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Résumé 
 

La croissance et le développement des plantes sont fortement régulés par plusieurs 

hormones végétales, dont l‟auxine qui joue un rôle prépondérant. La modification de 

l‟expression de certains gènes en réponse à l‟auxine est contrôlée par des interactions 

spécifiques entre les facteurs de transcription ARF (Auxin Response Factors) et les protéines 

Aux/IAA. Des études sur Arabidopsis thaliana ont aussi montré l‟implication de 

corépresseurs de la famille TOPLESS pour réprimer les gènes cibles des ARF. Toutefois, cette 

régulation transcriptionnelle a surtout été caractérisée chez la plante modèle Arabidopsis et la 

validité de ce modèle n‟a pas encore été confortée par l‟étude d‟autres modèles. La tomate 

(Solanum lycopersicon), espèce modèle tant pour les Solanacées que pour les plantes à fruits 

constitue une bonne alternative pour élucider les caractères généraux liés à la signalisation 

auxinique. Dans notre travail, nous avons d‟abord mis en place des protocoles expérimentaux 

– double-hybride, pull-down, complémentation de fluorescence (BiFC, Bifluorescence 

Complementation) – permettant d‟étudier les interactions protéines-protéines. Ces méthodes 

ont d‟abord été validées sur des couples Aux/IAA – ARF étant connus chez la tomate pour 

leur implication dans le développement et la maturation des fruits (SlIAA9, SlARF8, SlIAA3, 

SlARF4, SlIAA27). L‟utilisation du double hybride a également permis de construire une 

carte d‟interactions entre les Aux/IAA et les ARF de tomate. Dans un deuxième temps, la 

disponibilité de la séquence du génome de la tomate a permis d‟entreprendre une étude 

globale de la famille des corépresseurs TOPLESS. Cette étude a inclus : la caractérisation et 

le clonage des gènes, l‟analyse de la séquence protéique, une analyse phylogénétique de la 

famille sur un ensemble de génome séquencés, la caractérisation du profil d‟expression des 

différentes isoformes ainsi qu‟une analyse comparative de leur capacité d‟interaction avec les 

protéines Aux/IAA. Enfin, dans un dernier temps, nous avons souhaité construire des 

premiers outils permettant d‟entreprendre une recherche non-ciblée de nouveaux partenaires 

interagissant avec les protéines ARF ou Aux/IAA en partant de protoplastes de cellules BY-2 

de tabac exprimant de façon transitoire des gènes codant des protéines chimères (tagged 
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proteins). Même si ce travail reste préliminaire, il a pu notamment illustrer l‟importance de 

l‟intégrité des noyaux pour la stabilité des Aux/IAA, même en l‟absence d‟auxine. 
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Abstract 
 

The plant hormone auxin plays a central role in plant growth and development. The 

specific Aux/IAAs and Auxin Response Factors (ARFs) interactions are involved in auxin 

signaling pathway to regulate the auxin-responsive gene expression. Studies in Arabidopsis 

showed that TOPLESS family (TPLs) also was recruited by some Aux/IAAs to repress the 

function of ARFs. The whole machinery of the auxin signaling pathway is not clear yet, and 

most of this knowledge comes from the research on Arabidopsis. As a reference for 

Solanaceae and fleshy fruit plant, tomato (Solanum lycopersicon) is a good alternative model 

to better understand general traits of the auxin regulation process. In our work, we first 

established in our labs three experimental protocols – Yeast two-Hybrid, Pull-down and 

Bifluorescence complementation to unravel protein-protein interactions. These methods were 

first challenged on specific Aux/IAA and ARF proteins that were already characterized as 

major actors in fruit tomato development or ripening (SlIAA9, SlARF8, SlIAA3, SlARF4, 

SlIAA27). This also enabled us to build an ARF-Aux/IAA interaction map. In a second part, 

taking advantage of the tomato genome sequence, we carried a whole-genome study on 

tomato TOPLESS family. This investigation included gene cloning and characterization, 

protein sequence analysis, phylogenetic analyses, expression pattern and construction of 

protein-protein interaction maps. In a last part, we developed tools to start a non-targeted 

approach aiming at identifying new potential partners or protein complex involved in auxin 

signaling pathway using BY-2 tobacco cell protoplasts transiently expressing tagged-proteins. 

Although this study is still preliminary, it demonstrated the importance of nucleus integrity for 

Aux/IAA stability even in absence of auxin. 
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摘  要 
 

植物生长素激素在植物的生长和发育过程中扮演着非常重要的角色。一些特定的生

长素响应蛋白 IAA 与生长素响应因子 ARF 的相互作用在生长素信号途径中起了关键的

作用，这些相互作用调控着下游生长素响应基因的表达情况。越来越多关于拟南芥的研

究表明，一些 IAA 蛋白可以通过招募 TOPLESS 家族蛋白的互作方式共同抑制 ARF 蛋

白的活性。很多关于生长素信号传导途径的认识主要来自于对拟南芥植物的研究工作，

但具体的生长素信号传导机制到目前还没有完全清楚。为了更好的弄清楚生长素调控的

机制，特别是对于其它植物例如果实的成熟调控研究，番茄这种茄科属类又能提供新鲜

果实的植物是一个很好的研究的对象。在我们的工作里，我们首先为实验室建立起了三

种有效的研究蛋白质互作的方法：Yeast 酵母双杂交、Pull-down 实验、双分子荧光互补

技术。这些方法首先被用来检测一些已经报道过的与番茄果实发育相关的蛋白之间的互

作情况，例如 IAA9、ARF8、IAA3、ARF4 和 IAA27。随后，关于整个番茄 IAA 蛋白家

族与 ARF 蛋白家族之间的互作也得到了相应的检测。论文第二部分，得益于基因组测

序的研究进展，我们展开了对番茄 TOPLESS 家族系统全面的研究。研究内容包括它的

基因信息、蛋白信息、进化分析、表达模式分析以及蛋白质互作分析等。论文最后部分

工作主要是依据 BY-2 烟草原生质体瞬时表达系统，通过表达已知的标签蛋白，探寻和

获取生长素信号传导过程中未知和潜在的蛋白复合体。尽管最后这项工作只是一个开

端，但它已经暗示了 IAA 家族蛋白只能在完整的细胞核中保持稳定全长。 
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General introduction of the thesis 
 

The phytohormone auxin affects many plant development processes, from cell level to 

tissue level, which includes cell division, elongation, rhizogenesis, apical dominance and 

organ patterning. Auxin rapidly alters the expression of hundreds of genes within minutes 

(Chapman and Estelle 2009; Goda et al. 2008). Aux/IAAs gene family comprises some of the 

most important early auxin-inducible genes. After the perception of auxin in the nucleus, the 

proteins of Aux/IAA family, Auxin Response Factor family (ARFs) and Topless family (TPLs) 

play key roles in the auxin signaling pathway: ARF being transcription factors that activate or 

repress the auxin-responsive gene expression, Aux/IAA repressing the activity of ARF and 

having its turnover controlled by the presence or absence of auxin (Guilfoyle and Hagen 2007; 

Szemenyei et al. 2008). More over, studies in Arabidopsis showed that TOPLESS family 

(TPLs) is also recruited by some specific Aux/IAAs to repress the function of ARFs 

(Szemenyei et al. 2008; Li et al. 2011a; Causier et al. 2012). This emerging model of auxin 

signaling pathway is not completely deciphered, and most of its knowledge comes from the 

research on Arabidopsis, which is not a suitable model to analyze fruit development. To 

understand better the auxin regulation process on other plants, the tomato which is a reference 

species for Solanaceae and fleshy fruit plants constitutes a good alternative model of study.  

In our lab, Sl-IAA and Sl-ARF families in tomato were characterized and the result was 

published recently (Audran-Delalande et al. 2012, Fu et al. in preparation). As protein-protein 

interactions between members of Aux/IAA, ARF, or TOPLESS multigenic families are 

believed to be crucial for auxin mediation, the work described in my PhD thesis aimed at 

elucidating the specificities of interactions between different isoforms. In addition, we also 

developed tools to explore the existence of some new potential partners or protein complex 

involved in auxin signaling pathway in tomato. 

The Chapter I gives a general review about the studies of auxin regulation machinery. 

Most of the protein components involved in auxin regulation during auxin synthesis, 

transportation, perception and signaling regulation will be introduced in this Chapter. Chapter 
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II focuses on the development of protein-protein interactions studies that were applied in the 

frame of Sl-IAAs and Sl-ARFs families. Several approaches were combined – yeast 

two-hybrid (Y2H), pull-down, bimolecular fluorescence complementation (BiFC) in order to 

revisit the Aux/IAA-ARF interaction map or to focus on more specific pairs of partners that 

were studied in the lab and that are known to be involved in fruit development or ripening. 

Chapter III is dedicated to molecular and functional characterization of six Sl-TPL genes. Our 

analysis focused on the identification, evolutionary relationships and expression patterns of 

each member of the tomato TPL family. Moreover, we used yeast two-hybrid approach to 

establish the framework of TPL/IAA and TPL/ARF protein-protein interactions. These results 

will provide a framework for further studies to better understand the potential functions of 

TPL proteins in tomato plants, especially during the flower and fruit development. 

At last, since Aux/IAA and ARFs act both upstream (as an element of auxin perception) 

and downstream (as members of the activation and/or repression complexes) in the auxin 

perception cascade, we considered the development of non-targeted approaches to fish new 

proteins involved in auxin signaling which are detailed in chapter IV. Indeed, in Eukaryotes, 

transcription regulating complexes involve a large set of proteins that typically comprises 

TRANSPORTER INHIBITOR RESPONSE 1 (TIR1)/AUXIN-SIGNALING F-BOX (AFB), 

AUXIN/INDOLE ACETIC ACID (Aux/IAA), AUXIN RESPONSE FACTOR (ARF), and 

TOPLESS (TPL)/TPL-RELATED (TPR) (Lee et al. 2013). It is likely that in auxin signaling, 

either Aux/IAA, ARF or TOPLESS interact with several partners among the transcription 

machinery complexes. This led us to the in vivo production of specific Sl-IAAs and Sl-ARFs 

proteins fused with GFP-tag (IAA3-GFP, IAA9-GFP and ARF8a-GFP). This approach, 

although remaining incomplete, opens the perspective to give us more useful information and 

to discover the existence of other protein-protein interactions involved in plant signaling.   
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Chapter I: Bibliographic review 
 

 

1. Auxin in plant 

 

1.1 Roles of auxin 

In 1880, a plant substance that enables the modulation of plant shoot elongation and 

allows tropic growth toward light was observed by Charles Darwin. It was the first 

observation of auxin regulation of plant development (Darwin 1880). This substance had been 

isolated and called auxin (Thimann 1977). Several molecules displaying auxin activity, such 

as indole-3-butyric (IBA), 4-Chloroindole-3-acetic (4-Cl-IAA) and indole-3-propionic acid 

(IPA) were discovered latter. Nevertheless, the major form in plants is indole-3-acetic (IAA) 

(Ozga et al. 2002; Van Huizen et al. 1997; Woodward and Bartel 2005, Zolman et al. 2000). 

Indole-3-acetic acid is a small tryptophan-derived phytohormone that regulates many 

plant growth and developmental processes including embryogenesis (Hamann et al. 2002; 

Weijers et al. 2006), tropic growth (Holland et al. 2009), leaf formation (Scarpella et al. 2010), 

stem elongation (Vernoux et al. 2010), root elongation (Overvoorde et al. 2010), and fruit 

development (Sundberg and Ostergaard 2009). The plasticity of plant development and its 

responsiveness to a multitude of environmental situations suggest that regulatory mechanisms 

are very complex. Indeed auxin starvation of cells leads to the arrest of cell division which 

can be restored by application of auxin (Stals and Inze 2001; Inze and De Veylder 2006). 

Inactivation of auxin perception pathway leads to cell-cycle arrest (David et al. 2007) or 

displays aberrant cell division in the suspensor during embryo development (Chen et al. 

2001a). Auxin was also shown to induce rapid cell elongation in stem and hypocotyl segments 

(Rayle and Cleland 1992), to increase expansion of some leaf tissues and to display altered 

cell expansion (Chen et al. 2001b). Study of root growth in response to different auxin 

concentration treatment showed that low auxin concentration stimulates root growth but high 
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level of auxin plays an inhibitor for root elongation (Mulkey et al. 1982; Golaz and Pilet 

1987). Gradient of auxin transporter distribution in the root strongly regulates the root 

elongation. The root development, notably the lateral root (LR) initiation, has also been a 

large object of study (Friml et al. 2002; Krecek et al. 2009; Dubrovsky et al. 2001; Dubrovsky 

et al. 2009). The presence of auxin is essential for organ initiation (Heisler and Jonsson 2007) 

and the formation of lateral leaves (Reinhardt et al. 2000; Reinhardt et al. 2003). Auxin also 

regulates floral meristems which controls floral organs formation and spatial distribution 

(Cheng and Zhao 2007).  

 

1.2 Multiple proteins involved in auxin metabolism and mediation 

 

Auxin synthesis 

The whole auxin regulation mechanism in plant involves several programs: auxin 

metabolism (biosynthesis, production of auxin-conjugates and catabolism), auxin transport, 

auxin perception and auxin signaling pathway. 

    In Arabidopsis, analysis revealed that different pathways of auxin biosynthesis involve a 

key amino acid: the tryptophan (Trp) (Bartel 1997). Recent studies showed Trp dependent and 

independent pathways both contribute to IAA biosynthesis in shoots but only Trp dependent 

way is predominant in roots (Kiyohara et al. 2011; Ehlert et al. 2008). Auxin can be produced 

both in shoot and root (Cheng et al. 2006; Stepanova et al. 2008; Petersson et al. 2009). The 

localization of auxin synthesis plays a role in the regulation of auxin function, such as to 

modulate gradient directed polarity in root hair development in Arabidopsis (Ikeda et al. 

2009). The environment and development signal also could change the auxin synthesis 

behavior (Tao et al. 2008).  

 

Auxin transport 

    After auxin synthesis, it will be transported to be present in other tissues in plant. Auxin 

is transported actively in a polar way from one part to another (Blakeslee et al. 2005), that is 

essential for the initiation and maintenance of polarized plant growth (Carrier et al. 2008; 
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Wang et al. 2011). Auxin transport needs carriers (Blakeslee et al. 2005; Carrier et al. 2008). 

Decades of studies revealed that the auxin transport carriers comprise AUXIN RESISTANT 

1/LIKE AUX1 (AUX/LAX), PINFORMED (PIN), PIN-LIKES (PILS) and ATP-binding 

cassette transporters/multi-drug resistance/P-glycoprotein (ABCB/PGP) (Bennett et al. 1996 ; 

Palme and Galweiler 1999 ; Noh et al. 2001). 

 

The AUXIN BINDING PROTEIN 1 signaling pathway 

    For auxin perception and signaling pathway, specific binding proteins and interactions 

between these proteins are needed. The first auxin binding protein described was called 

AUXIN BINDING PROTEIN 1 (ABP1) (Hertel et al. 1972; Lobler and Klambt 1985). It is a 

small glycoprotein on the outer leaflet of the Endoplasmic Reticulum (ER) membranes and in 

the plasma membrane (Napier et al. 2002). Loss of ABP1 function confers embryonic arrest, 

associated with misorientation of cell division planes and defects in cell elongation leads to 

the abortion of the plant embryo (Chen et al. 2001a). On the other hand, overexpression of 

ABP1 causes an auxin-dependent expansion in the size of differentiated cells that are 

normally nonresponsive (Jones et al. 1998). Repression of ABP1 through cellular 

immunization via an antibody-deriving polypeptide blocking ABP1 demonstrated its critical 

role in cellular division and expansion (David et al. 2007; Braun et al. 2008). More recently, 

different authors elucidated some mechanisms involved in the ABP1-auxin mediation 

pathway. First, it was found that ABP1 could bind and activate calcium permeable ion 

channels (Shishova and Lindberg 2010). Moreover, analysis of heterozygous mutants showed 

an inhibition of auxin transporters PIN1 triggered by auxin-binding on ABP1 (Robert et al. 

2010; Effendi et al. 2011). At last, auxin-binding on ABP1 regulates the activity of two 

GTPases ROP2 and ROP6 (Sauer & Kleine-Vehn, 2011). 

 

The TIR1 signaling pathway 

In 2005, Transport Inhibitor Resistant 1 (TIR1) protein was confirmed to function as an 

auxin receptor (Dharmasiri et al. 2005; Kepinski and Leyser 2005). TIR1 is part of F-box 

protein family and forms SCF protein complex (SKP1-Cullin-F-box), implying that regulation 



8 
 

of protein stability is a crucial part of auxin signaling (Gardozo and Pageno 2004). TIR1 binds 

auxin at physiologically relevant concentrations (Kd ~20–80 nM), and this binding of auxin 

with TIR1 is required to stimulate the interaction between TIR1 and Aux/IAAs (Dharmasiri et 

al. 2005a; Kepinski and Leyser 2005). This interaction with auxin does not change the shape 

of its receptor to modulate its activity (Dharmasiri et al. 2005a). SCF complex is related to the 

auxin signaling pathway which involves more complex proteins such as Aux/IAA family 

(IAAs), Auxin Response Factor family (ARFs) and Topless family (TPL). We will introduce 

these proteins family in following parts, and present the recent studies about how these 

proteins work and interact with each others. 

 

 

2. Aux/IAA, ARF and TOPLESS families as key players in 

TIR1-mediated signaling 

During plant growth and development, auxin perception occurs in nucleus to regulate 

downstream gene expression. The interactions between Aux/IAA family (IAAs), Auxin 

Response Factor family (ARFs) and Topless family (TPLs) play key roles in this auxin 

signaling pathway to control the target gene expression. The TPLs function as corepressors by 

interacting with Aux/IAAs, and the specific interactions of Aux/IAAs and ARFs proteins are 

involved in auxin signaling pathway to regulate the auxin-responsive gene expression 

(Guilfoyle and Hagen 2007; Szemenyei et al. 2008). 

 

2.1 Aux/IAAs family 

In plant, auxin perception and signaling involve several components, among which 

auxin/indole-3-acetic acid (Aux/IAA) proteins play a pivotal role in the auxin signaling 

pathway. Biochemical and genetic studies indicated that Aux/IAA generally function as 

transcriptional repressors of auxin-regulated genes expression (Tiwari et al. 2001; Tiwari et al. 

2004). This repression is notably revealed by the use of cells or protoplasts transiently 

expressing a GFP reporter gene under the control of the DR5 Auxin inducible promoter 
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(Tiwari et al. 2004). The Aux/IAA genes are a class of primary auxin-responsive genes which 

could be rapidly induced by auxin (Theologis et al. 1985; Oeller et al. 1993; Yamamoto and 

Yamamoto 1998). The function of Aux/IAA proteins has first been investigated through the 

characterization of gain-of-functions mutants with auxin-linked phenotypes. A mutation in 

At-IAA14 alters hypocotyl gravitropic response and the mutant does not display lateral root 

formation any longer (Fukaki et al. 2002). The At-iaa19 mutant displays similar phenotypes 

with altered hypocotyl gravitropism and lateral root formation (Tatematsu et al. 2004). The 

At-iaa28 mutant displays a reduced apical dominance with short inflorescence stems, but the 

root phenotype is similar to At-iaa18 mutant with a reduced lateral root formation (Rogg et al. 

2001). More recently, a study showed that At-IAA17 can inhibit the timing of floral transition 

under short days light conditions (Mai et al. 2011). Strikingly, while gain-of-functions 

mutants were essential for the elucidation of Aux/IAA function, few phenotypes were 

obtained through loss-of-function Arabidopsis mutants, thus suggesting an important 

functional redundancy among Aux/IAA family members (Overvoorde et al. 2005). 

Aux/IAA proteins are direct targets of TIR1 through the interaction of Aux/IAA domain 

II and TIR which is possible mediating in the presence of auxin (Dharmasiri et al. 2005a; 

Dharmasiri et al. 2005b; Kepinski and Leyser 2005; Tan et al. 2007). Mutation of Aux/IAA 

domain II stabilizes the IAA protein in absence or presence of auxin (Dreher et al. 2006). The 

binding of auxin and TIR1 will lead to the degradation of Aux/IAA proteins, then the release 

of auxin response factors (ARFs) which could regulate downstream gene expression. Studies 

showed Aux/IAA are short-lived and nuclear-localized proteins (Hagen and Guilfoyle 2002; 

Liscum and Reed 2002). 

    Aux/IAA genes belong to a large gene family observed in all land plant (Kalluri et al. 

2007; Wang et al. 2010a). There are 29 members of this genes family in Arabidopsis, 31 

members in rice and maize (Liscum and Reed 2002; Jain et al. 2006; Wang et al. 2010b). In 

recent studies in our lab, structures and functional characterization of the tomato Aux/IAA 

genes were carried out. There are 25 members in tomato Aux/IAA gene family 

(Audran-Delalande et al. 2012). Canonical Aux/IAA proteins have four conserved amino acid 

sequence motifs which are called domain I, II, III and IV. Some of the proteins lacking one or 
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more of these domains are also included in this family (Fig. 1). Each domain plays different 

role in the auxin signaling pathway, and they are related to the interaction with other 

transcriptional protein factors. This interaction relationship will be introduced in another part 

(Chapter I, 3). 

 

 

Fig. 1 Multiple sequence alignment of the full-length Sl-IAA proteins. Alignment was 

obtained with ClustalX and manual correction. Conserved domains of Aux/IAA proteins are 

underlined. From Audran-Delalande et al. 2012.  

 

2.2 ARFs family 

In the auxin signaling pathway, Auxin response factors (ARF) family functions by 
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activating or repressing auxin response genes. ARFs are transcription factors which could 

bind to TGTCTC auxin response elements (AuxREs) found in promoters of early auxin 

response genes, such as GH3s, SAURs and Aux/IAA family genes (Ulmasov et al, 1999). 

Numerous studies revealed that ARF family genes play a pivotal role in plant developmental 

processes, such as apical hook formation (Li et al, 2004), embryo patterning (Rademacher et 

al, 2012), lateral root growth (Marin et al, 2010), leaf expansion and senescence (Lim et al, 

2010), floral organ abscission and petal growth (Ellis et al, 2005; Varaud et al, 2011), fruit set 

and development (Goetz et al, 2007; Goetz et al, 2006; Guillon et al, 2008) as well as various 

responses to environmental stimuli. ARF family genes are also involved in the hormone 

cross-talk between auxin and ethylene (Li et al, 2006), auxin and gibberellins (de Jong et al, 

2011) and also auxin and ABA (Liu et al, 2011). 

Since the cloning of the first At-ARF1 gene from Arabidopsis, 23 other members of this 

family from Arabidopsis, 25 from rice, and 31 from maize have been identified (Ulmasov et 

al. 1997; Hagen and Guilfoyle 2002; Okushima et al. 2005; Xing et al, 2011; Wang et al. 

2007). More recently, 22 ARF genes have also been identified from tomato (Solanum 

lycopersicum) genome comparing with At-ARF genes (Kumar et al, 2011; Wu et al, 2011). 

