number of case studies (refer
[UPPAAL] for more details). To meet requirements arising from the case studies, the tool
has been extended with various features. The current version of UPPAAL, called Uppaal2k,
was first released in September 1999. It is a client/server application implemented in Java and
C++, and is currently available for Linux, SunOS, Mac OS X and Windows. The features of
Uppaal2k include:

• A graphical system editor allowing graphical descriptions of systems.

• A graphical simulator which provides graphical visualization and recording of the possible
dynamic behaviors of a system description, i.e. sequences of symbolic states of the system.
It may also be used to visualize traces generated by the model-checker. Since version 3.4
the simulator can visualize a trace as a message sequence chart (MSC).

• A requirement specification editor that also constitutes a graphical user interface to the
verifier of Uppaal2k.

• A model-checker for automatic verification of safety and bonded-liveness properties by
reachability analysis of the symbolic state-space. Since version 3.2 it can also check liveness
properties.

• Generation of diagnostic traces in case verification of a particular real-time system fails.
The diagnostic traces may be automatically loaded and graphically visualized using the
simulator. Since version 3.4 it is possible to specify that the generated trace should be
the shortest or the fastest.

50
Chapter 3. State of the Art: Methods to Compute the Worst Case End to End

Delays in an AFDX Network

3.2.1.4 Modeling of AFDX Network in Timed Automata

A very first effort in finding worst case communication delays for AFDX network with model
checking using Timed Automata was made by Charara et al. in [Charara 2006b]. This is a
first, proof of concept effort to find exact worst case delays by using timed-automate based
model checking. The approach assumes a set of purely periodic VLs generated by different end
systems. In order to reduce the complexity, the model was very simple and basic in its detail
with respect to a real AFDX network. Each end system was assumed to have one VL and all
VLs with same packet size. All traffic was assumed to be strictly periodic (real AFDX traffic is
sporadic). With these simplifications the model was only able to find exact worst case delay for
a very small size network with upto 5 VLs, far from the actual number of VLs in an industrial
configuration of AFDX network with 1000 VLs. Nonetheless, it successfully demonstrated that
model checking can be applied to AFDX network for worst case communication delays.

A model checking approach determines exact worst case delays but leads to combinatorial
explosion thus restricting its use to only small networks [Charara 2006b]. To overcome this
issue, a “divide and conquer" methodology was used during the work done in Master’s thesis
[Adnan 2010a]. The idea is to calculate the exact worst-case delay on each output port on the
path of given VL and then to propagate this delay in consecutive discrete steps starting from
source node till the destination node. This is different than earlier work in [Charara 2006b] due
to its port by port analysis approach. This work was published in [Adnan 2010b].

The approach is illustrated by an example of AFDX network shown in figure 3.14. This
network consists of 6 End Systems interconnected with two switches. We assume that all 15
VLs of this configuration are strictly periodic. Their maximum packet size and periods are
given in figure 3.14. The scheduling implemented by each ES is modeled by offsets associated
to the VLs, given in figure 3.14. We focus on VL1 whose path is {ES1-SW1-SW2-ES2} (bold
line in figure 3.14). There are other VLs originating from ‘ES1’ and other end systems which
pass through port ‘SW1P1’ and ‘SW2P1’ (indicated by ‘x’ in columns “SW1P1" and “SW2P1").
The calculation of exact upper bound on end-to-end delay of VL1 is processed on a port by
port manner; this delay is first computed at port “SW1P1" and the obtained value is then used
to calculate the delay in next port “SW2P1".

The description of the approach proceeds in 4 steps:

• Modeling of VLs and their scheduling at one end system.

• Modeling asynchronous behavior among all end systems.

3.2. Exact Worst Case End-to-End Communication Delays 51

ES1

ES3

ES4

SW1 SW2

ES6

ES5

ES2

VL1,VL2,VL3

VL4,VL5,VL6

VL7,VL8,VL9

VL10,VL11,VL12

VL13,VL14,VL15

SW1P1 SW2P1

1 us = 100 bits at 100 Mb/s

VL1,VL3,VL4,
VL5,VL6,VL9

VL1,VL3,VL5,
VL9,VL10,VL15

VL Size(us) Period(ms) Offset(ms) SW1P1 SW2P1
VL1 30 32 4 x x
VL2 20 32 8 - -
VL3 30 16 0 x x
VL4 50 32 0 x -
VL5 20 64 8 x x
VL6 30 128 24 x -
VL7 20 8 2 - -
VL8 10 4 0 - -
VL9 30 16 6 x x
VL10 50 64 24 - x
VL11 40 32 8 - -
VL12 30 16 0 - -
VL13 20 8 0 - -
VL14 30 16 4 - -
VL15 30 16 12 - x

Figure 3.14 – Example of AFDX Network configuration.

52
Chapter 3. State of the Art: Methods to Compute the Worst Case End to End

Delays in an AFDX Network

• Modeling and computation of delay at first output port “SW1P1" and

• Modeling and computation of delay at consequent output ports “SW2P1".

Modeling of one ES behavior. As mentioned before, all VLs are assumed strictly periodic
with period equal to BAG. Hence their scheduling by given ES is modeled by offsets. One
VL is arbitrarily chosen as the first VL to generate a packet. Without loss of generality, we
chose a VL with shortest period. In the example in figure 3.14, VL3 is the first (reference) VL
for “ES1" and offsets of VL1 and VL2 are computed based on VL3 as shown in figure 3.15.
Similarly VL4, VL8, VL12 and VL13 are chosen as reference VLs for end systems “ES2", “ES3",
“ES4" and “ES5" respectively. This leads to one timed automaton for each VL. While modeling
the automata, all time values are scaled by 10 µs in order to reduce time required by UPPAAL
tool for verification. During verification, model checker will check models at each value of the
time in a given interval, and scaling the values of time will reduce the search space.

VL3 VL1 VL2 VL3 VL3

VL1 offset

VL2 offset

VL1

VL3 period

Figure 3.15 – Offsets between VLs of one ES.

For each end system, we have a set of VLs originating from this end system. We have one
automata for each VL. For the first VL of each end system, we start the VL automata as soon
as that end system is ready for transmission. The “end system ready to transmit" trigger is
modeled by incrementing an integer variable e.g for “ES1" the variable is “scramble1" and it is
incremented by the transition as shown in figure 3.16a. For the model of first VL of the end
system, e.g for VL3 of ES1, the automata is depicted in figure 3.16b. After the trigger of ES1,
indicated by “scramble1 > 0", we wait for the offset time to elapse (which in case of reference
VL is zero) and then we go to jitter state which models jitter in the VL (for VLs of originating
ES, this jitter is zero i.e there is no jitter for Vls at the end system). The transition out of
jitter state is non deterministic and can be taken at any time from 0 till j. This means that
model checker will verify all values of jitter from 0 till j. Finally, we store the packet in FIFO
queue by using function enQueue(id) by passing VL id as parameter (for VL3, id=3), and wait
till the VL period is elapsed. After this period has elapsed, we come back to the jitter state
and this process is repeated periodically. Clock variable “x" in all TAs is a local variable.

3.2. Exact Worst Case End-to-End Communication Delays 53

(a) TA for end system ready to transmit trigger.

(b) TA for Normal VL

Figure 3.16 – Timed Automata for an end system.

Modeling of a set of ESs. The end systems are asynchronous with respect to each other.
They can start transmitting VLs at any time with reference to other end systems, as illustrated
in illustration 3.17 where “StartES1" and “StartES3" can take any value between zero and
largest period of the VLs emitted by ES1 and ES3 respectively. This behavior is modeled in
timed automaton in figure 3.16a representing ES1. The state “es1" is reached after a delay
that can take any value between zero and 32ms (largest period of any VL of ES1 scaled by 10
µs). The model checking will test all possible values in this range.

Start ES1

Start ES3

ES1

ES3

0

Figure 3.17 – Asynchronous behavior of ESs.

Modeling and Computation of delay at first output port. In this approach, model of
first output port of a switch in the path of VL under study is different than the rest of the
output ports in the path. After modeling the end systems, the next step is the computation of
worst case delay at first output port i.e “SW1P1". The output port is a FIFO queue (which
serves packets in order of their arrival). Figure 3.18 shows timed automaton of an output port.
It models the packet size, and the order among VLs. For simplicity, we assume there is no
latency within the switch but it can be easily added to the model by adding a constant whose
value is equal to latency of the switch. After initialization we wait in empty state till we receive
a packet. As soon as a packet is stored in queue, we check the ID of this packet representing
the VL id by using function headQueue() (shown in figure 3.19.) and go to corresponding state

54
Chapter 3. State of the Art: Methods to Compute the Worst Case End to End

Delays in an AFDX Network

without elapsing any time thanks to urgent channel variable “hurry". The automaton has one
location for each VL and stays in this location for the time equal to VL packet transmission
time and then returns back to empty state removing the packet from the queue. The FIFO
queue is modeled as an array with maximum size equal to upper buffer bounds calculated by
network calculus. This ensures there will not be overflow in the queue. Functions enQueue(id)
and deQueue() add and remove VL packets from the queue respectively. These functions are
shown in figure 3.19. A value of −1 in queue indicates an empty place in the queue.

Figure 3.18 – Timed Automata for switch output port.

Figure 3.19 – Functions used for FIFO queue.

Modeling of VL under study. The VL under analysis requires some additional states in
its model for measuring end-to-end delay. Figure 3.20 shows timed automaton of measuring
VL. This automaton is very similar to the automaton of serialized VL with exception of three

3.2. Exact Worst Case End-to-End Communication Delays 55

additional states which are used to measure the time elapsed from transmission of packet under
study at source end system till the packet is received at destination end system. The delay
experienced by the packet of VL under study (in this example its VL1) is measured by local
clock variable y. This clock is reset as soon as the packet has just been transmitted. The
automaton models two things in the same model, the measuring of elapsed time and normal
periodic transmission of VL packets. After the transmission of first packet, the automaton waits
in state “fi" till either packet under study has been received at destination or it is time for the
transmission of next periodic packet of this VL. The worst case delay is the smallest value x
such that the value of clock y is always less than or equal to x while in the state “fi". It is
obtained by querying the timed automata using following CTL formula:

A[] (VL1m.fi imply VL1m.y ≤ x)

The value x is initialized to the sure upper bound computed by the Network Calculus and then
decreased as long as the formula is verified. The delay for VL1 in “SW1P1" is 110µs. We
use one automaton for the two functions in order to reduce state-space. In the approach in
[Charara 2006b], authors used a separate automaton for the measurements. We tested both
approaches i.e a combined automaton for both functions, and two separate automata for each
function. We found that combined automaton is efficient and has lesser state-space.

Figure 3.20 – Timed Automata for Measuring VL.

Modeling and Computation of delay at consequent ports. The waiting time in switch
output port is variable and depends on the traffic at the output port. Therefore, at the output
port of the switch, the sequence of the packets can be considered to have some jitter as shown

56
Chapter 3. State of the Art: Methods to Compute the Worst Case End to End

Delays in an AFDX Network

in figure 3.21a. The jitter experienced by a VL at a given point in its path is clearly the
maximum waiting time of a packet of this VL in the buffers of the output ports it has crossed
as illustrated in figure 3.21b. So the calculated delay at first port “SW1P1" is used as jitter j
in timed automata models in second output port and so on. The above process is repeated for
all output ports in the path of a given VL and whole network can be analyzed this way in port
by port manner, albeit with a small addition to VL automata explained below.

.
0 4 8 16 32 48 64 80 96 112 128

.
0 4 8 16 32 48 64 80 96 112 128

.
0 4 8 16 32 48 64 80 96 112 128

at output of ES1

at input of SW1P1

at output of SW1P1

Packet arrival instances (ms)

= VL3 =VL1 =VL2 =VLs with jitter

(a) Packet streams
VL1VL3

ES1

SW1P1

Interval in arrival time of VL3
jitter "j" of VL3

Interval in arrival time of VL1
jitter "j" of VL1

VL3 VL1

no waiting time in queue

maximum waiting time
 in queue

(b) Packet jitter at output port

Figure 3.21 – Packet arrival instances and how a delay at output port appears as jitter.

Indeed packets sharing a link are serialized, i.e they cannot be transmitted concurrently, as
illustrated in figure 3.22, where the packet of VL4 has to wait until the end of the transmission of
the packet of VL1. This serialization is modeled by the clock variable z in the timed automaton
in figure 3.23. It ensures that the delay between the receptions of two consecutive packets ‘P1’
and ‘P2’ is at least the transmission time for ‘P2’. This model is used for the example considered
in this paper at “SW2P1" port for VL1, VL3, VL5 and VL9. The delay calculated at this port
is 110 µs. The end to end delay is addition of all the delays on the path of VL. In this example
total delay of VL1 is transmission time at ES1+delay at SW1P1+delay at SW2P1 which equals

3.2. Exact Worst Case End-to-End Communication Delays 57

250µs. This worst case scenario is shown in figure 3.24 and it is obvious from the figure that
worst case scenario occurs when VLs arrive at the same time at the switch output port i.e VL1
arrives at same time as VL4 and VL9 at SW1 and VL10 and VL15 arrive at the same instance
as VL1 at switch SW2.

VL1

VL4

ES1

SW1P1

ES2

VL1 VL4

VL1 VL4

Figure 3.22 – Serialization of VLs after passing through an output port.

Figure 3.23 – Timed Automata for Serialized VL.

VL1

30

VL4 VL9 VL1

VL10 VL15 VL1

50 30 30

50 30 30

ES1

SW1P1

SW2P1

VL1

Figure 3.24 – Worst case scenario for VL1.

Results. The table 3.1 represents the results of example network. All calculations were done
on a machine with 3.3 GHz Intel Core 2 Duo processor having 4 GB RAM. In general for VLs
with no jitter, the computation time is about 5 seconds using approximately 15 MB of RAM
but for VLs with jitters, it can take up to 15 hours using approximately 4 GB of RAM because
of increased state-space due to jitters.

58
Chapter 3. State of the Art: Methods to Compute the Worst Case End to End

Delays in an AFDX Network

VL Delay(us) at SW1P1 Delay(us) at SW2P1
VL1 110 110
VL3 110 110
VL4 110 -
VL5 80 100
VL6 90 -
VL9 110 110
VL10 - 110
VL15 - 110

Table 3.1 – Exact worst-case delays.

This “divide and conquer" or “port by port" approach seems promising in state-space reduc-
tion and model checking larger networks but this approach does not lead to the exact worst-case
delay for any configuration, it can be optimistic in some scenarios because worst case delay on
each port does not always lead to over all end-to-end worst case delay as demonstrated in [Ad-
nan 2011b]. In certain cases, worst case delay at one port does not lead to worst case delay in
the consequent port and sum of all delays is not the worst case end to end delay. Such a case is
demonstrated in detail in Chapter 5 in Section 5.3.6. Consequently, this approach gives a valu-
able under estimation of the worst-case end-to-end delay, but it is not enough for certification.
To over come this problem, one idea was to start modeling from destination end system and
move backward to the source end system. But we found it very difficult to model this approach.
It was hard to know relative start time of each end system with respect to others.

3.2.2 Exhaustive Simulation

The simulation approach has been applied to AFDX network before in [Charara 2006b] and
[Scharbarg 2009] but not exhaustively in the context of exact worst case communication de-
lays. Exhaustive simulation is very similar to model checking approach in the fact that both
approaches analyze all possible cases or scenarios. Model checking uses formal methods to do
this while exhaustive simulation is brute force approach which can be applied to any problem
with relative simplicity and ease as compared to model checking approach. This thesis is the
first effort in this direction and no prior work exist for exhaustive simulation of AFDX network
for worst case communication delays. This work will be presented in detail in chapter 5.

3.2.3 Conclusion

Model checking and exhaustive simulation provide us exact end to end communication delays
but the computational complexity is very high as compared to network calculus and Trajectory

3.3. Conclusion 59

approach. NuSMV is a discrete time model checker while UPPAAL is a real-time model checker.
NuSMV uses symbolic representation of its state-space which is more efficient than the DBM
structure used for regions and zones of timed automata statte-space but we need to model
time explicitly in NuSMV which results complex models and huge state-space which offsets the
benefits of efficient symbolic representation of state-space. Therefore, in order to find exact end
to end communication delays, timed automata approach is better than NuSMV based approach
but we must improve models in order to analyze larger networks.

3.3 Conclusion

In this chapter we have seen different methods for computing end to end communication delays.
Analytical methods such as Network Calculus and Trajectory approach are good in terms of
resource usage (computation time and memory) but they only give us a sure upper bound of
delays; these methods are pessimistic and do not provide us exact end to end communication
delays. Thus efforts are underway to reduce or even eliminate this pessimism. Tighter upper
bounds have been obtained by Trajectory approach [Bauer 2010]. On the other hand, model
checking requires lot of computation time and resources but they can provide us with exact
end to end communication delays only for very small networks with certain constraints (e.g.
strictly periodic VLs only, optimistic in certain cases, buffer depth of switch output port etc).
Existing model checking approaches cannot cope with industrial size configurations due to the
combinatorial explosion problem.

Our aim is to find exact communication delays, therefore we can not use Network Calculus
or Trajectory approach. Then, we are left with model checking approach. The main problem
with approaches presented in this chapter is the huge number of possible cases, i.e state-space.
The state-pace increases exponentially with the number of VLs and detail of the model. There-
fore key consideration in these approaches is to reduce the state-space and the complexity of
the model of AFDX network. A very detailed model will not be able to find worst case commu-
nication delays for a large network and a very simple model will not be realistic with respect to
the actual AFDX network properties. A bare minimum level of abstraction must be made in
order to have a model which will satisfy the real life AFDX network properties and still be able
to find worst case communication delays for larger networks. This abstraction will be presented
in Chapter 4 in order to improve the worst case end to end delay computations using the timed
automata theory.

Chapter 4

An Improved Method to Compute
the Exact Worst Case End-to-End

Delay using Timed Automata

Contents
4.1 Characteristics of a worst-case scenario 62

4.1.1 Definition of a scenario . 62
4.1.2 Critical Instance Property . 62

4.2 The modelling based on timed automata 65
4.2.1 Modelling the VLs . 66
4.2.2 Modelling the Switches . 72
4.2.3 Modelling the Synchronization . 74
4.2.4 Utility Automata: modelling of the buffers 76
4.2.5 Utility Automata: end to end delay computation 77

4.3 Limits of the approach . 79
4.4 Conclusion . 81

Chapter 3 shows that model checking with timed automata can be used to find exact worst
case end-to-end communication delays in AFDX network. The models used were not always
able to find exact worst case end to end communication delays and were optimistic in certain
cases. Moreover, these models were not efficient enough to analyze large AFDX networks. In
this chapter we will present new models and introduce new techniques to reduce search space
in order to analyze larger AFDX networks than previous approaches. The method exploits
properties of the AFDX network in order to limit the number of cases that we must check for
worst case scenario. For this purpose, in the next section some properties of the AFDX network
are established which will allow in reducing the number of cases that can be candidate for the
worst case scenario.

62
Chapter 4. An Improved Method to Compute the Exact Worst Case End-to-End

Delay using Timed Automata

4.1 Characteristics of a worst-case scenario

An AFDX network is a set of end systems interconnected by a set of switches. The delay of a
frame transmitted over such a network includes the transmission times on links, the switching
delays and the waiting times in output buffers. Transmission times and switching delays are
constant values for a given network configuration therefore the worst-case delay occurs when
the overall waiting time of the frame in the output buffers is maximized. Considering this
assumption, the goal is to construct only the possible scenarios leading to the worst case end
to end delays.

4.1.1 Definition of a scenario

For a given network architecture, a scenario is defined by the sequences of frames generated by
the different end systems and by the instant when each end system generates its first frame.
Since there is no global clock in an AFDX network, no assumption can be done concerning the
generation instant of the first frame of each end system. Obviously, these generation instants
have an impact on the arrival time of each frame in all the output ports that it crosses, then
on the waiting time of each frame in these output ports. Thus, every possible combination of
these generation instants should be considered in order to determine a worst-case scenario for a
given frame. This exhaustive search has been implemented in previous timed automata based
modelling [Charara 2006a]. It leads to combinatorial explosion, even for small configurations.
In order to reduce the search-space, we exploit some properties of AFDX network as discussed
in next section where we show that only a small subset of these combinations of generation
instants is candidate for a worst-case scenario.

