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Résumé 
 
Les derniers acteurs de la voie de signalisation à l’éthylène sont des facteurs de 

transcription appelés ERF (Ethylene Response Factors). La connaissance de leur rôle 

spécifique dans la régulation des processus développementaux dépendant de l’éthylène 

reste limitée. Les travaux présentés dans la thèse concernent la caractérisation 

fonctionnelle du gène Sl-ERF.B3, un membre de cette grande famille de régulateurs 

transcriptonnels dans la tomate (Solanum lycopersicum). Utilisant une stratégie 

répresseur dominant ; il est montré en particulier que ce gène intervient dans la mise en 

place de la réponse à l’éthylène et dans le contrôle de la maturation du fruit. L’expression 

d’une construction ERF.B3-SRDX, une version chimérique de Sl-ERF.B3 fusionné à un 

domaine répresseur de type EAR, entraine des phénotypes pléotropiques aussi bien dans 

la signalisation de l’éthylène que dans le développement des parties végétatives et des 

organes reproducteurs. Ainsi, une altération de la triple réponse à l’éthylène est constatée 

chez les lignées transgéniques et au stade adulte, les plantes présentent des phénotypes 

d’épinastie des feuilles, de sénescence prématurée des fleurs et d’abscission accélérée des 

fruits. L’ensemble de ces observations est corrélée avec une modification de l’expression 

de gènes impliqués dans la biosynthèse et la réponse à l’éthylène. Ces données suggèrent 

que ERF.B3 intervient dans un mécanisme de rétro-control de la réponse à l’éthylène en 

agissant à la fois sur les gènes de biosynthèse et de signalisation de l’hormone. Au niveau 

du fruit, la sur-expression d’ERF.B3-SRDX entraine une modification du processus de 

maturation avec un retard notable de l’avènement de l’acquisition de la compétence à 

murir. Cependant, une fois la maturation initiée, elle s’accompagne d’une forte 

production d’éthylène et d’une accélération du ramollissement du fruit. A l’inverse, 

l’accumulation de pigment est inhibée par altération de la voie de biosynthèse des 

caroténoïdes. Ces données phénotypiques sont corrélées avec le niveau d’expression des 

gènes clés impliqués dans ces processus. Les résultats indiquent que dans les lignées 

transgéniques, il y a découplage de certaines caractéristiques de la maturation du fruit et 

permettent de mettre en lumière le rôle d’ERF.B3 dans la régulation des processus de 

développement dépendant de l’éthylène chez la tomate.  
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Abstract 
 
Ethylene Response Factors (ERFs) are known to be the last transcription factors of the 

ethylene transduction pathway. Their specific role in ethylene-dependent developmental 

processes remains poorly understood. This work demonstrated a specific role of Sl-

ERF.B3, a member of the ERF gene family in tomato (Solanum lycopersicum), in 

mediating ethylene response and fruit ripening through a dominant repressor strategy. 

ERF.B3-SRDX dominant repressor etiolated seedlings displayed partial constitutive 

ethylene-response in the absence of ethylene and adult plants exhibited typical ethylene-

related alterations such as leaf epinasty, premature flower senescence and accelerated 

fruit abscission. The multiple symptoms related to enhanced ethylene sensitivity correlate 

with the altered expression of ethylene biosynthesis and signaling genes, suggesting the 

involvement of Sl-ERF.B3 in a feedback mechanism regulating components of ethylene 

production and response. In addition, over-expression of ERF.B3-SRDX in tomato results 

in alterations in both fruit morphology and ripening process. The attainment of 

competence to ripen is dramatically delayed in ERF.B3-SRDX fruits but once ripening 

proceeds it is associated with high climacteric ethylene production and enhanced fruit 

softening while pigment accumulation is strongly reduced. Moreover, a number of genes 

involved in the fruit ripening process showed expression pattern deviating from that of 

wild type. These data suggest a putative role of Sl-ERF.B3 in the transcriptional network 

underlying the ripening process and uncover a mean for uncoupling some of the main 

features of fruit ripening such as fruit softening and pigment accumulation. Overall, the 

study highlighted the importance of an ERF gene in ethylene-mediated developmental 

processes such as plant growth and fruit ripening. 
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Main components of the thesis 
 
The plant hormone ethylene is involved in many developmental processes and plays a 

critical role in a wide range of physiological responses, including seed germination, cell 

elongation, flowering, fruit ripening, organ senescence, abscission, root nodulation, 

programmed cell death, and response to abiotic stresses and pathogen attacks. After its 

biosynthesis, ethylene is perceived by a receptor which generates a signal leading to the 

activation of a transduction machinery that triggers specific biological responses. To 

improve our understanding of how ethylene is able to mediate plant growth and fruit 

ripening it is important to study specific function of the molecular components involved 

in ethylene signaling pathway. Ethylene Response Factors (ERFs) are the last known 

downstream components of the ethylene signal transduction pathway. Being encoded by 

one of the largest plant families of transcription factors, ERF proteins are the suited step 

where the diversity and specificity of ethylene responses may originate. Using tomato 

(Solanum lycopersicum) as a model plant, my Ph.D research project aimed at deciphering 

the role of Sl-ERF.B3, a tomato Ethylene Response Factor, during plant growth and fruit 

development using advanced reverse genetics and genomics methodologies.  

The body of this thesis consists of four main chapters. The first chapter is a bibliographic 

review on ethylene. In this chapter, up-to-date knowledge regarding ethylene biosynthesis, 

perception and signal transduction is presented. The main roles of ethylene in regulating 

different plant growth and development processes and the interaction of this hormone 

with other phytohormones were described. The advantage of using tomato as plant model 

in my study dealing with ethylene-mediated fruit development processes is emphasized. 

Chapter II focuses on addressing the physiological significance of Sl-ERF.B3 and its 

potential role in mediating ethylene responses. This chapter is presented on the form of 

an article which has been recently accepted for publication in The Plant Journal. Using a 

dominant repressor strategy, it is demonstrated in this work that Sl-ERF.B3 gene controls 

ethylene sensitivity via feedback regulation of ethylene signaling and response 

components. It is shown that the expression of a dominant repressor version of Sl-

ERF.B3 (ERF.B3-SRDX) in the tomato results in pleiotropic ethylene responses and 

vegetative and reproductive growth phenotypes. The multiple symptoms related to 
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enhanced ethylene sensitivity correlate with the altered expression of ethylene 

biosynthesis and signaling genes, suggesting the involvement of Sl-ERF.B3 in a feedback 

mechanism regulating components of ethylene production and response. Moreover, Sl-

ERF.B3 is shown to modulate the transcription of a set of ERFs revealing the existence of 

a complex network interconnecting different ERF genes.  

Chapter III mainly describes the putative role of ERF family genes in controlling fruit 

maturation and ripening in tomato and more particularly the role of Sl-ERF.B3 in fruit 

development and ripening. In this chapter, it is shown that most of ERF family genes 

display a ripening-associated expression pattern suggesting their involvement in the 

ripening process. Specific roles for ERF gene family members in fruit development and 

ripening is further revealed by the functional characterization of Sl-ERF.B3, a member 

tomato ERF genes. Sl-ERF.B3 displays a pattern of expression that is quite distinctive 

from other ERF genes, its transcript accumulation being induced at the breaker stage and 

maintained at a high level in all stages of fruit ripening, suggesting that its expression is 

continuously required for the modulation of the ripening-regulated genes all along the 

ripening process. The study indicate that over-expression of a chimeric repressor 

construct of Sl-ERF.B3 (ERF.B3-SRDX) in tomato results in alterations in fruit shape and 

size, abnormal seed morphology, orange ripe fruits, and accelerated fruit senescence. 

Moreover, genes involved in different metabolic pathways, such as carotenoid 

biosynthesis, ethylene synthesis, and cell wall metabolism exhibit altered mRNA 

accumulation patterns in transgenic lines during fruit ripening process. Further 

characterization at the molecular level of the dominant repressor lines, indicated that Sl-

ERF.B3 impacts the ripening process through mediating ripening-associated genes.  

The last chapter presents general conclusions and perspectives of the work performed in 

this thesis.  
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Objectives of the study 
 
Ethylene mediates diverse developmental and physiological processes throughout the 

entire life cycle of plants. After its synthesis, ethylene is perceived and its signal 

transduced through a transduction machinery that triggers specific biological responses. 

Significant progress has been made in our understanding of how plants perceive and 

transduce the ethylene signal (Benavente and Alonso, 2006; Ju et al., 2012). Studies on 

components of ethylene signaling have revealed a linear transduction pathway that leads 

to the activation of transcriptional regulators belonging to the Ethylene Response Factor 

(ERF) type. ERF proteins which are responsible for regulating the transcription of 

primary ethylene-responsive genes are the last known downstream components of 

ethylene transduction pathway. Since the upstream components of the ethylene 

transduction pathway are common to all ethylene responses, the apparent simplicity of 

the ethylene signaling pathway cannot account for the wide diversity of ethylene 

responses. A tempting hypothesis is that differential responses to ethylene are directed at 

the transcriptional levels. Being encoded by one of the largest family of plant 

transcription factors, ERF proteins are the most suited step of the ethylene signaling 

pathway where the diversity and specificity of ethylene responses may originate.  

In an attempt to understand the molecular basis of ethylene-regulated plant growth and 

fruit development, 28 tomato ERF genes have been isolated in the laboratory of 

Genomics and Biotechnology of the Fruit (GBF) and these genes have been shown to fall 

into 9 subclasses defined by distinct structural features. Previous studies on these genes 

have provided some molecular clues on how ERFs can contribute to the specificity and 

selectivity of ethylene responses through (i) the differential expression of gene family 

members, (ii) the ability to negatively or positively impact transcriptional activity and, (iii) 

the capacity to select with specificity target genes based on the nucleotide environment of 

the GCC-box (Pirrello et al., 2012). The diversity of their transcriptional activity and 

expression patterns suggest that ERFs possess the necessary features for channeling 

ethylene signaling to a selected set of genes required for the appropriate developmental 

responses or the desired responses to environmental cues. To date, however, most of the 

members of the ERF family have yet to be studied, the specific role of individual ERF in 

http://www.google.fr/url?sa=t&rct=j&q=&esrc=s&frm=1&source=web&cd=3&cad=rja&ved=0CD0QFjAC&url=http%3A%2F%2Fgbf.inp-toulouse.fr%2Fen%2Fpeople%2Fberseille-1.html&ei=ffoZUsLOIZTX7AaPhYGgCw&usg=AFQjCNGPQKUf7Oltmc3qoeQitN10OHBssw&sig2=NW1Uio_FoKKrQ-N0T9iKNw
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controlling ethylene responses and plant developmental processes remains poorly 

understood.  

The aim of this study was to unravel the molecular mechanism underlying the specificity 

of ethylene responses during plant development and fruit ripening. The function 

significance of ERF genes is addressed in the tomato using advanced reverse genetics and 

genomics methodologies, with a special focus given to the role of ERFs in fruit 

development and ripening. My own project was dedicated to the functional 

characterization of Sl-ERF.B3, a tomato ethylene-inducible ERF gene previously shown 

to display a strong binding affinity to GCC-box-containing promoters. Specifically, the 

study addresses two main questions: (i) Is Sl-ERF.B3 involved in mediating ethylene 

responses and if so by which molecular mechanism it performs this function? (ii) Does 

Sl-ERF.B3 impact ethylene-dependent developmental processes such as fruit ripening?  
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Ethylene, the simplest olefin, has been recognized as a plant hormone for over a century.  

The discovery of the biological activity of ethylene came about in the 19th century as 

leaks in illuminating gas caused premature senescence and defoliation of plants in the 

greenhouse and of trees near gas lines (Abeles et al., 1992). In 1901, the Russian 

physiologist Dimitri Neljubow demonstrated that ethylene causes the "triple response" in 

dark-grown pea seedlings with inhibited epicotyl elongation, radial swelling, and a 

horizontal growth habit. The first evidence that ethylene was produced by plants was the 

observation that the ripening of bananas was promoted by gases produced from oranges. 

Definitive chemical proof that ethylene is produced by plants was reported by the English 

scientist Gane in 1934. It is now known that ethylene is produced by all cells during plant 

development with the highest rates being associated with meristematic, stressed, or 

ripening tissues (Abeles et al., 1992). 

In the plant life cycle, ethylene is involved in a wide range of plant growth and 

developmental processes, including seed germination, cell elongation, flowering, fruit 

ripening, organ senescence, abscission, root nodulation, programmed cell death, and 

response to abiotic stresses and pathogen attacks (Johnson and Ecker, 1998; Bleecker and 

Kende, 2000; Lin et al., 2009). To better understand the roles of ethylene in plant 

functions, it is important to know how this gaseous hormone is synthesized, transduced 

and able to regulate so many plant development processes. 

 

1. Ethylene biosynthesis  

 

Ethylene biosynthesis has been intensively studied in plants and the establishment of S-

adenosyl-L-methionine (S-Ado Met) and ACC as the biological precursors of ethylene is 

thought to be the main breakthroughs in the ethylene biosynthesis pathway. As it is 

shown in Figure 1, ethylene is synthesized from the amino acid methionine. In the 

ethylene biosynthesis pathway, methionine is converted to S-AdoMet by S-AdoMet 

synthetase and S-AdoMet is then converted to 1-aminocyclopropane-1-carboxylic acid 

(ACC) and 5’-deoxy-5 methylthioadenosine (MTA) by the enzyme 1-

aminocyclopropane-1-carboxylase synthase (ACS) (Adams and Yang, 1979). Through 

the Yang cycle, MTA can be recycled to methionine, which allows high rates of ethylene 
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production without depletion of the endogenous methionine pool (Miyazaki and Yang, 

1987). At the last step, ACC is further converted to ethylene by ACC oxidase (ACO), 

with CO2 and cyanide as by-products. In ethylene biosynthesis pathway, the rate-limiting 

step of ethylene synthesis is the conversion of S-AdoMet to ACC by ACC synthase, but 

there are situations where ACO is absent and ACS and ACO are induced, for example by 

wounding and the ripening stimulus (Alexander and Grierson, 2002a; Lin et al., 2009). In 

most of the species investigated, including Arabidopsis, ACS and ACO are members of 

large and small multigene families, respectively (De Paepe and Van der Straeten, 2005). 

Both positive and negative feedback regulation of ethylene biosynthesis have been 

reported in different plant species (Wang et al., 2002).  

 

 
 

2. Ethylene signaling pathway 

 

After its synthesis, ethylene is perceived and its signal transduced through transduction 

machinery to trigger specific biological responses. Insight into the ethylene signaling 

pathway has been mainly provided by molecular genetic studies in Arabidopsis thaliana. 

Dissection of the ethylene signaling pathway began with the isolation of ethylene-

Figure 1. Main steps of ethylene 
biosynthesis pathway. S-adenosyl-
methionine (S-AdoMet) is synthesized 
from the methionine by the S-adenosyl-
methionine synthetase (SAM synthetase) 
with one ATP molecule expensed per S-
AdoMet synthesized. S-AdoMet is then 
converted to 1-aminocyclopropane-1-
carboxylicacid (ACC) by ACC synthase 
(ACS), 5’-methylthioadenosine (MTA) 
being a by-product. MTA is recycled to 
methionine by successive enzymatic 
reactions involving various intermediates 
(MTR, 5-methylthioribose; KMB, 2-keto-
4-methylthiobutyrate), which constitute 
the methionine (Yang) cycle. Ethylene 
production is catalyzed by the ACC 
oxidase using ACC as substrate, and 
generates carbon dioxide and hydrogen 
cyanide (Arc et al., 2013). 
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response mutants, using genetic screens that are based on the “triple response” of 

ethylene-treated seedlings (Bleecker et al., 1988; Guzmán and Ecker, 1990). The triple 

response is a striking morphology adopted by germinating seedlings exposed to ethylene 

in the dark. In Arabidopsis, the triple response consists of shortening and thickening of 

the hypocotyl and root, exaggeration of the apical hook curvature and proliferation of 

root hairs (Figure 2). Decades of scientific research devoted to deciphering how plants 

are able to sense and respond to ethylene have culminated in the establishment of one of 

the best characterized signal transduction pathways in Arabidopsis (Bleecker et al., 1988; 

Guzmán and Ecker, 1990; Chang et al., 1993; Roman et al., 1995; Chao et al., 1997; 

Sakai et al., 1998; Alonso et al., 1999). In the currently accepted model, ethylene 

signaling pathway starts with the ethylene perception by their specific receptors, which 

have been shown to activate the hormone transduction pathway through releasing the 

block exerted by CTR1 on EIN2 (Solano and Ecker, 1998; Ju et al., 2012).  

 

 
 

The release of EIN2 then activates EIN3/EIL1 primary transcription factors, resulting in 

the expression of secondary transcription factors, namely ERFs, which regulate the 

expression of downstream ethylene-responsive genes (Solano et al., 1998; Alonso et al., 

2003). Through using a combination of genetic, biochemical and molecular approaches, a 

Figure 2. Phenotypes of dark-grown three-day-

old seedlings of Arabidopsis thaliana. The plant on 

the left was grown without hormonal treatment, 

whereas the plant on the right was exposed to 10 μM 

ethylene precursor ACC and thus shows a typical 

triple response (Benavente and Alonso, 2006). 

 



 
 

9 
 

pathway that transduces the ethylene signal from the endoplasmic reticulum membrane to 

the nucleus has been uncovered (Figure 3).  

 

 

Figure 3. Model of ethylene signaling. In the absence of ethylene (Left), the ethylene receptors (e.g., 

ETR1) at the ER membrane activate the CTR1 protein kinase, a dimer, which phosphorylates the C-

terminal domain of EIN2, preventing its nuclear localization. Without ethylene, EIN2 is targeted for 26S 

proteasomal degradation by F-box proteins ETP1/2. Transcription factors EIN3/EIL1 are also targeted for 

degradation by F-box proteins EBF1/2. In the presence of ethylene (Right), the receptors are inactivated 

and therefore the CTR1 kinase is no longer active. The absence of phosphorylation on EIN2 results in EIN2 

C terminus being cleaved and localizing to the nucleus where it can activate the downstream transcriptional 

cascade (Ju et al., 2012). 

 

2.1 Ethylene perception is mediated by a small family of receptors 

 

Perception of ethylene in plants is achieved by several related membrane-bound 

histidine kinases. In Arabidopsis, ethylene is perceived by a family of five receptors 

(ETR1, ETR2, ERS1, ERS2 and EIN4) that share similarity with bacterial two-

component regulators (Chang et al., 1993; Hua et al., 1995; Sakai et al., 1998; Hua and 

Meyerowitz, 1998; Chang and Stadler, 2001). All of the initial receptor mutants 

identified where gain-of-function mutants exhibiting dominant ethylene insensitivity. 
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Single loss-of-function receptor mutants in Arabidopsis show no visible phenotypes 

likely due to functional redundancy. The presence of triple, quadruple or etr1/ers1 double 

mutants results in a constitutive ethylene response in the absence of increased ethylene 

production (Wang et al., 2003). This evidence is consistent with a model where the 

receptors are negative regulators of ethylene response and that ethylene receptors actively 

suppress the response in the absence of ethylene (Hua and Meyerowitz, 1998). Ethylene 

was found to bind receptor through a transition metal copper co-factor. Ethylene binding 

results to a modification of the coordination chemistry of the copper in the N-terminal 

region. This modification is transmitted to the C-terminal region (Rodriguez et al., 1999) 

and initiates the ethylene response. On the basis of structural similarities, the receptor 

family can be divided into two subfamilies (Figure 4). Subfamily 1, consisting of ETR1 

and ERS1, features three hydrophobic transmembrane domains in the N-terminal region, 

where ethylene binding occurs (Schaller and Bleecker, 1995; Hall et al., 2000), and a 

well conserved histidine kinase domain in C-terminal region. Subfamily 2, which 

includes ETR2, ERS2, and EIN4, has four hydrophobic domains in the N-terminal region 

and a non-conserved His-kinase domain, in which some consensus amino acid residues 

essential for His-kinase activity are lacking (Moussatche and Klee, 2004; Xie et al., 

2006). The fact that the subfamily 2 receptors ETR2, ERS2 and EIN4 have Ser/Thr 

kinase activity in vitro (Gamble et al., 1998; Moussatche and Klee, 2004) supports the 

notion that the subfamily 2 of receptors may function not as histidine kinases but possibly 

as serine/threonine kinases. In addition, ETR1, ETR2 and EIN4 possess a C-terminal 

receiver (Figure 4).  
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Figure. 4 Ethylene receptor family of Arabidopsis. The ethylene receptor family of Arabidopsis is 

divided into subfamilies 1 and 2 based on phylogenetic analysis and structural features. Receptors are 

shown as homo-dimers. The ethylene-binding domain (EBD) is found within the conserved transmembrane 

domains (white rectangles), and includes a copper cofactor (Cu); subfamily 2 receptors have an additional 

predicted transmembrane domain (grey rectangle) that may function as a signal sequence. All five members 

of the ethylene receptor family have a GAF domain (yellow diamond) implicated in protein–protein 

interactions. His kinase domains are indicated by green or red rectangles, green indicating a functional His 

kinase domain and red indicating a diverged His kinase domain. The receiver domains (ovals) have the 

conserved residues required for function and are therefore colored green. Conserved His (H) and Asp (D) 

phosphorylation sites are indicated if present (Shakeel et al., 2013). 

 

The C-terminal domains of the ethylene receptors show sequence homology to bacterial 

two-component system histidine kinases. These systems are generally constituted of a 

sensor molecule containing an histidine kinase domain which autophosphorylates itself in 

reaction to a stimuli, and a response regulator containing a receiver domain which accept, 

the residue phosphate from the histidine sensor (Pirrung, 1999). The histidine kinase 

domain of the ethylene receptors has been shown to be important for the association of 

the receptors with CTR1 (Clark et al., 1998; Gao et al., 2003; Zhong et al., 2008). It was 

demonstrated that a truncated ETR1 lacking the histidine kinase and receiver domain 

failed to rescue a etr1-6;etr2-3;ein4-4 triple loss-of-function mutant, while the truncated 

ETR1 lacking only the receiver domain was able to restore normal growth of the triple 

mutant in air, and the transgenic plants show ethylene hypersensitivity (Qu and Schaller, 

2004). These results demonstrate that the kinase domain is necessary for signal 

transmission by the receptor and that the receiver domain was not essential for restoring 
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ethylene responsiveness. However, while ethylene may inhibit His kinase activity in 

ETR1 (Voet-van-Vormizeele and Groth, 2008), it seems that His kinase activity is not 

needed for signaling (Wang et al., 2003; Qu and Schaller, 2004) but does have a role in 

growth recovery after ethylene removal (Binder et al., 2004) and in regulation of growth 

(Qu and Schaller, 2004; Cho and Yoo, 2007). Kim et al., (2011) also showed that ETR1 

histidine kinase activity and phosphotransfer through the receiver domain are not 

required to rescue ethylene-mediated nutations. Hall et al., (2012) demonstrated that the 

histidine kinase activity of ETR1 is not required for but plays a modulating role in the 

regulation of ethylene responses. By comparing the dominant-negative effect of ETR1-1 

(1–349) in a two receptor double LOF mutant background: etr1-7;ers1-2 and etr1-7;ers1-

3, Xie et al., (2006) showed that the truncated ETR1 without the histidine kinase domain 

must rely on the remaining ERS1, which has the histidine kinase activity, to repress 

ethylene signaling. Indeed, up till now, the exact function of the receptor histidine kinase 

domains and the role of the receptor heterodimer interaction in ethylene signaling are still 

open questions. In tomato, there are six ethylene receptors (LeETR1-2, NR, and LeETR4-

6) which can be broken down into two subfamilies. The predicted structures of these 

tomato receptors are very similar to those in Arabidopsis (Klee and Tieman, 2002). 

LeETR1, 2 and NR are members of Subfamily I which contain three transmembrane 

domains and all of the conserved residues of known histidine kinases. Subfamily II, 

consisting of LeETR4-6, contains four transmembrane domains and degenerate histidine 

kinase domains with LeETR5 containing none of the conserved residues. Moreover, NR 

is the only member of the family that does not contain the carboxy-terminal receiver 

domain whose function in ethylene signaling is still unknown. In contrast to the 

Arabidopsis ethylene receptors that have been considered to be functionally redundant, 

the tomato ethylene receptors NR, LeETR4, and LeETR6 are preferentially expressed in 

fruit and have been suggested to have unique roles during ripening (Tieman et al., 2000; 

Kevany et al., 2007). 
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2.2 CTR1 acts as a negative regulator of ethylene signaling pathway 

 

In the ethylene linear signaling pathway, acting directly downstream of the 

ethylene receptors is the mitogen-activated protein kinase kinase kinase (MAPKKK) 

constitutive triple-response1 (CTR1) protein. CTR1 was identified by mutants that 

displayed the triple response morphology in the absence of exogenous ethylene. Loss-of-

function ctr1 mutations result in the constitutive activation of the ethylene response 

pathway in seedlings and adult plants, which indicates that the encoded protein acts as a 

negative regulator of ethylene signaling (Kieber et al., 1993). The binding of ethylene to 

the receptors results in the inactivation of CTR1 and in turn activation of the downstream 

components of the pathway, thereby leading to ethylene responses (Kieber et al., 1993; 

Huang et al., 2003; Figure 5).  

 

 
Figure 5. The binding of ethylene to the receptors results in ethylene response through inactivation of 

CTR1. When ethylene is not bound (A), the receptors interact and activate CTR1, which results in the 

inhibition of ethylene responses. When ethylene is bound (B), the receptors are inactive with respect to 

activating the downstream CTR1 protein (Chang and Stadler 2001). 

 

CTR1 consists of a unique N-terminal regulatory domain and a C-terminal 

serine/threonine kinase domain. Although CTR1 contains no predicted transmembrane 

domains (Kieber et al., 1993; Huang et al., 2003), CTR1 is found at the ER membrane 
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due to its association with the ethylene receptors (Clark et al., 1998; Huang et al., 2003; 

Gao et al., 2003; Zhong et al., 2008). It has been demonstrated that the N-terminal 

regulatory domain of CTR1 can interact directly with the subfamily I ethylene receptors 

(ETR1 and ERS1) in the yeast two-hybrid assay (Clark et al., 1998). Zhong et al., (2008) 

also showed that ethylene receptors recruit tomato LeCTR proteins to the ER membrane 

through direct protein-protein interaction. Moreover, Mayerhofer et al., (2012) proposed 

that the interaction of CTR1 dimers with the ethylene receptor dimers reinforces the 

receptor complex by promoting associations between neighboring ethylene receptors 

(Figure 6). 

 

 

Figure 6. Model of CTR1-mediated receptor oligomerization and cross talk. Ethylene receptor dimers 

are shown as cartoons with the endoplasmic-reticulum-membrane embedded domains in red and the 

cytosolic domains in orange. Also shown as cartoons are the N-terminal domains of CTR1 (gray and blue), 

which interact with the ethylene receptors. The connection between the N-terminal CTR1 domains and 

their C-terminal kinase domains are indicated as dotted lines. Three consecutive CTR1 kinase dimers are 

depicted as ribbons as they form across the back-to-back and front-to-front interfaces in the crystal. The 

back-to-back interface dimer was placed at a receptor dimer and the activation interface connects 

neighboring receptors. Active CTR1-kd is depicted in gray and activation loops are in red. Inactive dimers 

of CTR1-D676N (colored blue) are positioned across the front-to-front interface, as observed in the CTR1-

D676N crystals. The disordered activation loop is indicated by a dotted line (Mayerhofer et al., 2012).  
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Although the serine/threonine kinase activity of CTR1 was demonstrated in vitro and 

shown to be essential for proper functioning of the receptors/CTR1 signaling complex, as 

kinase-inactive alleles of CTR1 also resulted in a constitutive response phenotype (Huang 

et al., 2003), the molecular mechanism by which the receptors control CTR1 kinase 

activity remains unclear. The ethylene receptor-CTR1 association represents a novel 

combination of proteins that do not fit the existing paradigms for either the Raf-like 

CTR1 or the two-component receptors (Wang et al., 2003; Wellbrock et al., 2004; 

Schaller et al., 2011). A likely mechanism for CTR1 activation could be that the 

receptors interact with CTR1 in an active conformation in the absence of ethylene. When 

the receptors bind ethylene and presumably undergo a conformational change, there 

could be a concomitant alteration in the conformation of CTR1 that turns off the CTR1 

kinase activity (Gao et al., 2003; Ju and Chang, 2012). It is conceivable that the histidine 

autophosphorylation induced by ethylene binding, as suggested by Hall et al., (2012), 

plays a role in the conformational change that terminates CTR1 activation. Because 

structural studies have shown that the CTR1 kinase domain is a dimer when active 

(Mayerhofer et al., 2012), a conformational change causing monomerization of CTR1 

could be a possible mechanism for inactivation of CTR1. 

While the main ethylene signaling pathway involves CTR1, it is worth pointing out that 

subtle effects of ethylene receptor signaling might occur via the two-component system’s 

phosphotransfer proteins and response regulators in Arabidopsis (known as AHPs and 

ARRs, respectively). This is based on evidence that the ethylene receptors can interact 

with AHP proteins (Urao et al., 2000; Scharein et al., 2008) and that a response regulator, 

ARR2, might have a role as a positive regulator in modulating ethylene responses 

downstream of ETR1 (Hass et al., 2004; Mason et al., 2005). Thus, ethylene receptor 

signaling through AHPs and ARRs might represent an ethylene response pathway that 

bypasses CTR1 (Ju and Chang, 2012). 
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2.3 EIN2 is a central component of the signaling pathway and positively 

regulates ethylene responses 

 
Based on genetic analyses, downstream of the receptors/CTR1 complexes there 

acts a positive regulator of ethylene responses, ETHYLENE INSENSITIVE2 (EIN2). 

EIN2 is required for all ethylene responses studied and constitutes a critical step in the 

signal transduction (Alonso et al., 1999). EIN2 consists of an N-terminal integral 

membrane domain of 12 predicted transmembrane helices (residues 1–461) with 

sequence similarity to Nramp metal ion transporters, followed by a hydrophilic C-

terminal domain (residues 462–1294) believed to be cytosolic (Alonso et al., 1999; Ju et 

al., 2012; Figure 7). Qiao et al., (2009) reported that EIN2 can be stabilized by ethylene 

at the protein level, which protects it from proteasomal degradation mediated by two F-

box proteins ETP1/2. EIN2 was also shown to reside at the ER membrane in tobacco 

leaves and is capable of interacting with the kinase domain of ethylene receptors (Bisson 

et al., 2009; Bisson and Groth, 2010). Moreover, EIN2 was found to be required for the 

ethylene-induced EIN3/EIL1 protein stabilization (Guo and Ecker, 2003), by promoting 

the proteasomal degradation of EBF1/EBF2 in the nucleus (An et al., 2010). 

 

Figure 7. Cartoon of EIN2 protein domain structure. EIN2 consists of an N-terminal integral membrane 

domain of 12 transmembrane helices followed by a hydrophilic C-terminal domain containing a conserved 

nuclear localization signal (NLS; Ju et al., 2012). 

