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ABSTRACT 

Energy issue is becoming increasingly crucial for industrial sector that consumes large quantities of 

utilities. Although the scientific world should continue to look for alternate sources of energy, a short-term 

solution would rather rely on a more rational use of energy. To face this challenge, exergy analysis appears 

a very efficient tool as it would enable to increase efficiency and reduce environmental impact of industrial 

processes. Unfortunately, contrary to enthalpy, this concept is rather difficult to handle and exergy analysis is 

rarely implemented in process simulators. In this context, the major objective of the study presented in this 

dissertation is to make exergy analysis more understandable by coupling it with the use of a process 

simulator and also to demonstrate the value of this approach for analysis of energy efficiency of processes 

and utilities. 

This dissertation presents a generic formulation for exergy of material streams that does not depend 

on the thermodynamic model, so that it could be easily implemented in a process simulator. The different 

contributions of exergy (thermal, mechanical and chemical) have been developed and new concept such as 

the maximal thermal and mechanical recovery potential has been introduced in order to pave the way for 

exergy analysis. 

The formulations of exergy balances on a real process are presented. For that purpose, the 

formulation of exergy for heat and work flux is developed. The formulation of exergy balances has been 

introduced for both design and retrofit situations and then a set of hints for the interpretation of this exergy 

balance has been given. Synthetic tables providing solutions to reduce irreversibilities and external losses 

have been introduced. Moreover, different kinds of exergy efficiency have been defined to provide a new 

criterion for the optimization of the process. A new structured methodology for exergy analysis is developed 

to overcome the limitations of existing methodologies.  

To make exergy analysis easier for any engineer, a first prototype has been developed to implement 

the calculation of exergy for the material streams in a process flowsheet modeled in ProSimPlus. Thanks to 

this prototype, exergy of each material stream appears in a synthesis table next to the traditional 

thermodynamic values such as the enthalpy.  

Finally, a case study on Natural Gas Liquids recovery process is presented to demonstrate the benefit 

of the exergy analysis for the improvement of existing processes. First, the exergy analysis permits to make 

an energy diagnosis of the process: it pinpoints the inefficiencies of the process which relies not only on 

irreversibilities but also on external exergy losses. Then, based upon respective values of internal and 

external losses and also thanks to the breaking down of exergy into it thermal, mechanical and chemical 

contributions, some technological solutions are suggested to propose a retrofit process. Finally, the exergy 

efficiency criteria enable to optimize the operating parameters of the process in order to improve its energy 

efficiency.  

Keywords:  Exergy analysis; Process design; Process integration; Process simulator 
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RÉSUMÉ 

Dans un contexte de réduction des émissions de gaz à effet de serre (GES) et de forte volatilité du 

prix des énergies, les investissements en efficacité énergétique des sites industriels résultent souvent d’un 

processus de décision complexe. L’industriel doit pouvoir disposer d’outils lui permettant d’élaborer les 

solutions d’efficacité énergétique envisageables sur son site. Outre la recherche des sources d’énergie 

alternatives, que sont les énergies renouvelables, qui n’atteindront leur maturité technologique que sur le 

long terme, une solution à court terme consiste plutôt à favoriser une utilisation plus rationnelle de l'énergie. 

Pour relever ce défi, l'analyse exergétique apparaît comme un outil très efficace, car elle permet d’identifier 

précisément les sources d’inefficacité d’un procédé donné et de proposer des solutions technologiques 

visant à y remédier. Malheureusement, contrairement au concept d’enthalpie traditionnellement utilisé pour 

réaliser des bilans énergétiques sur un procédé, ce concept demeure assez difficile à appréhender et n’est 

que très rarement implémenté dans les simulateurs de procédés.  

Les travaux présentés dans ce document visent d’abordà rendre l'analyse exergétique plus accessible 

en l’intégrant dans un simulateur de procédés, puis à démontrer la pertinence d’une telle analyse pour 

l’amélioration de l’efficacité des procédés et des utilités associées.  

Dans un premier temps, une formulation générique et indépendante du choix du modèle 

thermodynamique pour l’évaluation de l’exergie des flux de matière est introduite. Une méthode de calcul 

des différentes contributions de l'exergie (contributions thermique, mécanique et chimique) est développée 

et un nouveau concept visant à évaluer les potentiels de récupérations thermique et mécanique maximales 

est introduit.  

Par la suite, la notion de bilan exergétique sur un système donné (opération unitaire ou procédé 

complet) est introduite. Pour l’évaluation des exergies des flux de travail et de chaleur, deux cas de figure 

sont étudiés : le cas de l’amélioration de procédés existants (« retrofitting ») et le cas de la conception de 

nouveaux procédés (« design»). Dans le cas de l’amélioration de procédés existants et afin d’aider au 

diagnostic énergétique de ces systèmes, des tableaux synthétiques proposant des solutions technologiques 

visant à réduire les irréversibilités ou les pertes exergétiques externes du procédé sont proposés. Par 

ailleurs, après une analyse comparative des différentes formulations d’efficacité exergétiques existant dans 

la littérature, la notion d’efficacité intrinsèque est retenue comme le critère le plus adapté pour une 

optimisation de l’efficacité exergétique d’un procédé complexe. Enfin, une nouvelle méthodologie structurée 

dédiée à l’analyse exergétique et permettant de pallier les lacunes des méthodologies existantes est 

présentée.  

L’ensemble de ces concepts est implémenté dans un premier prototype logiciel écrit en langage 

VBScript et intégré au simulateur de procédés ProSimPlus. Enfin, l’efficacité de la procédure est démontrée 

à travers une étude de cas portant sur la production de gaz naturel.  

Mots clés: Analyse exergétique; amélioration de procédés existants; conception des procédés; 

intégration de procédés; simulateur de procédés 
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The outlook on energy utilization has gone through a drastic change during the last few decades. 

Nowadays, there is far greater contemplation on provisioning and consumption of energy. This reflection has 

been brought about by a number of factors such as dwindling reserves of conventional sources of energy, 

fluctuating energy prices, unavailability of alternative sources of energy and new ecological realities about 

climate change. Moreover, the industrialization in developing countries and especially that of China and India 

will increase the global energy demand. In developing countries, the proportion of global energy 

consumption is projected to increase from 46 to 58 % between 2004 and 2030, at an average annual growth 

rate of 3%. During the same period industrialized nations will witness annual energy demand growth of 0.9 % 

(IEA 2011). 

 

1.1 ENERGY CONSUMPTION OF THE INDUSTRIAL SECTOR 

Energy consumption can be divided 

into four main sectors: transport, building 

(residential and commercial), agriculture 

and industrial (see Figure 1.1)(Price et 

al. 2006). On the global scale, the 

industrial sector accounts for 36 percent 

of global energy consumption and even 

using conservative estimates, this trend 

will remain more or less the same in the 

future (Agha 2009).  

Recently in France, the conclusion 

drawn by the Working Group, “Lutter 

contre les changements climatiques et 

maîtriser l'énergie” (Fight against climate change and control of energy), gathered at the recent Grenelle de 

l’environnement (2009) is that, “beyond the specific actions to improve energy efficiency in Building and 

Transport sector, there is a source of savings in other sectors which represent 43% of total energy 

consumption”. In regard to the industrial sector (which accounts for 21 % of final energy consumption and 

20% of emissions of greenhouse gases), the working group recognized that significant efforts had already 

been made in this sector but pointed out that further progress was still required.  

As highlighted in Table 1.1 which classifies the different American industrial subsectors according to their 

energy consumption, the chemical industry is clearly the greatest user of energy, followed by forest products 

and petroleum refining. Other principal large consumers include iron and steel mills, food and beverage, 

mining, aluminum, and transportation equipment manufacturers. 

The top three industries share several characteristics that contribute to their high energy consumption. 

Firstly, in these industries, the core processes used to convert raw materials are characterized by operations 

performed at high temperatures and high pressures. Secondly, each of these industries consumes vast 

amounts of energy in form of electricity and steam. Thirdly, due to the technological and thermodynamic 

limitations, the energy efficiency of several equipments in these processes is quite low.  

Figure 1.1. Sectorial trends in the world (Price et al. 2006) 

 



24  
 

 

Table 1.1. Industry ranking based on energy usage (Energetics Inc 2004) 
Rank Sector Energy usage (TBTU) 

1 Chemicals 3729 
2 Petroleum Refining 3478 
3 Forest Products 3263 
4 Iron & Steel Mills 1672 
5 Food & Beverage 1156 
6 Mining 753 
7 Transportation Equipment 488 
8 Alumina & Aluminum 441 
9 Fabricated Metals 441 

10 Textiles 359 
11 Cement 355 
12 Plastics & Rubber 327 
13 Computers, Electronics 321 
14 Glass & Glass Products 254 
15 Foundries 233 
16 Heavy Machinery 213 

 

Moreover, the reliance on fossil fuels as the primary source of energy has huge negative impact on 

the environment and eco-system of our planet. The studies of Intergovernmental Panel for Climate Change 

(IPCC) have acknowledged that the main cause for the phenomenon of global warming is the emission of 

green house gases, which are released in to the atmosphere during burning of fossil fuel. Global warming is 

considered to the biggest impediment in carrying out sustainable development.  

Actually, the industrial sector is faced with multiple challenges. On one hand, the fossil fuel prices 

have shown radical fluctuations during the last few years with the crude oil price recording the highest ever 

price of $147.27 per barrel (on July 11, 2008). On the other hand, increased competition and shrinking profit 

margins are placing increased financial burdens for running sustainable businesses. In addition to this the 

environmental regulations, influenced by international treaties like Kyoto, European Emission Trading 

Scheme and Copenhagen Climate Change Conference, are becoming increasingly stringent and hard to 

satisfy. In order to overcome these multiple challenges, industrial sector needs to look for ways of improving 

productivity, reducing operational costs and satisfy environmental regulations. To reach these objectives, the 

efficient utilization of energy has emerged as one of the major point of focus.  

 

1.2 SOLUTION TO THE ENERGY ISSUE IN THE INDUSTRIAL PERSPECTIVE 

Since 1990, there have been concentrated efforts in scientific world to find alternative sources of 

energy. Emphasis is on renewable energy like wind, solar, hydrogen, etc. However, even by the most 

optimistic assessments, all these alternatives are long-term solutions. The projections of Energy Information 

Administration (EIA), a statistical agency of the U.S.A department of energy, show that in immediate future 

fossil fuels will remain as primary sources of energy. Thus, along with the development of alternative energy 

sources, effort must be made to seek modus operandi that will minimize the damage caused by the fossil 

fuels. To encourage these researches, Baranzani presented the advantages of applying carbon tax 

(Baranzini et al. 2000) while Painuly proposed the usefulness of green credits in encouraging the use of 

renewable sources (Painuly 2001). Initiatives like cleaner production (Kjaerheim 2005) and zero-emissions 

(Kuehr 2007) are important approaches in this regard. However, another short term solution would consist in 
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Figure 1.2.The onion model of process design (Smith 2005) 

improving energy efficiency in industrial processes (IPCC, Intergovernmental Panel on Climate Change 

1996).  

Concerning the industrial sector, the mode of production and management of utilities provides a great 

potential source for energy savings. The Working Group (Grenelle de l’Environnement 2009) concluded that 

“approximately one third of the energy consumption of industrial (or final energy 11Mtep) comes from 

processes called "utility" (steam, hot air, heaters, electricity, etc.). The margins for improving the 

effectiveness of these processes exist. The dissemination and implementation of best practices can save up 

to 2 Mtep without requiring technological breakthroughs.” In other words, one of the mechanisms identified 

by the Working Group to reduce energy consumption and emissions of greenhouse gases is "the 
establishment of more efficient means of using process utilities" within production units. 

 

1.3 METHOD AND TOOLS DEDICATED TO ENERGY EFFICIENCY OF PROCESSES 

A usual adopted to design processes 

and make more efficient use of utilities was 

based upon a process design hierarchy 
(Linnhoff et al. 1982) represented by an 

“onion diagram” (Figure 1.2). At the heart 

of this hierarchy is the process design 

(reactor, separation and recycle system) 

while the energy considerations are the 

outer layers (heat recovery system, utilities, 

etc). In this approach certainly the 

emphasis is on the process design; the 

process energy requirements are taken 

into account a posteriori. 

Nowadays, an integrated approach 
tends to replace the hierarchical approach. The “process integration” consists in considering the big picture 

first by looking the whole manufacturing process as an integrated system of interconnected processing units 

as well as process, utility and waste streams (see Figure 1.3). The research concerning this approach 

started in the late 1970s and early 1980s with an emphasis on energy conservation (Smith 2000). In the 

early 1990s, the process integration was synonymous with thermodynamic technique of pinch and energy 

analysis. 

More recently, Gundersen et al. (2000) gave a more general definition for Process Integration:  

“Process Integration includes systematic and general methods for designing integrated production systems, 

ranging from individual process to total sites, with special emphasis on the efficient use of energy and 

reducing the environmental effects”. Thus, nowadays, Process Integration covers four key areas (Smith 

2005): 

o Efficient use of raw material to improve the profitability of the process, 
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Figure 1.4.Work  flow for the analysis of an existing 

process (Asprion et al. 2011) 
 

 

           
    

o Emission reduction to obtain a sustainable process, 

o  Efficient Process operations to optimize the process control,  

o  And high energy efficiency to reduce the energy consumption of the process. 

 

Figure 1.3.Process integration for a global optimization 
 

Process Integration techniques include various approaches. Systematic methods such as Pinch 
Analysis based on the application of thermodynamic principles were developed (Smith 2000). This 

approach is aimed at increasing process-to-process heat exchanges by the design of heat exchanger 

networks (HEN). It can be applied to complex industrial sites such as petroleum refineries. It can incorporate 

complementary techniques such as energy conversion and upgrading.  

Later, important contributions were made by applying mathematical programming techniques (Non 

Linear Programming, Linear Programming) to the HEN problem. Although this was only a small part of the 

total problem of the synthesis of manufacturing systems in the process industries, it nevertheless was an 

important phase in the development of process integration techniques. Other areas where significant 

progress has been made include heat 

integrated distillation system design, utility 

system design and optimization, mass 

exchange networks and water system design. 

Another approach that could contribute 

to process integration is the Exergy Analysis 
(Kotas, 1985; Szargut et al., 1988). Exergy 

analysis has been investigated in many 

different applications: the reviews (Sciubba & 

Wall 2007; Hinderink et al. 1999) 

demonstrated that exergy analysis can be a 

very efficient tool to evaluate the sustainability 

of a process.  
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Figure 1.5.The interdisciplinary triangle of exergy (Dincer 

2011)  
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From a thermodynamic point of view, 

Exergy is defined as the maximum amount of 

work which can be produced by a system or 

a flow of matter or energy as it comes to 

equilibrium with a reference environment. 

Unlike energy, exergy is not subject to a 

conservation law (except for reversible 

processes). Rather, exergy is consumed or 

destroyed due to irreversibilities in any real 

process. The exergy consumption during a 

process is proportional to the entropy 

created. Exergy measures both the quality 

and quantity of the energy involved in transformations within a system. Thus, exergy analysis, also called 

“lost work analysis” can be a helpful tool in the evaluation of the energy efficiency of a process. With exergy 

analysis, it is possible to quantify the exergy losses in each process step, to identify units for improvements 

and to compare different process configurations (Figure 1.4). The exergy analysis could also be used in an 

early stage in the development of new process (Asprion et al. 2011). Moreover, more meaningful indicator 

than the traditional energy efficiency can be defined using exergy; thus, exergy efficiency permits to evaluate 

the degree of perfection of the considered process (Dincer 2002).  