4.1.2 Critical Instance Property

Consider an AFDX network as shown in figure 4.1. The upper part in Figure 4.1 depicts the
network architecture. The VLs are not represented in the figure, except vx which is under
study. We will prove in paragraph 3.3 that a worst-case scenario for a frame of vx necessarily
has the characteristics of the scenario depicted in the lower part in Figure 4.1. The frame of vx
arrives at the output port of S1 at the same instant t0 as a frame a coming from link e2− S1
and a is arbitrarily transmitted before the frame of vx. Moreover, both frames have to wait till
all the frames which have arrived at the output port of S1 before t0 are transmitted. Similar
situations occur at the output port of S2 with frames b and c and at the output port of S3

4.1. Characteristics of a worst-case scenario 63

S1
e1

S2 S3

S4

vx

vx

vx

vx

a

b

c

d

e

a

cb

ed

e2

e3

e4
e5
e6 e7

e8
vx vx vx vx

e3−S2

e1−S1

e2−S1

S1−S2

S4−S3

e4−S2

S2−S3

e7−S3

S3−e8

t0 t1 t2 t3 t4 t5

Figure 4.1 – Illustration of a worst-case scenario

64
Chapter 4. An Improved Method to Compute the Exact Worst Case End-to-End

Delay using Timed Automata

with frames d and e. In the scenario of figure 4.1, vx experiences a maximum waiting delay in
S1 since a is sent before vx. In the same way, vx is sent after b and c in S2 and waits for the
transmission of b and c. Consequently, vx experiences a maximum waiting time in buffers if at
each output port vx arrives at the same instant as one frame from all the input links of the
corresponding switch and vx is transmitted at the end. this can be generalized and is known
as Critical Instance property. Formally, we can prove this property as below:

Property 1: Critical Instance Property

The worst-case waiting time for a frame x in the output port of a switch Si (1 ≤ i ≤ n)
occurs when x arrives at the output port at the same time as one frame from each of the other
input links link(i, 2),...,link(i,mi) and x is transmitted at the end.

Proof: To prove this property, let’s consider the scenario in figure 4.2. Let’s suppose that
frame x from link(i, 1) is the frame for which we want to calculate worst case waiting time in
the switch output port of the switch Si. If frame x does not arrive at switch Si at the same
time as one frame from all the other input links link(i, j) (2 ≤ i ≤ n) (2 ≤ j ≤ mi) where n
represents the number of switches and mi represents the total number of input links of a given
switch Si, then it means that for at least one input link there is no frame arriving at the output
port at the same time as frame x. This is the case for frame y of link(i, k) in figure 4.2.

The impact of the frames coming from link(i, k) on the waiting time for x in the output port
of Si is the amount of data which has arrived at the output port up to t0 from link(i, k) and has
not been transmitted at to. Let’s note y the last frame which is received from link(i, k) before
to. Shifting all the frames coming from link(i, k) to the right so that y arrives at the output
port at to does not increase the amount of data from link(i, k) which are being transmitted
before to, since frames from link(i, k) arrive later at the output port and consequently cannot
be transmitted earlier. Then shifting frames from link(i, k) till y arrives at the output port at
to can never decrease the waiting time of x at the output port. �

Critical Instance property is an important property which allows us to reduce search space
by great extent. This property will be the basis for our timed automata models which we will
discuss in the coming sections.

4.2. The modelling based on timed automata 65

link(i,1)

link(i,2)

link(i,mi)

link(i,k)

to

x

y

Figure 4.2 – Worst-case for a frame x.

4.2 The modelling based on timed automata

Now we propose to model the AFDX network into timed automata considering the Critical
Instance property in order to reduce the search space of the worst case end to end delay com-
putations. The goal of our system of the AFDX network is to compute only the scenarios which
are candidate for the worst case end to end delays. Our model is composed of timed automata
for:

• End systems which generate a set of VLs

• Switches which use FIFO queues to route packets

In the modelled system we focus only on a VL under study, so all the network architecture
does not need to be considered: only the part which is related to the VL under study is
modelled. In particular, we consider only the VLs which influence the VL under study i.e. VLs
which share the path and output ports of the switch with the VL under study. The modelling
will be composed of timed automata which models the behavior of:

• Generation of VLs. VLs can be strictly periodic and/or sporadic.

• Output ports of the switches.

• Synchronization between VLs of the network.

• Utility automata for measurement of end to end delay, global variables and other glue
logic that may be necessary

This modelling is based on timed automata using UPPAAL software version 4.1.7, freely avail-
able from http : //www.uppaal.org/.

66
Chapter 4. An Improved Method to Compute the Exact Worst Case End-to-End

Delay using Timed Automata

While modelling the AFDX network, following assumptions are considered:

• Each end system generates a set of VLs.

• Periodic VLs are strictly periodic.

• Possible periods can only be one of the value from 1, 2, 4, 8, 16, 32, 64, 128 ms (AFDX
network allows only these values as BAG).

• Scheduling of frames at each end system is known for periodic VLs.

• Mulitcast VL is treated as equivalent of individual unicast VLs corresponding to each
path of the multicast VL.

• Since there is no loop in an AFDX network, the architecture corresponding to a given VL
includes exactly one output link per switch.

In an AFDX network, we have mix of both strictly periodic and sporadic VLs. Some of
the VLs generated by a given end system are strictly periodic. The scheduling of these VLs by
the end systems is known and it can be dealt with offsets. The rest of the VLs are sporadic
and their frames can be generated at any time, provided that they respect the minimum gap
between two consecutive packets given by the BAG value.

As an example the network architecture of Figure 4.3 will be used for modelling. It consists
of 5 switches (S1, S2, S3, S4, S5), 12 end systems (e1 to e12) and 32 VLs (from v1 to v32). The
configuration of the VLs is shown in table 4.1. VL v19 and v20 are sporadic while rest of the
VLs are strictly periodic with offsets.

Figure 4.4 shows a possible sequence of VLs generated by the end system e1. This sequence
is periodic. On the other hand, e5 generates one periodic VL (v15) and 2 sporadic VLs (v19
and v20). Thus, for these VLs, no temporal relationship can be made between the generation
time of the frames.

Every part of the network in Figure 4.3 (VL generation, switch output ports, synchroniza-
tion) will be modelled into timed automata in the following sections. The VL under study is
v1, for which we will compute the worst case end to end communication delay.

4.2.1 Modelling the VLs

Automata of the VLs fall into different groups as far as modelling is concerned:

4.2. The modelling based on timed automata 67

S1

S2

S5

v1,v2,v3,v4

v5,v6,v7

v8,v9,v10

v11,v12,v13,v14

v15,v19,v20

v16,v17,v18

v21,v22,v23

v24,v25,v26

S3
v27,v28,v29

v30,v31,v32

All VLs except v23

v23

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12

v1,v2,v3,v4,v5,v6,v7,v8,v9,v10

S4

v11,v12,v13,v14,v15,v16,v17,v18,v19,v20

v21,v22,v23,v24,v25,v26

v27,v28,v29,v30,v31,v32

v21,v22,v23,v24,v25,v26

v27,v28,v29,v30,v31,v32

Figure 4.3 – AFDX Network architecture for improved timed automata.

VL BAG Size offset
(ms) (ms) (ms)

v1 128 2 0
v2 128 2 32
v3 128 2 64
v4 128 2 96
v5 128 2 0
v6 128 2 64
v7 128 2 96
v8 128 2 0
v9 128 2 32
v10 128 2 96
v11 128 2 0
v12 128 2 32
v13 128 2 64
v14 128 2 96
v15 128 2 0
v16 128 2 0

VL BAG Size offset
(ms) (ms) (ms)

v17 128 2 32
v18 128 2 64
v19 32 2 n/a
v20 64 2 n/a
v21 128 2 0
v22 128 2 32
v23 128 2 64
v24 128 2 0
v25 128 2 64
v26 128 2 96
v27 128 2 0
v28 128 2 64
v29 128 2 96
v30 128 2 0
v31 128 2 64
v32 128 2 96

Table 4.1 – AFDX network configuration data for improved timed automata

68
Chapter 4. An Improved Method to Compute the Exact Worst Case End-to-End

Delay using Timed Automata

Figure 4.4 – Sequence of e1

• Group G1: For VLs emanating from the end system of the VL under study. In the
example in Figure 4.3, G1 consists of TA of e1 which constructs the transmission sequence
of v1, v2, v3 and v4.

• Group G2: For VLs starting from end systems connected directly to the same switch as
the end system of VL under study. In the example in Figure 4.3, G2 consists of TA of
e2, e3, e4, e5, e6 and sporadic VLs v19, v20.

• Group G3: For VLs joining VL under study from other switches. In the example in
Figure 4.3, G3 consists of TA of e7, e8, e9, e10.

Periodic VLs emanating from the same end system are modelled within a single automaton
to ensure offsets between them, while each sporadic VL is modelled in a separate automaton
whether it originates from the same end system or not e.g v19 and v20 are modelled in separate
automata. Modelling of each group is explained below. During this modelling, synchronization
and buffers related variables are used which will be explained later in their respective sections.

Modelling of G1 Figure 4.5 shows the TA for e1. This TA starts with signal pause4! and
committed state ensures that it generates signal begin! at the same time. Signal pause4! and
begin! are used for synchronization as explained in table 4.2. VLs v1, v2, v3, v4 are generated
by e1. States vl1 to vl4 represent corresponding VLs and invariant x <= 32 represents offsets
between periodic VLs. As an example, v3 offset is 32ms + 32ms as shown in table 4.1. p2
represents packet size. Here, p2 is equal to 2ms (transmission time equivalent to the size of the
packet) but we can specify different packet sizes for each VL. Function enqueue1(p2) stores an
integer p2 in a FIFO array representing the output port of S1. For the VL under study, v1, we
use a global integer sw1vl1 instead of FIFO array. At the transition leading to state vl1, sw1vl1
is incremented by p2, modelling the transmission of a packet of v1 from e1 to switch S1 and
a signal start! is emitted so that measuring automaton, shown in figure 4.12, starts measuring
time. Boolean first, initially set to true, is used to ensure that we stop the automaton after
two complete hyper periods of v1 and generate synchronization signal stop!, to stop end systems
from generating further frames.

4.2. The modelling based on timed automata 69

Figure 4.5 – Timed automata of e1

Figure 4.6 – Timed automata of e2

70
Chapter 4. An Improved Method to Compute the Exact Worst Case End-to-End

Delay using Timed Automata

Figure 4.7 – Timed automata of sporadic VL

Modelling of G2 Automata of e2 to e6 build every possible output sequence corresponding
to a scenario which is candidate for the worst-case end-to-end delay of v1 i.e which arrives
synchronously with v1. Figure 4.6 shows the TA corresponding to the end system e2. It starts
with synchronization signal begin generated by automaton of e1, and a fame from either v5 or v6
or v7 is transmitted thanks to non deterministic transitions from initial state of the automaton.
Rest of the automaton works similar to automaton of e1. The automaton of e3, e4, e5 and e6
is similar to the one of e2 except for sporadic VLs v19 and v20. As discussed before, for worst
case scenario, we can treat sporadic VLs as periodic VL with period equal to BAG but without
any offset assignment. Therefore, sporadic VL is modelled as an independent end system with
only one VL, as shown in Figure 4.7 for VL v19.

Modelling of G3 Figure 4.8 shows the automaton for end system e9. As mentioned before,
we need to pause and resume this automaton for synchronization purpose, so we use integer
variable x1s as clock for this end system. As in automata of G2, sequence of e9 can start by
sending a frame of either v27 or v28 or v29. Frame of these VLs are enqueued in switch S3
using the function enqueue3(p3), where p3 represents the packet size. The sequences generated
by e9 need to respect the offsets. This is modelled by condition on integer clock x1s in the state
as invariant. This automaton can be paused and resumed by two different signals (pause3! and
pause4!). In each state, if a pause signal is received, the current value of clock integer x1s is
stored in a temporary integer tmp and automaton waits in a pause state. On resume signal,
indicated by go3! or go4!, value of tmp is assigned back to clock integer x1s and automaton can
evolve. Automata of end system e7, e8, e10 are modelled on the same principle.

4.2. The modelling based on timed automata 71

Figure 4.8 – Timed automata of e9

Figure 4.9 – Timed automata of SW1

72
Chapter 4. An Improved Method to Compute the Exact Worst Case End-to-End

Delay using Timed Automata

4.2.2 Modelling the Switches

The timed automata of the switch S1 is shown in Figure 4.9. For packets other than packet
under study, switch output port is modelled as FIFO array. UPPAAL verification is very
sensitive to size of arrays as discussed in [Discussion Group 2010]Therefore, in this modelling
approach, only one dimensional array is used to store packet size to implement switch output
port FIFO queue as shown in code Listing 4.1. Switch input port is not modelled because
transfer of packet from input port to output port has constant delay, which is represented as
switching latency and can be added to overall end to end delay. The automaton of S1 leaves
initial state as soon as the FIFO is not empty (meaning a packet has arrived) or the global
variable for VL under study, sw1vl1, is greater than zero (meaning packet under study has
arrived at switch S1). Signal hurry! is urgent and is used to ensure that the transition is taken
immediately without any time lapse. Automaton waits in state fifo or vlus for the time equal
to size of the packet. This behaviour models transmission time on AFDX link. After this time
elapses, the packet is stored in the FIFO of next switch (S5) in the path, which in this case is
done by function enqueue5(front1()) and it is removed from FIFO of S1 by using dequeue1().
If the packet is from v1, then global variable for VL under study of next switch, in this case
sw2vl1, is incremented by sw1vl1. This automaton also generates signal go4! as soon as it is
ready to transmit first frame. go4! is then used by e7, e8, e9, e10, S2, S3 and S4 to start their
automata.

Listing 4.1– Code for FIFO queue of output port of switch S1

intb list1 [20][1]; // columns : packet size

int [0, 19] len1; // points to first free place which is one more than last

element in queue

void enqueue1 (const int size) // store an element on top of queue (at last

free position)

{

list1[len1][0]= size;

len1 ++;

}

void dequeue1 () // remove top most element of the queue (at position 0)

{

intb i = 0;

len1 -= 1;

while (i<len1)

{

list1[i][0] = list1[i +1][0];

i++;

}

4.2. The modelling based on timed automata 73

Figure 4.10 – Timed automata of SW3

list1[i][0] = 0;

}

intb front1 () // get front element id of queue (at position 0) (returning tx

time of packet)

{

return list1 [0][0];

}

bool isEmpty1 () // test of queue is empty or not

{

return (len1 ==0); //(list [0]== -1)

}

The timed automata of the switch S3 is shown in Figure 4.10. It is modelled on the same
principle as S1 except that it can be paused/resumed by two signals: pause3! and pause4!. It
leaves initial state as soon as the FIFO is not empty (meaning a packet has arrived). After time
equal to packet size elapses, the packet is stored in the FIFO of next switch (S4) in the path,
which in this case is done by function enqueue4(front3()) and it is removed from FIFO of S3
by using dequeue3(). Whenever signal pause3! or pause4! is received, current value of integer
clock x3 is stored in a temporary integer tmp and restored back to x3 on resume signal go3!

74
Chapter 4. An Improved Method to Compute the Exact Worst Case End-to-End

Delay using Timed Automata

Figure 4.11 – Timed automata of SW5

Figure 4.12 – TA for the measurement

or go4!. This automaton also generates signal pause3! as soon as it is ready to transmit first
frame. pause3! is then used by e7 and e8 to start their automata. SW2 and SW4 are modelled
in similar way.

The timed automata of the switch S5 is shown in Figure 4.11. It is modelled in same way
as SW1 except that a signal end! is generated after waiting for time equal to global variable for
VL under study sw2vl1. end signal represents reception of frame under study at destination
end system and stops all automata of the network.

4.2.3 Modelling the Synchronization

A synchronisation mechanism is needed between the different TA in order to ensure that only
those scenarios are considered which are candidate for the worst case. The idea is to synchronize
the input sequences of each switch. Considering the example in Figure 4.3, it comes to process,
in a data flow way:

4.2. The modelling based on timed automata 75

t G1 G2 G3 G4
(e1) (*) (e7, e8) (e9, e10) (S1) (S2) (S3) (S4) (S5)

t0 pause till
pause4!

pause till
begin!

pause till
pause3!

emit 1st
packet
for S3

ready for
packet

ready for
packet

ready for
packet

ready for
packet

ready for
packet

t1 ready
to emit
packet
for S4.
broad-
cast
pause3!

t1 start
with
pause3!.
emit 1st
packet
for S2

pause till
go3!

pause till
go3!

t2 ready
to emit
packet
for S4.
broad-
cast
go3!

t2 resume
with
go3!

resume
with
go3!

t3 ready
to emit
packet
for S5.
broad-
cast
pause4!

t3 start
with
pause4!.
broad-
cast
begin!

pause till
go4!

pause till
go4!

pause till
go4!

pause till
go4!

pause till
go4!

t3 emit 1st
packet
for S1

start
with
begin!.
emit 1st
packet
for S1

t4 ready
to emit
packet
for S5.
broad-
cast
go4!

t4 resume
with
go4!

resume
with
go4!

resume
with
go4!

resume
with
go4!

resume
with
go4!

t5 stop
after 2
hyper
period.
broad-
cast
stop!

t5 stop
with
stop!

stop
with
stop!

stop
with
stop!

(*)e2, e3, e4, e5, e6, v19, v20

Table 4.2 – Synchronization among different groups of VLs.

76
Chapter 4. An Improved Method to Compute the Exact Worst Case End-to-End

Delay using Timed Automata

Figure 4.13 – TA for integer clocks

• e9 and e10 synchronize at S3 and wait for S2 where e7 and e8 synchronize,

• S2 and S3 synchronize at S4 and wait for S1 where e1 to e6 synchronize,

• S1 and S4 synchronize at S5.

The implementation of this synchronization mechanism is summarized in Table 4.2. End systems
e9 and e10 start building frame sequence for switch S3 and pause as soon as S3 is ready to
transmit the first frame. This is indicated by the broadcast signal pause3!. Then S3 waits for
the first frame from switch S2. End systems e7 and e8 start building frame sequences as soon
as they receive the broadcast signal pause3. As soon as S2 is ready to transmit a first frame,
e9, e10 and switch S3 are resumed with signal go3!. This ensures that a frame from S2 arrives
at the same time as a frame from S3 at S4. As soon as S4 is ready to transmit a first frame,
switch S4 pauses e7, e8, e9, e10, S2 and S3 with signal pause4!, in order to wait for a frame
from S1. Finally, end system e1 broadcasts signal begin! as soon as it receives signal pause4!.
Thus, e1 starts building sequence at the same time as end systems e2, e3, e4,e5, e6 and sporadic
VLs v19, v20 (group G2). Switch S1 starts building sequences as soon as it receives a frame
and it resumes other paused automata with signal go4!. This ensures that a frame from S1 and
S4 arrive at the same time at S5.

4.2.4 Utility Automata: modelling of the buffers

In the preliminary Timed Automata approach presented in [Adnan 2011a], FIFO buffers in the
output port of switches are modelled by Arrays. Each element of an array corresponds to a
frame which is waiting for the output link associated with the port. A frame is described by
its transmission duration and the identifier of its flow. Such a modelling does not fit well with

4.2. The modelling based on timed automata 77

UPPAAL, which is very sensitive to the size of arrays [Discussion Group 2010]. Consequently,
the modelling proposed in the present section limits the size of the arrays. In order to do that,
each element of the array only contains the transmission duration of the corresponding frame
(the flow identifier is no more used).

In [Adnan 2011a], the flow identifier was used in order to differentiate three kinds of frames:

• The frame under study; it is mandatory to know when this frame reaches its destination
in order to stop the measurement of time.

• The frame which will leave before the destination; they will not be stored in the FIFO
buffer of the next switch.

• All other frames; they also go to the destination end system.

Since we don’t have the flow identifier of a frame in the array anymore, we don’t know to which
VL a given frame in an array belongs to. In order to solve this problem, only the frames of
the third kind are stored in the arrays. The frame under study (first kind) is modelled by
using integers (sw1vl1, sw2vl1 in the example). When a switch detects that the corresponding
integer is not null, it knows that the frame under study has arrived and has to be transmitted.
Similarly, the frames of second kind are also modelled by using integers.