For more than a decade, although it has been well deciphered by genetic and double-

mutant analyses that EIN2 is a central and most critical element of the ethylene signaling 

pathway and acts between the soluble serine/threonine kinase CTR1 and the EIN3/EILs 

transcription factors, two key mysteries (i) how is the ethylene signal from CTR1 

transmitted to EIN2, (ii) how is the signal transmitted from the ER-localized EIN2 to the 
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nuclear-localized transcription factors remain unknown. Recent research progress by 

three groups (Ju et al., 2012; Qiao et al., 2012; Wen et al., 2012) has shown that CTR1, 

instead of operating through an intermediary MAPK cascade, directly phosphorylates 

EIN2 to inhibit its activity. The most significant sites of EIN2 phosphorylation are on 

Ser645 and Ser924 (Chen et al., 2011; Qiao et al., 2012; Ju et al., 2012), with Ser924 

playing a predominant role in EIN2 regulation (Ju et al., 2012). Following ethylene 

binding to the receptors, CTR1 becomes inactivated, resulting in the dephosphorylation 

and proteolytic cleavage of EIN2, the cleaved C-terminal portion (CEND)  of EIN2 then 

translocating to the nucleus to regulate transcriptional events (Ju et al., 2012; Qiao et al., 

2012). These findings uncover a mechanism of subcellular communication whereby 

ethylene stimulates phosphorylation-dependent cleavage and nuclear movement of the 

EIN2-C' peptide, linking hormone perception and signaling components in the ER with 

nuclear-localized transcriptional regulators (Figure 8). 

 
Figure 8. Model of EIN2 action in the ethylene signaling pathway. Ethylene is perceived by ER-located 

receptors, and the signal acts to promote the cleavage of EIN2 in an unknown mechanism. The cleaved C-

terminal fragment (CEND) can be transported into the nucleus, preventing EIN3 from EBF1/2-mediated 

proteasomal degradation, and consequently leading to the activation of downstream ethylene response 

(Wen et al., 2012). 



 
 

18 
 

2.4 A transcriptional cascade modulates the expression of ethylene-
responsive genes 

 
Genetically acting downstream of EIN2 are several nuclear-localized transcription 

factors (EIN3/EILs and ERFs) that mediate ethylene response at transcriptional levels 

(Chao et al., 1997; Solano et al., 1998; An et al., 2010). After translocating to the nucleus, 

EIN2 either directly or indirectly activates the EIN3 family of transcription factors to 

initiate the transcriptional response to ethylene (Solano et al., 1998; Alonso et al., 2003; 

An et al., 2010). EIN3 belongs to a small gene family that in Arabidopsis also includes 

five EIN3-LIKE (EIL) proteins (Alonso et al., 2003). EIN3/EILs type of transcription 

factors are positive regulators of the ethylene signaling that function as trans-activating 

factors to trigger ethylene responses (Chao et al., 1997; Solano et al., 1998). 

Overexpression of EIN3 or EIL1 results in a constitutive ethylene phenotype in 

Arabidopsis, while ein3 eil1 double LOF mutants show complete ethylene insensitivity in 

all known ethylene responses (Chao et al., 1997; Alonso et al., 2003).  

None of EIN3/EIL genes identified to date is transcriptionally regulated in response to 

ethylene (Chao et al., 1997; Tieman et al., 2001; Rieu et al., 2003), suggesting that the 

activities of these genes are regulated by ethylene through a posttranscriptional 

mechanism. Studies have demonstrated the involvement of the SCF/26S proteasome to 

regulate the level of EIN3/EILs (Guo and Ecker, 2003; Potuschak et al., 2003; Gagne et 

al., 2004; An et al., 2010; Figure 9). In the absence of ethylene, EIN3/EILs are targeted 

for ubiquitination by the SCF complex containing one of the two F-box proteins, EBF1 

and EBF2. The ubiquitinated form of EIN3/EIL proteins is thus recruited by the 26S 

proteasome for degradation. whereas, in the presence of ethylene, EIN3/EIL proteins 

accumulate in the nucleus and bind to EIN3 binding site (EBS) located in target gene 

promoters leading to the activation of the expression of downstream genes (Guo and 

Ecker, 2003; Potuschak et al., 2003; Binder et al., 2007). Indeed, EIN3/EIL proteins were 

shown to bind in a sequence specific manner to the primary ethylene-response element 

(PERE) of the ERF genes which are the last known actors of ethylene transduction 

pathway(Solano et al., 1998; Chang et al., 2013). This binding triggers the primary 

ethylene response through a transcriptional cascade that first includes the activation of 

target ERF genes which in turn through binding to GCC box cis-element in the promoter 
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of target genes modulate the expression of ethylene-responsive genes.  

 

 

Figure 9. Model for the regulation of SCF/26S proteasome to the level of EIN3/EIL1. 

In the absence of ethylene, the receptor family activates the negative regulator CTR1, which leads to 

inhibition of EIN2. EIN3 and EIL1 levels are kept low by selective ubiquitination of the proteins by 

SCFEBF1 and SCFEBF1, which induces their subsequent breakdown by the 26S proteasome. In the presence 

of ethylene, the receptors are inhibited, thus reducing the output of CTR1 and its subsequent inhibition of 

EIN2. EIN2 acts in part to directly or indirectly block the interaction of EIN3 and EIL1 with the SCF E3s 

containing EBF1 and EBF2. The reduction in ubiquitination allows EIN3 and EIL1 levels to rise to mediate 

ethylene responses. (Binder et al., 2007). 

 

2.5 Ethylene Response Factors (ERFs) 

 

In the linear ethylene signal transduction pathway, ERFs are shown to be the last 

known downstream components which are responsible for modulating the transcription of 

early ethylene-regulated genes in plants. Being encoded by one of the largest family of 

plant transcription factors, ERF proteins are the most suited step of ethylene signaling 

where the diversity and specificity of ethylene responses may originate. 

ERFs are part of AP2 (APETALA2)/ERF super-family which also contains AP2 and 

RAV family genes (Riechmann et al., 2000). The AP2/ERF superfamily is characterized 



 
 

20 
 

by the presence of the AP2/ERF domain (Riechmann and Meyerowitz, 1998; Sakuma et 

al., 2002), which consists of about 59-60 amino acids and is involved in DNA binding. 

ERF family proteins contain only one AP2/ERF domain, whereas, AP2 family genes 

have two such domains. RAV family proteins contain an additional B3 DNA binding 

domain along with AP2/ERF domain.  The AP2 domain was first identified as a repeated 

motif within the Arabidopsis AP2 protein, which is involved in flower development 

(Jofuku et al., 1994). The ERF domain was first identified as a conserved motif in four 

DNA-binding proteins from tobacco (Nicotiana tabacum), namely, EREBP1, 2, 3, and 4 

(currently renamed ERF1, 2, 3, and 4), and was shown to specifically bind to a GCC box, 

which is a DNA sequence involved in the ethylene-responsive transcription of genes 

(Ohme-Takagi and Shinshi, 1995). In the case of the RAV family, RAV1 and RAV2 

were first identified as full-length cDNAs encoding proteins that contain a B3-like 

domain and an AP2/ERF domain in Arabidopsis (Kagaya et al., 1999). Using hetero-

nuclear multidimensional Nuclear Magnetic Resonance, Allen et al., (1998) described the 

three dimensional structure of AP2/ERF domain from AtERF1. It consists of three anti-

parallel β-sheets and an α-helix. In the DNA-TF complex, tryptophan and arginine 

residues present in the b-sheets have been found to make contact with the DNA in its 

major groove. Based upon the binding of ERF domain to DNA sequence element, ERF 

family has been further divided into two subfamilies, i.e., ERF and CBF/DREB (C-repeat 

binding factor/dehydration responsive element binding factor). ERF subfamily is 

characterized by the presence of an alanine and aspartic acid respectively at position 14 

and 19 in the AP2 domain, whereas valine and glutamic acid are conserved in the 

corresponding positions for CBF/DREB (Sakuma et al., 2002). ERFs have been shown to 

bind the GCC-box sequence (AGCCGCC) found in ethylene-responsive genes and 

DREBs to the DRE/CRT cis-regulatory element (A/GCCGAC) (Ohme-Takagi and 

Shinshi, 1995; Stockinger et al., 1997; Hao et al., 1998; Hao et al., 2002; Oñate-Sánchez 

et al., 2007). 

In Arabidopsis, it was shown that the ERF subfamily contains 65 members and is divided 

into 5 subclasses based on the conservation of the AP2/ERF domain (Nakano et al., 

2006). Recently, genome-wide study also showed that the tomato ERF gene family 

comprises 9 subclasses (Figure 10) defined by distinct structural features and this work 
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proposed a new nomenclature for tomato ERFs (Pirrello et al., 2012) which complies 

with the most complete classification available in Arabidopsis and clarifies the 

correspondence between ERF subclasses in different species (Nakano et al., 2006). Based 

on functional analysis of 28 tomato ERFs and through testing their ability to activate or 

repress transcriptional activity of target genes, suggested that functional activity is 

conserved among ERF proteins sharing the same structural features (Pirrello et al., 2012). 

It was reported that ERF subgroups which are characterized by the presence of conserved 

domain enriched in acidic amino acids, such as, glutamine, and proline are putative 

transcriptional activators (Liu et al., 1999). More recently, a novel short motif termed 

EDLL was described by (Tiwari et al., 2012). This motif is present in AtERF98/TDR1 

and other clade members from the same AP2 sub-family. It has a unique arrangement of 

acidic amino acids and hydrophobic leucines, and functions as a strong activation 

domain, even to heterologous DNA binding proteins. These results suggest that most of 

ERF transcription factors identified so far are activators (Zhou et al., 1997; Fujimoto et 

al., 2000; Ohta et al., 2000; Oñate-Sánchez and Singh, 2002; Nakano et al., 2006; Oñate-

Sánchez et al., 2007; Wu et al., 2007; Pirrello et al., 2012; Tiwari et al., 2012). However, 

a few of them, such as some members in group VIII, act as repressors (Fujimoto et al., 

2000; Ohta et al., 2001; Kazan, 2006; Nakano et al., 2006; Pirrello et al., 2012). In 

contrast to the ERF activators, the ERF repressors contain a conserved (L/F)DLN(L/F)xP 

sequence, also called the ERF-associated amphiphilic repression (EAR) motif, in their C-

terminal regions (Ohta et al., 2001). Indeed tobacco ERF3, Arabidopsis AtERF3, AtERF4 

and AtERF7 were shown to repress the expression of a GCC-box-containing reporter 

gene (Fujimoto et al., 2000; Ohta et al., 2000; Ohta et al., 2001; Song et al., 2005; Yang 

et al., 2005). 
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Figure 10.  Phylogenetic tree of Arabidopsis and Tomato ERFs. Different subclasses are named by 

letters (A to J). Tomato genes for which the corresponding cDNA has been successfully isolated and that 

were subjected to functional analysis in this paper are named using the Sl-ERF nomenclature while other 

tomato ERFs are named using International Tomato Annotation Genome (ITAG 2.3) nomenclature. 

Phylogenetic trees were constructed with the whole protein sequences using neighbor joining method 

(Pirrello et al., 2012). 

 

ERF proteins are ubiquitous in plant kingdom. It has been demonstrated that the 

expression of many ERF genes can be regulated by plant hormones such as ethylene (ET),  

salicylic acid (SA) and jasmonic acid (JA), as well as by biotic and abiotic stresses 

(Fujimoto et al., 2000; Park et al., 2001; Gu et al., 2002; Chen et al., 2002; Oñate-



 
 

23 
 

Sánchez and Singh, 2002; Brown et al., 2003; Cheong et al., 2003; Lorenzo et al., 2003; 

McGrath et al., 2005; Yang et al., 2005; Jin and Liu, 2008; Trujillo et al., 2008; Liu et 

al., 2010; Pan et al., 2010; Pan et al., 2012; Pirrello et al., 2012; Figure 11) suggesting 

their putative roles in these responses. Indeed, in different plant species, the ERF proteins 

have been shown to be involved in the transcriptional regulation of a wide range of 

processes including response to biotic and abiotic stresses, hormonal signal transduction, 

regulation of metabolism, and in developmental processes (Ohme-Takagi and Shinshi, 

1995; van der Fits and Memelink, 2000; van der Graaff et al., 2000; Banno et al., 2001; 

Chuck et al., 2002; Broun et al., 2004; Pirrello et al., 2006; Li et al., 2007; Hu et al., 

2008; Zhang et al., 2009; Pan et al., 2010; Lee et al., 2012). Constitutive expression of 

ERF1 increases the resistance of Arabidopsis to B. cinerea and P. cucumerina and 

induces the expression of several defense-related genes, including PLANT DEFENSIN1.2 

(PDF1.2) and BASIC CHITINASE (Berrocal-Lobo et al., 2002; Lorenzo et al., 2003). Pré 

et al., (2008) also demonstrated that ORA59, a prominent representative of the ERF 

group IX in Arabidopsis, acts as an essential integrator of the JA and ethylene signal 

transduction pathways and overexpression of ORA59 causes increased resistance against 

the fungus Botrytis cinerea, whereas ORA59-silenced plants were more susceptible. 

Moreover, it was reported that a transcriptional activator, AtERF14, has a prominent role 

in the plant defense response. AtERF14 loss-of-function mutants showed impaired 

induction of defense genes and increased susceptibility to Fusarium oxysporum (Oñate-

Sánchez et al., 2007). In tomato, the first ERFs which have been isolated are Pti4, 5 and 

Pti6 and the expression of these ERFs are induced by pseudomonas syringae (Zhou et al., 

1997; Thara et al., 1999; Gu et al., 2000). Overexpression of Pti5 or Pti5-VP16, a 

translational fusion with a constitutive transcriptional activation domain, in tomato 

accelerated pathogen-induced expression of GluB and Catalase and enhanced resistance 

to Pseudomonas syringae pv. tomato (He et al., 2001).  
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Figure 11: Outline of some of the stress responses and/or signals linked to ERF transcription factors. 

The promoter elements that they bind to and the effects of their over expression in plants are shown.  

 

Studies have also shown that ERF proteins play important roles in the response to 

environmental stresses such as high salinity, drought and low temperature conditions via 

regulation of stress responsive genes (van der Fits and Memelink, 2000; Park et al., 2001; 

Aharoni et al., 2004; Huang et al., 2004; Taketa et al., 2008; Zhang et al., 2009; De Boer 

et al., 2011; Fukao et al., 2011; Wan et al., 2011). It was shown that the tomato ethylene 

responsive factor 1 (TERF1) was induced by both ethylene and NaCl treatment (Huang et 

al., 2004). Overexpression of TERF1 in tobaccos activates constitutive expression of PR 

genes like Prb-1b, GLA, osmotin and CHN50 (Huang et al., 2004) and activates genes 

involved in ABA/osmotic stress known to be involved in response to ABA, cold-, 

drought-, salt-stress. Transgenic tobacco plants constitutive expressing TERF1 displayed 

typical ethylene triple response and enhanced both salt and drought tolerance (Huang et 

al., 2004; Zhang et al., 2005). These results suggest that TERF1 may make the link 

between ethylene and salt response and it may also integrate different signaling pathway. 

Gao et al., (2008) also reported that expression of TERF1 gene in rice induces expression 

of stress responsive genes and enhances tolerance to drought and high-salinity. In tomato 

and tobacco, it was demonstrated that overexpression of LeERF2/TERF2 regulates the 

expression of genes involved in ethylene synthesis and resulted in increased ethylene 
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synthesis and increased tolerance to cold (Zhang et al., 2009; Zhang and Huang, 2010). 

The tomato JERF1 mRNA was rapidly accumulated within 10 min, and peaked after 1 h, 

40 min, 8 h or 4 h under ethylene, MeJA, ABA or high salt treatment, respectively 

(Zhang et al., 2004) suggesting that JERF1 as a transcriptional factor may play important 

roles in the regulation of plant stress and defense responses through different signaling 

pathways. Constitutive expression of JERF1 in tobacco caused an increase in the 

transcript levels of GCC box-containing PR genes such as osmotin, GLA, Prb-1b and 

CHN50, and subsequently resulted in enhanced tolerance to salt stress during germination. 

This suggests that JERF1 modulates osmotic tolerance by activation of downstream gene 

expression via interaction with the GCC-box cis-elements. Moreover, it was also shown 

that JERF1 also enhances tolerance to drought, salinity and cold in tobacco by 

modulating the expression of an abscisic acid (ABA) biosynthesis-related gene (Wu et 

al., 2007). Recently, in Arabidopsis, an ethylene response factor, RAP2.2, which 

functions in an ethylene-controlled signal transduction pathway, was reported to involve 

in plant survival under hypoxia (low-oxygen) stress (Hinz et al., 2010). It was also 

demonstrated that AtERF98 regulates the response to salt stress in Arabidopsis by 

increasing ascorbic acid (AsA) synthesis (Zhang et al., 2012). 

In addition to the functions in response to biotic and abiotic stresses, ERF proteins have 

also been shown to play an important role in plant development and fruit ripening. It was 

shown that expression of an ERF gene, TINY, impacted plant height, hypocotyl 

elongation, and fertility in Arabidopsis and resulted in a “tiny” phenotype (Wilson et al., 

1996). Results of (Banno et al., 2001) indicated that the ERF gene, ESR1, specifically 

regulates the induction of shoot regeneration after the acquisition of competence for 

organogenesis in Arabidopsis. Moreover, transgenic plant overexpressing Sl-ERF2 shows 

an early germinating phenotype, probably due to an over expression of mannanase genes 

involved in the radicle protrusion (Pirrello et al., 2006). Recent studies demonstrated that  

SlERF36, an EAR-motif-containing ERF gene from tomato, alters stomatal density and 

modulates plant growth, flowering time and senescence in tobacco (Upadhyay et al., 

2013). In tomato, it was shown that LeERF1 is involved in leaf morphology, fruit 

ripening and softening (Li et al., 2007). Furthermore, SlERF6 was also reported to play 
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an important role in fruit ripening by integrating the ethylene and carotenoid synthesis 

pathways in tomato (Lee et al., 2012).  

 

3. Role of ethylene 

 

The gaseous phytohormone ethylene plays multiple roles in regulating plant growth and 

development. Alone or in content with the other phytohormones, ethylene regulates a 

wide range of plant activities, including seed germination, root growth and development, 

flowering, fruit ripening, organ senescence and abscission, and response to abiotic 

stresses and pathogen attacks (Johnson and Ecker, 1998; Bleecker and Kende, 2000; Lin 

et al., 2009). 

 

3.1 Seed germination 

 
Seed germination is a complex physiological process under the control of plant 

hormones that play important and manifold roles (Bewley, 1997). Among the 

phytohormones ethylene is regarded as one of the key regulators in the process of seed 

germination. The addition of ethylene in the germination medium to Arabidopsis seeds 

results in accelerated germination, while adding norbornadiene, an inhibitor of ethylene 

action, delays germination. Analysis of mutant lines altered in ethylene biosynthesis or 

signaling pathway also demonstrated the involvement of ethylene in regulating seed 

germination. In Arabidopsis, constitutive ethylene insensitive mutant, etr1-1, show a 

delayed germination phenotype (Bleecker et al., 1988). Mutation in ETHYLENE 

INSENSITIVE2 (EIN2) gene results in poor germination and deeper dormancy, in contrast 

constitutive triple response 1 (ctr1) seeds germinate slightly faster compared to wild type 

(Leubner-Metzger et al., 1998; Subbiah and Reddy, 2010). Ethylene response factor 

(ERF) genes which act as the last known components of ethylene signaling pathway play 

a key role in seed germination regulation (Leubner-Metzger et al., 1998; Song et al., 

2005; Pirrello et al., 2006). The ABA-insensitive Arabidopsis mutant abi4 affected in 

seed germination displays altered expression of seed-specific genes (Finkelstein et al., 

1998) and the abi4 mutation is caused by a single pair deletion within an AP2 family 
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gene. It was reported that AtERF7 acts as a transcriptional repressor of the ABA response 

and that transgenic Arabidopsis lines expressing an RNAi construct targeted to down-

regulate the AtERF7 gene are more sensitive to ABA and germinate later than the wild-

type seeds (Song et al., 2005). Beechnut FsERF1 is almost undetectable in dormant seeds 

incubated under high temperature conditions that maintain dormancy, or in the presence 

of germination inhibitors, either ABA or AOA, an inhibitor of ethylene biosynthesis, but 

increases during moist chilling that progressively breaks dormancy (Arc et al., 2013). 

Pirrello et al., (2006) also demonstrated that SlERF2 transcript accumulation is higher in 

germinating seeds than in non-germinating ones and overexpression of this transcription 

factor in transgenic tomato lines results in enhanced ethylene sensitivity and premature 

seed germination. In seeds of Arabidopsis and other species, ethylene has a demonstrated 

antagonism to ABA, a hormone that inhibits germination (Arc et al., 2013).  

 

In Arabidopsis, ethylene counteracts the inhibitory effects of ABA on endosperm 

cap weakening and endosperm rupture (Linkies et al., 2009). ABA also increases the 

ethylene requirement to release primary and secondary dormancies. Mutants with 

enhanced response to ABA were found to be ethylene insensitive alleles in known genes 

of the ethylene pathway (Beaudoin et al., 2000; Ghassemian et al., 2000). Therefore, 

ethylene’s effects in regulating germination may be explained, at least partially, by the 

ABA antagonism (Figure 12). 

Figure 12. Model for the regulation of ethylene 

and ABA in endosperm cap weakening and 

rupture. ABA delays ACO activity in the radicle and 

inhibits ACO1 transcript accumulation, but not ACO2 

transcript accumulation. The later increase in ACO 

activity in the radicle of ABA-treated seeds is 

therefore due to ACO2, and the ethylene produced 

promotes endosperm cap weakening by antagonizing 

the ABA inhibition. In the endosperm cap, ABA 

inhibits ACO2 and ACO1 transcript accumulation. 

Ethylene does not affect the seed ABA levels and 

therefore must counteract the ABA-induced inhibition 

of endosperm rupture by interfering with ABA 

signaling (Linkies et al., 2009). 
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3.2 Root development 

 
In recent years, studies of the effect of ethylene on root growth and development 

has achieved substantial progress, with identification of both inhibitory effects of 

ethylene on root elongation and lateral root development and stimulatory effects of 

ethylene on root hair initiation. The inhibition of root elongation in the presence of 

ethylene or its precursor, 1-aminocyclopropane-1-carboxylic acid (ACC), has been well 

known in different species (Abeles et al., 1992; Negi et al., 2010; Figure 13). Ethylene-

insensitive mutants, including etr1, ein2, ein3, and eil1 in Arabidopsis and never ripe (nr) 

and green ripe (gr) in tomato, have elevated primary root growth rates compared to the 

wild type (Růzicka et al., 2007; Stepanova et al., 2007; Negi et al., 2010). By contrast, 

roots of seedlings with elevated ethylene signaling or synthesis, ctr1 and eto1, 

respectively, display reductions in the rate of root elongation (Kieber et al., 1993). These 

results clearly indicate the inhibitory effect of ethylene on root growth. 

  

       
 

 

 

Figure 13. Ethylene inhibits root 
elongation and lateral root development. 
Five-day-old Arabidopsis seedlings were 
transferred to medium containing 1 μM 
ACC and the tip of the roots at the time of 
transfer was marked by a black dot. When 
their roots were imaged five days later, 
ethylene had decreased the rate of root 
elongation relative to an untreated control, 
as judged by the length of root that had 
formed below the black dots. By contrast, 
ethylene treatment prevented lateral root 
formation in the region formed after 
transfer (Muday et al., 2012) 
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Ethylene has been shown to play a negative role in lateral root formation through the 

studies in Arabidopsis and tomato using the diversity of mutants with altered ethylene 

signaling or synthesis (Ivanchenko et al., 2008; Negi et al., 2008; Negi et al., 2010). 

Treatments or mutations to elevate ethylene levels inhibit lateral root formation. 

Arabidopsis wild type Columbia seedlings show a dose dependent decrease in lateral root 

numbers when grown on the ethylene precursor, 1-aminocyclopropane-1-carboxylic acid 

(ACC) and this is reversed by the treatment with ethylene antagonist, silver nitrate (Negi 

et al., 2008). The ctr1 mutant, with enhanced ethylene signaling (Kieber et al., 1993; 

Huang et al., 2003), and the eto1 mutant, with enhanced ethylene synthesis (Kieber et al., 

1993), exhibited significant reductions in lateral root numbers compared with wild-type 

seedlings. In contrast the Arabidopsis and tomato ethylene-insensitive mutants exhibit 

elevated numbers of lateral roots (Negi et al., 2008; Negi et al., 2010; Strader et al., 

2010). The ethylene-insensitive mutants etr1, which has a dominant negative receptor 

mutation (Hua et al., 1998; Sakai et al., 1998), and ein2, which has a defect in an 

ethylene signaling protein (Kendrick and Chang, 2008), showed enhanced lateral root 

formation and was insensitive to the inhibitory effect of ACC on lateral root numbers 

(Negi et al., 2008). Interestingly, although most of these studies examined root growth on 

agar medium, the increase in lateral root formation seen in nr is even more striking in 

seedlings grown in soil for several weeks (Negi et al., 2010), suggesting that ethylene 

may have even more profound effects on roots during standard cultivation. These effects 

of ethylene are on the earliest stages of lateral root initiation (Ivanchenko et al., 2008) 

and alter auxin transport, suggesting that crosstalk with auxin should be a critical 

component of the activity of ethylene in lateral root development (Negi et al., 2008). 

The role of ethylene in the formation of adventitious roots has been examined in a variety 

of plant species, but the results have been contradictory. In tomato, elevated exogenous or 

endogenous ethylene levels increase adventitious root formation, while ethylene-

insensitive nr produces fewer adventitious roots (Clark et al., 1999; Kim et al., 2008; 

Negi et al., 2010). In contrast in Arabidopsis, ACC treatment, as well as the eto1 and ctr1 

mutations, results in reduced adventitious root formation (Sukumar, 2010). These 

contradictory findings may be due to variation in the different tissues, growth conditions, 

and methods of quantifying adventitious root formation. 
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In contrast to the negative effects of ethylene on root elongation and lateral root 

formation, root hair development is positive regulated by ethylene (Tanimoto et al., 1995; 

Rahman et al., 2002). In Arabidopsis, the ethylene precursor ACC induces ectopic root 

hair formation (Tanimoto et al., 1995; Pitts et al., 1998), whereas application of an 

ethylene biosynthesis inhibitor, aminoethoxyvinylglycine (AVG) and Ag+ (an ethylene 

action inhibitor) reduce root hairs (Masucci and Schiefelbein, 1994; Tanimoto et al., 

1995). The initiation and elongation of root hairs may synergistically induced by ethylene 

and auxin. Since auxin is able to rescue root hair elongation defects in ethylene-

insensitive mutants, and inhibition of auxin influx exacerbates the ein2 root hair 

phenotype (Rahman et al., 2002).  Application of ACC or IAA to the root hair-deficient 

mutant root hair defective 6 (rhd6) can restore root hair initiation (Masucci and 

Schiefelbein, 1994). Moreover, auxin-insensitive mutants that also show ethylene 

insensitivity, such as axr2, axr3 and aux1, exhibit reduced root hair initiation (Pickett et 

al., 1990; Wilson et al., 1990; Leyser et al., 1996). Interestingly, ethylene also affects the 

positioning of root hairs and ethylene-insensitive mutants having apically shifted root 

hairs (Fischer et al., 2007). 

 

3.3 Flowering 

 

The transition from vegetative growth to flowering is the most drastic change in 

plant development. Ethylene has been known to be involved in flowering process for a 

long time (Abeles et al., 1992). Experiments applying ethylene and chemical inhibitors of 

its biosynthesis and function have demonstrated that ethylene differentially regulates 

flowering in different plant species. Ethylene plays a role in floral promotion in pineapple, 

mango, lychee and Plumbago indica, and in floral inhibition in short-day plants such as 

cocklebur, Japanese morning glory, chrysanthemum, tobacco and Chenopodium (Abeles 

et al., 1992). It has been reported that ethylene induced flowering in pineapple (Ananas 

comosus) and that silencing of the AcACC synthase gene caused delayed flowering in 

pineapple (Trusov and Botella, 2006). In rice, overexpression of ETR2 leads to reduced 

ethylene sensitivity and late flowering, whereas T-DNA insertion mutant etr2 showed 

enhanced ethylene sensitivity and early flowering (Wuriyanghan et al., 2009). It is 
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showed that ethylene represses flowering in Arabidopsis and inactivation of specific ACS 

gene products enhances flowering time (Tsuchisaka et al., 2009). In Arabidopsis, it is 

found that wild-type plants grown in the presence of the ethylene precursor ACC, or in an 

ethylene-rich atmosphere, flowered late and the constitutive ethylene response 

Arabidopsis mutant ctr1-1 showed a late flowering phenotype (Achard et al., 2007). 

Moreover, enhanced ethylene response mutant eer2 also displayed a delay in bolting and 

flowering time compared with wild type plants (De Paepe et al., 2005). Based on the data 

obtained in acs mutants, it was proposed that ethylene exerts its effect on flowering by 

regulating the expression of the FLC which acts as a rheostat to repress flowering through 

repression of the floral pathway integrators FT and SOC1. Interestingly, on the other 

hand, based on the observation that constitutively active ethylene signaling in the ctr1 

mutant reduces GA levels, and the late flowering phenotype of the ctr1 mutant is partially 

rescued by loss-of-function mutations in DELLA genes, Achard et al., (2007) showed 

that ethylene delays flowering via modulating DELLA activity. The induced DELLA 

accumulation by ethylene in turn delays flowering via repression of the floral meristem-

identity genes LEAFY (LFY) and SOC1 (Achard et al., 2007). A different flowering 

pathway operates in the acs mutants and in the ctr1 mutant could be a possible 

explanation for this difference findings. In tomato, overexpression of SlTPR1 gene, a 

tomato tetratricopeptide repeat protein, results in enhanced ethylene response and delayed 

flowering time (Lin et al., 2008). Further studies should disclose the mechanism by 

which ethylene differentially regulates flowering in different plant species. 

 

3.4 Fruit ripening 

 

Fruit ripening is a developmentally regulated process unique to plants during 

which the majority of the sensory quality attributes are elaborated including aroma, flavor, 

texture and nutritional compounds (Carrari and Fernie, 2006). Biochemical and 

physiological changes that occur during fruit ripening are driven by a cascade of 

molecular events leading to the stimulation of specific transcriptional regulators 

responsible for the coordinated expression of fruit ripening-related genes directly 

involved in the biochemical processes (Giovannoni, 2004). The requirement for ethylene 
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in the ripening of climacteric fruit has long been recognized (Abeles et al., 1992) and 

discrimination between climacteric and non-climacteric fruits has been made on the basis 

of the presence or absence of the climacteric rise in respiration and of autocatalytic 

ethylene production. In climacteric fruit, the plant hormone ethylene is considered to be 

the major signaling molecule that controls most aspects of fruit ripening. By contrast, in 

non-climacteric fruit, ethylene is not the trigger of the ripening process, which appears to 

depend on signals not yet elucidated. It should be noted that, however, these distinctions 

are not absolute, as closely related melon and capsicum species can be both climacteric 

and non-climacteric and some non-climacteric fruits show enhanced ripening phenotypes 

in response to exogenous ethylene (Lelièvre et al., 1997; Alexander and Grierson, 2002; 

Mailhac and Chervin, 2006). Nevertheless, enhanced ethylene synthesis at the onset of 

ripening is required for the normal ripening of many fruits. 