     A typical ARF protein contains four protein sequence parts: an N-terminal DNA 

binding domain (DBD), a middle region (MR) that functions as activation domain (AD) or 

repression domain (RD), and two carboxy-terminal Aux/IAA domain (CTD) (Fig. 2) 

(Guilfoyle and Hagen, 2001). The ARF DBD domain is identified to bind to TGTCTC Auxin 

response elements (AuxREs) on the promoter of auxin regulated gene (Ulmasov et al, 1999b). 

The ARF MRs is located between the DBD domain and CTD domains. The ARF ADs are rich 

in glutamine (Q), serine (S), and leucine (L) residues while ARF RDs are rich in proline (P), 

serine (S), threonine (T), and glycine (G) residues (Guilfoyle et al. 1998; Ulmasov et al. 

1999a, Ouellet et al. 2001; Tiwari et al. 2003). The ARF C-terminal Aux/IAA domains (CTD) 

are also found in Aux/IAA proteins which are called domain III and IV. These domains are 

known to contribute to formation of either ARF/ARF homo- and hetero-dimers or 

ARF/Aux-IAA hetero-dimers (Guilfoyle and Hagen 2001, 2007). 

 



12 
 

 

 

Fig. 2 The classification and structures of the ARF protein family in Arabidopsis 

(From Guifoyle and Hagen, 2007). 

 

2.3 TPLs family 

In plants, two major families of transcriptional factors (TFs) co-repressors of the 

GROUCHO family have been identified: LEUNIG/LEUNIG_HOMOLOG (LUG/LUH) and 

the TOPLESS/TOPLESS-RELATED (TPL/TPR) groups (Liu and Karmarkar 2008). In my 

PhD study, we focused on the TPL/TPR family. TPL/TPRs co-repressors are recruited by 

transcription factors that can repress or activate target genes expression or switch between 

repression and activation. Recent studies revealed that TPL/TPRs have a range of functions in 

plant, including roles in embryo development (Long et al. 2002), plant immunity (Zhu et al. 

2010), meristem fate (Kieffer et al. 2006; Gallavotti et al. 2010), auxin and jasmonic acid 

signaling (Szemenyei et al. 2008; Pauwels et al. 2010). 

    There are five members in Arabidopsis TPL/TPR family: TPL and TPR1 to 4, they were 

first described as direct interactors of the Arabidopsis homeodomain transcription factor 

WUSCHEL (WUS) (Kieffer et al., 2006). WUS is expressed in the organizing center at the 

base of the shoot apical meristem, where it signals to the overlying stem cells to maintain 

their meristematic fate as part of a well-studied feedback loop that controls meristem 

homeostasis (Laux et al. 1996; Brand et al., 2000; Schoof et al., 2000; Sablowski, 2007). 

Canonical TPL/TPR proteins have several conserved amino acid sequence motifs: N-terminal 
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region of TPL/TPR which contains a Lissencephaly (LisH) domain as well as a “C-terminal to 

LiSH” (CTLH) domain, and the C-terminal containing two WD40-repeat domains (Kieffer et 

al., 2006). The LisH domains have been shown to promote protein-protein interaction (Cerna 

and Wilson, 2005). Studies revealed that TPL/TPR proteins interact almost exclusively with 

transcription factors (TFs), such as IAAs and ARFs, many of which have previously been 

implicated in transcriptional repression (Causier et al. 2012). 

 

 

3. Protein-protein interactions (PPIs) in auxin signaling 

The elucidation of TIR1 function and the establishment of a link between auxin 

perception and transcription regulation enabled the construction of a new model of auxin 

signaling which represented a considerable change of paradigm (Lee et al. 2013). In this 

model, the protein-protein interactions between Aux/IAA, ARF and TOPLESS appeared as 

major actors. 

 

3.1 Model of auxin signaling pathway in the nucleus 

The similar conserved domains III and IV present in IAAs and ARFs proteins allow the 

formation of Aux/IAA-ARF heterodimers. Auxin signaling is mainly regulated by these 

interactions between Aux/IAA and ARF proteins (Fig. 3). When the auxin concentration is 

low, Aux/IAAs can interact with ARFs to inactivate them by recruiting the TPL corepressor. 

Therefore in the absence of auxin, ARFs does not activate the transcription of their target 

genes (Guilfoyle and Hagen 2007; Szemenyei et al. 2008). When auxin concentration is 

increased, auxin promotes the interaction between Aux/IAA proteins and SKP1-Cullin-F-box 

(SCF) complex through the binding to the auxin transport inhibitor response 1 (TIR1) or to its 

paralogs AUXIN RECEPTOR F-BOX (AFB) proteins. The association of Aux/IAAs to the 

SCF complex leads Aux/IAAs to become ubiquitinated and targeted for proteolysis 

(Dharmasiri et al. 2005a; Dharmasiri et al. 2005b; Kepinski and Leyser 2005; Leyser 2006; 

Tan et al. 2007; Chapman and Estelle 2009). The degradation of Aux/IAAs results in the 
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„release‟ of ARFs which can then activate the transcription of target genes via binding to the 

Auxin Responsive Elements (AuxRE) present in the promoter regions of auxin-regulated 

genes (Hagen et al. 1991; Ulmasov et al. 1997; Hagen and Guilfoyle 2002). 

 

Fig. 3 Auxin signaling is mainly regulated by the interactions between Aux/IAA and 

ARF proteins (Vanneste and Friml 2009). 

 

The protein ubiquitination machinery implies that regulation of protein stability is a 

crucial part of auxin signaling. In this scenario, Aux/IAAs are recruited by SCF/TIR1 and 

interact directly through their domain II with TIR1 in an auxin-dependent manner. They are 

then ubiquitinated and thus marked for degradation (Gray et al., 2001). It has been shown that 

auxin is the only regulatory element in this equation. TIR1 binds auxin at physiologically 

relevant concentrations (Kd ~20–80 nM), and auxin binding to TIR1 is required to stimulate 

the interaction between TIR1 and Aux/IAAs (Dharmasiri et al., 2005a; Kepinski and Leyser, 

2005). Interestingly, auxin does not change the conformation of TIR1 but acts as a “molecular 

glue” by filling a hydrophobic cavity at the interaction interface (Fig. 4), thereby enhancing 
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TIR1-Aux/IAA interactions (Tan et al., 2007). Moreover, there are at least five TIR1- related 

F box proteins (Auxin-Binding F box [AFB]1-5) also interacting in an auxin-dependent 

manner with Aux/IAAs (Dharmasiri et al., 2005b). The auxin signaling pathway looks very 

short and simple, but the number of genes involved at each level is large. Thus cells can have 

many different possible outputs of auxin signaling depending on the developmental context. 

 

Fig. 4 Auxin does not change the conformation of TIR1 but acts as a “molecular glue” by 

filling a hydrophobic cavity at the interaction interface (Tan et al., 2007). 

 

3.2 PPIs between IAAs, ARFs, and TPLs 

The interactions of Aux/IAA, ARF and TPL play a central role in the transcriptional 

regulation of auxin signaling pathway. In Arabidopsis, Aux/IAA proteins (18 to 36 kD) 

contain 4 conserved domains: domain I, II, III and IV (Liscum and Reed 2002). Domain I of 

Aux/IAA contains a conserved Leu-rich (LxLxL) motif that is similar to the EAR 

(Ethylene-responsive element binding factor-associated Amphiphilic Repression) found in 

ERFs and several other transcriptional regulators (Tiwari et al. 2003; Kagale et al. 2010). 

Aux/IAA Domain II is responsible for the stability of Aux/IAA proteins (Dreher et al. 2006; 

Worley et al. 2000) and directly binds to the TIR1/AFB auxin receptors in an 

auxin-dependent manner. Domains III and IV of the Aux/IAA proteins shares a homology 

with the C-terminal domain (CTD) of ARF proteins. Through an interaction between domains 

III and IV and the CTD, Aux/IAA can form a heterodimer with ARF (Kim et al. 1997; Muto 

et al. 2006; Ulmasov et al. 1997b). 

In Arabidopsis, protein-protein interactions between the 29 Aux/IAAs and 23 ARFs have 

been deeply investigated. Vernoux et al. (2011) performed a large scale analysis of the 

interaction between Aux/IAA and ARF using a yeast-two hybrid system. 433 interactions 

among the 1,225 tested combinations between Aux/IAAs and ARFs were revealed. These 

studies show that the majority of Aux/IAAs are able to interact with ARF activators while 

ARF repressors display very few interactions (Fig. 5). To date, the only ARF repressor which 
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is able to interact with different Aux/IAA genes is AtARF9. Another large-scale analysis of 

Aux/IAAs and ARFs were performed by split firefly luciferase complementation (SFLC) 

assay. That study also demonstrated there are specific pairs of interactions between Aux/IAAs 

and ARFs (Li et al. 2011b). These studies indicated that ARF repressors may more act as a 

competition for AuxRE element binding with ARF activators rather than be directly involved 

in auxin signaling through Aux/IAA regulation (Weijers et al. 2005; Vernoux et al. 2011). 

Moreover, the analysis of Aux/IAA and ARF mutants in Arabidopsis show putative 

interactions between these two protein families. Indeed, AtIAA12 could interact with ARF5, 

regulating embryonic root formation (Weijers et al. 2005) and the specific interaction between 

AtIAA14 and AtARF7 or AtARF19 is essential for the inactivation of lateral root formation 

(Fukaki et al. 2006). These studies suggest that specific interactions among the Aux/IAAs and 

ARFs define the gene expression profile during development and consequently determine the 

developmental specificity. 

 

Fig. 5 The Arabidopsis ARF-Aux/IAA interaction map. In Arabidopsis, most of 

Aux/IAAs are able to interact with ARF activators while ARF repressors display very few 

interactions in Arabidopsis. (Vernoux et al. 2011) 

 

Studies showed that domain I of Aux/IAA could interact with transcriptional 

co-repressors, which are called TOPLESS (TPL), to form a complex to repress the 

transcriptional function of ARF (Szemenyei et al. 2008). A mutation in the LxLxL motifs of 
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domain I of the stabilized Aux/IAA mutant repressors lead to the constitutive activation of 

ARF, resulting in a strong-auxin phenotype (Li et al. 2011a). This finding suggests that the 

LxLxL motif of domain I is essential for its repressor activity via the TPL interaction. More 

studies also proved the TPL proteins play the function of co-repressors, and suggested that 

Aux/IAA recruits TPL to strongly repress ARF activity (Szemenyei et al. 2008; Causier et al. 

2012). Earlier studies (Szemenyei et al., 2008; Arabidopsis Interactome Mapping Consortium, 

2011; Barry et al. 2012), identify 20 of the 29 Arabidopsis Aux/IAA proteins as interaction 

partners of the TPL/TPRs (Aux/IAA1, -2, -3, -4, -6, -7, -8, -9, -10, -11, -12, -13, -14, -16, -17, 

-18, -19, -26, -27, and -28). In addition, we have seen that ARFs repressing transcription do 

not interact with any Aux/IAA proteins. The repression mechanism has not been determined 

until now. But there is still another notable thing is that repressor-ARF proteins, such as ARF2 

and ARF9, interact directly with TPL/TPR proteins (Causier et al. 2012a), suggesting a 

mechanism for repression and implicating TPL/TPR co-repressors in both forms of 

ARF-mediated repression (Fig. 6). 
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Fig. 6 Multiple involvement of TOPLESS proteins. The TPL family acts as general 

co-repressors in diverse biological pathways. The interactome data place the TPL/TPR family 

of co-repressors at the center of many biological processes (Causier et al. 2012a). 

 

Up to now, there are still a lot of questions that need to be investigated about these major 

actors. Are there specific couples between tomato Aux/IAA, ARF and TPL protein families? 

Are some of them redundant? Do other potential or new proteins exist and be involved in the 

interaction map of tomato Aux/IAA, ARF and TPL? What is (are) the correct model(s) which 

could indicate the step-by-step interaction relationship of these major actors to switch on or 

off the target gene expression? 
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Chapter II: Protein-protein interactions (PPIs) between 

Sl-IAAs and Sl-ARFs family 
 

 

1. Introduction 

 

1.1 General introduction 

In the general introduction, we have seen that the Aux/IAA-ARF heterodimer formation 

allowed by the similar conserved domains III and IV present in IAAs and ARFs proteins 

establish a primary link between auxin perception and the regulation of the transcription by 

the different ARF transcription factors.  

In Arabidopsis, protein-protein interactions between the 29 Aux/IAAs and 23 ARFs have 

been studied by high-throughput assays including yeast two-hybrid system (Y2H), 

bimolecular fluorescence complementation (BiFC) and split firefly luciferase 

complementation (SFLC) assay (Vernoux et al. 2011; Li et al. 2011b; Arase et al. 2012). In 

rice (Oryza sativa L.), interactions between 14 integrated Os-ARF and 15 Os-IAA proteins 

were tested using yeast two-hybrid system (ChenJia et al. 2010). Besides, pull-down assay 

and co-immunoprecipitation (Co-IP) were also mentioned in these articles to be 

complementary methods for those high-throughput screenings. The overview of these PPIs 

maps indicated Aux/IAAs preferentially interact with themselves and with the activator ARFs, 

but weakly with repressor ARFs. In contrast to the Y2H assays, the SFLC assay using the 

protoplast system gave rise to somewhat contradictory results. For example, ARF5 (an 

activator ARF) did not interact with IAA6 and IAA9 in the Y2H assay whereas ARF5 

strongly interacted with them in the SFLC assay (Li et al. 2011b). ARF9 was the only 

repressor ARF that interacted with different Aux/IAAs in the Y2H assay, but it interacted only 

with IAA28 in the SFLC assay (Li et al. 2011b). Another study showed IAA8 was able to 

interact with ARF C-terminal domains in both Y2H and BiFC assays, but the two 
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methodologies display differences, for example concerning the capacity of IAA8 to interact 

with some repressor ARFs (Arase et al. 2012). 

Contradictory information in ARF-Aux/IAA interactions revealed by different PPI 

methodologies could be due to the variation of ARF or Aux/IAA concentrations between a 

native molecular and cellular environment (in planta) and an in vitro environment (yeast cell, 

protoplast). Additional factors - cofactor, other protein - absent in vitro might also be involved 

in the ARFs-Aux/IAAs interactions in plant cells. It also reminds us that those potential high 

throughput methods have diverse merits and defects. Y2H, as heterologous systems, may lack 

plant co-factors or subcellular compartments necessary for specific PPIs, leading to false 

positive and negative results. Although BiFC allows the visualization of subcellular 

localizations of PPIs, but the external light source used in the BiFC assay will also excite the 

auto fluorescence of plant cells which could make the false positive result. And also, BiFC 

cannot reflect the dynamics of a given PPI in a real-time manner because of the irreversible 

reconstitution and slow maturation of the fluorescent protein. The pull-down assay can 

strongly confirm direct interaction between two proteins. Unless performed on plant tissue, it 

may also miss indirect interactions and new potential partners. Besides, pull-down assay is 

not suitable for a large scale PPIs analysis because of lot of time is needed to optimize the 

expression and extraction conditions for different proteins. 

At the time the PhD work started, there was still no report about the interactions between 

the whole Sl-IAAs family and Sl-ARFs family and no comprehensive picture was yet 

provided in other species (Shen et al. 2010 and Vernoux et al. 2011 being published later). 

Early release of tomato genome sequences enabled the identification in tomato of 25 Sl-IAAs 

members and 23 Sl-ARFs members genome. Besides, several pairs of Sl-ARF and Sl-IAA 

were already under investigation in the GBF laboratory, notably the Sl-IAA9 and the Sl-ARF8 

pair. Indeed, in situ hybridization experiments revealed that a tissue-specific gradient of IAA9 

expression is established during flower development; upon pollination, this gradient is 

released and it triggers the initiation of fruit development (Wang et al. 2005, 2009). By 

contrast, the Sl-ARF8 expression symmetrically increased just after pollination and the 

overexpression of Sl-ARF8 in transgenic tomatoes yield a parthenocarpic phenotype similar 
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to Sl-IAA9-antisense plants (Yang and Zouine, unpublished results, Fu PhD thesis, in 

preparation).  

In order to identify specific interactions between Sl-IAAs and Sl-ARFs, and to better 

understand the potential mechanism of how these two families work together during the auxin 

signaling pathway, I started my PhD research on the identification of interactions for some 

specific Sl-IAAs and Sl-ARFs pairs by using different methods including yeast two-hybrid 

(Y2H), pull-down assay and Bimolecular fluorescence complementation (BiFC). Then we 

checked the whole family interaction map between each Sl-IAA and Sl-ARF member. Besides, 

some specific Sl-IAAs and Sl-ARFs have been chosen to make different deletions, and to see 

how the removal or modifications of special domains affect the interaction of Sl-IAAs and 

Sl-ARFs. 

 

1.2 The aim of the work in Chapter II 

These early steps of the PhD work also implied that we needed to establish some useful 

protocols for the protein-protein interactions research which were never used in our lab, such 

as: Yeast two-hybrid (Y2H), Pull-down assay and Bimolecular fluorescence complementation 

(BiFC). After being developed, these methods were used to (1): Find and confirm some 

specific interactions between Sl-IAA and Sl-ARF by using different protocols. (2) Describe 

the large scale protein-protein interactions map between Sl-IAA family and Sl-ARF family by 

Y2H assay and assess the specificity of the different isoforms. (3) Reveal the role of some 

canonical Sl-IAA domains which might be involved in the PPIs of Sl-IAA and Sl-ARF. 

 

 

2. Materials and Methods 

For protein-protein interactions (PPIs) assay, three methods were selected and optimized 

for the first time in our lab, including Yeast two-hybrid (Y2H), Pull-down assay and 

Bimolecular fluorescence complementation (BiFC). Some protocols for protein expression 

and extraction were also optimized in our experiment.  
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2.1 Protocol of yeast two-hybrid (Y2H) 

In our study, Y2H was used to test many different protein-protein interactions. Here we 

would like to explain the principle and method of Y2H. This protocol mainly refers to the 

Y2H User Manual (Nontechnical).  

 

Principle of the yeast two-hybrid assay 

In Y2H system, a bait gene is expressed as a fusion to the GAL4 DNA-binding domain 

(BD-bait), while another gene or cDNA is expressed as a fusion to the GAL4 activation 

domain (AD-prey; Fields and Song, 1989; Chien et al. 1991). When bait and prey proteins 

interact, the BD and AD proteins are brought into proximity, thus activating transcription of 

reporter genes (Fig. 7). This technology can be used to identify novel protein interactions, 

confirm suspected interactions, and define interacting domains. 

 

 
Fig. 7 Principle of the two-hybrid assay. When bait and prey proteins interact, the BD 

and AD proteins are brought into proximity, thus activating transcription of reporter genes. 

 

Yeast strain and report gene 

Yeast strain AH109 is auxotrophic for three amino acids (His, Leu, Trp) and adenine 

(Ade) and contains three reporters --- ADE2, HIS3, and lacZ --- under the control of distinct 

GAL4 upstream activating sequences (UASs) and TATA boxes (Fig. 8). If the BD-bait and 

AD-prey proteins interact, the AD domain will activate the expression of the reporter genes 

and the strain will grow on a medium lacking adenine and histidine. The auxotrophy on 

leucine and tryptophan is used to select the yeast co-transformed with pGADT7 and pGBKT7 

derived vectors (see below). 
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Fig. 8 AH109 reporter genes. Yeast strain AH109 contains three reporters --- HIS3, 

ADE2, and lacZ --- under the control of distinct upstream activating sequences (UASs) and 

TATA boxes. 

 

Method of Y2H experiment 

For Y2H experiments, coding sequences of bait and prey were introduced into pAD and 

pBD vectors, two plasmids deriving from the pGADT7 and pGBKT7 vectors (Clontech, 

Matchmaker™ GAL4 Two-hybrid system) in which an AttR recombination site was 

introduced, thus allowing the use of Gateway® recombination technology (Invitrogen). Y2H 

vectors pAD and pBD modifications were performed by Dr Laurent Deslandes (LIPM 

CNRS-INRA Toulouse) and kindly provided by Dr Laurent Deslandes and Dr Hua Wang 

(LRSV Université Paul Sabatier). 

Consequently, for bait and prey protein cDNA cloning, each template was firstly cloned 

into plasmid pDONR-207 (Invitrogen) using BP Clonase II (Invitrogen), and after cloned into 

the Y2H vector (BD and AD) by using LR Clonase II (Invitrogen). pBD Y2H vector (BD-bait) 

was used for the bait-protein construction. It contains a functional copy of the Trp1 gene, thus 

restoring in AH109 tryptophan autotrophy. pAD Y2H vector (AD-prey) was used for the 

prey-protein construction. It contains a functional copy of the Leu2 gene, thus restoring in 

AH109 leucine autotrophy. Then, the BD-bait and AD-prey were co-transformed into yeast 

AH109, co-transformants being selected on culture lacking both tryptophane and leucine. If 

there is no interaction between the bait and prey protein, yeast will grow only on the selection 

medium lacking Trp and Leu. If there was an interaction, yeast can grow on the selection 

medium lacking Trp, Leu, His and Ade. Technical details of yeast transformation protocol are 
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further developed in Appendix (A1) in this thesis. 

For positive control of Y2H experiments, yeasts were co-transformed with the pBD-p53 

(BD-p53) and the pAD-SV40T (AD-T7) vectors (Clontech).  

 

2.2 Protocol of protein expression and extraction in E. coli strain 

Before pull-down assay, some specific GST and His tagged proteins were expressed and 

extracted from E. coli-expression system. 

 

Plasmid construction 

    For plasmid construction, the destination vector pDEST15 (Invitrogen) generating 

GST-fusion proteins was used for bait, and the pDEST17 (Invitrogen) vector generating 

poly-His tagged proteins was used for prey. For bait and prey protein cDNA cloning, first, the 

template was cloned into plasmid pDONR-207 (Invitrogen) using BP Clonase II (Invitrogen), 

and after cloned into the destination vector (pDEST15 and pDEST17) by using LR Clonase II 

(Invitrogen). 

 

E. coli strain for protein expression 

    Bait and prey proteins were then produced in E. coli. In order to optimize the expression 

condition for different proteins, three strains of E.coli were tested: the BL21-DE3-LysS strain 

(Invitrogen), the BL.21AI strain (Invitrogen) and the Rosetta Strain (Novagen), a derived 

BL21 strain designed to enhance the expression of eukaryotic proteins by containing codons 

rarely used in E. coli. These E. coli strains carry a chromosomal insertion of a cassette 

containing the T7 RNA polymerase (T7 RNAP) gene, allowing tagged-protein expression 

under the control of T7 promoter. For BL.21AI strain, the L-arabinose (final 0.2%) is needed 

to induce the protein expression. If a T7 expression vector containing the lacI gene is used 

(BL21-DE3, Rosetta), the IPTG also should be added at variable concentrations for induction. 
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Proteins expression and extraction 

    Recombinant protein production was optimized by playing on different conditions, such 

as: E. coli strain, culture temperature, induction time and rotating speed. Bacteria were lysed 

with a French pressure cell press in a 10% glycerol Tris/NaCl or PBS buffer and soluble and 

insoluble protein fractions were collected after centrifugation. More details of the protocol for 

protein expression and extraction could be checked in Appendix (A2) in this thesis. 