4.2.5 Utility Automata: end to end delay computation

Figure 4.12 shows the automaton to measure end-to-end delay. It starts with signal start! and
stop measuring end to end delay when v1 reaches e11, indicated by signal end! in automaton of
switch S5. For VLs joining VL under study v1 from other switches, it is necessary that they are
synchronized in such a way that at any switch output port, packets arrive at the same time as
v1 even after crossing different switches. This requires that we store the current values of clock
variables when we pause the automaton and assign these values to clock variables on resume.
But UPPAAL does not provide such feature for its clock variables. Therefore, we modelled an
automata which increases integer variables every clock cycle as shown in Figure 4.13 and use
them as “integer clocks". Such an implementation has advantage that we can read and modify
clock values and also reduce the number of clock variables in order to reduce state-space. The
automata of VL under study and switches it crosses are never stopped, hence these automata
don’t use integer clocks. Figure 4.13 shows the automaton for integer clocks. UPPAAL clock
variable x is used to increment all integers by one, after each cycle of x. The automaton is
stopped when packet under study has reached destination indicated by signal end!.

78
Chapter 4. An Improved Method to Compute the Exact Worst Case End-to-End

Delay using Timed Automata

v29

v32

v32v29

v22

v26

v22v26

v1

v5

v8

v14

v15

v16

v19

v20

v20v5 v8 v14v15v16v19 v1

v29v22v32v26

v20v5 v8 v14v15v16v19v29v22v32v26 v1

e9

e10

S3

e7

e8

S2

S4

e1

e2

e3

e4

e5

e6

Sp1

Sp2

S1

S5

t0 t1 t2 t3 t4

Figure 4.14 – A worst case scenario for v1

4.3. Limits of the approach 79

The worst-case delay for the VL under study is the smallest value d such that the value of
clock x in the state measure is always less than or equal to d. This is obtained by querying the
timed automata using the following CTL formula:
A[] ((E2E.measure imply x ≤ v)
This formula evaluates to true when there is no scenario leading to x > v. It evaluates to false
otherwise. Thus the worst-case delay for the VL under study corresponds to the lowest value
of v for which above formula evaluates to true. A corresponding worst-case scenario is obtained
by considering the highest value of v for which the formula evaluates to false. Indeed, UPPAAL
generates a trace of one scenario which leads to this state. As an example, the worst-case delay
for VL v1 in Figure 4.3 is 26ms and a corresponding scenario is depicted in Figure 4.14.

4.3 Limits of the approach

The modelling proposed in this chapter allows the analysis of the AFDX configuration in Fig-
ure 4.3 including 32 VLs. It is computed in 10 minutes on a PC with 3.3 GHz Intel Core 2 Duo
processor using 2 GB RAM. Configurations with more VLs cannot be analyzed within a rea-
sonable time. As compared to the version of TA approach discussed in [Adnan 2011a](18 VLs),
the upper limit of this version is 32 VLs and it also supports sporadic VLs. Thus, the approach
presented in this model brings a clear improvement. This work was published in [Adnan 2012].

In principal, timed automata models are based on regions and zones (zone is a convex union
of regions) [Bérard 2001]. The graph based on these zones leads to more states and regions

as compared to the Java based approach. As an example, consider a simple timed automata
shown in figure 4.15. This automata represents a simple transition from a state q to a state r
depending on values of clock x1 and x2. This can be a representation of a packet transmission
by an end system of an AFDX network. The region graph of this simple automata will comprise
of about 30 states and 50 regions. A part of this graph is shown in figure 4.16. On the other
hand, if we want to represent same transmission of one packet from an end system using Java
based tool, it can be represented by a single scenario.

Another limiting factor in timed automata based approach is the inherent complexity of
the algorithms used for model checking the timed automata. The number of regions of a
given timed automata model grow exponentially with the number of clocks. For n clocks and
constraints in which every constant k is upper bounded by M , the complexity of number of
regions is O(n!Mn), as determined by Bérard Béatrice et al. in [Bérard 2001].

80
Chapter 4. An Improved Method to Compute the Exact Worst Case End-to-End

Delay using Timed Automata

Figure 4.15 – A simple timed automata.

Figure 4.16 – Partial zone graph of the simple timed automata.

4.4. Conclusion 81

4.4 Conclusion

This chapter presented an improved timed automata approach using timed automata for com-
puting exact worst-case delays of AFDX periodic and sporadic flows. The method have been
encoded into UPPAAL model checker. This approach is based on a drastic reduction of the
number of scenarios which are candidate for the worst-case end-to-end delay of a given flow. The
size of the network configurations which can be analyzed by this new approach, upto 32 VLs, is
significantly larger than what can be done with the previous approach in [Charara 2006a].On
the other hand state-space reduction requires the exploitation of AFDX network properties,
in order to consider only those cases that may be candidate for the worst case scenario. This
means that the approach will be very specific to AFDX network. Though, the methodology
and ideas behind it can be extended to other domain and problems as well.

For a given computational capacity, timed automata based approach is limited for an indus-
trial configuration of the AFDX network. Nevertheless, the timed automata based approach is
still interesting and of a great value. Timed automata is based on formal methods, hence it
allows us to verify properties which ensure that the model always behave correctly.

The proposed approach is not limited to only the AFDX network but can cope with any
switched Ethernet network. It can also be used for analysis of different scheduling techniques in
order to compute delay bounds in multi-processor networked architectures. Finally, it could be
extended to switched Ethernet networks with service disciplines other than FIFO [Zhang 1995].

Due to the complexity of this modelling approach it is clear that with given computational
resources it will be very hard to analyze an industrial configuration of the AFDX network. But
this method allowed us to better understand the behaviour of an AFDX network and to define
the Critical Instance property which allows to compute the maximum waiting delays in the
FIFO queues of the switches. Considering this, in Chapter 5, we propose a new approach to
compute the worst-case end to end transmission delays based on the generation of sequences of
VL which are candidate for the worse-case end to end delays.

Chapter 5

A New Approach Based on
Exhaustive Simulation to Compute
the Exact Worst-Case End to End

delays

Contents
5.1 Modelling of the network and a scenario 84

5.1.1 Nomenclature and definitions . 85

5.1.2 Modelling of a scenario . 86

5.1.3 Reducing the number of scenarios . 87

5.2 Computing worst case end to end delays using sequences 88

5.2.1 Computation of delay and merging of sequences at a switch output port . . 89

5.3 Worst-case end to end delay computations on a simple AFDX network
using sequences . 90

5.3.1 Presentation of the system . 90

5.3.2 Computing the worst case end to end delay of VL under study 90

5.3.3 Computation of the sequences generated at the input of switch S2 92

5.3.4 Computation of the resulting sequences at the output of switch S2 93

5.3.5 Computation of the sequences at the input ports of switch S1 94

5.3.6 Computation of the sequences at the output of switch S1 95

5.3.7 Computation of the sequences at the input ports of switch S3 96

5.3.8 Computation of the sequences at the output of switch S3 97

5.4 Evaluation of the sequence based approach 97

5.5 More Improvements and reduction in scenarios 99

5.5.1 Modeling of Sporadic traffic . 101

5.5.2 Further reduction of scenarios . 102

84
Chapter 5. A New Approach Based on Exhaustive Simulation to Compute the

Exact Worst-Case End to End delays

VL BAG(ms) Size(ms) path
v1 32 5 e1-S1-S3-e8
v2 32 2 e1-S1-e5,e1-S1-S3-e7
v3 32 3 e2-S2-S1-S3-e8
v4 32 3 e2-S2-e4,e2-S2-S1-S3-e7
v5 32 2 e3-S2-S1-e5
v6 32 3 e3-S2-e4,e3-S2-S1-S3-e7
v7 32 3 e6-S3-e8
v8 32 3 e6-S3-e7

Table 5.1 – AFDX network configuration data

5.5.3 Candidate scenario for worst case delays . 107

5.5.4 Algorithm to further reduce number of cases 107

5.6 Conclusion . 111

In the Chapter 4, the timed automata based models can be used to find exact worst-case end
to end delays for AFDX network. The problem with that approach is the use of a standard model
checker which is not well adapted for specific task of AFDX network end to end communication
delay computations. This chapter proposes a new approach based on Exhaustive Simulation
to calculate exact worst case end-to-end delays. Exhaustive simulation is similar to model
checking in the sense that both approaches consider all possible cases or scenarios. The idea is
to compute the sequences of frames of the VLs transmitted by each end system and to consider
only those sequences which are candidate for the worst-case end to end delays. To reduce the
search space, properties of the AFDX network are considered as the Critical Instance property
shown in Chapter 4. A tool has been developed for this purpose and the exact worst-case end to
end delays of an AFDX network has been computed by using this tool which will be presented
in Chapter 6.

5.1 Modelling of the network and a scenario

In the following sections we will explain the modelling methodology we adopted to carry out
the end to end delay computations.

5.1. Modelling of the network and a scenario 85

S1

S2

S3

e1

e2

e3 e4

e5 e6

e7

e8

v1,v2

v3,v4

v5,v6

v1,v3,v7
v1,v2,v3,v4,v6

v3,v4,v5,v6 v2,v5

v4,v6

v2,v4,v6,v8v7,v8

(a) AFDX Network example

S1

S2

S3

e1

e2

e3 e4

e5 e6

e7

e8

f1

f2

f3

f9f6

f4

f7

f5

f10
f8

link(1,1)

link(2,1)

link(2,2)

link(1,2)

link(3,1)

link(3,2)

(b) AFDX Network flows and input links

t

seq(i,j,k)

p(i,j,k,l)p(i,j,k,l-1)p(i,j,k,3)p(i,j,k,2)p(i,j,k,1)

d(i,j,k,l-1)d(i,j,k,2)d(i,j,k,1)

1 cycle (hyper period)

d(i,j,k,l)

c(i,j,k,1)

(c) A sequence of packets

Figure 5.1 – AFDX Network architecture.

5.1.1 Nomenclature and definitions

In this chapter, we use certain notations to define an AFDX network. We will define these
notations and other terminologies with the help of an AFDX network shown in figure 5.1a.
This example network consists of 3 switches S1, S2, S3, and eight end systems e1 to e8. Each
end system generates a set of VLs. There are total of eight VLs named as v1 to v8. The
characteristics and paths of these VLs are shown in table 5.1. Size of the VL in the table 5.1 is
shown in terms of transmission time of the packet assuming 100 MHz link speed. These times
are purposely chosen as larger than the normal packet sizes in order to show that worst case on
each port does not always lead to overall worst case and will be demonstrated later in section

86
Chapter 5. A New Approach Based on Exhaustive Simulation to Compute the

Exact Worst-Case End to End delays

5.3.

Each link in an AFDX network carries flows of packets, named as f1 to f10 in figure
5.1b. Each switch in the network has at least one input link and at least one output link. The
input links of a switch Si are denoted as link(i, j) where i represents the switch number and j
represents jth input link of this switch, as shown in figure 5.1b. If there are mi total input links
of switch Si then 1 ≤ j ≤ mi. This terminology is used only for input links of a switch. For all
output links, we use flow names.

A flow coming out of an end system consists of an ordered list of packets. The order of these
packets of the flow is known for strictly periodic VLs. For sporadic VLs, this order can have
many possible permutations. We call one possible order of packets as a sequence. The number
of unique sequences generated by each end system depends upon the number of VLs of the end
system, their BAG values, and scheduling being used for periodic VLs. A set of sequences that
can be received at input link link(i, j) of a switch Si is denoted as seq(i, j) where i is the switch
number and j is the jth input link of the switch and 1 ≤ j ≤ mi . Each individual sequence
among the set seq(i, j) is denoted by seq(i, j, k) where k represents kth sequence of the set.

Packets of a particular sequence seq(i, j, k) have defined order and temporal relation among
them. Each packet of the sequence seq(i, j, k) is denoted as p(i, j, k, l) where l represents lth

packet of the sequence seq(i, j, k). Temporal relation between two consecutive packets is defined
by a gap between the packets and is denoted as d(i, j, k, l) which represents the distance of
packet p(i, j, k, l) from the next packet in the sequence in terms of transmission time on the
link. Finally, the transmission time of a packet p(i, j, k, l) is denoted as c(i, j, k, l). This is
illustrated in figure 5.1c.

5.1.2 Modelling of a scenario

As discussed in section 4.1.1, a scenario is one possible case for the end to end communication
delay analysis. In the context of this chapter, a scenario represents one possible permutation of
sequences from each link of the network. This section describes how to model a scenario in the
model that we will use for exhaustive simulation in this chapter. A sequence of periodic frames
seq(i, j, k) is transmitted on each link link(i, j) of switch Si where 1 ≤ i ≤ n and 1 ≤ j ≤ mi.
The sequence is cyclic (repeating itself over an hyper period Ph) and is defined by a circular list,
as shown in figure 5.1c. The horizontal distance between the lth packet p(i, j, k, l) of seq(i, j, k)
and its successor is derived from the scheduling offsets. This distance is denoted d(i, j, k, l).
Each packet p(i, j, k, l) has a transmission time c(i, j, k, l) where d(i, j, k, l) ≥ c(i, j, k, l) meaning

5.1. Modelling of the network and a scenario 87

that a packet arrives at a switch after at least it’s transmission time. This phenomenon is
called serialization or grouping in previous works [Charara 2006a, Fraboul 2002a, Bauer 2010,
Martin 2006a] using network calculus and trajectory approach.

5.1.3 Reducing the number of scenarios

The approach proposed in this chapter is based upon the assumption that the worst case at a
given output port happens when the packet under study arrives at the output port at the same
instant as one packet from all the other input links of the corresponding switch, as proved in
section 4.1.2 in Critical Instance property. Now we present some other properties that will help
us in modelling a scenario and in reducing number of scenarios which are candidate for worst
case end to end delays.

Property 2: Periodicity of the outgoing sequence at an output port.

The sequence transmitted at the output port of Si is periodic if: (1) The sets of input
sequences seq(i, j) (1 ≤ j ≤ mi) are periodic. (2) The output port is not overloaded, i.e the
incoming traffic does not exceed the capacity of the output port.

Proof: The load of a sequence seq(i, j, k) is defined as the ratio between the sum of the
transmission times of all its packets and its hyper period Ph. The load L is defined as:

L =
∑

l(c(i, j, k, l))
Ph

where i, j and k are fixed and l varies from 1 to last packet of the sequence. If the load L is
not greater than 1 then, during the hyper period Ph, there is a time when there is no backlog
and the link is idle. Assuming that the sequences on all mi input links of Si are periodic, let’s
define P (i, j, k) as the period of the sequence seq(i, j, k) transmitted on link(i, j) and Ph(i) the
least common multiple of all the P (i, j, k) (1 ≤ j ≤ mi). Then the sequence of frames received
at Si is periodic with period Ph(i). Figure 5.2 illustrates Ph(i) and the P (i, j, k).

All the packets arriving from an input link of Si are transmitted in the output link of Si with
a first in first out (FIFO) policy. In cases where the output link is not overloaded, there is at least
one instant during the hyper period Ph(i) with no backlog. Let’s call tnb such an instant. Then

88
Chapter 5. A New Approach Based on Exhaustive Simulation to Compute the

Exact Worst-Case End to End delays

seq(i,1,k)

P(i,1,k)

seq(i,2,k)

P(i,2,k)

seq(i,j,k)

P(i,j,k)

P
h
(i)

Figure 5.2 – Property 2.

tnb + zPh(i) are also instants with no backlog, where z is an integer greater than zero. Since we
have the same sequence of frames arriving at Si in each interval [tnb +zPh(i), tnb +(z+1)Ph(i)[,
each of these sequences will generate the same transmission of frames at the considered output
port. Consequently, the sequence of frames transmitted in the output port of Si is periodic
with period Ph(i). �

5.2 Computing worst case end to end delays using sequences

In order to compute the worst case end to end delays using sequences, the proposed approach
is to compute the combinations of sequences which lead to the worst case scenario by consid-
ering the two properties given before. For this purpose, an algorithm has been developed and
composed of two parts:

1. Calculations of backlog and combination of sequences on a local port at switch level

2. Global management of data flow based computations on network level.

On a local port level, each end system’s packet generation sequence is stored as an ordered
circular list (packets are periodically sent). Each entry of the list represents a packet with its
characteristics (size, time of generation, scheduling offset etc). For a given output port, the
computation is done according to the algorithm 1. Calculations of backlog and combination of
sequences on a local port at switch level is done in step 3 and 4. Global management of data
flow based computations on network level is done in step 1,2 and 5. The algorithm uses ordered

5.2. Computing worst case end to end delays using sequences 89

Algorithm 1 Worst case delay calculation on output ports
1: while all output ports have not been computed do
2: select an output link for which the set of sequences of all the input links are already

computed.
3: compute the set of output sequences of this output link.
4: For each sequence in the set, compute the backlog at the reception of the last packet of

the sequence, which is packet under study. This backlog represents delay at this port for
this sequence.

5: end while
6: The worst case delay for frame x at the destination output port is the largest sum of delays

on each port passed by the VL in the set of generated sequences.

lists of packets sent by all the end systems which pass through the output port. The result
of the algorithm is the worst case delay for the frame under study at the output port and all
possible sequences of packets of all VLs sharing this output port of switch Si.

5.2.1 Computation of delay and merging of sequences at a switch output
port

The process of calculating the backlog for a given scenario at an output port is illustrated in
figure 5.3. We shift packets to align the arrival times of the required packets and then calculate
backlog in this scenario, which is simply the time at which the last packet in the merged sequence
finishes it’s transmission. Assuming packets p15, p25 and p34 arrive together from es1, es2 and
es3 respectively, we shift all other packets according to their generation time and then build a
new sequence from these three input sequences after they have passed from the output port.
We take the first flow, in this case es1, and construct an array of packets with their arrival time
and the time when they will finish their transmission at the output port considering this is the
only flow at the port. Next we consider the second flow, in this case es2, and put its packets in
the array. Since there are already packets of the first flow in the array, if there is an overlap of
packets, we insert the packet before an existing packet if it arrives earlier, or after an existing
packet if it arrives latter. If the packets do not overlap, we insert a new row in the table with
packet’s arrival time and transmission time. We repeat this process for all input flows. At the
end, the array contains the resulting sequence of packets at given output of the switch.

At network level, this algorithm follows a data flow approach: calculation starts at source
nodes initializing the set of sequences transmitted from each end system (where all the required
data is already available) and continues towards the destination when all required data is avail-
able for each output port. The set of sequences computed at a given output port of a given

90
Chapter 5. A New Approach Based on Exhaustive Simulation to Compute the

Exact Worst-Case End to End delays
p11 p12 p13 p14 p15

p21 p22 p23 p24 p25

p31 p32 p33 p34

p31 p32 p14 p15p11 p21 p22 p12 p23 p13 p33 p24 p25 p34

es1

es2

es3

merged sequence

Max Delay for p34

t

Figure 5.3 – Merging packet sequences and backlog calculation.

switch by the algorithm described earlier is used as input to the next switch (or destination
node) in the path of the VL under study. The overall process is explained with an illustrative
example in the next section.

5.3 Worst-case end to end delay computations on a simple AFDX
network using sequences

5.3.1 Presentation of the system

In order to explain how the algorithm works, we will consider a model avionics system of an
aircraft as shown in figure 5.4. This relatively small avionics system consists of three AFDX
switches and eight end systems. This avionics system can be mapped to the block diagram of
example of figure 5.1a with e1 as Flight Management System, e2 as Control Display Unit, e3
as Engine Controls, e4 as Flight Controls, e5 as Air Data and Inertial Reference Unit, e6 as
Navigation and Radar, e7 as Engine/Warning Display and e8 as Primary Flight Display. Hence
we can reuse the Table 5.1 for the configuration data for this AFDX network. The packet sizes
of the VLs in the table 5.1 are larger than what AFDX stnadard allows for a single packet.
This is chosen on purpose in order to demonstrate the fact that worst case delay on each port
does not always lead to end-to-end worst case delay.