Two systems of ethylene biosynthesis have been proposed in climacteric plants 

(McMurchie et al., 1972). System 1 functions during normal vegetative growth, is 

ethylene autoinhibitory and is responsible for producing basal ethylene levels that are 

detected in all tissues including those of non-climacteric fruit. System 2 operates during 

the ripening of climacteric fruit when ethylene production is autocatalytic. Through a 

combination of ethylene and inhibitor studies together with expression analysis of 

ethylene biosynthesis genes in ripening tomato fruits and various ripening mutants, the 

molecular mechanisms of autocatalytic ethylene production were investigated in tomato 

(Barry et al., 2000). Expression analysis has revealed that at least four ACS (LEACS1A, 

LEACS2, LEACS4, and LEACS6) and three ACO (LEACO1, LEACO3, and LEACO4) 

genes are differentially expressed in tomato fruit (Rottmann et al., 1991; Barry et al., 

1996; Nakatsuka et al., 1998; Barry et al., 2000). It was shown that system 1 ethylene is 

regulated by the expression of LeACS1A and LeACS6 with the two genes being 

negatively regulated by ethylene. Subsequently, the up-regulation of LeACS2 and 

LeACS4 through positive feedback by ethylene is responsible for the activation of System 

2 (Nakatsuka et al., 1998; Barry et al., 2000). LeACO1, LeACO3, and LeACO4 are all 

expressed at low levels in green fruit that are in a system 1 mode of ethylene synthesis, 

but the transcripts of each increase at the climacteric peak as the fruit ethylene production 

transition to system 2. Moreover, LEACO1 and LEACO4 are sustained in expression 
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during fruit ripening, whereas the increase in LEACO3 expression is transient (Barry et 

al., 1996; Nakatsuka et al., 1998). In the case of LEACO1 and LEACO4, ripening-related 

increases in transcript abundance can be largely blocked by 1-MCP treatment, indicating 

that these genes are positively regulated by ethylene. The main changes in ACS and ACO 

gene expression associated with the ethylene synthesis from system 1 to system 2 during 

tomato fruit development and ripening are shown in Figure 14. It should be point out that 

because the expression of ethylene biosynthesis genes were shown to be also regulated by 

some regulator factors, such as, through binding to their promoters, RIN and LeHB-1 

regulate the expression of LeACS2 and LeACO1, respectively (Ito et al., 2008; Lin et al., 

2009), it is possible that the autocatalytic regulation is not the only mechanism of the 

system 2 ethylene synthesis.  

 

 
 

Figure 14. Differential expression of ACS and ACO genes associated with system 1 and system 2 

ethylene synthesis during fruit development and ripening in tomato. Auto-inhibition of ethylene 

synthesis during system 1 ethylene production is mediated by a reduced expression of LeACS1A and 6. 

Autocatalytic ethylene synthesis at the onset of fruit ripening is mediated through ethylene-stimulated 

expression of LeACS2 and 4 and LeACO1 and 4 (Barry and Giovannoni, 2007).  

 
Inhibition or delay in fruit ripening in tomato by antisense expression of tomato ACS2 

and ACO1 genes was the first direct evidence that ethylene biosynthesis is essential for 

climacteric fruit ripening (Oeller et al., 1991). Furthermore, effects of ethylene 

perception and signal transduction on fruit ripening were also well known. It was shown 
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that the Never-ripe (Nr) mutant of tomato corresponding to a mutation in the ethylene 

receptor conferred ethylene insensitivity and thus produced non-ripening fruit (Wilkinson 

et al., 1995). Moreover, antisense inhibition of production of the mutant mRNA in the Nr 

mutant resulted in failure to synthesize the mutant receptor protein, and partially or 

completely restored fruit ripening (Hackett et al., 2000) supporting the evidence that the 

ethylene receptors act as negative regulators of ethylene action. Another mutant, Green-

ripe (Gr), a dominant ripening mutation that occurs in a gene encoding another 

component of ethylene signaling failed to fully ripen as a consequence of inhibition of 

ethylene responsiveness (Barry et al., 2005). The GR protein which corresponds to the 

REVERSION TO ETHYLENE SENSITIVITY1 (RTE1) in Arabidopsis was proposed to 

mediate ethylene response via interacting with and regulating the ethylene receptor(s) 

(Barry and Giovannoni, 2006; Resnick et al., 2006; Zhou et al., 2007). In addition, it was 

demonstrated that receptor level, during fruit development, determines the timing of 

ripening (Kevany et al., 2007) and fruit-specific suppression of LeETR4 resulted in early-

ripening fruit in tomato (Kevany et al., 2008). 

The ethylene transduction pathway leads to the regulation of fruit ripening through a 

transcriptional cascade including primary (ETHYLENE-INSENSITIVE3 (EIN3) and 

EIN3-like (EIL)) and secondary response factors (ETHYLENE RESPONSE FACTORS 

(ERF)). It was shown that transgenic tomato plants with reduction in expression of 

multiple tomato LeEIL genes significantly reduced ethylene sensitivity and thus affected 

fruit ripening (Tieman et al., 2001). Chen et al., (2004) also demonstrated that 

overexpression of LeEIL1 in the Nr mutant partially restored normal fruit ripening and 

stimulated the expression of some ethylene-responsive genes. In Kiwifruit, AdEIL genes 

were constitutively expressed during fruit ripening and the transcription factors AdEIL2 

and AdEIL3 can activate transcription of the ripening-related genes AdACO1 suggesting 

a role of EIL genes in fruit ripening via regulating ethylene biosynthesis genes. In 

addition, silencing of SlEBF1 and SlEBF2 which negatively regulate ethylene signaling 

by mediating the degradation of EIN3/EIL proteins resulted in a constitutive ethylene 

response phenotype and accelerated fruit ripening in tomato (Yang et al., 2010). These 

results indicated that ethylene-mediated climacteric fruit ripening is also controlled at the 

transcriptional levels. 
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The identification of several key ripening regulatory genes from tomato, such as MADS-

box Ripening-Inhibitor (RIN) (Vrebalov et al., 2002), SBP-box Colourless Non-Ripening 

(CNR) (Manning et al., 2006), MADS-box AGAMOUS-LIKE1 (TAGL1) (Itkin et al., 

2009; Vrebalov et al., 2009), and leucine zipper homeobox LeHB-1 (Lin et al., 2008), has 

led to new insights into understanding of ethylene and ripening control mechanisms. The 

RIN gene encodes a putative MADS box transcription factor that controls tomato fruit 

ripening, with its mutated version (rin) conferring a non-ripening character (Vrebalov et 

al., 2002). Molecular and biochemical studies have shown that RIN participates in 

ethylene production by inducing many of the ethylene synthesis/signaling genes (e.g., 

ACS2 and ACS4), by upregulating NOR and CNR and by downregulating HB-1 (Ito et al., 

2008; Fujisawa et al., 2011; Fujisawa et al., 2012; Martel et al., 2011; Qin et al., 2012; 

Zhou et al., 2012). Cnr is an epigenetic change that alters the promoter methylation of a 

SQUAMOSA promoter-binding (SPB) protein, resulting in a pleiotropic ripening 

inhibition phenotype and inhibited expression of ethylene-associated genes ACO1, E8, 

and NR, and several other ripening-related genes (Thompson et al., 1999). Tomato 

AGAMOUS-LIKE1 (TAGL1) gene whose down-regulation results in yellow fruit with 

reduced carotenoids and thin pericarp, has been shown to control fruit expansion and 

ripening (Itkin et al., 2009; Vrebalov et al., 2009). Furthermore, TAGL1-suppressed fruit 

produce lower amounts of ethylene with a reduced expression of LeACS2 suggesting that 

TAGL1 may be another important regulator of ripening-related ethylene production. The 

transcription factor encoded by the LeHB-1 gene belonging to class-I HD-Zip proteins 

can bind the promoter of LeACO1 (Lin et al., 2008) and its silencing via virus-induced 

gene silencing (VIGS) strategy results in down-regulation of LeACO1 expression 

associated with delayed fruit ripening. The putative transcription factor, Sl-AP2a, a 

member of the AP2/ERF superfamily gene was also recently described as a negative 

regulator of fruit ripening and of ethylene production (Chung et al., 2010; Karlova et al., 

2011). The characterization of these transcriptional regulators indicates that transcription 

factors play key roles in relaying ripening-inducing signals and controlling ethylene 

biosynthesis. Thus, the regulation of transcriptional regulators by acting upstream of 

ethylene synthesis should be an important mechanism for controlling fruit ripening 

(Figure 15). 
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Figure 15. A schematic representation of the proposed model for a regulatory mechanism of tomato 

fruit ripening. Bold line arrows indicate an ethylene-mediated positive feedback loop that enhances RIN 

expression. It is unclear whether the loop regulates the expression of the other ripening regulators (such as 

NOR and TDR4) affected by ethylene during ripening directly or indirectly (via RIN). Arrows indicate the 

direction of the transcriptional regulatory pathways. Blunt-ended lines indicate repression. Circle arrows on 

RIN and TAGL1 indicate auto-regulation and on ethylene indicate autocatalytic ethylene production 

(Fujisawa et al., 2013). 

 
Ethylene Response Factors (ERFs) are the last identified downstream components of the 

ethylene signal transduction pathway known to regulate early ethylene-responsive genes. 

Recently, accumulating studies have shown that ERF proteins play an important role in 

fruit ripening (Klee and Giovannoni, 2011). Most of the ERF genes identified in tomato 

were ethylene inducible and showed ripening-related expression pattern (Pirrello et al., 

2012). Tomato LeERF1 was reported to mediate ethylene response and thus control fruit 

ripening (Li et al., 2007). Overexpression of LeERF1 in tomato resulted in constitutive 
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ethylene response and accelerated fruit ripening and softening (Li et al., 2007). A 

ripening-related pattern of expression has also been shown for LeERF2 and LeERF3b in 

tomato fruit (Tournier et al., 2003; Chen et al., 2008). LeERF2 is induced by ethylene 

and suppressed in ripening-inhibited mutants (Wu et al., 2002; Tournier et al., 2003). 

Moreover, LeERF2 regulates ethylene response in tomato by modulating ethylene 

biosynthesis genes (Pirrello et al., 2006; Zhang et al., 2009), transcriptional regulation 

being achieved by interaction of LeERF2 with promoter of LeACO3 (Zhang et al., 2009). 

Recently, SlERF6 was reported to play an important role in fruit ripening by integrating 

the ethylene and carotenoid synthesis pathways in tomato (Lee et al., 2012). In banana, 

ERFs are also demonstrated to be involved in fruit ripening through their interactions 

with ethylene biosynthesis genes (Xiao et al., 2013). Nevertheless, so far only one ERF 

has been identified as direct regulator of ripening-associated genes via binding a cis-

element present in the promoter of E4 (Montgomery et al., 1993), a ripening-regulated 

gene (Lincoln and Fischer, 1988) encoding proteins of unknown function, and therefore 

the specific role of each ERF in ethylene response and the ripening process is still far 

from being well understood.  

Although ripening control in non-climacteric fruit was thought to be independent of 

ethylene, some studies do show an increase in ethylene production in non-climacteric 

fruit which suggesting a role of ethylene in ripening. Indeed, the effect of ethylene in 

inducing color changes in the flavedo tissue of citrus fruit, a non-climacteric fruit, has 

long been known (Goldschmidt et al., 1993; Goldschmidt, 1997). In strawberry, which is 

generally considered as non-climacteric fruit, an increase in ethylene production 

associated with a raise in respiration has been observed when the fruit reaches the red-

ripe stage (Iannetta et al., 2006). It was reported that, in grapes, a small increase in 

ethylene production occurs at the veraison stage when berries reach the onset of color 

changes and treatment of grape berries with 1-MCP, an inhibitor of ethylene perception, 

affected anthocyanin accumulation and berry swelling and caused a decrease in acidity 

(Chervin et al., 2008) suggesting that ethylene might be required for the full 

accomplishment of the ripening process. Overall, these data suggest a putative 

involvement of ethylene in at least some aspects of the ripening process in non-

climacteric fruit. 
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3.5 Organ senescence and abscission 

 

Senescence is a vitally important developmental step in the life cycle of a plant or 

a plant organ that determines yield and reproductive success. The most prominent 

symptom of leaf senescence is the visible yellowing, which correlates with physiological 

and biochemical changes such as dismantling of chloroplasts, drop of chlorophyll content 

and photosynthetic activities, and degradation of RNA and proteins (Jing et al., 2003). 

Senescence is a complex developmental phase involving the actions of a complex 

network consisting of multiple pathways. In many species, and in different plant organs, 

ethylene has long been considered a key hormone in regulating the onset of leaf 

senescence (Bleecker et al., 1988; Zacarias and Reid, 1990). In Arabidopsis, ethylene 

treatment advances the visible yellowing and senescence-associated genes (SAGs) 

induction in leaves that are primed to senesce (Grbic and Bleecker, 1995). Ethylene 

insensitive mutants, such as etr1 and ein2/ore3 display delayed leaf senescence (Oh et al., 

1997). It was reported that the lifespan of etr1-1 leaves is 30% longer than wild-type 

leaves and this delay is accompanied by a delayed induction of senescence associated 

genes (SAGs) which are used as molecular markers of leaf senescence (Hensel et al., 

1993) and higher expression of photosynthesis-associated genes (PAGs) (Grbic and 

Bleecker, 1995). In tomato, reduced ethylene production due to antisense suppression of 

the genes involved in ethylene biosynthesis also resulted in a temporal delay in the onset 

of foliar senescence (Jone et al., 1995).  Recently, Chen et al., (2011) showed that a 

MADS box gene, FOREVER YOUNG FLOWER (FYF) acts as a repressor of organ 

senescence and abscission through suppressing ethylene response.  

It was demonstrated that ethylene can induce senescence only when developmental 

changes controlled by leaf age are present and before senescence can be initiated, some 

age-related changes (ARCs) must have taken place in the leaf (Hensel et al., 1993; Jing et 

al., 2002; Jing et al., 2005). For example, the oldest leaves showed the greatest increase 

in SAG transcripts after ethylene treatment, and little or no effect of ethylene was 

observed in the youngest leaves (Grbic and Bleecker, 1995). These results strongly 

suggest that ethylene can induce leaf senescence only within specific age window. 

Indeed, at early leaf growth, ethylene does not induce leaf senescence, and this is the 
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never senescence phase. This phase could be controlled by developmental signals or 

homeostatic genes such as so-called age-related factors. Only after a defined stage a leaf 

switches to the second phase, which allows the action of ethylene to promote leaf 

senescence. This promoting effect operates within a defined time span, marking the 

ethylene-dependent senescence phase (Grbic and Bleecker, 1995; Jing et al., 2002; Jing 

et al., 2005). 

Abscission is a physiological process that involves the programmed separation of entire 

organs, such as leaves, petals, flowers, and fruit. It is the mechanism for the removal of 

senescing or damaged organs but also for the release of the fruit when it is ripe (Bleecker 

and Patterson, 1997). The first demonstration that ethylene can promote abscission was 

documented by Wehmer in 1917 (Abeles et al., 1992). Application of exogenous 

ethylene hastens abscission by inducing expression of cellulase and polygalacturonase 

genes in different species and different plant organs (Bonghi et al., 1992; Kalaitzis et al., 

1995; del Campillo and Bennett, 1996). Inhibitors of ethylene action such as silver and 2, 

5-norbornadiene have been found to block abscission and inhibitors of ethylene synthesis 

such as AVG have also been shown to retard abscission of leaves, flowers, and fruit 

(Kushad and Poovaiah, 1984; Abeles et al., 1992). The first genetic evidence to 

substantiate an involvement of the ethylene signaling pathway in organ abscission was 

when the ETHYLENE RECEPTOR1 (ETR1) was identified (Bleecker et al., 1988). 

Ethylene insensitive etr1 mutant displayed a delayed capacity to undergo floral organ 

abscission (Bleecker et al., 1988; Bleecker and Patterson, 1997). Thanks to the 

identification of ethylene-signaling mutants in tomato, such as never ripe (nr), nr2, green 

ripe (gr), eil1, 2 and 3, our understanding of the effect of ethylene in mediating organ 

abscission has increased. The nr mutant which has a mutation in the ethylene receptor 

gene NR was shown to exhibit delayed pedicel abscission (Lanahan et al., 1994; 

Wilkinson et al., 1995b; Lashbrook et al., 1998; Hackett et al., 2000). Moreover, both 

nr2 and gr dominant mutants which show reduced sensitivity to ethylene display delayed 

flower abscission even after exposure to exogenous ethylene (Barry et al., 2005). By 

contrast, overexpressing the ethylene biosynthesis gene ACC synthase in tomato plants 

resulted in premature flower abscission (Whitelaw et al., 2002). 
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Up till now, several Arabidopsis mutants which show defects in organ abscission have 

been identified, including inflorescence deficient in abscission (Butenko et al., 2003), 

delayed floral organ abscission1, 2 and 3 (Patterson and Bleecker, 2004), hawaiian skirt 

(González-Carranza et al., 2007), and the haesa (hae) haesa-like2 (hsl2) double mutant 

(Cho et al., 2008; Stenvik et al., 2008). All of these mutants display normal ethylene 

sensitivity.  Moreover, exogenous ethylene, which promotes the cell separation phase of 

abscission in wild-type plants, does not alter the abscission defective phenotype in the 

MKK4-MKK5RAi and hae hsl2 plants (Cho et al., 2008). These results indicate that even 

if ethylene accelerates the abscission process, the perception of ethylene is not the unique 

process.  

 

3.6 Pathogen resistance 

 

Plants have evolved sophisticated detection and defense systems to protect 

themselves from pathogen invasion. When plants perceive a pathogen attack, an increase 

of transcription of ethylene response genes is generally observed. This over-production of 

ethylene is usually associated with induction of defence reaction.  However, depending 

on the type of pathogen and plant species, the role of ethylene can be dramatically 

different, as ethylene has been demonstrated to stimulate, as well as to counteract disease 

development. Ethylene can enhance resistance against various pathogens (Thomma et al., 

2001; Díaz et al., 2002), but it can also increase disease severity, probably by promoting 

chlorosis, senescence, and cell necrosis (Abeles et al., 1992). Taking advantage of the 

availability of plant mutants and transgenic lines that are affected in their response to 

ethylene, the reactions of these mutant and transgenic plants to different types of 

attackers were compared, either enhanced or reduced disease development were observed 

(van Loon et al., 2006; Table 1). It is shown that as a result of increased symptom 

severity in non-responsive mutants, ethylene was found to reduce diseases caused by 

several fungi and bacteria that kill their hosts (necrotrophs), or have a mixed biotrophic-

necrotrophic lifestyle (in which they start exploiting the living host before killing it). By 

contrast, the occurrence of less severe symptoms indicated that ethylene stimulated 

diseases caused by various other fungi and bacteria with varying lifestyles, as well as 
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infection by a cyst nematode and insect attack. Bent et al., (1992) showed that the 

ethylene-insensitive Arabidopsis mutant ein2-1 was resistant to X. campestris pv. 

campestris, whereas the etr1 and etr2 mutants were reported to display more severe 

symptoms, indicating an enhanced susceptibility (O’Donnell et al., 2003). Moreover, 

tomato plants treated with 1-methylcyclopropene (MCP), an inhibitor of ethylene 

perception, were show to display enhanced susceptibility to B. cinerea (Díaz et al., 2002). 

Nevertheless, the ethylene-insensitive tomato mutant Never ripe (Nr) seemed to be as 

susceptible as wild-type plants to B. cinerea (Díaz et al., 2002), and even less susceptible 

to the vascular wilt fungus Fusarium oxysporum f.sp. lycopersici (Lund et al., 1998). 

Ethylene-insensitive soybean mutants displayed increased disease severity after infection 

with the brown-spot fungus Septoria glycines or the root rot fungus Rhizoctonia solani, 

but less severe symptoms upon inoculation with the root and crown rot-causing oomycete 

Phytophthora sojae. By contrast, it was shown that inoculation of ethylene-insensitive 

soybean with the bacterial blight pathogen P. syringae pv. glycinea led to reduced disease 

severity compared to wild-type plants (Hoffman et al., 1999). These results indicate that 

altered ethylene sensitivity can result in more or less severe disease, reflecting reduced or 

increased pathogen resistance, respectively, depending on the plant-pathogen 

combination. Indeed, after systematic testing of several pathogenic fungi and bacteria on 

different accessions and various mutants of Arabidopsis the conclusion that, in general, 

ethylene contributes to resistance against necrotrophic, but not biotrophic pathogens was 

proposed (Thomma et al., 2001; Ton et al., 2002). 
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Table 1. Ethylene-related mutant and transgenic plants with altered sensitivity to pathogens (van 

Loon et al., 2006). 

Plant 
species 

Mutant or 
transgenic 

Pathogen Lifestyle 
Disease 

severitya 
Arabidopsis  ein2-1 Botrytis cinerea Necrotrophic + 

Arabidopsis ein2-5, ein3-1 Botrytis cinerea Necrotrophic + 

Arabidopsis etr1-1, ein2-1 Chalara elegans Necrotrophic + 

Arabidopsis ein2-1 Erwinia carotovora pv. carotovora Necrotrophic + 

Arabidopsis ein2-5 Fusarium oxysporum f.sp. conglutinans Necrotrophic + 

Arabidopsis ein2-5 Fusarium oxysporum f.sp. conglutinans Necrotrophic + 

Arabidopsis etr1-1, ein2-1 Fusarium oxysporum f.sp. matthiolae Necrotrophic + 

Arabidopsis etr1-1, ein2-1 Fusarium oxysporum f.sp. raphani Mixed - 

Arabidopsis eto1 – eto3 Heterodera schachtii Biotrophic + 

Arabidopsis etr1-1, ein2-1 Heterodera schachtii Biotrophic - 

Arabidopsis ein2-5 Plectosphaerella cucumerina Necrotrophic + 

Arabidopsis ein2-1 Pseudomonas syringae pv. maculicola Mixed - 

Arabidopsis ein2-1,-3,-4,-5 Pseudomonas syringae pv. tomato Mixed - 

Arabidopsis etr1-1, ein2-1 Pythium spp. Necrotrophic + 

Arabidopsis ein2-1, eto3 Ralstonia solanacearum Necrotrophic - 

Arabidopsis etr1 Spodoptera exigua Herbivore - 

Arabidopsis ein2-1, hls1-1 Spodoptera littoralis Herbivore - 

Arabidopsis etr1-1 Verticillium dahliae Necrotrophic - 

Arabidopsis etr1-1, etr2-1 Xanthomonas campestris pv. campestris Mixed + 

Arabidopsis ein2-1 Xanthomonas campestris pv. campestris Mixed - 

Arabidopsis eto1-1 Xanthomonas campestris pv. campestris Mixed + 

Tomato ACD Botrytis cinerea Necrotrophic + 

Tomato Epi Botrytis cinerea Necrotrophic -  

Tomato ACD Verticillium dahliae Necrotrophic - (tolerant) 

Tomato ACD Xanthomonas campestris pv. vesicatoria Mixed - (tolerant) 

Tomato NR, Nr Xanthomonas campestris pv. vesicatoria Mixed - (tolerant) 

Tomato Nr Fusarium oxysporum f.sp. lycopersici Necrotrophic - 

Tomato Nr Pseudomonas syringae pv. tomato Mixed - (tolerant) 

Tomato Nr Xanthomonas campestris pv. vesicatoria Mixed - (tolerant) 

Tomato Atetr1-1-LeEtr3 Xanthomonas campestris pv. vesicatoria Mixed - 
aDisease severity: +  increased; -, decreased. 
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In response to pathogen attack in plant, ethylene can induce certain types of 

pathogenesis-related (PR) proteins or phytoalexins, and, through stimulation of the 

phenylpropanoid pathway, can rigidify cell walls in various plant species (Abeles et al., 

1992). Pathogenesis-related (PR) proteins which are constituted by a broad class of 

inducible defense-related proteins expressed either locally or systemically in response to 

pathogen stress are the most extensively studied set of defense molecules in relation to 

ethylene. The extensive role of ethylene in the regulation of expression of different 

classes of PR genes, such as PR–2 (β-1,3-glucanases), PR-3 (basic-chitinases), PR-4 

(hevein-like), and PR-12 (plant defensins, PDFs) have been well demonstrated (Broglie 

et al., 1989; Samac et al., 1990; Penninckx et al., 1996; Penninckx et al., 1998; Thomma 

et al., 1998; Thomma et al., 1999; Thomma et al., 2001; van Loon et al., 2006). Analysis 

of the promoters of the PR genes led to the identification of several cis-elements required 

for ethylene regulation, including GCC-box and the dehydration responsive element/C-

repeat element (DRE/CRT). The GCC-box (11-bp sequence TAAGAGCCGCC), was 

shown to be necessary, and in some cases sufficient, for the regulation by ethylene of PR 

genes in different plant species (Ohme-Takagi and Shinshi, 1995; Solano et al., 1998; 

Fujimoto et al., 2000; Gu et al., 2000; Brown et al., 2003; Chakravarthy et al., 2003; 

Oñate-Sánchez et al., 2007; Zhou et al., 2008; Anderson et al., 2010). The Ethylene 

Response Factors (ERFs) which involves in the ethylene signal cascade have been shown 

to regulate the expression of PR genes via directly binding to the GCC-box or the 

dehydration responsive element/C-repeat element (DRE/CRT) located in the promoters 

of various pathogenesis-related (PR) genes (Park et al., 2001; Hao et al., 2002; Gutterson 

and Reuber, 2004; Moffat et al., 2012). Indeed, Plant ERF transcription factors are 

widely involved in biotic stress responses and particularly in pathogen resistance. 

Overexpression of ERF genes, such as Pti4, ERF1, OPBP1, TSRF1, AtERF14, ORA59, 

confers resistance to fungal and bacterial pathogens in transgenic plants (Berrocal-Lobo 

et al., 2002; Gu et al., 2002; Oñate-Sánchez and Singh, 2002; Guo et al., 2004; Oñate-

Sánchez et al., 2007; Pré et al., 2008; Zhang et al., 2008). The functionality of ERF 

subfamily members in different species has suggested their involvement in ethylene 

signaling and ethylene-related defenses and the complexity of the regulation of repressor 
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and activator-types of ERFs during pathogen challenge may explain the different role of 

ethylene in mediating pathogen stress.  

 

4. Crosstalk between ethylene and other phytohormones 

 

Ethylene regulates many aspects of plant developmental processes, and it is no doubt that 

the diversity of ethylene functions is achieved, at least in part, by its interactions with 

other hormones. The interactions between ethylene and other phytohormones are 

discussed below. 

 

4.1 Ethylene and auxin 

 

Ethylene and auxin interact at both the physiological and molecular levels in plant 

growth and development with either synergistic or antagonistic effects. Ethylene and 

auxin are able to regulate the synthesis of each other. Elevated levels of auxin lead to 

increased ethylene synthesis via increased transcription of the genes that drive ethylene 

synthesis, including specific members of the ACC synthase (ACS) family, which catalyze 

the rate-limiting step in ethylene synthesis ( Abel et al., 1995; Wang et al., 2002; 

Tsuchisaka and Theologis, 2004; Stepanova et al., 2007). Reciprocally, ethylene 

regulates the expression of WEI2/ASA1 and WEI7/ASB1, the subunits of an anthranilate 

synthase that catalyzes the first step in tryptophan biosynthesis, the principal precursor of 

auxin biosynthesis (Stepanova et al., 2005). 

At root level, ethylene and auxin affect synergistically in the processes of root elongation 

and root hair formation, while in other processes, such as lateral root formation, they act 

antagonistically (Muday et al., 2012). The earliest genetic evidence that ethylene and 

auxin may act through convergent pathways to regulate root growth came from the 

identification of ethylene-insensitive mutants with defects in auxin transporters: aux1 and 

ethylene insensitive root 1/pinformed 2 (eir1/pin2) (Pickett et al., 1990; Roman et al., 

1995; Luschnig et al., 1998). Kinematic analyses of root growth inhibition by ethylene 

and auxin by high temporal and spatial resolution revealed that ethylene and auxin reduce 

the expansion rate of the cells in the central elongation zone (Rahman et al., 2007; 
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Swarup et al., 2007). Mutants with enhanced ethylene or auxin synthesis have reduced 

root elongation and wild-type plants treated with exogenous ethylene or auxin also show 

reduction in root elongation (Kieber et al., 1993; Delarue et al., 1998; Zhao et al., 2001; 

Rahman et al., 2007). Moreover, like in ethylene-insensitive mutants, auxin-induced root 

growth inhibition is lost or substantially reduced in auxin-resistant mutants such as tir1, 

axr2, axr3, and solitary-root (slr) (Timpte et al., 1994; Leyser et al., 1996; Fukaki et al., 

2002; Biswas et al., 2007).  These results indicate that auxin and ethylene have similar 

effects on root elongation. Indeed, more and more evidences proved that ethylene inhibits 

root growth via modulation of auxin signaling, transport and synthesis is one of the 

mechanisms by which ethylene and auxin synergistically inhibit root elongation 

(Stepanova et al., 2005; Stepanova et al., 2007).  

In contrast to root elongation, which is synergistically inhibited by auxin and ethylene, 

these two hormones act antagonistically on lateral root initiation. Treatment with ethylene 

or ACC reduces lateral root initiation in both Arabidopsis and tomato. Dominant negative 

etr1 and Nr ethylene receptor mutants, as well as the ethylene-insensitive ein2 and Gr 

mutants have an enhanced number of lateral roots (Negi et al., 2008; Negi et al., 2010). 

By contrast, auxin stimulates lateral root formation and elongation, mutants and 

inhibitors that reduce auxin transport reduce lateral root initiation and emergence (Reed 

et al., 1998; Casimiro et al., 2001; Ivanchenko et al., 2008; Péret et al., 2009). Recently, 

it was demonstrated that ethylene inhibits lateral root development by blocking changes 

in the abundance of local auxin transport protein needed to form local auxin maxima that 

drive lateral root formation (Lewis et al., 2011). 

Pharmacological and genetic studies have revealed that ethylene and auxin promote the 

processes of root hair initiation (Tanimoto et al., 1995; Rahman et al., 2002). Application 

of ethylene or auxin to the root hair-deficient mutant root hair defective 6 (rhd6) was 

found can restore the root hair initiation (Masucci and Schiefelbein, 1994b). Moreover, 

auxin-insensitive mutants that also show ethylene insensitivity, such as aux1, axr2 and 

axr3, display reduced root hair initiation (Pickett et al., 1990; Wilson et al., 1990; Leyser 

et al., 1996). It was predicted that root hair initiation is directly linked to the amount of 

auxin and auxin signaling, and the effect of ethylene is less direct and likely to occur 

through intracellular auxin levels (Muday et al., 2012). 
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The induction of apical hook formation in Arabidopsis represents one of the best 

described examples of ethylene-auxin interaction in plants (Lehman et al., 1996; Raz and 

Ecker, 1999). Various studies indicate that ethylene affects auxin transport, synthesis, and, 

perhaps, signaling to regulate the differential growth leading to the apical hook. 