 

2.3 Protocol for western blot 

Protein samples are loaded on SDS-PAGE gel. After running the gel, proteins were 

transferred to Nitrocellulose membrane. Antibody dilution ratio was optimized for each 

antibody and protein (Table 1). The membrane is exposed with ECL-advance kit (GE 

Healthcare) by following the instruction book. More details of the protocol for western blot 

could be checked in Appendix (A3) in this thesis. 

 

Table 1 The antibody dilution ratio for western blot assay. 
Tagged-protein Primary antibody* Secondary antibody** 

GST alone 1:20000 1:20000 

GST-IAA3 1:20000 1:20000 

GST-IAA9 1:20000 1:20000 

His-ARF8a 1:5000 1:20000 

HisARF8a-del 1:5000 1:20000 

*Mouse monoclonal anti-GST/His (Sigma) 

**Anti-mouse IgG (Sigma) 

 

2.4 Protocol of pull-down assay 

Pull-down system was used to test the in vitro protein-protein interactions in our study. 

The experiment protocol mainly refers to the MagneGST Pull-Down System User Manual 

(Promega). 
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Principle of pull-down assay 

GST pull-down is an important tool for validation of suspected protein-protein 

interactions or for discovering novel protein interactions. In our study, GST pull-down uses a 

GST-fusion protein (bait) bound to glutathione (GSH)-coupled particles to affinity purify any 

proteins (prey) that interact with the bait from a pool of proteins in solution. Bait and prey 

proteins were produced in bacteria as described above.  

 

 

 

 
Fig. 9 Principle of the pull-down assay. The MagneGST Pull-Down System provides 

GSH-linked magnetic particles that allow simple immobilization of GST-fusion bait proteins 

from bacterial lysates. Prey proteins are then co-immobilized on the bait protein attached to 

the MagneGST (GSH) Particles (from Promega Magne-GST handbook). 
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Method of pull-down experiment 

Pull-down protocol is divided into three phases: 1) the expression of GST-fusion-bait and 

another tagged-prey proteins; 2) the GST-fusion-bait protein is immobilized onto the 

MagneGST Particles; and 3) the prey protein is added to the MagneGST™ Particles carrying 

bait and captured through bait-prey interaction. The potential captured prey protein will be 

detected by western blot. If there is an interaction between the bait and prey protein, western 

blot result would reveal a band corresponding with the prey protein. For a negative control, 

we can either produce the GST alone, using a pGEX-3X vector or express a non-specific 

protein containing the same tag than the prey. More details of the protocol for pull-down 

could be checked in Appendix (A4) in this thesis. 

 

2.5 Protocol of bimolecular fluorescence complementation (BiFC) 

Bimolecular fluorescence complementation (BiFC) has been proven as a valuable tool to 

study protein-protein interactions in living cells. This method is now frequently used in plant 

sciences and is likely to develop into standard techniques for the identification, verification 

and in-depth analysis of polypeptide interactions (Bhat et al. 2006; Montse et al. 2007; Emiko 

et al. 2012; Fumi et al. 2012). 

 

Principle of BiFC 

The BiFC (also known as "split YFP") assay is based on the observation that N- and 

C-terminal sub-fragments of GFP (or derivatives thereof, e.g. YFP) do not spontaneously 

reconstitute a functional fluorophore. However, if fused to interacting proteins, the two 

non-functional halves of the fluorophore are brought into tight contact, refold together and 

generate the novo fluorescence. Thus, by BiFC, the interaction status of two protein 

interaction partners can be easily monitored via fluorescence emission upon excitation with a 

suitable wavelength (Fig. 10). 
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Fig. 10 Principle of the BiFC assay. The scheme depicts the principle of the BiFC assay, 

exemplified by a split YFP fluorophore. Proteins A and B are fused to N- and C-terminal 

fragments of YFP, respectively. In the absence of an interaction between A and B, the 

fluorophore halves remain non-functional. Following interaction between A and B, a 

functional fluorophore is reconstituted which exhibits emission of fluorescence upon 

excitation with an appropriate wavelength. (Bhat et al. 2006) 

 

Plasmid construction for BiFC  

The coding sequences of two potentially interacting proteins (protein-A and -B) which 

were tested by BiFC have been cloned into the expression vector pAM-35SS-YFPn-GWY 

and pAM-35SS-YFPc-GWY by the gateway cloning technology (Invitrogen). The N terminal 

of protein-A was fused to the N terminal half of YFP (nYFP) to yield nYFP-A. Another N 

terminal of protein-B was fused to the C-terminal half of YFP (cYFP) to yield cYFP-B. 

For the construction of nYFP or cYFP fusion genes, which were driven by the CaMV 

35S promoter for BiFC experiments, full-length cDNAs of protein-A and -B were amplified 

by PCR and cloned into pDONOR 207 using the Gateway BP recombination reaction 

(Invitrogen). After verifying the nucleotide sequence of A and B by sequencing, Gateway LR 

recombination reaction (Invitrogen) was used to transfer the A and B full-length cDNAs into 

the BiFC pAM-35SS-YFPn-GWY and pAM-35SS-YFPc-GWY respectively. These two 

vectors were kindly provided by Laurent Deslandes (LIPM, INRA Toulouse). 
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BiFC experiment protocol 

To examine a possible interaction between protein-A and protein-B in planta, we further 

conducted bimolecular fluorescence complementation (BiFC) assays using a transient 

expression system in tobacco protoplasts. The tobacco protoplasts were co-transfected with 10 

µg of nYFP- and cYFP-fusion plasmids by the PEG transient method (Appendix A5). YFP 

fluorescence was observed by confocal microscopy 16 hours after transformation and 

excitation at 488 nm. The emission was captured between 530 to 570 nm wavelength. The 

YFP fluorescence was also quantified by flow cytometry (FACS Calibur II instrument, BD 

Biosciences, San Jose, CA). By comparing with the autofluorescence background, the average 

fluorescence intensity of the cell population will indicate if there is an interaction between the 

tested protein-A and protein-B. More details of the protocol for BiFC could be checked in 

Appendix (A6) in this thesis. 

 

2.6 Plasmid construction 

 

Plasmid construction for Y2H 

Tomato IAA3 and IAA9 coding sequences were cloned into Y2H pBD-vector respectively 

as bait protein, while ARF4 and ARF8a were cloned into Y2H pAD-vector respectively as 

prey protein. An AD-ARF8a-del construct containing only the N-terminal part of ARF8a and 

lacking the AD region, domains III and IV was used as a negative control (Fig. 11). 

 

Fig. 11 The construction of AD-ARF8a-del without the middle region, domain III and IV. 

 

Plasmid construction for pull-down 

Tomato IAA3 and IAA9 coding sequences were cloned into pDEST15 vector respectively 

as GST-tagged bait protein, and ARF4, ARF8a and ARF8a-del were cloned into pDEST17 

vector respectively as His-tagged prey protein. pGEX-3X plasmid which could yield the GST 

protein alone was used as negative control. 
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Plasmid construction for BiFC 

Tomato IAA-1, 2, 3, 4, 7, 9 and 11 coding sequences were cloned into pYFPn-vector 

(YFPn-IAAs), and ARF4, ARF8a and ARF4-del were cloned into pYFPc-vector 

(YFPc-ARFs). 

 

Plasmid construction for PPIs map between whole Sl-IAA and Sl-ARF family 

Tomato IAA-1, 3, 4, 7, 8, 9, 11, 12, 14, 15, 16, 17, 19, 22, 26, 27 and 29 were cloned into 

Y2H pGBG-vector respectively as BD-bait protein. 

Tomato ARF-1, 2a, 2b, 3, 4, 5, 6, 7, 8a, 9a, 9b, 10a, 10b, 16a, 16b and 17 were cloned 

into Y2H pGAD-vector respectively as AD-prey protein. 

 

Plasmid construction for Sl-IAA deletion 

Specific IAA9 domains (I, II, III and IV) were deleted from the full length protein (Fig. 

12). These IAA9 deletions were cloned into BD-vector as a bait protein: BD-IAA9-2R, 

BD-IAA9-3R and BD-IAA9-3F. AD-ARF8a was chosen as the prey protein. 

 

Fig. 12 Specific truncated IAA9 of the domain I, II, III or IV. All constructs were 

cloned as a bait protein: BD-IAA9-2R, BD-IAA9-3R and BD-IAA9-3F 

 

2.7 Expression of GST- and His- tagged proteins 

GST-IAA3, GST-IAA9, His-ARF8a-del and GST-alone (pGEX) were expressed in 

Rosetta or in BL21DE3-pLysS strains. His-ARF8a was expressed in BL.21AI. The optimized 

expression conditions for each protein are listed in Table 2. Protocol and materials refer to 

Appendix (A2). As a large quantity of overexpressed proteins accumulated in inclusion bodies, 

the IPTG inductor was removed in the experiments performed with Rosetta strains. All 

proteins were detected by western blot. 
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Table 2 The optimized expression conditions for each GST- or His- tagged protein. 

 E. coli strain 
Culture 

Temperature 
(℃) 

Induction Rotation 
(rpm) 

Expressing 
time (h) 

pGEX Rosetta 28 No IPTG 250 3 
GST-IAA3 Rosetta 28 No IPTG 250 3 
GST-IAA9 Rosetta 28 No IPTG 250 3 
GST-IAA3 BL21DE3-pLysS  28 IPTG 0.1M 250 4 
GST-IAA9 BL21DE3-pLysS  28 IPTG 0.1M 250 4 

His-ARF8a BL.21AI 18 
Arabinose 

0.2% 
[W/V] 

200 4 

His-ARF8a-del Rosetta 15 No IPTG 200 Over night 

 

 

3. Results 

We have seen that in tomato, the Aux/IAA and the ARF families contain 25 and 22 

members respectively (see Chapter I.2). Among these members, Sl-IAA9 (Wang et al. 2005, 

2009), Sl-ARF4 (Jones et al. 2002, Sagar et al. 2013), Sl-ARF8a (Yang et al. in preparation) 

have been extensively studied since they are highly expressed during fruit development or 

ripening and since the alteration of its expression triggers modifications in fruit biology. 

Sl-IAA3 is involved in both Auxin and Ethylene regulations and also showed high 

accumulation during fruit ripening (Chaabouni et al. 2009). This strong interest for these 

members prompted us to use them as initial targets to develop different PPI approaches. In a 

second step, we decided to build a larger screen of PPI among the whole ARF and Aux/IAA 

families to get access to a complete picture and address the question of Aux/IAA or ARF 

specificities. 

 

3.1 Development of PPIs methods on specific AuxIAA-ARF pairs 

3.1.1 Y2H shows some specific Sl-IAAs/Sl-ARFs interaction 

For Y2H assay, all tested partners were listed in Table 3. BD-p53 and AD-T7 interaction 

was used as a positive control (Clontech). BD-IAAs interaction with AD-T7 or 
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ARF8a-deletion was used as negative controls. Protocol and materials refer to Part 2.1 of this 

Chapter. 

The result of Y2H (Fig. 13) showed that both IAA3 and IAA9 interacted with ARF8a. 

Neither IAA3 nor IAA9 interacted with ARF4. The P53-T7 pair interaction was used as a 

positive control. The absence of interactions between bait-IAAs + prey-T7 or bait-IAAs + 

ARF8a-del (truncated form of ARF8a, see above) were used as negative control. 

Table 3 List of specific BD-IAAs and AD-ARFs for Y2H assay. 
 BD AD 

1 P53 T7 

2 IAA3 T7 

3 IAA3 ARF4 

4 IAA3 ARF8a 

5 IAA3 ARF8a-del 

6 IAA9 T7 

7 IAA9 ARF4 

8 IAA9 ARF8a 

9 IAA9 ARF8a-del 

 

 
Fig. 13 The Y2H result of specific IAAs and ARFs. Yeast grows on the plate means 

that there are interaction between P53/T7 (1), IAA3/ARF8a (4) and IAA9/ARF8a (8). 

Selected medium is TLHA plate (Appendix A1). 
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3.1.2 Pull-down showed some specific Sl-IAAs/ Sl-ARFs interaction 

Before pull-down assay, GST-IAA3, GST-IAA9, His-ARF8 and ARF8a-del proteins 

were expressed in E. coli expression system. During our experiment, we found that each 

protein needed different conditions for expression. It really took us a lot of time to optimize 

each condition for these proteins. From the Coomassie blue staining gel (Fig. 14) we could 

see GST-tagged proteins look easier to be expressed comparing with His-tagged proteins. All 

expression conditions of these proteins are listed on Table 2, and the western result is showed 

on Figure 14. Unfortunately, up to now, we have not found the appropriate conditions to 

obtain any soluble GST-ARF4 or His-ARF4 protein. 

 

 
Fig. 14 Coomassie blue staining gel and western blot result for GST-IAAs and His-ARFs. 
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Different GST-IAAs and His-ARFs partner assessed for pull-down assay are listed on 

Table 4. The pull-down result (Fig. 15) confirmed that IAA3 and IAA9 did interact with 

ARF8a. The GST-alone did not interact with ARF8a or ARF8a-del. There were also no 

interaction between any IAAs and ARF8a-del. 

 

Table 4 The list of specific GST-IAAs and His-ARFs for pull-down assay. 
 GST His 

1 GST ARF8a 

2 GST ARF8a-del 

3 IAA3 ARF8a 

4 IAA3 ARF8a-del 

5 IAA9 ARF8a 

6 IAA9 ARF8a-del 

 

 
Fig. 15 Evidence of IAA3 and IAA9 interaction with ARF8 by pull-down. The bands of 

western blot indicated that IAA3 and IAA9 did interact with ARF8a respectively. 

 

3.1.3 BiFC showed some specific Sl-IAAs/Sl-ARFs interaction 

Protoplasts co-transfected with YFPn-IAAs and YFPc-ARFs plasmids were assayed for 

fluorescence by using confocal microscope. Empty vector of YFPn and YFPc plasmids were 

used as negative control. If there was an interaction between testing protein partner, clear 

fluorescence should be observed from protoplast compared with the autofluorescence 

background and negative control, such as the observed nuclear fluorescence indicated the 

interaction between YFPn-IAA9 and YFPc-ARF8a (Fig. 16). 
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Fig. 16 Example of BiFC result. Clear nuclear fluorescence could be observed from 

tobacco protoplast compared with the background and negative control. Fluorescence 

indicated the interaction between ARF8a and IAA9. 

 

Table 5 shows the specific YFPn-IAAs and YFPc-ARFs partner for BiFC assay. BiFC 

result (Fig. 17) showed that most of Aux/IAAs (IAA1, 2, 3, 4, 7, 9) interact with ARF8a and 

ARF4 while they do not interact with a truncated form of ARF4 (ARF4-del) that lacks 

domains III and IV (Fig. 17C). In contrast to Y2H results, IAA9 showed interaction both with 

ARF8a and ARF4 in BiFC assay. This is different from the result of IAA9/ARF4 interaction 

testing in Y2H. As BiFC is an in vivo system, other proteins may take part in the interaction 

between IAA9 and ARF4 in of tobacco cells. As a first interpretation, we can conclude that 

IAA9 could interact directly with ARF8a whereas IAA9 could not interact directly with ARF4. 

In vivo, IAA9, ARF4 and other proteins can be assembled to form a functional protein 

complex.  

 

Table 5 The list of YFPn-IAAs and YFPc-ARFs for BiFC assay. 
 YFPn- 

YFPc-ARF8a Empty  IAA1 IAA2 IAA3 IAA4 IAA7 IAA9 IAA11 

YFPc-ARF4 Empty  IAA1 IAA2 IAA3 IAA4 IAA7 IAA9 IAA11 

YFPc-ARF4-del Empty  IAA1 IAA2 IAA3 IAA4 IAA7 IAA9 IAA11 
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Fig. 17 BiFC result for specific IAAs and ARFs. Most of Aux/IAAs (IAA1, 2, 3, 4, 7, 

9) interact with ARF8a (A), ARF4 (B) and ARF4-del (C). To quantify the YFP fluorescence, 

samples were analyzed by flow cytometry (FACS Calibur II instrument, BD Biosciences, San 

Jose, CA) on the cytometry and cell sorting platform. 
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3.2 PPIs between whole Sl-IAAs and Sl-ARFs family 

Among the three methods tested above, Y2H seemed the most well-suited to be 

developed in wider PPI screens. Y2H was first used to test the interaction relationship 

between the whole family members of tomato IAAs and ARFs. The interactions between 

BD-IAAs and AD-ARFs were tested with all different partners respectively: 

BD-IAA1, 3, 4, 7, 8, 9, 11, 12, 14, 15, 16, 17, 19, 22, 26, 27 and 29 

AD-ARF1, 2a, 2b, 3, 4, 5, 6, 7, 8a, 9a, 9b, 10a, 10b, 16a, 16b and 17 

Figure 18 shows the interaction result of all BD-IAAs and AD-ARFs proteins. All ARFs 

activators (ARF5, 6, 7 and 8a) showed an interaction with all Aux/IAAs except IAA11. Parts 

of ARFs repressors, ARF1, 2a, 2b, 4 and 16a, showed an interaction with a few members of 

Aux/IAAs family. There were no interaction observed with ARF3, 9a, 9b, 10a, 10b, 16b and 

17 by using this Y2H assay system. 

 

Fig. 18 PPIs result of the whole IAAs family and ARFs family. Black grid means 

there is an interaction between the two partners. Blank grid means there is no interaction. 
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3.3 Parts of canonical Sl-IAA domains affect the interaction of Sl-IAA and Sl-ARF 

Up to now, dimerization domains of Aux/IAAs referred to as domain III and IV are 

considered to be responsible for the interaction between Aux/IAAs with ARFs. In our 

experiment, BD-IAA9-2R, BD-IAA9-3R and BD-IAA9-3F (Fig 12) were used as bait 

proteins. AD-ARF8a was chosen as the prey protein. BD-p53 and AD-T7 interaction was used 

as positive control. Interactions between different IAA9-deletions and ARF8a were assayed 

by Y2H (Table 6). IAA9-del-2R (domain I and II) and IAA9-del-3R (domain I, II and III) 

showed no interaction with ARF8a, but IAA9-del-3F (domain III and IV) and IAA9 full 

length did interact with ARF8a (Fig. 19). This result confirms that IAA9 domains III and IV 

are essential for the interaction between IAA9/ARF8a. Similar conserved domains III and IV 

also exist in some ARF proteins (The C-terminal domain; CTD). IAA9 and ARF8a interact 

with each other via domain III and IV to form a dimer. 

 

Table 6 The list of specific BD-IAAs and ARFs for Y2H test. 

 
 

 

Fig. 19 PPIs result of the IAAs deletions and ARF8a. Black grid means there is an 

interaction between the two partners. Blank grid means there is no interaction. 
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4. Conclusion and discussion 

Three methods were used in our study to identify some specific interaction of Sl-IAA 

and Sl-ARF: Yeast two-hybrid (Y2H), Pull-down and Bimolecular fluorescence 

complementation (BiFC). All methods confirmed that IAA3 and IAA9 interact with ARF8a. 

The Y2H result showed Sl-IAA3 and Sl-IAA9 do not interact with Sl-ARF4. On the contrary, 

BiFC result suggests that Sl-IAA3, Sl-IAA9 and a broad set of Aux/IAAs also interact with 

ARF4. Why it happened? There is one thing noticeable that BiFC is more like an in vivo 

system, the protoplast providing a in planta environment which could provide other plant 

proteins necessary for the interaction. In a BiFC experiment it is still likely that other proteins 

take part in the protein complex. This hypothesis should be checked further. Alternatively, 

these contradictory results may suggest the existence of modifications triggered by the plant 

cellular context (phosphorylation or other post-translational modifications) necessary to 

enable an ARF4-Aux/IAA interaction.  

Of all the tested methods, Y2H protocol was well-suited as a high throughput method. 

During our experiment, the Y2H could show us very clear and reproducible results. For 

pull-down assay, we felt that the biggest difficulty was to express and purify each protein. 

Table 2 shows some optimized conditions of expression for each protein. Up to now, we still 

cannot obtain enough quality and quantity of ARF4 for pull-down assay. BiFC is also a rapid 

method. The key step which could affect the BiFC experiment is the quality of protoplast 

transformation. Thus, the reproducibility of the results was often the main problem.  

As the more efficient and stable, Y2H method was used to test at large scale interactions 

within the whole Sl-Aux/IAA and Sl-ARF families. In our study, the combination between 17 

Sl-IAA members and 16 Sl-ARF members were tested. The most obvious result is that all 

activator-Sl-ARFs (ARF5, 6, 7 and 8a) showed interaction with all Sl-IAAs except Sl-IAA11 

and Sl-IAA29. This dominant trait was also observed in other large-scale of the IAA and ARF 

interaction patterns in Arabidopsis (Vernoux et al. 2011) or in rice (Shen et al. 2010). Indeed, 

the study in Arabidopsis also showed that nearly all the At-IAAs were able to interact with 

At-ARF activators while At-ARF repressors display very few interactions (Fig. 6). For the 
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repressor Sl-ARF in our study, very few of them showed interactions with Sl-IAAs. Even 

some of them showed no interaction with Sl-IAAs, such as Sl-ARF3, 9a, 9b, 10a, 10b, 16b, 

17. To date, in Arabidopsis the only At-ARF repressor which is able to interact with different 

At-IAA genes is At-ARF9. But this trend was not observed in tomato Sl-ARF9. Contrary to 

our results on Sl-IAA9 in tomato, At-IAA9 display very few interactions, even with activator 

ARF (Vernoux et al. 2011), however, At-IAA8, its closest paralog that emerged from a recent 

duplication (Audran-Delalande et al. 2012) displayed a very similar PPI pattern than Sl-IAA9, 

thus suggesting that this difference may be the consequence of recent evolutive events. All 

these studies demonstrated the broad interaction capacity between Aux/IAAs and ARFs. It 

also indicated that ARF repressors may act more as a competition for AuxRE element binding 

with ARF activators rather than being directly involved in auxin signaling through Aux/IAA 

regulation.  

In Arabidopsis, the specific interactions among ARFs and Aux/IAAs were demonstrated 

by the high-throughput Y2H assay where Aux/IAAs preferentially interact with themselves 

and the activator ARFs, but weakly with repressor ARFs (Vernoux et al. 2011). Slight amino 

acid differences in domain III and IV between At-ARF activators and repressors was proposed 

to provide the molecular clue for the differential interaction between At-IAAs and At-ARF 

activators or repressors (Guilfoyle and Hagen, 2012). In contrast to the Y2H assays, the split 

firefly luciferase complementation (SFLC) assay using the protoplast system gave some 

contradictory results. For example, At-ARF9 was the only repressor ARF that interacted with 

diverse At-IAAs in the Y2H assay, but it interacted only with At-IAA28 in the SFLC assay (Li 

et al. 2011b). At-ARF5 (activator) did not interact with At-IAA6 and At-IAA9 in the Y2H 

assay whereas At-ARF5 strongly interacted with them in the SFLC assay (Li et al. 2011b). As 

discussed for our BiFC experiments, these differences in the interaction patterns between 

At-ARFs and At-IAAs could be due to the different molecular and cellular environments 

between yeast and plant cells, implying that additional factors might be implicated in the 

native ARFs-Aux/IAAs interactions in plant cells. Another factor to be considered is the 

concentration of ARFs and Aux/IAAs in the cell for their native interactions.  