Under these facts, exergy can be considered as an interdisciplinary concept merging energy, 

environment and sustainable development notions (Figure 1.5) (Dincer 2011; Rosen et al. 2008).  

 

1.4 SCOPE OF THE STUDY 

As it has been explained formerly, energy issue is becoming increasingly crucial for industrial sector 

that consumes large quantities of utilities. Although the scientific world should continue to look for alternate 

sources of energy, a short-term solution would rather rely on a more rational use of energy. To face this 

challenge, exergy analysis appears a very efficient tool as it would enable to increase efficiency and reduce 

environmental impact of industrial processes. Unfortunately, contrary to enthalpy, this concept is rather 

difficult to handle and exergy analysis is rarely implemented in process simulators. In this context, the major 

objective of the study presented in this dissertation is to make exergy analysis more understandable by 

coupling it with the use of a process simulator and also to demonstrate the value of this approach for 
analysis of energy efficiency of processes and their utilities. 

 

After reviewing basic exergy concepts such as the choice of reference 

environment, Chapter 2 introduces a generic formulation for exergy calculations of 

material streams. The formulations introduced in this chapter are not only generic 

to enable their implementation in a process simulator but they also pave the way 

for exergy analysis by defining the two major contributions of exergy of a material 

stream (physical and chemical exergies). 
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Chapter 3 introduces the formulation of exergy balances on a real process. For 

that purpose, the formulation of exergy for heat and work flux is developed. Here 

again, efforts are made to propose a generic approach enabling to implement 

exergy analysis for both “design” and “retrofitting” situation. Various formulations 

for exergetic efficiency criteria are presented and compared. Finally, a new 

structured methodology for exergy analysis is developed to overcome the 

limitations of existing methodologies.  

 

To make the exergy analysis easier for any engineer, Chapter 4 exploits the 

concepts developed in the previous chapters to implement exergy calculations 

and exergy analysis. 

 

  

Finally, Chapter 5 illustrates the concepts introduced in Chapters 2 and 3 and the 

tools developed in chapter 4 through a case study. The example is a Natural Gas 

Liquids (NGL) recovery process coupled to its utility system. Starting from the 

base process, the methodology permits to propose a retrofit configuration and to 

optimize its operating parameters in order to improve the energy efficiency of the 

global process. 
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2.1 BASIC EXERGY CONCEPTS AND DEFINITIONS 

2.1.1 Exergy vs. Enthalpy 

The basic concept of exergy requires a comparison between exergy and enthalpy balances must 

be performed. As illustrated on Figure 2.1 and Figure 2.2 representing material and enthalpy balances, 

material and energy are conserved in every device or process and cannot be destroyed. Mater entering a 

system can be accounted for in the products and by-products and energy enter the system in the form of 

work, heat or raw material and can be found in the output as work, heat or waste, by product and desired 

products material streams.  

 
Figure 2.1.  Material balance 

 
 

 
Figure 2.2.  Energy balance 

However, the energy and mass conservation idea alone is inadequate for depicting some important 

aspects of resource utilization. This type of process analysis only shows the material or energy flows of 

the process and does not give insights on how the quality of the energy degrades through the process by 

dissipation; exergy notion contributes to fill this gap by measuring the quality of energy and then 

accounting for thermodynamic imperfection of real process. Decreasing the exergy losses of a process 

means a lower primary fuel consumption so reducing the operating cost and increasing the process 

efficiency. When considering exergy balances, a Grassmann diagram (Kotas, 1985) such as the one 

illustrated in Figure 2.3 should be used as it highlights the degradation of the quality of energy (the input 

arrows are larger than output ones). This diagram will be largely commented in Chapter 3. 
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Figure 2.3. Grassmann diagram 

Moreover, exergy appears as a precious concept to account for the quality of a given form of 

energy and to quantify the portion of energy that can be practically recovered. For example, although 10 

kJ of LP steam and 10 kJ of electricity are equivalent in energy balance, 10 kJ of electric energy is much 

more valuable than 10 kJ of thermal energy available at LP steam temperature (≈ 100°C). Electricity is 

useful whereas, energy of LP steam is valuable until its temperature is brought down to the plant 

environment temperature (e.g. 25°C).  

 

2.1.2 Brief  history of exergy 

In a recent paper, Scibba and Wall (2007) presented a really comprehensive history of exergy from 

early beginning till today. Some key dates are reported in Figure 2.4. It is widely known that the exergy 

concept has originated from the early work of what would later become Classical Thermodynamic. An 

exact starting date is 1824, when Carnot stated that “the work that can be extracted of a heat engine is 

proportional to the temperature difference between the hot and the cold reservoir” (Carnot 1824). This 

simple statement led later laboring by different works (Clapeyron 1834; Rankine 1851; Thomson 1853) to 

the position of the second law of thermodynamics (Clausius 1879; Clausius 1960). However, Gibbs, who 

defined the “available energy”, was the first to explicitly introduce the notion of available work, including 

the diffusion term. 

Tait (1868), and Lord Kelvin (Thomson et al. 1962), had also defined something similar to Gibbs 

availability without extended discussion of the concept (Tait 1877). There have been later some 

elaborations on Gibbs’ availability in France (Duhem 1911) and Germany (Carathéodory 1909). 

With no direct reference to Gibbs’ work, two researchers (Stodola 1898; Gouy 1901) independently 

derived an expression for “useful energy” (“énergie utilisable” in French) as the expression H-T00∆S 

where H, T00 and ∆S are respectively the enthalpy of the material stream, the ambient temperature and 

the change in entropy. 

At a scientific meeting in 1953, the term exergy (in German “Exergie”) to denote “technical working 

capacity” was suggested by the Slovenian Zoran Rant for the first time. Energy literally means “internal 

work” (from the Greek en [εν] and ergon [εργον]; the prefix ex [εξ] implies instead an “external” quantity. 
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Bout,waste

Bout

I



 35 
 
 
 

 

Rant even published a linguistic essay (Rant 1956) to discuss international equivalent names for this 

quantity. He proposed exergie in French, exergia in Spanish, essergia in Italian and eksergija in Slavic 

languages. By adopting this name (i.e. exergy), all previous expressions (e.g. available energy, 

availability, available work, potential work, useful energy, and potential entropy) could be abandoned. It 

took 50 years for Rant’s denomination to become accepted worldwide.  However, some US authors still 

use the terminology of “availability” instead of ‘exergy’. 

Two different notational systems was suggested (Szargut 1962; Weingärtner 1969) as a mature 

topic requires a standard notation system. This problem with notation was formally solved much later 

(Kotas et al. 1987). Like what we have seen for name of exergy, there were as many definitions of 

”exergy efficiency” as there were authors in the field. This point will be emphasized later in the manuscript 

in Chapter 3.  

 
Figure 2.4. A review of exergy history 

2.1.3 Components of exergy 

Based on the second law, an opportunity exists for generating work when two systems at different 

states are allowed to come into equilibrium. Exergy is the maximum theoretical work obtainable as a 

suitably idealized system called “exergy reference environment” or “environment” and the system of 

interest interact to equilibrium (Moran & Shapiro 2006). More recently, the modern definition of exergy 

has been enounced as follows: “exergy is the maximum theoretical useful work obtained if a system S is 

brought into thermodynamic equilibrium with the environment by means of processes in which the system 

S interacts only with this environment” (Sciubba & Wall 2007).  

Carnot 
(1824) 

• “Work of a heat engine is proportional to the temperature 
difference between the hot and the cold reservoir”

Gibbs 
(1873) 

• defined the thermodynamic function “available energy”

Stodola
(1898) 

• Derived an expression for “useful energy ” (“energie
utilisable” in french)

Rant 
(1953)

• Suggested the term “exergy” 

Szargut
(1962)

• Suggested a new notational system

(Kotas et 
al. 1987)

• Uniformed the notion of exergy



36  
 
 
 

 

• As there are many forms in which energy flows present themselves in nature, there are several 

corresponding forms of exergy. The most commonly used are listed in Table 2.1. The physical 

significance of the “exergy equivalence” is given as flows: 

• The kinetic energy of a system traveling at a speed V with respect to a Galilean frame of reference 

can be in principle entirely recovered into any other form: potential (principle of the ideal pendulum); 

heat (friction brake); mechanical (impulse turbine); or electrical (piezoelectric effect). Therefore, 

quantity of kinetic exergy is equal to quantity of kinetic energy. 

• The same applies to gravitational potential energy and to all energy forms related to motion in a 

conservative force field. Therefore, quantity of potential exergy is equal to quantity of potential 

energy. 

• Mechanical work and electrical energy can also be freely converted into each other. Therefore, 

quantity of shaft work is equal to quantity of shaft work. 

• Chemical energy cannot be entirely transformed into mechanical work; the maximum “work” that  can 

be extracted from a system composed of a single pure substance not only depends on the chemical 

enthalpy of formation of that substance, but also on the difference between its concentration in the 

system and in the reference environment. This matter will be detailed in Section 2.2.3 of this chapter.  

• Heat is the “least available” form of energy flow: the portion that can be converted into work depends 

on both the system and reference temperatures. 

• Energy emission from a blackbody at temperature T is σT4 which can be thought as heat transferred 

to a sink at 0 K. But the exergy of that radiation in a reference environment at T00 is not given by 

Carnot's efficiency because a radiator at temperature T cannot transfer the amount of heat σT4 to a 

heat sink at the same temperature T. In order to avoid any entropy generation, an infinite number of 

intermediate heat sources at temperature Ti, absorbing radiation at Ti + dTi and emitting radiation at 

Ti, can be imagined, with an infinite number of Carnot engines extracting the maximum work from the 

net heat input at each, ( ) iii dTTTd 34 4σσ = (Martínez 2012). 

Table 2.1. Exergy components 

Type of energy flow Molar energy Molar exergy 

Kinetic 2

2
1 V  2

2
1 V  

Potential ( )0llg −  ( )0llg −  

Heat q  
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2.1.4 A focus on thermal and chemical processes 

Thermal and chemical processes usually deal with material, work and heat streams. Heat and work 

can directly be considered as energy flows and correspondence between energy and exergy values are 

directly reported in Table 2.1. It is more complex for a material stream as its exergy can be divided into 

several components illustrated in Figure 2.5. 

 
Figure 2.5. Exergy components 

When a system undergoes a process without any significant changes in velocity and height 

between the inlet and outlet conditions, the kinetic and the potential exergies can be neglected. This is 

the case for most of the processes to be simulated in process simulators. Neglecting kinetic and potential 

exergy, physical exergy and chemical exergy become the two major contributors of chemical processes. 

As a consequence, the total exergy of a material stream at given conditions is then expressed as the sum 

of chemical exergy and physical exergy.  

Figure 2.6 illustrates the physical and chemical exergy concept. The definition of both kinds of 

exergy requires the introduction of three fundamental states:   

o The “process state” refers to the initial state of the system under study defined by its temperature, 

pressure and composition (T,P,z). 

o The “environmental state” satisfies the conditions of restricted equilibrium with the environment i.e. 

temperature and pressure equal to that of the environment (T00, P00, z). 

o Finally the “standard dead state” is used when the conditions of full thermodynamic equilibrium 

between the system and the environment are reached. In these conditions, the temperature, pressure 

and composition of the system are respectively equal to (T00, P00, z00) and the value of exergy of the 

system is equal to zero.  

 
Figure 2.6. Definition of states 
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Given these definitions, physical and chemical exergies can be defined as follows:  

• Physical exergy is the work that can be obtained by taking the system from the process state to the 

environmental state 

• Chemical exergy is the work that can be obtained by taking a substance from the environmental state 

to the standard dead state. According to Rivero and Anaya (1997), chemical equilibrium has two 

contributions:  

o  A reactional exergy resulting from the chemical reaction necessary to producing species 

existing as stable components in the environment from the initial composition of the 

substance;  

o A concentrational exergy, which results from the process required to match chemical 

concentration of the produced species to their chemical concentration in the environment 

(Rivero & Anaya 1997). 

 

2.1.5 Reference environment 

Whereas the evaluation of the physical exergy of a process stream requires the definition of the 

temperature and pressure of a reference environment, the calculation of the chemical exergy cannot be 

performed without a precise description of the substances existing in the environment.  

The chemical exergy quantity strongly depends on the reference environment model. Because of 

the extreme complexity of the physical world, this task remains a big challenge. In the section, several 

approaches and classes of reference-environment models are briefly described. 

 

2.1.6 Modeling the environment 

2.1.6.1 Partial Reference Environments (Partial RE) 

The Partial Reference Environment (Partial RE) is defined according to the specific characteristics 

of the analyzed process. This criterion is based on that being the exergy a parameter that quantifies the 

theoretical evolution of a system with respect to the R.E., some of the possible evolutions of the system, 

cannot be attained because of process limitations. Hence, only possibilities of evolution that the system 

can practically attain are analyzed. The partial R.E. is not a “dead state”. 

Natural-environment-subsystem models: These models attempt to simulate realistically 

subsystems of the natural environment. One of such models consisting of saturated moist air and liquid 

water in phase equilibrium was proposed (Baehr & Schmidt 1963). An extension of the above model 

which allowed sulfur-containing materials to be analyzed was proposed (Gaggioli & Petit 1977; Rodriguez 

1980). The temperature and pressure of this reference environment are normally taken to be 25◦C and 1 

atm, respectively, and the chemical composition is taken to consist of air saturated with water vapor, and 

the following condensed phases at 25◦C and 1 atm: water (H2O), gypsum (CaSO4 · 2H2O) and limestone 

(CaCO3). The stable configurations of C, O and N respectively are taken to be those of CO2, O2 and N2 as 

they exist in air saturated with liquid water at T00 and P00; of hydrogen is taken to be in the liquid phase of 
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water saturated with air at T00 and P00; and of S and Ca respectively are taken to be those of CaSO4· 

2H2O and CaCO3 at T00 and P00. 

Process-dependent models: A model which contains only components that participate in the 

process being examined in a stable equilibrium composition at the temperature and total pressure of the 

natural environment was proposed (Bosnjakovic 1963). This model is dependent on the process 

examined, and is not general. Exergies evaluated for a specific process-dependent model are relevant 

only to the process; they cannot rationally be compared with exergies evaluated for other process-

dependent models. 

 

2.1.6.2 Comprehensive Reference Environments (comprehensive RE) 

According to most authors, the model of the reference environments should be as close as 

possible to the natural environment and should provide an economic indicator for the exergy values; for 

example, abundant substances in nature should have lower exergies than scarce ones. Different models 

of comprehensive reference environment have been introduced. 

o The ‘equilibrium models’ are in thermodynamic equilibrium but their composition and parameters 

distinctly differ from the natural environment. 

o Other models called ‘reference substance models’ consider the most abundant species in the real 

environment but do not assume that these substances are in thermodynamic equilibrium. 