5.3.2 Computing the worst case end to end delay of VL under study

VL v3 is under study, which is a control message sent from Control Display Unit (CDU) to
primary Flight Display (PFD). It originates at end system CDU, corresponding to end system
e2 of figure 5.1a and follows the path e2 − S2 − S1 − S3 − e8. Following steps are needed to
compute worst case end to end delay for VL v3:

5.3. Worst-case end to end delay computations on a simple AFDX network using
sequences 91

Figure 5.4 – A simple AFDX Network of a small aircraft.

92
Chapter 5. A New Approach Based on Exhaustive Simulation to Compute the

Exact Worst-Case End to End delays

1. Computation of the sequences generated at the input of switch S2.

2. Computation of the resulting sequences at the output of switch S2.

3. Computation of the sequences at the input ports of switch S1.

4. Computation of the sequences at the output of switch S1.

5. Computation of the sequences at the input ports of switch S3.

6. Computation of the sequences at the output of switch S3.

5.3.3 Computation of the sequences generated at the input of switch S2

S2

VL3 VL4

p(2,1,1,1) p(2,1,1,2)

seq(2,1,1)

VL3VL4

p(2,1,2,2)p(2,1,2,1)

seq(2,1,2)

VL5 VL6

p(2,2,1,1) p(2,2,1,2)
seq(2,2,1)

VL5VL6

p(2,2,2,2)p(2,2,2,1)

seq(2,2,2)

Ph

}

}

or

or

e2

e3

Figure 5.5 – Sequences generated at input of Switch S2.

Let us assume that the end system e2 schedules its VLs in such a way that there is no waiting
delay at the end system output port. Hence the worst case delay for all the VLs at the end
system is just the transmission time of the largest VL packet, i.e 3ms for v3 at end system e2.
Figure 5.5 illustrates the sequences of frames transmitted from e2: seq(2, 1, 1) and seq(2, 1, 2)
on link link(2, 1) and sequences of frames transmitted from e3: seq(2, 2, 1) and seq(2, 2, 2) on
link link(2, 2).

5.3. Worst-case end to end delay computations on a simple AFDX network using
sequences 93

5.3.4 Computation of the resulting sequences at the output of switch S2

32ms

VL3VL4

p(2,1,2,2)p(2,1,2,1)

VL5VL6

p(2,2,2,2)p(2,2,2,1)

seq(1,2,1)
VL5VL4 VL6 VL3

VL3VL4

p(2,1,2,2)p(2,1,2,1)

VL5 VL6

p(2,2,1,1) p(2,2,1,2)

seq(1,2,2)
VL5 VL4 VL6 VL3

dwc

dwc

7ms

6ms

seq(2,1,2)

seq(2,2,2)

seq(2,1,2)

seq(2,2,1)

link(2,1)

link(2,2)

link(1,2)

link(2,1)

link(2,2)

link(1,2)

Figure 5.6 – Construction of sequences at output of Switch S2 Port 1.

The next hop in path of VL v3 is switch S2 output port. At this port, VL v3, v4, v5 and v6
compete for the link link(1, 2). Therefore we need to construct sequences seq(2, 1, 1) for VL
v3, v4 and seq(2, 2, 1) for VL v5 and v6 on links link(2, 1) and link(2, 2) respectively before
we can proceed further. Figure 5.5 illustrates these sequences. As we described earlier, this
algorithm checks all possible combinations of packets in the sequences. Hence the total number
of sequences generated at the output port of a switch can be calculated by multiplying number
of packets in a sequence in each input link of the switch. In this case there are two input links
(link(2, 1) and link(2, 2)) of switch S2, each having two packets. Hence the total number of
sequences generated at switch S2 output port for link link(1, 2) is calculated to be 2 ∗ 2 = 4.
But according to Property 1, we are only interested in sequences where packet under study is
transmitted in the end, which in this case is packet p(2, 1, 2, 2). Therefore out of 2 possible
sequences generated from send system e2, we only consider one sequences: seq(2, 1, 2). This
results in total of 1 ∗ 2 = 2 sequences which can be candidate for worst case delays, which is a
reduction of two sequences (50%) at the input of switch S2.

To generate these sequences, we first consider the case where packet p(2, 1, 2, 2) and packet
p(2, 2, 2, 2) arrive together at switch S2 output port. Figure 5.6 shows this scenario as
seq(1, 2, 1). The same process is repeated for packets p(2, 1, 2, 2) and packet p(2, 2, 1, 2) (2
possible permutations). At the end we obtain 2 sequences seq(1, 2, 1) and seq(1, 2, 2) for link
link(1, 2). The worst case delay for packet p(2, 1, 2, 2) of VL v3 is in seq(1, 2, 1).The backlog

94
Chapter 5. A New Approach Based on Exhaustive Simulation to Compute the

Exact Worst-Case End to End delays

size for each generated output sequence is the maximum number of adjoining packets. This
backlog size can be used to bound the FIFO buffer depth. In this example, the largest backlog
size is 4 packets for sequence seq(1, 2, 1).

5.3.5 Computation of the sequences at the input ports of switch S1

S1

} e1
S2

seq(1,2,1) VL5VL4 VL6 VL3

seq(1,2,2)VL5 VL4 VL6 VL3

seq(1,1,1)
VL1 VL2

p(1,1,1,1) p(1,1,1,2)
VL1VL2

p(1,1,2,2)p(1,1,2,1)

seq(1,1,2)

}
Figure 5.7 – Sequences generated at input of Switch S1.

The next hop in the path of VL v3 is switch S1 output port. At this port VL v1, v2, v3,
v4 and v6 compete for link link(3, 1). For link link(1, 1), we have two sequences, seq(1, 1, 1)
and seq(1, 1, 2) for VLs v1 and v2. For link link(1, 2), we have two sequences, seq(1, 2, 1) and
seq(1, 2, 2) computed in previous step. Also at this port VL v5 is not present so we need to
remove packets of VL v5 from sequences seq(1, 2, 1) and seq(1, 2, 2). These sequences are shown
in figure 5.7. The link link(1, 2) has total of two sequences: seq(1, 2, 1) and seq(1, 2, 2). So
at this output port total combinations are 2 ∗ 2 = 4. If we were considering all sequences in
previous step, there would be 2 ∗ 4 = 8 sequences at the input of switch S1.

5.3. Worst-case end to end delay computations on a simple AFDX network using
sequences 95

5.3.6 Computation of the sequences at the output of switch S1

32ms

seq(1,1,1)

seq(1,2,1)
VL4 VL6 VL3

seq(1,2,2)
VL4 VL6 VL3

dwc

VL1 VL2

p(1,1,1,1) p(1,1,1,2)

seq(3,1,1)
VL4 VL6 VL3VL1 VL2

dwc

seq(3,1,2)
VL4 VL6 VL3VL1 VL2

8ms

9ms

VL1VL2

p(1,1,2,2)p(1,1,2,1)

dwc

seq(3,1,3)
VL4 VL6 VL3VL1VL2

8ms

dwc

seq(3,1,4)
VL4 VL6 VL3VL1VL2

8ms

seq(1,1,2)

link(1,1)

link(1,2)

link(3,1)

link(1,2)

link(3,1)

link(1,1)

link(3,1)

link(3,1)

seq(1,1,1)
VL1 VL2

p(1,1,1,1) p(1,1,1,2)
link(1,1)

seq(1,2,1)
VL4 VL6 VL3

link(1,2)

VL1VL2

p(1,1,2,2)p(1,1,2,1)
seq(1,1,2)link(1,1)

seq(1,2,2)
VL4 VL6 VL3

link(1,2)

Figure 5.8 – Construction of sequences at output of Switch S1 Port 1.

Figure 5.8 illustrates the sequences computed at the output port of switch S1, by first con-
sidering packet p(1, 1, 1, 2) with seq(1, 2, 1) and seq(1, 2, 2) and then packet p(1, 1, 2, 2) with
seq(1, 2, 1) and seq(1, 2, 2). The output of the local algorithm at this port is set of 4 sequences
from seq(3, 1, 1) to seq(3, 1, 4) for link link(3, 1). The local worst case delay at this port for VL
v3 is 9ms. One important fact to note is that the local worst case delay at first output port
in path of v3 i.e at switch S2 does not lead to worst case at switch S1. In this case it’s the
second scenario of switch S2 that leads to worst case at switch S1, that’s why we need to check
all possible combinations.

96
Chapter 5. A New Approach Based on Exhaustive Simulation to Compute the

Exact Worst-Case End to End delays
32ms

seq(3,2,1)

dwc

VL7

p(3,2,1,1)

seq(e8,1,1)
VL3VL1

6ms

seq(3,1,3)
VL3VL1

seq(3,1,4)
VL3VL1

seq(3,1,1)
VL3VL1

VL7

seq(3,1,2)
VL3VL1

dwc

seq(e8,1,2)
VL3VL1

6ms

VL7

dwc

seq(e8,1,3)
VL3VL1 VL7

8ms

dwc

seq(e8,1,4)
VL3VL1 VL7

8ms

link(3,2)

link(3,1)

seq(3,2,1)
VL7

p(3,2,1,1)
link(3,2)

seq(3,2,1)
VL7

p(3,2,1,1)
link(3,2)

seq(3,2,1)
VL7

p(3,2,1,1)
link(3,2)

link(3,1)

link(3,1)

link(3,1)

Figure 5.9 – Construction of sequences at output of Switch S3 Port 1.

5.3.7 Computation of the sequences at the input ports of switch S3

Next and last output port in path of VL v3 is switch S3 output port. At this port there is a
set of four sequences from link link(3, 1) and VL v7 from end system e6 also joins this output
port from link link(3, 2). So first we compute sequence from link link(3, 2). There is only one
sequence from this link: seq(3, 2, 1) consisting of VL v7 packet p(3, 2, 1, 1). Moreover, VLs v2,v4
and v6 are not present at this link so we remove their packets from set of sequences on link
link(3, 1).

5.4. Evaluation of the sequence based approach 97

5.3.8 Computation of the sequences at the output of switch S3

There is only one packet in sequence seq(3, 2, 1) hence total sequences at output of switch S3
are 1 ∗ 4 = 4. Figure 5.9 illustrates these combinations by considering packet p(3, 2, 1, 1) with
each sequence from link link(3, 1). The end-to-end delay for VL v3 is summarized in table 5.2.
The worst case delay is 26ms and corresponds to the scenario highlighted in bold. The VLs
which does not cross or share the path of the VL under study, have no effect on the computation
complexity for a given VL. In this example, VL v8 does not share path with reference VL v3
and hence it is not included in computation for VL v3.

e2(ms) S2P1(ms) S1P1(ms) S3P1(ms) Total(ms)

3
seq(1,2,1)=7 seq(3,1,1)=8 seq(e8,1,1)=6 24

seq(3,1,3)=8 seq(e8,1,3)=8 26

seq(1,2,2)=6 seq(3,1,2)=9 seq(e8,1,2)=6 24
seq(3,1,4)=8 seq(e8,1,4)=8 25

Table 5.2 – End to End worst case delay for VL v3

5.4 Evaluation of the sequence based approach

The algorithm proposed in the previous section has been applied on the medium size AFDX
network shown in figure 5.12 which includes 18 end systems and 58 VLs. The number of
VLs involved in the worst-case delay analysis depends on the VL under study. The algorithm
computes the exact worst-case end-to-end delay in less than 1 hour for the VLs of the network
in figure 5.12 as long as at most 50 VLs are involved in the computation. This is illustrated in
table 5.4 (column Using Sequences). As a comparison, the model checking approach presented
in [Charara 2006a] does not finish with more than 8 VLs. As compared to timed automata
based approach presented in Chapter 4, we can almost double the size of the network for which
exact end to end communication delays can be determined. Therefore, the algorithm proposed
in this chapter increases the size of the configurations which can be analyzed, thanks to a drastic
reduction of the search space. Although the underlying principle and properties are same in
both approaches, the results are better for the Java based tool because it is designed specifically
for this purpose and handles state space better than timed automata based approach using
UPPAAL software.

When more than 50 VLs are involved in the worst-case delay analysis, the algorithm does
not finish execution in a reasonable time. Then, the idea is to stop the execution after a

98
Chapter 5. A New Approach Based on Exhaustive Simulation to Compute the

Exact Worst-Case End to End delays

predetermined duration, e.g. 1 hour and use the results computed in this duration. At this
instant, a subset of the scenarios which are candidate for the worst-case has been tested. The
result of the computation is the highest end-to-end delay obtained with this subset of scenarios.
Obviously, the scenarios leading to the worst-case end-to-end delay can be out of the tested
subset. Consequently, the result of the computation can be smaller than the worst-case end-
to-end delay. Then, a heuristic is applied in order to test first the scenarios which are more
promising for the worst-case delay. This is obtained by sorting the generated sequences at the
first output port by decreasing order of worst case delays in this port. The worst case delay
sequence at the first output port is propagated to the next output port where the same process
is repeated. It finishes at the end of the path. Then, the procedure is repeated for second
sequence at the first output port, and so on. This approach is explained with the example
shown in figure 5.10.

Let’s suppose VL v1 has two packets p(1, 1, 1, 1) and p(1, 1, 1, 2) in its periodic sequence and
starts at end system e1 and its destination is end system e14 following the path e1-S1-S2-S3-
e14. At output port P1 of switch S1, VL v1 from end system e1 competes for the access of link
link(2, 1) with VL v4 from end system e2. Let’s suppose VL v4 has two packets p(1, 2, 1, 1) and
p(1, 2, 1, 2) in its periodic sequence. Depending upon the number of packets in input links of the
first switch, all the output sequences of the first switch are calculated. In this case VL v1 and
VL v4 have two packets each so total of 4 sequences (seq(2, 1, l), 1 ≤ l ≤ 4) are calculated at
output port P1 of switch S1. In next step these sequences are sorted in decreasing order of the
waiting time for the frame/packet under study. Then, the first output sequence in the sorted
list will be used as input sequence for the subsequent output port in the path of VL v1. In this
case, let’s assume that seq(2, 1, 2) is the first sequence after sorting, then this sequence will be
used as input sequence for switch S2 at link link(2, 1) and competes with VL v22 for the access
of link link(3, 1) at output port P1 of switch S2. Let’s assume that VL v22 has two packets
p(2, 2, 1, 1) and p(2, 2, 1, 2), so there will be 2 possible sequences, i.e sequence seq(3, 1, 1) and
seq(3, 1, 2). We take the first sequence seq(3, 1, 1). The seq(3, 1, 1) is used as input sequence
at switch S3 and competes with VL v43 for access of the output port P1 of switch S3. This
is the destination port for the VL under study. Let’s assume that VL v43 has two packets
p(3, 2, 1, 1) and p(3, 2, 1, 2), then all possible output sequences at this port will be seq(e14, 1, 1)
and seq(e14, 1, 2). The end to end delay is calculated by adding largest waiting times at each
output port and is stored in a list. This completes one pass of the algorithm. The process is
repeated again for remaining sequences i.e. using seq(2, 1, 2) and seq(3, 1, 2) and so on, as shown
in Table 5.3. The algorithm can be interrupted and stopped at any time after the calculation
of the first pass, in which case the result computed so far is analyzed and largest value of worst
case end to end delay computed so far is chosen as under approximation of the exact end to
end worst case delay.

5.5. More Improvements and reduction in scenarios 99

e1

e2
S1

e7
S2

e13
S3 e14

v1

v4 v22 v43

P1 P1 P1
link(2,1) link(3,1)

Figure 5.10 – Network for reachable end to end delay illustration.

S1P1 S2P1 S3P1

seq(2, 1, 2) (8ms)
seq(3, 1, 1) (10ms) seq(e14, 1, 1) (13ms)

seq(e14, 1, 2) (13ms)

seq(3, 1, 2) (10ms) seq(e14, 1, 1) (13ms)
seq(e14, 1, 2) (13ms)

seq(2, 1, 1) (7ms)
seq(3, 1, 1) (9ms) seq(e14, 1, 1) (12ms)

seq(e14, 1, 2) (12ms)

seq(3, 1, 2) (9ms) seq(e14, 1, 1) (12ms)
seq(e14, 1, 2) (12ms)

seq(2, 1, 3) (6ms)
seq(3, 1, 1) (8ms) seq(e14, 1, 1) (11ms)

seq(e14, 1, 2) (11ms)

seq(3, 1, 2) (8ms) seq(e14, 1, 1) (11ms)
seq(e14, 1, 2) (11ms)

seq(2, 1, 4) (5ms)
seq(3, 1, 1) (7ms) seq(e14, 1, 1) (10ms)

seq(e14, 1, 2) (10ms)

seq(3, 1, 2) (7ms) seq(e14, 1, 1) (10ms)
seq(e14, 1, 2) (10ms)

Table 5.3 – End to End worst case delay under approximation algorithm illustration.

This computation of an exact worst case delay (or an under approximation of this delay) can
be used in order to compute the pessimism (or an estimation of this pessimism) of the results
obtained by the existing Network Calculus and Trajectory approaches, as illustrated in figure
5.11. Table 5.4 gives this information for the configurations which have been analyzed.

5.5 More Improvements and reduction in scenarios

So far we have only considered strictly periodic VLs in our calculation. But real AFDX network
has Sporadic VLs. Difference between strictly periodic and sporadic VLs is that while periodic
VLs repeat at strictly constant time intervals, the sporadic VLs have a limit on minimum

No of VLs Model Checking (TA) Using Sequences Pessimism in NC
8 70min <1min 1%
16 - 1min 4%
32 - 19min 6%
64 - stopped after 1 hr 9%

Table 5.4 – Performance comparison of algorithm.

100
Chapter 5. A New Approach Based on Exhaustive Simulation to Compute the

Exact Worst-Case End to End delays

Time

D
is
tr
ib
u
ti
o
n

U
pp

er
 B

ou
nd

E
xa

ct
 m

in
im

um
 d

e
la

y

E
xa

ct
 m

ax
im

um
 d

el
ay

O
bs

er
ve

d
m

in
 d

el
ay

O
bs

er
ve

d
m

ax
 d

el
ay

Worst case guarantee

Exact worst case

R
ea

ch
ab

le
 d

el
ay

 g
e

ne
ra

te
d

by

 A
lg

or
ith

m

PessimismOptimism

Figure 5.11 – Pessimism of computed upper bounds.

e1

e2

e3

e4
e5

e6
e7 e8 e9

e10

e11

e12

e13e14e15
e16

e17

e18

s1 s2

s3s4

v1,v2,v3

v4,v5,v6

v7,v
8,v9

v1
0,
v1
1,
v1
2,
v1
3

v1
4,
v1
5,
v1
6,
v1
7,
v1
8

v1
9,
v2
0,
v2
1

v2
2,
v2
3,
v2
4

v2
5,
v2
6,
v2
7

v2
8,
v2
9,
v3
0

v31,v32,v33

v34,v35,v36,v37
v38
,v39

,v40
,v41

,v42

v4
3,
v4
4,
v4
5

v4
6,
v4
7,
v4
8v49,v50,v51

v52,v53

v54,v55
v56,v57,v58

Figure 5.12 – Medium sized AFDX network

5.5. More Improvements and reduction in scenarios 101

time

T T

Periodic Traffic with Period T

time

T T

Sporadic Traffic with Period T

T

Figure 5.13 – Periodic vs Sporadic traffic

interval between two consecutive occurrences. More precisely, packets of sporadic VL can arrive
with gap of any time interval which is greater than or equal to its BAG value while for strictly
periodic VL packets can only arrive with gap of time interval strictly equal to its BAG value,
as shown in figure 5.13. In order to generate maximum possible data from a sporadic VL, it
must strictly transmit a packet at each minimum interval T and hence in worst case scenario
sporadic traffic becomes equal to strictly periodic traffic, but with no offsets.

5.5.1 Modeling of Sporadic traffic

We have already seen how a strictly periodic traffic data can be modeled in section 5.1.2. When
VLs are strictly periodic, we can assign offsets in order to reduce worst case delays and to
evenly distribute traffic in the network. But with sporadic VLs, we cannot put constraint of
strictly defined offsets between different packets of the VL. Therefore, we model the sporadic
VLs with offsets equal to zero i.e. packets arrive at the same time and hence we must consider
all possible orders of transmissions. This generates huge number of scenarios at each end system
(factorial of number of packets in one hyper period of the end system). For example, on an
end system with 5 VLs having 128ms BAG (Hyper Period) for each VL, the total number of
scenarios at this end system will be 5! = 120. For BAG values other than 128ms (maximum
possible BAG value or Hyper Period), this number becomes even greater because more packets
are generated in the hyper period of 128ms. This is illustrated in figure 5.14. In this illustration,
there are 13 packets in one hyper period, therefore total scenarios for this end system will be
5!×2!×4!×2! = 11520. In short, the closed form complexity of such approach will be O(n∗n!).