As we learnt before, typical Aux/IAA has 4 classical domains: domain I, II, III and IV. 
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Domains III and IV of the Aux/IAA proteins shares a homology with the C-terminal domain 

(CTD) of ARF proteins. Through an interaction between domains III and IV and the CTD, 

Aux/IAA can form a heterodimer with ARF (Kim et al. 1997; Muto et al. 2006; Ulmasov et al. 

1997b). In our study, three deletions of Sl-IAA9 were cloned. IAA9-2R lacking domain III 

and IV and IAA9-3R lacking domain IV both showed no interaction with ARF8a. As expected, 

only IAA9-3F which contains only domain III and IV showed clearly interaction with ARF8a. 

However, there is also one thing noticeable when Y2H was performed to identify the 

interaction between IAA9/IAA9-3F and ARF8a, we always found the yeast containing 

IAA9-3F + ARF8a grew a little bit slowly and that the number of cotransformants was 

smaller than observed on the yeast transformed with pBD-full-length-IAA9 + pAD-ARF8a. 

This suggests that, although IAA domain III and IV are essential for the interaction with some 

ARF, the Aux/IAA domain I and II could also affect the interaction efficiency perhaps by 

stabilizing the whole structure of the Aux/IAA protein. 

To compare with Arabidopsis, the C-terminal domain III and IV found in both ARFs and 

Aux/IAAs enables the formation of homo- or heterodimers: ARF-ARF, Aux/IAA-Aux/IAA, 

or ARF-Aux/IAA (Kim et al. 1997; Ulmasov et al. 1999b). A recent comparative analysis on 

the secondary structure of domain III and IV suggests there is a molecular preference in these 

interactions (Guilfoyle et al. 2012). In this study, domain III and IV of ARFs and Aux/IAAs 

were found to have a similar secondary structure with the PB1 (Phox and Bem 1) domain, 

which includes an ubiquitin like β-grasp fold. Three different types of PB1 domains can 

interact with each other in different combination where variations in certain changed amino 

acid residues in the N-terminus and C-terminus contribute to the type-specific interactions 

between different types of PB1 (Sumimoto et al. 2007). Those changes in residues are also 

found in domain III and IV of ARFs and Aux/IAAs and were proposed to similarly contribute 

to the diverse interactions for ARFs and Aux/IAAs (Guilfoyle et al. 2012). This model also 

supports the idea that interactions between ARFs and Aux/IAAs occur specifically but not 

randomly. 
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Chapter III: Genome-wide analysis and interaction 

properties of the TOPLESS gene family members 
 

 

1. Introduction 

In this chapter, a second partner crucial in auxin signaling was investigated, the 

TOPLESS protein and its paralogs. An exhaustive yeast two-hybrid screen, completed with 

the analysis of the multigenic family in tomato constituted the core of the manuscript 

„Genome-wide analysis and Identification, phylogenetic analysis, expression profiling and 

protein-protein interaction properties of the TOPLESS gene family members in tomato‟ 

submitted to Journal of Experimental Botany. In complement to the manuscript presented 

below, the ARF-TOPLESS protein-protein interactions were also studied and the specificity 

of one TOPLESS isoform was also challenged using different mutagenesis strategies. 

 

2. Manuscript „Genome-wide Identification, phylogenetic analysis, 

expression profiling and protein-protein interaction properties of 

the TOPLESS gene family members in tomato‟ 

 

2.1 Introduction 

It is now well admitted that transcriptional co-repressors play crucial roles in a broad 

range of plant development processes (Liu and Karmarkar, 2008; Krogan and Long, 2009). In 

land plants, the Groucho (Gro)/Tup1 family of co-repressors includes 

TOPLESS/TOPLESS-RELATED (TPL/TPR) and LEUNIG/LEUNIG HOMOLOG 

(LUG/LUH) (Conner and Liu, 2000; Kieffer et al., 2006; Long et al., 2006). TPL proteins 

have been shown to be involved in multiple signaling pathways in higher plants, including 
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hormone-signaling pathways (auxin, jasmonic acid, abscisic acid and ethylene), meristem 

maintenance, floral induction, biotic stress and circadian oscillator mechanism (Causier et al., 

2012a, b; Liu et al., 2008; Pauwels et al., 2010; Szemenyei et al., 2008, Zhu et al., 2010, 

Wang et al., 2013). 

The first TPL gene was identified in Arabidopsis as responsible for the semi-dominant 

tpl-1 embryo development mutation resulting in altered polarity, ranging from fused 

cotyledons to complete replacement of the shoot with a second root (Long et al., 2002, 2006). 

Subsequently, the TPL family in arabidopsis was found to comprise five members that seem 

to act redundantly (TPL, TPR1, TRP2, TRP3, and TRP4). Indeed, a quintuple loss of function, 

in which all five TPL/TPR genes were inactivated by mutation or RNA interference, is 

required to phenocopy the tpl-1 phenotype (Long et al., 2006).  

It was established that though TPL proteins are lacking a DNA-binding activity, they are 

incorporated into transcription complexes by interacting with transcription factors to repress 

gene expression in various processes. This inhibition of the expression of target genes is 

mediated by the recruitment of histone deacetylases (HDACs) into transcription complexes, 

and by changing the chromatin state from active to inactive (Long et al., 2006; Liu and 

Karmarkar, 2008; Krogan and Long, 2009; Krogan et al., 2012). Interaction between the 

TPL/TPR co-repressors and transcription factors depends on the Lissencephaly (LisH) and the 

C-terminal to LisH Homology (CTLH) domain of TPL (Szemenyei et al., 2008; Gallavotti et 

al., 2010) and on a small conserved protein motif found in transcription factors. This motif is 

known as the ethylene response factor (ERF)-associated amphiphilic repression (EAR) 

domain (Ohta et al., 2001), with the consensus sequence (L/F)DLN(L/F)xP (Ohta et al., 2001; 

Hiratsu et al., 2004). Recently, the Arabidopsis TPL/TPR interactome framework revealed 

that the TPL co-repressors are able to interact with various transcription factors harboring 

different repression domains (Causier et al., 2012a). Among these TPL-interactants, the 

transcriptional repressors involved in auxin signaling (i.e. Aux/IAA and Auxin Response 

Factors (ARFs) families) have been well documented. In Arabidopsis, the discovery that TPL 

is recruited by Aux/IAA proteins to suppress the expression of auxin-responsive genes in the 

absence of auxin, revealed a crucial role for TPL in mediating the inhibitory effect of 

http://www.plantphysiol.org/content/158/1/423.long#ref-41
http://www.plantphysiol.org/content/158/1/423.long#ref-40
http://www.plantphysiol.org/content/158/1/423.long#ref-40
http://dev.biologists.org/content/139/22/4180.long#ref-69
http://www.plantphysiol.org/content/158/1/423.long#ref-49
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Aux/IAA on ARF-regulated transcription (Szemenyei et al., 2008). Large interactome studies 

in Arabidopsis identified 20 of the 29 At-IAA proteins as interacting partners of the 

TPL/TPRs (Arabidopsis Interactome Mapping Consortium, 2011; Causier et al., 2012a). 

Besides, a large-scale analysis of the interaction between Aux/IAA and ARF in the 

Arabidopsis shoot apex revealed that the vast majority of the Aux/IAAs interact with all the 

ARF activators and show very limited interactions with ARF repressors (Vernoux et al., 2011). 

However, recent study showed that repressive ARF proteins, such as ARF2 and ARF9, can 

interact directly with TPL/TPR proteins, suggesting a mechanism for repression implicating 

TPL/TPR co-repressors in both forms of ARF-mediated repression (Causier et al., 2012a). 

The release over the past years of several plant genome sequences has offered a 

possibility to investigate a large set of multigenic families at the genome scale. In this context, 

the tomato genome is of special interest since (1) tomato has emerged as a model plant, for 

fleshy fruit development and (2), a reference species for Solanaceae family and also for the 

taxum of Asterids, particularly since the majority of sequenced Dicot genomes belongs to 

Rosids. Noteworthy, the structure of several multigenic families involved in auxin perception 

and responses have been examined in tomato (Wu et al., 2011, Kumar et al., 2011, 

Audran-Delalande et al., 2012, Pattison & Catalá, 2012, Wu et al., 2012a&b, Kumar et al., 

2012, Ren et al., 2011), thus shaping an exhaustive picture of auxin signalization 

complementary to Arabidopsis model plant. However, beside the plant model Arabidopsis, the 

TPL gene family has been so far poorly described.   

To fully characterize the molecular biology and evolution of the tomato TPL family and 

to understand its possible functions, we identified and characterized 6 Sl-TPL genes. Our 

analyses focused on the identification, evolutionary relationships and expression patterns of 

each member of the tomato TPL family. Moreover, we used yeast two-hybrid approaches to 

establish the framework of TPL/Aux/IAA protein-protein interactions. These results will 

provide a framework for further studies to better understand the potential functions of TPL 

proteins in tomato plants, especially during the flower and fruit development. 

 

http://www.plantphysiol.org/content/158/1/423.long#ref-65
http://www.plantphysiol.org/content/158/1/423.long#ref-1
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2.2 Materials and Methods 

 

2.2.1 Isolation and cloning of Sl-TPL genes 

The full length coding sequences of 6 Sl-TPLs were amplified from mature green fruit 

cDNA. The primers used were as follows:  

TPL1_attb1: 5‟-ATGTCATCTCTCAGTAGAGAGCTT-3‟;  

TPL1_attb2: 5‟-TCATCTTGGTGCTTGATCGGAGC-3‟;  

TPL2_attb1: 5‟-ATGTCTTCCTTGAGTAGGGAACTG-3‟;  

TPL2_attb2: 5‟-TCACCTTGAAGGTGTTTCTGATG-3‟;  

TPL3_attb1:  5‟-ATGTCTTCTCTTAGCAGAGAATTG-3‟;  

TPL3_attb2: 5‟-TCATCTTTGAACTTGGTCAGCAG-3‟;  

TPL4_attb1: 5‟-ATGACTTCTTTA AGCAGAGAGCTG-3‟;  

TPL4_attb2: 5‟-CTACCTTGATGCTTGATCAAGACC-3‟;  

TPL5_attb1: 5‟-ATGAGGCATTTTGATGAAATGGT-3‟;  

TPL5_attb2: 5‟-CTACCTTTGAGGTTGATCTGAAT-3‟;  

TPL6_attb1: 5‟-ATGTCTCTTAGTAAGGACCTTAT-3‟; 

TPL6_attb2: 5‟-CTATATTGGTTGCTCATTGGTAA-3‟.  

After amplification, Sl-TPLs were cloned into pDONOR207 vector using gateway 

method (Invitrogen) and were fully sequenced. 

 

2.2.2 Subcellular localization of Sl-TPLs 

For localization of the Sl-TPL proteins, the Sl-TPL CDS sequences were cloned by 

Gateway technology as a C-terminal fusion in frame with yellow fluorescent protein (YFP) 

into the pEarlyGate104 vector, and expressed under the control of the 35S CaMV promoter. 

The empty vector pEarleyGate104 was used as control. Protoplasts were obtained from 

tobacco suspension-cultured (Nicotiana tabacum) BY-2-cells and transfected according to the 

method described previously (Leclercq et al., 2005). YFP localization by confocal microscopy 

was performed as described previously (Audran-Delalande et al., 2012). 
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2.2.3 Expression analysis of Sl-TPL genes 

Total RNA extraction, DNA contamination removal, cDNA generation of 8 tomato 

tissues (root, stem, leaves, bud, flower, mature green fruit, breaker fruit, and red fruit) and 

qRT-PCR were performed according to methods previously described (Audran-Delalande et al 

2012, Pirrello et al., 2006). The primer sequences are as follows: TPL1F: 

5‟-TGTTCGTTCTAGGAGACTAACCAG-3‟ and 5‟-TPL1R: 

AAGACAAACCTTCCCTTCCGA-3‟; TPL2F: 5‟-CCTGTAAATACGCCTCTTGCT and 

TPL2R: 5‟-ACTGGTTGGAATGGACTGTG-3‟; TPL3F: 

5‟-CACTTTCTGCTCCAATAACCT-3‟ and TPL3R: 5‟-TCCATCTGTCAACCCAACTG-3‟; 

TPL4 F: 5‟-CCTTCTAACCCAAGCTCCAG-3‟ and TPL4R: 

5‟-ATAAACTCCGCCATCAGTAAGTC-3‟; TPL5F: CGTCTATTGTAACCCATCCACTC-3‟ 

and TPL5R: 5‟-AGAAGTTACACCATGAGGACCC-3‟; TPL6F: 

5‟-ACTGGACTAGCATTCTCTAACAC-3‟ and TPL6R: 5‟-TTGAATT 

CCACACCACTATCTGAG-3‟. Actin was used as internal reference. The relative fold 

differences (Sl-TPL6 as a reference gene) for each sample were calculated using the formula 

2-△△Ct. Three independent RNA isolations were used for cDNA synthesis and each cDNA 

sample was subjected to real-time PCR analysis in triplicate. 

 

2.2.4 Bioinformatics analyses  

Sl-TPLs were searched using BLAST queries on Genomic (Chromosome v2.40) and 

transcript database (cDNA itag 2.4) available on SGN website 

(http://solgenomics.net/tools/blast/index.pl). Exons and introns were deduced from the ITAG 

2.3 annotation. For Sl-TPL5 (Solyc07g008040), the „predicted annotation‟ missing the 

N-terminal extremity was completed with an additional exon (from position 2754093 to 

2754173 on SL2.40ch07 chromosome 7 annotation). Protein domains were first predicted on 

the prosite database protein (http://prosite.expasy.org/). The prediction of the WD40 segments 

was refined using the PF00400.27 pfam Hidden Markov Model with an i-value threshold at 
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0.1. For i-values > 0.1, the prediction of WD40 position was deduced from the sequence 

alignment of the different TPL isoforms.  

Nuclear Localisation Signal (NLS) analysis prediction was performed with “cNLS Mapper” 

(http://nls-apper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi) (Kosugi et al, 2009). NLS 

prediction scores above 5.0 were considered as positive.  

 

2.2.5 Evolutionary analyses 

Phylogenetic analyses and distance matrices were built using the Mega5 package 

(Tamura et al., 2011). Full length amino acid sequences were aligned using the ClustalW 

algorithm. For the overall phylogeny, an initial tree encompassing sequences from 

Physcomitrella patens, Selaginella moellendorffii, Oryza sativa, Zea mays, Sorghum bicolor, 

Arabidopsis thaliana, Solanum lycopersicon, Nicotiana benthamiana, Populus trichocarpa, 

Glycine max and Mimulus guttatus was performed using the Neighbor-Joining method. The 

percentage of replicate trees in which the associated taxa clustered together was calculated in 

the bootstrap test (500 replicates). The topology was further confirmed using the Maximum 

Likelihood method. Ultimately, a simplified tree was performed by limiting the number of 

genomic sets as the topology remained unchanged. Trees were drawn to scale, with branch 

lengths in the same units as those of the evolutionary distances used to infer the phylogenetic 

tree.  

The following genome annotations were used for phylogenetic analyses: P. patens 

(Phypa1_1.FilteredModels, Rensing et al., 2008); S. moellendorffii (Lycophyte 

Selmo1_GeneModels_FilteredModels3,   Banks et al., 2011); A. thaliana (TAIR10, 

Swarbreck et al., 2008); P. trichocarpa (Eudicot Populus.trichocarpa.v2.0, Tuskan et al., 

2006); V. vinifera (12X March 2010 release, Glycine max Glyma1_pacId, Schmutz et al., 

2010); O. sativa (MSU Rice Genome Annotation (Osa1) Release 6.1, Ouyang et al., 2007); Z. 

mays (ZmB73_4a.53_working_translations, Schnable et al., 2009); S. bicolor 

(Sorbi1_GeneModels_Sbi1_4_aa, Paterson et al., 2009); Tomato (ITAG2.3_release, 2012); B. 

rapa (Chiifu-401-42, Wang et al., 2011); Eucalyptus grandis (Egrandis_201, 

http://www.jgi.doe.gov/); M. guttatus (Mguttatus_140, http://www.jgi.doe.gov/); N. 
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benthamiana (Niben.genome.v0.4.4, Pallas et al., 2012); S. tuberosum (PGSC_DM_v3.4, Xu 

et al., 2011). 

 

2.2.6 PPIs assay of Sl-TPLs and Sl-IAAs families by Y2H 

Tomato TPL genes were amplified and cloned into pDBD (BD-TPLs) vector (Clontech). 

Similarly, Sl-IAA target genes (IAA1 (JN379431), IAA3 (JN379433), IAA4 (JN379434), 

IAA7 (JN379435), IAA8 (JN379436), IAA9 (JN379437), IAA11 (JN379438), IAA12 

(JN379439), IAA14 (JN379441), IAA15 (JN379442), IAA16 (JN379443), IAA17 

(JN379444), IAA19 (JN379445), IAA22 (JN379447), IAA26 (JN379449), IAA27 (JN379450) 

and IAA29 (JN379451)) were inserted in pGAD (AD-IAAs) vectors (Clontech). Diploids 

were selected on medium lacking Trp and Leu (TL), and interactions were validated by the 

use of HIS3 and ADE2 reporter genes on medium lacking Trp, Leu, His, and Ade (TLHA). 

Manipulation and analysis of Y2H protocol refers to Appendix A.1, and all experiments were 

repeated 3 times independently. For Sl-TPL1 lacking LisH, the coding sequence was 

truncated at position +112 nucleotide. 

 

2.3. Results 

 

2.3.1 Identification and cloning of TPL-related genes in tomato genome 

In silico search was performed on the tomato genome and transcript databases 

(http://www.solgenomics.net/) using Arabidopsis TPL and TPL-related sequences (TPR) as 

queries for BLAST searches. While the initial screen identified nine ORFs as predicted to 

encode putative TPL-like proteins (Sl-TPLs) only six corresponded to full-length proteins 

containing all canonical motifs that define the TPL proteins (Table 7). The full-length cDNA 

of the six Sl-TPLs was further confirmed by RT-PCR amplification indicating that the 

corresponding coding sequences (CDS) range from 3396 bp to 3669 bp with deduced protein 

sizes ranging from 1131 to 1222 amino acids (Table 7).  
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Table 7. Main structural features of the tomato Sl-TPL family members. 

 

Structural analysis of the six Sl-TPL genes showed that they display similar numbers of 

introns (23 to 25) and exons (24 to 26) except for Sl-TPL6 which is longer than the other TPL 

members (Table 7). Pairwise comparison of the six Sl-TPL protein sequences showed that the 

percent identity among family members ranges from 44% to 75%. Protein domain searches in 

Pfam database (http://pfam.sanger.ac.uk/) indicated that all Sl-TPLs display the conserved 

LisH and CTLH domains and two domains containing several WD40 repeats: WD40-repeat-1 

and WD40-repeat-2 with 7 and 5 WD40 segments, respectively (Fig. 20 and 21). The CTLH 

domain and the WD40-repeat-1 are separated by a proline-rich region.  

 

 

 

 

 

 

 

 

 

 

Nomenclat

ure 

Gene Predicted Protein Domains 

Sl-TPLs iTAG Gene ID Exons Introns Length MW 

(kDa) 

LisH CTLH WD-40 repeats 

Sl-TPL1 Solyc03g117360.2.1 25 24 1131 aa 124.676 4-36 34-92 411-632/832-957 

Sl-TPL2 Solyc08g076030.2.1 25 24 1136 aa 124.60 4-36 34-92 341-668/834-959 

Sl-TPL3 Solyc01g100050.2.1 25 24 1132 aa 124.676 4-36 34-92 343-669/871-955 

Sl-TPL4 Solyc03g116750.2.1 26 25 1133 aa 124.318 4-36 34-92 413-634/839-964 

Sl-TPL5 Solyc07g008040.2.1 24 23 1134 aa 124.82 4-36 34-92 398-639/881-965 

Sl-TPL6 Solyc08g029050.2.1 33 32 1222 aa 134.181 3-35 33-91 531-664/934-1060 
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Figure 20. Gene structure of the 6 tomato TOPLESS genes. The grey boxes represent 

exons, the dotted lines represent introns, the red box the LisH domain, the blue box the CTLH 

domain, the light green boxes the WD40-repeat 1 and the dark green boxes the WD40-repeat 

2. The figure was achieved using the FancyGene software (http://bio.ieo.eu/fancygene/). 

Sl-TPL1 

Sl-TPL2 

Sl-TPL3 

Sl-TPL4 

Sl-TPL5 

Sl-TPL6 

exon 
intron 

LISH CTLH WD40-repeat-1 WD40-repeat-2 
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Figure 21. Multiple sequence alignment of full-length Sl-TPL proteins. Conserved 

domains are underlined. The red line represents LisH domain. The blue line represents CTLH 

domain. The light green line represents the WD40-repeat 1 domain, the dark green line 

represents WD40-repeat 2 domain. 
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Figure 21. (Continuance) 
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Figure 21. (End) 
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Tomato TPLs are distributed on four chromosomes. Two Sl-TPLs (Solyc03g116750, 

Solyc3g117360) on chromosome 3, two (Solyc08g076030.2.1, Solyc08g029050.2.1) on 

chromosome 8, one (Solyc01g100050.2.1) on chromosome 1 and one (Solyc07g008040.2.1) 

on chromosome 7. Three additional truncated-TPL sequences lacking the LisH and CTLH 

domains among which two are located on chromosome 3 (Solyc03g117370, Solyc03g117410) 

and one on chromosome 1 (Solyc05g016070). 

The number of „full-length‟ TPL genes in tomato falls in the range found in other plant 

genomes which varies in Angiosperms from 4 members in Monocots to 11 members in 

soybean (Figure 22). Noteworthy, a high number of isoforms is often observed in organisms 

having undergone recent whole-genome duplication or polyploidisation events (G. max, N. 

benthamiana or B. rapa). 

 
Figure 22. Inventory of TOPLESS genes in different plant genomes. Only TPL genes 

containing the four canonical domains (LisH, CTLH and two WD40 repeats) were considered. 

Major taxons are reported below. 
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2.3.2 Sl-TPLs nomenclature and phylogenetic analyses 

To adopt a nomenclature consensual with that of Arabidopsis TPL and TPL-related 

proteins, we carried phylogenetic analyses on different TPL-like proteins or cDNAs from 

different plant sequenced genomes comprising moss, fern and various angiosperm sequences 

(see Methods). The phylogenetic trees (Fig. 23A) allowed the individualization of 4 branches. 

Three branches looked well defined in all Dicot plants: a first branch containing At-TPL, 

At-TPR1, At-TPR4, Solyc3g117360.2.1 (named Sl-TPL1), Solyc03g117360.2.1 (named 

Sl-TPL4) and Solyc07g008040.2.1 (named Sl-TPL5); a second branch, absent in Arabidopsis 

thaliana yet present in Eucalyptus (Eucgr.K00093.1|PACid:23601479) or grapes 

(GSVIVT01024440001) containing Solyc08g076030 (named Sl-TPL2), rice ASP1 protein 

and moss or lycophyte TPL-like proteins; and a third branch containing At-TPR2, At-TPR3, 

and Solyc01g100050.2.1 (named Sl-TPL3). At last, Solyc08g029050.2.1 (named Sl-TPL6) 

appeared as an out-group branch in the phylogenetic tree (Fig. 23A). The robustness of the 

tree topology was assessed either with the bootstrap test (Fig. 23A) or by changing the 

number of genomes used in phylogeny and the portion of the aligned sequence (N-terminal, 

C-terminal or conserved domains) or the clustering method (Neighbor-Joining or Maximum 

Likelihood). The vast majority of the nodes presented in Fig. 23A remained unchanged.  