Combination of all of these studies, Muday et al., (2012) proposed a working model of 

ethylene-auxin crosstalk in apical hook formation (Figure 16). In this model, ethylene 

causes enhanced apical hook formation by both increasing the levels of components 

important for auxin signaling and increasing auxin levels on the concave side of the 

apical hook. 

 

 
Figure 16. Model of the control of apical hook curvature by auxin and ethylene. Auxin is transported 

in at rootward direction from the cotyledons predominantly through the action of PIN1 and PIN3. The 

apical hook is formed because of the asymmetric distribution of auxin (shown in blue) that arises through 

differential auxin synthesis, auxin transport and auxin signaling. This is reflected by an asymmetrical 

distribution of proteins regulating these processes in the region of the apical hook. When ethylene is added 

(right-hand image), auxin levels rise on the concave side of the hook to cause an exaggerated curvature due 

to increases in PIN3, AUX1, IAA3, IAA12, IAA13 and TAR2 on the concave side of the hook (Muday et 

al., 2012).   

 

The interplay between ethylene and auxin in flower and fruit abscission is also well 

established (Abeles and Rubinstein, 1964; Roberts et al., 2002). The generally accepted 
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model is that a basipetal auxin flux through the abscission zone (AZ) prevents abscission 

by rendering the AZ insensitive to ethylene. 

In addition, ethylene and auxin crosstalk is necessary to determine normal fruit ripening. 

Indeed, the levels of auxin must decrease prior to the onset of ripening in both climacteric 

and non-climacteric fruits. 

 

4.2 Ethylene and gibberellins (GAs) 

 

Ethylene and gibberellins (GAs) control similar developmental processes in plants. 

The crosstalk between GA and ethylene has been demonstrated (Achard et al., 2003; 

Vriezen et al., 2004; Achard et al., 2007; De Grauwe et al., 2007). DELLA proteins, 

which act as nuclear repressors of GA signaling, appear to be key integrators in the 

ethylene-GA crosstalk. It was shown that ethylene controls the maintenance and 

exaggeration of the apical hook via modifying DELLA degradation (Achard et al., 2003; 

Vriezen et al., 2004). In addition, Achard et al., (2007) reported that ethylene controls 

floral transition via DELLA-dependent regulation of floral meristem identity genes. 

Enhanced ethylene response reduces bioactive GA levels, thus promoting the 

accumulation of DELLA proteins. DELLA accumulation in turn slows the plant life cycle 

and delays flowering via repression of floral meristem identity LFY and SOC1 genes 

(Achard et al., 2007; Figure 17).  

 

 

Figure 17. Model for integration of the ethylene 

and GA-DELLA signaling pathways in the 

regulation of floral transition. Activation of 

ethylene signaling reduces bioactive GA levels, 

thus promoting the accumulation of DELLAs. 

DELLA accumulation in turn slows the plant life 

cycle and delays flowering. Accumulation of 

DELLAs delays floral transition (via regulation of 

LFY and SOC1 transcript levels) and increases the 

abundance of GA-biosynthesis gene transcripts via 

a negative feedback loop (Achard et al., 2007). 

 



 
 

48 
 

 

It was reported that regulatory crosstalk involving ethylene and GA affects the transition 

from seed dormancy to germination in common beech (Fagus sylvatica L.) seeds where a 

drastic increase in FsACO1 expression when seeds were treated with GA3 or ethephon, 

but the stimulatory effect of ethephon could be reversed by paclobutrazol, a GA 

biosynthesis inhibitor, suggesting that GA positively regulates the expression of FsACO1 

gene (Calvo et al., 2004). De Grauwe et al., (2007) also demonstrated that the absence of 

an active GA-signaling cascade suppresses the higher ethylene biosynthesis observed in 

eto2-1 while the responsiveness to ethylene is slightly enhanced. The suppression of 

ethylene biosynthesis in the double mutant suggests that the absence of active GA 

signaling may affect the stability of ethylene-biosynthesis enzymes in a negative 

feedback mechanism. The enhanced sensitivity to GA in the gai eto2-1 double mutant 

suggests a reciprocal influence of the two pathways on one another and this also was 

corroborated by earlier data demonstrating that ACC enhances the activity of the GA-

biosynthesis gene GA1 (Vriezen et al., 2004). 

Pierik et al., (2004) reported that the involvement of ethylene in phytochrome-mediated 

shade avoidance responses can at least partly be attributed to interactions between 

ethylene and GA action, and it is likely that GA acts downstream of ethylene in 

regulating shade avoidance responses. In addition, Dubois et al., (2013) also reported that 

upon exposure to osmotic stress, ACC accumulates in the actively growing leaves, where 

it is converted to ethylene. Ethylene further activates the signaling pathway involving 

MPK3 and MPK6. These kinases phosphorylate the basal amount of ERF5 and ERF6 

proteins present in the cell prior to stress exposure. The activated ERF5 and ERF6 then 

activation of leaf growth inhibition via the transcriptional activation of the gene encoding 

the GA-inactivating enzyme GA2-OX6, thereby decreasing the bioactive GA 

concentration and stabilizing the DELLA proteins (Dubois et al., 2013). Recently, in 

tomato, it was found that dominant repression of an ethylene response factor, Sl-ERF.B3, 

confers ethylene hypersensitivity with reduced plant size and delayed flowering time. The 

reduced expression of GA oxidase genes in the transgenic lines sustains the idea of 

altered GA metabolism and suggests that ERFs may represent a potential molecular link 

between ethylene and GA (Liu et al., 2013). 
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4.3 Ethylene and abscisic acid (ABA) 

 

Abscisic acid (ABA) is a classic phytohormone that plays an important role in 

various aspects of plant growth and development. It has been shown that a subset of the 

functions of ABA overlaps with those of ethylene including in seed germination and 

early seedling establishment, albeit with antagonistic effects (Zhou et al., 1998). In 

Arabidopsis, ethylene counteracts the inhibitory effects of ABA on endosperm cap 

weakening and endosperm rupture (Linkies et al., 2009). ABA increases the ethylene 

requirement to release primary and secondary dormancies. Inhibition of seed germination 

by ABA was shown to be associated with a reduction in ethylene synthesis (reviewed in 

Arc et al., 2013). In Arabidopsis, ABA inhibited the accumulation of ACO1 transcripts in 

both the embryo and endosperm during seed germination and the high levels of ACO1 

transcripts in ABA-insensitive mutants also suggests the regulation of ACO expression by 

ABA (Penfield et al., 2006; Linkies et al., 2009). Interestingly, it was also reported that 

ABA-deficient mutants of Arabidopsis aba2 and tomato flacca and notabilis reveal 

inhibition of shoot growth, largely because of high ethylene production in these mutants 

(Sharp et al., 2000; LeNoble et al., 2004). 

The intertwining nature of ethylene and ABA biosynthesis and signaling pathways in 

germination has been well studied (Beaudoin et al., 2000; Ghassemian et al., 2000; 

Cutler et al., 2010). Beaudoin et al., (2000) reported that genetic screening of the 

enhancer and repressor of ABA-insensitive germination of the abi1-1 mutant were allelic 

to ctr1 and ein2, respectively. Ghassemian et al., (2000) also found that the enhanced 

response to ABA3 (era3) mutant was a new allele of ein2 that shows hypersensitivity to 

ABA in seed germination. Seeds of Arabidopsis ethylene-insensitive mutants, etr1 and 

ein2, exhibit higher ABA content than wild type and consistently germinate more slowly 

(Chiwocha et al., 2005; Wang et al., 2007). Moreover, Cheng et al., (2009) showed that 

the expression of 9-CIS-EP-OXYCAROTENOID DIOXYGENASE 3 (NCED3), which 

encodes the key enzyme in ABA biosynthesis, is up-regulated in the ein2-1 mutant, and 

CYP707A2, a cytochrome P450 gene which encodes the key component of ABA 

catabolism, is down-regulated in etr1-1, suggesting that when ethylene signaling is 

impaired, ABA biosynthesis may be enhanced. Mutations that reduce ethylene 
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sensitivity, such as etr1, ein2, and ein6, result in an increase in ABA sensitivity, while 

increased ethylene sensitivity in ctr1 and eto1 reduces ABA sensitivity (Beaudoin et al., 

2000; Ghassemian et al., 2000; Chiwocha et al., 2005; Linkies et al., 2009; Subbiah and 

Reddy, 2010). These results suggest that ethylene not only acts on ABA metabolism to 

reduce ABA levels, but also negatively regulates ABA signaling. 

The interactions between ethylene and ABA are known not only in developmental 

processes but also in adaptive stress responses of plants. Exogenous ABA suppresses 

ethylene-responsive defense genes such as PDF1.2 and b-CHI, while mutations in the 

ABA biosynthesis pathway have the opposite effect. Accordingly, aba2-1 mutants with 

enhanced levels of these PR proteins exhibited improved resistance against F. oxysporum. 

An ethylene response factor gene, AtERF4, has been shown to modulate the antagonistic 

ethylene-ABA crosstalk (Yang et al., 2005). Moreover, it was reported that ethylene 

biosynthesis gene ACS7 acts as a negative regulator of ABA sensitivity and accumulation 

under stress and appears as a node in the cross-talk between ethylene and ABA (Dong et 

al., 2011).  

Based on the timing of ABA accumulation, changes to ethylene production and the 

expression of ABA and ethylene biosynthesis genes, (Zhang et al., 2009) concluded that 

the two hormones may also play a coordinating role in tomato ripening. Treatment of 

fruit with ABA increased the expression of three ethylene biosynthetic genes, promoting 

ethylene synthesis and ripening, while inhibitors of ABA synthesis prevented this 

increase.  

 

4.4 Ethylene and jasmonates (JAs) 

 

Interactions between ethylene and JAs have been shown to contribute to a variety 

of responses of plants to biotic and abiotic stresses or developmental cues. Studies have 

indicated that ethylene- and JA-signaling often operate synergistically to induce the 

expression of a number of defense related genes including PR1b, PR5 (osmitin), PDF1.2, 

the basic chitinase gene CHI-B, a hevein-like protein gene, and proteinase inhibitors (PIN) 

genes after pathogen inoculation (Xu et al., 1994; O’Donnell et al., 1996; Penninckx et 

al., 1998; Ellis and Turner, 2001; Thomma et al., 2001). Moreover, the Arabidopsis cev1 
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mutant, that is defective in the cellulose synthase gene CesA3, displays constitutively 

active ethylene and JA responses indicating that CEV1 acts as a negative regulator of 

ethylene and JA signaling in Arabidopsis (Ellis et al., 2002). A convergence point 

between ethylene and JAs pathways was represented by the transcriptional activation of 

ETHYLENE TRANSCRIPTION FACTOR1 (ERF1), a transcription factor that regulates 

the expression of pathogen response genes that prevent disease progression (Lorenzo et 

al., 2003). The expression of ERF1 was induced rapidly by ethylene or JAs and could be 

activated synergistically by both hormones. Moreover, constitutive expression of ERF1 

could rescue the defense response defects of coi1 (coronatine insensitive1) and ein2 

(ethylene insensitive2) by restoring PR gene expression, suggesting that ERF1 is a key 

downstream element of both ethylene and JAs signaling pathways for the regulation of 

defense response genes (Lorenzo et al., 2003; Figure 18). Indeed, several members of 

ERF family have been shown to play important role in mediating defense responses in 

Arabidopsis (McGrath et al., 2005). The Arabidopsis transcription factor MYC2 has also 

been shown to regulate the crosstalk between ethylene- and JA-mediated defense 

signaling (Lorenzo and Solano, 2005; Dombrecht et al., 2007). 

 

 
 

Figure 18. Ethylene/Jasmonate-dependent 

pathway of the Arabidopsis response to 

pathogens. Infection by some types of 

pathogens induces the synthesis and subsequent 

activation of the ethylene and jasmonate 

pathways simultaneously (black arrows). As a 

consequence, ERF1 is transcriptionally 

activated; in turn, it activates the expression of 

defense-related genes that prevent disease 

progression. Other types of stress or pathogens 

(white arrows) induce the activation of only one 

of these signaling pathways and, therefore, 

ethylene- or jasmonate-specific responses 

(Lorenzo et al., 2003). 
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In the wound response, the oligosaccharide-mediated repression of the JA-dependent 

signaling pathway was exerted through the production and perception of ethylene in the 

locally damaged tissue. This negative interaction between ethylene and JA allows the 

establishment of the correct spatial pattern of systemically induced genes in plants 

reacting to injury (Rojo et al., 1999).  Furthermore, by using JA-deficient (asLOX3), 

ethylene-insensitive (mETR1) Nicotiana attenuata plants, and their genetic cross, it was 

proposed that in N. attenuata, the crosstalk between ethylene and JA restrains local cell 

expansion and growth after herbivore attack, allowing more resources to be allocated to 

induced defenses against herbivores (Onkokesung et al., 2010). 

It was reported that the effects of JAs on root hair development were abolished in the 

ethylene-insensitive mutants etr1-1 and etr1-3, or by ethylene action (Ag+) or 

biosynthesis inhibitors (AVG). Moreover, it was found that JA biosynthesis inhibitors, 

ibuprofen and SHAM, also repressed ACC-driven or eto1-1-induced root hair formation 

(Zhu et al., 2006). These results support a role for the interaction between ethylene and 

JAs in the regulation of root hair development. In addition, the triple-response that 

includes an exaggerated apical hook of Arabidopsis seedlings germinated in the dark in 

the presence of ethylene can be suppressed by JA in a COI1-dependent manner is an 

example of interaction of ethylene and JAs in development process (Ellis and Turner, 

2001).  

 

4.5 Ethylene and brassinosteroids (BRs) 

 

Brassinosteroids (BRs) are a family of poly-hydroxylated steroid hormones that 

are involved in many aspects of plant growth and development. Studies have shown that 

BRs and ethylene have overlapping functions in hypocotyl elongation and apical hook 

formation (De Grauwe et al., 2005). It was suggested that ethylene controls the 

biosynthesis of BRs and establishes a gradient of BR in the apical hook region that 

contributes to the hook formation. Furthermore, Gendron et al., (2008) reported that 

ethylene functions partly through BR to regulate both hypocotyl length and apical hook 

formation, and it is likely that ethylene functions through the BES1 dependent branch of 

the BR signaling pathway to control hypocotyl elongation.  
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BRs are known for a long time to stimulate the production of ethylene in shoots and roots 

(Yi et al., 1999; Arteca and Arteca, 2001), and this ethylene probably plays an important 

role in the many effects of BR on plant growth and development. In mung bean (Vigna 

radiata), the brassinosteroid (BR) 2, 4-epibrassinolide has been shown to specifically 

enhance the expression of VrACS7 in hypocotyls, and BR also synergistically increased 

the IAA-induced VRACS6 and VrACS7 transcript levels (Yi et al., 1999). Müssig et al., 

(2003) also reported that BR has a positive effect on genes involved in ethylene 

biosynthesis and ethylene response based on the expression data. Interestingly, it was 

found that brassinopride (BRP), an inhibitor of BR biosynthesis, also causes exaggerated 

apical hooks in dark-grown seedlings, an effect similar to that of ethylene (Gendron et al., 

2008). Physiological experiments using ethylene mutants and treatment with ethylene 

(ACC) and an ethylene perception inhibitor suggest that BRP promotes ethylene action at 

a step of or upstream of ethylene perception, possibly ethylene synthesis.  

It was shown that ACS5 protein was stabilized in response to BR (Hansen et al., 2009), 

suggesting that BR increases ethylene synthesis by regulation of ethylene biosynthesis 

gene at post-transcriptional levels. However, studies in mung bean have indicated that 

VrACS7 is regulated transcriptionally by BR (Yi et al., 1999; Zimmermann et al., 2004). 

Moreover, transcriptome data indicated that both ACS5 and ACS6 transcripts are elevated 

in response to BR (Hansen et al., 2009), and in etiolated seedlings, BR treatment also 

resulted in increase of ACS5 transcript levels. Taken together, BRs have an effect on the 

transcription of ACS genes, but also act by increasing ACS protein stability. 

 

5. Tomato as model plant 

 

The Solanaceae family comprises many agriculturally valuable crops, including eggplant, 

potato, pepper, tobacco, and tomato. Among them, tomato is one of the most important 

crops in the fresh vegetable market and the food-processing industry (Matsukura et al., 

2008). Tomato (Solanum lycopersicum) originated in South America and was brought to 

Europe in the early 16th century. After its introduction in Europe the tomato has gone a 

long way. Dedicated breeding has resulted in numerous cultivars grown all over the 

world, differing in all kind of aspects such as yield, shape, resistance, taste and quality. 
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Up to now, there are over 7500 tomato varieties cultivated throughout the world 

presenting a huge variability in fruit color or size. Although original tomatoes were small 

fruit, now most cultivars produce large red fruit, a number of cultivars with yellow, 

orange, pink, purple, green, black, or white fruit are also available. Tomato fruit size 

varies from 5mm of diameter in cherry tomatoes to more than 10 centimeters in beefsteak 

tomatoes (http://en.wikipedia.org/wiki/Tomato). In addition, tomatoes are loaded with 

phytochemicals, plant-derived chemical compounds, which work in concert with the 

body to protect against cancer, clogged arteries and skin ailments. The lycopene in 

tomatoes is one of the most powerful anti-oxidants and helps in the fight against 

cancerous cell formation. 

In addition to its agronomical and economic importance, tomato is an excellent model 

plant for genomic research of solanaceous plants, as well as for studying the development, 

ripening, and metabolism of fruit. Indeed, tomato has been recognized as a model system 

for studying the molecular basis of fleshy fruit development and unravelling the role of 

ethylene in controlling the ripening of climacteric fruit since the early 1980s. For genetic 

and genomic studies, tomato has many advantages over other species of agronomical 

interest, such as simple diploid genetics (n = 12), a relatively compact genome (900 Mb) 

that has recently been sequenced, numerous mapped traits, developed DNA markers, rich 

collections of germplasm and mutants, available RNAseq data, highly efficient 

transformation protocols and a relatively short reproductive cycle (3-4 generation per 

year) (Tanksley et al., 1992; Van der Hoeven et al., 2002; Tomato Genome Consortium, 

2012). Moreover, the tomato plant has many interesting features such as fleshy fruit, a 

sympodial shoot, compound leaves, photoperiod-independent sympodial flowering, 

glandular trichomes and the formation of fleshy climacteric fruits, which other model 

plants (such as Arabidopsis and rice) do not have. Most of these traits are agronomically 

important and cannot be studied using other model plant systems. These advantages have 

made tomato an excellent model organism for investigating fruit development, ripening 

processes, sugar metabolism, carotenoid biosynthesis, quantitative trait locus (QTL) 

analyses, and plant-pathogen interactions (Robinson et al., 1988; Wilkinson et al., 1995; 

Frary et al., 2000; Giovannoni, 2001; Bramley, 2002; Pedley and Martin, 2003; Carrari et 

al., 2006; Giovannoni, 2007). Indeed, the adaptation of a range of technological tools (e.g. 

http://en.wikipedia.org/wiki/Beefsteak_(tomato)
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microarray) and the generation of new biological resources on the tomato (e.g. EST 

database, TILLING resources, genetic and physical maps) have led to a step forward on 

the understanding of the molecular mechanisms underlying plant development and fruit 

ripening. Since the genome structures of most of the solanaceous plants are relatively 

well conserved, the genomic and molecular studies of tomato can serve as a reference to 

understanding of other Solanaceae species, which then allows researchers to investigate 

molecular mechanisms underlying fruit development and ripening in different species. 

Fleshy fruits are important worldwide crops because they are important sources of useful 

and functional compounds for human diet. Tomato has proved to be an excellent model 

system for the research on fleshy fruit development and ripening. Fruit development 

starts after the ovules in the ovary have been successfully fertilized and the ovary begins 

to develop into the fruit. Generally, fruit development can be divided into essentially 

three stages which are depicted in Figure 19. These are (i) a period of intensive cell 

division that begins at anthesis and continues approximately for 2 weeks after fertilization; 

(ii) a period of rapid cell expansion that begins toward the end of the cell division stage 

and continues until one week before the onset of ripening; (iii) a ripening phase that 

initiates after growth has ceased and involves rapid chemical and structural changes that 

determine fruit aroma, color, texture and biochemical composition but not fruit size and 

shape. 

 

 
Figure 19. Overview of tomato fruit development. Fruit set is the initiation of fruit growth after the 

flower has been successfully pollinated and fertilized. After fertilization, cell division takes place, which 

lasts up to 12 d. This period is followed cell expansion, during which the volume of the fruit rapidly 

increases. Once the fruit has reached its final size it starts to ripen (Mounet et al., 2007). 
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Ripening in the cultivated tomato comprises a series of biochemical and physiological 

events, including softening, pigment change, development of flavor components, 

autocatalytic ethylene production, and climacteric respiratory behavior, which together 

make ripe fruits. Several naturally occurring ripening mutations have been characterized. 

These include for example ripening-inhibitor (rin, Vrebalov et al., 2002), non-ripening 

(nor, Giovannoni, 2004), Colorless non-ripening (Cnr, Manning et al., 2006), Green-ripe 

(Gr, Barry and Giovannoni, 2006), Never-ripe (Nr, Wilkinson et al., 1995), high-pigment 

1 (Liu et al., 2004) and Never-ripe 2 (Nr-2, Barry et al., 2005). The availability of these 

well characterized ripening mutants is indeed an important reason for tomato being taken 

as a model for study fruit ripening (Figure 20).  

Through investigation of these tomato mutants in fruit ripening, many of the underlying 

genes control the ripening processes were isolated. The RIN, CNR, and NOR genes have 

been shown to encode transcriptional regulators and act to regulate the expression of 

other genes responsible for fruit ripening processes, including ethylene biosynthesis 

(Vrebalov et al., 2002; Giovannoni, 2004; Manning et al., 2006). The Gr gene encodes a 

still poorly defined component of ethylene signal transduction while Nr encodes an 

ethylene receptor important for fruit and additional non-fruit ethylene responses (Lanahan 

et al., 1994; Barry and Giovannoni, 2006). Moreover, other ripening transcriptional 

regulators have also been demonstrated via functional studies in transgenic plants, 

including LeHB1 which directly regulates ACC oxidase expression (Lin et al., 2008) and 

TAGL1, a MADS box transcription factor, which links early fruit fleshy expansion with 

downstream ripening (Lin et al., 2008; Itkin et al., 2009; Vrebalov et al., 2009; Pan et al., 

2010). The putative transcription factor, Sl-AP2a, a member of the AP2/ERF superfamily 

gene was also recently described as a negative regulator of fruit ripening and of ethylene 

production (Chung et al., 2010; Karlova et al., 2011). These discoveries have further 

facilitated the demonstration of regulatory mechanisms for fruit ripening.  
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Figure 20. Tomato ripening mutants (Giovannoni, 2004; Barry et al., 2005; Giovannoni, 2007).  

 

Like Arabidopsis, the convenient small size and amenability to large-scale cultivation are 

also found in tomato. Micro-Tom (MT), a dwarf cultivar of tomato, has been proposed as 

a preferred variety to carry out molecular research in tomato. MT was initially created for 

ornamental purposes by crossing Florida Basket and Ohio 4013-3 cultivars (Martí et al., 

2006). MT cultivar displays a very dwarf phenotype with a bushy appearance and its 

leaves are small, with deformed leaflets, and a deep green color compared with other 

commonly used wild-type cultivars (Figure 21). It was confirmed that Micro-Tom 

phenotype results from mutations in the SELF PRUNING (SP) and DWARF (D) genes 

(Martí et al., 2006). SP belongs to the CETS family of regulatory genes encoding 

modulator proteins that determine the potential for continuous growth of the shoot apical 

meristem, while, the DWARF (D) gene encodes a P450 protein involved in 

brassinosteroid (BR) biosynthesis (Bishop et al., 1996; Pnueli et al., 2001). Regardless of 

the presence of mutations that cause the MT’s dwarf size, it has been proven to be 

suitable as a standard genotype in tomato research, including the study of novel hormonal 

interactions (Wang et al., 2009; Campos et al., 2010; Serrani et al., 2010). Due to its 
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small size, rapid life cycle, high-throughput capabilities and easy transformation, Micro-

Tom was chosen as the main tomato cultivar during my Ph.D. studies.  

 

 
Figure 21. Plants of Micro-Tom, Ailsa Craig, Rutgers, and UC-82. (A) Entire plants at the time of 

flowering (~ 2 months old). (B) Fifth leaf from the base. MT, Micro-Tom; A, Ailsa-Craig; R, Rutgers, U, 

UC-82 (Martí et al., 2006). 
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A dominant repressor version of the tomato Sl-ERF.B3 
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SUMMARY 
 
Ethylene Response Factors (ERFs) are downstream components of the ethylene signal 

transduction pathway although their role in ethylene-dependent developmental processes 

remains poorly understood. Since the ethylene-inducible tomato Sl-ERF.B3 has been 

previously shown to display a strong binding affinity to GCC-box-containing promoters, 

its physiological significance was addressed here by reverse genetics approach. However, 

classical up- and down-regulation strategies failed to give clear clue on its roles in planta, 

likely owing to functional redundancy among ERF family members. Expression of a 

dominant repressor ERF.B3-SRDX version of Sl-ERF.B3 in the tomato resulted in 

pleiotropic ethylene responses and vegetative and reproductive growth phenotypes. The 

dominant repressor etiolated seedlings displayed partial constitutive ethylene-response in 

the absence of ethylene and adult plants exhibited typical ethylene-related alterations 

such as leaf epinasty, premature flower senescence and accelerated fruit abscission. The 

multiple symptoms related to enhanced ethylene sensitivity correlate with the altered 

expression of ethylene biosynthesis and signaling genes, suggesting the involvement of 

Sl-ERF.B3 in a feedback mechanism regulating components of ethylene production and 

response. Moreover, Sl-ERF.B3 is shown to modulate the transcription of a set of ERFs 

revealing the existence of a complex network interconnecting different ERF genes. 

Overall, the study indicates that Sl-ERF.B3 has a critical role in regulating multiple genes 

and identifies a number of ERFs among its primary targets, consistent with the 

pleiotropic phenotypes displayed by the dominant repression lines.  
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INTRODUCTION 

 

The plant hormone ethylene is involved in many developmental processes and plays a 

critical role in a wide range of physiological responses, including seed germination, cell 

elongation, flowering, fruit ripening, organ senescence, abscission, root nodulation, 

programmed cell death, and response to abiotic stresses and pathogen attacks (Johnson 

and Ecker, 1998; Bleecker and Kende, 2000; Lin et al., 2009). Ethylene Response Factors 

(ERFs) are known to be the last downstream components of the ethylene transduction 

pathway and signal transmission cascade has been linked to the transcriptional activation 

of some ERF genes (Solano et al., 1998; Benavente and Alonso, 2006). According to the 

currently accepted model, ethylene is perceived by specific receptors, which have been 

shown to activate the hormone transduction pathway through releasing the block exerted 

by CTR1 on EIN2 (Solano and Ecker, 1998; Ju et al., 2012). The release of EIN2 then 

activates EIN3/EIL1 primary transcription factors, resulting in the expression of 

secondary transcription factors, namely ERFs, which regulate the expression of 

downstream ethylene-responsive genes (Solano et al., 1998; Alonso et al., 2003). The 

receptors act as redundant negative regulators of ethylene signaling to suppress ethylene 

responses (Hua and Meyerowitz, 1998; Hall and Bleecker, 2003). In the absence of the 

hormone, the receptor actively suppresses ethylene responses and ethylene binding 

removes this suppression. EIN3/EILs type of transcription factors are positive regulators 

of the ethylene signaling that function as trans-activating factors to trigger ethylene 

responses (Chao et al., 1997; Solano et al., 1998). In Arabidopsis, overexpression of 

EIN3 or EIL1 results in a constitutive ethylene phenotype and reduced expression of 

multiple LeEIL genes in the tomato results in decreased ethylene sensitivity (Chao et al., 

1997; Tieman et al., 2001). 

ERFs are plant specific transcription factors, belonging to the large AP2/ERF multi-gene 

family (Riechmann et al., 2000). Proteins encoded by this gene family have a highly 

conserved DNA-binding domain known as AP2 domain made of 58-59 amino acids 

involved in the binding to the target DNA sequences (Allen et al., 1998). ERFs from 

different plant species have been reported to be involved in a variety of processes such as 

responses to biotic and abiotic stresses, metabolic pathways, fruit ripening and ethylene 
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response (Fujimoto et al., 2000; van der Fits and Memelink, 2000; Li et al., 2007; 

Trujillo et al., 2008; Lee et al., 2012). ERF proteins are known to interact with multiple 

cis-acting elements found in the promoter regions of ethylene-responsive genes, 

including the GCC box and DRE/CRT dehydration-responsive element/C-repeat (Ohme-

Takagi and Shinshi, 1995; Hao et al., 2002; Oñate-Sánchez et al., 2007). It was also 

shown that Pti4, an ERF type transcription factor, regulates gene expression by directly 

interacting with a non-GCC element (Chakravarthy et al., 2003). Moreover, in addition to 

regulating the expression of ethylene-responsive genes, ERFs can regulate jasmonic acid 

and salicylic acid-responsive genes (Gu et al., 2000; Brown et al., 2003). ERFs can also 

bind the Vascular Wounding Responsive Element (VWRE) in tobacco (Sasaki et al., 

2007) further demonstrating their capacity to bind a wide range of cis-regulatory 

elements beside the GCC and DRE/CRT boxes.  