102
Chapter 5. A New Approach Based on Exhaustive Simulation to Compute the

Exact Worst-Case End to End delays

time

Hyper Period T

VL1

VL2

VL3

VL4

VL5

VL1

VL2

VL1

VL2

VL1

VL2

VL3

VL5

Figure 5.14 – Sporadic traffic in hyper period

5.5.2 Further reduction of scenarios

In this section we establish more properties of the network that will be used to reduce number
of scenarios which are candidate for worst case end-to-end delay.

Property 3: Order of packets in Switch output port.

Assuming, data rate of input link and output link is same, if two packets x1 and x2 cross a
switch output port and there is no existing backlog in the port, then following is true:

• if x1 ≥ x2 then there will be no idle time between x1 and x2 at the output of the switch
port.

• if x1 < x2 then there will be idle time between x1 and x2 at the output of the switch port.
This idle time is equal to x2 − x1.

Proof: The proof is very simple and intuitive. AFDX switch works on store and forward
mechanism and it’s output link is a FIFO queue. A smaller packet is transmitted before the
larger packet has fully been received which results in idle time between these packets as shown
in figure 5.15. �

Property 4: Idle time and queuing delays. In an AFDX switch, an idle time on input
links can not increase queuing delay at the given FIFO queue of output link.

5.5. More Improvements and reduction in scenarios 103

x1 x2

x1 x2
x1 > x2

x1 x2

x1 x2
x1 < x2

x2 - x1

Figure 5.15 – Order and size of packet in switch output port

no idle

with idle
time

time
x0 xi xi+1

x
y

x0 xi xi+1
x
y

di di+1 dy

z bytes

...

...

...

...

di
d'i+1 d'y

Figure 5.16 – Idle time and queuing delay at a switch output port.

Proof: If data rate on input links of an AFDX switch is same as data rate in output links,
then the queuing delay of a packet in its input links competing for a given output link, is directly
proportional to the amount of data waiting for the transmission in the output port queue. If
more packets are arriving at the output queue than the packets being transmitted, then the
data in queue will start to increase. On the other hand, if no packet is being received, i.e there
is idle time on the input links, then data in output port queue will reduce. This implies that
having idle time in input links will reduce the amount of data being stored in the queue and
hence will result in lesser queuing delay at the output port.

Consider a sequence of frames xo,...,xy coming from a single input link and transmitted on
a single output link. Let us assume that there is no idle time within the input sequence. Let
us assume, queuing delay at the output port at the reception of last frame xy is dy bytes, as
shown in upper part of figure 5.16. Now, let us consider that an idle time of z bytes is inserted
within the input sequence, between frames xi and xi+1 with 0 ≤ i < y, as shown in lower part
of figure 5.16. The queuing delay at the output port at the reception of last frame xy in this
case is denoted by d′y bytes. Without loss of generality, we can assume that the last packet xy

104
Chapter 5. A New Approach Based on Exhaustive Simulation to Compute the

Exact Worst-Case End to End delays

is received at the same time instance. If di denotes the queuing delay in bytes at the reception
of frame xi, then di is same for both cases because both cases are identical till frame xi, as
shown in figure 5.16. At the reception of frame xi+1, the queuing delay in bytes for the first
case with no idle time is given by: existing data in queue + received data size - the amount
of data transmitted during this period. If s(xi) denotes the size of packet xi, then we can say
that:

di+1 = max(di − s(xi+1), 0) + s(xi+1)

= max(di, s(xi+1))

For the second case with idle time of z bytes, the queuing delay in bytes at the reception of
frame xi+1 is given by:

d′i+1 = max(di − z − s(xi+1), 0) + s(xi+1)

= max(di − z, s(xi+1))

Consequently, comparing the both cases, we have:

d′i+1 ≤ di+1

Taking into account the fact that sequence of frames in both cases are identical after the frame
xi+1, we can conclude that:

d′y ≤ dy

Thus, we can say that adding idle time in the sequence of received frames can never increase
the queuing delay at a given output port. �

An interesting result of this property is the fact that if no VL leaves the path of VL under
study after joining it and packets are in order of decreasing packet sizes (otherwise it will cause
an idle time on the output link according to Property 3) then this will be the only worst case
scenario.

In an AFDX network, it is very rare that no VL leaves the path of VL under study. VLs join
the VL under study, share part of the path and then leave. This implies that there are more
than one cases for worst case end to end delay. We are interested in amount of data present in
the queue at the instance when the packet under study arrives at this output port. If idle time
appears closer to the packet under study, it will result in lesser delay and vice versa. Hence,
earlier the idle time in a sequence, more chances of worse end to end delay. But for exact worst

5.5. More Improvements and reduction in scenarios 105

v1 v2 v3ES1

v5ES2

v1 v3SW
v2 v5

v1 v3SW v5

v1 v3ES1

v5ES2

v4

v4

v4

v4

v1
SW v5

v1 v2ES1

v5ES2

v4

v4v2

(a)

(b)

(c)

time

Figure 5.17 – Idle time due to leaving VLs and its impact on packet under study.

case delay, we must check all possible placements of this idle time in the sequence, as shown in
figure 5.17, for packet v5. In part (a) of the figure 5.17 no VL is leaving and hence packet v5
is delayed by packet v2. In part (b) of the same figure, packet v2 is leaving so it introduces an
idle time which results in no delay for packet v5; packet v5 is immediately transmitted on its
arrival because switch output port is not busy. If this idle time was due to packet v3 as shown
in part (c) of the figure 5.17, then again packet v5 will be delayed by packet v2 as in case (a).
Hence placement of idle time on the link affects the waiting time for the packets on the link. �

106
Chapter 5. A New Approach Based on Exhaustive Simulation to Compute the

Exact Worst-Case End to End delays

x y v... ...Input link

x y v... ...Output link

xy v... ...Input link

xy v... ...Output link

(a)

(b)

x y v... ...Input link

x v... ...Output link

xy v... ...Input link

x v... ...Output link

(c)

(d)

x and y share same path

y leaves x

Figure 5.18 – Idle time and queuing delay at a switch output port.

5.5. More Improvements and reduction in scenarios 107

5.5.3 Candidate scenario for worst case delays

Consider a sequence of frames in an input link of the switch as shown in figure 5.18(a). If in
figure :

• x shares more nodes with the frame under study (v) than y, and

• x < y.

Then we will show that by changing the position of x with y as shown in figure 5.18(b), it can
never result in smaller end to end delay for the frame under study. This will allow us to discard
all the scenarios where above condition holds true. To prove above condition, we must consider
two cases.

• Nodes (switch ports) where x and y are together, and

• the node where y leaves x.

Nodes where x and y are together In this case y > x, this implies no idle time in the
output link, according to the Property 3 as shown in figure 5.18(b). No idle time also implies
that on all such nodes the queuing delay will be worse or equal to original scenario of figure
5.18(a), according to the Property 4.

Nodes where y leaves x In this case y shares less nodes with frame under study than x.
When y leaves, there will be idle time in the output link, as shown in figure 5.18(d) but this
idle time will be earlier as compared to the original scenario shown in figure 5.18(c). Hence the
delay will be worse or equal to original scenario of figure 5.18(c), according to the Property 4.

This condition allows us to reduce number of scenarios which can be candidate for worst
case end to end delay.

5.5.4 Algorithm to further reduce number of cases

In order to take advantage of the properties discussed earlier and to reduce the total number of
scenarios candidate for the worst case end-to-end delay, we have developed an algorithm which
generates a list of scenarios that can be a candidate for the worst case end-to-end delay and
eliminates all those scenarios which can not be a candidate for the worst case end-to-end delay

108
Chapter 5. A New Approach Based on Exhaustive Simulation to Compute the

Exact Worst-Case End to End delays

by exploiting the condition expressed in section 5.5.3. The algorithm is shown in Algorithm 2.
The basic principal is to make list of scenarios which don’t fulfill conditions expressed in section
5.5.3. We start with sorting of VLs according to the number of shared nodes with the frame
of VL under study. Then we group these VLs into lists where each VL in a given list shares
same number of nodes with VL under study. These lists are then sorted by decreasing packet
size of the VLs. We start from the list which has least number of shared nodes, and take each
VL from other lists, in sequence of increasing number of shared nodes. By comparing all the
VL packet sizes we decide if a particular sequence will satisfy the condition presented in section
5.5.3 or not. We generate only sequences which don’t satisfy the condition. As an example to
illustrate the algorithm, let us consider 9 VLs named as vi where i = 1 . . . 9 and with packet
sizes of 50, 30, 10, 60, 20, 5, 45, 30, 15 respectively as shown in table 5.5. As a first step, all VLs
are arranged by increasing number of shared nodes. Then these VLs are grouped into different
lists having same number of shared nodes in each list. In the table 5.5.3, VLs v1, v2 and v3 are
in list L0, VLs v4, v5 and v6 are in list L1 and VLs v7, v8 and v9 are in list L2. In each list Li

these VLs are sorted by decreasing packet size. So they become as shown below:

L0 = {v1, v2, v3}

L1 = {v4, v5, v6}

L2 = {v7, v8, v9}

We start with list L0 as a partial sequence Sp0. Since there are three lists L0, L1 and L2,
therefore there will be two iterations of while loop in the algorithm 2 (after taking out L0 as
Sp0 we are left with only L1 and L2). In first iteration we take L1. In L1 we iterate over each
VL starting from the last, and compare it with VLs of Sp0 (which is same as L0) also starting
from last. So, VL v6 is compared with VL v3, and since size of v6 (5) is less than that of
v3(10), it can’t be added to Sp0, same is true for VLs v2 and v1. So loop breaks by adding v6
to the end of Sp0, storing it in S! and replacing S by S!. For the next VL in L1, i.e v5, now we
have Sp0 as {v1, v2, v3, v6}. For this iteration, v5 is greater than v6 so its added to Sp0 before
v6 and stored as {v1, v2, v3, v5, v6} in S!. For next VL v3 in Sp0, v5 is greater than v3 so its
added to Sp0 before v3 and stored as {v1, v2, v5, v3, v6} in S!. For next VL v2 in Sp0, v5 is
smaller than v2. So, loop breaks, we replace S by S!. For the next VL in L1, i.e v4, now we
have following two partial sequences in S:

Sp0 = {v1, v2, v3, v5, v6}

Sp1 = {v1, v2, v5, v3, v6}

5.5. More Improvements and reduction in scenarios 109

Comparing VL v4 with VLs of Sp0 we obtain following partial sequences which are added to
S!:

S! = {{v1, v2, v3, v4, v5, v6},

{v1, v2, v4, v3, v5, v6},

{v1, v4, v2, v3, v5, v6},

{v4, v1, v2, v3, v5, v6}}

Comparing VL v4 with VLs of Sp1 we obtain following partial sequences which are added to
S!:

{v1, v2, v4, v5, v3, v6},

{v1, v4, v2, v5, v3, v6},

{v4, v1, v2, v5, v3, v6}

At this point we have iterated over all VLs of list L1 and the set S contains 7 partial sequences,
i.e:

S = {{v1, v2, v3, v4, v5, v6},

{v1, v2, v4, v3, v5, v6},

{v1, v4, v2, v3, v5, v6},

{v4, v1, v2, v3, v5, v6},

{v1, v2, v4, v5, v3, v6},

{v1, v4, v2, v5, v3, v6},

{v4, v1, v2, v5, v3, v6}}

The same procedure is repeated for VLs v7, v8 and v9 of L2 and in the end S contains all the
sequences which are candidate for worst case scenario. These sequences are then used to find
worst case end-to-end delays. The reduction ratio is huge for these cases. The total number of
cases are 9! = 362880 but with this algorithm we have 60 cases only. The complexity of this
algorithm is O(n ∗ nk) in the worst case.

These algorithms and concepts have been implemented in the tool developed to calculate
the end to end delays for AFDX network and will be used in case study presented in Chapter
6.

110
Chapter 5. A New Approach Based on Exhaustive Simulation to Compute the

Exact Worst-Case End to End delays

VL Packet Size No of Shared Nodes Group
1 50 1 L0
2 30 1 L0
3 10 1 L0
4 60 2 L1
5 20 2 L1
6 5 2 L1
7 45 3 L2
8 30 3 L2
9 15 3 L2

Table 5.5 – Configuration example for Algorithm 2.

Algorithm 2 Algorithm to find candidate scenarios
1: S = empty is list of possible scenarios.
2: S! = empty is temporary list of possible scenarios.
3: sort all VLs by order of increasing number of shared nodes
4: store VLs Vi sharing same number of nodes in a separate list Li, and sort them by decreasing

packet size
5: Store all Li in L in order of increasing number of shared nodes
6: if sizeof(L) == 1 then
7: S = L0
8: else
9: Take L0 as a partial sequence Sp0

10: Add Sp0 to S
11: while L hasNext() do
12: for all Vi in Li starting from last do
13: for all Spi in S do
14: for all V spi in Spi starting from last do
15: if sizeof(Vi) ≥ sizeof(V spi) then
16: Add Vi to Spi and store it in S!

17: else if all VLs (V spi) in Spi has been checked then
18: Add Vi to the end of Spi and store it in S!

19: else if Vi has been added at least once then
20: break
21: end if
22: end for
23: end for
24: S = S!

25: S! = empty
26: end for
27: end while
28: end if

5.6. Conclusion 111

5.6 Conclusion

In this chapter, we have presented an improved method to calculate exact worst case delays
for AFDX network. This approach is promising since it increases the maximum size of the
networks which can be analyzed. Another advantage of this technique is that it can generate
reachable (but close to the exact worst case) scenarios for large networks which can not be
computed for exact worst case in reasonable time. It will probably be difficult to analyze a real
industrial configuration (more than 1000 VLs) for exact worst case delays but still we can use
this technique to obtain valuable information on the pessimism of upper bounds obtained by
Network Calculus or Trajectory approach.

The proposed approach can be adapted in order to compute the backlog in each switch
output port, by calculating the maximum number of adjacent packets in computed sequences
at this switch output port. This is important for certification: it is mandatory to guarantee
that buffers of switch will never overflow.

This technique is not limited to AFDX network but can cope with any switched Ether-
net network, provided flows are strictly periodic. It can also be used for analysis of different
scheduling techniques and finding delay bounds in multi-processor networked architecture.

The first contribution of this work is to explain how the number of scenarios which have to
be analyzed for an exact worst case delay computation can be drastically reduced.

The second contribution of this work is to propose an algorithm for the worst case delay com-
putation based on this reduced set of scenarios. This algorithm allows the analysis of larger net-
work configuration than existing model checking approaches in [Adnan 2010b, Charara 2006a].

The third contribution of this work is to show how the proposed algorithm can be adapted
for industrial configurations to obtain reachable end-to-end delay cases which are close from the
exact worst case.

We have developed a tool based on the algorithms and properties presented in this chapter.
This tool was used to analyze an real-life industrial configuration of the AFDX network. The
details and results of this case study are presented in the next chapter.

Chapter 6

Case Study

Contents
6.1 AFDX network system of industrial scale complexity 113

6.1.1 Understanding the complexity of industrial scale AFDX network 113

6.2 Software Architecture . 120

6.3 Results of the Case Study . 120

6.3.1 Comparison of results with Network Calculus and Trajectory approach . . . 124

6.4 Conclusion . 124

In this chapter we will present the case study of an industrial implementation of AFDX
network such as used on Airbus A380 aircraft. This AFDX network was analyzed for worst
case end to end delays using sequence based approach presented in Chapter 5 using our own
developed tool. Before talking about the results of this analysis, we will present the system first
in next section.

6.1 AFDX network system of industrial scale complexity

In this section we will present a real life AFDX network of industrial scale complexity such as
used on commercial aircraft e.g. Airbus A380. Such a large AFDX network consists of about
1000 VLs constituting more than 6000 paths, using 16 AFDX switches and 123 end systems as
illustrated in figure 6.1.

6.1.1 Understanding the complexity of industrial scale AFDX network

The complexity of an industrial scale AFDX network, as far as number of possible scenarios is
concerned, is mainly because of following two factors:

114 Chapter 6. Case Study

Figure 6.1 – AFDX Network of Airbus A380 aircraft.

6.1. AFDX network system of industrial scale complexity 115

ADIRU3_1
Switch 9_19 Switch 3_7 Switch 7_8

IOMA8_1
VL6450

ADIRU3_1
Switch 9_19 Switch 3_6 Switch 5_3

IOMA1_1
VL6450

ADIRU3_1
Switch 9_16 Switch 2_1

CDS_L1_1
VL6450

VL6450

IOMA8_1 IOMA1_1

CDS_L1_1

Figure 6.2 – Single VL and its paths with equivalent tree.

Interference of other VL paths with path of VL under study: We have already dis-
cussed basics of AFDX netwrok in 2.3. In AFDX network, each VL is a multicast broadcast of
data. This is very similar to a tree with more than one branch. If we consider a single VL in
isolation, it will result in number of paths equal to number of branches of the equivalent tree,
as shown in figure 6.2. Each path has different end-to-end delay and is calculated separately.
Since there are more than 1000 VLs in the network, it is obvious that many paths or branches
interfere with each other by intersecting their paths and/or overlapping each other partially.
This means that to calculate end-to-end delay for a single path, we must consider all the VL
paths which are directly interfering with path under study and also the paths which are indi-
rectly interfering with path under study. The indirect interference can encompass large number
of paths. This is equivalent to Connected Component in graph theory concepts, where any two
nodes are connected to each other by paths and are not connected to any other nodes of the
graph, as shown in figure 6.3 where there are three connected components. Each connected
component is equivalent to part of AFDX network that we must take into account for a VL
under study because of directly and indirectly interfering VLs. In this case study, number of
interfering paths for a single path under study, can be upto 5500 paths out of 6412 total paths.

As an example, let us consider a VL named V L10151 in this case study. This VL originates
from end system IOMA8_1, passes through switch SW4 at output port 7 (AFDX_SW4_7),
then through switch SW7 at output port 19 (AFDX_SW7_19)and reaches the destination end
system. Considering this VL in isolation leads to a very simple scenario as shown in figure
6.4. Now, If we consider all the VLs that interfere with this VL directly, then the scenario is
bit more complex, as shown in figure 6.5 where width of edge indicate number of overlapping
paths. In this case we have 297 other VL paths which directly interfere with V L10151. And
when we include all the directly and indirectly interfering VLs, we have 5449 paths interfering

116 Chapter 6. Case Study

Figure 6.3 – Connected Component of a graph which is equivalent to directly and indirectly
interfering VLs.

6.1. AFDX network system of industrial scale complexity 117

IOMA8_1

AFDX_SW7_19

AFDX_SW4_7

Figure 6.4 – VL10151 in isolation.

with V L10151 out of 6412 total paths, as shown in figure 6.6 where width of edge indicate
number of overlapping paths.

This example of VL V L10151 demonstrates that the number of cases for even a simple VL
path can be huge due to the fact that this path is not in isolation and many other VLs are
interfering with it. This makes it even more important to reduce number of scenarios which
can be candidate for worst case end to end delay.

Idle times due to leaving VLs: As shown in section 5.1.2, with no idle time between
packets, if we arrange packets by decreasing packet size then it will lead us to worst case end-
to-end delay provided all packets are going to the same end system i.e no VL is leaving the
path of VL which is under study. This never happens in industrial AFDX network considered
in this case study. When VLs join the VL understudy directly or indirectly, and leave it after
sharing a single or multiple switches, they create idle times between packets. The worst case
end-to-end delay depends on relative position of this idle time between packets and we must
consider all combinations where this idle time can possibly occur.Hence placement of idle time
on the link affects the waiting time for the packets on the link, which leads to huge number of
possible cases due to large number of paths interfering with each other. The number of cases
which can be candidate for worst case end-to-end delays, range from 109 to 10105.