Equilibrium models: In these models all the materials present in the atmosphere, oceans and a 

layer of the crust of the earth are pooled together and an equilibrium composition is calculated for a the 

environmental temperature (i.e. 25°C) was proposed by Ahrendts (1980). The selection of the thickness 

of crust considered is subjective and is intended to include all materials accessible to technical 

processes. Ahrendts (1980) considered thicknesses varying from 1 to 1000 m. First, Ahrendts showed 

that exergy values obtained using these environments are significantly dependent on the thickness of 

crust. Furthermore, whatever the considered thickness, the calculated compositions of substances 

differed significantly from the natural environment. This calculation shows to demonstrate that the natural 

environment is not in thermodynamic equilibrium. It was explained already by a group of researchers 

(Valero et al. 2002) why Ahrendt's R.E. was not suitable to evaluate the natural capital on Earth. Most of 

the metals cannot be evaluated because they form part of the 1% of the Earth's crust neglected by 

Ahrendts. His obtained R.E. is very different from the real environment and it is very unlikely an eventual 

evolution towards it, since some processes are kinetically, biologically and/or geologically blocked. As a 

consequence, it appears that Ahrendts’ equilibrium model does not give meaningful exergy values when 

applied to the analysis of real processes.  

Ahrendts (1980) also proposed constrained-equilibrium model, a modified version of his equilibrium 

environment in which the calculation of an equilibrium composition excludes the possibility of the 

formation of nitric acid (HNO3) and its compounds. All chemical reactions in which these substances are 

formed are in constrained equilibrium, and all other reactions are in unconstrained equilibrium. When a 
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thickness of crust of 1 m and temperature of 25°C were used, the model was similar to the natural 

environment. 

Reference-substance models: A reference environment with the criterion of chemical stability 

was proposed (Kameyama et al. 1982). The references are the most stable compounds among those 

with thermo-chemical data and can be integrated in the solid, liquid and gaseous environments. As 

Szargut stated in (Szargut 1989), some of the most stable compounds selected by Kameyama et al. like 

nitrates, compounds between rare elements (e.g. PtBr2) or compounds with Fr as the reference species 

for the elements F, Cl, Br, I should not be recommended, because the probability of their formation in the 

environment is very small. Therefore, Kameyama et al. R.E. is not very suitable either to evaluate the 

scarcity of the natural capital. 

A new R.E. very close to the real environment based on abundance and following Szargut's 

criterion was proposed (Ranz 1999). According to Ranz, lots of minerals are compounds with the most 

common components of the upper continental crust, but are not very stable and do not represent the 

products of an interaction between the components of the natural environment and the waste products of 

industrial processes. The solid phase of this new R.E. reproduces accurately the Earth's upper 

continental crust, since the solid reference species that make up this environment are the same as the 

most abundant types found in the Earth's upper continental crust. A problem with the Ranz proposed R.E. 

is that if we assign zero exergy to the most abundant substances, we are decreasing arbitrarily the 

natural capital, because many abundant minerals like sulfides naturally evolutes to the most stable 

oxides. Therefore, as proposed by literature (Valero et al. 2002), we must return to Szargut's criterion of 

using the most stable substance, within the limits fixed by the “Earth similarity criterion". 

According to Szargut's criterion, among a group of reasonable abundant substances, the most 

stable will be chosen if they also complain with the “Earth similarity criterion". Thus for example in the 

case of Sb, the substance Sb2S3 is more abundant than Sb2O5, nevertheless, according to Szargut's 

criterion, Sb2O5, which is much more stable, will be taken as reference substance. Therefore, Szargut's 

dead environment is similar to the real physical environment and should represent the products of an 

interaction between the components of the natural environment and the waste products of the processes. 

The most probable products of this interaction should be chosen as reference species.  

The model proposed by Szargut (1967) considers species that are in abundance in the real 

environment. Reference species can either be gaseous component from the atmosphere, species 

dissolved in the seawater or solid compounds present in the Earth’s surface. Recently, the model 

proposed by Szargut (1967) for the calculation of the standard chemical exergy of elements and organic 

and inorganic substances has been revised by Valero et al. (2002) who used more precise data of the 

concentration of elements in the Earth’s crust; Using these updated data, Rivero & Garfia (2006) 

established a new database composed of the chemical exergy for each elements (so-called “standard 

chemical exergy of elements”). This database was compared with the database established by Szargut. 

Because of some anomalous behavior in the chemical exergy when a different salinity of seawater is 

assumed, some different reference species than those used in the latest version of the Szargut model 

were proposed for the following elements: silver, gold, barium, calcium, cadmium, copper, mercury, 

magnesium, nickel, lead, strontium and zinc. The complete set of updated values of standard chemical 
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exergies of elements for the standard conditions (298.15 K and 1 atm) is reported in Appendix A. Note 

that the temperature and pressure of all environments are always fixed at 298.15 K and 1 atm in the 

literature. Therefore, only the definition of concentration of species present in the reference environment 

influences the chemical exergy. 

According to Table 2.2 that summarizes the models for environment, the reference-substance 

model appears to be the most commonly used class of reference environment. In this study, the recently 

updated reference-substance model proposed by Rivero & Garfias (2006) and tabulated in Appendix A 

will be used. 

  



 

 

Table 2.2. Different classes of reference-environment models 

Type of RE Advantages Shortcomings Reference 
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- 
Natural-environment-subsystem 

models Simulate realistically of environment 
- Not updated 

- Limited chemical elements 

(Baehr & Schmidt 1963) 

(Gaggioli & Petit 1977) 

(Rodriguez 1980) 

Process-dependent models - Dependent on the process examined - Not general Bosnjakovic (1963) 
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Reference-substance models 

- The most commonly used RE 

- Recently updated 

- The recent model is similar to the natural 
environment 

- Some of models in this class are 
not similar to the natural 

environment 

(Szargut 1967) 

(Szargut et al. 1988) 

(Sussman 1980) 

(Rivero & Garfias 2006b) 

Chemical-stable models 
- The most stable compounds is chosen as 

RS 

- The probability of formation of 
some of RS in the environment is 

very small 
(Kameyama et al. 1982). 

Most-abundant-substances models - Very close to the real environment - If we assign zero exergy to RS, the 
natural capital are decreasing (Ranz 1999) 
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Equilibrium models 
- A model in which all the materials in the 
atmosphere, oceans and a the earth are in 

equilibrium 

- Does not give meaningful exergy 
values 

- The natural environment is far 
away from such equilibrium 

- Very high exergy values for oxygen 

- In disagreement with the “Earth 
similarity criterion" 

(Ahrendts 1980) 

Constrained-equilibrium models - Similar to the natural environment - Not updated (Ahrendts 1980) 



 

 

2.2 EXERGY OF A MATERIAL STREAM 

For the purpose of exergy balance, all types of exergy associated with input streams highlighted in 

Figure 2.2 (i.e. material, heat and work streams) have to be calculated. This section focuses on the 

exergy of material streams; Exergy of a material stream is precisely defined and a generic formulation 

independent of the thermodynamic model and of the physical state of the stream is introduced. This lays 

the foundations of the implementation of the calculation of a new thermodynamic quantity in Simulis 

Thermodynamics. As demonstrated formerly, the two major contributions of exergy are the physical 

exergy and chemical exergy. Both of them will be introduced. 

 

2.2.1 Preliminary remark 

In the existing literature dealing with the exergy calculation, the considered material stream is 

always a monophasic stream (liquid, vapor or solid). As process simulator often include multiphasic 

streams, it is necessary to know how to deal with such streams. The calculation of usual state function 

like enthalpy or entropy consists in calculating the enthalpy or entropy of liquid and gas phases and in 

weighting these contributions with the vapor ratio. To demonstrate the analogy with exergy formulation, 

let us consider a virtual separation process illustrated in Figure 2.7 whose purpose is to separate the two 

phases of a liquid vapor equilibrium system.  

 

Figure 2.7. Separation of a liquid-vapor equilibrium system 

As liquid and vapor phases are in equilibrium, the process is an adiabatic one. Applying the second 

principle, we can write:  

𝑠(𝑇,𝑃, 𝑧) − 𝑤𝑠𝑣(𝑇,𝑃,𝑦) − (1 − 𝑤)𝑠𝑙(𝑇,𝑃, 𝑥) + 𝐼
𝑇00

= 0       (2.1) 

Then, the irreversibility I is given by:  

𝐼 = 𝑇00[𝑠(𝑇,𝑃, 𝑧) − 𝑤𝑠𝑣(𝑇,𝑃,𝑦) − (1 − 𝑤)𝑠𝑙(𝑇,𝑃, 𝑥)]       (2.2) 

Moreover, the entropy of a liquid/vapor system is given by:  

𝑠(𝑇,𝑃, 𝑧) = 𝑤𝑠𝑣(𝑇,𝑃,𝑦) + (1 − 𝑤)𝑠𝑙(𝑇,𝑃, 𝑥)        (2.3) 

It results from these equations that, the irreversibility of the separation operation of two phases in 

thermodynamic equilibrium is equal to 0. Then, a reversible operation is a process that does not destroy 

exergy.  

T,P,z

T,P,y

T,P,x
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As a consequence, we will conclude that the exergy of a material stream can be handled as 

enthalpy and entropy state functions and that we can write:  

𝑏(𝑇,𝑃, 𝑧) =  𝑤𝑏𝑣(𝑇,𝑃,𝑦) + (1 − 𝑤)𝑏𝑙(𝑇,𝑃, 𝑥)        (2.4) 

 

To conclude, to evaluate the exergy of material streams, it will be necessary to split multiphasic 

stream into several monophasic streams and then to calculate the exergy of each monophasic 

stream. In the following sections, the streams will be supposed to be monophasic. 

 

2.2.2 Physical Exergy 

2.2.2.1 General formulation 

As illustrated in Figure 2.8, physical exergy can be defined as: “the maximum amount of work 

obtainable when it is brought from its process state to the environmental state, by physical reversible 

process involving thermal and mechanical interactions only with the environment”. 

 
Figure 2.8. Definition of the physical exergy 

The Physical Exergy Module illustrated in Figure 2.8 represents an ideal device around which the 

process system is set from the Process State to the Environmental State through a reversible process.  

The first law of thermodynamics written on the Physical Exergy Module leads to:   

0),,(),,( 0000 =−+− phph wqPThPTh zz         (2.5) 

Then the second law of thermodynamics gives:  

0),,(),,( 00
0000 =+−

T
q

PTsPTs
ph

zz         (2.6) 
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Eliminating the heat transfer rate between the last two equations, the specific physical exergy bph 

can finally be defined as follows:  

[ ]),,(),,(),,(),,( 000000000000 zzzz PTsTPThPTsTPThwb phph −−−==
   

(2.7) 

As can be seen in Eq. (2.3), the specific physical exergy is a function of enthalpy and entropy 

difference; as a consequence, the chosen basis for enthalpy and entropy calculation does not impact the 

value of physical exergy.  

Assuming that the material stream behaves like a perfect gas, its physical exergy can be calculated 

from Eq. (2.8):  

( ) 





 −−−= 0000

0000 lnln
P
PR

T
TcTTTcb PP

ph        (2.8) 

 

2.2.2.2 Thermal and mechanical contributions 

Some authors express the physical exergy as the sum of thermal and mechanical contributions. 

This is a very useful approach for the analysis of the recovery potential of waste products. As an 

example, energy efficiency of processes containing some effluents with a high thermal exergy 

contribution could be improved through heat integration techniques. On the other hand, a waste product 

containing a high mechanical exergy would be recovered using a turbine.  

To define both contributions, Kotas (1985) arbitrarily chose the thermodynamic path illustrated in 

Figure 2.9. This path includes an intermediate state (T00,P); in that conditions, the thermal exergy is 

based upon a P00 isobar transformation from T to T00 (Eq. 2.9) whereas the  mechanical exergy 

corresponds to the T00 isotherm transformation from P to P00  (Eq. 2.10). 

 
Figure 2.9. Thermal and mechanical exergy (Kotas,1985) 
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Figure 2.10. Thermodynamic path for thermal and mechanical contributions of physical exergy 

 

As a consequence, we have: 

[ ]),,(),,(),,(),,( 00000000 zzzz PTsTPThPTsTPThwb TT −−−== ∆∆   
 

(2.9) 

and 

[ ]),,(),,(),,(),,( 0000000000000000 zzzz PTsTPThPTsTPThwb PP −−−== ∆∆

            
(2.10) 

 

    In that case, the sum of both thermal and mechanical contribution is equal to the physical      

exergy.  

PTph bbb ∆∆ +=
         

(2.11) 

However, the respective values of thermal and mechanical exergies would not be the same 

while considering the intermediate state (T,P00). 

 

2.2.2.3 Maximal potential for thermal and mechanical recovery 

To help the engineer in his analysis of external exergy losses and to enable him to select the best 

recovery process, we introduce the Maximal Potential for thermal and mechanical recovery (see Figure 

2.11). 

 
Figure 2.11. Thermodynamic path for maximal potentials for thermal and mechanical recovery 
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The maximal potentials for thermal and mechanical recovery can be defined as follows: 

[ ]),,(),,(),,(),,( 00000000max, zzzz PTsTPThPTsTPThb T −−−=∆  
               

(2.12) 

and 

[ ]),,(),,(),,(),,( 00000000max, zzzz PTsTPThPTsTPThb P −−−=∆

             
(2.13) 

 

Note that in this case, the sum of both maximal potentials for thermal and mechanical recovery 

is not equal to the physical exergy.  

max,max, PTph bbb ∆∆ +≠
        

 

 This calculation is only required to evaluate the maximum recovery potential of a given effluent.  

 

2.2.3 Chemical Exergy 

2.2.3.1 Definition of chemical exergy 

Starting from the final state used to evaluate the physical exergy of a given stream (i.e. the 

environmental state) one can evaluate the chemical exergy. Chemical exergy is defined as “the maximum 

work obtainable when the substance under consideration is brought from environmental state to the 

standard dead state by a reversible process involving heat transfer and exchange of substances only with 

the environment” (Szargut et al. 1988). 

 

 
Figure 2.12. Definition of chemical exergy 

To assess the chemical exergy of a stream the properties of the chemical substance included in 

the stream must be referred to the properties of some corresponding suitably selected substances in the 

environment (i.e. Reference Substances, RS). Reference Substances can either be gaseous component 

from the atmosphere, species dissolved in seawater, or solid compounds presents on the earth’s surface. 
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Recall that in this study, the chosen reference environments that introduced by Rivero & Garfias (2006) 

and described in Appendix A.  

Two cases must be considered: 

• If the considered process substance is a reference substance (for example CO2 which is a 

substance existing in the atmosphere), the calculation of its chemical exergy corresponds to the 

maximum work obtainable when its process composition is set to the composition of CO2 in the 

atmosphere (see the “Mixing Exergy Module” in Figure 2.13). 

• If the considered process substance does not belong to the reference substances, the calculation of 

its chemical exergy first requires the modeling of a reversible chemical reaction that would transform the 

process substance into several pure reference substances (see the “Formation Exergy Module” in Figure 

2.13). Then, the “Mixing Exergy Module” sets the composition of these pure reference substances to the 

environmental composition.  

To illustrate this concept, let us take an example illustrated in Figure 2.13 where a process stream 

composed of CO and H2 is considered. To be set to the standard dead state, CO and H2 need to be 

transformed to the substances found in the reference environment. Two reversible chemical reactions 

occur in the Formation Exergy Module to transform respectively the CO into pure CO2 and pure H2O and 

H2 into pure H2O with the aid of O2 brought from the environment. Then the Mixing Exergy Module 

contributes to set these pure reference substances to their environmental composition.  