ERFs have been associated with ethylene-regulated growth control, with either a positive 

or a negative regulatory function (Alonso et al., 2003; Nakano et al., 2006; Pirrello et al., 

2012). Strikingly, in Arabidopsis little has been reported (McGrath et al., 2005) on 

ethylene-responsive phenotypes caused by silencing, mutation, or knockout of ERFs 

probably due to the high level of functional redundancy among family members. Indeed, 

the ERF family is composed of up to 65 members in Arabidopsis (Nakano et al., 2006), 

many of which are regulated by the same stimuli and can potentially bind the same target 

promoter. Chimeric Repressor Silencing Technology (CRES-T), consisting in the 

expression of a dominant repressor version of a transcription factor encoding gene proved 

to be an efficient mean to overcome experimental limitations caused by functional 

redundancy and this strategy has been developed to study the consequences of silencing 

target genes of single transcription factors (Hiratsu et al., 2003; Matsui et al., 2005; Heyl 

et al., 2008). Fusing the so-called SRDX repression domain to a transcription factor 

suppresses the expression of its target genes dominantly over the activity of endogenous 

and functionally redundant transcription factors and as a result, the transgenic plants 

expressing the chimeric repressor version exhibit phenotypes similar to loss-of-function 

of the alleles of the gene encoding the transcription factor (Hiratsu et al., 2003; Matsui 

and Ohme-Takagi, 2010).  
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Genome-wide study recently showed that the tomato ERF gene family comprises 9 

subclasses defined by distinct structural features and a new nomenclature for tomato 

ERFs was proposed (Pirrello et al., 2012) which complies with the most complete 

classification available in Arabidopsis and clarifies the correspondence between ERF 

subclasses in different species (Nakano et al., 2006). In the tomato, only few ERF genes 

have been functionally characterized so far, most of these have been shown to participate 

in stress and/or hormonal responses (Gu et al., 2002; Pirrello et al., 2006; Li et al., 2007; 

Zhang et al., 2009; Lee et al., 2012; Pan et al., 2012). The tomato Sl-ERF.B3 is related to 

Arabidopsis factors ERF106 and ERF107, which are members of group IX according to 

Nakano et al., (2006). This group has been implicated in the regulation of defense 

responses and knock-out analysis of ORA59 (Pré et al., 2008) and AtERF14 (Oñate-

Sánchez et al., 2007), prominent representatives of group IX, has revealed disease 

susceptibility phenotypes. Consistently, overexpression of ERF1 another member of the 

group has led to enhanced resistance to necrotrophic pathogens (Berrocal-Lobo et al., 

2002). 

Sl-ERF.B3 was previously shown to act as strong transcriptional activator on GCC-box-

containing promoters and its transcripts accumulate upon ethylene treatment, suggesting 

a putative involvement in ethylene-regulated processes (Tournier et al., 2003; Pirrello et 

al., 2012). Because overexpressing and down-regulated lines failed to reveal the 

functional significance of Sl-ERF.B3, a dominant chimeric repressor version was used 

which resulted in phenotypes consistent with Sl-ERF.B3 being involved in both ethylene 

biosynthesis and signaling pathway. The ERF.B3-SRDX lines displayed constitutive 

ethylene-responses in the absence of ethylene and the data identified a set of ERFs among 

the target genes regulated by Sl-ERF.B3 supporting the idea that the alteration of such a 

high number of ERFs may account for the pleiotropic phenotypes displayed by the 

transgenic lines.  
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RESULTS 

 
Classical down- and up-regulation approaches failed to provide clear clues on Sl-

ERF.B3 functional significance 

 

To address the physiological significance of Sl-ERF.B3 and its potential role in mediating 

ethylene responses, tomato lines under- and over-expressing Sl-ERF.B3 gene were 

generated by stably transforming tomato plants with either sense or antisense constructs 

under the control of the constitutive 35S promoter. A number of homozygous transgenic 

lines corresponding to independent transformation events were obtained for both 

antisense and sense construct. Overall, 10 antisense and 12 sense independent lines were 

examined and the evidence for the expression of the transgene and for its ability to alter 

the levels of endogenous Sl-ERF.B3 transcripts in the transgenic lines was provided by 

qRT-PCR analysis (Figure S1a). No consistent phenotypes could be revealed in antisense 

lines whereas close examination of Sl-ERF.B3 over-expressing plants revealed slightly 

but significantly higher plants at early development stages (4-week-old) though the plant 

size returned to normal at 8-week-old plants (Figure S1b). No other consistent growth or 

reproductive phenotypes could be detected in these Sl-ERF.B3 over-expressing lines.  

 

ERF.B3-SRDX suppresses the transactivation capacity of Sl-ERF.B3 

 

In an attempt to overcome the experimental limitations likely owing to functional 

redundancy among members of the ERF gene family, we generated a dominant repressor 

version of Sl-ERF.B3 (ERF.B3-SRDX) using the Chimeric Repressor Silencing 

Technology (CRES-T). The Sl-ERF.B3 coding sequence lacking the Stop Codon was 

fused to the SRDX repression domain LDLDLELRLGFA, known as the EAR motif 

(Mitsuda et al., 2006) and cloned downstream of the Cauliflower Mosaic Virus 35S 

promoter. The capacity of the ERF.B3-SRDX chimeric protein to function as a 

transcriptional repressor on ethylene-responsive genes was assessed in a transient 

transformation assay via co-transfection of protoplasts with reporter and effector 

constructs. The reporter construct was obtained by fusing the GFP coding sequence either 
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to a synthetic promoter containing the ethylene inducible GCC box, or to a native 

osmotin promoter containing the canonical GCC cis-acting element. The effector 

constructs allow the expression of either the Sl-ERF.B3 protein or its repressor version 

fused to the SRDX motif (ERF.B3-SRDX). Transactivation assays indicated that Sl-

ERF.B3 enhances the expression of the reporter gene driven by both the synthetic and 

native promoter, clearly indicating that Sl-ERF.B3 acts as a transcriptional activator of 

GCC-box containing promoters (Figure 1). By contrast, co-transfection of the reporter 

constructs with the ERF.B3-SRDX results in 8-fold and 15-fold suppression of the 

activity of the synthetic and the native ethylene-responsive promoters, respectively 

(Figure 1). These data confirm that ERF.B3-SRDX retains the capacity to bind the same 

target promoters than Sl-ERF.B3 and to dominantly repress its transcriptional activity. 

These data support the hypothesis that the ERF.B3-SRDX chimeric protein can 

potentially be used as transcriptional repressor of Sl-ERF.B3 target genes in planta.  

 

 

Figure 1. Transactivation assay in a single cell system. Protoplasts were co-transfected with a reporter 

construct consisting of the GFP gene driven by a GCC-rich synthetic promoter or a native osmotin GCC-

containing promoter and an effector plasmid expressing either ERF.B3 or ERF.B3-SRDX protein. The 

basal fluorescence obtained in the assay transfected with the reporter construct and an empty effector 

construct was standardized to 100 and is taken as reference. Values are means ± SD of three independent 

biological replicates. 

 



 
 

67 
 

Dark-grown 35S:ERF.B3-SRDX seedlings display enhanced triple response 

 

To gain insight on the physiological function of Sl-ERF.B3, transgenic tomato lines 

(Microtom cv) expressing the ERF.B3-SRDX dominant repressor construct were 

produced. Ten independent homozygous 35S:ERF.B3-SRDX lines were generated, all of 

them displayed similar pleiotropic alterations. Three representative lines, SR1, SR2 and 

SR3, showing a characteristic phenotype with different expressivity, were selected for 

further studies. The relative expression level of ERF.B3-SRDX transcript in these three 

lines was assessed using primers specific for ERF.B3-SRDX (Figure S2). The 

accumulation of the endogenous Sl-ERF.B3 assessed by qRT-PCR was similar in the 

transformed and non-transformed plants ruling out the eventuality of a feedback 

regulation of Sl-ERF.B3 in the transgenic lines (Figure S2). 
Dark-grown ERF.B3-SRDX seedlings exhibited exaggerated apical hook formation and 

inhibited hypocotyl elongation in the absence of exogenous ethylene treatment (Figure 

2a). Hypocotyl length of 7-day-old etiolated seedlings was 50% lower in ERF.B3-SRDX 

lines compared to wild type (Figure 2b). Interestingly, application of 1-MCP, the 

ethylene perception inhibitor, reversed the triple response phenotype of ERF.B3-SRDX 

dominant repressor lines (Figure 2a) leading to a complete loss of the exaggerated apical 

hook and a recovery of hypocotyl length similar to that of wild type (Figure 2a, b). 

Treatment with 10 μL L-1 ethylene resulted in a more pronounced ethylene triple response 

in ERF.B3-SRDX lines than in wild type (Figure 2a, b), suggesting a higher sensitivity to 

the hormone for the transgenic lines.  
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Figure 2. Ethylene hypersensitivity of 35S:ERF.B3-SRDX lines.  

(a) Etiolated 35S:ERF.B3-SRDX seedlings display partial constitutive ethylene response in the absence of 

exogenous ethylene that can be removed by 1-MCP application (1.0 mg L-1) or exaggerated upon 

exogenous ethylene (10 μL L-1) treatment.  

(b) Hypocotyl elongation in ERF.B3-SRDX etiolated seedlings and WT treated or untreated with ethylene 

and 1-MCP. Values are means ± SD (n ≥ 30) of three replicates. *, 0.01 < P < 0.05, ***, P < 0.001 

(Student’s test). SR1, SR2 and SR3 are three independent 35S:ERF.B3-SRDX lines.  

 

Because Sl-ERF.B3 over-expressing plants displayed some, though very mild, growth 

phenotype at early stages (4-week-old) of plant development, these lines have been tested 

for the ethylene response phenotype. While the over-expressing lines cannot be 

discriminated from wild-type plants when dark-grown in air, upon exogenous ethylene 

treatment some of the transgenic lines show a slightly lower reduction in hypocotyl 

length than in wild type thus suggesting a reduced response to the hormone (Figure S3).  
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35S:ERF.B3-SRDX plants show a suite of ethylene hypersensitive phenotypes 

 

Several developmental processes known to be regulated by ethylene were altered in the 

dominant repressor lines among which leaf and petiole epinasty (Figure 3). Additional 

ethylene-related phenotypes displayed by ERF.B3-SRDX plants included premature 

flower senescence and early fruit abscission (Figure 3). The majority of flowers in 

ERF.B3-SRDX plants undergo premature senescence and abscission before full opening 

of the petals (Figure 3). Moreover, the ERF.B3-SRDX fruits display early abscission 

compared to wild-type fruit (Figure 3). Approximately two weeks after the breaker stage, 

the fruit abscission zone starts to dehisce in the ERF.B3-SRDX lines, whereas this occurs 

at later stages in wild-type lines (Figure 3). Collectively, these ethylene-related 

phenotypes are consistent with an ethylene hypersensitivity of the ERF.B3-SRDX 

dominant repressor lines.  

 

Figure 3. Ethylene hypersensitive phenotypes of adult 35S:ERF.B3-SRDX plants showing petioles and 

leaves epinasty (upper panel) enhanced premature flower senescence (middle panel) and accelerated fruit 

abscission (lower panel). The white arrows point to the abscission zone. 
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Dominant repressor plants display pleiotropic vegetative and reproductive 

phenotypes 

 

35S:ERF.B3-SRDX plants showed a stunted phenotype from early developmental stages 

and the size of adult plants was severely reduced (Figure 4a) with an average height 

being less than one third of that of wild-type plants after 80 days (Figure 4b). 

Noteworthy, the transcript level of two GA oxidase biosynthetic genes, Sl-GA20ox1 and 

Sl-GA20ox2, was found to be significantly lower than the transgenic plants (Figure 4c). A 

reduced GA synthesis may therefore account for the dramatic dwarf phenotype displayed 

by ERF.B3-SRDX plants. Consistent with this hypothesis, application of GA3 to 10-day-

old transgenic plants partially rescued the dwarf phenotype (Figure 4d). Nevertheless, in 

silico analysis of the promoter region of the two GA biosynthesis genes did not reveal the 

presence of any canonical ethylene-response elements.  

Leaf morphology is remarkably altered in the transgenic lines (Figure S4a) with a severe 

reduction in leaflet size, ranging from 51% to 32% in length and 47% to 22% in width 

(Figure S4b). The leaf margins of the ERF.B3-SRDX plants are twisted and the lamina is 

often wrinkled (Figure S4a). Scanning electron microscopy revealed smaller epidermal 

cells in the transgenic leaves (Figure S4c) with the strongest ERF.B3-SRDX expressing 

line showing epidermal cell size less than one third of that in wild type (Figure S4d).  
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Figure 4. Dwarf phenotype of 35S:ERF.B3-SRDX plants.  

(a) Dwarf phenotype of 35S:ERF.B3-SRDX plants. Photographs were taken at 7 days (upper panel) and 80 

days (lower panel) after germination.  

(b) Reduced plant size of 80-day-old ERF.B3-SRDX plants. Values are means ± SD (n ≥ 15) of three 

replicates.  

(c) Relative mRNA levels of two GA oxidase genes in wild-type and ERF.B3-SRDX lines assessed by qRT-

PCR. The relative mRNA levels of each gene in the wild type were standardized to 1.0, referring to Sl-

Actin gene as internal control.  

(d) ERF.B3-SRDX dwarfism partially rescued by exogenous gibberellic acid (GA) application. Ten-day-old 

wild-type and ERF.B3-SRDX plants were sprayed with GA (10-5 M) twice a week for three weeks. 

*, 0.01< P < 0.05, **, 0.001 < P < 0.01, ***, P < 0.001 (Student’s test). SR1, SR2 and SR3 are three 

independent 35S:ERF.B3-SRDX lines.  
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ERF.B3-SRDX plants also showed severely delayed reproductive growth (Figure 5a). The 

time from germination to flower bud setting was delayed by 14 to 20 days in transgenic 

lines compared to the reference wild-type lines (Figure 5b). Likewise, flower anthesis in 

ERF.B3-SRDX plants occurred 29 to 34 days later than in WT (Figure 5b). Moreover, 

compared to wild type, transgenic plants produced significantly smaller flowers (Figure 

S5a) with up to 30% reduction in anther length. A reduction in fruit size was also 

observed in the ERF.B3 dominant repressor lines which produced heart-like shaped fruit 

(Figure S5b) and small seeds with aberrant shape (Figure S5c). The ERF.B3-SRDX lines 

also displayed dramatic reduction in fruit set, leading to markedly lower fruit number per 

plant at maturity (Figure 5d). Up to 91% of successful fruit set was achieved in wild type 

while in the same growing condition, the fruit set rate reached 10-18% in the ERF.B3-

SRDX lines (Figure 5d). Cross-fertilization assay was performed to examine fertility of 

transgenic flower. Using wild-type flowers as female recipient and ERF.B3-SRDX plants 

as pollen donor, 87% of successful fruit set was achieved. Notably, all the developed 

fruits were seeded, and when germinated, all the seeds were hygromycin resistant (Table 

1) indicating that ERF.B3-SRDX pollen is viable and fertile. Using wild type as pollen 

donor, pollinated ERF.B3-SRDX flowers also showed 80% success of fruit set (Table 1). 

The reciprocal crossing indicated that both ovule and pollen are fertile in the ERF.B3-

SRDX dominant repressor lines (Table 1). Pollen viability of transgenic lines was further 

confirmed by Alexander’s staining assay (Figure S5d). A closer examination of the 

flower organ structure revealed that ERF.B3-SRDX flowers display exerted stigma 

positioned beyond the tip of the anther cone, in contrast to wild-type flowers where the 

stigma is slightly inserted within the anther cone (Figure 5c). The stigma to anther length 

ratio is significantly higher in the transgenic lines (Figure 5e) which may consequently 

prevent efficient self-pollination thus resulting in poor fruit set.  
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Figure 5. Delayed reproductive development and reduced fruit set in 35S:ERF.B3-SRDX plants.  

(a) Late flower bud setting and flowering time in ERF.B3-SRDX plants compared to WT. DAG, Day After 

Germination. 

(b) Assessing the time of flower bud setting and flower opening in ERF.B3-SRDX and WT plants.  

(c) Abnormal flowers with short anther and exerted stigma in ERF.B3-SRDX lines.  

(d) Reduced fruit set rate in ERF.B3-SRDX lines.  

(e) Stigma to anther length ratio in ERF.B3-SRDX lines compared to WT.  

Values are means ± SD (n ≥ 30) of three replicates. *, 0.01< P < 0.05, **, 0.001 < P < 0.01, ***, P < 0.001 

(Student’s test). SR1, SR2 and SR3 are three independent 35S:ERF.B3-SRDX lines.  
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Table 1 Cross-Fertilization Assay. Emasculated wild-type flowers were fertilized with ERF.B3-SRDX 

pollen and the number of fruit was assessed at the ripe stage. Conversely, tomato pollen from wild-type 

flowers was used to fertilize emasculated ERF.B3-SRDX flowers.  In the control assay, wild-type 

emasculated flowers were fertilized with wild-type pollen. For each cross-fertilization assay, the capacity of 

the F1 seeds to grow on hygromycin-containing medium was assessed. Results are representative of data 

from three independent ERF.B3-SRDX lines (SR1, SR2, and SR3). 

 
 

Expression of ERF.B3-SRDX leads to reduced ethylene production 

 

To investigate the role of Sl-ERF.B3 in regulating ethylene biosynthesis, the level of 

ethylene production was assessed in etiolated seedlings revealing that ERF.B3-SRDX 

seedlings produce significantly less ethylene than wild type (Figure 6a). Accordingly the 

dominant repressor lines displayed reduced accumulation of transcripts corresponding to 

Sl-ACS and Sl-ACO ethylene biosynthesis genes (Figure 6b) which account for the 

decreased ethylene production in the ERF.B3-SRDX lines. In silico analysis of the 

promoter regions of Sl-ACS and Sl-ACO genes using three software packages (PLACE, 

PlantCARE and PlantPAN) revealed the presence of cis-acting elements that can serve as 

putative targets for ERFs, including a GCC box (GCCGCC) and DRE/CRT (CCGAC) in 

Sl-ACO3 promoter and a conserved DRE/CRT (CCGAC) motif in Sl-ACS1 promoter 

(Table S1).  
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Figure 6. Down-regulation of ethylene production and ethylene biosynthesis genes in 35S:ERF.B3-

SRDX plants.  

(a) Ethylene production of etiolated seedlings in WT and ERF.B3-SRDX lines.  

(b) ACS and ACO transcript accumulation in WT and ERF.B3-SRDX plants assessed by qRT-PCR. The 

relative mRNA levels of each gene in the wild type were standardized to 1.0, referring to Sl-Actin gene as 

internal control.  

Values are means ± SD of three replicates. *, 0.01 < P < 0.05, **, 0.001 < P < 0.01 (Student’s test). SR1, 

SR2 and SR3 are three independent 35S:ERF.B3-SRDX lines.  

 

Ethylene receptor levels are down-regulated in ERF.B3-SRDX plants  

 

In order to determine whether the expression of ethylene receptor genes may contribute 

to the ethylene hypersensitivity of the 35S:ERF.B3-SRDX lines, we assessed the 

transcript accumulation of six tomato ethylene receptor genes in the leaves of transgenic 

plants. While no significant change was found for the expression of Sl-ETR1 and Sl-

ETR4, the four remaining ethylene receptor genes (Sl-ETR2, Sl-ETR5, Sl-ETR6 and NR) 

were substantially down-regulated in the ERF.B3-SRDX lines (Figure 7a). Notably, the 

expression of Sl-ETR5 was decreased by 84% in the strongest ERF.B3-SRDX line (Figure 

7a). The expression of Sl-ETR2 was reduced by 52-65% in three independent lines 

(Figure 7a) while that of NR was decreased by 46-61% (Figure 7a). The transcript levels 

of Sl-ETR6 showed 35-50% reduction compared to wild type (Figure 7a). In silico search 

revealed the absence of conserved GCC-box in the promoter regions of all four ethylene 

receptor genes displaying altered expression in the transgenic lines (Table S1), in contrast 
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to NR and Sl-ETR5 promoters which contain GCC-box-like and DRE/CRT consensus 

sequences. However, because Sl-ETR6 receptor has been shown to play a prominent role 

in regulating ethylene response (Tieman et al., 2000; Kevany et al., 2007b), the ability of 

the native Sl-ERF.B3 and the chimeric ERF.B3-SRDX proteins to regulate the Sl-ETR6 

promoter activity was tested. Transactivation assays show that Sl-ERF.B3 induced more 

than 2-fold increase of the Sl-ETR6 promoter activity whereas ERF.B3-SRDX strongly 

suppressed this activity (Figure 7b) indicating that Sl-ERF.B3 and its dominant repressor 

version can both regulate the expression of Sl-ETR6 in despite of the absence of a typical 

ethylene-responsive element in its promoter region. Given that ERF.B3-SRDX down-

regulates the expression of the ethylene receptor genes in vivo and that both Sl-ERF.B3 

and its repressor version strongly impact the transcriptional activity of Sl-ETR6 in the 

transactivation assay, we then looked at the expression of ethylene receptor genes in 

tomato over-expressing lines. Among all six receptor genes present in the tomato 

genome, ETR1, NR and ETR6 are up-regulated in the Sl-ERF.B3 over-expressing lines 

consistent with the activator function of the Sl-ERF.B3 protein (Figure 7c). 
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Figure 7. Expression of ethylene receptor genes in 35:ERF.B3-SRDX and ERF.B3 overexpression 

lines.  

(a) Relative mRNA levels of ETR2, NR, ETR5 and ETR6 receptor genes assessed by qRT-PCR in 4-week-

old WT and ERF.B3-SRDX lines.  

(b) The transcriptional activity of ETR6 promoter is regulated by both ERF.B3 and ERF.B3-SRDX in a 

protoplast transactivation assay. Protoplasts were co-transfected with GFP reporters fused to the ETR6 

promoter and with an effector plasmid expressing either ERF.B3 or ERF.B3-SRDX proteins.  

(c) Relative mRNA levels of ETR1, NR, and ETR6 assessed by qRT-PCR in 4-week-old WT and ERF.B3 

overexpression  lines.  

*, 0.01< P < 0.05, **, 0.001 < P < 0.01, ***, P < 0.001 (Student’s test). SR1, SR2 and SR3 are three 

independent ERF.B3-SRDX lines. OX1, OX2 and OX3 are three independent Sl-ERF.B3 overexpressing 

lines.  

 

EIN3-Like genes are up-regulated in ERF.B3-SRDX transgenic plants 

 

EIN3/EILs are positive regulators of ethylene signaling by acting as transactivation 

factors to trigger ethylene responses. The expression of the four EIN3-like genes (Sl-

EIL1, 2, 3 and 4) present in the tomato genome was examined at the transcript level 
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showing a two-fold increase in transcript accumulation for all four Sl-EIL genes in the 

ERF.B3-SRDX lines (Figure 8). However, none of the EIN3-like genes gather a consensus 

ethylene-response element in the promoter. Transactivation assays performed revealed 

that neither Sl-ERF.B3 nor ERF.B3-SRDX proteins are capable to modulate transcription 

driven by any of the four Sl-EILs promoters (Figure S6) suggesting that Sl-EILs do not 

serve as direct target genes for Sl-ERF.B3. 

 

Figure 8. Expression of EIN3-like genes in 35S:ERF.B3-SRDX lines.  

Relative mRNA levels of Sl-EIL1, Sl-EIL2, Sl-EIL3, Sl-EIL4 in WT and ERF.B3-SRDX lines were assessed 

by qRT-PCR in 4-week-old plants. The relative mRNA level of each gene in wild type was standardized to 

1.0, referring to the internal control of Sl-Actin.  

Values are means ± SD of three replicates. *, 0.01 < P < 0.05, **, 0.001 < P < 0.01 (Student’s test). SR1, 

SR2 and SR3 are three independent 35S:ERF.B3-SRDX lines.  

 

Sl-ERFs are among the target genes of Sl-ERF.B3  

 

Considering the putative role of ERFs in mediating ethylene responses, we examined the 

transcript levels of Sl-ERF genes in both wild-type and the ERF.B3-SRDX lines. A 

dramatic change in the transcript levels for a number of ERF genes was revealed in the 

dominant repressor lines (Figure 9a). That is, among the 19 Sl-ERFs that showed 
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detectable transcript accumulation, 14 were significantly down-regulated in the ERF.B3-

SRDX dominant repressor lines while 4 Sl-ERFs displayed similar expression in 

transgenic and wild-type lines. Notably, the expression of Sl-ERF.G1 displayed dramatic 

up-regulation in transgenic lines (Figure 9a). To gain further insight on the mechanisms 

underlying the regulation of Sl-ERF genes in the transgenic lines, the promoters of down- 

and up-regulated ERFs genes were cloned to examine the ability of Sl-ERF.B3 and 

ERF.B3-SRDX proteins to regulate their activity in a single cell system. The data 

indicate that Sl-ERF.B3 protein acts as activator on Sl-ERF.C3, Sl-ERF.D2, Sl-ERF.F5 

and Sl-ERF.F4 promoters while it is inactive on Sl-ERF.G1. The ERF.B3-SRDX 

repressor version retains the capacity to recognize the same target genes than Sl-ERF.B3 

as demonstrated by its repressing activity on the promoters activated by Sl-ERF.B3 

(Figure 9b). By contrast, neither Sl-ERF.B3 nor ERF.B3-SRDX proteins were able to 

modulate the activity of the Sl-ERF.G1 promoter. Taking advantage of the available Sl-

ERF.B3 up-regulated lines we also examined the expression level of Sl-ERF genes in 

these over-expressing lines. Opposite to the situation prevailing in the ERF.B3-SRDX 

lines most ERF genes are up-regulated in the Sl-ERF.B3 over-expressing lines (Figure 

9c) with the most significant up-regulation found in the lines displaying a reduced 

ethylene response (Figure S3). Of particular note, Sl-ERF genes (Sl-ERF.C3, Sl-ERF.D2, 

Sl-ERF.F5 and Sl-ERF.F4) shown to be direct target for Sl-ERF.B3 in the transactivation 

assay are all up-regulated in the Sl-ERF.B3 over-expressing lines. Moreover, ERF genes 

that show regulation by Sl-ERF.B3 in the single cell system (Figure 9b) harbor cis-acting 

elements (GCC-box and DRE/CRT) known to be putative binding site for ERFs whereas 

the Sl-ERF.G1 promoter lacks any of these typical cis-elements (Figure 9d and Table S2).  
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Figure 9. Sl-ERFs are among the target genes of ERF.B3 and ERF.B3-SRDX.  

(a) Accumulation of Sl-ERFs transcripts in WT and ERF.B3-SRDX lines assessed by qRT-PCR in 4-week-

old plants. The relative mRNA level of each gene in WT was standardized to 1.0, referring to Sl-Actin as 

internal control.   

(b) Transactivation of Sl-ERF promoters by ERF.B3 and ERF.B3-SRDX. Protoplasts were co-transfected 

with GFP reporter fused to the promoters of Sl-ERFs (ERF.C3, ERF.D2, ERF.F4, ERF.F5 and ERF.G1) 

and an effector plasmid expressing ERF.B3 or ERF.B3-SRDX.  

(c) Sl-ERFs transcript levels in ERF.B3 overexpression lines assessed by qRT-PCR in 4-week-old plants. 

The relative mRNA level of each gene in WT was standardized to 1.0, referring to Sl-Actin as internal 

control.   

(d) The presence of putative ERF binding sites in the promoters of Sl-ERFs genes. The cis-acting elements 

identified are represented by black bars.  

Values are means ± SD of three replicates *, 0.01 < P < 0.05, **, 0.001 < P < 0.01, ***, P < 0.001 

(Student’s test). 

 

DISCUSSION 

 

Although ERFs are generally considered as important components of the ethylene 

response mechanism, direct evidences for the involvement of these transcription factors 

in this process are still scarce. So far, classical approaches of forward and reverse 
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genetics aiming at up- or down-regulating the expression of ERF genes failed to provide 

sufficient clues on the physiological significance of different members of this gene family 

likely owing to functional redundancy among family members. In the present study, the 

ectopic expression of a dominant repressor form of the Sl-ERF.B3 protein provided a 

mean towards altering the activity of the native Sl-ERF.B3 protein. This strategy allowed 

revealing vegetative and reproductive growth phenotypes that could not be uncovered by 

the expression of neither sense nor antisense constructs of Sl-ERF.B3. Notably, the 

ERF.B3-SRDX plants display enhanced ethylene responses that tend to phenocopy the 

Arabidopsis ctr1 mutant as well as the transgenic tomato lines deficient in receptors, 

exhibiting all of the hallmarks of exposure to ethylene (Kieber et al., 1993; Tieman et al., 

2000). Although, the opposite effect would have been intuitively expected from blocking 

the action of an ERF, the physiological and molecular characterization clearly indicated 

that the phenotypes are consistent with enhanced ethylene sensitivity due to depletion of 

ethylene receptor pools but not to ethylene over-production.   

The 35S:ERF.B3-SRDX lines displayed enhanced ethylene responses and pleiotropic 

ethylene-related alterations, likely resulting from the transcriptional repression of 

ethylene-responsive genes that are natural targets of the native protein. Indeed, Sl-

ERF.B3 and ERF.B3-SRDX are shown to modulate the activity of the same promoters 

harboring ethylene-responsive elements, indicating that ERF.B3-SRDX has the ability to 

interfere with the regulation of Sl-ERF.B3 target genes. ERF.B3-SRDX fusion protein is 

a strong repressor of both synthetic and native ethylene-responsive promoters whereas 

the native Sl-ERF.B3 protein enhances the activity of these promoters. The eventuality 

that the pleiotropic phenotypes displayed by the ERF.B3-SRDX dominant suppressor 

plants may arise from a co-suppression of the endogenous Sl-ERF.B3 is ruled out since 

the levels of Sl-ERF.B3 transcripts are not altered in the transgenic lines. Notably, the 

higher the ERF.B3-SRDX transgene expression the more severe was the phenotypic 

abnormality, indicating that the phenotypic effects were directly related to the expression 

levels of the ERF.B3-SRDX transgene. Therefore, the ERF.B3-SRDX tomato lines proved 

to be a valuable tool to uncover at least some of the processes controlled by Sl-ERF.B3 

and to reveal roles for ERF genes that have not been described previously.  
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Dark-grown ERF.B3-SRDX seedlings displayed a constitutive ethylene response-like 

phenotype with inhibited hypocotyl elongation and exaggerated apical hook formation in 

the absence of exogenous ethylene. Moreover, adult plants show typical constitutive 

ethylene responses including leaf epinasty, premature flower senescence and accelerated 

fruit abscission. These phenotypes may arise from: (i) a constitutive ethylene response, 

(ii) an increased sensitivity to endogenous ethylene, or (iii) an ethylene overproduction. 

Noteworthy, the ethylene response phenotypes displayed by ERF.B3-SRDX etiolated 

seedlings can be reversed by the inhibition of ethylene perception (Figure 2a) and 

treatment with exogenous ethylene resulted in a more pronounced ethylene triple 

response compared to wild type. Taken together with the reduced ethylene production, 

these results indicate that the ethylene response phenotypes displayed by ERF.B3-SRDX 

lines are not due to constitutive activation of ethylene signaling pathway but rather to 

enhanced ethylene sensitivity. It is well accepted that ethylene receptors act as negative 

regulators and function redundantly in ethylene signaling with a decreased expression of 

ethylene receptor genes resulting in increased sensitivity to the hormone (Hua and 

Meyerowitz, 1998; Kevany and Klee, 2007). The reduced transcript levels of the 

receptors and the ethylene hypersensitivity of ERF.B3-SRDX lines are consistent with this 

model. In tomato, although gene-specific antisense reductions in Sl-ETR1, Sl-ETR2, NR 

or Sl-ETR5 do not affect ethylene sensitivity, transgenic lines with single reduction in Sl-

ETR4 or Sl-ETR6 expression display phenotypes consistent with enhanced ethylene 

response (Tieman et al., 2000; Kevany et al., 2007) indicating these two receptors may 

act as a special component in regulating ethylene response. The down-regulation of Sl-

ETR6 in the ERF.B3-SRDX lines may therefore account for the increased ethylene 

sensitivity. Interestingly, opposite to its down-regulation in the dominant repressor lines, 

ETR6 shows a net up-regulation in the Sl-ERF.B3 over-expressing plants suggesting that 

this receptor gene may represent a direct target for Sl-ERF.B3 protein in vivo.  