118 Chapter 6. Case Study

FM2_1

AFDX_SW2_24

AFDX_SW4_7

SCI_1

IOMA2_1

AFDX_SW1_19

AFDX_SW3_7

SPDB5_1

CPIOMC2_1

ADIRU1_1

SFCC_Flap2_1

CIDS1_1

AFDX_SW5_19

IOMA1_1

IOMA8_1

CMV_1
AFDX_SW9_19

AFDX_SW6_19

AFDX_SW7_19

IOMA3_1

SEPDC_AC1_1

SEPDC_DC2_1

CIDS3_1

SEPDC_DC1_1

EEC1b_1

ADIRU3_1

CPIOMD4_1

CIDS2_1

SFCC_Slat2_1

SPDB8_1

ADIRU2_1

SPDB6_1

EEC4b_1

SEPDC_AC2_1

SPDB1_1

PRIM2a_1

OSCU_1

AESU2_1

EEC2b_1

SPDB2_1

IOMA7_1

AESU1_1

SPDB3_1

IOMA6_1

ECB_1

IOMA5_1

SPDB7_1

EEC3b_1

SPDB4_1

IOMA4_1

2

109

23

16

19

5

17

1

3

2

2

1

6

1

35

1

6

5

1

1

1

1

1 12

2

4

1

2

1

31

13

12

8

1

8

1

2

12

1

1

1

1

19

1

1

1

12

1 19

Figure 6.5 – VL10151 directly linked paths.

6.1. AFDX network system of industrial scale complexity 119

CPIOMF1_1

AFDX_SW5_19

CPIOME2_1

AFDX_SW6_19

SCI_1

AFDX_SW4_7

SEC3a_1

AFDX_SW9_19

CPIOMF3_1

IOMA3_1

AFDX_SW1_19

CIDS1_1

CPIOMA3_1

CPIOMA2_1

PRIM3b_1

SEPDC_DC1_1

CPIOMD4_1

CPIOMA4_1

CMV_1

SPDB5_1

AFDX_SW3_7

OSCU_1

DSMS2_1

SFCC_Slat1_1

AESU1_1

AFDX_SW7_19

EEC2a_1

SEC1b_1CPIOMD3_1

IOMA2_1

AFDX_SW2_24

CDS_L1_1

CPIOMF2_1

EEC1a_1

ADIRU1_1

PRIM1a_1

SFCC_Flap1_1

SEPDC_AC1_1

SEPDC_DC2_1

ADIRU3_1

CPIOMG2_1

SFCC_Slat2_1

AFDX_SW2_23

SPDB8_1

ADIRU2_1

AESU2_1

CPIOMF4_1CPIOME1_1

CPIOMB3_1

IOMA6_1

EEC3b_1

CDS_L3_1

SPDB4_1

IOMA4_1

SEC2b_1

FM3_1

PRIM1b_1

CPIOMC1_1

SFCC_Flap2_1

IOMA1_1

IOMA8_1

CPIOMG4_1

DSMS1_1

CIDS2_1

SPDB6_1

SPDB2_1

IOMA7_1

CPIOMB2_1

FM1_1

EEC4b_1

CPIOMB4_1

ECB_1

IOMA5_1

SPDB7_1

FM2_1

SEC3b_1

EEC4a_1

CPIOMC2_1

EEC3a_1

PRIM3a_1

EEC1b_1

CDS_R1_1

SPDB1_1

CIDS3_1

CDS_R3_1

SEPDC_AC2_1

PRIM2a_1

EEC2b_1

SPDB3_1

SEC1a_1

SEC2a_1

PRIM2b_1

2

24

28

20

61

56

2

52

2

104

222

16

62

16
6

10

16

62

18

18

68

10
18

30

4

68

4

8

139

421

54

2

26

210

50

30

20

10

128

14

32

24

54

4

262

5

2

28

114

73

48

62

6

139

4

4

36

12

6

32

104

86

30

18

16
49

16

36

36

82

88

8

114

16

36

4

76

4

2

26

12

68

30

88

8

54

16

16

62

29

66

2

48

6

4

4

4

12

4

Figure 6.6 – VL10151 all linked paths.

120 Chapter 6. Case Study

6.2 Software Architecture

The tool for this case study is written in Java. Java was selected for its ability to be portable
across multiple operating systems. Java also offers some open source libraries that can be used to
develop a distributed application. The tool developed during this research work can be used as
stand alone application on a single machine or as a distributed computation application running
on multiple machines connected via network. There are two separate versions of the tool which
both have same algorithms for computations of end-to-end delays but differ in the way these
calculations are managed: in one version computations runs on a single machine while in the
other one computations are distributed across multiple machines. More detail about software
implementation can be found in Appendix B.

The basic architecture of the software is shown in figure B.1. Parser is used to read the
AFDX network configuration data and to initialize the internal constructs and variables. Net-
work Pruning block builds the essential part of the network that is directly and indirectly linked
with the VL under study and removes the unconnected part of the whole network. This block
is also responsible to generate scenarios which can be candidate for worst case end-to-end de-
lays. In case of distribution computation, Load Balancer manages the computation distribution
among available machine nodes. In case of single machine, it distributes computations among
locally available cores. Compute module computes the delays and backlogs for a given sequence
on a given output port. It also constructs set of resulting output sequences. Finally the Con-
trol module is responsible for coordination between all modules and for collection of results.
The software uses Flow Based Programming [Morrison 2010] concepts to implement data flow
approach where computations proceed as the data flow from one output port to another. For dis-
tributed computations, Java based library named Java Parallel Processing Framework(JPPF)
is being used. The library can be found at http://www.jppf.org/

6.3 Results of the Case Study

The industrial scale network used in this case study interconnects aircraft functions in the avion-
ics domain. It is a large scale network and is composed of two redundant networks (indicated by
red and blue colors in figure 6.1). The network is composed of 123 end systems, 8 switches per
network with 24 ports on each switch, 984 virtual links and 6412 VL paths (due to multicast
characteristics of the VLs). Left part of the table 6.1 shows distribution of VLs according to
BAG values. The right part of the table 6.1 shows classification of VLs according to the packet
size. Table 6.2 shows distribution of VL paths according to number of crossed switches. For an

6.3. Results of the Case Study 121

Figure 6.7 – Software architecture.

122 Chapter 6. Case Study

Figure 6.8 – Flows of AFDX network of case study.

6.3. Results of the Case Study 123

BAG Number
(ms) of VLs
2 20
4 40
8 78
16 142
32 229
64 220
128 225

Packet size Number
(bytes) of VLs
0-150 561
151-300 202
301-600 114
601-900 57
901-1200 12
1201-1500 35
> 1500 3

Table 6.1 – AFDX network configuration: BAGs and packet sizes

No of crossed switches Number of paths
1 1797
2 2787
3 1537
4 291

Table 6.2 – AFDX network configuration: crossed switches number of paths

overview of how these switches and end system are connected with each other, and about the
complexity of this communication, figure 6.8 shows actual flows of this network. We can clearly
notice how each of these 8 switches are connected to a cluster of end systems.

This industrial AFDX network has links speed of 100 Mbit/s on all the links. Overall
network load (utilization) is about 10%. Actually, this AFDX network is lightly loaded in order
to ensure guarantees on the upper bounds of buffer sizes. There is no global clock in the network
and hence packet release times at different end systems are independent.

Let us consider VL V L10151 as shown earlier in figure 6.4. The maximum packet size for
this VL is 567 bytes and the value of BAG is 64 ms. This VL originates from end system
IOM − A8 port 1. At this end system, there are 6 other VLs competing for the output port
of the end system. The worst case queuing delay at this output port is 177.76µs. The next
output port in the path of this VL is AFDX_SW4_7 which is AFDX switch number 4 port
number 7. At this output port, the queuing delays contributing to worst case end to end delay
is 928.72µs. The last output port in the path of V L10151 is AFDX_SW7_19 which is AFDX
switch number 7 port number 19. At this output port the queuing delay is 969.60µs. After
this output port the VL arrives at the destination end system "FT_SCI". The overall end to
end worst case delay is sum of the delays on each output port in the path i.e 2076.08µs. The
Trajectory approach result for the same VL is 177.76, 1000.4, 1106.64µs on each output port

124 Chapter 6. Case Study

respectively with total end to end delay of 2284.8µs. There is about 10% pessimism in the
result of Trajectory approach for this VL. If we compare the results on each output port, we
notice that the pessimism increases as the number of ports increase in the path of VL. It took
more than one hour to analyze all candidate scenarios.But the worst case scenario was reached
in just 7 minutes. This is true for most of the VLs. We reach worst case scenario relatively
quickly but still we need to analyze all the scenarios which are candidate for the worst case end
to end delay.

6.3.1 Comparison of results with Network Calculus and Trajectory approach

We were able to analyze each VL of the network but not all the paths. Some paths were too
complex to be analyzed in reasonable time due to a very large number of possible scenarios (in
the vicinity of 10105). Out of 6412 paths, we were able to find exact end to end communication
delay for 4099 paths. The results of our analysis, i.e exact end to end communication delays
for 4099 paths, were compared to Network Calculus and Trajectory approach. Figure 6.9 shows
the results compared to Trajectory approach and figure 6.10 shows the difference between these
results, which is equal to pessimism of Trajectory approach. In some cases, both results are
equal which indicates that for those cases trajectory approach finds the exact worst case delay.
Figure 6.11 shows the results compared to Network Calculus and figure 6.12 shows the difference
between these results, which is equal to pessimism of Network Calculus approach. The actual
pessimism in Network Calculus is about 13% on average, and the pessimism in Trajectory
approach is about 6% on average.

6.4 Conclusion

Finding exact worst case delays of an industrial scale AFDX network is complex and huge. We
were not only able to apply our properties and algorithms on a real industrial scale AFDX
network but also we were able to find exact worst case end to end delays for more than 60%
of the paths. This shows that model checking or exhaustive simulation can be applied to huge
networks. With the exact worst case delays, we can also measure the precise pessimism in upper
bounds of Network calculus and Trajectory approach.

6.4. Conclusion 125

Figure 6.9 – Results of the case study compared to Trajectory approach.

Figure 6.10 – Pessimism in Trajectory approach.

126 Chapter 6. Case Study

Figure 6.11 – Results of the case study compared to Network Calculus.

Figure 6.12 – Pessimism in Network Calculus.

Chapter 7

Conclusions and Prospective

Contents
7.1 Conclusions . 127

7.2 Prospective . 129

7.1 Conclusions

An avionics system is an embedded system composed of communicating resources, sensors
and actuators. Each communicate using shared communication networks such as the AFDX
network. For certification reasons, the end to end communication delays need to be guaranteed.
To ensure this property, several methods can be used:

• analytical methods, such as Network Calculus or Trajectory Approach, which compute an
upper bound of the worst-case end-to-end transmission delays;

• model-checking and exhaustive simulation which evaluate exact worst-case end-to-end
transmission delays.

Analytical methods can evaluate an industrial AFDX configuration but are pessimistic. In
[Charara 2006a], Model-Checking has been used to compute the exact worst-case end-to-end
delays of a small AFDX configuration. The method used is not well-adapted.

In this thesis, the goal is to compute the exact worst-case end-to-end delays on an industrial
AFDX configuration. First, we propose to improve the Model-Checking approach by reducing
the state-space in the verification process. The first contribution of the thesis is the Critical
Instant Property.

128 Chapter 7. Conclusions and Prospective

Critical Instant Property. The worst-case waiting time of a packet in the output port of
an AFDX switch occurs when the packet arrives at the output port at the same time of the
others packets from others input links and when the packet is transmitted at last.

Considering this property, a timed automata modelling has been done. The method is able
to analyze AFDX networks with up to 32 communicating flows, i.e. the virtual links in AFDX
terminology, with support of periodic and sporadic data. Unfortunately, the method cannot
handle an industrial AFDX network which is composed of more than 1000 VLs. The main
reason is that the timed automata language is not well-adapted in managing large number of
messages scheduled using FIFO queues and needs to be improved.

In the Model-Checking approach, we construct timed automata generating sequences of
VLs which are candidate for worst-case scenario. The second contribution of this thesis is to
automatically generate these sequences. The number of sequences is huge and we consider
some properties of the AFDX to reduce this number. First, we define the Sequence Periodicity
Property.

Sequence Periodicity Property. Since the sequences at the input port of the switches are
periodic, it has been demonstrated that the sequences transmitted at the output port is peri-
odic. The periodicity is equal to the hyper-period.

Considering this property, the sequence generation is considered only on two hyper-periods.
So, the number of generated sequences is finite. The Critical Instant Property can be applied
on these sequences, drastically reducing the search-space in the approach. A system with at
least hundred VLs can be analyzed with these two properties.

To further reduce the state-space, 2 other AFDX properties has been defined:

Packet Ordering. If two packets with different amount of data arrive at the same instant
in an output port of a switch, then the transmission of the packet with lesser data first, will
induces an idle time between the packets. Otherwise, the transmission of the packet with the
more amount of data first, induces no idle time.

7.2. Prospective 129

Idle Time Placement in input links. As data rate of the input links is the same as data
rate of the output links, the amount of data which is received by a switch directly impacts the
amount of data which is stored into the output port. An idle time in the input links will reduce
this amount which has to be stored and then will reduce the waiting time of the packets.

The goal in finding worst-case scenario is to order packets avoiding idle time in the input
port of the switches. Finally, a reduced set of sequences which are candidates to the worst-case
scenarios can be obtained. This set is composed of sequences for which the packet under study
potentially faces the worst-case waiting time in the output ports of the switches by considering
the ordering of the packets and by considering the critical instant property.

Computing the worst-case end-to-end transmission delays consists in finding the sequence
with the highest transmission delay. In other words:

To compute the exact worst-case end-to-end transmission delays:

• we construct a reduced set of sequences which are candidates for the worst-case
scenario;

• we choose the sequence which has the highest transmission delay among above
set of scenarios.

The method has been applied to an industrial scale AFDX network composed of about 1000
VLs sharing more than 6000 paths. To make the computation, a tool has been developed. We
are able to analyze all the VLs of this industrial AFDX network but not all the paths. We can
analyze more than 60% paths. The obtained results have been compared with those obtained
by analytical methods such as Network Calculus and Trajectory Approach. The real pessimism
of these methods can also be evaluated thanks to exact worst case delays calculated by using
our approach.

7.2 Prospective

Improvement of the approach. The AFDX communication model is complex. The meth-
ods used to analyze it need to define properties to break this complexity. In this thesis, 4
properties have been defined. But, when the method is applied to an industrial scale AFDX
architecture, computation time is high because the number of sequences are still huge and hence

130 Chapter 7. Conclusions and Prospective

are difficult to analyze in short time. The solution proposed in this thesis is to stop the analysis
after a given duration. So, for the VLs which do not finish in given time, the obtained results
are optimistic.

The problem is due to the number of crossed flows in the system: the VLs which directly
influence the VL under study and those which indirectly influence the VL under study. Both
of them are considered in our approach. But, not all the indirect VLs have an effect on the
worst-case end-to-end communication delay for a given path. The goal will be to find the
characteristics of the VLs which do not influence the VL under study. By doing this, we will be
able to reduce the number of VLs which need to be considered in our analysis and so, to reduce
the number of generated sequences. This may eventually enable us to analyze all paths of an
industrial scale AFDX network.

Generalization of the method to other Ethernet based networks. This work can also
be extended to other networks and fields. For example, this work can be adapted for any
switched Ethernet network with very minimum modifications, if any. Techniques presented in
this work can be extended to space-wire communication protocol as well. This work can be
applied to multi-processor distributed systems, where we can find inter node communication
delays or even distributed scheduling.

Integration of the method in the global avionics system. Nowadays, the avionics
systems are defined considering the Integrated Modular Avionics (IMA) architecture. They
are composed of a set of applications which share a set of computing resources called modules
communicating using a shared network, where network itself is connected to a set of sensors
and actuators. The execution model is defined by the standard ARINC653 [ARINC 653 1997],
while the communication standard is ARINC664 (part 7) [ARINC 664 2005], also known as
AFDX. These architectures have been defined to allow some real-time requirements.

The goal of this thesis is to propose an approach to verify that the AFDX requirements are
guaranteed. Some other works have been devoted to verify that the functional requirements
are respected. As an example, in [Lauer 2010], timing analysis of functional chains on an IMA
architecture has been done. The transmissions on the AFDX networks has been modeled by
timed intervals obtained by using pessimistic upper bounds of Trajectory Approach. Such an
analysis can be done by considering a global approach composed of functional models, such as
the ones defined by [Lauer 2010], and the network model defined by our approach.

Another key area of research in IMA is the impact of spatial and temporal integration

7.2. Prospective 131

choices on the communications performance [Nesrine 2013]. In the design of an IMA system,
the problem is to allocate the partitions to the computation modules (spatial allocation) and
to allocate the APEX communication channels to the various communications taking place
between the tasks (temporal allocation). This integration has to guaranty that end to end
communication delays are within allowed bounds. Using our models and methodology for
the communication network, temporal allocation of IMA tasks can be integrated with spatial
allocation algorithms and models. This can result in a tool that can be used to calculate the real
end to end communication statistics for a modelled software and modelled physical architecture
of an IMA system.

Appendix A

Model Checking Overview

Contents
A.1 Classification . 133

A.2 List of Model Checkers, Modeling Languages and Specification Lan-
guages . 135

A.2.1 List of Modeling Languages . 135

A.2.2 List of Property Specification Languages . 138

A.3 Relevance/Application to AFDX Network 138

The basic idea of model checking is to use algorithms, executed by computer tools, to verify
the correctness of systems. The user inputs a description of a model of the system (the possible
behavior) and a description of the requirements specification (the desirable behavior) and leaves
the verification up to the machine. If an error is recognized the tool provides a counter-example
showing under which circumstances the error can be generated. The algorithms for model
checking are typically based on an exhaustive state space search of the model of the system: for
each state of the model it is checked whether it behaves "correctly", that is, whether the state
satisfies the desired property. The tools used for this purpose (model checkers) can be classified
in different groups depending on the way they work, or depending on the type of systems they
can analyze.

A.1 Classification

Depending upon the type of system under consideration, the model checking tools can be
classified as follows, this classification is generic in nature and there are model checkers which
can be used for more than one category:

134 Appendix A. Model Checking Overview

• Real Time: these model checkers are used for real-time systems where systems are con-
strained by operational deadlines from “event" to “system response". In these model
checkers time is an important variable and continuously evolves independent of other
factors.

• Hybrid: these model checkers are used for hybrid systems where systems behavior exhibits
both discrete and continuous change.

• Probabilistic: these model checkers are used for probabilistic systems where system ex-
hibits inherent uncertainty which can be expressed in terms of probability such as ran-
domized distributed algorithms, fault-tolerant processes and communication networks.

• Simply Timed: these model checkers are used for a special class of real-time systems where
time evolves in discrete steps.

• Un-timed (Plain): these model checkers are used for systems which don’t fall in any of
the above category and are mostly used for verification of algorithms, protocols and logic.

Depending upon the way how model checkers work, there are basically two approaches in
model checking that differ in the way the desired behavior, i.e. the requirement specification,
is described:

• Logic-based or heterogeneous approach: in this approach the desired system behavior is
captured by stating a set of properties in some appropriate logic, usually some temporal
or modal logic. A system usually modeled as a finite-state automaton, where states
represent the values of variables and control locations, and transitions indicate how a
system can change from one state to another, is considered to be correct with respect to
these requirements if it satisfies these properties for a given set of initial states.

• Behavior-based or homogeneous approach: in this approach both the desired and the
possible behavior are given in the same notation (e.g. an automaton), and equivalence
relations (or pre-orders) are used as a correctness criterion. The equivalence relations usu-
ally capture a notion like “behaves the same as", whereas the pre-order relation represents
a notion like “behaves at least as". Since there are different perspectives and intuitions
about what it means for two processes to “behave the same" (or “behave at least as"), var-
ious equivalence (and pre-order) notions have been defined. One of the most well-known
notions of equivalence is bi-simulation. In a nutshell, two automata are bi-similar if one
automaton can simulate every step of the other automaton, and vice versa. A frequently
encountered notion of pre-order is (language) inclusion. An automaton A is included in
automaton B, if all words accepted by A are accepted by B. A system is considered to be

A.2. List of Model Checkers, Modeling Languages and Specification Languages135

correct if the desired and the possible behavior are equivalent (or ordered) with respect
to the equivalence (or pre-order) attribute under investigation.