 
Figure 2.13. An example for chemical exergy 

 

2.2.3.2 Formulation of chemical exergy 

The general formulation of the chemical exergy of a given mixture can be deduced from this former 

simple example. Let us consider fist the case of a vapor mixture in the environmental state. At T00,P00, the 

vapor mixture behaves as a perfect gas and the chemical exergy; given the molar flowrate of the process 

stream n, the chemical exergy of the mixture 𝑏 
𝑐ℎ,∗can be expressed as follows :  

𝑏𝑐ℎ,∗(𝑇00,𝑃00, 𝑧) = ℎ(𝑇00,𝑃00, 𝑧) − 𝑠(𝑇00,𝑃00, 𝑧) −
1
𝑛
�� � 𝑛𝑗,𝑖�ℎ𝑗(𝑇00,𝑃00, 𝑧00� − 𝑇00𝑠(𝑇00,𝑃00, 𝑧00)

𝑁𝑟𝑒𝑓,𝑖

𝑗=1

�
𝑁𝑐

𝑖

 

 
                                     (2.14) 
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where, 

- nj,i is the flowrate of the reference substance j generated by the process substance i 

- Nref,i is the number of  reference substances j generated by the process substance i 

 
Expressing the specific entropy as a function of activities ai,,Eq. (2.14) can be written as follows: 
   
𝑏𝑐ℎ,∗(𝑇00,𝑃00, 𝑧)

= �𝑦𝑖 �ℎ𝑖°(𝑇00,𝑃00) − 𝑇00𝑠𝑖°(𝑇00,𝑃00)
𝑁𝑐

𝑖

− 𝑅𝑇00𝑙 𝑛[𝑎𝑖(𝑇00,𝑃00, 𝑧)] − �
𝑛𝑗,𝑖

𝑛𝑦𝑖
�ℎ𝑗(𝑇00,𝑃00, 𝑧00) − 𝑇00𝑠(𝑇00,𝑃00, 𝑧00)�

𝑁𝑟𝑒𝑓,𝑖

𝑗=1

� 

                              (2.15)
  

According to Eq. (2.10), the calculation of chemical exergy requires to be able to calculate the 

enthalpy and entropy of reference substances in the standard dead state. These calculations have been 

made by Rivero & Garfias (2006) starting from the knowledge of concentration of reference substances in 

environment and thanks to complex thermodynamic calculations. To simplify the exergy calculations, 

Szargut et al. (2005) introduced the concept of molar standard chemical exergy. 

 

The molar standard chemical exergy 𝑏𝑖°∗ of a reference substance is the molar chemical exergy 

obtained at (T00,P00) of the pure substance in the gas state 

 

We can write, 

𝑏𝑖°∗ = ℎ𝑖0∗(𝑇00,𝑃00) − 𝑇00𝑠𝑖0∗(𝑇00,𝑃00) − �
𝑛𝑗,𝑖

𝑛𝑖
�ℎ𝑗(𝑇00,𝑃00, 𝑧00) − 𝑇00𝑠(𝑇00,𝑃00, 𝑧00)�

𝑁𝑟𝑒𝑓,𝑖

𝑗=1

 

                           (2.16) 

Integrating the molar standard chemical exergy 𝑏𝑖°∗  in Eq.(2.15), we finally obtain 

𝑏𝑐ℎ,∗(𝑇00,𝑃00, 𝑧) = ∑ 𝑦𝑖[𝑏𝑖0∗ + 𝑅𝑇00𝑙𝑛(𝑎𝑖)]𝑁𝑐
𝑖                   (2.17) 

 

Generalizing this equation for a multiphasic mixture composed of Nφ phases à T00, P00, we can write 

𝑏𝑐ℎ(𝑇00,𝑃00, 𝑧) = ∑ 𝑤𝜑�∑ 𝑧𝑖�𝑏𝑖
0𝜑 + 𝑅𝑇00𝑙𝑛(𝑎𝑖)�𝑁𝑐

𝑖 �𝑁𝜑
1                  (2.18) 

where 

𝑏𝑖
°𝜑 = 𝑏𝑖0∗ + ∆𝐺𝑣→𝜑                     (2.19) 

The evaluation of the activity depends on the considered phase : 

o In the case of a gas phase, ai is given by : 
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i =                                 (2.20) 

At T00=298.15 K and P00=1 atm, the gas can be considered as a perfect gas and the fugacity is equal to 

the pressure P00. Then, we finally have: 

00

0000v
i

i
P

)y,P,T(f
a =                      (2.21) 

o In the case of a liquid phase, ai is given by : 

i
0000

i0000l,0
i

0000l
i

i x).x,P,T(
)P,T(f
)y,P,T(f

a γ==                               (2.22) 

o Finally for a solid phase, we have  

ai=1                                    (2.23) 

This is precisely the equation that will be used to calculate the chemical exergy of a given mixture. In this 

equation, the standard chemical exergy of element must be known.  

 

2.2.3.3 Calculation of the molar standard chemical exergy  

As explained formerly, the molar standard chemical exergy of a reference substance are deduced 

from the conventional mean concentration of the reference species in the environment. Moreover, molar 

standard chemical exergies of element can be deduced from molar standard chemical exergy of species 

using the following expression: 

*

1
,

*0
,

°

=

° ∑+∆= j

N

j
jifi bnGb

iel

                                  

                   (2.24) 

Note that in this equation the free formation Gibbs enthalpy is given for a substance i in the gas 

state. As a consequence, the molar standard chemical exergies obtained are gas molar standard 

chemical exergies.  

Figure 2.14 illustrates this concept by explaining the process enabling to calculate the molar 

standard chemical exergy of element phosphorus starting from the concentrations of H2O and O2 in 

atmosphere and concentration of HPO4 in hydrosphere.   

Starting with the partial pressure of the Reference Substance O2 in the atmosphere, one can 

calculate the standard chemical exergy of element.  

)ln(
2 00

2
00

*0

2 P
PRTb O

O

°

=  
(2.25)

 

where
 

0
2OP represents the partial pressure of oxygen in the atmosphere.  

Then 0
O

b can be deduced as follows: 
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In the same way, starting from the partial pressure of H2O in the atmosphere, we have:   
000*0

22
ln OHOH

PRTb =  (2.27)
 

and
0
Hb can be deduced: 

2

*00*0
*0 22

OfOH
H

bGb
b OH

+∆−
=  

(2.28)
 

   

Finally, this two molar standard chemical exergy of elements O and H, can be used to calculate 

exergy of phosphorus. Using an electrolytic model the standard chemical exergy of HPO4, 𝑏𝐻𝑃𝑂40 is 

deduced from the mean concentration of this component in the seawater. Then, we can write: 

𝑏𝐻𝑃𝑂40𝐿 = ∆𝐺𝑓,𝐻𝑃𝑂4
∗ + 𝑏𝐻0∗ + 𝑏𝑃0∗ + 4𝑏𝑂0∗               (2.29)

 

 
Figure 2.14. An example for chemical exergy calcuation 

This example highlights the complexity of calculation of standard chemical exergy of each element 

and shows that the chemical exergy of chemical elements are strongly interconnected. The sequence 

formerly explained needs to be done for each chemical element and starting from the mean concentration 

of several reference substances. Figure 2.15 illustrates the sequence for the calculation of standard 

chemical exergy of elements, according to the different mediums (i.e. atmosphere, hydrosphere or 

lithosphere) in which the reference species is found. It can be seen that the standard chemical exergy of 
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most of the elements depends on the standard chemical exergy of oxygen and hydrogen. Besides, the 

standard chemical exergy values of fluorine and magnesium are the most dependent on the chemical 

exergy of other elements. Due to the fact that the elements calcium, iron and silicon, are contained in the 

reference species of elements fluorine, cobalt, aluminum, beryllium, magnesium and zirconium, the 

standard chemical exergy of those should be calculated before the one of these.  

From this strong dependency it might be concluded that if chemical exergy of one element in 

another temperature and pressure than the standard ones are needed, all of this calculation should be 

redone. This means that changes in temperature and pressure needs new standard table. As this is quite 

a cumbersome task, in our work we have decided to prohibit the change of reference temperature, 

pressure and composition for chemical exergy.  

 
Figure 2.15. Route for the standard chemical exergy calculation of elements (Rivero & Garfias 2006) 



 53 
 
 
 

 

2.2.3.4 Chemical exergy and heating value 

Specific chemical exergy is an important fuel property in exergy analysis and performance 

optimization of energy conversion systems. The common basis for calculating efficiencies of power 

processes is to use the lower heating value (LHV). However, the LHV is not the same as the chemical 

exergy and should therefore not be used in exergy calculations (Aspelund & Gundersen 2009). To 

estimate specific chemical exergy of fuels, some correlations have been proposed.  

A constant ratio of chemical exergy to calorific value for solid and (separately) liquid fuels, is 

proposed (Rant 1961). However, the calculation for different organic substances showed the ratio 

depends significantly on the chemical composition (Szargut & Styrylska 1964). Rant’s correlations by 

taking the chemical composition of fuels into account using statistical method, is corrected (Szargut & 

Styrylska 1964). 

Although Szargut and Styrylska’s correlations have been commonly used for evaluation of 

chemical exergy of fuels in previous works (Feng et al. 2004; Prins et al. 2007; Panopoulos et al. 2006), 

there are some drawbacks. Firstly, the correlations do not involve the effect of nitrogen on liquid fuels and 

sulfur on solid fuels, respectively, because of the lack of relevant thermodynamic data. Secondly, the 

states of some organic compounds had been mistaken in Szargut’s source data (Szargut et al. 1988) 

according to the new edition of handbook of organic chemistry (Gokel 2004). Finally, the correlations are 

limited to Szargut’s reference environmental (R.E.) model theoretically. 

To overcome these limitations, recently a unified simple correlation for estimating specific chemical 

exergy of solid and liquid fuels on dry basis, is developed (Song et al. 2012). In this method, the specific 

chemical exergy of a dry fuel was split into two contributions: chemical exergies of organic matter and 

inorganic matter, respectively. To estimate chemical exergy of organic matter, a correlation for estimating 

standard entropy of organic matter of solid and liquid fuels was derived. A system of linear equations for 

estimating the numbers of moles of selected inorganic compounds from ash analysis data was 

established for estimating chemical exergy of inorganic matter. 

 

2.3 CONCLUSION 

In this chapter, a set of equations is developed to calculate exergy for the two major contributions 

of exergy of a material stream (i.e. the physical and chemical exergies). In order to calculate the chemical 

exergy, after reviewing the all existing reference environment models, the most recently updated 

reference-substance model has been chosen to model the natural environment as a reference 

environment. Then, general formulations of both physical and chemical exergy for any material stream 

are given. These equations are general and independent of equation of state. It means that these 

equations can be implemented in any process simulator. The new general formulations pave the way for 

exergy analysis as it will be shown in next chapters. For example, the new definitions such as the 

maximal thermal and mechanical contribution of physical exergy will be useful in the exergy analysis. 

These points will be discussed in detail in Chapter 3 and will be applied to an academic case study in 

Chapter 5. 





 

 

 

3. Exergy Balance and Exergy Analysis 
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3.1 EXERGY BALANCE: BASIC CONCEPTS 

According to Tsatsaronis (1993), “the second law of thermodynamics complements and 

enhances the energy balance by enabling evaluation of both the thermodynamic value of an 

energy carrier, and the real thermodynamic inefficiencies and losses of processes or systems”. In 

this section, the second part of this postulate will be demonstrated by introducing the exergy 

balances formulations and proposing hints for its interpretation.  

 

3.1.1 General formulation of an exergy balance 

As explained in the beginning of Chapter 2, an exergy balance relies on the decomposition 

of input and output streams in material, work and heat streams. Moreover, output streams can be 

also split into waste streams and useful ones. Waste streams include all streams rejected to the 

environment without being recycled or reused whereas useful streams are material, heat or work 

streams used in a downstream process. 

Contrary to energy balances which are directly deduced from the first law of 

thermodynamics, exergy balances are deduced from a combined formulation of the first and the 

second laws of thermodynamics. The generic system studied through exergy balances is illustrated 

in Figure 3.1. In this system that can either represent a single unit operation, a global process or a 

part of a process, inputs (material, heat and work) are transformed into outputs (material, heat and 

work) by thermal and chemical operations. 

 

Figure 3.1.  A General Grassmann representation of a process or system 
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As stated in Eq. (3.1), energy balance deduced from the first law of thermodynamics can be 

written as follows: 

outoutout
M

ininin
M WQHWQH ++=++                       (3.1) 

As illustrated in Figure 3.1, exergy balance includes another term I, usually called “internal 

exergy loss», corresponding to the exergy destroyed inside the system because of irreversibilities 

of the process:  

IBB outin +=                          (3.2) 

In this equation, total exergy input Bin and total exergy output Bout are respectively given by 

the sum of input and output exergies associated with material (NSM streams), work (NSW streams) 

and heat streams (NSQ streams):  
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In these equations: 

- in
iQB ,  refers to the exergy of the ith input heat streams also called utility heat stream,  

- out
iQB , refers to the exergy of the ith output heat stream,  

- in
iWB , and 

out
iWB , respectively refer to exergy of ith input and output work streams.  

- In addition, in
iM,B and out

iM,B  correspond to the exergy of the i-th material stream at the inlet 
and outlet, respectively. 

 

Using the “useful/waste” concept, Eq. (3.2) can also be written as follows: 

IBBB out
waste

out
useful

in ++=                         (3.5) 

where underlined term is called “external exergy loss”. The terms corresponding to “internal exergy 

loss” and “external exergy loss” will be discussed in detail in the next sections. 

Assuming that the exergy flow corresponding to work output is always useful exergy, the 

exergy balance can finally be expressed as follows:   
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To establish exergy balances on a given system (representing an unit operation, a set of unit 

operations or a global process), one needs to evaluate all the terms of this equation: 

• First, the term in
MB  is deduced from equations established in the Chapter 2 for exergy of 

material streams, 

• To evaluate the terms out
usefulMB ,  and out

wasteMB , which are also exergies of material streams, one 

needs to distinguish waste material streams from useful ones; this classification will have to be 

suggested by the engineer according to his knowledge of the process.  

• Finally, it will also be necessary to evaluate the exergy flows related to heat and work 

streams and to precisely distinguish utilities, waste and useful heat streams. These points will also 

be discussed in the next sections.  

 

3.1.2 Exergy of work streams 

Exergy is defined as the equivalent work of a given energy form. Consequently, shaft-work 

(either mechanical or electrical work) is equivalent to exergy (Dinçer & Rosen 2007).  

WBW =                 (3.7) 

 

3.1.3 Exergy of heat streams 

3.1.3.1 General definition 

The exergy of a heat stream is determined by the maximum work that could be obtained 

from it, using the environment as a reservoir of zero-grade thermal energy. To transform this heat 

stream, one must consider a Carnot Heat engine operating between the temperature T of the heat 

stream and the temperature T00 of the environment. Two situations must be considered: the case of 

an “above-ambient stream” and the case of a “sub-ambient” stream.  

 

o Case of a “above-ambient” stream (see Figure 3.2) 

The first case concerns a heat stream whose temperature is higher than the environment 

temperature. For the specified control surface of the Carnot cycle shown in Figure 3.2, first and 

second laws of thermodynamics respectively result in Eqs. (3.8) and (3.9). To obtain the right 

values and to be independent of the thermodynamic convention, the absolute values are used in 

these equations. 