The increased expression of transcription factors belonging to the EIN3 gene family may 

also contribute to enhanced ethylene responses. Over-expression of EIN3 or EIL1confers 

constitutive ethylene phenotypes in Arabidopsis, while reduced Sl-EILs expression in 

transgenic tomato decreases ethylene sensitivity (Chao et al., 1997; Tieman et al., 2001). 

Four EIN3-like genes were isolated in tomato and designed as Sl-EIL1, Sl-EIL2, Sl-EIL3 
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and Sl-EIL4 (Tieman et al., 2001; Yokotani et al., 2003). Since it is well documented that 

EIN3/EIL proteins act as transactivation factors to trigger ethylene responses, up-

regulation of all four Sl-EIL genes in the ERF.B3-SRDX plants may contribute to their 

ethylene hypersensitivity. However, because the promoter of EIN-like genes are devoid 

of consensus ethylene-response elements and since transactivation assays indicated that 

Sl-ERF.B3 and ERF.B3-SRDX proteins are unable to modulate transcription driven by 

any of the four Sl-EILs promoters, it is likely that the up-regulation of Sl-EIL genes in the 

dominant repressor lines is due to intermediate factor(s) whose expression/activation is 

regulated by ERF.B3-SRDX.  

Previous studies have already shown that ERF proteins are involved in a feedback 

regulation of ethylene production by modulating the expression of ethylene biosynthesis 

genes (Zhang et al., 2009; Lee et al., 2012). Our data show that ectopic expression of the 

ERF.B3-SRDX dominant repressor results in reduced ethylene production associated 

with the down-regulation of ACS and ACO ethylene biosynthesis genes. The presence of 

conserved GCC box and DRE/CRT motifs in ACS and ACO promoters that can serve as 

binding sites for ERF proteins supports the hypothesis that these ethylene biosynthesis 

genes can directly be regulated by Sl-ERF.B3. Together, the reduced ethylene production 

and enhanced ethylene sensitivity in the ERF.B3-SRDX lines suggest the presence of a 

feedback loop regulating both ethylene biosynthesis and signal transduction pathway and 

involving ERF proteins.   

Strikingly, the expression of a considerable number of Sl-ERF genes, 15 out of 19 

monitored in our study, was found to be markedly altered in ERF.B3-SRDX tomato lines 

suggesting intense inter-regulation among ERF family members. Consistent with the 

dominant repressor function of the ERF.B3-SRDX protein, most of the ERF genes were 

down-regulated while solely Sl-ERF.G1 displayed higher transcript levels in the 

dominant repressor lines. By contrast, in Sl-ERF.B3 over-expressing lines, most ERF 

genes tested displayed enhanced transcript levels. In particular, Sl-ERF.C3, Sl-ERF.D2, 

Sl-ERF.F5 and Sl-ERF.F4, shown to be direct target for Sl-ERF.B3 in the transactivation 

assay, display enhanced expression in the Sl-ERF.B3 sense lines. While these data 

support the idea that these ERFs can serve as direct target for both the native and 

chimeric Sl-ERF.B3 proteins, the up-regulation of Sl-ERF.G1 in the dominant repressor 



 
 

84 
 

lines likely requires an additional mediating factor. In silico search revealed that all ERF 

genes down-regulated in the transgenic lines harbor cis-acting elements known to be 

putative binding targets for ERFs. The down-regulation of such a high number of Sl-

ERFs supports a model implying that a single ERF can impact the expression of other 

members of the gene family. This inter-connected regulation among ERF genes may 

therefore account for the pleiotropic alterations in the ERF.B3-SRDX lines and for the 

diversity of responses displayed by the dominant repressor lines. 

Phenotypes such as stunted plant development, reduced leaf size and late flowering time 

are reminiscent not only of constitutive ethylene-response mutants but also of GA 

deficient Arabidopsis plants (Kieber et al., 1993; Hua and Meyerowitz, 1998; Hall and 

Bleecker, 2003; Magome et al., 2004; Qu et al., 2007). The partial rescue of the dwarf 

phenotype in the ERF.B3-SRDX lines by exogenous application of GA suggests that these 

alterations are partly due to GA deficiency. In line with the model supporting that 

ethylene regulates plant growth and floral organ differentiation via modulating GA levels 

(Achard et al., 2007), ethylene hypersensitivity in the ERF.B3-SRDX dominant 

suppressor lines is associated with reduced plant size and substantially delayed flowering 

time. The reduced expression of GA oxidase genes in the transgenic lines sustains the 

idea of altered GA metabolism and suggests that ERFs may represent a potential 

molecular link between ethylene and GA. In agreement with this, it has been recently 

reported that transcriptional activation of some genes involved in GA metabolism is 

mediated by ERF6 in Arabidopsis leaves (Dubois et al., 2013). Because the study has 

been carried out with Micro-Tom, a dwarf genotype, it is important to mention that the 

dwarfing mutations in this genotype do not seem to impact the phenotype displayed by 

ERF.B3-SRDX plants since the dwarf phenotype is well reproduced in Ailsa Craig 

tomato, a non-dwarf variety (data not shown). Altogether, the data suggest that ethylene 

hypersensitivity is likely to be the fundamental cause of the severe dwarf and late-

flowering phenotypes in the ERF.B3-SRDX plants. 

Since ectopic expression of transcription factors might influence target genes that are 

normally not under the control of this regulator, it cannot be totally ruled out that at least 

part of gene regulations caused by ERF.B3-SRDX are off-target effects due to 

interference with other related transcription factors. However, the data support the idea 



 
 

85 
 

that Sl-ERF.B3 is part of an intricate web of regulation in which multiple transcription 

factors are competing for promoters to control the expression of genes that are essential 

for a wide range of plant responses to ethylene. As depicted in the tentative regulation 

model presented in Figure 10, Sl-ERF.B3 is shown to modulate ethylene responses at 

four different levels: (i) ethylene biosynthesis, (ii) ethylene receptor, (iii) primary 

ethylene transcription factors (EIL genes), and (iv) downstream ERF genes. The high 

number of ERF genes regulated by Sl-ERF.B3 is consistent with the pleiotropic 

phenotypes displayed by the dominant repressor lines and suggests that ERFs form a 

complex network with a subset of the family members functioning in an interconnected 

manner. Such level of complexity matches the high level of plasticity needed for the 

implementation of plant growth and developmental processes which require continuous 

fine-tuning through the integration of different cues and signaling pathways.  

 
Figure 10. Tentative model proposing the involvement of Sl-ERF.B3 in the control of ethylene 

responses.  

Sl-ERF.B3 modulates ethylene responses at different levels including ethylene biosynthesis (ACO/ACS), 

receptors, and ERF genes. ERF.B3-mediated ethylene response occurs partly via direct transcriptional 

regulation of specific ethylene receptor genes (ETR6) and selected members of the ERF gene family 

(ERF.C3, ERF.D2, ERF.F4 and ERF.F5). Ectopic expression of Sl-ERF.B3 decreases ethylene responses 

in vegetative tissues through up-regulation of ethylene receptor genes and down-regulation of EIN3-like 

genes (panel a). By contrast, ectopic expression of Sl-ERF.B3-SRDX repressor version, leads to enhanced 

ethylene responses via down-regulation of receptor genes and repression of some ERF genes (panel b). 

This scheme is validated by transactivation assays showing direct regulation of the target ERFs and ETR6 

genes by the native form of Sl-ERF.B3 protein and by the enhanced transcript levels of these target genes 

in the Sl-ERF.B3 over-expressing lines.  
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EXPERIMENTAL PROCEDURES 

 
Plant materials and growth conditions 

Tomato plants (Solanum lycopersicum cv. Micro Tom) were grown under standard 

greenhouse culture conditions. The culture chamber rooms were set as follows: 14 h-

day/10 h-night cycle, 25/20°C day/night temperature, 80% hygrometry, 250 µmol m-2 s-

1 intense luminosity.  

 

Constructs and plant transformation 

To generate the chimeric repressor transgene, the coding sequence of Sl-ERF.B3 without 

the stop codon was cloned via blunt-end ligation into the SmaI site of p35SSRDXG in 

frame to the SRDX repression domain (LDLDLELRLGFA) from SUPERMAN (Hiratsu 

et al., 2003; Mitsuda et al., 2006). Agrobacterium tumefaciens-mediated transformation 

of tomato plants was carried out according to (Wang et al., 2005) and transformed lines 

were selected on a hygromycin-containing medium. All experiments were carried out 

using homozygous lines from F3 or later generations. 

 

Transient expression using a single cell system 

Protoplasts used for transfection were isolated from suspension-cultured tobacco 

(Nicotiana tabacum) BY-2 cells according to (Leclercq et al., 2005). The synthetic 

reporter construct (4xGCC-GFP) was generated by fusing the synthetic GCC-box 

promoter to the coding region of the GFP (Pirrello et al., 2012). Reporter constructs were 

also generated with native promoters, Sl-osmotin (C08HBa0235H18.1) and Sl-ERFs 

(ERF.C3, ERF.D2, ERF.F4, ERF.F5 and ERF.G1), fused to GFP. Protoplast co-

transfection assays was performed using the reporter plasmids and effector vectors 

carrying 35S:ERF.B3 or 35S:ERFB3-SRDX. GFP expression was analyzed and 

quantified by flow cytometry (FACS Calibur II instrument, BD Biosciences) 16 hours 

following protoplast transfection. For each sample, 100-1000 protoplasts were gated on 

forward light scatter and the GFP fluorescence per population of cells corresponds to the 

average fluorescence intensity of the population of cells above the background. The data 

were analyzed using Cell Quest software and were normalized using an experiment with 
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protoplasts transformed with the reporter vector in combination with the vector used as 

effector but lacking the Sl-ERF.B3 coding sequence.  

 

RNA isolation and qRT-PCR 

Total RNA from 4-week-old plants was extracted using a Plant RNA Purification 

Reagent (Invitrogen, Cat. No. 12322-012). Total RNA was DNase-treated (Invitrogen, 

Cat. No. AM1906) and first-strand cDNA was reverse transcribed from 2 μg of total 

RNA using an Omniscript Reverse Transcription kit (Qiagen, Cat. No. 74904). Gene-

specific primers were designed by Primer Express software (PE-Applied Biosystems) and 

were further checked using BLAST against all tomato unigenes (Tomato unigene 

database). qRT-PCR analyses were performed as described previously (Pirrello et al., 

2006). The primer sequences used in this study are listed in Table S3. 

 

Gibberellin treatment  

For application of gibberellin to young plants growing on soil, 10-5 M of Gibberellic Acid 

(GA3) was sprayed twice a week starting on the 10th day post-germination. After 2 weeks 

of treatment, the treated plants were compared with the control ones. 

 

Triple-response assay 

Sterilized seeds were first put on MS/2 medium plates and placed at 4°C for 3 days and 

then transferred to 25°C for germination in the dark for another 5 days. The seedling 

triple response was scored by assessing hypocotyl length and apical curvature. At least 50 

seedlings were scored for each measurement. For ethylene treatment, Petri dishes were 

enclosed in wide mouth Mason jars sealed with a lid containing a rubber syringe cap. 

Ethylene (10 μL L-1) was then injected into the Mason jars using a syringe. For 1-MCP 

treatment, 1 μL L-1 was applied into the Mason jars and kept in the dark for one week. At 

least 50 seedlings were used for each experiment and three independent biological 

replicates were performed.  
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Ethylene production 

Ethylene production was assayed on 7 day-old dark-grown seedlings for 12 h by 

withdrawing 1-mL gas samples from sealed jars. Gas samples were analyzed via gas 

chromatography (7820A GC system Agilent Technologies). Ethylene was identified via 

co-migration with an ethylene standard and quantified with reference to a standard curve 

for ethylene concentration. 
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Supplemental data for chapter II 
 

 

Figure S1. Impact of Sl-ERF.B3 up- and down-regulation on vegetative growth.  

(a) ERF.B3 transcripts accumulation assessed by qRT-PCR in ERF.B3 OX and AS lines on 4-week-old 

plants. 

(b) Plant growth assessed by plant size in wild type (WT), ERF.B3 overexpression (OX) and antisense (AS) 

tomato lines at 4-week-old and 8-week-old stages.  
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Figure S2. Transcript accumulation of the chimeric ERF.B3-SRDX and the endogenous ERF.B3 

genes in transgenic lines. Transcript levels were assessed by qRT-PCR in 4-week-old plants. The relative 

mRNA levels of Sl-ERF.B3 endogenous (Endo) in the wild type were standardized to 1.0, referring to Sl-

Actin gene as internal control. Values are means ± SD of three replicates. SR1, SR2 and SR3 are three 

independent 35S:ERF.B3-SRDX lines.  
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Figure S3. Triple response phenotype of Sl-ERF.B3 overexpression lines. 

(a) Responsiveness of dark-grown WT and Sl-ERF.B3 overexpressing lines treated with exogenous 

ethylene (10 μL L-1). 

(b) Inhibition of hypocotyl length in WT and ERF.B3 overexpressing lines treated with ethylene (10 μL L-

1). Values are expressed as % of the initial hypocotyl length prior to hormone treatment of dark-grown 

seedlings. Values are means ± SD (n ≥ 30) of three replicates. *, 0.01 < P < 0.05 (Student’s test). OX1, 

OX2 and OX3 are three independent Sl-ERF.B3 overexpression lines.  
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Figure S4. Altered leaf morphology in ERF.B3-SRDX plants.  

(a) Leaf margins are twisted and the lamina is often wrinkled.  

(b) Leaflet length and width assessed in 30-day-old ERF.B3-SRDX and WT plants. Values are means ± SD 

(n ≥ 15) of three replicates. 

(c) Scanning electron microscopy observation of leaf epidermal cells in WT and ERF.B3-SRDX lines.  

(d) Monitoring epidermal cell size in WT and ERF.B3-SRDX leaves.  

**, 0.001 < P < 0.01, ***, P < 0.001 (Student’s test). SR1, SR2 and SR3 are three independent 

35S:ERF.B3-SRDX lines.  
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Figure S5. Phenotypes of reproductive organs 

(a) ERF.B3-SRDX plants show reduced flower size.  

(b) Reduced fruit size with altered fruit shape in ERF.B3-SRDX plants.  

(c) Reduced seed size in ERF.B3-SRDX lines.  

(d) ERF.B3-SRDX pollen viability is similar to that of WT as revealed by Alexander’s staining test. 
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Figure S6. ERF.B3 and ERF.B3-SRDX are unable to modulate the transcriptional activity of Sl-EIL 

promoters in a protoplast transactivation assay 

Protoplasts were co-transfected with a reporter construct consisting of the GFP gene driven by the 

promoters of Sl-EILs (EIL1, EIL2, EIL3 and EIL4) and an effector plasmid expressing either ERF.B3 or 

ERF.B3-SRDX. GFP  fluorescence was measured by flow cytometry 16 h after transfection. The basal 

fluorescence obtained by co-transformation with the promoter fused to the reporter gene and the empty 

vector was standardized to 100 and is taken as reference. The results are mean of 3 independent biological 

repetitions.  
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Table S1. Putative ERF binding cis-elements present in the promoter regions of 

ethylene receptor and ethylene biosynthesis genes. For each gene, the genomic 

sequence corresponding to 2.0 kb upstream of the predicted translation start codon (ATG) 

was analyzed for the presence of known ethylene response cis-acting elements using 

three different softwares: (i) PLACE (http://www.dna.affrc.go.jp/ PLACE/), (ii) 

PlantCARE (http://bioinformatics.psb.ugent.be/webtools/plantcare/html), and (iii) 

PlantPAN (http://plantpan.mbc.nctu.edu.tw/seq_analysis.php). 

 

 

 

 

Gene Motif Position Sequence 

 

Ethylene receptor genes 

   

Sl-ETR2 None   -   - 

NR DRE/CRT 
DRE/CRT 

-700 
-1503 

CCGAC 
CCGAC 

Sl-ETR5 GCC-box-like 
DRE/CRT 

-1558(-) 
-1707(-) 

TCCGCC 
CCGAC 

Sl-ETR6 None   -   - 

Ethylene biosynthesis genes    

Sl-ACS1 

 

GCC-box-like 
DRE/CRT 
DRE/CRT 
DRE/CRT 

-1685 
-999 
-1188 
-1752 

TCCGCC 
CCGAC 
CCGAC 
CCGAC 

Sl-ACS3 GCC-box-like 
GCC-box-like 
DRE/CRT 
DRE/CRT 

-1455 
-1586 
-718 
-804 

TCCGCC 
CCCGCC 
CCGAC 
CCGAC 

Sl-ACO1 None   -   - 

Sl-ACO3 GCC-box 
DRE/CRT 
DRE/CRT 
DRE/CRT 

-1851 
-541 
-505 
-810 

GCCGCC 
CCGAC 
CCGAC 
TCGAC 

Sl-ACO4 DRE/CRT 
GCC-box 
GCC-box -like 

-1136 
-1218(-) 
-1215(-) 

CCGAC 
GCCGCC 
CCCGCC 

http://www.dna.affrc.go.jp/%20PLACE/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html
http://plantpan.mbc.nctu.edu.tw/seq_analysis.php
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Table S2. Putative cis-acting ethylene-response elements present in the promoter 

regions of Sl-ERF genes. The genomic sequence corresponding to 2.0 kb upstream of 

the predicted translation start codon (ATG) was analyzed for the presence of known 

ethylene response cis-acting elements using three softwares, PLACE 

(http://www.dna.affrc.go.jp/ PLACE/), PlantCARE 

(http://bioinformatics.psb.ugent.be/webtools/plantcare/html) and PlantPAN 

(http://plantpan.mbc.nctu.edu.tw/seq_analysis.php). 

 

 

 

 

 

 

 

 

 

 

 

                                                              

Gene 

 

Motif 
 

Position 
 

Sequence 

 

Down regulated genes 
   

Sl-ERF.C3 GCC-box -458 GCCGCC 
    
Sl-ERF.D2 DRE/CRT -475 CCGAC 
 GCC-box -70(-) GCCGCC 
 DRE/CRT -388(-) CCGAC 
    
Sl-ERF.F5 GCC-box -173 GCCGCC 
 DRE/CRT -969 CCGAC 
 DRE/CRT -1068 CCGAC 
 GCC-box -87(-) GCCGCC 
    
Sl-ERF.F4 DRE/CRT -431 CCGAC 
 GCC-box -139(-) GCCGCC 
 
Up regulated genes 

   

Sl-ERF.G1 None   -   - 

http://www.dna.affrc.go.jp/%20PLACE/
http://bioinformatics.psb.ugent.be/webtools/plantcare/html
http://plantpan.mbc.nctu.edu.tw/seq_analysis.php
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Table S3. List of the primers used in the study. 
Gene Name Primer Sequence  

Sl-Actin 
F 5'-TGTCCCTATTTACGAGGGTTATGC-3' 

R 5'-CAGTTAAATCACGACCAGCAAGAT-3' 

Sl-ERF.B3 
F 5'-CGGAGATAAGAGATCCAAGTCGAA-3' 

R 5'-CTTAAACGCTGCACAATCATAAGC-3' 

Sl-ERF.B3-endo 
F 5'-TTCACAGAGACATAAACACAAACACCT-3' 

R 5'-TGTTGTCGTATGAGTTCTAATGTTAATCCT-3' 

Sl-ERF.B3-SRDX 
F 5'-GGAAAATCTGGTGCTCCGG-3' 

R 5'-CTCGTCGACTTAAGCGAAAC-3' 

Sl-GA20ox-1 
F 5'-CAACTACTATCCACCATGCCAG-3' 

R 5'-CACCAACACAATCTTGATGGAG-3' 

Sl-GA20ox-2 
F 5'-ACGATTCTTCTCTACTTGGCT-3' 

R 5'-GCTAAGGTCTTGATCTACATTGG-3' 

Sl-ACS1 
F 5'-TCGTTTCGAAGATTGGATGA-3' 

R 5'-CAACAACAACAAATCTAAGCCATT-3' 

Sl-ACS2 
F 5'-TGTTAGCGTATGTATTGACAACTGG-3' 

R 5'-TCATAACATAACTTCACTTTTGCATTC-3' 

Sl-ACS3 
F 5'-CCCTTGTCCACAAATCCAGA-3' 

R 5'-ACAGAGTGCACCCTCTAACATTT-3' 

Sl-ACS4 
F 5'-CTCCTCAAATGGGGAGTACG-3' 

R 5'-TTTTGTTTGCTCGCACTACG-3' 

Sl-ACS6 
F 5'-CTCCTATGGTCCAAGCAAGG-3' 

R 5'-CGACATGTCCATAATTGAACG-3' 

Sl-ACO1 
F 5'-GCCAAAGAGCCAAGATTTGA-3' 

R 5'-TTTTTAATTGAATTGGGATCTAAGC-3' 

Sl-ACO2 
F 5'- TTTATTACAAAGTGTGCGTCCCTA-3' 

R 5'- CTCATTTTTGGGTATTAAAATATGTGT-3' 

Sl-ACO3 
F 5'-TGATCAAATTGCAAGTGCTTAAA-3' 

R 5'-ACCACACAACAATCACACACA-3' 

Sl-ACO4 
F 5'-GGAGCCTAGGTTTGAAGCAA-3' 

R 5'-AAACAAATTCCCCCTTGAAAA-3' 

Sl-EIL1 
F 5'-CCTCAACAATATGTCCAGCCA-3' 

R 5'-TCATCCTTTGCCCATCTTCAG-3' 

Sl-EIL2 
F 5'-TGAAGATGGAAGTCTGTAAGG-3' 

R 5'-CCACTCCCTGAGATTATCCGA-3' 

Sl-EIL3 F 5'-ACAGGACTTCAAGAAACAACCA-3' 
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R 5'-GTGTTGTGCTCATAGTTGATCTG-3' 

Sl-EIL4 
F 5'-TATACCCTGATCGTTGTCCAC-3' 

R 5'-TTACACTCATCTTGAGCACCA-3' 

Sl-ETR1 
F 5'-GGAAGAACATTGGCATTGGAAG-3' 

R 5'-CCAACTGGATTTTGGTGTCGT-3' 

Sl-ETR2 
F 5'-TTGGAGGAATCAATGAGGGC-3' 

R 5'-TCATTACGCGCACGAACAG-3' 

NR 
F 5'-TGCTGTTCGTGTACCGCTTT-3' 

R 5'-TCATCGGGAGAACCAGAACC-3' 

Sl-ETR4 
F 5'-ATGGCTGTCGTTCTTGGGC-3' 

R 5'-TGGAGGAGTGAGTGTGGATGC-3' 

Sl-ETR5 
F 5'-GTGCTCTGGGCCCTTCACTA-3' 

R 5'-GAACTTACGCACCCTCAATGC-3' 

Sl-ETR6 
F 5'-TCAAAAAGCCGGTGATCTCG-3' 

R 5'-GCACCCATTTGAACGGAAAA-3' 

ProSl-ETR6 
F 5'-TTGTAGTTAAAAGATTTGCTTC-3' 

R 5'-ATCCAATAGAACTACTCTTGTT-3' 

Sl-ERF.A2 
F 5'-CGGTATCATCAGCTTCGGAAA-3' 

R 5'-TCTCAACTTCTAATTCGGCTTGCT-3' 

Sl-ERF.B2 
F 5'-AGTTTGCAGCGGAGATTCGT-3' 

R 5'-TGCCCTGTCATATGCCTTTG-3' 

Sl-ERF.C1 
F 5'-TTCTTCGTGTCGAAAATACTAAGTTCAGT-3' 

R 5'-ACTCTAAATTCTTCAAGAAATCCAGAACA-3' 

Sl-ERF.C2 
F 5'-ATCATTACCATGGAATGATCAACATT-3' 

R 5'-CCGTCTATAACTTTCTTTCGAGGTTAA-3' 

Sl-ERF.C3 
F 5'-CAAGAAGTTTCCTCAATCTCTCATGTAT-3' 

R 5'-CCGAGATGAATAATCCATTTGATTT-3' 

Sl-ERF.C4 
F 5'-CAACGTTGACAACATCTTTGCA-3' 

R 5'-AACTTGGGAAGATATTCTCAATGGAA-3' 

Sl-ERF.C6 
F 5'-GGGAAATACGCTGCGGAAA-3' 

R 5'-TTTCGAACGTACCTAGCCATACTCT-3' 

Sl-ERF.D2 
F 5'-ACACAAGTAGCACCAGCACCACTA-3' 

R 5'-ACCCCAAAAAAAGCAAGAAAATT-3' 

Sl-ERF.D3 
F 5'-ATTCATTTTCGGGTTGTGCAGTA-3' 

R 5'-CGACTATAATGATTTCTGCCGAACT-3' 

Sl-ERF.D4 
F 5'-GTTGCTGCTTTAACCAATGTGATTAT-3' 

R 5'-CTTCCGGTACGCGAAACAAG-3' 
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Sl-ERF.E2 
F 5'-ACTTCGTGAGGAAACCCTGAAC-3' 

R 5'-GTTACTAATATAAGTCATGTTGGGCTGAA-3' 

Sl-ERF.E4 
F 5'-AGGCCAAGGAAGAACAAGTACAGA-3' 

R 5'-CCAAGCCAAACGCGTACAC-3' 

Sl-ERF.F1 
F 5'-ACGAGCTTTCTTCTTTTCTCTCTCTAAA-3' 

R 5'-GAAACTCGATATCCTTCTGTAAAATCTTC-3' 

Sl-ERF.F2 
F 5'-TTGATACCACTGCTTACCTAGTTTTTCT-3' 

R 5'-TATCTTCTATGGCTCCTTCCTCTTCT-3' 

Sl-ERF.F3 
F 5'-AGTAGTAAGGTGACCCGGATGAAG-3' 

R 5'-CACCGATCATCCACCACAGA-3' 

Sl-ERF.F4 
F 5'-GAGCTAATGGCTGATTTTTGTATATAAGTTC-3' 

R 5'-AAATGGTAGAAACAGCACGAGAAAG-3' 

Sl-ERF.F5 
F 5'-TGGAGCGAAAGCGAAAACTAA-3' 

R 5'-GTCTGACTCGGACTCCGATTG-3' 

Sl-ERF.G1 
F 5'-GAAGAAAGCGATCGATTTGAAGA-3' 

R 5'-TTTTCCCCATGGCCTCTGT-3' 

Sl-ERF.G2 
F 5'-CGGTGGAGATAAAAGCGAAAAC-3' 

R 5'-CCACTTCGCAGAACCCTAGATT-3' 

ProSl-ERF.C3 
F 5'-ACAATCATCACCATCAACCA-3' 

R 5'-GGAAACTTCTTGCTTAACAGG-3' 

ProSl-ERF.D2 
F 5'-GGCTTCCCGCTATAATAAGG-3' 

R 5'-CGAATAATCAAACTGACCACC-3' 

ProSl-ERF.F5 
F 5'-ACACTTACCAGTTATCTGCCAC-3' 

R 5'-AAATGGAGAAAGGGTGAAGAG-3' 

ProSl-ERF.F4 
F 5'-CTGCTGAACCTAGTGTCTC-3' 

R 5'-ATGAATGAAGAGTATGCGGT-3' 

ProSl-ERF.G1 
F 5'-CTAAGACGAATCATAGAGTAGGAC-3' 

R 5'-AGGAAGAACAAGTCTTGATGAG-3' 
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Table S4. Gene names used in the study and corresponding gene ID. 

Gene Name Gene ID 

Sl-ERF.B3 Solyc05g052030 

Sl-ERF.C3 Solyc09g066360 

Sl-ERF.D2 Solyc12g056590 

Sl-ERF.F5 Solyc10g009110 

Sl-ERF.G2 Solyc06g082590 

Sl-ERF.C6 Solyc03g093560 

Sl-ERF.C4 Solyc03g123500 

Sl-ERF.D3 Solyc01g108240 

Sl-ERF.A2 Solyc03g093610 

Sl-ERF.F4 Solyc07g053740 

Sl-ERF.F3 Solyc07g049490 

Sl-ERF.E2 Solyc09g089930 

Sl-ERF.C2 Solyc04g014530 

Sl-ERF.D4 Solyc10g050970 

Sl-ERF.B2 Solyc02g077360 

Sl-ERF.E4 Solyc01g065980 

Sl-ERF.F2 Solyc07g064890 

Sl-ERF.F1 Solyc10g006130 

Sl-ERF.G1 Solyc01g095500 

Sl-GA20ox1 Solyc03g006880 

Sl-GA20ox2 Solyc06g035530 

Sl-ACS1A Solyc08g081540 

Sl-ACS3 Solyc02g091990 

Sl-ACO1 Solyc07g049530 

Sl-ACO3 Solyc07g049550 

Sl-ACO4 Solyc02g081190 

Sl-EIL1 Solyc06g073720 

Sl-EIL2 Solyc01g009170 

Sl-EIL3 Solyc01g096810 

Sl-EIL4 Solyc06g073730 

Sl-ETR2 Solyc07g056580 

NR Solyc09g075440 

Sl-ETR5 Solyc11g006180 

Sl-ETR6 Solyc09g089610 
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ABSTRACT 

 

Fruit ripening in tomato is a genetically regulated process involving a complex interplay 

between ethylene and ripening-associated transcriptional regulators. Ethylene Response 

Factors (ERFs) are downstream components of the ethylene signal transduction pathway 

known to mediate ethylene action through the regulation of ethylene-responsive genes. 

Our previous work has demonstrated the involvement of the tomato Sl-ERF.B3 in a 

feedback control of ethylene action in vegetative growth. Here, we show the role of Sl-

ERF.B3 in controlling fruit maturation and ripening. Over-expression of a chimeric 

repressor construct of this ERF gene (ERF.B3-SRDX) results in altered fruit shape and 

size, seed morphology, orange ripe fruits, and accelerated fruit senescence. The 

attainment of competence to ripen is dramatically delayed in ERF.B3-SRDX fruits but 

once ripening proceeds it is associated with high climacteric ethylene production and 

enhanced fruit softening, while pigment accumulation is decreased. Consistently genes 

involved in ethylene biosynthesis, perception and in cell wall degradation are up-

regulated whereas those involved in lycopene biosynthesis are down-regulated. 

Moreover, the expression of ripening regulator genes such as RIN, CNR and HB-1 is 

stimulated in ERF.B3-SRDX dominant repressor fruits. Notably, a number of ERF genes 

show altered expression patterns in ERF.B3-SRDX ripening fruits, suggesting the 

existence of a complex network enabling interconnection between different ERF genes 

and accounting for the pleiotropic alterations in fruit maturation and ripening. Altogether, 

the data suggest a central role of Sl-ERF.B3 in the transcriptional network controlling the 

ripening process and reveal a means for uncoupling some of the main processes 

underlying fruit ripening, such as fruit softening and pigment accumulation.   
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INTRODUCTION 

 

The maturation and ripening of fleshy fruits is a developmental process unique to plants. 