To further understand the TPL phylogeny, and notably characterize the Sl-TPL6 

out-group, the presence of TPL „orthologous‟ was investigated in Asteroid genomes belonging 

either to the Solanaceae family (Solanum tuberosum and Nicotiana benthamiana) or to the 

Lamiales order (Mimulus guttatus). A Sl-TPL6 homologue was found in all Asteroids, 

supporting the view that Sl-TPL6 homologues form a distinct clade (Fig. 23B). Within this 

Sl-TPL6 clade, the length of the branches suggests that these isoforms evolve faster than other 

TPLs. This observation is supported by sequence divergences: the amino acid substitution 

rates calculated within Solanaceae orthology groups varying from 2.6 to 6.3% for Sl-TPL1-5 

and reaching 22.7% for the Sl-TPL6 (Table 8). Moreover, a neutrality test (dS-dN values) 

calculated on Solanaceae orthologues suggests that the purifying selection exerted by 

evolution on Sl-TPL6 family is much weaker than the selection pressure exerted on other TPL 

genes. 
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Figure 23. Phylogenetic trees of some plant and tomato TOPLESS.  (A) 

Representative phylogenetic tree of TPL proteins from land plants: moss P. patens 

(PHYPADRAFT_xxx), lycophyte S. moellendorffii (SELMODRAFT_xxx), rice 

(LOC_Os-xxx), tomato (red characters) and Arabidopsis (green characters). The colored 

brackets emphasize the main branches conserved among Angiosperms. The present tree was 

obtained after alignment of full-length TPL sequences using ClustalW and clustering with the 

Neighbour-Joining Method. The percentages of replicate trees in which the associated taxa 

clustered together in the bootstrap test (500 replicates) are shown next to the branches. 

Phylogenetic analyses including additional genomes sets (Z. mays, S. bicolor, P. trichocarpa, 

G. max, V. vinifera, M. guttatus) or using the Maximum-Likelihood clustering method 

displayed similar topologies, the majority of the nodes being conserved (blue circles) while 

only few nodes (yellow crosses) were unstable. (B) Phylogenetic tree of TPL proteins among 

Asteroid and Solanaceaous species. The tree was built using sequences from four genomes: S. 

lycopersicon, S. tuberosum, N. benthamiana and M. guttatus. 

 

Table 8. Evolutive features of TOPLESS-related genes in Solanaceous species. Mean 

distance was expressed as the proportion of amino acid or nucleic acids positions different 

after pairwise alignment. dS-dN values were calculated using the Codon-based Test of 

Purifying Selection performed on each pair of orthologous sequences from S. lycopersicon 

and S. tuberosum. The variance of the difference was computed using the bootstrap method 

(500 replicates). Analyses were conducted using the Nei and Gojobori (1986) method.   

 Sl-TPL
1 

Sl-TPL
2 

Sl-TPL
3 

Sl-TPL
4 

Sl-TPL
5 

Sl-TPL
6 

Mean Distance 
(Solanum/Nicotian
a) 

Amino 
Acids 

0.026 0.041 0.032 0.029 0.063 0.227 

Nuclei
c acids 

0.055 0.050 0.054 0.054 0.067 0.154 

Neutrality test 
(Solanum)          

dS-dN 7.08 6.66 6.98 7.62 6.19 3.645 
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2.3.3 Subcellular localization of Sl-TPLs 

The subcellular localization of the Sl-TPL proteins was assessed by transient expression 

assay in tobacco protoplasts using a translational fusion between each of the Sl-TPL proteins 

and the Yellow Fluorescent Protein (YFP). Microscopy analysis showed that Sl-TPL1-5-YFP 

fusion proteins exclusively localized to the nucleus (Fig. 24) whereas Sl-TPL6 was localized 

at the cytoplasm and excluded from the nucleus. This result is in agreement with the in silico 

prediction of a conserved Nuclear Localization Signal (NLS) for the five nuclear Sl-TPL1-5 

while Sl-TPL6 NLS scores were below the 5.0 threshold value (Table 9). Altogether, the 

nuclear localization of the majority of Sl-TPLs is consistent with their putative role in 

transcriptional regulation activity. 

 
Figure 24. Subcellular localization of tomato TOPLESS proteins. Sl-TPL-YFP fusion 

proteins were transiently expressed in BY-2 tobacco protoplasts and subcellular localization 

was analyzed by confocal laser scanning microscopy. The merged pictures of yellow 

fluorescence channel (left panels) and the corresponding bright field (middle panels) are 

shown (right panels). The empty vector pEarleyGate104 was used as control. The scale bar 

indicates 10 μm. 
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Table 9 : NLS prediction scores computed with cNLS Mapper (Kosugi et al, 2009) 
Sl-TPL Score Position NLS sequence Structure 
Sl-TPL1 6 588 rtyqgfrkrslgvvqfdttknrfl Bipartite 
Sl-TPL2 5 304 hlmkrmrag Monopartite 
Sl-TPL3 5.8 283 ilkrpltppatlgmldyqsadheqlmkrl Bipartite 

Sl-TPL4 5.3/ 5 
74 feirkqkylealdrhdqakaveilvkdlkv 

Bipartite 
163 fpslknsrlrtlinqslnwqhqlcknpkp 

Sl-TPL5 5.2/5.7 
-37 feirkqkylealdrndrpkaveilvkdlkv 

Bipartite 
-249 mlkrprtptnnsavdyqtadsehmlkrsrp 

Sl-TPL6 4.1/ 4.2 
-139 rnrimkilrvvietnpqlngklhfpeltksrl 

Bipartite 
-271 mpkpskaisaatpaqlvkqmpgpskaisa 

 

2.3.4 Expression analyses 

In order to study the spatio-temporal expression pattern of the six Sl-TPL genes, 

quantitative reverse transcription PCR (qRT–PCR) was performed on eight different plant 

tissues and organs. Three Sl-TPL members (Sl-TPL1, Sl-TPL3 and Sl-TPL4) displayed 

significantly higher level of expression than the three remaining paralogs. Sl-TPL1 and 

Sl-TPL4 were found to be highly expressed in flowers and vegetative tissues (roots, stems, 

leaves) and in developing flowers (bud and during anthesis) but with a reduced expression in 

ripening fruit while Sl-TPL3 expression remained constant and high during fruit ripening (Fig. 

25). This preferential expression of Sl-TPL1, Sl-TPL3 and Sl-TPL4 is coherent with their 

estimated expression in two public databases (RNAseq database: http://ted.bti.cornell.edu and 

ESTs database: http://solgenomics.net/). Although less expressed, Sl-TPL2 was found 

preferentially in leaves and developing flowers; the levels of Sl-TPL5 transcripts were low in 

all tissues; Sl-TPL6 expression was restricted to roots and stems (Fig. 25b). 



62 
 

 

(Figure 25. To be continued) 
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Figure 25. Real-time PCR expression profiles of 6 tomato TOPLESS genes. (A): 

Expression patterns of Sl-TPL genes in each tomato tissues. Relative mRNA levels of each 

Sl-TPL gene in different tissues were normalized with actin. The results were expressed using 

the Sl-TPL6 as a reference (relative mRNA level 1). Values represent the best experiment 

among three independent biological repetitions. Bars indicate the standard deviation of three 

experimental repetitions. (B): Expression patterns in different tomato tissues of each Sl-TPL 

genes. The relative mRNA level of each Sl-TPL gene was normalized with actin. mg: mature 

green fruit, br: breaker fruit, red: red fruit. The results were expressed using the mg as a 

reference (relative mRNA level 1). Values represent the best experiment among three 

independent biological repetitions. Bars indicate the standard deviation of three experimental 

repetitions. 
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2.3.5 Examination of protein-protein interactions (PPIs) in the frame of the auxin 

mediation 

The differential expression of Sl-TPL genes evokes the critical question of functional 

redundancy within the TPL family. In a recent paper, Causier et al., (2012) have compared the 

protein-protein interactions patterns of different Arabidopsis TPL proteins using a 

high-throughput yeast two-hybrid screen both on a whole-plant and on a transcription factor 

library. In the present work, we focused the interaction study on the Aux/IAA family by 

performing an exhaustive targeted analysis of Aux/IAA-TPL interactions. The six Sl-TPL 

proteins were fused to a binding domain (BD) and used as baits in a yeast two-hybrid test 

with 17 different Sl-IAA fused to an activating domain (AD). After monitoring the yeast 

growth on two auxotroph selective media, two patterns of TPL could clearly be defined (Fig. 

31A and B): Sl-TPL1, Sl-TPL2, Sl-TPL4, and Sl-TPL5 interacting with the majority of 

Sl-IAAs and growing in all the selective media and Sl-TPL3 and Sl-TPL6 exhibiting only a 

limited growth when co-expressed with Aux/IAA-AD fusion proteins. Contrary to other 

Sl-IAAs, Sl-IAA29 failed to show interaction with any of the Sl-TPLs. With exception of 

Sl-IAA12 and Sl-IAA15, the Aux/IAAs do not harbor any obvious specificity towards the 

„TPL‟ clade (Sl-TPL1, Sl-TPL4 and Sl-TPL5) sharing high similarity with At-TPL. In 

addition, Sl-TPL2, which belongs to a distinct clade of Sl-TPLs (1, 4 and 5), also exhibits a 

broad capacity to interact with the majority of Sl-IAAs. As a control, we performed a yeast 

two-hybrid test with truncated Sl-TPL1 or Sl-TPL5 (ΔLisH-TPL) (Fig. 26C) lacking the LisH 

domain previously shown to be essential for TPL-WUS or TPL-Aux/IAA interactions (Kieffer 

et al., 2006, Szemenyei et al., 2008). Contrary to all Sl-TPLs BD-fusions assayed, a complete 

lack of growth was observed when co-expressing BD-ΔLisH-TPL proteins with 

AD-Aux/IAAs (Fig. 26B). In addition, the permutation of bait and prey was performed using 

Sl-TPL-AD fusions and Sl-IAA-BD fusions; results are recapitulated on appendix A9. Only 

Sl-TPL5 showed a different behavior that remained unexplained.   
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Figure 26. Protein-protein interaction map between Sl-TPLs and Sl-IAAs 

established by Y2H screen. (A) Yeast growing of co-transformed BD-TPLs and AD-IAAs. 

The yeast clones grown on selected medium lacking Trp, Leu, His, and Ade (TLHA) were 

scratched again on the TLHA plate. After 3-4 days, the growth of the yeast strains confirms 

the positive interaction, as shown in the upper panel picture. AD-empty vector and AD-T7 

vector were used as negative controls. (B) Schematic representation of the interaction map 

between Sl-TPLs and Sl-IAAs. Green color means yeast grew quickly less than 4 or 5 days 

after co-transformation, indicating a strong interaction between Sl-TPLs and Sl-IAAs partners. 

Yellow shows yeast grew slowly in 7-8 days after co-transformation indicating a weak 

interaction between the tested Sl-TPL and Sl-IAA. Red means there is no interaction detected 

between the tested Sl-TPLs and Sl-IAAs. (C) Truncated form of Sl-TPL1 protein lacking the 

N-terminal LisH domain N-terminal used as a negative control. 
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2.4 Conclusion and discussion 

 

The present study addresses the structural, evolutionary and functional features of tomato 

TPL family. TPL proteins were primarily defined as a major component of the auxin 

transduction and response pathway, but the present data sustain the hypothesis of a functional 

diversification of these regulatory proteins. While mainly focusing on the TPL family in 

tomato, a plant model for Solanaceae and fleshy fruit research, the data also address the 

comparative features of this gene family within plant kingdom at the evolutionary level, 

shedding new light on their functional diversification.   

The structure of the Sl-TPL family is representative of that found in Angiosperms where 

these proteins belong to a small multigenic family comprising 5 to 11 members. In the tomato, 

6 full-length Sl-TPL genes were identified regardless of the additional 3 pseudogenes with 

incomplete coding sequences. Among the six Sl-TPL genes, five were highly conserved 

(Sl-TPL1-5), while the last gene (Sl-TPL6) was more distant. With the exception of poplar 

genomes and genomes having undergone recent polyploidisation (i.e. Glycine max, Brassica 

rapa and Nicotiana benthamiana), the number of TPL isoforms ranges from 4 to 6 members, 

suggesting that the number of genes remains stable in this family and that usually, after a 

whole-genome duplication event, duplicated copies of TPL genes are not retained. The 

phylogenetic analysis of TPL genes enabled the distinction of three major clades gathering 

homologues in the majority of Angiosperm genomes. A last clade, containing the distant 

Sl-TPL6, displays only clear homologues in closely-related taxa (Asteroids). Interestingly, 

highly-diverging sequences of TPL-related proteins were also found in other genomes such as 

the At-TPR-like gene (At2g25420, Causier et al., 2012b) or in poplar but no clear relationship 

could be established with Sl-TPL6. Contrary to Angiosperms TPL proteins, TPL from P. 

patens and S. moellendorffii clustered in a same branch, indicating the existence of ancestral 

divergences occurring before Angiosperm radiation.  

The functionality of Sl-TPL genes was addressed through three approaches: expression 

analysis, subcellular localization and establishment of an interaction map between Sl-TPL and 

Sl-IAA proteins. The expression patterns of different Sl-TPLs reveal the tissue-specificity of 

various isoforms and suggest a functional specialization of Sl-TPL isoforms. For example, 
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Sl-TPL1 is highly expressed in vegetative organs (stems, roots) and flowers, while the 

expression of Sl-TPL3 and Sl-TPL4 is prevailing in fruit. Moreover, the overall intensity of 

gene expression evaluated by quantitative PCR evidenced a distinction between a group of 

three isoforms (Sl-TPL1, Sl-TPL3 and Sl-TPL4) that are highly expressed, Sl-TPL2 which is 

moderately expressed in the leaves and flowers, and third group made of two isoforms 

(Sl-TPL5 and Sl-TPL6) that displays very low level of expression. In agreement with our data, 

the prevalence of Sl-TPL1, Sl-TPL3 and Sl-TPL4 transcripts was also observed in EST and 

RNAseq expression databases (http://ted.bti.cornell.edu) whereas the expression of Sl-TPL6 

was again found to be very low (no EST and few RNAseq reads). Interestingly, the overall 

expression level negatively correlates with the amino acid substitution rate. Indeed, after 

defining orthology groups among Solanaceous TPLs, we found that the highly expressed 

isoforms (Sl-TPL1, Sl-TPL3 and Sl-TPL4) show the highest amino-acid sequence 

conservation (<3.2% difference within Solanaceous sequences) while sequences were less 

conserved within the Sl-TPL6 orthology group (22.7% difference within Solanaceous 

sequences). The moderately expressed Sl-TPL2 and Sl-TPL5 displayed intermediate 

substitution rates (4% and 6% difference respectively). This correlation was also supported by 

a neutrality test (dS-dN values) performed between potato and tomato pairs of othologues. 

The high substitution rate within Sl-TPL6 orthology group was interpreted as an indication 

that Sl-TPL6 subfamily undergoes a reduced purifying selection. By contrast, broadly 

expressed Sl-TPL isoforms are under a stronger purifying selection. Such a correlation 

between gene expression level and amino acid substitution rate has already been observed in 

genome-wide comparisons of expression patterns and protein evolution in Arabidopsis-related 

plants or in the Poaceae family (Wright et al., 2004, Slotte et al., 2011 and Davidson et al., 

2012). Indeed, this correlation is consistent with Arabidopsis thaliana expression data 

(AtGenExpress), At-TPL being more expressed than other At-TPRs and At-TPL orthologs 

remaining highly conserved either in Arabidopsis lyrata or in Brassica rapa. 

The subcellular localization establishes a second discrimination criterion between 

Sl-TPLs. GFP fusion proteins of Sl-TPL1 to 5 isoforms all migrated exclusively to the 

nucleus, as observed with other TPL proteins from Arabidopsis (Long et al., 2006), maize 

http://ted.bti.cornell.edu/
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(Gallavotti et al., 2010) or rice (Yoshida et al., 2012). By contrast, Sl-TPL6-GFP fusion 

protein displayed a divergent subcellular targeting, this isoform being addressed to the cytosol. 

This divergent localization is in line with the lower scores calculated by the NLS prediction 

tool for Sl-TPL6. This observation, in addition to the low expression level and the high 

substitution rate, supports the view of either a partial loss of functionality or divergent 

functionality regarding Sl-TPL6. 

The first established function of TPL proteins is related to their role in auxin signaling 

via interaction with Aux/IAA partners (Szemenyei et al., 2008). To check whether this role is 

conserved among all Sl-TPLs isoforms and gain insight on either functional redundancy or 

potential functional diversification among family members in tomato, a comprehensive 

protein/protein interaction study was carried out between all Sl-TPLs and Sl-IAA members 

using a yeast two-hybrid screen. This targeted interactome study revealed two distinct patterns 

of interaction for tomato TPLs: four isoforms (Sl-TPL1, Sl-TPL2, Sl-TPL4 and Sl-TPL5) 

displaying a broad capacity of interaction with the majority of Sl-IAAs and the remaining two 

isoforms (Sl-TPL3 and Sl-TPL6) showing a more restricted interaction capacity. Noteworthy, 

a large number of Sl-IAAs show positive interaction with Sl-TPLs, consistent with the 

outcome of yeast two-hybrid screens performed in Arabidopsis where 20 out of the 29 

At-Aux/IAAs were able to interact with At-TPLs (Szemenyei et al., 2008; Arabidopsis 

Interactome Mapping Consortium, 2011; Causier et al., 2012a). Interestingly, neither 

Sl-IAA29 nor its arabidopsis homologue At- IAA29 (AT4G32280.1) interacts with TPL 

proteins although Sl-IAA29 exhibits a repressor activity (Audran-Delalande et al., 2012). On 

the other hand, the limited interaction capacity displayed by Sl-TPL6 adds another distinctive 

feature to this isoform which already diverged from other family members by its low 

expression level, high amino acid substitution rate and different subcellular localization. 

Altogether, the cumulative distinctive features support the idea that Sl-TPL6 has partially lost 

its ancestral function and may have gained new functionality. 

To compare within Arabidopsis, the selectivity in Aux/IAAs-TPL/TPRs interaction has 

been demonstrated by the Y2H assay in two studies (Szemenyei et al. 2008; Causier et al. 

2012a). There are seven (IAA2, 3, 4, 11, 13, 26, and 28) out of fifteen Aux/IAAs were shown 

http://dev.biologists.org/content/139/22/4180.long#ref-69
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to interact with TPL in both studies, and two Aux/IAAs (IAA7 and 16) did not interact with 

TPL. However, four Aux/IAAs-TPLs interactions showed inconsistent result between two 

studies, indicating that more confirmatory experiments are required. Their data also 

interestingly showed a high selectivity in the interaction between Aux/IAAs and TPL/TPRs. 

This leads to the possibility that different Aux/IAAs, recruiting different TPL/ TPRs, regulate 

the target genes in a diverse manner. Although TPL/TPRs have recently been shown to recruit 

histone deacetylase to the target gene (Krogan et al. 2012; Wang et al. 2013), more detailed 

molecular mechanism for the TPL/TPR function and functional diversity of TPL/TPR 

members remain to be characterized. In previous yeast two-hybrid screen performed in 

Arabidopsis by Causier et al., (2012a), AtTPR3 and At-TPR2, closely related to Sl-TPL3, 

both displayed the capacity to interact with various Aux/IAA proteins. However, a closer look 

to the interaction map published by Causier et al could also suggest differences of specificity 

between At-TPL and At-TPR2 or At-TPR3 with At-TPR2 and At-TPR3 notably interacting 

with partners displaying partial repression domains. Such hypothesis opens the possibility that 

At-TPR2, At-TPR3 and the closely related Sl-TPL3 display a specialization alternative to 

auxin signaling.  

Functional redundancy among Arabidopsis TPL family members is supported by the 

absence of obvious phenotypes in single loss-of-function mutants of At-TPL/TPR genes and 

by the requirement for the down-regulation of all five At-TPL-TPRs in order to phenocopy 

the dominant mutation tpl-1 (Long et al., 2006). However, this assumption is contrasting with 

the situation prevailing in rice and maize where genetic evidences seem to support a more 

specialized functionality for TPL genes. That is, in rice (Yoshida et al., 2012), a single 

recessive mutation in Asp1, a TPL-like gene close to Sl-TPL2, exhibited several pleiotropic 

phenotypes, such as altered phyllotaxy and spikelet morphology. While these phenotypes 

suggest a close association of Asp1 with auxin action, they clearly reveal that the 

specialization of TPL-related proteins in some organisms can differ from that in Arabidopsis. 

Further evidence sustaining a diversified function for TPL proteins is provided by maize rel2 

mutants affected in a TPL-like gene closely related to Sl-TPL3 and At-TPR3 (Gallavotti et al., 

2010). 
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Altogether, the data shed new light on structural, evolutionary and some functional 

features of tomato TPL gene family in tomato that suggest functional diversification of these 

regulatory proteins. Of particular interest, the setup of a comprehensive TPL-Aux/IAA 

interactions map and the differential subcellular targeting of some Sl-TPLs proteins, provide 

important clues towards designing appropriate strategies for the elucidation of both redundant 

and specific roles of TPL genes. 

 

 

3. Complementary results 

Since 6 TOPLES members have been identified in tomato in our previous work, the 

interactions map between Sl-TPL, Sl-IAA and Sl-ARF families could be constructed by Y2H 

assay. In this part of complementary results, interactions between Sl-TPL and Sl-ARF families 

will be investigated. Also, the influence of the different TPL domains on these specific 

interaction patterns will be analyzed. 

 

3.1 PPIs between whole Sl-TPLs and Sl-ARFs family 

    Y2H was used to test the interaction relationship between the whole family members of 

tomato TPLs and ARFs. Y2H protocol refers to Appendix A.1. 

Tomato ARF-1, 2a, 2b, 3, 4, 5, 6, 7, 8a, 9a, 9b, 10a, 10b, 16a, 16b and 17 were cloned 

into Y2H pGAD-vector respectively as AD-prey protein. The interactions between BD-TPLs 

and AD-ARFs were tested with these different partners respectively: 

BD-TPL1, 2, 3, 4, 5 and 6 

 AD-ARF1, 2a, 2b, 3, 4, 5, 6, 7, 8a, 9a, 9b, 10a, 10b, 16a, 16b and 17 

Figure 27 showed the interaction result between all BD-TPLs and AD-ARFs. Comparing 

with the interaction result of IAAs/ARFs, none of the ARFs activators (ARF5, 6, 7 and 8a) 

showed interaction with any TPLs. But 10 ARFs repressors showed at least one interaction 

with Sl-TPL 1, 2, and 4. For Sl-TPL3, 5 and 6, there were no interactions discovered with any 

ARFs by Y2H system. The permutation of bait and prey displayed a similar result (Appendix 
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A9). 

 

Fig. 27 The interaction map between BD-TPL and AD-ARF families. Black grid 

means there is an interaction between the two partners. Blank grid shows absence of 

interaction. 