000 =−− QWQ
 

    (3.8) 
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Combining Eqs. (3.8) and (3.9), we finally obtain:   
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 Figure 3.2. Carnot cycle for an “above-ambient” temperature 
 

o Case of a “sub-ambient” stream (see Figure 3.3) 

For “sub-ambient” heat streams the Carnot heat engine can be represented as illustrated in 

Figure 3.3. 

 

 Figure 3.3. Carnot cycle for a “sub-ambient” temperature 
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In that situation, we can write: 

000 =−+ QWQ  (3.11) 
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(3.12) 

 

Here, combining Eqs. (3.11) and (3.12) leads to the following formulation: 
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(3.13) 

According to the definition, the exergy of a heat stream is the maximum work that could be obtained 

from it, using the environment as a reservoir of zero-grade thermal energy, for “sub-ambient” heat 

streams, the exergy is of opposite sign compared to heat flux. Consequently, we have:  
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As a consequence, the exergy of a heat flux can be defined by a single formula whatever the 

temperature of this flux, and given by Eq. (3.15). 
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In this equation, it is important to note that the exergy flux is defined by an algebraic value 

which can be positive when considering an input flux and negative when considering an output 

flux. 

 

The major difficulty in Eq. (3.15) relies on the determination of the temperature T of the hot source. 

Let’s illustrate this postulate by considering the two heat exchange situations illustrated in Figure 3.4. 

 

Figure 3.4. Latent heat and sensible heat hot sources 
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• In the first case, the hot source is a ‘latent heat’ source; the temperature of the hot source is 

the same all along the exchanger. In that case, 
in

HH TTT == . 

• On the other hand, in the second case, the hot source is a ‘sensible heat’ utility. In this 

situation, the evaluation of the exergy for such a heat stream is not as easy as claimed by 

some references (Kotas 1985): is T equal to in
HT , out

HT or a mean value ? 

Actually, two cases must be distinguished:  

• The “design case” corresponds to the exergy analysis of a future process; in this situation, 

some details of the process or of the part of the process – such as technological choices, kind 

of required utilities or heat integration schemes –are not yet under examination. To handle 

such situation, BQ term will be evaluated assuming reversible heat exchanges.  

• The “retrofitting case”, where exergy analysis intends to evaluate and optimize the exergy 

efficiency of current processes. In this situation, technological choices and utilities used in 

different part of the process and heat exchanger networks are perfectly defined. As we will see 

in the following sections, in this situation, BQ terms will disappear and will be replaced by BM 

terms.  

 

3.1.3.2 “Design case”: Evaluation of the BQ terms 

 Evaluation of the thermodynamic average temperature 

When designing a new process, the most adequate utility is not always known for each heat 

exchange. In this situation, a solution would consist in considering a thermodynamic average 

temperature (T ) (Tsatsaronis 1993). This temperature corresponds to the temperature of the utility 

assuming a reversible heat exchange with the process stream. The evaluation of this 

thermodynamic average temperature for hot and cold utilities is illustrated in Figure 3.5. Note that 

in this figure Q is an algebraic term that can be positive or negative. Combining first and second 

laws of thermodynamics on the balance region and assuming a reversible process, we obtain: 

0=−− QHH in
p

out
p  

(3.16) 

0=−−
T
QSS in

p
out
p  

(3.17) 
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Figure 3.5. Evaluation of the thermodynamic average temperature of a “hot source” 

Substituting Eq. (3.16) in Eq. (3.17), T can then be evaluated: 

in
P

out
P

in
P

out
P

SS
HHT
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−

=  

(3.18) 

 

As we can see, the “thermodynamic average temperature” defined by Eq. (3.18), is 

expressed as a function of the enthalpy and entropy flows of input and output process streams.  

 

When performing an exergy analysis for a new process (“design case”), the heat transfers and 

other phenomena concerning the process streams are assumed to operate under reversible 

conditions, then generating no irreversibility. This approach, via enthalpy and entropy 

calculations, provides the engineer with some hint prior to detailed design of utility system. As 

a consequence, in the “design case” and compared to the original form, the Grassmann 

diagram does not display irreversibility I anymore. 

 

For a heater, the resulting thermodynamic average temperature corresponds to the minimum 

temperature required to drive the heat transfer. For a cooler, the same calculation can result in the 

maximum required temperature 

 

 Classification of heat streams exergies: utility, waste output or useful output 

To classify heat streams according to their role in the studied process, one needs to 

determine the sign of BQ (Eq. 3.11); let’s consider different situations illustrated in Figure 3.6. 

TH,inTH,out

Tp,in Tp,out
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Figure 3.6. Utility vs output waste streams (here T00=25°C) 

The sign of BQ determines the role of the heat stream. In Figure 3.6, case A and B 

respectively refer to cold and hot utilities consumed by the process; the exergy of these heat fluxes 

appear in in
QB  terms. On the other hand, case C and D refer to waste streams. Case C concerns a 

situation where a sub-ambient process stream is wasted instead of being used in other part of the 

process as cold utility, whereas case D represents a situation where a process stream releases 

above-ambient heat that should be recycled in another part of the process as hot utility. In Figure 

3.6, for the output heat streams (case C and D), as the recycling process of heat streams is not 

specified, these heat streams are systematically classified as waste heat streams. The exergy of 

these heat fluxes appears in  out
wasteQB , term. 

Instead of “waste stream” term usually found in the literature, we would prefer the term 

“recoverable stream” which refers to a stream that could be recycled in another part of the 

process to improve its performances.  

 

 Conclusion: Grassmann diagram in the “design case’ 

For new processes or part of processes, the resulting Grassmann diagram to be considered is 

represented in Figure 3.7.  
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Figure 3.7. “Design case” Grassmann diagram 

 

Furthermore, the hot streams are classified as described hereunder.  

Classification of heat streams:  

Given a heat stream i 

o If BQ,i> 0, the heat stream is a utility stream. The term BQ,i must be included in iBin
Q,  

o If BQ,i< 0, the heat stream is a waste heat stream. The term BQ,i must be included in 
out

iwasteQB ,,  

o The term out
iusefulQB ,, does not correspond to any physical situation. It can be removed 

from the Eq.(3.2). 

 

The general exergy balance equation can finally be written as follows: 
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(3.19) 

 

3.1.3.3 “Retrofitting case” 

In the retrofitting situation, the external utilities located in the process are perfectly known. In 

this case, instead of modeling utilities as a set of heat flux, it would be preferable to represent all 

the utilities as a set of material flux. As an example, the equivalence between useful heat streams 

and input/output material streams for the case D formerly described is illustrated in Figure 3.6. 
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Here, the useful heat stream is recycled to heat another stream from 50°C up to 80°C. For exergy 

analysis, the configuration of Figure 3.8a must be replaced by the process represented in Figure 

3.8b. 

 
 

Figure 3.8. Equivalence between useful heat stream and input/output material streams 

 

When retrofitting an existing process, the utility streams must be included in the set of 

material streams of the considered exergy balance region. In this case, as illustrated in 

Figure 3.9 the Grassmann diagram should not include any heat stream anymore.  

 

 
Figure 3.9.  Grassmann diagrams considered in the retrofitting situation 

 
 

3.2 INTERPRETATION OF EXERGY BALANCES 

As highlighted previously, due to the introduction of second law of thermodynamics, the 

exergy balance is much more informative than the energy balance. In this section, some hints for 
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the interpretation of exergy balances are given. More precisely, the principal reasons and 

improvements ways for irreversibilities and external losses are proposed. 

 

3.2.1 Internal exergy loss 

• Internal exergy losses, also called “irreversibility” or “exergy destruction” (Tsatsaronis 1993), is 

deduced from the entropy generation and depends on the environment temperature. 

According to the second law of thermodynamics (e.g. Eq. 2.2), irreversibility is always positive 

and is induced by the thermodynamic imperfection of process operations. According to Le 

Goff (1979), the irreversibility phenomena fall in three types:  

• Non-homogeneities: caused by mixing of two or more components with different temperature 

(T), pressure (P) or concentration (z). 

• Dissipative processes: due to mechanical frictions and pressure drop.  

• Chemical reactions: the entropy generated in chemical reactors is proportional to the 

progress of the reaction and the affinity of the reaction itself defined using the stoichiometric 

coefficients and the chemical potentials 

Each phenomenon will be described and illustrated in the following sections. 

 

3.2.1.1 Non homogeneities 

Non-homogeneities happen when substances are put into contact with each other. The most 

common unit operation where indirect contact occurs is heat exchanger. For direct contact, mixing 

is the most common process in thermal and chemical plants, for example open-type feed heater (a 

direct-contact heat exchanger in which extracted steam is allowed to mix with the feedwater), 

steam ejector, distillation column, etc. In a general mixing process, the irreversibilities are due to: 

• Viscous dissipation during mixing which results in a pressure drop between the inlets, which 

are not in mechanical equilibrium. 

• Heat transfer with finite temperature gradients between inlets, which are not in thermal 

equilibrium. 

• Process of intermingling molecule of different species through molecular diffusion. A measure 

of this contribution to the process irreversibility is the work necessary (in a reversible process) 

to undo the mixing process, in other words, to separate the resultant components. 

 

EXAMPLE: MIXING PROCESS 

Consider a steady-flow mixing process involving two streams of CO2 at 100°C and 5atm and at 150°C and 

15atm to be mixed and be sent to the storage as shown in Figure 3.10. 
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Figure 3.10. A mixer 

Physical exergy of a given material stream can be calculated from equations given in Chapter 2:  

[ ] [ ]),,(),,(),,(),,( 0000000000 zzzz PTsPTsTPThPThb ph −−−=    (3.20) 
  

Assuming that the stream gas considered in this example behave like a perfect gas, we obtain  
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Moreover, as explained earlier in Chapter 2, molar chemical exergy for the pure chemical reference substance 

such as CO2 is available in the standard tables, calculated from partial pressure in atmosphere: 
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Table 3.1 reports the chemical and physical exergy of all the streams at the inlet and outlet. 

Table 3.1. Exergy of streams 

Material Stream Stream 1 Stream 2 Stream 3 

Total Exergy Flow (kW) 15.20 86.28 92.85 

Chemical Exergy Flow (kW) 12.50 62.54 75.05 

Physical Exergy Flow (kW) 2.69 23.73 17.79 

 

The difference between total exergy input and output results in irreversibility: 

kWBBBI out
stream

in
stream

in
stream 63.8321 =−+=  

     
(3.23) 

To reduce, exergy losses, these two streams have to be mixed as close as possible in terms of temperature and 

pressure. Let us take the mixer shown in Figure 3.11 where these two inlet streams are mixer at 5 atm.  

 

Figure 3.11. An isobar and non-isothermal mixer 

Streams Stream 1 Stream 2 Stream 3
Total flow kg/s 0.03 0.14 0.17

Temperature °C 100.00 150.00 141.81
Pressure atm 5 15 5

Stream 1

Stream 2

Stream 3

Stream 1

Stream 2

Stream 3
Streams Stream 1 Stream 2 Stream 3

Total flow kg/s 0.03 0.14 0.17
Temperature °C 100.00 150.00 141.81

Pressure atm 5 5 5
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Likewise the difference between total exergy input and output results in irreversibility: 

kWBBBI out
stream

in
stream

in
stream 05.0321 =−+=  

     
(3.24)

 

Now, let us take the mixer shown in Figure 3.12 where these two inlet streams are mixed  isothermally at 100°C.  

 

Figure 3.12. Isothermal, non-isobar mixer 

Likewise the difference between total exergy input and output results in irreversibility: 

kWBBBI out
stream

in
stream

in
stream 59.8321 =−+=

      
(3.25)

 

From comparison of these three cases, it can be concluded that the contribution of temperature and pressure in 

exergy loss does not have the same order of magnitude. For example, the isothermal, non-isobar mixer results in 

relative high exergy losses while the isobar, non-isothermal mixer causes a relative negligible exergy loss 

comparing the exergy input and output. By definitions given in Chapter 2, the higher exergy, the greater will be 

the potential for recuperations. When two streams with the same pressure are mixed together, the less work 

potential will be destroyed compared to the case where two streams with the same temperature are mixed. 

    

3.2.1.2 Dissipative effect 

Irreversibility of a process can be due to dissipative effects. In this case, the work performed 

on a system increases the molecular internal energy of the system (i.e. low grade energy). In other 

words, high grade energy (work) is transformed to low grade energy (internal energy). 

Consequently, this effect increases the temperature of the system. Dissipative effect may be due to 

viscosity, friction, inelasticity, electric resistance (Venkanna 2010).  

 

EXAMPLE: COMPRESSION PROCESS 

As an example, let us suppose the compression of a gas in a vessel(Pierre Le Goff 1979). There is a difference 

between the pressure outside the piston and the internal forces applied by the gas that corresponds to the force 

of friction. For a displacement Δl of the piston, there is heat release due to a work of f.Δl which results in entropy 

generation: 

T
lf

T
W

T
QSgen

∆
===

.degraded         (3.26) 

Stream 1

Stream 2

Stream 3
Streams Stream 1 Stream 2 Stream 3

Total flow kg/s 0.03 0.14 0.17
Temperature °C 100.00 100.00 100.00

Pressure atm 5 15 5
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Figure 3.13. Mechanical friction 

 

3.2.1.3 Chemical reaction 

The entropy generated in chemical reactors is proportional to the progress of the reaction 

and the affinity of the reaction itself defined using the stoichiometric coefficients and the chemical 

potentials (Pierre Le Goff 1979). Entropy generated during chemical reaction will be given by: 

ξδ d
T
ASgen =           (3.27) 

where A is the affinity of reaction,ξ is the progress of reaction, ν is the stoichiometric coefficients 

and R is the chemical components.  

 

Figure 3.14. Chemical reaction 

 

It can be shown that the entropy generation is zero at the chemical equilibrium. For certain 

values of pressure, temperature and concentration of products and reactants, A can be zero which 

corresponds to the reaction when it is on the equilibrium. When A is not zero, then the system is 

not in a chemical equilibrium; therefore, there will be entropy generation.  

 

 

EXAMPLE: ESTERIFICATION REACTION 

Figure 3.15 is model of a reactor where the esterification is occurring. Esters are produced when carboxylic 

acids are heated with alcohols. The esterification reaction is slow, on equilibrium and quasi athermic. The 

equation for the reaction between an acetic acid and ethanol to produce ethyl acetate is: 

OHCHCOOCHCHOHCHCHCOOHCH 2323233 +⇔+     (3.28) 

 

F

P∆σ

   

ν1R1+ ν2R2 ν3R3

    

  

ξν ddn ii =
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The control region corresponds to the part of the reactor where the reaction takes place under constant 

temperature. The reactant consists of equimolar proportion of ethanoic acid and ethanol.  

 
Figure 3.15. Reactor of esterification on vapor phase 

 

To calculate the irreversibility, the exergy balance for this isothermal reactor has to be done.  