Although specific fruit-ripening characteristics vary among species, fruit ripening can be 

generally described as a complex, genetically programmed process that culminates in 

dramatic changes in color, texture, flavor, aroma and nutritional characteristics (Carrari 

and Fernie, 2006). In the case of fleshy fruits these changes not only make fruit attractive 

for seed dispersal organisms, but also provide essential vitamins, minerals and 

antioxidants (phenolics, folate, lycopene, and β-carotene) for human diet (Seymour et al., 

1993; Fraser et al., 2009; Chung et al., 2010).  

Fruits have been classically categorized into climacteric and non-climacteric based on 

increased ethylene synthesis and a concomitant rise in the rate of respiration during 

ripening. Climacteric fruits display a burst in respiration at the onset of ripening, in 

contrast to non-climacteric ones. Climacteric fruits, such as tomatoes, bananas and 

apples, also show increased biosynthesis of the gaseous hormone ethylene, which is a 

fundamental signal in climacteric fruit ripening (Vrebalov et al., 2002; Alba et al., 2005). 

In the ethylene biosynthetic pathway, 1-aminocyclopropane-1-carboxylic acid (ACC) 

synthase (ACS) and ACC oxidase (ACO) catalyze the conversion of S-adenosyl-L-

methionine (SAM) to ACC and of ACC to ethylene, respectively (Adams and Yang, 

1979; Bleecker and Kende, 2000). Autocatalytic ethylene synthesis at the onset of tomato 

fruit ripening is mainly mediated through ethylene-stimulated expression of ACS2, ACS4, 

ACO1 and ACO4 (Barry and Giovannoni, 2007). Unraveling the regulation of the 

ethylene signaling pathway is important to understanding the processes of fruit ripening. 

Tomato possesses many favorable genetic characteristics such as simple diploid genetics, 

relatively small genome size, short generation time, efficient genetic transformation and 

distinct ripening phenotypes, making it a primary model system for studying the 

molecular basis of fleshy fruit development and the role of ethylene in climacteric fruit 

ripening. The adaptation of a range of technological tools and the generation of new 

biological resources on the tomato (e.g. EST database, TILLING resources, genetic and 

physical maps) have led to a large progress in our understanding of the molecular 

mechanisms underlying the ripening process through the identification of the associated 
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key regulatory genes (Pirrello et al., 2009). Moreover, the ripening process of tomato has 

been well characterized in terms of metabolic changes impacting softening, accumulation 

of sugars and acids, chlorophyll degradation, lycopene accumulation, and dramatic 

increases in ethylene and flavor volatiles (Chung et al., 2010; Karlova et al., 2011). 

Through investigation of tomato mutants affected in fruit development and ripening 

(mainly ripening-deficient mutants), such as ripening inhibitor (rin; Vrebalov et al., 

2002), Colorless non-ripening (Cnr; Manning et al., 2006), non-ripening (nor; 

Giovannoni, 2004), Green-ripe (Gr; Barry and Giovannoni, 2006), and Never-ripe (Nr; 

Wilkinson et al., 1995), many genes were isolated and shown to act upstream of ethylene 

in the ripening cascade, determining the competence of the fruit to ripen (Barry and 

Giovannoni, 2007). The RIN, CNR, and NOR genes encode transcriptional regulators 

regulating the expression of other genes responsible for fruit ripening processes, 

including ethylene and carotenoid biosynthesis (Vrebalov et al., 2002; Giovannoni, 2004; 

Manning et al., 2006; Martel et al., 2011; Fujisawa et al., 2013). The Gr gene encodes a 

still poorly defined component of ethylene signal transduction, while Nr encodes an 

ethylene receptor important for both fruit and non-fruit ethylene responses (Lanahan et 

al., 1994; Barry and Giovannoni, 2006). Other ripening transcriptional regulators have 

recently been characterized via functional studies in transgenic plants, including LeHB1, 

which directly regulates ACC oxidase expression (Lin et al., 2008) and TAGL1, a MADS 

box transcription factor, which links early fruit fleshy expansion with downstream 

ripening (Itkin et al., 2009; Vrebalov et al., 2009). The putative transcription factor, Sl-

AP2a, a member of the AP2/ERF superfamily was also recently described as a negative 

regulator of fruit ripening and of ethylene production (Chung et al., 2010; Karlova et al., 

2011). Unraveling the transcriptional networks that regulate fruit ripening is crucial for 

the understanding of this complex process. The present study describes the critical roles 

of Sl-ERF.B3 in fruit ripening, a member of Sl-ERF multi-family genes. 

ERFs are plant specific transcription factors, belonging to the large AP2/ERF superfamily 

(Riechmann et al., 2000). Proteins encoded by this family have a highly conserved DNA-

binding domain known as the AP2 domain, containing 58-59 amino acids involved in the 

high affinity binding to target DNA sequences (Allen et al., 1998). A growing number of 

investigations suggest that through interacting with multiple cis-acting elements found in 
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the promoter regions of ethylene-responsive genes, including the GCC box and 

dehydration-responsive element/C-repeat (DRE/CRT), ERF proteins play a critical role 

during plant development and adaptation to stress conditions (Ohme-Takagi and Shinshi, 

1995; Wu et al., 2002; Wan et al., 2011). Generally, in different plant species ERFs have 

been shown to be involved in hormonal signaling, responses to biotic and abiotic stresses, 

developmental processes, metabolic regulation, ethylene biosynthesis and fruit ripening 

(Ohme-Takagi and Shinshi, 1995; Fujimoto et al., 2000; van der Fits and Memelink, 

2000; Wu et al., 2002; Dubouzet et al., 2003; Zhang et al., 2009; Lee et al., 2012). 

Although Sl-ERF6 was reported to play an important role in fruit ripening by integrating 

ethylene and carotenoid pathways in tomato (Lee et al., 2012), the role of most ERF 

proteins in the ripening process awaits elucidation.  

To date, no ERF-like mutants have been identified in tomato. As we described in our 

previous article (Liu et al., 2013), classical reverse genetics approach based on down- and 

up-regulation of ERF.B3 failed to provide a clue regarding its functional significance. In 

an attempt to overcome the experimental limitations due to the functional redundancy 

among members of the ERF gene family, we generated a dominant repressor version of 

ERF.B3 (ERF.B3-SRDX) using the Chimeric Repressor Silencing Technology (CRES-T). 

Through the CRES-T strategy, we show here that ERF.B3 plays a critical role in fruit 

ripening. This gene was previously described as an important regulator of ethylene 

response and plant development (Liu et al., 2013). We found here that Sl-ERF.B3 also 

function in fruit development and plays a critical role in the fruit ripening process, In 

addition, we show that Sl-ERF.B3 primarily regulates genes involved in both carotenoid 

and ethylene biosynthesis. Moreover, by the analysis of the expression levels of the 

tomato ripening regulators including RIN, CNR, NOR, HB-1, TAGL1 and AP2a during 

fruit ripening process in the ERF.B3-SRDX lines, we demonstrated that Sl-ERF.B3 is a 

new regulator involved in the tomato regulatory network controlling ripening. 
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RESULTS 

 

Expression patterns of tomato ERF genes during fruit ripening 

 

Ethylene is known to play a critical role in fruit development and ripening, and Ethylene 

Response Factors (ERFs) are considered as the primary actors in mediating responses to 

the hormone. To gain further insight on the expression of members of the tomato ERF 

gene family during the ripening process, the accumulation of Sl-ERFs transcripts was 

assessed by quantitative RT-PCR at different stages of fruit ripening. The data indicate 

(Figure 1) that out of the 25 ERF genes tested, eleven (Sl-ERF.A2, A3, B1, B2, C1, C3, 

D1, D2, F3, F5 and G2) show an increase in their expression peaking 3 days post-breaker 

(Br+3) and then decline at later ripening stages. The expression of 5 genes (Sl-ERF.B3, 

C2, E2, E4 and F2) peaks at the breaker stage (Br) and then decreases. A distinct 

expression pattern is displayed by a group of ERF genes (Sl-ERF.A1, C6, D3, D4, E1, F1, 

F4 and H1) that undergo steady increase in transcript accumulation throughout ripening. 

Sl-ERF.E3, is the only gene showing no ripening-induced expression but rather a decline 

of its transcript levels from breaker to late ripening stages. While the expression 

dynamics of most ERF genes suggests their involvement in the ripening process, no link 

was established between their repressor or activator function and their pattern of 

expression.  

 
 

Figure 1. Relative expression 

profiles of tomato ERF genes in 

different ripening stages 

obtained by quantitative RT-

PCR. MG, mature green fruit; Br, 

breaker stage fruit; Br+3, 3 days 

after breaker stage; Br+7, 7 days 

after breaker stage. Values 

represent means of three biological 

replicates, and vertical bars 

represent SD of the means. 
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Sl-ERF.B3 shows fruit development- and ripening-related expression pattern 

 

The Sl-ERF.B3 transcript is induced at the breaker stage and maintained a high levels at 

all later stages of ripening, suggesting that its expression might be continuously required 

along the ripening process. This observation motivated the further assessment of Sl-

ERF.B3 transcript accumulation in vegetative and reproductive tissues by quantitative 

RT-PCR (Figure 2A). Analysis of stem, root, leaf, flower and in a series of fruit 

developmental stages, indicated that the accumulation of Sl-ERF.B3 transcripts is 

relatively high in both vegetative and reproductive tissues (Figure 2A).  

To address the functional significance of this tomato ERF family member, we first 

attempted to alter its expression using antisense or overexpression strategies. However, 

both approaches failed to provide significant clues on the physiological role of Sl-

ERF.B3, which prompted the use of a dominant repressor version of the gene (ERF.B3-

SRDX), relying on the so-called Chimeric Repressor Silencing Technology (CRES-T). 

This technology has been developed to study the consequences of silencing of the target 

genes of single transcription factors and has also been used to overcome the experimental 

limitations caused by functional redundancy of transcription factor families (Hiratsu et 

al., 2003). Three out of ten transgenic ERF.B3-SRDX lines (SR1, SR2 and SR3) showed a 

characteristic phenotype with different expressivity and were selected for further studies. 

The relative expression levels of the ERF.B3-SRDX transcript in fruit tissues of the three 

independent lines was assessed by qRT-PCR using primers specific for the transgene 

(Figure 2B).  
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Figure 2. Sl-ERF.B3 gene expression during development and in ERF.B3-SRDX dominant repressor 

lines. A, Total RNA was extracted from different developmental stages; St (stem), R (root), L (leaf), Fl 

(flower), IMG (immature fruit), MG (mature green fruit), Br (breaker stage fruit), Br+3 (3 days after 

breaker stage), Br+7 (7 days after breaker stage). The relative mRNA levels of Sl-ERF.B3 at immature 

green stage were standardized to 1.0, referring to Sl-Actin gene as internal control. Values are means ± SD 

of three biological replicates. B, Transcript accumulation of the chimeric ERF.B3-SRDX gene in wild-type 

and transgenic lines (SR1, SR2 and SR3) in ripening fruit. Total RNA was extracted from fruit at 3 days 

after breaker stage (Br+3).  

 

Altered fruit development in ERF.B3-SRDX dominant repressor lines 

 

One of the most evident phenotypes displayed by ERF.B3-SRDX transgenic lines is the 

altered fruit shape and reduced size (Figure 3A). Wild-type tomato fruits (Figure 3A) are 

round shaped in contrast to the ERF.B3-SRDX fruits which heart shaped with bumpy 

areas present intermittently on the surface of the fruit (Figure 3A). Changes in fruit 

anatomy also include thicker pericarp and decreased jelly formation with enhanced 

pericarp to total fruit volume ratio (Figure 3A, lower panel). As a consequence of the 

smaller size, the mean weight of ERF.B3-SRDX fruits is significantly reduced (Figure 

3B). The number of seeds is dramatically reduced in ERF.B3-SRDX fruits compared to 

wild type and the average seed number drops from 25 per fruit in wild-type to 6 in 

ERF.B3-SRDX lines (Figure S1A). In addition to their reduced number, the seeds show 

reduced size in dominant repressor lines (Figure S1B). In the ERF.B3-SRDX line showing 
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the strongest phenotype, seed weight is less than half of the wild type (Figure S1C). 

ERF.B3-SRDX lines produced hairless seed with altered morphology (Figure S1B).  

 

 

Figure 3. Fruit morphology in wild-type and ERF.B3-SRDX lines. A, Altered fruit shape and size in 

ERF.B3-SRDX fruits. B, Fruit weight is significantly reduced in ERF.B3-SRDX lines compared with wild 

type. 50 fruits were used for each measurement and values shown are the means ± SD. **, 0.001 < P < 

0.01, ***, P < 0.001 (Student’s test). SR1, SR2 and SR3 are three independent ERF.B3-SRDX lines.  

 

ERF.B3-SRDX fruits fail to display a red-ripe phenotype  

 

In addition to the altered fruit shape and size, ERF.B3-SRDX lines exhibited distinct 

ripening changes. The ripening-related phenotypes were investigated in wild-type and 

ERF.B3-SRDX lines using fruits at different development stages sampled from the same 

truss. Dramatic changes were revealed in the transgenic lines with regard to both the time 

at which the ripening process starts and the speed at which it proceeds. The onset of 

ripening occurs with at least two weeks delay in ERF.B3-SRDX lines (57 days post-

anthesis) than in wild type (41 days post anthesis) suggesting that the attainment of 

competence to ripen is dramatically delayed in the transgenic lines (Table 1).  
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Table 1 Days from anthesis to breaker stage for control and ERF.B3-SRDX lines.  
Lines                                           Days 

Wild type                                           41.49 ± 2.49 
SR1                                           59.34 ± 3.27 *** 

SR2                                           56.18 ± 2.19 ** 
SR3                                           54.82 ± 3.46 ** 
Values represent means ± SD for at least 15 fruit for each line. **, 0.001 < P < 0.01, ***, P < 0.001 
(Student’s test). 
 

Moreover, once the ripening process starts at breaker stage, when a visible color change 

just begins to occur, the ripening of ERF.B3-SRDX fruits seems much slower than wild 

type (Figure 4A). In contrast to wild type which reaches the red-ripe stage 5 days post-

breaker (Br+5), ERF.B3-SRDX fruits remain orange at breaker+10 stage (Br+10; Figure 

4A). The assessment of color change via measuring the evolution of hue angle values, 

indicative of color saturation, further emphasized the difference between wild type and 

dominant repressor lines throughout the ripening process (Figure 4B). The value of hue 

angle is even higher for ERF.B3-SRDX fruit at Br+10 than for wild type at Br+5, thus 

confirming the orange-ripe phenotype observed visually (Figure 4A, 4B). 

 
Figure. 4 Fruit ripening in wild-type and ERF.B3-SRDX lines. A,  Different stages of fruit ripening for 

wild-type (WT) and ERF.B3-SRDX lines. Fruits from independent transformant lines are shown, which are 

delayed in color development, never developing full red color. Br, breaker stage , Br+2,  tuning stage (2 

days after breaker stage), Br+5, pink stage (5 days after breaker stage), and Br+10, red ripe stage (10 days 

after breaker stage). B, Changes in hue angle in WT and ERF.B3-SRDX lines during different ripening 

stages. SR1, SR2 and SR3 are three independent ERF.B3-SRDX lines.  



 
 

112 
 

Decreased lycopene and increased beta-carotene levels are responsible for the 

orange-ripe phenotype in ERF.B3-SRDX fruits 

 

To investigate the cause of the altered pigmentation in ERF.B3-SRDX fruits, LC-PDA-

MS analysis of carotenoid levels was performed on wild-type and ERF.B3-SRDX fruits at 

both breaker and breaker+7 stages. Notably, levels of lycopene and its precursors 

phytoene, phytofluene, ζ-carotene and neurosporene were significantly decreased in the 

ERF.B3-SRDX fruits at the breaker stage (Figure 5). At the ripe stage (Br+7), lycopene 

levels and its precursors were dramatically decreased, and, a sharp increase in β-carotene 

content was also observed in the ERF.B3-SRDX lines (Figure 5) in keeping with the 

orange-ripe phenotype. 

 
Figure 5. Carotenoid composition of wild-type and ERF.B3-SRDX fruits at breaker and breaker+7 

stages. Amounts of the different carotenoid species in wild-type and ERF.B3-SRDX fruits, plotted as 

stacked bars.  

 

To uncover the molecular basis of the altered carotenoid composition in ERF.B3-SRDX 

lines, we examined the transcript levels of genes involved in carotenoid biosynthesis 

pathway at different stages of fruit ripening by quantitative RT-PCR (Figure 6). Even 
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though transcript of phytoene synthase (PSY1) in ERF.B3-SRDX lines showed similar 

ripening-regulated accumulation pattern than in wild type, PSY1 levels were dramatically 

reduced in ERF.B3-SRDX fruits at the breaker stages (Figure 6). PSY1 is a key regulator 

of flux through the carotenoid pathway and its repression is consistent with the reduction 

of lycopene and total carotenoids at the breaker stage fruits (Figure 5). A decrease in 

phytoene desaturase (PDS) expression levels was also observed in ERF.B3-SRDX fruits 

(Figure. 6). It is also noteworthy that transcript accumulation of all three lycopene beta 

cyclases (β-LCY1, β-LCY2, CYC-β) was markedly elevated in ERF.B3-SRDX fruits 

compared to wild-type (Figure 6) accounting for the significantly increased β-carotene 

content in ERF.B3-SRDX lines (Figure 5). The data indicate that the dominant repressor 

version of ERF.B3 leads to decreased expression of PSY1 and PDS and increased 

expression of lycopene beta cyclases, thus resulting in a modified lycopene to β-carotene 

ratio. 

 
Figure 6. Expression of carotenoid biosynthesis genes in wild-type and ERF.B3-SRDX lines. Total 

RNA was extracted from the indicated developmental stages of fruit (MG, Br, Br+3 and Br+7). The relative 

mRNA levels of each gene at  breaker (Br) stage were standardized to 1.0, referring to Sl-Actin gene as 

internal control. Values are means ± SD of three biological replicates. *, 0.01< P < 0.05, **, 0.001 < P < 

0.01, ***, P < 0.001 (Student’s test). SR1 and SR2 are two independent ERF.B3-SRDX lines.  
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ERF.B3-SRDX fruits show fast softening and elevated ethylene production 

 

To uncover whether the failure to reach the red-ripe stage in dominant repressor fruits 

results from the incapacity to ripen, other major ripening-associated features, like 

softening and climacteric rise of ethylene production, were investigated. The evolution of 

firmness determined from breaker stage to 20 days post-breaker (Br+20) showed that 

ERF.B3-SRDX transgenic fruits undergo significantly faster softening than control fruit 

(Figure 7A). Given that fruit softening is highly regulated by ethylene, we therefore 

assessed the production of ripening-associated ethylene in the ERF.B3-SRDX fruits. As 

shown in Figure 7B, the accelerated softening observed in transgenic fruits was 

associated with a dramatic increase in climacteric ethylene production (Figure 7B) which 

reached a maximum 3 to 4 times higher than in wild type fruit. Altogether these data 

indicate that once triggered, the ripening process is accelerated in the ERF.B3-SRDX 

repressor lines.  

 

 
Figure 7. Firmness and ethylene production in wild-type and ERF.B3-SRDX fruits. A, Firmness 

analysis of control and ERF.B3-SRDX fruits. Fruits were harvested at breaker stage, kept at room temperate 

and measured for firmness at different stages (Br, Be+3, Br+7, Br+10, Br+15 and Br+20 as defined in the 

methods). 15 fruit were used for each measurement and values shown are the means ± SD. B, Production of 

ethylene in control and ERF.B3-SRDX lines. Fruits of different ripening stages representative by Days Post 

Anthesis (DPA). Values represent means of at least ten individual fruits. Vertical bars represent SD. 35 

DPA represents mature green (MG) stage in WT; 40 DPA, breaker (Br) stage in WT. 50 DPA, mature 

green (MG) stage in ERF.B3-SRDX lines; 55 DPA, breaker (Br) stage in transgenic lines. SR1, SR2 and 

SR3 are three independent ERF.B3-SRDX lines.  
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Ethylene and ripening-related genes are highly induced in ERF.B3-SRDX-

expressing fruits  

 

To gain more insight on the regulation of fruit ripening in ERF.B3-SRDX lines, we 

examined transcript accumulation of a set of ripening-related genes. The expression of 

ethylene biosynthesis genes, such as ACS2, ACS4 and ACO1, was significantly higher in 

ERF.B3-SRDX expressing fruits than in wild type (Figure 8). Transcript accumulation of 

these genes was similarly low in transgenic and control fruit at mature green stage, but 

was more strongly induced after the breaker stage in the dominant repressor lines, 

concomitant to the rise in ethylene production. In addition, mRNA accumulation of 

ethylene-inducible genes, like E4 and E8 was also increased in ERF.B3-SRDX, consistent 

with the elevated ethylene production (Figure 8). The transcript accumulation of a major 

fruit polygalacturonase gene, PG2A, involved in ripening-related cell wall metabolism, 

was significantly induced in ERF.B3-SRDX fruits (Figure 8) in line with the enhanced 

softening phenotype.  

 
Figure 8. Ripening-related gene expression in wild-type and ERF.B3-SRDX lines during fruit 

ripening. Total RNA was extracted from the indicated developmental stages of fruit ( MG, Br, Br+3 and 

Br+7). Values are means ± SD of three biological replicates. *, 0.01< P < 0.05, **, 0.001 < P < 0.01 

(Student’s test). SR1 and SR2 are two independent ERF.B3-SRDX lines.  
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The expression of key regulatory genes of the ripening process like RIN, NOR and CNR 

was increased at post-breaker stages compared to wild type, even though their induction 

took place later than in control fruit (Figure 9). The altered expression pattern of these 

genes in the ERF.B3-SRDX fruits is consistent with the dramatically delayed attainment 

of competence to ripen in transgenic fruits. Moreover, the mRNA levels of LeHB-1, 

another ripening regulator gene, were higher in ERF.B3-SRDX lines at all ripening stages 

(Figure 9). By contrast, the expression of TAGL1, a tomato SHATTERPROOF gene, and 

AP2a, an AP2/ERF family gene acting as a negative regulator of fruit ripening did not 

display significant changes in ERF.B3-SRDX dominant repressor fruits compared to wild 

type (Figure 9).  

 

 
Figure 9. Ripening regulator genes expression in wild-type and ERF.B3-SRDX lines during fruit 

ripening. Total RNA was extracted from the indicated developmental stages of fruit ( MG, Br, Br+3 and 

Br+7) as defined in the methods. The relative mRNA levels of each gene  at  breaker (Br) stage were 

standardized to 1.0, referring to Sl-Actin gene as internal control. Values are means ± SD of three biological 

replicates. *, 0.01< P < 0.05, **, 0.001 < P < 0.01, ***, P < 0.001 (Student’s test). SR1 and SR2  are two 

independent ERF.B3-SRDX lines.  
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A number of ERF gene family members show altered expression in the ERF.B3-

SRDX lines 

 

Considering the putative role of ERFs in mediating ethylene responses, and given the role 

of ethylene in regulating the ripening process, we examined the transcript levels of Sl-

ERF genes in both wild-type and the ERF.B3-SRDX fruits. A dramatic change in the 

transcript levels for a number of ERF genes was revealed in the dominant repressor lines 

(Figure 10). That is, among the 25 Sl-ERFs that showed detectable transcript 

accumulation, 10 were significantly down-regulated in the ERF.B3-SRDX dominant 

repressor lines while 8 Sl-ERFs displayed up-regulation in transgenic lines (Figure 10). 

Of particular note, accumulation of transcripts corresponding to Sl-ERF.A1, whose 

expression is strongly induced during ripening (Figure 1), was dramatically enhanced in 

the ERF.B3-SRDX expressing lines.  

 

 
Figure 10. Accumulation of Sl-ERFs transcripts in WT and ERF.B3-SRDX lines assessed by qRT-

PCR in fruits at Br+3 stage. The relative mRNA level of each gene in WT was standardized to 1.0, 

referring to Sl-Actin as internal control. *, 0.01< P < 0.05, **, 0.001 < P < 0.01, ***, P < 0.001 (Student’s 

test). SR is representative of data from three independent ERF.B3-SRDX lines (SR1, SR2, and SR3).  

 

DISCUSSION 

 

Our previous study has demonstrated that tomato Sl-ERF.B3 plays an important role in 

controlling pleiotropic ethylene responses in tomato via feedback regulation of ethylene 
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signaling and ERF genes (Liu et al., 2013). Here we show that dominant repression of the 

Sl-ERF.B3 transcription factor in tomato also broadly impacts fruit development and 

ripening. Indeed, ERF genes have been shown to be involved in fruit ripening in tomato 

(Li et al., 2007; Lee et al., 2012). The highly induced mRNA accumulation of the tomato 

Sl-ERF.B3 gene in fruit at the breaker stage suggested a putative role of this gene in fruit 

ripening. The dramatically delayed time from anthesis to the breaker stage was an 

apparent effect of dominant repression of Sl-ERF.B3 on early fruit development. The 

time from anthesis to the breaker stage was delayed by approximately 16 days in the 

dominant repressor (ERF.B3-SRDX) lines compared with the wild type (Table 1), 

indicating a strong influence of dominant repression of Sl-ERF.B3 on tomato early fruit 

development. Another obvious effect of dominant repression of Sl-ERF.B3 on fruit 

development is the significantly reduced fruit size with a bumpy appearance from the 

young green fruit stage, which is probably caused by a reduction in epidermal cell size 

and a defect in the normal or coordinated expansion of the pericarp. The difference in 

color development between wild-type and the ERF.B3-SRDX fruits became obvious after 

the breaker stage and the ERF.B3-SRDX fruits retained its orange color, failing to turn red 

as in wild type at the final ripening stage. Data from the time course for fruit firmness 

also showed an early fruit softening phenotype in the ERF.B3-SRDX lines. Moreover, 

ripening fruit anatomy showed that ERF.B3-SRDX fruits have a thicker pericarp, a 

smaller volume of jelly, a dry and crumbly appearance of the pericarp, suggesting a 

defect in the expansion or elasticity of the epidermis. Since fruit ripening is a complex 

process with dramatic changes in color, texture, flavor, and aroma of the fruit flesh 

(Seymour et al., 1993; Alexander & Grierson, 2002; Carrari & Fernie, 2006), the changes 

in the ERF.B3-SRDX lines related to fruit ripening indicate the involvement of Sl-ERF.B3 

gene in regulating fruit ripening in tomato. 

The dramatic development of red pigmentation of ripening fruits is one of the most 

notable features of tomato and the principal carotenoids that accumulate in ripening 

tomato are lycopene and β-carotene, which confer the red and orange colors to ripe fruits, 

respectively (Fraser et al., 1994; Burns et al., 2003; Alba et al., 2005). Changes in 

carotenoid accumulation have been demonstrated to correspond with alterations in 

expression of genes encoding the carotenoid pathway enzymes (Giuliano et al., 1993; 
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Ronen et al., 2000; Galpaz et al., 2006; Chung et al., 2010; Lee et al., 2012; Luo et al., 

2013). Dominant repression of Sl-ERF.B3 in tomato resulted in orange fruit color with 

decreased levels of lycopene and elevated accumulation of β-carotene. This suggests a 

role of Sl-ERF.B3 in regulating carotenoid biosynthesis in tomato. The altered carotenoid 

levels in ERF.B3-SRDX lines are tightly correlated with the altered mRNA accumulation 

of the carotenoid biosynthesis genes. The transcript accumulation of PSY1 which acts as a 

major regulator of metabolic flux toward downstream carotenoids during fruit maturation 

(Fray & Grierson, 1993), was markedly reduced and its repression is consistent with the 

substantial reduction in total carotenoid levels at the breaker stage (due to  a precipitous 

decline in lycopene) observed in the ERF.B3-SRDX dominant repressor lines. Moreover, 

PDS, another carotenoid biosynthesis gene which encodes phytoene desaturase catalyzing 

the conversion of phytoene to ζ-carotene upstream of lycopene synthesis (Pecker et al., 

1992), was also down regulated in the ERF.B3-SRDX fruits during ripening and thus may 

also contribute to the decreased carotenoid levels. In addition, a significant induction of 

all three lycopene beta cyclases (β-LCY1, β-LCY2, CYC-β) genes was observed in 

ERF.B3-SRDX lines, most probably accounting for the elevated levels of β-carotene. In 

line with this hypothesis, overexpression of β-LCY and CYC-β has been previously shown 

to cause β-carotene accumulation in fruits (Rosati et al., 2000; Ronen et al., 2000). In 

addition, positive correlations between β-LCY and CYC-β expression and β-carotene 

levels were revealed by correlation analysis of fruit metabolome and transcriptome data 

from S. pennellii x S. lycopersicum introgression lines (Lee et al., 2012). Ethylene, light 

and some transcription factors are known putative regulators of carotenoid accumulation 

(Mustilli et al., 1999; Vrebalov et al., 2002, 2009; Giovannoni, 2004; Liu et al., 2004; 

Alba et al., 2005). It is known that ethylene regulates carotenoid accumulation during 

fruit ripening by regulating the expression of carotenoid biosynthesis genes controlling 

final carotenoid profiles such as PSY1, β-LCY and CYC- β (Fraser et al., 1994; Ronen et 

al., 2000; Alba et al., 2005). It is noteworthy that dominant repression of Sl-ERF.B3 in 

tomato resulted in decreased total carotenoid levels and elevated ethylene production. 

This phenotype at least partially resembles that of the SlAP2a repressed lines, in which 

significantly elevated ethylene levels are associated with altered total carotenoids and a 

shift to β-carotene rather than lycopene (Chung et al., 2010; Karlova et al., 2011). 
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Moreover, the phenotype also recalls that of the tomato never ripe mutant, in which 

lycopene biosynthesis and PDS gene expression are repressed and ethylene production is 

increased (Alba et al., 2005). Furthermore, assessing the relative mRNA accumulation of 

SlAP2a failed to show significant difference in its expression levels in ERF.B3-SRDX 

fruits compared to wild type, suggesting that the regulation of dominant repression of Sl-

ERF.B3 in fruit ripening is likely to be independent of SlAP2a. It is possible that 

dominant repression of Sl-ERF.B3 in tomato results in complex alterations in carotenoid 

accumulation network and impacts carotenoid biosynthesis genes through mechanisms 

beyond the influence of ethylene. Transcription factors impacting carotenoid 

accumulation in tomato include RIN (Vrebalov et al., 2002), CNR (Manning et al., 2006), 

TAGL1 (Vrebalov et al., 2009), SlAP2a (Chung et al., 2010; Karlova et al., 2011), 

SlERF6 (Lee et al., 2012) and SlMADS1 (Dong et al., 2013). The expression data during 

fruit ripening revealed altered expression of RIN, CNR and SlERF6 (Sl-ERF.E4) genes in 

ERF.B3-SRDX lines compared with wild-type controls, suggesting that these 

transcription factors may be involved in the regulation networks of carotenoid 

accumulation in the ERF.B3-SRDX lines. Interestingly, an Arabidopsis ERF transcription 

factor, RAP2.2, via binding to the ATCTA cis-element in the promoter regions of PSY 

and PDS, regulates the expression of carotenoid biosynthesis genes (Welsch et al., 2007). 