A.2 List of Model Checkers, Modeling Languages and Specifi-
cation Languages

There are numerous model checkers for different types of systems. Some of them are still
a work in progress and some are well established and proven softwares used in industry for
certification purposes. Figure A.1 1 summarizes the currently available model checkers, it’s not
a comprehensive list of all model checkers but an effort to include important model checkers for
comparison. It also enlists the languages used by these model checkers for modeling the systems
and the languages used for specifying and verifying the properties.

A.2.1 List of Modeling Languages

• AltaRica: a language designed to model both functional and dysfunctional behaviours of
critical systems.

• Cadence SMV: Cadence SMV Input Language; synchronous modeling language that has
features supporting SMV’s style of compositional refinement verification and abstract
interpretation.

• CCS: Calculus of communicating systems; process calculus introduced by Robin Milner
around 1980 and the title of a book describing the calculus.

• CCSP: A process calculus obtained from CCS by incorporating some operators of CSP.
It is defined by Olderog [4] and by van Glabbeek/Vaandrager [5].

• CSP: Communicating sequential processes; formal language for describing patterns of
interaction in concurrent systems. FDR2 is a refinement checking tool for CSP, comparing
two models for compatibility.

• DVE input language: a system is described as Network of Extended Finite State Machines
communicating via shared variables and unbuffered channels. Does not contain support for
buffered channels and for checking the type of message to be received without performing
the receive proper.

1http://en.wikipedia.org/wiki/List_of_model_checking_tools

136 Appendix A. Model Checking Overview

Compar ison of some model checking tools

Name Model Checking
Equivalence

checking
GUI Availability

Plain,
Pr obabilistic,
Stochastic, ...

Modelling language
Pr oper ties
language

Suppor ted
equivalences

Counter
example

gener at ion
 GUI

Gr aphical
Specification

Counter
example

visualization
Softwar e license

Pr ogr amming
language used

Platfor m /
OS

APMC (http://sylvain.berbiqui.org
/apmc/download)

Approximate
Probabilistic

Reactive modules
PCTL,
PLTL

No Yes No No FUSC C
Unix &
related

ARC (http://altarica.labri.fr
/wiki/tools:arc)

Plain AltaRica mu-calculus No No No No FUSC ANSI C
Unix &
related

BANDERA
(http://bandera.projects.cis.ksu.edu/)

Code
analysis

Java CTL, LTL Yes Yes Yes Yes Free Java
Windows
and Unix
related

BLAST
(http://www.eecs.berkeley.edu

/~tah/blast)

Code
analysis

C
Monitor
automata

Yes No No No Free OCaml
Windows
and Unix
related

CADENCE SMV (http://www-
cad.eecs.berkeley.edu

/~kenmcmil/smv)
Plain

Cadence SMV,
SMV, Verilog

CTL, LTL Yes Yes No No FUSC ?
Windows
and Unix
related

CADP Probabilistic LOTOS AFMC

SB, WB,
BB, OE,

STE,
WTE,

SE,
tau*E

Yes Yes Yes Yes FUSC ?

MacOS,
Linux,
Solaris,

Windows

CWB-NC
(http://www.cs.sunysb.edu/~cwb/)

Plain and
Timed

CCS, CSP,
LOTOS, TCCS

AFMC,
CTL,
GCTL

SB, WB,
me, ME

Yes Yes No No FUSC
SML of

New
Jersey

Windows
and Unix
related

DBRover
(http://www.dbrover.com/)

Timed
Ada, C, C++,
Java, VHDL,

Verilog
LTL, MTL No Yes Yes Yes

Non-freeCommercial
use only

?
Windows
and Unix
related

DiVinE Tool (http://anna.fi.muni.cz
/divine)

Plain
DVE input
language

LTL No Yes No No Free C/C++
Unix

related

DREAM
(http://dre.sourceforge.net/)

Real-time
C++, Timed

automata
Monitor
automata

Yes No No No Free C++
Windows
and Unix
related

Edinburgh CWB
(http://www.lfcs.ed.ac.uk/cwb)

Plain CCS, TCCS, SCCS
Mu

calculus

SB, WB,
BB, me,
ME, OE

Yes No No No FUSC SML
Windows
and Unix
related

Expander2 (http://ls5-www.cs.uni-
dortmund.de/~peter/Expander2

/Expander2.html)
Hybrid

AFMC,
CTL

SB, OE No Yes No No Free O'Haskell
Unix

related

Fc2Tools (http://www-sop.inria.fr
/meije/verification/)

Plain FC2 ?
SB, WB,

BB
Yes No Yes Yes Free ?

Unix
related

GEAR (http://jabc.cs.tu-
dortmund.de/modelchecking/)

Plain ?
AFMC,
CTL,

mu-calculus
Yes Yes Yes Yes Free Java

Windows
and Unix
related

LTSA (http://www.doc.ic.ac.uk
/~jnm/book/)

Plain FSP LTL Yes Yes No Yes Free ?
Windows
and Unix
related

MCMAS (http://www-
lai.doc.ic.ac.uk/mcmas/)

Plain,
Epistemic

ISPL
CTL,
CTLK

Yes Yes No Yes Free C++
Unix,

Windows,
Mac-OS

mCRL2 Real-time mCRL2
mCRL2

mu-calculus

SB, BB,
t*E,
STE,
WTE

Yes Yes No Yes Free C++

MacOS,
Linux,
Solaris,

Windows

MRMC
Real-time,

Probabilistic
Plain MC

CSL,
CSRL,
PCTL,
PRCTL

SB No No No No Free C
Windows,

Linux,
MacOS

PRISM Probabilistic
PEPA, PRISM
language, Plain

MC

PLTL,
PCTL

No Yes No No Free C++, Java
Windows,

Linux,
MacOS

Reactis Tester (http://www.reactive-
systems.com/)

Hybrid Simulink/Stateflow ? No Yes Yes No
Non-freeCommercial

use only
?

Windows,
Linux

RED (http://sourceforge.net/projects
/redlib/)

Plain TCTL ? No Yes Yes No
Non-freeCommercial

use only
? Linux

SPIN Plain Promela LTL No Yes No No FUSC C, C++
Windows
and Unix
related

TAPAs Plain CCSP
CTL, mu
calculus

SB, WB,
BB, STE,

WTE,
me, ME,

OE

Yes Yes Yes Yes Free Java

Windows,
MacOS

and Unix
related

UPPAAL Real-time
Timed automata,

C subset
TCTL
subset

No Yes Yes Yes FUSC C++, Java
Windows,

Linux

Figure A.1 – Comparison of Model Checking tools.

A.2. List of Model Checkers, Modeling Languages and Specification Languages137

• FC2: Machine-level ASCII representation for synchronized (hierarchical) networks of au-
tomata. Defined by the Esprit Basic Research Action CONCUR, 1992. Used as an input
and exchange format by a number of verification tools, mainly in the area of process
algebras.

• FSP: Finite State Processes.

• Java: Object-oriented programming language.

• LOTOS: Language Of Temporal Ordering Specification (ISO standard 8807); formal spec-
ification language based on temporal ordering used for protocol specification in ISO OSI
standards.

• PEPA: Performance Evaluation Process Algebra; itis a stochastic process algebra designed
for modelling computer and communication systems.

• Plain MC: these are simple text-file formats used in MRMC and PRISM.

• PRISM language: PRISM model description language.

• Promela: Process or Protocol Meta Language; it is a verification modeling language. The
language allows for the dynamic creation of concurrent processes to model, for example,
distributed systems.

• Reactive modules: Component-based modeling language for synchronous and asynchronous
hardware and software systems.

• REDLIB: Timed CTL.

• Simulink/Stateflow: interactive design and simulation tool for event-driven systems.

• SCCS: Synchronous calculus of communicating systems.

• SMV:SMV input language.

• TCCS: Timed CCS.

• Verilog: an hardware description language (HDL) used to model electronic systems.

• VHDL: commonly used as a design-entry language for field-programmable gate arrays and
application-specific integrated circuits in electronic design automation of digital circuits.

• Verus: A C like language used with Verus model checker

138 Appendix A. Model Checking Overview

A.2.2 List of Property Specification Languages

• AFMC: Alternation Free Modal mu-Calculus.

• CSL: Continuous Stochastic Logic, characterizes bisimulation of continuous-time Markov
processes.

• CSRL: Continuous Stochastic Reward Logic; a logic to specify measures over CTMCs
extended with a reward structure (so-called Markov reward models).

• CTL: Computation Tree Logic; a branching-time logic, meaning that its model of time is
a tree-like structure in which the future is not determined; there are different paths in the
future, any one of which might be an actual path that is realized.

• GCTL: Generalized Computation Tree Logic, it’s both state based and action based.

• LTL: Linear temporal logic; a modal temporal logic with modalities referring to time.

• Monitor automata: Not sure about.

• mCRL2 mu-calculus: Kozen’s propositional modal mu-calculus (excluding atomic propo-
sitions), extended with: - data-depended processes - quantification over data types - multi
actions - time - regular formulas.

• mu-calculus: temporal logics with a least fix-point operator µ.

• PCTL: Probabilistic CTL; an extension of CTL which allows for probabilistic quantifica-
tion of described properties.

• PLTL: Probabilistic Linear Temporal Logic.

• PRCTL: Probabilistic Reward Computation Tree Logic; it extends PCTL with reward-
bounded properties.

• TCTL: Timed Computation Tree Logic is simply timed variant of CTL and is used in
TSMV model checker.

A.3 Relevance/Application to AFDX Network

As described in Chapter 1, AFDX network falls under the category of a real-time system.
Therefore, to analyze and model AFDX network we need to use a model checker that can
handle real-time systems. As shown in Figure A.1, not all the model checkers support real-time

A.3. Relevance/Application to AFDX Network 139

systems natively. This limits our choice to only fewer model checkers. There are other good
model checkers under the category of “un-timed" or “Plain", such as SMV, which we might
like to use for AFDX network. These non real-time model checkers can also be used for real-
time systems with a special modeling technique generally known as “Explicit-time Description
Methods". Explicit-Time Description Methods aim to verify real-time systems with general un-
timed model checkers. Lamport [Lamport 2005] presented an explicit-time description method
using a clock-ticking process (Tick) to simulate the passage of time together with a group of
global variables for time requirements. Other techniques exist as well which don’t use global
variables (place reference of papers related to explicit time such as Verifying Real-Time Systems
using Explicit-time Description Methods by Hao Wang and Wendy MacCaull). The main idea
of such techniques is to count clock ticks or time in the model. These techniques can only be
used for simply timed systems that is where time is discrete. As the system model explicitly
models the time, the obvious draw back is that state space increases rapidly and hence limits
this method for smaller system models.

Appendix B

Software Architecture

Contents
B.1 Software Architecture . 141

B.1.1 Parser . 142

B.1.2 Network Pruning . 143

B.1.3 Load Balancer . 144

B.1.4 Compute Module . 145

B.1.5 Control Logic . 146

Based upon the algorithms and properties presented in this thesis, a software tool has
been developed to compute exact worst case end to end communication delays of an AFDX
network. The software is written in Java. Java was selected for its ability to be portable across
multiple operating systems. The tool developed during this research work can be used as stand
alone application on a single machine or as a distributed computation application running on
multiple machines connected via network. There are two separate versions of the software which
both have same algorithms for computations of end-to-end delays but differ in the way these
calculations are managed: in one version computations runs on a single machine while in the
other one computations are distributed across multiple machines. In this appendix, the software
will be discussed in detail.

B.1 Software Architecture

The basic architecture of the software is shown in figure B.1. Parser is used to read the AFDX
network configuration data and to initialize the internal constructs and variables. Network
Pruning block builds the essential part of the network that is directly and indirectly linked with
the VL under study and removes the unconnected part of the whole network. This block is also

142 Appendix B. Software Architecture

Figure B.1 – Software architecture.

responsible to generate scenarios which can be candidate for worst case end-to-end delays. In
case of distribution computation, Load Balancer manages the computation distribution among
available machine nodes. In case of single machine, it distributes computations among locally
available cores. Compute module computes the delays and backlogs for a given sequence on
a given output port. It also constructs set of resulting output sequences. Finally the Con-
trol module is responsible for coordination between all modules and for collection of results.
The software uses Flow Based Programming [Morrison 2010] concepts to implement data flow
approach where computations proceed as the data flow from one output port to another. For dis-
tributed computations, Java based library named Java Parallel Processing Framework(JPPF)
is being used. The library can be found at http://www.jppf.org/

B.1.1 Parser

The input for this software is AFDX network configuration data. This data is in a specific
format which is used by Airbus. In order to read this information encoded in specific format,
a Parser is used in this software that takes a file as input and reads the configuration data in a

B.1. Software Architecture 143

defined format from the input file. We are interested in following information from this file:

• Name of all the VLs

• Paths of each VL

• BAG value for each VL

• Maximum packet size for each VL

Currently, there is no offset information for strictly periodic VLs in this configuration file.
The offset assignment for strictly periodic VLs can be added to configuration file very easily.
Presently, we assume no offsets for strictly periodic VLs but if required it can be assigned easily
with a variable already defined in the data structure code of the parser. Parser will parse all
above info from the configuration file and store it in the data structures for the use by rest of
the software. The output of the parser consists of list of all paths of the AFDX network with
associated data i.e VL name, BAG value, maximum packet size etc. for each path.

B.1.2 Network Pruning

After parsing the AFDX network configuration file, we have list of all the paths in the network.
At this stage, we need the reference path i.e. the path which is under study for end to end
communication delays. This path can be defined in many ways: either directly taken from user
input, or defined in code, or in an input file. Once we have the reference path, we need to find
the portion of network which is relevant to path under study i.e. the part of network which is
connected either directly or indirectly with the path under study. This is necessary in order
to reduce the complexity involved in computations. We refer this step as Network Pruning.
After network pruning, the remaining part of the network contains only the VL paths which we
consider in our algorithms.

From the list of remaining paths, after network pruning, we generate list of possible scenarios
which can be candidate for worst case end to end delays. This list is generated on the fly, i.e
we do not construct or store the whole list in memory but we do it one case at a time. This is
achieved thanks to lists of packets in each end system which is arranged according to properties
we have developed in Chapter 5. This is explained in section 5.5.4.

144 Appendix B. Software Architecture

Figure B.2 – JPPF Grid architecture.

B.1.3 Load Balancer

As mentioned earlier, this software has two versions: one which supports distributed compu-
tations and the one which runs on single machine only. The purpose of load balancer is to
distributed overall computation load to available resources. For distributed version, free java
library Java Parallel Processing Framework(JPPF) is being used to spread the computations
over available nodes connected through a network. JPPF makes it easy to parallelize computa-
tionally intensive tasks and execute them on a grid. JPPF is based on client-server architecture.

A JPPF grid is made of three main components that communicate together:

• Clients are entry points to the grid and enable developers to submit work via the client
APIs

• Servers are the components that receive work from the clients, dispatch it to the nodes,
receive the results from the nodes, and send these results back to the clients

• Nodes perform the actual work execution

The figure B.2 below shows how all the components are organized together. From this picture,
we can see that the server plays a central role, and its interactions with the nodes define a
master / slave architecture, where the server (i.e. master) distributes the work to the nodes
(i.e. slaves). Though here we have shown only one server, but JPPF allows more than one
servers on a grid interconnected by peer-to-peer network.

The smallest unit of work that can be handled in a JPPF grid is known as Task. A logical
grouping of all the tasks submitted together is known as Job. So in order to use JPPF grid, in
our software, we must define task. For this purpose, we consider that computation of delay on a
single output port is the smallest unit of work that can be distributed and hence it is considered

B.1. Software Architecture 145

as a task. The detail of what this task does is explained in section 5.2.1. The sequence of
computations is given as:

• Take the total number of cases which are candidate for worst case scenario

• For each case, on data flow basis, submit the task of calculation of delay on a single port
to the JPPF server. Once the results are obtained, submit the task of computation in
the consequent port in the path of considered case till all the output ports have been
computed.

• submit the results back to the client which gathers results.

• Once all cases have been computed, store/print the worst case and associated end to end
communication delay.

Load balancing is handled by JPPF server. More details of how JPPF server handles and
manages the load on a grid, please consult the online manual at http://www.jppf.org/

For stand alone version, we use number of threads equal to number of cores available on the
machine, and compute one case in one thread till all the cases have been analyzed. gathering
of results is similar to distributed version: we gather all the results and then store/print the
worst case and associated end to end communication delay. In both versions, we can store the
results of all cases but in order to save memory usage, we only store the result if its worse than
existing result.

B.1.4 Compute Module

This is the module where each task is executed. In this module we compute the delay on a given
output port and obtain the resulting sequences. Algorithm of section 5.2.1 is implemented in
this module. In distributed version of the software, this piece of code is executed on the grid.
Input to this module is sequences at the given port and output from this module is the resulting
delay at this port for the input sequences along with output sequence obtained after merging
the input sequences, as shown in figure 5.3. We implement the merging of sequence by using
Array. Each row of the array represents a packet in the sequence. Columns of the array
represent information about the packet. Packets of first sequence are stored in array as they
appear in the sequence. For remaining sequences, we check if the packet to be added in the
array overlaps with existing packet or not. In case it does not overlap with existing packet, then

146 Appendix B. Software Architecture

it is stored in Array at the current position. If packet overlaps with the existing packet in the
array, we move the packets depending upon their time of arrival.

B.1.5 Control Logic

Control module handles the overall coordination among modules and user interactions. In
distributed version, this module acts as client. This module gathers the results and saves final
result on disk as well. Control module acts as a glue logic among other core modules. For
example, Control module takes the input AFDX configuration file and passes over to Parser.
Then takes output from Parser and given it to Network Pruning module etc. In this module
we also define the path under study. For analyzing the complete network of the case study in
6, we use a loop. In this loop: we define first path of the network as a reference path, then
compute the worst case end to end communication delay for this reference path, change the
reference path to the next path in the total paths of the network and repeat the loop till we
have analyzed all the paths of the network.

Bibliography

[Adnan 2010a] Muhammad Adnan. State of the art in model checking: with application to afdx
network. Master thesis, ENSEEIHT Toulouse, 2010. (Cited on pages 5, 41 and 50.)

[Adnan 2010b] Muhammad Adnan, Jean-Luc Scharbarg, Jérôme Ermont and Christian
Fraboul. Model for worst-case delay analysis of an AFDX network using timed au-
tomata. In Proc. of the 15th ETFA (WiP session), Bilbao, Septembre 2010. (Cited on
pages 3, 5, 50 and 111.)

[Adnan 2010c] Muhammad Adnan, Jean-Luc Scharbarg, Jérôme Ermont and Christian Fraboul.
Worst-case end-to-end delay analysis of switched Ethernet using timed automata.
In Junior Researcher Workshop on Real-Time Computing , Toulouse, pages 23–26,
http://www.irit.fr/, November 2010. IRIT. (Cited on page 5.)

[Adnan 2011a] Muhammad Adnan, Jean-Luc Scharbarg, Jérôme Ermont and Christian
Fraboul. An improved timed automata model for computing exact worst-case delays
of AFDX periodic flows. In Proc. of the 16th ETFA (WiP session), Toulouse, Septembre
2011. (Cited on pages 5, 76, 77 and 79.)

[Adnan 2011b] Muhammad Adnan, Jean-Luc Scharbarg and Christian Fraboul. Minimizing the
search space for computing exact worst-case delays of AFDX periodic flows. In Proc. of
the 6th SIES, Vasteras, June 2011. (Cited on pages 5 and 58.)

[Adnan 2012] M. Adnan, J.-L. Scharbarg, J. Ermont and C. Fraboul. An improved timed au-
tomata approach for computing exact worst-case delays of AFDX sporadic flows. In
Emerging Technologies Factory Automation (ETFA), 2012 IEEE 17th Conference on,
pages 1–8, 2012. (Cited on pages 5 and 79.)

[Alur 1994] Rajeev Alur and David L. Dill. Theory of Timed Automata. Theoritical Computer
Science, vol. 126, no. 2, pages 183–235, 1994. (Cited on page 3.)

[Apt 1986] K. R. Apt and D. Kozen. Limits for the automatic verification of finite-state con-
current systems. In Information Processing Letters, volume 22(6), pages 307–309, 1986.
(Cited on page 15.)