ReactantsProducts BBI −=         (3.29) 

The exergy of reactants and products is calculated by: 

( )chphin bbnB ReactantReactantReactantReactant +=        (3.30) 

( )chphin bbnB ProductsProductsProductsProducts +=        (3.31) 

The molar standard chemical exergy for the reactants and products is calculated from: 

∑∑ +=
=

ii

NC

i

ch
ii

ch xxRTbxb ln00

1
       (3.32) 

In the case of the conversion of 0.1 for the reactants we have: 

molkJbch /1130.63Reactant =         (3.33) 

molkJbch /1129.48Prodcuts =         (3.34) 

Assuming that the reactants and products behave like a perfect gas, their physical exergy can be calculated as 

follows:  

( ) 





 −−−= 0000

0000 lnln
P
PR

T
TcTTTcb PP

ph      (3.35) 

We obtain: 

molkJb ph /15.44Reactant =         (3.36) 

molkJb ph /14.98Prodcuts =         (3.37) 

Substituting the calculated physical and chemical exergy component: 

2224 3HCOOHCH +→+ Reactor

Reactants
0.019 kmol/hr
25°C
1 atm
0.5 mol Ethanol
0.5 mol Acetic Acid

Products
0.019 kmol/hr
25°C
1 atm
Ethanol
Acetic Acid
Water 
Ethyl Acetate



72  
 
 
 

 

kWB 00.6Reactant =          (3.38) 

kWB 99.5Products =          (3.39) 

Substituting the calculated values of physical and chemical exergy: 

kWI 0.01=           (3.40) 

This exergy loss is relatively small compared total exergy input and outputs. However, the small value of exergy 

loss is due to low conversion of reactant. Therefore to see the trend of irreversibility along the conversion a 

sensitivity analysis is performed as reported in Table 3.2. Obviously, the higher conversion, the higher will be the 

irreversibility. 

Table 3.2. Irreversibility vs. conversion 
Conversion Irreversibility (kW) 

0.1 0.0084 
0.3 0.0204 
0.5 0.0299 
0.7 0.0371 
0.9 0.0416 
1 0.0510 

 

3.2.1.4 Assessment of thermodynamic feasibility of processes 

The notion of irreversibility can be useful to identify the thermodynamic feasibility of a 

process. Indeed, if irreversibility is negative, then the process is necessarily thermodynamically 

impossible.   

Unfortunately, the reciprocal is not true! Indeed, a positive exergy balance does not 

necessarily means that the process is feasible.  

 

To illustrate this, let us consider the simple heat transfer example illustrated in Figure 3.16. 

According to the exergy balance, the irreversibility of this unit operation is positive and equal to 

3.07 kW. However, the hot and cold streams temperature profiles (Figure 3.16) clearly display a 

heat transfer cross pinch. In other words, although the total exergy loss is positive, the whole 

process is not feasible.  

 
Figure 3.16. An unfeasible heat exchanger 

CT in
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To analyze this result, it is possible to split the heat exchanger in two parts: a "feasible heat 

transfer" and an "infeasible" part (rest of the heat exchange) as shown in Figure 3.17. For the 

feasible part, the temperature of cold stream is increased up to a temperature level equal or less 

than the temperature of hot stream. As the temperature of hot stream at the inlet is 80°C, the 

temperature of cold stream should be equal or less than 80°C. In this example, the temperature 

equal to 80°C is taken as the temperature of outlet of feasible part. 

 
Figure 3.17. A combination of unfeasible and feasible heat exchangers 

 

Like any real process, the "feasible" is accompanied by a degradation of exergy. An exergy 

balance on this part gives: I = 3.45 kW. On the other hand, the infeasible part is accompanied by a 

generation of exergy: I = -0.38 kW. 

Moreover, we note that the sum of the irreversibilities of each part is equal to the total 

irreversibility. In this example, the irreversibility destroyed by the feasible part of the exchange is 

sufficient to compensate the exergy generated by the infeasible part of the exchange. That is the 

reason why the total exergy loss is positive, which might result in a misleading interpretation. 

 
Figure 3.18. Temperature profile for an unfeasible heat exchanger 

 

3.2.1.5  Improvement ways based on the sources of irreversibility 

In the former section, the source of irreversibilities have been identified and explained. This 

section intends to propose the engineer a panel of technological solutions that could help him to 

reduce each kind of irreversibility.  

To construct a preliminary database of solutions, the general commandments enounced by 

(Leites et al. 2003) have been exploited. Some of the most important commandments are reported 

as follows: 
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o The driving force of a process must approach zero at all points in a reactor, at all times. Try to change the 

driving force to a uniform one. 

o If the reaction is exothermic, it is necessary to raise (not to lower!) the temperature. If the reaction is 

endothermic, it is necessary to lower (not to raise!) the temperature. It is better to conduct the exothermic 

processes in a low flow-heat-capacity medium. It is better to remove reaction heat by phase change of the 

cooling medium, or by endothermic reactions, rather than by sensible heating of a cooling medium. 

o If the reaction is conducted in the gas phase and the volume increases, it is necessary to raise (not to 

reduce!) the pressure. If the gas volume decreases, it is necessary to reduce (not to increase!) the 

pressure. 

o It is not necessary to carry out chemical reactions up to their completion. It is better to recycle the 

unreacted streams. 

o Do not mix streams of different temperatures, different compositions, or different pressures. If possible, 

don’t mix anything! 

o Remember that the increase in the process rate often leads to an increase in energy resource 

consumption. 

o Select the lowest temperature heat sources. 

o The best chemical reactor is a counter-current one with plug flow. 

o Investigate the conditions of quasi-static processes to discover methods for reducing energy resource 

consumption. 

o The best process is the one in which energy and species enter and leave along the full length of the 

apparatus. 

o A chemical process cannot be thermodynamically reversible if it has a stoichiometric excess; however, 

real processes can operate with minimal exergy expenditures at optimal stoichiometric excesses that are 

functions of the flowsheet. 

 

From detailed analysis of the above-mentioned rules and of the numerous publications 

existing in the literature (Kotas 1985; Szargut et a. 1988; Tarighaleslami et al. 2011; Smith 2005; 

Nadim 2010; Ray & Sengupta 1996), a table enumerating  the major sources of irreversibility and 

giving  us some clues for process improvement on each class of unit operations has been 

constructed (see Table 3.3). 

As can be seen in this table, reduction of internal exergy losses does not necessarily require 

the modification of the unit operation itself, but can be obtained by simple modifications of the inlet 

streams characteristics, such as temperature using a preheating. This table is not exhaustive but 

can be proposed to an engineer as a preliminary database which will be gradually enriched during 

the analysis of different processes.   
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Table 3.3. Irreversibility, sources and improvement ways 
 

Unit operation Sources of irreversibility Ways of Improvement  
Reactor Low conversion Recycle the non-converted reactants  

Improve the conversion 

Exothermic reaction Raise the temperature 
Recycle the heat of reaction  

Endothermic reaction Reduce the temperature 

Temperature difference of cold feed and hot reaction medium Pre-heat  the  feed 

Concentration gradients Increase reaction stages as much as possible 
 prefer plug flow reactor 

Mixing of streams Mixing reactant as uniformly as possible 

Distillation column Concentration gradients Use intermediate reboiler or condenser  
Equal partition of driving force 

Improper separation sequence Optimize distillation sequencing 

Pressure drop and mechanical friction Optimize the hydraulic of the column 

Bubble-liquid mass transfer on the tray (Ray & Sengupta 1996) Optimize the hydraulic of the column 

Thermal gradients Introduce feed in a proper tray (Tarighaleslami et al. 2011) 
Split feed 

Heat exchanger Temperature difference Use as low as possible driving force 

Non-uniform gradient Use an uniform gradient 
 prefer counter current heat exchangers 

Pressure drop Reduce the number of baffles (for shell and tube heat exchanger)  

Low heat transfer Optimize the flow velocity (Szargut et al. 1988) 

Cold utility Refrigeration Minimize use of sub-ambient system and replace it with 
cooling water (Smith 2005) 

Thermal difference Use as high level as possible 

Use of external utilities Maximize process steam generation 

Throttling valve Pressure drop Replace by a steam turbine 
 (for temperatures greater than the ambient) 

Steam boiler A chemical reaction for oxidation of the fuel (Nadim 2010) Preheat the combustion air 

An internal heat transfer between high temperature product and 
the unburned reactant (Nadim 2010) 

Use as low driving force as possible 

Physical mixing process (Nadim 2010) Mix as uniform as possible 

Diffusion process where the fuel and oxygen molecules are 
drawn together (Nadim 2010) 

Make as gradually as possible 

High heat capacity of combustion products Oxygen enrichment (Kotas 1985) 

Isobar combustion Move toward isochoric combustion (Kotas 1985) 

Compressor Hot inlet streams Reduce the temperature of inlet streams or between the stages by 
intercooler 

Steam turbine Low temperature of steam Use inter-heater (e.g. super-heater) between the stages 

Pump Hydraulic friction Optimize the hydraulic of system 

Mixer Temperature difference Mix as Isothermal as possible 

Pressure difference Mix as Isobar as possible 

Composition difference Mix as close as possible composition 
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Note also that the principles enounced in Table 3.3 do not take into account the profitability 

of the process. Certainly, as mentioned in literature (Leites et al. 2003), trade off  between 

thermodynamic reversibility and capital cost of chemical processes must be found. Thermodynamic 

reversibility requires that all process driving forces, such as temperature, pressure and chemical 

potential differences should be zero at all points and times. On the other hand, a reversible 

chemical process operates at an infinitesimal rate, and requires an infinitely large plant. 

Furthermore, there is a conventional misconception which says that if we reduce driving force, 

capital cost will be raised. This is not always true. There are some ways to reduce driving force and 

capital cost simultaneously. Let us compare the simple examples of heat transfer with non-uniform 

ΔT driving force (Figure 3.19a), with the one with a uniform driving force (Figure 3.19b).  

 
Figure 3.19. Non-uniform temperature profile vs. Uniform temperature profile 

 

In Figure 3.19a, at the left end of the heat exchanger, the driving force is small. It means that 

the exergy losses are small. However, the heat exchange area must be very large. In Figure 3.19a, 

at the right end of the heat exchanger, the driving force is large. It means that the exergy loss is 

also large because it is proportional to the large area between the two temperature profile lines. 

However, the heat exchange area is small.  

In Figure 3.19b, the use of a uniform driving force allows, however, a reduction in exergy 

losses as well as a reduction of heat exchanger area at the same time.  

From this example, it can be concluded that changes in flowsheets that make driving forces 

more uniform can simultaneously reduce both exergy losses and capital investments (heat transfer 

area). 

Another example is a throttling valve at the inlet of steam heater. In this case, as a result of 

the throttling of high-pressure steam, the temperature of steam is decreased. It means a decrease 

of the temperature difference in a heat exchanger happens. This would reduce the exergy loss in 

the heat exchanger itself. But the throttling process is used to achieve the required temperature 

and pressure of steam which is extremely irreversible. The result is an unnecessary increase of the 

required heat transfer area as the driving force between the streams is reduced. 

These examples conclude that it is important to analyze the statement that “the reduction in 

driving forces is the basis for energy saving methods”, because there are many examples where 

reduction in driving forces gave the opposite results (Leites et al. 2003).  Only an overall system 

analysis could enable to observe this phenomenon.  
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3.2.2 External exergy loss 

External exergy loss is usually associated with useless material or heat streams released 

into the environment. For example, a flue gas is emitted from a fired heater at a flame temperature 

which is much higher than the environment temperature (usually 25°C). If the energy contained in 

this flue gas is not recycled, the exergy associated with this effluent can be considered as an 

external exergy loss.  

Concerning waste streams, several ways to exploit the exergy associated with them exist 

(Szargut et al. 1988). For example, if the temperature of the waste heat is high enough, waste heat 

recovery using heat exchanger networks can be an alternative. However, for the low-grade waste 

heat (Buchin & Ziegler 2011), heat pump (Roque Di-az et al. 2010) or absorption refrigerator 

(Bakhtiari et al. 2011) can be installed to exploit the physical exergy. To reduce external exergy 

losses associated with chemical exergy, combustible waste can be used as a fuel for combustion. 

Utilization of the non-combustible waste as a secondary raw material is an alternative, to recover 

the wasted chemical exergy (Szargut et al. 1988). To define the most adequate recycling strategy, 

the decomposition of exergy into thermal, mechanical and chemical terms, largely described in the 

Chapter 2, could be a very relevant tool. 

Table 3.4 summarizes these solutions by listing the technological solution that should be 

used to recover the thermal, mechanical or chemical exergy contained in a waste heat flux and 

material streams. Certainly, this table is not exhaustive and should be enriched all along the 

studies of various processes.  

Table 3.4. Improvement ways for external exergy losses recovery 
 

Nature of 
exergy loss Thermal recycling Mechanical Recycling Chemical Recycling 

Heat stream (design case) 

 
Waste heat 

exergy output 

- Recovery heat exchanger 
- Heat pump (Roque Di-az et al. 2010; 
Meggers & Leibundgut 2011) 
- Waste heat district heating network(Torío & 
Schmidt 2010) 

  

Material stream (design and retrofitting cases) 

 
 

Thermal 
Exergy 

- Coupling of absorption-refrigerator with a 
cogeneration (P. Le Goff & Hornut 1999) 
- Recovery heat exchanger 
- Heat pump (Roque Di-az et al. 2010) 
- Absorption refrigerator (Bakhtiari et al. 2011) 
- Hot water cooled electronics (Zimmermann 
et al. 2012) 
 

  

Mechanical 
Exergy 

 - Turbine (Szargut et al. 1988)  

 
 

Chemical 
Exergy 

  - Combustible waste as a fuel 
for combustion (Szargut et al. 
1988). 
- Non-combustible waste as a 
secondary raw material 
(Szargut et al. 1988)(M. Sorin 
et al. 1998) 
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EXAMPLE: HDA PROCESS  

To illustrate these concepts, let us take an example of a reactor represented in Figure 3.20. The reactor feed is 

heated by the HP steam, whereas the reactor output is cooled by cooling water (CW) and sent to a liquid-vapor 

separator. The vapor at the outlet of the separator is purged to the environment. The product at the outlet of the 

separator is sent to the finishing section. An analysis of the external losses of this process will help the engineer 

to propose improvement solutions. Table 3.5 displays the exergy loss of each unit operation and Figure 3.21 

represents the Grassmann diagram of the entire process. Note that the relative high exergy value of total exergy 

input and output, does not allow seeing clearly the irreversibilities in each unit operation.  

 

Figure 3.20. The base case 
 

Table 3.5. Exergy losses of unit operations for the base case 

Unit Operation Reactor Separator Steam 
Heater CW Cooler TOTAL 

Irreversibility (kW) 605.64 226.14 1 455.94 1 130.08 3 417.80 

External Loss (kW) - 372 869.02 - - 372 869.02 

  

 
Figure 3.21. Grassmann diagram (base case) 

 

In the base case, the vapor (i.e. purge) is simply emitted to environment. The vapor stream must be considered 

as a waste material and the absolute value of external exergy loss is equal to the exergy associated with purge 

Reactor Separator 

Purge

Product  to finishing section

Feed

HP Steam

CW
R

eactor

Purge

Feed

Steam
H

eater

Product

C
W

 C
ooler

HP Steam CW

Separatpr

I



 79 
 
 
 

 

rejected to the environment. From Figure 3.21, it can be seen that the purge stream accounts for high amount of 

exergy losses compared to total exergy input and output. 

To improve the base case, Table 3.4 provides guidelines to reduce external exergy losses. As Table 3.4 

proposes for the thermal exergy, recovery heat exchanger should be used. Thus, the thermal exergy associated 

with this effluent is recycled in the heat exchanger E-101 as a heat source to preheat the reactant (see Figure 

3.22). In addition, based on Table 3.4, for chemical exergy losses, the stream should be used as a secondary 

raw material. Thus, the chemical exergy associated with purge is valorized in process B as a feed. In that case, 

the vapor at the outlet of separator can be considered as useful stream as its total exergy is valorized in process 

B. The integrated case is illustrated in Figure 3.22. 

 

Figure 3.22. The integrated case 

The new Grassmann diagram and the resulting external exergy loss after these modifications are 

reported in Figure 3.23 and Table 3.6.  