 

3.2 Involvement of the ARF4 N-terminal region in the TPLs/ARF4 interaction  

N-terminal region (+1 ~ +1311 bp) of Sl-ARF4 without domain III and IV (ARF4-del; 

Fig. 28) was cloned into Y2H pGAD-vector to test if there is an interaction between TPLs and 

ARF4 N-terminal region. BD-TPL1, 2, 3, 4, 5 and 6 were used as bait proteins. AD-ARF4 and 

AD-ARF4-del were used as prey protein. BD-p53 and AD-T7 interaction was used to be 

positive control. Y2H was performed to test the interaction between these proteins.  

 
Fig. 28 The construction of ARF4-del without domain III and IV. 

 

The Yeast two-hybrid result shows that AD-ARF4-del interacted exclusively with 

BD-TPL2 and BD-TPL4 as well as AD-ARF4 full length (Fig. 29). That means the 

N-terminal of ARF4 is sufficient for the interaction between TPLs and ARF4. The ARFs 

possess on their N-terminal region, a DNA-binding domain (DBD) which is used to bind to 

TGTCTC auxin response elements within the promoter of target genes. Thus, it may indicate 

the middle SPL-rich RD region of some ARFs is necessary for the interaction between TPLs 

and ARFs. 
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Fig. 29 The interaction result between BD-TPLs and AD-ARF4-del. Black grid 

means there is an interaction between the two partners. Blank grid shows there is no 

interaction. 

 

3.3 PPIs Results of mutated Sl-TPL1 

Protein sequence and phylogenetic relationship analysis showed that tomato TPL1, 2, 3, 

4, and 5 are strongly conserved and we observed that all of them were expressed in nucleus. 

But the interaction results of TPLs/IAAs showed that Sl-TPL3 has a totally different behavior 

compared with other Sl-TPLs. As the Lish and CTLH domains are believed to drive the 

Aux/IAA -TPL interactions, we examined difference in the primary sequence. On the first 200 

amino acids, only three sites exhibit a Sl-TPL3-specific signature consisting of three amino 

acids at positions 44, 99 and 162. Then we performed a mutagenesis experiment on these 

three amino acids on TPL1 to see if any of these specific amino acids would affect the 

interaction between Sl-TPLs and Sl-IAAs. 

The three mutated forms of Sl-TPL1 were amplified by PCR. Special “mutated” primers 

for PCR were listed on Table 10. For each mutation, we substituted one amino acid of 

Sl-TPL1 to the corresponding amino acid of Sl-TPL3: position 44: TCG (Ser)  AAA (Lys); 

position 99: AAA (Lys)  AGT (Ser) or position 162: CAG (Glu)  GTC (Val) (Fig. 30). All 

mutations were cloned into the Y2H BD-vector (BD-TPL1-mut-44, 99 and 162). Then we 

tested the interaction relationship between each Sl-TPL1 mutant and AD-IAA3, 7 and 9 by 

Y2H respectively. The full length native sequences of Sl-TPL1 and Sl-TPL3 was used as 

controls.  
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Fig. 30 Targeted mutagenesis sites of Sl-TPL1: position 44: TCG (Ser)  AAA (Lys); 

position 99: AAA (Lys)  AGT (Ser) or position 162: CAG (Glu)  GTC (Val) 

 

Table 10 Primers for TPL1 mutations clone. 

Name Primers 

TPL1-mut-44-F GATAAAGTTACTAATGGAGAGTGGGAT 

TPL1-mut-44-R ATCCCACTCTCCATTAGTAACTTTATC 

TPL1-mut-99-F GTGGAGATTCTAGTGAGTGATCTG 

TPL1-mut-99-R CAGATCACTCACTAGAATCTCCAC 

TPL1-mut-162-F CGCGAGAAGCTTGTCTTTCCTA 

TPL1-mut-162-R TAGGAAAGACAAGCTTCTCGCG 

 

The interactions between BD-TPL1-mut-44, 99, 162, BD-TPL1 full length and 

AD-IAA3, 7 and 9 were tested respectively. As the results showed (Fig. 31), TPL1 and all 

mutated forms interacted with IAAs very well. The comparison of the interaction results 

between TPL1/IAAs and TPL1-mut/IAAs indicated that the mutated amino acids did not 

affect the interaction of TPL1/IAAs. However, as TPL3 did not interact with these IAAs, it 

means these three amino acids are not responsible for the absence of interaction between 

TPL3 and Sl-IAA-3, -7 and -9. There is another mechanism that could suppress the 

interaction between TPL3 and IAAs. So, in next experiment, we would like to check if the 

WD40-repeat domain could affect these interactions between Sl-TPL3 and Aux/IAAs. 
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Fig. 31 The interaction result between BD-TPL1-mut and AD-IAAs. Black grid 

means there is an interaction between the two partners. Blank grid shows there is no 

interaction. 

 

3.4 PPIs effect of the removal of WD40-repeat domain 

In the mutagenesis experiment above, we tried to understand why Sl-TPL3 had a totally 

different TPLs/IAAs-interaction pattern compared to other TPLs (Sl-TPL1, 2 and 4). The 

target mutagenesis experiment presented in paragraph 3.3 showed the three mutated amino 

acids in N-terminal of TPL3 did not affect the interaction between TPL3 and IAAs. The 

absence of obvious additional Sl-TPL3 specific amino-acid at the N-terminal extremity of the 

primary sequence prompted us to test whether the WD40-repeat domains on the C-terminal of 

TPLs may also influence some specific interaction between TPLs/IAAs. We removed 

WD40-repeat domains from Sl-TPL3 and Sl-TPL4 (TPLs-WD-del; Fig. 32), and tested the 

interaction of these TPLs-WD-del proteins with some Sl-IAAs. Both TPL3-WD-del and 

TPL4-WD-del were cloned into the Y2H BD-vector (BD-TPL3-WD-del and 

BD-TPL4-WD-del). Y2H assay was used to test BD-TPL3-WD-del and BD-TPL4-WD-del 

interacting with AD-IAA3, 7 and 9 respectively. The full length of BD-TPL3 and BD-TPL4 

interacting with AD-IAA3, 7 and 9 respectively were used as comparison.  
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Fig. 32 The constructions of the TPL3 and TPL4 without WD repeat domain. 

 

In this experiment, the interaction between BD-TPL3-WD-del and BD-TPL4-WD-del 

were positive with AD-IAA3, 7 and 9. The results (Fig. 33) showed that Sl-TPL4 full length 

and BD-TPL4-WD-del have the same behavior on interacting with Aux/IAAs. This means 

deleting WD40-repeat region does not affect the interaction of TPL4/IAAs. The results also 

showed that Sl-TPL3 full length did not interact with IAAs, but TPL3-WD-del interacted 

strongly with some Aux/IAAs. These results indicate clearly that, for Sl-TPL3, WD-repeat 

region is crucial for its interaction with Aux/IAAs. The presence of WD40-repeats region 

apparently suppresses the interaction between Sl-TPL3 and Aux/IAAs. This may also affects 

the interaction between Sl-TPL3 and ARFs. 

 

Fig. 33 The interaction result between BD-TPL1-mut and AD-IAAs. Black grid 

means there is an interaction between the two partners. Blank grid shows there is no 

interaction. 
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4. Complementary Discussion 

 

TOPLESS as a corepresor in TIR1-auxin-dependent and independent regulation of ARFs 

In order to better understand the mechanisms underlying Sl-TPL involvement in the 

regulation of auxin signaling pathway, the interactions within Sl-TPL and Sl-ARF family 

were tested. Sl-TPL1, Sl-TPL2 and Sl-TPL4 displayed interactions with the majority of 

repressor-ARFs. Moreover, there were no any Sl-TPLs interact with Sl-ARFs activator. That 

is in sharp contrast with the interaction result of the Sl-IAAs -Vs- Sl-ARFs screen, which 

indicated that Sl-IAAs interact strongly with all Sl-ARFs activators. In Arabidopsis, it was 

also mentioned that repressor ARF proteins, such as ARF2 and ARF9, interact directly with 

TPL/TPR proteins (Causier et al. 2012a), suggesting that a mechanisms for repression 

implicating TPL/TPR co-repressors may occur in both TIR1-auxin-dependent and 

TIR1-independent ARF-mediated repression (Fig. 6). Sl-TPLs interacting with some Sl-ARFs 

repressors in tomato were firstly revealed in our study, such as the Sl-TPL2 + Sl-ARF4 and 

Sl-TPL4 + Sl-ARF4. Moreover, the deletion of the C-terminal extremity of Sl-ARF4 indicates 

that the N-terminal part of the ARF4 protein, without the CTD domain, is essential for these 

interactions. There are two conserved domains on the N-terminal part of canonical ARFs: 

DBD domain and the middle SPL-rich region (MRs). The DBD of ARFs functioned to 

recognize and interact with the target DNA of auxin response gene. Possibly the MRs of 

ARFs might play a key role in the PPIs between TPLs and ARFs. This also could explain why 

the Sl-TPLs do not interact with the activator ARFs since there is a big difference in the MRs 

protein sequences between activators and repressors. The ARF activator MRs are rich in 

glutamine (Q), serine (S), and leucine (L) residues and this might prevent direct interactios 

with TPL proteins 

Using a high-throughput Y2H approach, Causier et al. (2012a) sorted out a list of 

transcription factors potentially interacting with TPL/TPRs. Various transcription factors 

belonging to at least 17 distinct families were represented. APETALA2 (AP2)/ETHYLENE 

RESPONSE FACTOR (ERF), Aux/IAA, TCP and JASMONATE-ZIM-DOMAIN (JAZ) 

proteins were found to interact with TPL/TPRs. Most of these TPL/TPR-interacting factors 
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include one or more repressor domains. Causier et al. (2012b) further conducted a Y2H assay 

using Physcomitrella patens TPL/TPRs, Aux/IAAs, and ARFs to demonstrate an evolutionary 

conservation of the EAR motif for the interaction between TPL/TPRs and other components. 

The Aux/IAA with the mutated LxLxL motif failed to interact with TPL/TPRs. Two 

repressor-like ARFs, containing the LxLxL or similar motif, showed specific interaction with 

different TPL/TPR members whereas an activator ARF with no LxLxL motif did not interact 

with TPL/TPRs, indicating that ARF repressors are also able to directly suppress the target 

genes by recruiting TPL/TPR co-repressors. This study obviously shows that the molecular 

function of nuclear auxin signaling components and the diversity in interaction between 

components have been conserved in land plants. 

 

Questioning the molecular bases of Sl-TPL3 specificities 

    The mutation and deletion of Sl-TPLs also gave some interesting results. According to 

phylogenetic analyses and TPLs/IAAs interaction map, Sl-TPL3 has a totally different 

behavior compared with other Sl-TPLs. Firstly we noticed it displays three specific amino 

acids at positions 44, 99 and 162 compared to TPL1, 2, 4 and 5 on the conserved domain. We 

made three mutations to substitute each one amino acid of TPL1 to the corresponding amino 

acid of TPL3. But the Y2H experiment on this mutated Sl-TPL1 did not show any alteration 

of Sl-TPL1 capacity to interact with Aux/IAAs. Then we deleted the WD40-repeat domains 

from Sl-TPL3, and tested the interactions again with Sl-IAAs. The Sl-TPL3-WD-del gave us 

a surprising result since it appeared to interact with all the Sl-IAAs assessed. This result 

suggests either that the WD40-repeat domains in TPLs may influence the specificity of 

interactions with other proteins, such as weakening or suppressing the interaction between 

Sl-TPL3 and Sl-ARF4 or that the presence of some WD40-repeats may affect the expression 

of reporter gene expression in yeast thus generating false negative in yeast two-hybrid by 

affecting the expression of reporter genes. The application of alternative PPI methods should 

help us to elucidate the question.  
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Chapter IV: Purification of Aux/IAA and ARF partners 

from tobacco protoplast 
 

 

1. Introduction 

 

1.1 General introduction of Chapter IV 

By using Y2H, pull-down and BiFC protocols, protein-protein interactions between 

Sl-IAA, Sl-ARF and Sl-TPL families were assayed in our study (Chapter II and III). Some 

strong interactions between specific Sl-IAA, Sl-ARF and Sl-TPL were confirmed. Part of our 

results could match the classical model of auxin signaling pathway: the TPL family members 

are usually recruited by Aux/IAA, and then these Aux/IAAs may interact with ARF-activators 

to form a protein complex which can switch off the activation of auxin regulated genes 

(Vanneste and Friml 2009).  

Moreover, the differences between PPIs analyses also highlighted some contradictory 

results between these three protocols (chapter II). In our study, Sl-IAA3 showed no 

interaction with Sl-ARF4 by Y2H assay. But on the contrary, several Aux/IAAs seemed to 

interact with Sl-ARF4 in the BIFC assay. Unfortunately, we could not produce recombinant 

Sl-ARF4 proteins to solve the contradiction by pull-down.  

If we hypothesize that the results given by BiFC and yeast two-hybrid are not the result 

of a false positive, then the contradiction might find two explanations: 

- Existence of post-translational modifications that mask the interaction in yeast; 

- Or the involvement of intermediary partners that may establish a link between 

Sl-IAA9 and Sl-ARF4 and explain the nuclear fluorescence observed in BiFC.  

The second hypothesis implies the existence of alternative partners for Aux/IAAs. As 

transcription complex imply numerous proteins, the list of alternative interactants may be 

long. Interestingly, a large Y2H screen in Arabidopsis was recently published by the 
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Arabidopsis Interactome Mapping Consortium (2011). In this work, the interactants of several 

Aux/IAAs was documented. In addition to Aux/IAA, ARF and TOPLESS-related proteins that 

have been studied in chapter II and III, the Arabidopsis interactome revealed the potential 

existence of several alternative partners such as subunits of the COP complex, HomeoBox 

proteins (HB32), transcription factors (AGL20), other proteins with WD40 domains (see 

Table 11). 

The existence of these alternative partners that escapes the canonical Aux/IAA-ARF-TPL 

model led us to develop a new approach based on copurification. We hoped to reveal and fish 

specific protein or proteins complex from the plant cell directly by non-target in-plant 

approach. For that purpose, specific Sl-IAAs and Sl-ARFs proteins were fused with GFP-tag 

in our study: IAA3-GFP, IAA9-GFP and ARF8a-GFP. All these fused proteins were expressed 

in BY-2 tobacco protoplast and to be extracted and analyzed by western blot. We wanted to 

establish a feasible protein expression and extraction protocol for Sl-IAAs, Sl-ARFs and 

Sl-TPLs to utilize to copurify prey proteins in plant cells suitably. This would also give us 

more useful information to understand better other PPIs mechanism in plant in the future. 

http://www.plantphysiol.org/content/158/1/423.long#ref-1
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Table 11. Arabidopsis proteins interacting with several Aux/IAA according to the 

Arabidopsis Interactome Mapping Consortium (2011). Interactants corresponding to 

Aux/IAA, ARF and TPL-TPR proteins were removed. 

Gene accession Annotation Aux/IAA interacting 

AT1G01910 
P-loop containing nucleoside triphosphate 
hydrolases superfamily protein 

IAA2, IAA10, IAA16, 
IAA27 

AT1G14687 homeobox protein 32 (HB32) IAA8, IAA10, IAA27 

AT1G71230 Encodes a subunit of the COP9 complex 

IAA1, IAA2, IAA7, 
IAA8, IAA10, IAA27, 
IAA28 

AT2G39760 BPM3; protein binding 
IAA2, IAA6, IAA8, 
IAA10 

AT2G43790 
ATMPK6 (ARABIDOPSIS THALIANA MAP 
KINASE 6) IAA10, IAA31 

AT2G45660 
AGL20 (AGAMOUS-LIKE 20); transcription 
factor IAA10, IAA16, IAA31 

AT4G25660 hypothetical protein IAA10, IAA16 

AT5G08080 
SYP132 (SYNTAXIN OF PLANTS 132); 
SNAP receptor IAA10, IAA11 

AT5G02870 60S ribosomal protein L4/L1 (RPL4D) IAA3, IAA11 
AT3G06430 EMB2750 (embryo defective 2750) IAA11, IAA18 

AT3G18140 
transducin family protein / WD-40 repeat 
family protein IAA1, IAA18 

AT3G06720 
IMPA-1 (IMPORTIN ALPHA ISOFORM 1); 
binding / protein transporter IAA2, IAA11, IAA19 

AT4G02150 
MOS6 (MODIFIER OF SNC1, 6); binding / 
protein transporter IAA1, IAA19 

AT4G16143 
IMPA-2 (IMPORTIN ALPHA ISOFORM 2); 
binding / protein transporter IAA2, IAA19 

AT1G16890 ubiquitin-conjugating enzyme, putative IAA2, IAA7 
AT2G34090 MEE18 (maternal effect embryo arrest 18) IAA1, IAA2 
AT4G35000 APX3 (ASCORBATE PEROXIDASE 3) IIAA1, IAA2 

AT5G52547 hypothetical protein 
IAA2, IAA3, IAA4, 
IAA11 

AT1G12840 

DET3 (DE-ETIOLATED 3); 
proton-transporting ATPase, rotational 
mechanism IAA1, IAA3 

AT2G38270 
CXIP2 (CAX-INTERACTING PROTEIN 2); 
electron carrier/ protein disulfide IAA3, IAA11 

AT5G58720 PRLI-interacting factor, putative IAA27, IAA31 

AT1G22920 CSN5A (COP9 SIGNALOSOME 5A) 
IAA2, IAA7, IAA8, 
IAA28, IAA31  

AT1G70410 Putative / carbonate dehydratase, putative IAA8, IAA19 

http://www.plantphysiol.org/content/158/1/423.long#ref-1
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1.2 The aim of the work in Chapter IV 

To better understand the complexity of the protein interaction network involved in auxin 

regulation in plant, a non-targeted approach was initiated. Our aims in this Chapter are: (1) To 

establish a highly efficient expression system for tagged-protein by using transient expression 

in tobacco protoplasts. (2) To succeed extracting and purifying the tagged-proteins from 

protoplast. (3) Try to pull down (capture) new potential protein partner or protein complex in 

plant cell. Ultimately, the idea of this work was to analyze the co-purified proteins using mass 

spectrometry, but we could not reach that point. 

 

 

2. Materials and Methods 

In Chapter II, the protoplast system was used in BiFC to confirm that both Sl-IAA3 and 

Sl-IAA9 interact with Sl-ARF8. In this Chapter, GFP-tagged protein (Sl-IAA3, Sl-IAA9 and 

Sl-ARF8) were expressed using a transient expression system on tobacco protoplasts. Trying 

to extract these GFP-tagged proteins as bait was the first mandatory step before discovering 

any new potential protein partner in plant system. 

 

2.1 BY-2 tobacco cells and growth condition 

Refers to Appendix A5. 

 

2.2 Plasmids for protoplast transformation 

The coding sequence of Sl-IAA3, Sl-IAA9 and the Sl-ARF8a proteins were cloned in 

frame with GFP into the pGreen vector (Hellens et al. 2000) by Smal I enzymatic digestion 

and expressed under the control of the 35S CaMV promoter. Plasmids of pGreen-IAA3-GFP, 

pGreen-IAA9-GFP and pGreen-ARF8a-GFP were used for transient expression in tobacco 

protoplasts. The empty pGreen-GFP vector plasmid was used as a control. 
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2.3 Transient expression in tobacco protoplasts 

pGreen-GFP, pGreen-IAA3-GFP, pGreen-IAA9-GFP and pGreen-ARF8a-GFP were 

used for transient expression in tobacco protoplasts respectively. Materials and methods refer 

to Appendix (A5). 

 

2.4 Preliminary detection of GFP-tagged proteins expressed in protoplast 

Before extracting GFP-tagged protein from protoplast, we performed a simple and quick 

pre-test by using western blot to check if the GFP-tagged proteins were expressed in 

transformed protoplasts. pGreen-IAA3-GFP, -IAA9-GFP and -ARF8a-GFP were introduced 

into protoplast with PEG. Intact protoplasts were vortexed sufficiently and centrifuged at 

13000 rpm to separate the soluble fraction (Sol) from the pellet fraction (Pel). The soluble 

fraction (Sol) and the pellet fraction (Pel) were loaded directly onto a SDS-PAGE gel. Signals 

were detected with GFP-antibody (Invitrogen) by western blot. Materials and methods of 

western blot refer to Appendix A3. The dilution ratio of GFP antibody (Mouse monoclonal 

anti-GFP from Sigma-Aldrich, G6539) was: 1:5000, and the dilution ratio of second antibody 

(Anti-mouse IgG, Sigma-Aldrich) was: 1:20000. 

 

2.5 Extraction of GFP-tagged protein from tobacco protoplast 

GFP alone, IAA3-GFP, IAA9-GFP and ARF8a-GFP proteins were extracted from 

transformed protoplast after washing the protoplast on a HEPES-sorbitol-Ficoll buffer 

(protocol refers to Appendix A7). Protoplasts were then lysed by sonication or through a 

needle. Proteins extracted from protoplast were detected with GFP-antibody (Invitrogen) by 

western blot assay.  

 

2.6 Nucleus extraction from tobacco protoplast 

pGreen-IAA9-GFP was used for transient expression assay in tobacco protoplasts. After 

protoplast purification (see above), the nucleus was purified after disrupting protoplasts 

through a hypodermic needle. A detailed protocol of nucleus extraction is presented in 

Appendix A8. Intact Sl-IAA9-GFP from purified intact nucleus was detected with 
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GFP-antibody (Invitrogen) by using western blot assay. The dilution ratio of GFP antibody is: 

1:5000, and the dilution ratio of second antibody is: 1:20000. 

 

 

3. Results 

    The tobacco protoplast system was chosen for in-plant PPIs assay in our study. Before 

bound- proteins were fished by our GFP-tagged bait proteins, the first step was to establish an 

approach for expressing and extracting the GFP-tagged proteins from the protoplast system. 

 

3.1 IAAs-GFP and ARFs-GFP proteins were expressed in Tobacco protoplast 
nucleus 

The observation, under confocal microscopy or under direct fluorescence-microscopy, 

revealed that protoplasts transformed could produce with high efficiency GFP-tagged proteins 

in tobacco protoplast. Nearly 5~10% of total cells were transformed successfully each time. 

Undoubtedly, a high efficiency of transformation is important for the next experiment of 

proteins extraction from protoplast. As expected, GFP-IAA3, GFP-IAA9 and GFP-ARF8a all 

localized in tobacco protoplast nucleus (Fig. 34). 

 

Fig. 34 GFP-IAA3, GFP-IAA9 and GFP-ARF8a all localized in tobacco protoplast 

nucleus. 
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3.2 Visualization of GFP-tagged proteins expressed in protoplast by Western-blot 

Before extracting GFP-tagged protein from protoplast, we performed a simple and quick 

pre-test using western blot to check if the GFP-tagged proteins were abundant in transformed 

protoplasts. All protoplast samples were separated by centrifugation into two parts: soluble 

fraction (sol) and pellet fraction (pel). The western-blot result (Fig. 35) showed that for 

IAA3-GFP, IAA9-GFP and ARF8a-GFP, a band of the expected size could be visualized after 

ECL revelation. But all proteins except GFP alone remained associated to the pellet although 

none is predicted as a hydrophobic molecule. The observation under microscopy of the cells 

showed that even after sonication we could still observe „nucleus‟-like structure that may trap 

the GFP-tagged proteins and complicate its extraction.  