[ARINC 653 1997] Aeronautical Radio Inc ARINC 653. ARINC Specification 653. Avionics
Application Software Standard Interface, 1997. (Cited on pages 15 and 130.)

148 Bibliography

[ARINC 664 2005] Aeronautical Radio Inc ARINC 664. AIRCRAFT DATA NETWORK PART
7 AVIONICS FULL DUPLEX SWITCHED ETHERNET (AFDX) NETWORK. 2005.
(Cited on pages 3, 18 and 130.)

[Baier 2008] Christel Baier and Joost-Pieter Katoen. Principles of model checking (representa-
tion and mind series). The MIT Press, 2008. (Cited on pages 1, 2 and 12.)

[Bauer 2009] Henri Bauer, Jean-Luc Scharbarg and Christian Fraboul. Applying and optimizing
Trajectory approach for performance evaluation of AFDX avionics network. In Proc. of
the 14th International Conference on Emerging Technologies and Factory Automation,
pages 1–8, Mallorca, september 2009. IEEE. (Cited on pages 3 and 39.)

[Bauer 2010] Henri Bauer, Jean-Luc Scharbarg and Christian Fraboul. Improving the worst-
case delay analysis of an AFDX network using an optimized trajectory approach. IEEE
transactions on industrial informatics, vol. 6, no. 4, pages 521–533, Novembre 2010.
(Cited on pages 3, 39, 59 and 87.)

[Bérard 2001] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci and Ph.
Schnoebelen. Systems and Software Verification: Model-Checking Techniques and Tools.
Springer-Verlag, 2001. (Cited on pages 15 and 79.)

[Boehm 2001] Barry Boehm and Victor R. Basili. Software Defect Reduction Top 10 List.
Computer, vol. 34, no. 1, pages 135–137, January 2001. (Cited on page 10.)

[Boyer 2008] M. Boyer and C. Fraboul. Tightening end to end delay upper bound for AFDX
network calculus with rate latency FIFO servers using network calculus. In Factory
Communication Systems, 2008. WFCS 2008. IEEE International Workshop on, pages
11–20, 2008. (Cited on page 39.)

[Charara 2006a] Hussein Charara, Jean-Luc Scharbarg, Jérôme Ermont and Christian Fraboul.
Methods for Bounding end-to-end Delays on an AFDX Network. In Proceedings of the
18th ECRTS, pages 193–202, Dresden, Germany, July 2006. (Cited on pages 3, 62, 81,
87, 97, 111 and 127.)

[Charara 2006b] Hussein Charara, Jean-Luc Scharbarg, Jerome Ermont and Christian Fraboul.
Methods for bounding end-to-end delays on an AFDX network. ECRTS ’06: Proceedings
of the 18th Euromicro Conference on Real-Time Systems, pages 193–202, 2006. (Cited
on pages 5, 50, 55 and 58.)

[Clarke 1981] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skele-
tons using branching time temporal logic. In In Logic of Programs, volume 131 of Lecture
Notes in Computer Science, pages 52–71. Springer-Verlag, 1981. (Cited on page 15.)

Bibliography 149

[Clarke 1996a] E. M. Clarke and R. Kurshan. Computer-aided verification. In IEEE Spectrum,
volume 33(6), pages 61–67, 1996. (Cited on page 15.)

[Clarke 1996b] E. M. Clarke and J. Wing. Formal methods: state of the art and future directions.
In ACM Computing Surveys, volume 28(4), pages 626–643, 1996. (Cited on page 15.)

[Clarke 1999] E. M. Clarke, O. Grumberg and D. Peled. Model Checking. MIT Press, 1999.
(Cited on page 15.)

[Clarke 2000] E. M. Clarke and H. Schlingloff. Model checking. In In A. Robinson and A.
Voronkov, editors, Handbook of Automated Reasoning (Volume II), pages 1635–1790.
Elsevier Publishers B.V., 2000. (Cited on page 15.)

[Cruz 1991a] R.L. Cruz. A Calculus for network delay, Part I. IEEE Transactions on Informa-
tion Theory, vol. 37, no. 1, pages 114–131, January 1991. (Cited on page 3.)

[Cruz 1991b] R.L. Cruz. A Calculus for network delay, Part II. IEEE Transactions on Infor-
mation Theory, vol. 37, no. 1, pages 132–141, January 1991. (Cited on page 3.)

[Discussion Group 2010] UPPAAL Discussion Group. http://tech.groups.yahoo.com/group/ up-
paal/message/1609. 2010. (Cited on pages 72 and 77.)

[Fidge 2006] Colin Fidge and Yu-Chu Tian. Functional Analysis of a Real-Time Protocol for
Networked Control Systems. In Susanne Graf and Wenhui Zhang, editeurs, Automated
Technology for Verification and Analysis, volume 4218 of Lecture Notes in Computer
Science, pages 446–460. Springer Berlin Heidelberg, 2006. (Cited on page 15.)

[Fraboul 2002a] C. Fraboul and F. Frances. Applicability of Network Calculus to the AFDX.
Rapport technique PBAR-JD-728.0821/2002, 2002. (Cited on pages 3 and 87.)

[Fraboul 2002b] C. Fraboul and F. Frances. Applicability of Network Calculus to the AFDX.
Technical Report PBAR-JD-728.0821/2002, 2002. (Cited on pages 26 and 31.)

[Frances 2006] F. Frances, C. Fraboul and J Grieu. Using network calculus to optimize the
AFDX network. In Proceedings of ERTS, Toulouse, France, January 2006. (Cited on
pages 26 and 31.)

[Hajek 1978] J. Hajek. Automatically verified data transfer protocols. In In 4th International
Conference on Computer Communication (ICCC), pages 749–756. IEEE Computer So-
ciety Press, 1978. (Cited on page 15.)

[Holzmann 1990] G. J. Holzmann. Design and Validation of Computer Protocols. Prentice-Hall,
1990. (Cited on page 15.)

150 Bibliography

[Holzmann. 1994] G.J. Holzmann. The theory and practice of a formal method: NewCoRe. 13th
IFIP World Computer Congress, North Holland, pages 35–44, 1994. (Cited on page 14.)

[Huth 1999] M. Huth and M. D. Ryan. Logic in Computer Science - Modelling and Reasoning
about Systems. Cambridge University Press, 1999. (Cited on page 15.)

[Jean-Yves Le Boudec 2001] Patrick Thiran Jean-Yves Le Boudec. Network calculus: A theory
of deterministic queuing systems for the internet. Springer-Verlag, Berlin, DE, 2001.
(Cited on page 26.)

[Kurshan 1994] R. Kurshan. Computer-aided Verification of Coordinating Processes: The
Automata-Theoretic Approach. Princeton University Press, 1994. (Cited on page 15.)

[Lamport 2005] Leslie Lamport. Real-Time Model Checking Is Really Simple. Lecture Notes in
Computer Science, pages 162–175, 2005. (Cited on page 139.)

[Lauer 2010] Michaë Lauer, Jérôme Ermont, Claire Pagetti and Frédéric Boniol. Analyzing end-
to-end functional delays on an IMA platform. In Proceedings of the 4th international
conference on Leveraging applications of formal methods, verification, and validation
- Volume Part I, ISoLA’10, pages 243–257, Berlin, Heidelberg, 2010. Springer-Verlag.
(Cited on pages 15 and 130.)

[Le Boudec 2001] Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory
of Deterministic Queuing Systems for the Internet, volume 2050 of Lecture Notes in
Computer Science. Springer-Verlag, 2001. ISBN: 3-540-42184-X. (Cited on page 3.)

[Li 2010] Xiaoting Li, Jean-Luc Scharbarg and Christian Fraboul. Improving end-to-end delay
upper bounds on an AFDX network by integrating offsets in worst-case analysis. In Proc.
of the 14th ETFA, Bilbao, septembre 2010. (Cited on pages 3, 39 and 44.)

[Martin 2004] Steven Martin. Maîtrise de la dimension temporelle de la qualité de service dans
les réseaux. PhD thesis, Université Paris XII, July 2004. (Cited on page 32.)

[Martin 2006a] S. Martin and P Minet. Schedulability analysis of flows scheduled with FIFO:
application to the expedited forwarding class. In 20th International parallel and dis-
tributed processing symposium, Rhodes Island, Greece, April 2006. (Cited on pages 3,
32, 38 and 87.)

[Martin 2006b] Steven Martin and Pascale Minet. Worst case end-to-end response times of
flows scheduled with FP/FIFO. In 5th IEEE International Conference on Networking,
Mauritius, April 2006. (Cited on page 32.)

[McMillan 1993] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.
(Cited on page 15.)

Bibliography 151

[Merz 2001] S. Merz. Model checking: a tutorial. In In F. Cassez, C. Jard, B. Rozoy, and M.D.
Ryan, editors, Modelling and Verification of Parallel Processes, volume 2067 of Lecture
Notes in Computer Science, pages 3–38. Springer-Verlag, 2001. (Cited on page 15.)

[Migge 1999] Jorn Migge. L’ordonnancement sous contraintes temps-réel : un modéle á base de
trajectoires. PhD thesis, INRIA, Sophia Antipolis France, November 1999. (Cited on
page 32.)

[Morrison 2010] J. Paul Morrison. Flow-based programming, 2nd edition: A new approach to
application development. CreateSpace Independent Publishing Platform, 2010. (Cited
on pages 120 and 142.)

[Nesrine 2013] Badache Nesrine, Jaffres-Runser Katia, Jean-Luc Scharbarg and Christian
Fraboul. End to End delay analysis in an Integrated Modular Avionics architecture. In
Proc. of the 18th ETFA (WiP session), Cagliari, Septembre 2013. (Cited on page 131.)

[NuSMV] NuSMV. http://nusmv.fbk.eu/. (Cited on pages 41 and 43.)

[Queille 1982] J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems.
In CESAR. In 5th International Symposium on Programming, volume 137 of Lecture
Notes in Computer Science, pages 337–351. Springer-Verlag, 1982. (Cited on page 15.)

[Ruel 2008] Silvain Ruel and FAURE Jean-Marc. Building effective formal methods to prove
time properties of networked automation systems. In in Proc. of 9th International Work-
shop on Discrete Event Systems, Goteborg, Sweden, May 2008. (Cited on page 15.)

[Ruys 2003] T. C. Ruys and E. Brinksma. Managing the verification trajectory. In International
Journal on Software Tools for Technology Transfer, volume 4(2), pages 246–259, 2003.
(Cited on page 15.)

[Scharbarg 2009] Jean-Luc Scharbarg, Frédéric Ridouard and Christian Fraboul. A probabilistic
analysis of end-to-end delays on an AFDX network. IEEE transactions on industrial
informatics, vol. 5, no. 1, February 2009. (Cited on pages 3 and 58.)

[Schneider 2004] K. Schneider. Verification of Reactive Systems: Formal Methods and Algo-
rithms. Springer-Verlag, 2004. (Cited on page 15.)

[Steve 2007] LIMAL Steve and LESAGE Jean-Jacques. Formal verification of redundant media
extension of Ethernet PowerLink. In Proceedings of the ETFA, Patras, Grece: IEEE,
September 2007. (Cited on page 15.)

[Straunstrup 2000] J. Straunstrup, H.R. Andersen, H. Hulgaard, J. Lind-Nielsen, G. Behrmann,
K. Kristoffersen, A. Skou, HH. Leerberg and N.B. Theilgaard. Practical verification of
embedded software. Computer, vol. 33, no. 5, pages 68–75, 2000. (Cited on page 13.)

152 Bibliography

[Tindell 1994] Ken Tindell and John Clark. Holistic schedulability analysis for distributed hard
real-time systems. Microprocess. Microprogram., vol. 40, no. 2-3, pages 117–134, 1994.
(Cited on page 32.)

[UPPAAL] UPPAAL. http://www.uppaal.com. (Cited on pages 41 and 49.)

[West 1978] C. H. West. An automated technique for communications protocol validation. In
IEEE Transactions on Communications, volume 26(8), pages 1271–1275, 1978. (Cited
on page 15.)

[West 1989] C. H. West. Protocol validation in complex systems. In In Symposium on Com-
munications Architectures and Protocols, pages 303–312. ACM Press, 1989. (Cited on
page 15.)

[Whittaker 2000] J.A. Whittaker. What is software testing? And why is it so hard? Software,
IEEE, vol. 17, no. 1, pages 70–79, 2000. (Cited on page 10.)

[Wolper 1995] P. Wolper. An introduction to model checking. In Position statement for panel
discussion at the Software Quality workshop, 1995. (Cited on page 15.)

[Zhang 1995] Hui Zhang. Service Disciplines for guaranteed performance service in packet-
switching networks. Proceedings of the IEEE, vol. 83, no. 10, pages 1374–1396, October
1995. (Cited on page 81.)

Index
ADN, 17
AFDX, 2, 17
ARINC 429, 17
Arrival Curve, 25

BAG, 20
Busy period, 31

Complexity of Java based tool, 93
Complexity of timed automata, 73
Concatenation of curves, 28
CSMA/CD, 18
Cumulative Functions, 25

Emulation, 10
Exhaustive Simulation, 9

ICT, 1
IMA, 14
Input and Output Functions, 25

Model, 11
Model checker, 11

Network Calculus, 24
Network Calculus Bounds, 27

Peer review, 9

Service Curve, 25
Simulation, 10
State-Space, 12, 37
Structural analysis, 10

Trajectory approach, 30

Virtual Link, 20

List of Abbreviations

ADN Aircraft Data Network

AFDX Avionics Full-Duplex Switched Ethernet

ARINC Aeronautical Radio, Incorporated

ATM Asynchronous Transfer Mode

BAG Bandwidth Allocation Gap

BDD Binary Decision Diagram

CSMA/CD Carrier Sense Multiple Access with Collision Detection

CTL Computation Tree Logic

ES End System

ESA European Space Agency

FAA Federal Aviation Authority

FIFO First In First Out

FSM Finite State Machine

ICT Information and Communication Technology

IMA Integrated Modular Avionics

LTL Linear Temporal Logic

NASA National Aeronautics and Space Administration

NC Network Calculus

QoS Quality of Service

SW Switch

TA Timed Automata

V L Virtual Link

Exact Worst-Case Communication Delay Analysis of AFDX Network

Abstract: The main objective of this thesis is to provide methodologies for finding exact worst case end to end

communication delays of AFDX network. Presently, only pessimistic upper bounds of these delays can be calculated by

using Network Calculus and Trajectory approach.

To achieve this goal, different existing tools and approaches have been analyzed in the context of this thesis. Based on this

analysis, it is deemed necessary to develop new approaches and algorithms.

First, Model checking with existing well established real time model checking tools are explored, using timed automata.

Then, exhaustive simulation technique is used with newly developed algorithms and their software implementation in order

to find exact worst case communication delays of AFDX network.

All this research work has been applied on real life implementation of AFDX network, allowing us to validate our research

work on industrial scale configuration of AFDX network such as used on Airbus A380 aircraft.

Keywords: AFDX Network, Model Checking, Worst Case Communication Delay, Exhaustive Simulation

Analyse du délai de transmission pire cas exact du réseau AFDX

Résumé : L’objectif principal de cette thèse est de proposer les méthodes permettant d’obtenir le délai de transmission

de bout en bout pire cas exact d’un réseau AFDX. Actuellement, seules des bornes supérieures pessimistes peuvent être

calculées en utilisant les approches de type Calcul Réseau ou par Trajectoires.

Pour cet objectif, différentes approches et outils existent et ont été analysées dans le contexte de cette thèse. Cette analyse

a mis en évidence le besoin de nouvelles approches.

Dans un premier temps, la vérification de modèle a été explorée. Les automates temporisés et les outils de verification

ayant fait leur preuve dans le domaine temps réel ont été utilisés.

Ensuite, une technique de simulation exhaustive a été utilisée pour obtenir les délais de communication pire cas exacts.

Pour ce faire, des méthodes de réduction de séquences ont été définies et un outil a été développé.

Ces méthodes ont été appliquées à une configuration réelle du réseau AFDX, nous permettant ainsi de valider notre travail

sur une configuration de taille industrielle du réseau AFDX telle que celle embarquée à bord des avions Airbus A380.

Mots-clés : Réseau AFDX, Vérification de modèles, Délai de communication pire cas, Simulation exhaustive

	Acknowledgments
	Executive Summary
	List of Personal Publications
	Contents
	List of Figures
	List of Tables
	Chapter 1. Introduction
	1.1The Context
	1.2Contribution

	Chapter 2. Background: System Verification and AFDX Network
	2.1System Verification
	2.1.1Software Verification
	2.1.2Hardware Verification
	2.1.3Behavioral Verification

	2.2Model Checking
	2.2.1Formal Methods
	2.2.2Model-based Verification
	2.2.3History of Model Checking
	2.2.4Application of Model Checking in Networks
	2.2.5Characteristics of Model Checking

	2.3AFDX Network
	2.3.1History of Aircraft Data Networks (ADN)
	2.3.2Overview of AFDX
	2.3.3Virtual Links (VL)

	Chapter 3.State of the Art: Methods to Compute the Worst Case End to End Delays in an AFDX Network
	3.1Bounds of Worst Case End-to-End Communication Delays
	3.1.1Network Calculus
	3.1.2Trajectory Approach
	3.1.3Pessimism of Network calculus and Trajectory approach
	3.1.4Conclusion

	3.2Exact Worst Case End-to-End Communication Delays
	3.2.1Model Checking
	3.2.2Exhaustive Simulation
	3.2.3Conclusion

	3.3Conclusion

	Chapter 4.An Improved Method to Compute the Exact Worst Case End-to-End Delay using Timed Automata
	4.1Characteristics of a worst-case scenario
	4.1.1Definition of a scenario
	4.1.2Critical Instance Property

	4.2The modelling based on timed automata
	4.2.1Modelling the VLs
	4.2.2Modelling the Switches
	4.2.3Modelling the Synchronization
	4.2.4Utility Automata: modelling of the buffers
	4.2.5Utility Automata: end to end delay computation

	4.3Limits of the approach
	4.4Conclusion

	Chapter 5.A New Approach Based on Exhaustive Simulation to Compute the Exact Worst-Case End to End delays
	5.1Modelling of the network and a scenario
	5.1.1Nomenclature and definitions
	5.1.2Modelling of a scenario
	5.1.3Reducing the number of scenarios

	5.2Computing worst case end to end delays using sequences
	5.2.1Computation of delay and merging of sequences at a switch output port

	5.3Worst-case end to end delay computations on a simple AFDX network using sequences
	5.3.1Presentation of the system
	5.3.2Computing the worst case end to end delay of VL under study
	5.3.3Computation of the sequences generated at the input of switch S2
	5.3.4 Computation of the resulting sequences at the output of switch S2
	5.3.5 Computation of the sequences at the input ports of switch S1
	5.3.6 Computation of the sequences at the output of switch S1
	5.3.7 Computation of the sequences at the input ports of switch S3
	5.3.8 Computation of the sequences at the output of switch S3

	5.4Evaluation of the sequence based approach
	5.5More Improvements and reduction in scenarios
	5.5.1Modeling of Sporadic traffic
	5.5.2Further reduction of scenarios
	5.5.3Candidate scenario for worst case delays
	5.5.4Algorithm to further reduce number of cases

	5.6Conclusion

	Chapter 6.Case Study
	6.1AFDX network system of industrial scale complexity
	6.1.1 Understanding the complexity of industrial scale AFDX network

	6.2Software Architecture
	6.3Results of the Case Study
	6.3.1Comparison of results with Network Calculus and Trajectory approach

	6.4Conclusion

	Chapter 7.Conclusions and Prospective
	7.1Conclusions
	7.2Prospective

	Appendix A. Model Checking Overview
	A.1Classification
	A.2List of Model Checkers, Modeling Languages and Specification Languages
	A.2.1List of Modeling Languages
	A.2.2List of Property Specification Languages

	A.3Relevance/Application to AFDX Network

	Appendix B.Software Architecture
	B.1Software Architecture
	B1.1Parser
	B.1.2 BNetwork Pruning
	B.1.3Load Balancer
	B.1.4Compute Module
	B.1.5Control Logic

	Bibliography
	Index
	List of Abbreviations
	Abstract