Table 3.7 compares the utility consumption of the base case and the integrated case. As can be seen in these 

figures, an efficient use of exergy of streams clearly reduced the external exergy losses and leads to significant 

reduction of utility consumption.  

The HP steam is reduced from 8.37 t/hr to 4.96 t/hr as a consequence of recovery of thermal exergy of purge by 

reduction of its temperature from 116°C to 36°C in order to preheat the reactor feed. Moreover, thanks to the use 

of reactor outlet as a heat source to heat the product up to 257 °C from 116 °C, the CW demand is reduced from 

632.5 t/hr to 516.5 t/hr. Note in the base case the product stream is supposed to be heated up in the finishing 

section up to 300°C. It means heating of the product stream will not only save the CW demand but also reduce 

the heating demand of the finishing section. 

Table 3.6. Exergy loss of unit operations for the integrated case 

Unit Operation Reactor Separator 

Waste 
Heater 
(Feed) 
E-101 

Waste 
Heater 

(Prodcut) 
E-102 

Steam 
Heater 

CW 
Cooler TOTAL 

Irreversibility (kW) 605.64 226.14 537.89 104.95 466.36 843.65 2 784.62 
External Loss (kW) - - - -   - 

Process B

Reactor Separator 

To Process B 
(Formerly Purge)

Product to 
finishing section

Feed

HP Steam

CW
E-101 E-102
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Figure 3.23. Grassmann diagram (integrated case) 
 

Table 3.7. Utility data 

Utility  Base case Integrated case 

CW flow (kg/h) 632 524.53       516 504.76       
HP Steam(kg/h)     8 377.12    4 963.27    

Steam cost (USD/yr) 443 241.60 262 610.40 

According to this example, conclusions drawn from exergy balance are highly dependent on the utilization of the 

streams.  

 

The analysis of external exergy losses requires the precise definition of the future 

utilization of the streams (waste streams rejected to environment or useful streams for 

another process). Then, this analysis enriched by the decomposition of material waste 

exergy into thermal, mechanical and chemical components could easily lead to pertinent 

proposal for the improvement of energy efficiency of the process. 

 

3.3 PERFORMANCE CRITERIA FOR EXERGY ANALYSIS 

The example described in the last section highlights the need for indicator which would 

enable to evaluate the energy efficiency - more precisely the exergetic performances of a process - 

and identify the unit operations that should be improved as a priority. In the literature, several 

formulations have been proposed. This section aims at comparing some of these formulations in 

order to find the most suitable one for a further implementation in a process simulator. 

One of the most commonly used exergetic criteria is exergy efficiency. The exergetic 

efficiency evaluates the true performance of a process from the thermodynamic viewpoint. Based 

on the literature (Gong & Wall 1997), it is defined as ‘utilized’ exergy divided by ‘used’ exergy. 

Unfortunately, authors do not agree to define both terms ‘utilized’ exergy and ‘used’ exergy. 
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3.3.1 Simple efficiency 

As illustrated in Figure 3.24, the most simple definition of efficiency expresses all exergy 

input as used exergy, and all exergy output as utilized exergy (Cornelissen 1997). In these 

conditions, ηI is expressed as follows:  

inin

out

I B
I

B
B

−== 1η  (3.41) 

 
Figure 3.24. Simple exergy efficiency 

 

Authors call this formulation of exergy efficiency, “degree of thermodynamic perfection” 

(Szargut et al. 1988; Torres & Gallo 1998) or “universal efficiency” (Woudstra 2004). As illustrated 

in Figure 3.24, only the irreversibility term is not included in the numerator. Moreover, it cannot 

differentiate between “useful” fluxes of exergy and “waste” ones.  As a consequence, this exergy 

efficiency only permits to quantify the efficiency of the process relative to irreversibility and does not 

give any indicator about the external exergy loss. 

 
EXAMPLE: TURBINE 

To illustrate the use of simple efficiency, let us take an example of turbine shown in Figure 3.30. As the first case, 

the working fluid is the steam which will be expanded from 10 atm and 400°C to 1 atm and 187.8°C to generated 

84 kW shaft power. 

 

Figure 3.25. A typical expander 
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Total Exergy Flow kW 322.96 218.28

Chemical Exergy Flow kW 108.28 108.28

Physical Exergy Flow kW 214.67 110.00

Work Stream IN OUT

Work kW - 84

Total flow Kg.s-1 0.21 0.21
Temperature °C 400.00 187.84

Pressure atm 10.00 1
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Applying this type of exergy efficiency gives 0.78 as calculated below: 

93.0=
+

== in
M

out
W

out
M

in

out

I B
BB

B
B

η      

  
(3.42) 

As expander only affects the physical exergy of the stream, there is no need to take into account the contribution 

of the chemical exergy when it is considerably greater than the contribution of physical exergy. However, as in 

this case chemical exergy of water has the same order of magnitude of physical exergy, this exergy efficiency 

gives quite right impression of process.  

 

Figure 3.26. Grassmann diagram for expansion of water steam 
 

 
EXAMPLE: SEPARATOR 
To understand how using this efficiency gives the misleading results, let us take an example of a stream splitter 

shown in Figure 3.27. Applying this type of exergy efficiency gives 0.999 as calculated below: 
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(3.43)
 

Although the splitter is operating to produce only the ‘product stream’ with 39263.32kW exergy, high exergy of 

waste (i.e. 262601.73kW) leads to efficiency close to unity which causes misleading result. Due to relative high 

value of exergy input and exergy output in Figure 3.28, the irreversibility cannot be clearly seen. In other words, 

the total exergy input and output have quite the same value. 

 

Figure 3.27. A typical splitter 
 

System

Chemical Exergy Input
Chemical Exergy Output

Physical Exergy Input

Phyiscal Exergy Output

Power

Feed

Waste

Product
Material Stream Feed Product Waste

Total Exergy Flow (kW) 301897.24 39263.33 262601.73

Chemical Exergy Flow (kW) 301104.47 38962.13 262201.01

Physical Exergy Flow (kW) 792.77 301.20 400.73
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Figure 3.28. Grassmann diagram for the splitter 

 

3.3.2 Coefficient of exergy efficiency taking into account external losses 

To overcome one of the limitations highlighted for ηI, the utilized exergy can be given by the 

difference between the total exergy output and waste exergy output (Eq. 3.37) which we call the 

exergy of product Bproduct (Wall & Gong 1997). In this case, according to (Brodyansky et al. 1994)the 

exergy efficiency ηII becomes: 

in

out
waste

Iin

out
waste

inin

out
waste

out

II B
B

B
B

B
I

B
BB

−=−−=
−

= ηη 1      (3.44) 

This efficiency called “coefficient of exergy efficiency taking into account external losses” 

takes into account the “external exergy loss” and the irreversibility at the same time. In this 

manuscript, this formulation of exergetic efficiency will be called “Coefficient of Exergy Efficiency”.   

 

Figure 3.29. Coefficient of Exergy Efficiency 

  

System

Product

Waste

Feed

Bout 

Including
utilities

Bin
Including
utilities

System

I
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EXAMPLE: SEPARATOR 
Calculating the coefficient of exergy efficiency for the splitter formerly presented, we obtain now: 

13.0Product === in
Feed

out

in

out
useful

II B
B

B
B

η

         

(3.45)
 

 

Consequently, compared to the first criteria, this exergy efficiency enables to estimate the 

part of input exergy that will be converted into useful one (either work or material). Moreover, as the 

first criteria, this coefficient is unambiguous and can be used for all process and plants. 

Unfortunately, as stated by Cornelissen (1997), this formulation can usually give the engineer the 

false impression of the thermodynamic perfection of a given process.  

 

EXAMPLE: TURBINE 

To illustrate the limitation of Coefficient of Exergy Efficiency, let us s take an example of turbine (Figure 3.30) 

.  

 

Figure 3.30. A typical turbine 

The turbine reduces the pressure of propane from 10 atm and 400°C to 1 atm and 187.8°C to delivers 41.9 kW 

shaft power. The Coefficient of Exergy Efficiency of this process is given by  

99.0=
+

== in
M

out
W

out
M

in

out

II B
BB

B
B

η
       

(3.46) 

According to this result the turbine seems to behave as a perfect process. However, the analysis of the 

Grassmann diagram represented in Figure 3.31 clearly shows that it is not true. As we can see, the input exergy 

is mainly composed of a chemical component which is not modified by the expansion processes. Only the 

physical component which is much smaller than the chemical one is reduced. As a consequence, the weight of 

the untransformed component is so high that the resulting Coefficient of Exergy Efficiency is very close to unity. 

IN

W

OUT

Material Stream IN OUT
Total Exergy Flow kW 10124.64 10075.66

Chemical Exergy Flow kW 10026.61 10026.61

Physical Exergy Flow kW 98.03 49.04

Work Stream IN OUT

Work kW - 41.9

Total flow Kg.s-1 0.21 0.21
Temperature °C 400.00 187.84

Pressure atm 10.00 1
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Figure 3.31. Grassmann diagram for expansion of propane 

 
 

EXAMPLE: HEAT EXCHANGER  
To illustrate other limitations of this exergy efficiency, let us take an example of heat exchanger in Figure 3.32. 

The analysis with help of Grassmann diagram will show this exergetic criterion can cause misleading results. 

 

Figure 3.32. Two-stream heat exchanger 

The cold stream is the methane with high chemical exergy value. The hot stream is the steam with low chemical 

exergy value. As reported in Figure 3.32, the chemical exergy remains unchanged along the heat exchanger. On 

the other hand, the physical exergy changes. It means that inclusion of high chemical exergy input and output will 

not allow seeing the change of physical exergy as clearly shown in Figure 3.33. Therefore, Coefficient of Exergy 

Efficiency gives a value close to the unity: 

999.0== in

out

II B
B

η
         

(3.47) 

 
Figure 3.33. Grassmann diagram for heat exchanger 

System
Chemical Exergy Input

Chemical Exergy Output

Physical Exergy Input

Physical Exergy Output

Power

HOT IN HOT OUT

COLD IN

COLD OUT

COLD IN COLD OUT HOT IN HOT OUT

Total flow mol.s-1 0.63 0.63 0.32 0.32
Temperature °C 25.00 175.00 300.00 210.13
Pressure Atm 2 2 10 10
Total Exergy Flow kW 1356.01 1357.69 681.93 679.17
Chemical Exergy Flow kW 1354.95 1354.95 677.46 677.47
Physical Exergy Flow kW 1.06 2.75 4.45 1.75

SystemchBcold_in

chBcold_out

phBcold_in

phBhot_in

chBhot_in

phBcold_out

phBhot_out
chBhot_out
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The coefficient of Exergy Efficiency gives a good impression of the thermodynamic perfection 

of a system only when all the component of incoming exergy flows (physical and chemical) are 

transformed to other components (e.g. for power stations). When it is not the case, the 

untransformed components give a false impression of the performance of the unit. In the case of 

chemical industry processes, unit operations such as the heat exchangers and expander only 

affect the physical exergy of the stream. Moreover, the sensitivity of the simple efficiency and of the 

coefficient of exergy efficiency reduces with increasing quantities of untransformed components 

which makes this kind of efficiency inefficient for process optimization. 

Due to the limitations formerly mentioned, this efficiency does not provide an adequate 

characterization of the thermodynamic efficiency of processes. A solution might be to define 

precisely the purpose of the system and to include the “desired exergetic effect”.  

 

3.3.3 Rational efficiency 

The rational efficiency (Kotas 1985) permits to address the gaps highlighted for  the previous 

formulation by defining the efficiency of a process as the ratio of the “desired exergy output” to the 

“exergy used”. Tsatsoronis (1993) prefers the terms “product” and “fuel”. The “desired exergy 

effect” represents the desired result produced in the system (“product”) whereas the “exergy used” 

represents the net resources which were spent to produce the desired effect (“fuel”).   

 Used

Output  Desired

B
B

=Ψ
         

 
      (3.48) 

BDesired Output is determined by examining the function of the system. After introducing the 

exergy used and the exergy of desired output, the overall exergy balance becomes:  

out
wasteBIBB ++= Output DesiredUsed  (3.49) 

Then, combining these two last equations, the following alternative form of the rational 

efficiency can also be obtained. 

Used

1
B

BI out
waste+

−=Ψ
         

 (3.50) 

It results from these equations that the evaluation of this efficiency requires the definition of 

the term BDesired Output (i.e. the desired effect of the system). The term BUsed can then be deduced 

from Eq. (3.49). 
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EXAMPLE: HEAT EXCHANGER 

The calculation of the rational efficiency is illustrated through the study of a two-stream heat exchanger shown in 

Figure 3.32. Basically the function of a heat exchanger is to change the thermal exergy of one stream at the 

expense of exergy change of the other stream.  

 

Figure 3.34. Two-stream heat exchanger 

Assuming that the function of the heat exchanger under consideration is to increase the thermal exergy of the 

cold stream, we have:  

incoldoutcold
TT BBBBB __cold_incold_outputDesiredOut −=−= ∆∆  

Because PP BB ∆∆ = cold_incold_out  and chch BB cold_incold_out =  

(3.51) 

As exergy balances are required to express the rational efficiency, the thermal contribution of exergy is used in 

this equation, and not the maximal potential for thermal exergy recovery.  

Rewriting the exergy balance around the heat exchanger considering all component of exergy, we obtain:  

( ) ( ) ( )
( )
I

BBB

BBBBBBBBB
chPT

chPTchPTchPT

+

+++

++=+++++
∆∆

∆∆∆∆∆∆

hot_outhot_outhot_out

cold_outcold_outcold_outhot_inhot_inhot_incold_incold_incold_in

 
(3.52) 

Then, as we have PP BB ∆∆ = hot_outhot_in and chch BB hot_outhot_in = , we can deduce : 

IBBBB TTTT ++=+ ∆∆∆∆
hot_outcold_outhot_incold_in  

Combining these two last equations, we obtain: 

IBBIBBBBB TTTT
putDesiredOut −−=−−=−= ∆∆∆∆

hot_outhot_inhot_outhot_incold_incold_out  (3.53) 

In a heat exchanger, the chemical exergy of hot and cold streams are not modified; Canceling out the chemical 

exergy at the inlet and outlet and identifying the term BUsed based on Eq. (3.49), we obtain  

hot_outhot_inOutput DesiredUsed BBBIBB out
waste −=++=  (3.54) 

HOT IN HOT OUT

COLD IN

COLD OUT

COLD IN COLD OUT HOT IN HOT OUT

Total flow mol.s-1 0.63 0.63 0.32 0.32
Temperature °C 25.00 175.00 300.00 210.13
Pressure Atm 2 2 10 10
Total Exergy kJ.mol-1 2152.4 2155.06 2131.03 2122.41

Chemical Exergy kJ.mol-1 2150.71 2150.71 2117.06 2117.09
Physical Exergy kJ.mol-1 1.68 4.37 13.91 5.47
Total Exergy Flow kW 1356.01 1357.69 681.93 679.17
Chemical Exergy Flow kW 1354.95 1354.95 677.46 677.47
Physical Exergy Flow kW 1.06 2.75 4.45 1.75
Mechanical Exergy Flow kW 1.06 1.06 1.65 1.65
Thermal Exergy Flow kw 0 1.69 2.80 0.05
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Then applying Eq. (3.55) rational exergy efficiency can be expressed as follows:  

hot_outhot_in

cold_incold_out

BB
BB

−

−
=Ψ  

   (3.55) 

Note that in this example, we have used the thermal and mechanical contributions of physical exergy not 

maximal ones as the aim was to calculate the exergy efficiency.  