 

Fig. 35 Monitoring of GFP tagged proteins in protoplasts. IAA3-GFP, IAA9-GFP and 

ARF8a-GFP proteins display a strong and specific signal. All proteins except GFP-alone were 

stayed in pellet fraction (Pel). 

 

3.3 Western-blot result of IAAs-GFP proteins extracted from protoplast 

We further improved the extraction method by washing and purifying the intact 

protoplasts in a HEPES-sorbitol-Ficoll buffer. Following this new method of protein 

extraction from protoplast, the revelation of proteins by western-blot showed that (Fig. 36) 

IAA3-GFP and IAA9-GFP proteins could be extracted from protoplast, but they were 

degraded very quickly. For ARF8a-GFP, up to now, we have had great difficulty to get the 

protein in the soluble fraction.  
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Fig. 36 Evolution of AuxIAA-GFP size after protein extraction. Western blot result 

showed the proteins of IAA3-GFP and IAA9-GFP extracted from protoplast. 1: GFP protein 

alone. 2: IAA3-GFP before extraction. 3: IAA3-GFP after extraction. 4: IAA9-GFP before 

extraction. 5: IAA9-GFP after extraction. 

 

3.4 IAA9-GFP full length stayed in purified tobacco protoplast nucleus 

In order to prevent the degradation of the IAA9-GFP protein, we purified nucleus from 

transformed tobacco protoplast. After purification, we controlled nucleus integrity and purity 

with DAPI staining (Fig. 37). In parallel, a minority of nucleus displaying GFP fluorescence 

could still be observed. The western-blot results showed that IAA9-GFP protein could still 

conserve its full length in intact nucleus compared with the protein extracted from broken 

protoplast (Fig. 38). 

 

Fig. 37 Visualization of nucleus extracted from tobacco protoplasts with DAPI. 

Fluorescence was excited at 488 nm wavelength and emission was captured at 530 to 570 nm 

wavelength. 
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Fig. 38 Integrity of IAA9-GFP in purified nuclei. The western result showed 

IAA9-GFP protein still conserve its full length in intact nucleus compared with the protein 

extracted from broken protoplast. 1: IAA9-GFP in intact protoplast (before extracting). 2: 

IAA9-GFP in broken protoplast (after extracting). 3: IAA9-GFP in intact nucleus. 

 

3.5 Degradation analysis of IAAs-GFP proteins 

As we know, Aux/IAA proteins are protein which could be degraded very quickly 

(present a high turn-over) both in in-vivo and in-vitro environments, even in absence of auxin 

and TIR1 (Dreher et al. 2006). Interestingly, when we extracted IAAs-GFP protein from 

protoplast and performed the PAGE-gel electrophoresis for western, we always found that 

IAA proteins are degraded very quickly (Fig. 39). 
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Fig. 39 Estimation of cleavage zone during IAA degradation (A): Western blot result 

showed the IAA3-GFP and IAA9-GFP proteins were degraded. 1: IAA3-GFP before 

extracting; 2: IAA3-GFP after extracting; 3: IAA9-GFP before extracting; 4: IAA9-GFP after 

extracting. (B): The image of the degraded structure of IAA3-GFP and IAA9-GFP. 

 

After repeating the experiment more than 3 times, we could confirm and analyze the 

reproducible degradation of IAA3-GFP and IAA9-GFP by PAGE-gel electrophoresis. We 

determined the size of these protein fragments. As shown on Fig. 39, the protein size of 

full-length IAA3-GFP is approximate 55 kDa, and the degraded IAA3-GFP is about 44 kDa. 

The protein size of full-length IAA9-GFP is approximate 69 KD, and the degraded IAA9-GFP 

is about 45 KD. Therefore, the size of degraded sequence could be calculated approximately, 

and the cleavage site was deduced from the full-length protein sequence (Fig. 40). 

Approximately 11 kDa of IAA3 N-terminal and 24 kDa of IAA9 N-terminal were degraded 

during protein extraction form protoplast. For both tagged proteins, such a position is located 

between domain II and III (Fig. 40). 
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Fig. 40 Prediction of the IAA degradation zone. The full length sequences of IAA3 

and IAA9 proteins. Red arrows indicate the digestion site was always regularly between 

domain II and III. 

 

The Aux/IAA protein degraded very quickly and regularly. Before starting the protein 

extraction experiment, the Aux/IAAs could keep their full-length in the intact cells or nucleus. 

But when we performed the extraction experiment, protein was degraded quickly and 

regularly even though we tried to add some different protease inhibitors into the extraction 

buffer. It is still not clear what exactly happened to explain this quick and regular degradation. 

 

 

4. Conclusion and discussion 

 

We tried to establish a non-targeted approach in this study. Three GFP-tagged proteins: 

Sl-IAA3-GFP, Sl-IAA9-GFP and Sl-ARF8a-GFP were expressed and extracted from 

protoplast. Our aim was to find some potential protein partners or complex depending on 

these GFP-tagged bait proteins. Alternatively, the system could also have been used to 

produce tagged-protein in an in planta environment and provided us alternative conditions to 

perform pull-down assays. Although we could not finish all planed experiment during the 
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PhD thesis, we still got some useful and interesting information. 

pGreen-IAA3-GFP, pGreen-IAA9-GFP and pGreen-ARF8a-GFP were transformed to 

BY-2 tobacco protoplast and these GFP-tagged proteins were expressed successfully. 

Confocal microscopy images confirmed that IAA3-GFP, IAA9-GFP and ARF8a-GFP were all 

localized in tobacco protoplast nucleus.  

The soluble fraction of IAA3-GFP and IAA9-GFP were extracted from protoplast and 

verified by western blot. So far, we could not extract soluble ARF8a-GFP from protoplast. 

The size of proteins extracted from protoplast deduced from a western-blot showed that 

IAA3-GFP and IAA9-GFP proteins were degraded very quickly. As soon as we started the 

extraction experiment and broke the protoplast to release cell contains, the degradation of 

IAAs-GFP happened quickly. There might be an enzymatic or spontaneous mechanism 

causing the degradation for IAAs-GFP when proteins are released or are in contact with the 

cytoplasm. By contrast, IAAs-GFP still kept its full length in the intact nucleus, even after a 

four hours subcellular fractionation protocol, thus illustrating the importance of the nuclear 

structure to preserve Aux/IAA integrity. We tried to perform a lysis of the nucleus to see if we 

could obtain the soluble protein fraction of IAA9-GFP. But unfortunately, we did not succeed 

up to now. There are at least two possible reasons: first, there is too small quantity of 

transformed nucleus; second, the lysis buffer needed to be optimized before extracting nuclear 

proteins more efficiently. In that view, the work described in this chapter can be viewed as 

unsuccessful. For ARF proteins, the obtention of significant quantities of soluble proteins 

represents the main bottleneck for further purification. For Aux/IAA, although the quantity of 

protein is significantly higher, the rapid cleavage of the protein prevents us from using it as a 

bait to capture other interactants. 

    However, the analysis of the degraded IAA3-GFP and IAA9-GFP sequence revealed at 

least one interesting feature. SDS-PAGE-gel electrophoresis and western blot results indicated 

that the degraded size of IAA3-GFP and IAA9-GFP protein fragments were very regular. For 

both IAA3-GFP and IAA9-GFP, the digestion site located always between domain II and III. 

Earlier study indicates Aux/IAA domain II is responsible for the stability of Aux/IAA 

proteins (Dreher et al. 2006; Worley et al. 2000). The interaction between Aux/IAAs domain 
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II and the SCF complex leads Aux/IAAs become ubiquitinated and are targeted for proteolysis 

(Dharmasiri et al. 2005a; Dharmasiri et al. 2005b; Kepinski and Leyser 2005; Leyser 2006; 

Tan et al. 2007; Chapman and Estelle 2009). Now it is still not clear when and how this 

degradation happens exactly in the tobacco protoplast for IAA3-GFP and IAA9-GFP. But we 

can think that when IAA3-GFP or IAA9-GFP is released into the cytoplasm, some enzyme 

recognized and digested these proteins very quickly via the domain II. This result also showed 

us there is a big difficulty to obtain the full length functional IAAs proteins and to utilize them 

to capture other potential protein partners. 
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General conclusions 
 
 

1. Scientific perspectives 

 

TOPLESS family in tomato was characterized in our study 

TOPLESS family of tomato was firstly reported in details in this thesis. Nine ORFs 

coding for topless-like proteins (Sl-TPLs) were identified in the genome. Six corresponded to 

full-length proteins (Sl-TPL1, 2, 3, 4, 5 and 6) containing the TOPLESS canonical domains 

(LisH, CTLH and two WD40 repeats) and were further analyzed. Combining different 

approaches (phylogeny, nuclear localization, expression analysis and exhaustive Y2H screen 

of Aux/IAA-TPL interactions), we could categorize the TOPLESS family into four branches:  

- A first branch containing three isoforms (Sl-TPL-1, -4, -5) very similar to At-TPL, 

displaying a wide capacity of interactions with Aux/IAA proteins and comprising two 

members (Sl-TPL1 and Sl-TPL4) highly expressed in vegetative tissues. These two 

genes may be seen as some kind of functional homologues of At-TOPLESS protein. 

- A second branch (Sl-TPL2) absent in Arabidopsis but sharing high homology with 

distant TPL-like proteins in moss or lycophyte or with a rice TPL-like protein (ASP2) 

that has also conserved a broad capacity to interact with Aux/IAAs and ARFs. 

- A third branch (Sl-TPL3) found in all Angiosperms, with a distinct PPI pattern but 

highly expressed even in reproductive organs. This last isoform represents possibly an 

interesting object of study to assay the specific contribution of TPL-like proteins in 

fruit development and ripening. 

- A last branch (Sl-TPL6), more distant but evolving fast and being poorly expressed. 

This isoform may be considered as a near-pseudogene.  

 

Protein-protein interactions and a new model of auxin signaling pathway 

Up to now, in the auxin signaling pathway, it is widely accepted that Aux/IAAs interact 
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with activator-ARFs to prevent the target gene expression. The TPLs are considered as 

co-repressor which could interact with IAAs to form the TPL-IAA-ARF protein complex. By 

building exhaustive PPi maps within the Aux/IAA, ARF and TPL family proteins, we could 

provide a complete picture (Fig. 41) that comforts and completes the current auxin perception 

model. Indeed, the Aux/IAA-activator-ARF interaction appears as a general trait and at least 

four TPL isoforms show a broad capacity to bind the majority of Aux/IAAs (with exception of 

SlIAA29). The interactions between TPL and ARFs gives also some hints about the 

mechanism of repression exerted by repressor ARF since some have a clear capacity to 

interact with TPL corepressor (Fig. 42A, B). Such result was also observed by Causier et al. 

(2012). Thus, the TPL protein seems to play a central role in both auxin-dependent and 

independent repression of auxin-response genes. The TPL- inhibition mechanism is still 

unclear, however some authors supposed that TPL acted through the recruitment of histone 

deacetylases (HDACs) into transcription complexes, thus changing the chromatin state from 

active to inactive (Long et al., 2006; Liu and Karmarkar, 2008; Krogan and Long, 2009; 

Krogan et al., 2012). At last, in presence of auxin, the Aux/IAA proteins are removed and 

targeted to the proteasome, thus releasing the activator-ARFs (Fig. 42C). In that case, some 

authors (Vernoux et al. 2011, Guilfoyle & Hagen, 2012) suggested the existence of a 

competition between both types of ARFs and that activator ARF binds with high affinity to 

the promoters of auxin-response genes. 

 



95 
 

 
Fig. 41 Exhaustive Protein-protein interactions map within the Aux/IAA, ARF and 

TPL family proteins (Yeast two-hybrid result). Green box indicates there is an intraction 

between the tested proteins. Red box means there is no interaction. 
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Fig. 42 Possible model of the TPL/IAA/ARF PPIs involved in the auxin signaling 

pathway. (A): Some Aux/IAA interacts directly with ARF activator domain III and IV, and 

also these IAA recruit some co-repressors TPL in the same time. This repression occurs in 

absence of auxin. (B): For some repressor ARFs, the TPL can bind directly the transcription 

factor, thus exerting a repression effect. This repression is auxin-independent. (C): In presence 

of auxin, the Aux/IAA is removed. The activation of auxin-response gene depends only of the 

balance between activator and repressor ARFs.  

 

 

2. Methodological perspectives 

 

Three protocols for PPIs assay were established in our lab 

General experiment protocols for PPIs assay were established for the first time in our lab 

including Y2H, pull-down and BiFC. Using these protocols, we analyzed the affinity between 

tomato Aux/IAA, TOPLESS and the Auxin Response Factor (ARF). All these PPIs protocols 

are available for routine tests and even for some mutated or deleted proteins tested to learn the 

function of specific domains involved in their PPIs. Y2H provides a high throughput PPIs 

method while pull-down looks more like a complement experiment to confirm the directly 
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interaction between two protein partners. The BiFC is also used as a high throughput PPIs 

method, but the reproducibility of results still represents a huge challenge, thus questioning 

the reliability of the method. Hence, it will still be helpful to confirm and find some potential 

partners involved in tomato cell‟s auxin signaling pathway, for example to examine in further 

detail the specificity of interactants observed on Sl-TPL3 (contrary to Sl-TPL1, 2, 4, 5).  

 

Non-targeted approach for PPIs assay should be investigated in the future 

In order to know better the interaction relationships of TPL/IAA/ARF in plant or even 

their interactions with some unknown proteins and target genes, the protein expression and 

extraction systems from nature plant cell will be investigated in the future. In my PhD study, 

we tried to establish a protocol which could extract specific tagged protein from tobacco 

protoplasts. Thus, we hoped to use these tagged bait proteins to capture the potential partners 

or protein complex and take advantage of the sequence conservation between Nicotiana and 

tomato, two Solanaceae species. Until now, we were not completely successful and the way to 

analysis of bound proteins by mass spectrometry or Surface Plasmon Resonance (BIAcore) 

looks quite unsure. However, we may also question the use of the protoplast system which 

displays several limitations (low quantity of material, use of transient expression instead of 

stable transgenic transformation). A future work on these non-targeted approaches probably 

needs strategy-refining. 

 

 

3. Future experiments 

 

Transgenic plant study 

    In the GBF laboratory, several Sl-IAAs and Sl-ARFs have already been targeted for both 

over-expression and down-regulation studies after transformation of tomato via 

Agrobacterium tumefaciens. For the Sl-TPL family, we could also design a genetic 

engineering strategy. As both Sl-TPL1 and Sl-TPL4 are highly expressed in vegetative tissues 

and display an interaction pattern similar to At-TPL, we could, by RNA-interference, down 
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regulate both genes (some regions of the genes share 90% identity between the two nucleic 

acid sequences). Hopefully, the phenotype would be very consistent with rice 

ASP2-down-regulated lines (Yoshida et al. 2011) or with semi-dominant tpl-1 mutant (Long 

et al. 2006). For fruit biology, Sl-TPL3 represents a target of choice. In that case, if we design 

a construct for RNA interference, we would better target a very specific region of the gene, so 

that only this isoform will be affected.   

 

Analysis of mutated or deleted forms of Sl-IAA or Sl-TPLs 

The study on the TPL multigenic family revealed some differences between isoforms. 

For the Sl-IAAs, a non-targeted approach or a large Y2H screens with several partners 

(perhaps on a cDNA library) might highlight differences between isoforms and yield a PPI 

signature for some members. In that case, a complementary approach would be to design 

deletions or targeted mutagenesis to understand the structural bases of these differences. 

Analysis of mutated or deleted Sl-IAA/ARF/TPL PPIs will thus help us to understand better 

how these potential amino acid works in the interaction, and how could these potential protein 

complex evolve during the radiation of these multigenic families. 
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Appendix 
 

A.1 Protocol of yeast two-hybrid (Y2H) 

 

The Y2H experiment protocol mainly refers to the Y2H User Manual (Clontech). If there 

are any optimizations and/or changes about the protocol in our experiment, we would give a 

“Note” after each step of the protocol. 

 

Preparation before experiment 

--- Medium YEPD for yeast growth (1 L) 

Yeast extraction           10g 

Bacto-peptone            20g 

Adenine hemisulfate salt    50mg 

Glucose                 2% 

Before autoclave, adjust pH to 5.8 with HCl. For solid YEPD, add 15g Agar to the 

solution. 

--- Selection medium TL (without Trp and Leu) (1 L) 

Yeast Nitrogen base                  6.7g 

Drop out - TL (Clontech, ref. 630417)    X mg (Depend on the product standard) 

Adenine hemisulfate salt              50mg 

Glucose                            20g 

Agar                               20g 

Need autoclave, no need to adjust pH. 

--- Selection medium TLHA (without Trp, Leu, His and Ade) (1 L) 

Yeast Nitrogen base                   6.7g 

Drop out - TLHA (Clontech, ref. 630428)  X mg (Depend on the product standard) 

Glucose                             20g 
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Agar                                20g 

Need autoclave, no need to adjust pH. 

--- Selection medium TLH (without Trp, Leu and His) (1 L) 

Yeast Nitrogen base                   6.7g 

Drop out - TLH (Clontech, ref. 630419)    X mg (Depend on the product standard) 

Adenine hemisulfate salt               50mg 

Glucose                             20g 

Agar                                20g 

Need autoclave, no need to adjust pH. 

--- Clone of isolated yeast AH109 grew 2-3 days, 28 °C, on the YEPD plate, after that, it 

could be kept on -4 °C for 2 month. 

--- Sterilized H2O. 

--- Sterilized eppendorfs tube (1.5mL) and tips (10uL, 200uL and 1mL). 

--- 100mM and 1M Lithium Acetic (LiAc), adjust pH to 7.5, sterilize by pass through the 

0.22 µM filter. Keep in room temperature (RT). 

--- 50% PEG 3350, completely dissolve in 50 °C, Keep in room temperature (RT). 

Note: If the yeast transformation is in low efficiency, try to increase the concentration 

to 60%. 

--- 2 mg/ml salmon sperm DNA (SS-DNA). Before use, boil it for 5 min, and after keep 

in ice for at least 5 min. 

 

Yeast transformation protocol 

1. Scratch the stock yeast AH109 on the YEPD plate, culture on 28 °C  for 2-3 days. 

2. Pick up a huge amount of isolated AH109 clone on the YEPD plate and culture with 

5mL liquid YEPD on 28 °C , 250 rpm, ~24h. 

    Note: Normally we did this step on the morning of the day. Then the next day morning 

we could perform the Y2H experiment. 

3. Transfer over-night-yeast culture (step 2, ~3.5mL) to 100mL fresh YEPD, measure the 

OD600 ≈ 0.15, and then culture on 28 °C , 250 rpm, to the OD600 ≈ 0.4-0.5. 
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    Note: Normally, it will takes 4h that yeast culture OD600 increase from 0.15 to 0.4. 

4. Separate the yeast culture to two 50mL tubes and centrifuge at 4500rpm, 5min. 

    5. Resuspend the pellet in 25mL sterilized water, and mix completely. Then centrifuge 

again at 4500rpm, 5min. 

    6. Resuspend the pellet in 1mL LiAc (100mM), mix well and transfer the mixture to two 

1.5mL tubes. Then centrifuge at 13000rpm, 15sec. 

    7. Resuspend the pellet again in 1mL LiAc (100mM), mix well and waiting for use 

(Yeast-LiAc-solution). 

    8. Prepare the transformation mixture and mix well by vortex. 

      --- 665uL 50%PEG3350 

--- 100uL 1M LiAc 

--- 140uL SS-DNA (Before use, boil it 5min firstly, and then keep it in ice at least 

5min) 

--- 95uL H2O 

    Note: Total mixture volume is 1mL, it could be used for 4 transformations 

9. Prepare a 1.5mL tube, add the followed things: 

--- 100uL Yeast-LiAc-solution 

--- 500ng BD-bait plasmid 

--- 500ng AD-prey plasmid 

--- 250uL transformation mixture 

Then mix well by short vortex (3-5sec, two times). 

Note: For positive control Y2H experiments, yeasts were co-transformed with the 

pBD-p53 (BD-p53) and the pAD-SV40T (AD-T7) vectors (Clontech). 

    10. Put the tube on 28 °C , 250 rpm, 30 min. After that, transfer the tube to 42 °C , 30min. 

    11. Centrifuge the tube at 7000 rpm, 15 sec. Resuspend the pellet in 200uL sterilized 

water. 

    12. Plating the yeast suspension on selection medium: 100uL for TL plate, another 100uL 

for TLHA plate or TLH+3AT plate. Keep the plates on 28 °C  for 3-7days.  

Note: An interaction between bait and prey in the Y2H system results in the induction of 
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HIS3, which enables yeast to grow in the absence of histidine in the media. Unfortunately, 

some bait clones exhibit auto activation (i.e., they are able to turn on reporter genes in the 

absence of an interaction). In most cases, this auto activation can be controlled by the addition 

of 3-Amino-1,2,4-Triazol (3AT), which acts as a quantitative inhibitor of the HIS3 reporter 

gene. Thus determining the optimal concentration of 3AT for each clone is critical. Bait and 

prey clones (along with control plasmids) will be transformed into his- yeast and replica 

plated onto plates containing 0, 10, 20, 50, 75, and 100mM 3AT. The lowest concentration of 

3AT that inhibits growth will be used for library screening and/or pairwise interactions. If auto 

activation cannot be suppressed with the addition of 3AT, the bait clone is unsuitable for Y2H 

analysis and will need to be redesigned. 

Note: Normally, all transformed yeast will grow on TL plate after 3-4 days. If there is a 

strong interaction between bait and prey proteins, the yeast will grow in 3-4 days on the 

selection medium TLHA or TLH+3AT, and the color of yeast clone is white, and the clone 

size could be more than 2 mm. If there is a weak interaction between bait and prey proteins, 

yeast will grow after 6-7 days on TLHA or TLH+3AT, and the color looks a little bit white 

and brown, the clone size is approximate 1 mm. If there is no interaction, yeast will only grow 

on the TL plate, not on the TLHA or TLH+3AT plate. 
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A.2 Protocol of protein expression and extraction in E. coli strain 

     

The E. coli-express system was used in our study to yield the GST or His tagged proteins 

for pull-down assay. 

 

Preparation before experiment 

--- Extraction buffer for GST-tagged protein (pH 7.5, keep in 4 °C ) 

Tris      50 mM 

NaCl     50 mM 

Glycerol   10% 

--- Extraction buffer for His-tagged protein (pH 7.8, keep in 4 °C ) 

1M KH2PO4 stock solution (A) 

1M K2HPO4 stock solution (B) 

For 100mL His extraction buffer: 

Potassium phosphate    50 mM (0.3 mL A + 4.7 mL B) 

NaCl                 400 mM (2.3 g) 

KCl                  100 mM (0.75 g) 

Glycerol               10% (10 mL) 

Triton X-100           0.5% (0.5 mL) 

       Imidazole              5 mM (34 mg) 

 

Preculture of E. coli strains 

1. Scratch the stock bacteria containing the plasmid of interest on LB plate with 50 ug/ml 

CBC, culture on 37°C, overnight (O/N). 