Given that the Sl-ERF.B3 fused to the SRDX motif strongly suppresses the expression of 

the putative target genes (Liu et al., 2013) together with the presence of the ATCTA 

motif in the promoter regions of both tomato PSY1 and PDS genes, it is possible that 

ERF.B3-SRDX represses the expression of PSY1 and PDS in ERF.B3-SRDX lines by 

directly binding to their promoters.  

A hallmark of climacteric fruit ripening such as tomato is the dramatically induced 

respiration and ethylene production at the onset of ripening. Dominant repression of Sl-

ERF.B3 in tomato resulted in substantially elevated levels of ethylene production (Figure. 

7B), indicating that altered fruit ripening in ERF.B3-SRDX dominant repressor lines was 

at least partly through influencing ethylene synthesis. ERF.B3-SRDX fruits produced up 

to four-fold more ethylene than the wild-type fruits during ripening with correspondingly 

elevated transcript accumulation of ethylene biosynthesis genes, including ACS2, ACS4 

and ACO1 (Figure. 8). Ethylene biosynthesis is tightly controlled by ACS and ACO 
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multigene families during fruit development and ripening (Nakatsuka et al., 1998; Barry 

et al., 2000; Barry & Giovannoni, 2007). Based on the level of ethylene production 

during fruit development, two systems of ethylene regulation have been proposed 

(McMurchie et al., 1972). System 1 represents the basal level of ethylene in immature 

fruit and vegetative tissues, whereas system 2 represents a high level of ethylene 

production associated with fruit ripening (Oetiker & Yang, 1995). Tomato ACS1 and 

ACS6 have been shown to mediate the system 1 ethylene production in immature fruit in 

tomato, and the autocatalytic ethylene biosynthesis in system 2 is mediated through 

ethylene-stimulated expression of ACS2, ACS4, ACO1 and ACO4 genes (Nakatsuka et 

al., 1998; Barry et al., 2000; Barry & Giovannoni, 2007). The mRNA accumulation of 

ACS2 is induced at the onset of ripening and this induction is ethylene-dependent but is 

independent of rin (Nakatsuka et al., 1998; Barry et al., 2000). Moreover, repression of 

the ACS2 gene could block fruit ripening in tomato (Oeller et al., 1991). ACS4 is also 

induced during ripening in a rin-dependent fashion. Indeed, the tomato ACS2 and ACS4 

are the predominant ACS mRNAs in ripening fruit and both genes are under additional 

developmental controls (Barry et al., 2000; Yokotani et al., 2004). The transcript of 

ACO1 increases at the onset of ripening and is sustained in high expression during tomato 

fruit ripening (Nakatsuka et al., 1998), suggesting a role of this gene in controlling 

ethylene synthesis in fruit ripening. Since ACS and ACO catalyze the rate limiting and 

final steps in ethylene biosynthesis, the significantly elevated mRNA levels of ACS2, 

ACS4 and ACO1 are probably responsible for the elevated ethylene levels in the ERF.B3-

SRDX dominant repressor lines. Dominant repression of Sl-ERF.B3 results in high levels 

of ethylene, suggesting that regulators (either directly or indirectly regulated by ERF.B3-

SRDX) for regulation of these key ethylene synthesis genes may lie upstream of ethylene 

synthesis control and remain to be discovered. It is noteworthy that dominant repression 

of Sl-ERF.B3 leads to reduced ethylene production in dark-grown seedlings with reduced 

mRNA accumulation of ACS1A and ACO1 genes (Liu et al., 2013) indicating that the 

mechanisms of controlling ethylene production in ERF.B3-SRDX lines by the regulation 

of ethylene biosynthesis genes in vegetative tissue and ripening fruits are distinct.  

Fruit ripening is a complex developmental process and is genetically controlled by 

intricate transcriptional cascades through ethylene-and non-ethylene-mediated regulation. 
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The MADS-box transcription factor RIN has been regarded as a key regulator responsible 

for the onset of ripening by acting upstream of both ethylene- and non-ethylene-mediated 

controls in tomato (Vrebalov et al., 2002; Ito et al., 2008; Fujisawa et al., 2011; Martel et 

al., 2011; Fujisawa et al., 2013). Using a chromatin immunoprecipitation (CHIP) 

approach, RIN was proved to be a master regulator of ripening that directly influences 

many ripening-associated processes in a developmental specific pattern (Fujisawa et al., 

2011; Martel et al., 2011; Fujisawa et al., 2013). Indeed, RIN interacts with the 

promoters (CArG motif) of genes involved in the major pathways associated with 

observed and well-studied ripening phenotypes and phenomena, including the 

transcriptional control network involved in overall ripening regulation (CNR, NOR and 

HB1), ethylene biosynthesis (ACS2 and ACS4), downstream ethylene response (E4 and 

E8), cell wall metabolism (PG2a), and carotenoid biosynthesis (PSY1) (Fujisawa et al., 

2011; Martel et al., 2011; Fujisawa et al., 2013). ACO1 is influenced by RIN via the 

homebox protein HB1, which interacts with the promoter of ACO1 (Lin et al., 2008; 

Martel et al., 2011). In ERF.B3-SRDX mutants, although the induction of RIN is delayed 

at the breaker stage, the transcript accumulation is significantly increased compared to 

the wild-type controls during the later development stages (Br+3 and Br+7). CNR and 

NOR show the same transcript accumulation patterns with RIN in ERF.B3-SRDX mutants 

during fruit ripening in consistent with the regulation of RIN to CNR and NOR. The 

transcript of HB1 also shows higher accumulation in ERF.B3-SRDX lines during fruit 

ripening. Moreover, genes involving in ethylene biosynthesis, ethylene downstream 

response and cell wall metabolism including ACS2, ACS4, ACO1, E4, E8 and PG2a 

display significant induction in ERF.B3-SRDX mutants during fruit ripening process. 

These data are in line with the model that RIN acts as a master regulator of the ripening 

cascade by influencing numerous molecular pathways. However, since ERF.B3-SRDX is 

a dominant repressor, the regulation mechanism between ERF.B3 or its chimeric protein 

and RIN remains to be revealed.    

The expression dynamics of most Sl-ERF genes during fruit ripening suggests their 

putative involvement in the ripening process. Moreover, the expression of a number of 

Sl-ERF genes was found to be markedly altered in ERF.B3-SRDX fruit at the breaker + 3 

stage. The alteration of Sl-ERF transcript levels in ERF.B3-SRDX ripening fruit may 
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account for diversity of ripening phenotype displayed by the dominant repressor fruits. 

Notably, ERF genes (Sl-ERF. C3, Sl-ERF. D2, Sl-ERF. F5 and Sl-ERF. F4) which shown 

to be the putative target of Sl-ERF.B3 and ERF.B3-SRDX (Liu et al., 2013) are down-

regulated in ERF.B3-SRDX fruits, further supports the model that a single ERF can 

impact the expression of other members of the gene family and this inter-connected 

regulation among ERF genes may therefore account for the pleiotropic alterations in the 

ERF.B3-SRDX lines. 

 

MATERIAL AND METHODS 

 

Plant materials and growth conditions 
Tomato (Solanum lycopersicum cv. MicroTom) plants were transferred to soil and grown 

under standard greenhouse conditions. Conditions in the culture chamber room were set 

as follows: 14h-day/10h-night cycle, 25/20°C day/ night temperature, 80% hygrometry, 

250µmol.m-2.s-1 intense luminosity. For measuring time to ripening, flowers were tagged 

at anthesis and number of days from anthesis to breaker stage was counted. More than 15 

fruits of each genotype were used for this analysis. 

 

Plant transformation 

To generate the ERF.B3-SRDX transgenic plants, the coding sequence of Sl-ERF.B3 

missing the stop codon was amplified by PCR from a tomato fruit cDNA library. This 

coding region was cloned via blunt-end ligation into the SmaI site of p35SSRDXG in 

frame to the region that encodes the SRDX repression domain (LDLDLELRLGFA) from 

SUPERMAN (Hiratsu et al., 2003; Mitsuda et al., 2006). The transgene cassette was 

transferred into the destination vector pBCKH, which was derived from the plant 

transformation vector pBIG-HYG (Becker, 1990) using the gateway LR reaction 

(Invitrogen Corp.) Agrobacterium tumefaciens-mediated transformation of tomato plants 

was carried out according to (Wang et al., 2005), and transformed lines were selected on 

a hygromycin-containing medium. All experiments were carried out using homozygous 

lines from F3 or later generations. 

 



 
 

124 
 

RNA isolation and quantitative RT-PCR 

Fruits were harvested, frozen in liquid nitrogen and stored at -80°C. Total RNA from 

pericarp of at least five individual fruits at each developmental stage analyzed in this 

article was extracted using a Plant RNA Purification Reagent (Invitrogen, Cat. No. 

12322-012) according to the manufacturer’s instructions. Total RNA was then DNase-

treated (Invitrogen, Cat. No. AM1906) to remove contaminating genomic DNA. First-

strand cDNA was reverse transcribed from 2 μg of total RNA using an Omniscript 

Reverse Transcription kit (Qiagen, Cat. No. 74904) following the manufacturer’s 

instructions. Gene-specific primers were designed by Primer Express software (PE-

Applied Biosystems) and were further checked using BLAST against all tomato unigenes 

(Tomato unigene database). Quantitative real-time PCR analyses were performed as 

previously described (Pirrello et al., 2006). The primer sequences used in this study are 

listed in Supplemental Table S2. 

 

LC-MS analysis of fruit carotenoids 

Carotenoid extractions have been performed as previously described (Fantini et al., 

2013). Briefly, 5 mg of ground lyophilized tomato fruit powder were extracted with 

chloroform (spiked with 50 mg l-1 DL-α-tocopherol acetate as internal standard) and 

methanol (2:1 by volume); subsequently, 1 volume of 50 mM Tris buffer (pH 7.5, 

containing 1 M NaCl) was added and samples were kept 20 minutes on ice. After 

centrifugation (15,000 g for 10 minutes at 4°C), the organic hypophase was collected and 

the aqueous phase was re-extracted with the same amount of spiked chloroform. 

Combined organic phases were then dried by speedvac and resuspended in 100 μl of 

ethyl acetate. For each genotype, at least five independent extractions were performed. 

LC-MS analyses were carried out using a Discovery LTQ-Orbitrap mass spectrometry 

system (Thermo Fischer Scientific) operating in positive mode-atmospheric pressure 

chemical ionization (APCI), coupled to an Accela U-HPLC system (Thermo Fischer 

Scientific, Waltham, MA). LC separations were performed using a C30 reverse-phase 

column (100 x 3.0 mm) purchased from YMC (YMC Europe GmbH, Schermbeck, 

Germany). The mobile phases used were methanol (A), water/methanol (20/80 by 

volume), containing 0.2% ammonium acetate (B), and tert-methyl butyl ether (C). The 
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gradient was: 95%A:5%B for 1.3 minutes, followed by 80%A:5%B:15%C for 2.0 

minutes and by a linear gradient to 30%A:5%B:65%C over 9.2 minutes. UV-Vis 

detection was performed continuously from 220 to 700 nm with an online Accela 

Surveyor photodiode array detector (PDA, Thermo Fischer Scientific, Waltham, MA). 

All solvents used were LC-MS grade quality (CHROMASOLV® from Sigma-Aldrich). 

Carotenoids were quantified on the basis of the internal standard amounts, obtained by 

through comparison with peak areas of known amounts of external standard LC-MS runs; 

data were then normalized on spectrophotometric chlorophyll/carotenoid contents. For 

APCI-MS ionization of xanthophylls (0-6 minutes of LC-MS run), nitrogen was used as 

sheath and auxiliary gas which were set to 40 and 20 units, respectively while the 

vaporizer temperature was 300 °C, the capillary temperature was 250 °C, the discharge 

current was set to 4.0 µA, the capillary voltage and tube lens settings were 27 V and 90 

V, respectively. APCI-MS ionization of carotenes (6-14 minutes of LC-MS runs) was 

performed with the following parameters: 30 and 10 unites of, respectively, nitrogen 

sheath and auxiliary gas; 300 °C and 250 °C for, respectively, vaporizer and capillary 

temperatures, 5.0 µA as discharge current, 0 and 95 V as, respectively, capillary voltage 

and tube lens settings. Identification was performed as previously reported (Fantini et al., 

2013), and on the basis of the m/z accurate masses, as reported on Pubchem database 

(http://pubchem.ncbi.nlm.nih.gov/) for monoisotopic masses identification, or on 

Metabolomics Fiehn Lab Mass Spectrometry Adduct Calculator 

(http://fiehnlab.ucdavis.edu/staff/kind/Metabolomics/MS-Adduct-Calculator/) in case of 

adduct ion detection. 

 

Color measurement 

L, a and b values were measured with a Minolta chromameter (CR-200, 78903131) on 

fruit at different stages during fruit ripening. The chromameter was calibrated against a 

standard white tile. Hue angle values were calculated according to the following 

equation: Hue angle = tan-1 (b/a) if a>0 or 180+ tan-1 (b/a) if a<0. 

 

 
 
 

http://pubchem.ncbi.nlm.nih.gov/
http://fiehnlab.ucdavis.edu/staff/kind/Metabolomics/MS-Adduct-Calculator/


 
 

126 
 

Fruit firmness 
Fifteen fruits from each line were harvested at the breaker stage and the firmness was 

assessed using Harpenden calipers (British Indicators Ltd) as described by Ecarnot et al. 

(2013). 

 

Ethylene measurements 

Fruits at each developmental stage were harvested and placed in open 120-ml jars for 2 h 

to minimize the effect of wound ethylene caused by picking. Jars were then sealed and 

incubated at room temperate for 35 min, and 1 ml of headspace gas was injected into an 

Agilent 7820A gas chromatograph equipped with a flame ionization detector. Samples 

were compared with reagent grade ethylene standards of known concentration and 

normalized for fruit weight. 
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Supplemental data for chapter III 

 

 
 
Figure S1. Reduced seed production and altered seed morphology from wild-type and ERF.B3-SRDX 

transgenic lines. A, Significant reduced seed number of ERF.B3-SRDX lines. B, The seed morphology is 

altered relative to the wild type. C, Significantly lower weight of ERF.B3-SRDX seeds compared with wild 

type. *, 0.01< P < 0.05, **, 0.001 < P < 0.01 (Student’s test). SR1, SR2 and SR3 are three independent 

ERF.B3-SRDX lines.  
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Table S1. List of the primers used in the study 

Gene Name Primer Sequence  

Sl-Actin 
F 5'-TGTCCCTATTTACGAGGGTTATGC-3' 

R 5'-CAGTTAAATCACGACCAGCAAGAT-3' 

Sl-ERF.B3 
F 5'-CGGAGATAAGAGATCCAAGTCGAA-3' 

R 5'-CTTAAACGCTGCACAATCATAAGC-3' 

Sl-ERF.B3-endo 
F 5'-TTCACAGAGACATAAACACAAACACCT-3' 

R 5'-TGTTGTCGTATGAGTTCTAATGTTAATCCT-3' 

Sl-ERF.B3-SRDX 
F 5'-GGAAAATCTGGTGCTCCGG-3' 

R 5'-CTCGTCGACTTAAGCGAAAC-3' 

Sl-ERF.A1 
F 5'-ACCGGATCCTGTTAGAGTTGGA-3' 

R 5'-CGACGCCGATGAACAATG-3' 

Sl-ERF.A2 F 5'-CGGTATCATCAGCTTCGGAAA-3' 

R 5'-TCTCAACTTCTAATTCGGCTTGCT-3' 

Sl-ERF.A3 
F 5'-GCGAAATGGATCAACAGTTACCA-3' 

R 5'-ATTAGACGACTGAAGCTTGAATTCC-3' 

Sl-ERF.B1 
F 5'-GAATGATGACGGAATTGTAATGAAGA-3' 

R 5'-TTCCACAATCCCAAATTGAAGA-3' 

Sl-ERF.B2 
F 5'-AGTTTGCAGCGGAGATTCGT-3' 

R 5'-TGCCCTGTCATATGCCTTTG-3' 

Sl-ERF.C1 
F 5'-TTCTTCGTGTCGAAAATACTAAGTTCAGT-3' 

R 5'-ACTCTAAATTCTTCAAGAAATCCAGAACA-3' 

Sl-ERF.C2 
F 5'-ATCATTACCATGGAATGATCAACATT-3' 

R 5'-CCGTCTATAACTTTCTTTCGAGGTTAA-3' 

Sl-ERF.C3 
F 5'-CAAGAAGTTTCCTCAATCTCTCATGTAT-3' 

R 5'-CCGAGATGAATAATCCATTTGATTT-3' 

Sl-ERF.C6 
F 5'-GGGAAATACGCTGCGGAAA-3' 

R 5'-TTTCGAACGTACCTAGCCATACTCT-3' 

Sl-ERF.D1 
F 5'-GGCAGCTGAAATAAGAGATCCATATAA-3' 

R 5'-CTAGCAGCCCCTTCAGCAGTAT-3' 

Sl-ERF.D2 
F 5'-ACACAAGTAGCACCAGCACCACTA-3' 

R 5'-ACCCCAAAAAAAGCAAGAAAATT-3' 

Sl-ERF.D3 
F 5'-ATTCATTTTCGGGTTGTGCAGTA-3' 

R 5'-CGACTATAATGATTTCTGCCGAACT-3' 

Sl-ERF.D4 
F 5'-GTTGCTGCTTTAACCAATGTGATTAT-3' 

R 5'-CTTCCGGTACGCGAAACAAG-3' 

Sl-ERF.E1 F 5'-GTTCCTCTCAACCCCAAACG-3' 
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R 5'-TTCATCTGCTCACCACCTGTAGA-3' 

Sl-ERF.E2 
F 5'-ACTTCGTGAGGAAACCCTGAAC-3' 

R 5'-GTTACTAATATAAGTCATGTTGGGCTGAA-3' 

Sl-ERF.E3 
F 5'-GCATTTGCGATCTGAAGTTGTT-3' 

R 5'-CAAATGGCTTGACATCGACTTG-3' 

Sl-ERF.E4 
F 5'-AGGCCAAGGAAGAACAAGTACAGA-3' 

R 5'-CCAAGCCAAACGCGTACAC-3' 

Sl-ERF.F1 
F 5'-ACGAGCTTTCTTCTTTTCTCTCTCTAAA-3' 

R 5'-GAAACTCGATATCCTTCTGTAAAATCTTC-3' 

Sl-ERF.F2 
F 5'-TTGATACCACTGCTTACCTAGTTTTTCT-3' 

R 5'-TATCTTCTATGGCTCCTTCCTCTTCT-3' 

Sl-ERF.F3 
F 5'-AGTAGTAAGGTGACCCGGATGAAG-3' 

R 5'-CACCGATCATCCACCACAGA-3' 

Sl-ERF.F4 
F 5'-GAGCTAATGGCTGATTTTTGTATATAAGTTC-3' 

R 5'-AAATGGTAGAAACAGCACGAGAAAG-3' 

Sl-ERF.F5 
F 5'-TGGAGCGAAAGCGAAAACTAA-3' 

R 5'-GTCTGACTCGGACTCCGATTG-3' 

Sl-ERF.G1 
F 5'-GAAGAAAGCGATCGATTTGAAGA-3' 

R 5'-TTTTCCCCATGGCCTCTGT-3' 

Sl-ERF.G2 
F 5'-CGGTGGAGATAAAAGCGAAAAC-3' 

R 5'-CCACTTCGCAGAACCCTAGATT-3' 

Sl-ERF.H1 
F 5'-AGATGCAGCAAGAGCATATGATG-3' 

R 5'-TTGGGTTGTATGGGAAATTAGTTCT-3' 

PSY1 
F 5'-GGAAAGCAAACTAATAATGGACGG-3' 

R 5'-CCACATCATAGACCATCTGTTCC-3' 

PDS 
F 5'-GGTCACAAACCGATACTGCT-3' 

R 5'-AAACCAGTCTCGTACCAATCTC-3' 

ZDS 
F 5'-AGTGGTTTCTGTCTAAAGGTGG-3' 

R 5'-ACCGAGCACTCATGTTATCAC-3' 

β-LCY1 
F 5'-GTCCACTTCCAGTATTACCTCAG-3' 

R 5'-TGTCCTTGCCACCATATAACC-3' 

Sl-ACS2 
F 5'-TGTTAGCGTATGTATTGACAACTGG-3' 

R 5'-TCATAACATAACTTCACTTTTGCATTC-3' 

Sl-ACS4 
F 5'-CTCCTCAAATGGGGAGTACG-3' 

R 5'-TTTTGTTTGCTCGCACTACG-3' 

Sl-ACO1 
F 5'-GCCAAAGAGCCAAGATTTGA-3' 

R 5'-TTTTTAATTGAATTGGGATCTAAGC-3' 
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E4 
F 5'-GACCACTCTAAATCGCCAGG-3' 

R 5'-TTCCTGAGCGGTATTGCTTT-3' 

E8 
F 5'-TGGCTCCGAATCCTCCCAGTCT-3' 

R 5'-GTCCGCCTCTGCCACTGAGC-3' 

PG2a 
F 5'-TCAAGGGCACAAGTGCAACAAAGG-3' 

R 5'-TGCACGTAGCCTCTGATGGTTT-3' 

RIN 
F 5'-ATGCAGCACCATCAACACAT-3' 

R 5'-CTCCAAATTCAAAGCATCCA-3' 

CNR 
F 5'-GCCAAATCAAGCAATGATGA-3' 

R 5'-TCGCAACCATACAGACCATT-3' 

NOR 
F 5'-AGAGAACGATGCATGGAGGTTTGT-3' 

R 5'-ACTGGCTCAGGAAATTGGCAATGG-3' 

HB-1 
F 5'-CAATCGGAGGAAGATGATGG-3' 

R 5'-TGTTCATGGTGCTGCTCTTC-3' 

TAGL1 
F 5'-ACTTTCTGTTCTTTGTGATGCT-3' 

R 5'-TTGGATGCTTCTTGCTGGTAG-3' 

AP2a 
F 5'-AACGGACCACAATCTTGAC-3' 

R 5'-CTGCTCGGAGTCTGAACC-3' 
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Chapter IV 

General conclusions and perspectives 
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The gaseous phytohormone ethylene plays a critical role in a wide range of 

developmental processes, including germination, flower and leaf senescence, fruit 

ripening, leaf abscission, root nodulation, programmed cell death, and responses to biotic 

and abiotic stresses. After its synthesis, the perception and signaling of ethylene rely on 

the cooperative action of several components among which Ethylene Response Factors 

(ERFs) play a poorly understood role. However, being encoded by one of the largest 

family of plant transcription factors, ERF proteins are the most suited step of ethylene 

signaling where the diversity and specificity of ethylene responses may originate. My 

Ph.D project mainly dealt with the functional characterization of ERF genes during plant 

growth and fruit development using tomato as the plant model. More particularly, my 

work aimed to decipher the role of Sl-ERF.B.3, a member of ERF family gene, in 

mediating ethylene response and tomato plant development and fruit ripening using 

advanced reverse genetics and genomics methodologies.  

Sl-ERF.B3 was previously shown to act as strong transcriptional activator on GCC-box-

containing promoters and its transcripts accumulate upon ethylene treatment, suggesting 

a putative involvement in ethylene-regulated processes. To address the physiological 

significance of Sl-ERF.B3 and its potential role in mediating ethylene responses, tomato 

lines under- and over-expressing Sl-ERF.B3 gene were generated by stably transforming 

tomato plants with either sense or antisense constructs under the control of the 

constitutive 35S promoter. Since classical down- and up-regulation approaches failed to 

provide clear clues on Sl-ERF.B3 functional significance in tomato, we generated a 

dominant repressor version of Sl-ERF.B3 (ERF.B3-SRDX) using the Chimeric Repressor 

Silencing Technology (CRES-T) to overcome the functional redundancy among ERF 

family members. The capacity of ERF.B3-SRDX retaining to bind the same target genes 

than Sl-ERF.B3 protein and to dominantly repress its transcriptional activity was 

confirmed by a transient transformation assay. This indicates the usefulness of this 

strategy in functional studies by overcoming redundancy among members of a multigene 

family. Using the dominant repression version of Sl-ERF.B3 (ERF.B3-SRDX), the 

involvement of Sl-ERF.B3 in ethylene response and a wide range of development 

processes was demonstrated. Expression of a dominant repressor ERF.B3-SRDX version 

of Sl-ERF.B3 in the tomato resulted in pleiotropic ethylene responses and vegetative and 
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reproductive growth phenotypes. The dominant repressor etiolated seedlings displayed 

partial constitutive ethylene-response in the absence of ethylene and adult plants 

exhibited typical ethylene-related alterations such as leaf epinasty, premature flower 

senescence and accelerated fruit abscission. The multiple symptoms related to enhanced 

ethylene sensitivity correlate with the altered expression of ethylene biosynthesis and 

signaling genes, suggesting the involvement of Sl-ERF.B3 in a feedback mechanism 

regulating components of ethylene production and response. Moreover, Sl-ERF.B3 is 

shown to modulate the transcription of a set of ERFs revealing the existence of a complex 

network in which multiple transcription factors are competing for promoters to control 

the expression of genes that are essential for a wide range of plant responses to ethylene. 

Overall, Sl-ERF.B3 is shown to modulate ethylene responses at four different levels: (i) 

ethylene biosynthesis, (ii) ethylene receptor, (iii) primary ethylene transcription factors 

(EIL genes), and (iv) downstream ERF genes. 

Expression dynamics of most ERF genes also suggest their involvement in the ripening 

process, although no link was established between their repressor or activator function 

and their pattern of expression. The transcript accumulation of Sl-ERF.B3 is induced at 

the breaker stage and maintained a high level all stages along the ripening process, 

suggesting that its expression might be continuously required for the modulation of the 

ripening-regulated genes all along the ripening process. Indeed, over-expression of Sl-

ERF.B3 as a chimeric repressor (ERF.B3-SRDX) in tomato results in alterations in both 

fruit morphology and ripening process. Transgenic lines produce significantly smaller 

fruit with heart shape and raised bumpy areas present intermittently on the epidermal 

surface. In addition to the altered fruit morphology, ERF.B3-SRDX lines exhibited a 

distinct ripening process. The attainment of competence to ripen is dramatically delayed 

in the transgenic lines, however, once the ripening process starts at breaker stage, when a 

visible color change just begins to occur, the softening of ERF.B3-SRDX fruits is actually 

much faster than wild type. These results indicate the involvement of Sl-ERF.B3 in fruit 

development and ripening. Although after the breaker stage, the ERF.B3-SRDX fruit 

soften faster with a significantly higher ethylene production, these transgenic fruits fail to 

display a red-ripe phenotype with a shift of carotenoid accumulation from lycopene to β-

carotene at the ripening stages. Moreover, genes involved in different metabolic 
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pathways, such as carotenoid biosynthesis pathway, ethylene synthesis, and cell wall 

metabolism exhibit altered mRNA accumulation patterns in transgenic lines during fruit 

ripening process, indicating that Sl-ERF.B3 impacts fruit ripening through mediating fruit 

ripening-associated genes.  

In this study, the ectopic expression of a dominant repressor form of the Sl-ERF.B3 

protein provided a mean towards altering the activity of the native Sl-ERF.B3 protein. 

This Chimeric Repressor Silencing Technology (CRES-T) strategy allowed revealing 

vegetative and reproductive growth phenotypes that could not be uncovered by the 

expression of neither sense nor antisense constructs of Sl-ERF.B3. The eventuality that 

the pleiotropic phenotypes displayed by the ERF.B3-SRDX dominant suppressor plants 

may arise from a co-suppression of the endogenous Sl-ERF.B3 is ruled out since the 

levels of Sl-ERF.B3 transcripts are not altered in the transgenic lines. Therefore, the 

ERF.B3-SRDX tomato lines proved to be a valuable tool to uncover at least some of the 

processes controlled by Sl-ERF.B3 and to reveal roles for ERF genes that have not been 

described previously. Moreover, since the study has been carried out with Micro-Tom, a 

dwarf genotype, it is important to mention that the dwarfing mutations in this genotype 

do not seem to impact the phenotype displayed by ERF.B3-SRDX plants since the dwarf 

phenotype is well reproduced in Ailsa Craig tomato, a non-dwarf variety. 

Sl-ERF.B3 is positively regulated by both ethylene and auxin. This suggests that Sl-

ERF.B3 could a suitable candidate gene to analyze the cross-talk between ethylene and 

auxin during plant growth and fruit development. Indeed, ERF.B3-SRDX transgenic lines 

show several auxin-related phenotypes, such as altered auxin sensitivity with modified 

root development and reduced auxin responsiveness. These results indicate that Sl-

ERF.B3 may act as a regulator at the crossroads between ethylene and auxin signaling. 

Moreover, exogenous application of GA partially rescued the dwarf phenotype of the 

transgenic lines together with the significantly decreased transcript levels of GA 

biosynthesis genes (Sl-GA20ox1 and Sl-GA20ox2) also indicates a crosstalk between 

ethylene and GA. Future work will study the putative role of Sl-ERF.B3 in the crosstalk 

network between ethylene and other hormones. 

The tomato Sl-ERF.B3 is related to Arabidopsis factors ERF106 and ERF107, which are 

members of group IX according to Nakano et al., (2006). This group has been implicated 
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in the regulation of defense responses and knock-out analysis of ORA59 (Pré et al., 2008) 

and AtERF14 (Oñate-Sánchez et al., 2007), prominent representatives of group IX, has 

revealed disease susceptibility phenotypes. Consistently, overexpression of ERF1, 

another member of the group, has led to enhanced resistance to necrotrophic pathogens 

(Berrocal-Lobo et al., 2002). As one member of this group, Sl-ERF.B3 may also play an 

important role in plant response to various stresses. In the future, we will focus on the 

investigation of the specific role of Sl-ERF.B3 in plant immunity.  

ERFs act as the last known downstream components of ethylene signal pathway, the 

investigation of their roles in ethylene-dependent processes is important for better 

understanding the distinct regulation mechanisms of the ethylene responses. The 

demonstration of the specific role of Sl-ERF.B3, a member of ERF gene family in tomato, 

in ethylene-mediated developmental processes such as plant growth and fruit ripening 

provided a clue of the functional significance of ERF genes in ethylene response 

processes. The data showing that most of ERF genes display altered expression patterns 

in the ERF.B3-SRDX dominant repressor lines which resulted in pleiotropic ethylene 

responses and vegetative and reproductive growth phenotypes further, stress the 

importance of ERF genes in a wide range of ethylene-dependent developmental 

processes. To further decipher the function of ERF genes in both ethylene-dependent and 

ethylene-independent processes, it is important to continue to generate mutant lines 

altered in the expression of these genes. For better understanding of the mechanisms by 

which these transcription factors control plant developmental processes, it is crucial to 

identify the target genes of ERFs. This can be achieved by comparative transcriptomic 

profiling of the lines altered in specific ERFs or by a ChIP-seq (Chromatin 

Immunoprecipitation coupled to deep sequencing) approach. Both strategies are being 

carried out within the GBF lab.   
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