2. Take a huge amount of bacteria in 5 ml LB with 50ug/ml CBC. Shake at 250 rpm, 

37°C, O/N. 

3. Transfer 2 ml of culture in 50 ml LB with 50ug/ml CBC. Shake at 250 rpm, 37 °C, till 

OD600≈0.5. 
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4. Keep 1-2 ml of non-induced cells, centrifuge at 5000 rpm for 2 min. Resuspend pellet 

in 0.1-0.2 ml (10% of initial volume) extraction buffer, and then sonication 15 sec. This 

non-induced sample could be kept at -20 °C. 

 

Expressing induction 

5. For BL.21 strains: When OD600≈0.5, add 1 ml arabinose (0.2% final) and keep 

shaking at 250 rpm, 24 °C, 3-4h. For Rosetta: When OD600≈0.5, directly transfer the flask to 

shake at 250 rpm, 24 °C, 3-4h. 

Note: The expressing conditions for different proteins are different. So it is necessary to 

optimize the induction temperature and/or the induction time. 

6. Centrifuge the culture at 5000 rpm for 10 min. Discard the supernatant, and the pellet 

can be kept at -80 °C for a long time use. 

 

Break the bacteria 

8. Resuspend the pellet in 5mL extraction buffer. 

    Note: If the protein expressed in a low level, try to use less buffer (~2mL) to resuspend 

the pellet, and then mix the pellet together. 

    9. The plasma membrane of the cells are disrupted using French pressure cell press 

(LRSV, Université Paul Sabatier, Toulouse). The samples are kept in ice. 

10. Keep the solution on ice surrounding and perform sonication 30 sec, 2 times. 

 

Protein extraction 

11. After sonication, remove 60ul aliquot (Total fraction ). 

12. Centrifuge remaining fraction at 13000rpm, 4 °C, 10 min. Remove carefully the 

supernatant (Soluble fraction). 

13. Resuspend pellet in 600ul extraction buffer, and mix well (Insoluble fraction). 

Note: All proteins samples could be kept in -20 °C for about 1-3 months (depending on  

the protein), and should be analyzed by western blot. 
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A.3 Protocol of western blot 

 

Buffer preparation 

--- Migration buffer: Glycine 192 mM; Tris 25 mM; SDS 0.1%. 

--- Transfer buffer: Glycine 192 mM; Tris 25 mM; Methanol 20%. 

--- TBS (Washing buffer): Tris 20 mM; NaCl 0.5 M; Tween 0.1%. 

--- Blocking buffer: 2% blocking powder (ECL kit, GE Healthcare) dissolve in TBS. 

 

Western blot protocol 

1. Different protein fractions (20µL) are loaded on SDS-PAGE gel (10% polyacrylamide) 

for electrophoresis. After running the gel, proteins were transferred to membrane 

(Nitrocellulose, 0.45 μm) at 150 V for 1 h. 

2. Shake the membrane in blocking buffer at 50 rpm, room temperature for 1 h or 4 °C  

over night.  

3. Briefly rinse the membrane with two changes of washing buffer.  

4. Primary antibody is diluted with blocking buffer. The dilution ratio needs to be 

optimized for specific antibody and protein: anti-GST: 1:10000, or anti-His: 1:5000 (Mouse 

monoclonal anti-GST/His, Sigma).  

5. Incubate the membrane with Primary antibody at 50 rpm, room temperature for 1 h. 

6. Briefly rinse the membrane with two changes of wash buffer. 

7. Wash the membrane in wash buffer (25-30mL) at 50 rpm, room temperature for 15 

min. 

8. Wash the membrane for 5 min with fresh changes of wash buffer (25-30mL).  

    9. Repeat Steps 7 two more times for a total of four washes. And then discard the wash 

buffer. 

10. Secondary antibody (Anti-mouse IgG, Sigma) is diluted 1:20000 with blocking buffer. 

The dilution ratio needs to be optimized for specific antibody and protein. 

11. Incubate the membrane with secondary antibody at 50 rpm, room temperature for 1h. 
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12. Wash as step 7-9 

13. Drain off excess of washing buffer. Then expose the membrane with ECL kit (GE 

Healthcare) by following the instruction book. 

Note: For each membrane containing 10 lanes of samples, 2-3 ml of the solution from 

ECL kit is enough for exposure. 
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A.4 Protocol of pull-down assay 

 

The pull-down experiment protocol mainly refers to the MagneGST Pull-Down System 

User Manual (Promega). If there are any optimization and/or changes about the protocol in 

our experiment, we would give a “Note” after each step of the protocol. 

 

Preparation before experiment 

MagneGST Binding/Wash Buffer (pH 7.2) 

4.2mM     Na2HPO4 

2mM       KH2PO4 

140mM      NaCl 

10mM       KCl 

 

2X SDS gel-loading buffer 

100mM     Tris-HCl (pH 6.8) 

4%        SDS 

0.2%      bromophenol blue 

20%       glycerol 

20mM     dithiothreitol 

Note: SDS gel-loading buffer lacking dithiothreitol can be stored at room temperature. 

Dithiothreitol should be added from a 1M stock just before use. 

 

Particle Equilibration 

1. Thoroughly resuspend the MagneGST Particles by inverting the bottle several times to 

obtain a uniform suspension. 

2. Pipet 30μl of MagneGST™ Particles into a 1.5ml tube. Do not allow the MagneGST 

Particles to settle for more than a few minutes during capture of the bait protein as this will 

reduce binding efficiency. 
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3. Place the tube in the magnetic stand and allow the MagneGST Particles to be captured 

by the magnet. Magnetic capture will typically occur within a few seconds. 

4. Carefully remove and discard the supernatant. 

5. Remove the tube from the magnetic stand. Add 250μl of MagneGST Binding/Wash 

Buffer to the particles and resuspend by pipetting or inverting. 

6. Repeat Steps 3-5 two more times for a total of three washes. 

 

Binding 

1. After the final wash, resuspend the particles in 100μl of MagneGST Binding/Wash 

Buffer. 

Note: Addition of up to 1% BSA may reduce nonspecific binding and potential problems 

with background. The amount of BSA used may need to be optimized for your particular 

protein. 

2. Add 50μl GST-fusion bait protein or the GST control to the MagneGST Particles. 

3. Incubate (with constant gentle mixing) for 30 minutes at room temperature on a 

rotating platform. 

 

Washing 

1. Place the tube in the magnetic stand and allow the MagneGST Particles to be captured 

by the magnet. Carefully remove the supernatant and save for gel analysis (optional). 

2. Add 250μl of MagneGST Binding/Wash Buffer to the particles and gently mix. 

Incubate at room temperature for 5 minutes while mixing occasionally by tapping or inverting 

the tube. 

3. Place the tube in the magnetic stand and allow MagneGST Particles to be captured by 

the magnet. Carefully remove the supernatant and discard (or save if analysis of wash is 

desired). 

4. Add 250μl of MagneGST Binding/Wash Buffer to the particles and mix gently by 

inverting the tube. (The 5-minute incubation is not required at this wash step.) 

5. Place the tube in the magnetic stand and allow the MagneGST Particles to be captured 
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by the magnet. Carefully remove the supernatant and discard (or save if analysis of wash is 

desired). 

6. Repeat Steps 4-5 for a total of three washes. 

7. After the last wash, resuspend the particles in 50μl of MagneGST Binding/ Wash 

Buffer. 

Optional: Remove a 10μl aliquot for analysis of the efficiency of immobilization of the 

GST-fusion protein or GST control onto the particles. To this aliquot, add 10μl 2X SDS 

loading buffer and elute proteins by boiling for 5 minutes. Analyze by SDS-PAGE. 

 

Capture 

1. To 40μl of particles carrying GST-fusion protein (or GST control) add 100μl of the 

prey protein. 

2. Add 400μl MagneGST Binding/Wash Buffer and 60μl 10% BSA (or 460μl MagneGST 

Binding/Wash Buffer if BSA is omitted) to a final volume of 600μl for each pull-down 

reaction. (Addition of 1% BSA may reduce nonspecific binding and potential problems with 

background. The amount of BSA used may require optimization for your particular 

protein-protein interaction.) 

Note: MagneGST Binding/Wash Buffer is a neutral PBS buffer, allowing the user to 

optimize buffer conditions for each specific protein-protein interaction. Some protein 

interactions will require the presence of various cofactors, salts and detergents. 

3. Incubate for 1 hour (with gentle mixing) at room temperature on a rotating platform. 

Note: Briefly vortexing at the end of this incubation period may help remove non-specific 

adherent proteins and reduce background. A different incubation temperature and time may be 

required for each specific protein-protein interaction. 

4. Place the tube in a magnetic stand and allow the MagneGST Particles to be captured 

by the magnet. Carefully remove the supernatant and save for analysis (optional). 

 

Washing 

The stability of different protein-protein interactions is protein pair-specific and depends 
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on the Kd of the interaction. Optimization of washing conditions may be required for less 

stable interactions. For example, the number of washes and the volume of each wash may 

need to be changed. 

1. Add 400μl of MagneGST Binding/Wash Buffer, and mix gently by inverting the tube. 

2. Incubate at room temperature for 5 minutes while mixing occasionally by tapping or 

inverting the tube. 

3. Place the tube in the magnetic stand and allow the MagneGST Particles to be captured 

by the magnet. Remove the supernatant and save for analysis (it is especially important to 

keep this fraction during initial optimization). 

4. Add 400μl of MagneGST Binding/Wash Buffer and mix gently by inverting the tube. 

(The 5-minute incubation is not required at this wash step.) 

5. Place the tube in the magnetic stand and allow the MagneGST Particles to be captured 

by the magnet. Carefully remove the supernatant and save for analysis (optional). 

6. Repeat Steps 4 and 5 two more times for a total of four washes. 

 

Elution 

1. Add 40μl of 2X SDS loading buffer. 

2. Incubate for 5 minutes at room temperature with mixing. 

3. Place the tube in the magnetic stand and allow the MagneGST Particles to be captured 

by the magnet. Remove the eluate for analysis. 

    Note: After adding 2X SDS loading buffer, this SDS solution sample containing 

MagneGST Particles can be used directly for SDS-gel. 

Prepare samples for SDS-PAGE analysis. For Western blot analysis, boil 20ul eluted 

sample (or SDS solution containing MagneGST Particles) for 5 minutes then load onto an 

SDS-PAGE gel. Stronger signals in the experimental samples compared to the GST control 

lanes indicate that the prey is specifically pulled down by the bait protein. 
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A.5 Protocol of transient expression in tobacco protoplasts 

 

Culture of BY-2 tobacco cells 

Cells culture is under rotative agitation, in the dark at 25 °C. 7-day-old cells are 

subcultured under sterile conditions once a week: 2 ml cell suspension in 50 ml medium. For 

1 liter of medium: MS Medium 4,3 g, KH2PO4 200 mg, sucrose 30 g, myoinositol 100 mg. 

Adjust pH to 5.8 with KOH 1 M. Autoclave and then add: Thiamine 10 mg (1 ml of 10 mg/ml 

stock solution), 2,4-D: 180 µg (180 µl of 1 mg/ml stock solution in H2O stored at 4°C). 

 

Preparation of cells for transformation 

Twenty mL of tobacco BY-2 cell suspension were taken from one week old culture and 

were centrifuged at 3500 rpm for 5 min, the supernatant was discarded ant the pellet was 

rinsed by centrifugation by 40 mL of Tris-MES 25 mM buffer and mannitol 0.6 M maintained 

at pH5,5. The supernatant was discarded and 2 g of cell culture was placed on a Petri dish. 

 

Enzymatic digestion 

20 mL enzymatic solution which contained the following: 1 % Caylase 345 (CAYLA, 

Toulouse, France), 0.2% pectolyase Y-23, 1 % BSA, in Tris-MES 25 mM Mannitol 0,6M, pH 

5.5. The solution was then filtered on 0.45 μm filter and 2 g of culture cells were taken and 

poured into the tube containing 20 mL of enzymatic solution. Then the cells were incubated for 

30 min at 37°C in an agitative water bath (30-40 rpm) in obscurity. Finally, the digestion was 

verified by microscopy. 

 

Purification of protoplast 

Protoplasts were then filtered through 30 µm Nylon cloth in a 30 mL tube and washed 

two times with W5 solution (NaCl 154 mM, CaCl2 125 mM, KCl 5mM, glucose 5 mM and 

MES 0.1 %, pH 5.6) by centrifugation 5 min at 1000 rpm (100 g). 

    The supernatant is removed by aspiration, the pellet resuspended in 10 mL W5 medium 
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and the protoplasts counted under the microscope.  

    The protoplast suspension is centrifuged 5 min at 10000 rpm and the pellet resuspended 

in a volume of mannitol/Mg buffer (0,55 M mannitol, 15 mM MgCl2, 0,1% MES, pH 5,6) to 

obtain a final protoplast concentration of 1.106 protoplasts /ml. The protoplasts were then 

incubated 30 min on ice.  

 

Transient transformation 

Protoplasts were transfected by a modified polyethylene glycol method as described by 

Abel and Theologis, 1994. Typically 0.2 ml of protoplast suspension (1.106 / ml) were 

transfected with 25 µg of sheared salmon sperm carrier DNA (Clontech) and 10 -20 µg of the 

appropriated plasmid DNA. Then 200 µl of protoplasts suspension were added together with 

the same volume of PEG solution (40 % PEG 4000, 0,1 M Ca(NO3)2, 4 H2O, 0,5 M mannitol, 

0,1 % MES, pH 6,5). 

The protoplasts were incubated for 60 min at room temperature, mixing slowly the tubes 

by inversion several times. Then, 0.8 ml solution W5 was added, and the protoplast 

suspension homogenized by inversion and centrifuged 10 min at 100 g. The supernatant was 

removed by aspiration and the pellet resuspended in 1 ml W5 solution. The tubes were 

incubated at 25 °C, in the dark during 16 hours at least. 
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A.6 Protocol of bimolecular fluorescence complementation (BiFC) 

 

BiFC fusion constructs  

The coding  sequence of the potentially interacting protein A and B have been cloned 

into the BiFC vector pAM-35SS-YFPc-GW and pAM-35SS-YFPn-GW by the gateway 

cloning technology (Invitrogen). The N terminal of protein-A was fused to the N terminal half 

of YFP (nYFP) to yield nYFP-A. The N terminal of protein-B was fused to the C-terminal 

half of YFP (cYFP) to yield cYFP-B. 

 

BiFC experiment protocol 

1. The tobacco protoplasts were transformed by the PEG transient method described 

above. 

2. Protoplasts co-transfected with 10 µg of nYFP- and cYFP-fusion plasmids were 

assayed for fluorescence 16 hours after transformation using a Leica TCS SP2 confocal laser 

scanning microscope (FR AIB, FR 3450 CNRS, 24 chemin de Borde Rouge, 31326 Castanet 

Tolosan). Images were obtained with a 40x 1.25 numerical aperture water-immersion 

objective. 

3. YFP was excited at 488 nm wavelength and emission was captured at 530 to 570 nm 

wavelength. 

4. To quantify more precisely the fluorescence intensity, the YFP fluorescence was also 

analyzed by flow cytometry (FACS Calibur II instrument, BD Biosciences, San Jose, CA) on 

the Cytometry and cell sorting platform (INSERM UPS UMR 1048, Toulouse RIO imaging 

platform). 

5. Data were analyzed using Cell Quest software. For each sample, 5000 protoplasts 

were gated on forward light scatter and the GFP fluorescence per population of cells 

corresponds to the average fluorescence intensity of the cells population after subtraction of 

auto-fluorescence determined with non-transformed BY-2 protoplasts. 
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A.7 Protocol of protein extraction from tobacco protoplast 

 

In our study, GFP, IAA3-GFP, IAA9-GFP and ARF8a-GFP proteins were extracted from 

transformed tobacco protoplasts. 

 

Buffer preparation 

--- Protoplast Washing Buffer, pH 6.7 

HEPES-KOH    25 mM 

Sorbitol         0.6 M 

 

--- 10% and 20% Ficoll dissolved in Protoplast Washing Buffer 

 

Protein extraction protocol 

1. Protoplasts (~4 mL transfected protoplast suspension) are centrifuged at 400 rcf, 4°C  

for 5 min. 

Note: The starting volume of transfected protoplast suspension can be optimized 

depending on the cells quality and transformation efficiency. 

Note: Keep ~50ul protoplast suspension as a control (Sample before extraction) for 

western blot assay. 

2. The pellet is resuspended slowly and mixed softly in 2 mL 20% Ficoll. 

Note: All buffers and materials needed to be pre-cold at 4°C. Keep everything on ice or 

at 4°C during experiment till the end. 

3. Slowly add 2 mL 10% Ficoll on the top of the 20% Ficoll solution, and again, slowly 

add 2 mL washing buffer on the top of 10% Ficoll. 

4. Centrifuge the three-layer solution at 200 rcf, 4°C  for 30 min. 

5. Purified protoplasts are recovered from the interface between the Washing Buffer and 

the 10% Ficoll layer. 

6. Carefully remove the purified protoplast, and wash with the Washing Buffer by 
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mixing well and then centrifuge at 800 rcf, 4°C  for 5 min. 

7. Discard the supernatant. The pellet is resuspended in 1 mL Washing Buffer. 

8. Pass six times through a 0.45×12-mm needle to completely lyse the cells, and then 

sonication 30s×3 times. 

9. Centrifuge the solution at 13000 rcf, 4°C  for 10 min. 

10. Keep supernatant as the soluble fraction of proteins (Sample after extraction). 

Note: If needed, pellet can be resuspended in 400ul Washing Buffer (Pellet fraction or 

Non-soluble fraction) for western analysis. 

Note: Normally, samples can be kept in -20°C  at least 2 months. 

 

Western blot assay 

GFP, IAA3-GFP, IAA9-GFP and ARF8a-GFP proteins extracted from protoplasts were 

detected with anti-GFP (Mouse monoclonal anti-GFP, Sigma) by western blot assay. The 

materials and methods of western blot refer to the Part-2.3 of Chapter II. The dilution ratio of 

GFP antibody is: 1:5000, and the dilution ratio of secondary antibody is: 1:20000 

(Anti-mouse IgG, Sigma). 
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A.8 Protocol of nucleus extraction from tobacco protoplast 

 

pGreen-IAA9-GFP was used for transient expression assay in tobacco protoplasts. The 

tobacco protoplast nuclei were extracted from transformed protoplast to analyze the 

IAA9-GFP protein expression pattern. Materials and methods for nucleus extraction (Xiong 

TC, 2005) as follow: 

 

Buffer preparation 

--- Protoplast Washing Buffer, pH 6.7 

HEPES-KOH    25 mM 

Sorbitol         0.6 M 

 

--- Protoplast Lysis Buffer, pH5.3 

MES-KOH     10 mM  

Sucrose        0.4 M 

NaCl          10 mM 

MgCl2         5mM 

DTT          0.1 mM 

EDTA (pH8)    5 mM 

PMSF         0.5 mM 

    Note: PMSF could be replaced by other Protease inhibitor. 

 

    --- 10% and 20% Ficoll dissolved in Protoplast Washing Buffer 

--- 20%, 25% and 36% Iodixanol dissolved in sterilized water 

 

Nucleus extraction protocol 

1. Protoplasts (~4 mL transfected protoplast suspension) are centrifuged at 400 rcf, 4°C  

for 5 min. 
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Note: The starting volume of transfected protoplast suspension can be optimized 

depending on the cells quality and transformation efficiency. 

Note: Keep ~50ul protoplast suspension as a control (Sample before extraction) for 

western blot assay. 

2. The pellet is resuspended slowly and mixed softly in 2 mL 20% Ficoll. 

Note: All buffers and materials needed to be pre-cold at 4°C. Keep everything on ice or 

in 4°C surrounding during experiment till the end. 

3. Slowly add 2 mL 10% Ficoll on the top of the 20% Ficoll solution, and again, slowly 

add 2 mL washing buffer on the top of 10% Ficoll. 

4. Centrifuge the three-layer solution at 200 rcf, 4°C  for 30 min. 

5. Purified protoplasts are recovered from the interface between the Washing Buffer and 

the 10% Ficoll layer. 

6. Carefully remove the purified protoplast, and wash with 6mL Washing Buffer by 

mixing well and then centrifuge at 800 rcf, at 4°C  for 5 min. 

7. Discard the supernatant. The pellet is resuspended in 2 mL Lysis Buffer. 

8. Pass six times through a 0.45×12-mm needle to completely lyse the cells. 

9. Add 2 mL 20% iodixanol and mix well to have a final concentration of 10% iodixanol 

(4 mL of total sample). 

10. Prepare an empty tube and carefully add solutions as followed order: 2 mL 36% 

iodixanol (bottom) --- 2 mL 25% iodixanol (middle) --- 4 mL total sample (top). 

    Note: Each solution should be added very slowly to avoid mixing between the different 

iodixanol solutions. Then three distinct layers will be seen after this step. 

11. Centrifuge the three-layer solution at 3000 rcf, 4°C  for 30 min. 

12. Take the colorless interface between 25% and 36% iodixanol. This fraction contains 

the crude extract of protoplast nuclei. 

13. Add 2mL of Lysis Buffer and mix well for washing, then centrifugation at 3000 rcf, 

4°C  for 10 min. 

14. Pellet (nucleus) are resuspended in 100 ul Lysis Buffer, and kept at -20°C . 
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Western blot assay 

Purified intact nuclei from pGreen-IAA9-GFP-transformed protoplasts were detected 

with anti-GFP-antibody (Mouse monoclonal anti-GFP, Sigma) by using western blot assay. 

For a control, IAA9-GFP protein before extraction and IAA9-GFP protein after extraction 

(Samples to see part-2.6 this Chapter) were also loaded on the gel for western blot. The 

dilution ratio of GFP antibody is: 1:5000, and the dilution ratio of secondary antibody is: 

1:20000 (Anti-mouse IgG, Sigma). 
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A.9 Additional result in Y2H 

 

 

Y2H result of BD-TPL + AD-IAA. Green color means yeast grew quickly less than 4 or 5 days 

after co-transformation, indicating a strong interaction between BD-TPLs and AD-IAAs partners. 

Yellow shows yeast grew slowly in 7-8 days after co-transformation indicating a weak interaction 

between the tested BD-TPL and AD-IAA. Red means there is no interaction. 

 

 

Y2H result of BD-IAA + AD-TPL. Green color means yeast grew quickly less than 4 or 5 days 

after co-transformation, indicating a strong interaction between BD-IAAs and AD-TPLs partners. 

Yellow shows yeast grew slowly in 7-8 days after co-transformation indicating a weak interaction 

between the tested BD-IAA and AD-TPL. Red means there is no interaction. 
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Y2H result of BD-TPL + AD-ARF. Green color means yeast grew in 4 or 5 days after 

co-transformation, indicating an interaction between BD-TPLs and AD-ARFs partners. Red means 

there is no interaction. 

 

 

Y2H result of BD-ARF + AD-TPL. Green color means yeast grew in 4 or 5 days after 

co-transformation, indicating an interaction between BD-ARFs and AD-TPLs partners. Red means 

there is no interaction. (Concentration of 3-AT added in TLH or TLHA plate: 20mM 3-AT for 

BD-ARF6, 7 and 8; 100mM 3-AT for BD-ARF5) 
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