Coming back to the example of heat exchanger in Figure 3.32, the exclusion the chemical exergy input and 

output, allow seeing the evolution of physical exergy clearly as shown in Figure 3.35. 

 
Figure 3.35. Grassmann diagram for heat exchanger excluding chemical and mechanical exergies 

 

 The application of rational efficiency based on Eq. (3.55) results in a value which shows thermodynamic 

imperfection is occurring in the heat exchanger, unlike the simple efficiency. 

61.0=Ψ             (3.56) 

In comparison with the simple exergy efficiency (0.98), the rational efficiency gives quite the right impression of 

the process, as it is not close to the unity. Note that the objective of this heat exchanger is supposed to be 

heating of cold stream. However, for the case where the objective is to cool the hot stream in this heat 

exchanger, a different value is obtained: 

hot_outhot_inputDesiredOut BBB −=     (3.57) 

Then using the same approach explained above, the rational exergy efficiency can be expressed as follows: 

163.1
cold_incold_out

hot_outhot_in >=
+

−
=Ψ

BB
BB

       (3.58) 

As the efficiency in this case is higher than unity, it means that for the heat exchanger only one objective MUST 

be defined where the exergy from the upper level is transferred to lower level in order to derive the process (e.g. 

heat transfer). In other words, for this example, it is not possible to define the second function as cooling the hot 

streams. 

System

TB∆
cold_in

TB∆
hot_in

TB∆
cold_out

TB∆
hot_out
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We can go further and define the desired effect as the heating of cold stream and cooling of hot stream: 

( ) ( )cold_incold_outhot_outhot_inputDesiredOut BBBBB −+−=  (3.59) 

 

( ) ( )
∞=

−+−
=Ψ

∆∆∆∆

0
cold_incold_outhot_outhot_in

TTTT BBBB
 

(3.60) 

 

   As expected, an infinite efficiency is obtained.  

 

By making the distinction between “exergy used” and “exergy of desired output”, the rational 

efficiency permit to address the gaps identified for former formulations. However, the evaluation of 

this efficiency is a much trickier task as it requires the definition of the desired effect of a given 

system (process or unit operation).  

For each unit operation, a function needs to be defined to evaluate the term BDesiredOutput, then 

the term BUsed is deduced from the exergy balance.  However, the function of a unit operation is not 

always easy to be determined. Consider for example the case of gas compression; the first 

objective is to increase the pressure of the gas. However, this question should be answer whether 

the desired effect is an increase of the temperature or not? A strong interaction of the user is 

required for the calculation of rational efficiencies and the user may not always answer to these 

complex questions. To highlight this complexity, Appendix C proposes the rational exergy 

efficiencies of various unit operations. Note that for most unit operations, different desired functions 

can be defined then resulting in different expressions for rational efficiencies. Moreover, extending 

the reasoning to global flowsheets, it may be really difficult to precisely define the “desired effect” of 

an entire process or of a process zone.  

All these limitations prevents from automatic calculations of the efficiency of a process. As a 

consequence, this formulation does not appear as a good candidate for a further implementation in 

a process simulator  

 

3.3.4 Exergy efficiencies with transiting exergy 

3.3.4.1 Intrinsic efficiency and utilizable exergy coefficient 

Another kind of efficiency was introduced to solve the problem addressed for previous 

expression of exergetic efficiency. Sorin et al. (1998) explained the strength of such a formulation. 

These explanations are reported below. It has been observed in the first sections that the simple 

exergy efficiency or the coefficient of exergy efficiency can be overestimated. In particular, these 

exergy may assume a value close to one for operation which, from an engineering point of view, 

has a poor performance. For example, a heat exchanger with a very small heat duty would produce 
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such effect. The reason is the fact that only a part of the useful exergy is produced by the system in 

the accomplishment of all the physico-chemical phenomena which take place within its boundaries. 

The rest of exergy that leaves the system with the useful exergy is a part of the exergy input which 

has simply traversed the system without undergoing any transformation (see Figure 3.36). The 

name of transiting exergy (Kostenko, 1983) was given to this fraction of exergy supplied to the 

system. Typically, in a chemical reactor a part (but not all because of temperature and pressure 

changes) of the exergy associated with unreacted feed or inerts would constitute transiting exergy. 

Transiting exergy was further characterized by Brodyansky et al. (1994) who have developed 

algorithm for its computation. Because of the complicated calculation, there are not a lot of 

publications using the concept of transiting exergy in the literature. 

As illustrated in Figure 3.36, only part of the input exergy Bin is consumed by the system to 

produce new form of useful exergy. On the basis of these observations, Sorin and Brodyansky 

(1985) have defined new exergetic efficiency later named by Sorin et al. (1994) the intrinsic exergy 

efficiency.  

c

p

tr
waste

tr
useful

in

tr
waste

tr
useful

trin

tr

B
B

BBB
BB

BB
B

=
−−

−−
=

−
−

=
outout

 intrinsic

BBη       (3.61) 

The terms Bc, Bp and Btr are the consumed, produced and total transiting exergies 

respectively. Intrinsic exergy efficiency is the measure of the true ability of the system to produce 

new exergy from a given amount of consumed exergy. However intrinsicη does not account for the 

fact that, because of the external exergy losses outB  waste all of the exergy produced is not longer 

utilizable.  

 

Figure 3.36. Exergy efficiencies with transiting exergy 

Transiting exergy in the 

waste stream

Bin

cB

Bp

Bout

tr
wasteB

tr
usefulB

out
usefulB

I
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To solve this problem, Sorin et al. (1998) introduced an alternative coefficient which is more 

pertinent to the evaluation of practical systems performance, the utilizable exergy coefficient 

utilizableη . It is defined as:  

ctr
useful

in
useful

out
useful

utilizable B
B

BB
BB putr

=
−
−

=η  
(3.62) 

 

Bpu is the produced utilizable exergy; it constitutes part of Bp. trB  useful is only the part of 

transiting exergy which is included in the utilizable exergy stream. As illustrated in Figure 3.36 there 

may also be transiting exergy trB  waste in the external exergy losses stream  wasteB ; for example, 

exergy of the part of the initial feed traversing the system without transformation and lost into the 

environment. However, to compute according to Eq. (3.62), there is no need to evaluate

. 

 

3.3.4.2 Calculation of transiting exergies 

As explained before, the transiting exergy concern the exergy that simply passes through the 

system without undergoing any transformation. As a consequence, when considering processes 

consisting in a single input material stream and a single output material stream, a simple definition 

of transiting exergy could be given by the following expressions: 

[ ]ph
out

ph
in

trph bbB ;min, =
         

(3.63) 

 

[ ]ch
out

ch
in

trch bbB ;min, =
         

(3.64)
 

 

Note that no transiting exergy must be granted to work and heat flux. Indeed, we will 

consider that all the work (heat) brought to a given system is fully used to transform input forms of 

exergy into other forms; e.g. in a heat pump, input work is fully used to increase the physical 

exergy of the input material stream. In an endothermic reactor, input heat exergy flux permits to 

modify the chemical exergy of input reactants. 

utilizableη

tr
 wasteB
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          EXAMPLE: TURBINE 

• Considering the case of a turbine, after exergy balance on it, we obtain the results listed in Figure 3.37. 

•  
Figure 3.37. A turbine 

•  

• The transiting exergy can be calculated as: 

• [ ]0.49;0.98min, =trphB         (3.65) 

• [ ]6.10026;6.10026min, =trchB        (3.66) 

• The total transiting exergy is the sum of chemical and physical ones: 

• kWBBB trphtrchtr 6.100750.496.10026,, =+=+=     (3.67) 

• Total exergy output is sum of shaft power and the expanded propane: 

• kWBout 9.101169.416.10075 =+=      (3.68) 

• Then, intrinsic efficiency can be calculated as  

• 85.0
6.100756.10124
6.100759.10116

=
−
−

=η        (3.69) 

•  

• The efficiency provides a right impression as the transiting chemical exergy which remains unchanged are 

deduced from total exergy input and output. As the physical exergy and shaft power only play a role in the 

efficiency, the value of 0.85 accounts for the process which is actually occurring in the turbine.  

 

3.3.4.3 Sub-streams concept 

The former equations are consistent only for very simple operation with one input and one 

output material streams. The following heat exchanger example will permit to highlight the 

drawbacks of such formulations.  

  

IN

W

OUT

Material Stream IN OUT
Total Exergy Flow kW 10124.64 10075.66

Chemical Exergy Flow kW 10026.61 10026.61

Physical Exergy Flow kW 98.03 49.04

Work Stream IN OUT

Work kW - 41.9

Total flow Kg.s-1 0.21 0.21
Temperature °C 400.00 187.84

Pressure atm 10.00 1
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EXAMPLE: HEAT EXCHANGE 

Let us consider again the case of a two-stream heat exchanger shown in Figure 3.38.  

 

Figure 3.38. Two-stream heat exchanger 

When calculating the transiting exergy according to Eqs.(3.63) and (3.64) leads to 

[ ] [ ]47.67795.1354;47.67795.1354min70.175.2;45.406.1min +++++=trB      
    

(3.70) 

42.203251.5 +=trB   

          

(3.71)

 93.2037=trB

           

(3.72) 

Then, calculating the utilizable exergy coefficient, we obtain:  

∞=
−

=
−+
−+

=
0
07,1

93.203793.68101.1356
93.203717.67969.1357

utilizableη
      

(3.73) 

 

In the former example, all input streams on one hand and all output streams on the other 

hand are mixed together to calculate the transiting exergy. Then, this calculation leads to a not 

finite value for the utilizable exergy coefficient. Actually, hot streams and cold streams never mix 

themselves and are part of two distinct systems.  

To solve this problem (Brodyansky 1994) has introduced a more complex definition for 

utilizable exergy efficiency. To illustrate this formulation, Figure 3.39 illustrates the calculation of 

the transiting exergy for the mixing of two material streams I and II. In this figure, streams are 

composed of 2 components: a component 1 (in black) and a component 2 (in white). The output 

stream III results from the mixing of streams I and II. As a consequence, a part of component 1 

existing in stream III comes from input stream I whereas the other part comes from the input 

stream II. This observation leads to the definition of the sub-stream concept: in this case, two sub-

streams can be defined: sub-stream I-III and the sub-stream II-III.  

HOT IN HOT OUT

COLD IN

COLD OUT

COLD IN COLD OUT HOT IN HOT OUT

Total Exergy Flow kW 1356.01 1357.69 681.93 679.17
Chemical Exergy Flow kW 1354.95 1354.95 677.47 677.47
Physical Exergy Flow kW 1.06 2.75 4.45 1.70
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Figure 3.39. Adiabatic mixing of material streams 

 

Starting from this sub-stream definition, (Brodyansky 1994) defined the physical and chemical 

transiting exergy by the following equations: 

• Physical transiting exergy  

𝐵𝑝ℎ,𝑡𝑟 =  𝐵𝐼−𝐼𝐼𝐼
𝑝ℎ,𝑡𝑟 +  𝐵𝐼𝐼−𝐼𝐼𝐼

𝑝ℎ,𝑡𝑟          (3.74) 

𝐵𝑝ℎ,𝑡𝑟 =  𝑚𝑖𝑛[𝑛𝐼;𝑛𝐼𝐼𝐼] .𝑚𝑖𝑛�𝑏𝐼
𝑝ℎ; 𝑏𝐼𝐼𝐼

𝑝ℎ� + 𝑚𝑖𝑛[𝑛𝐼𝐼;𝑛𝐼𝐼𝐼] .𝑚𝑖𝑛�𝑏𝐼𝐼
𝑝ℎ; 𝑏𝐼𝐼𝐼

𝑝ℎ�    (3.75) 
𝐵𝑝ℎ,𝑡𝑟 =  𝑛𝐼 .𝑚𝑖𝑛�𝑏𝐼

𝑝ℎ; 𝑏𝐼𝐼𝐼
𝑝ℎ� + 𝑛𝐼𝐼 .𝑚𝑖𝑛�𝑏𝐼𝐼

𝑝ℎ; 𝑏𝐼𝐼𝐼
𝑝ℎ�      (3.76) 

• Chemical transiting exergy  

𝐵𝑐ℎ,𝑡𝑟 =  𝐵𝐼−𝐼𝐼𝐼
𝑐ℎ,𝑡𝑟 + 𝐵𝐼𝐼−𝐼𝐼𝐼

𝑐ℎ,𝑡𝑟          (3.77) 

𝐵𝑐ℎ,𝑡𝑟 =

 𝑚𝑖𝑛�𝑛1,𝐼;𝑛1,𝐼𝐼𝐼� .𝑚𝑖𝑛�𝑏1,𝐼
𝑐ℎ; 𝑏1,𝐼𝐼𝐼

𝑐ℎ � + 𝑚𝑖𝑛�𝑛2,𝐼;𝑛2,𝐼𝐼𝐼� .𝑚𝑖𝑛�𝑏2,𝐼
𝑐ℎ; 𝑏2,𝐼𝐼𝐼

𝑐ℎ � + 𝑚𝑖𝑛�𝑛1,𝐼𝐼;𝑛1,𝐼𝐼𝐼� .𝑚𝑖𝑛�𝑏1,𝐼𝐼
𝑐ℎ ;𝑏1,𝐼𝐼𝐼

𝑐ℎ � +

𝑚𝑖𝑛�𝑛2,𝐼𝐼;𝑛2,𝐼𝐼𝐼� .𝑚𝑖𝑛�𝑏2,𝐼𝐼
𝑐ℎ ;𝑏2,𝐼𝐼𝐼

𝑐ℎ �        (3.78) 

𝐵𝑐ℎ,𝑡𝑟  =  𝑛1,𝐼 .𝑚𝑖𝑛�𝑏1,𝐼
𝑐ℎ; 𝑏1,𝐼𝐼𝐼

𝑐ℎ � + 𝑛2,𝐼 .𝑚𝑖𝑛�𝑏2,𝐼
𝑐ℎ; 𝑏2,𝐼𝐼𝐼

𝑐ℎ � + 𝑛1,𝐼𝐼 .𝑚𝑖𝑛�𝑏1,𝐼𝐼
𝑐ℎ ;𝑏1,𝐼𝐼𝐼

𝑐ℎ �+ 𝑛2,𝐼𝐼 .𝑚𝑖𝑛�𝑏2,𝐼𝐼
𝑐ℎ ;𝑏2,𝐼𝐼𝐼

𝑐ℎ �  (3.79) 

where 𝑛𝑖,𝑗 refers to the partial molar flowrate of component i in the stream j and 
ch

jib , refers to the 

partial molar chemical exergy of component I in the stream j. 

 

3.3.4.4 General formulation of transiting exergy 

Considering a process composed of multiple input streams n and output streams m, the general 

formulation of the transiting physical and chemical exergy are given by the following equations: 

o Physical transiting exergy 

[ ] [ ]ph
n

ph
m

nm
nm

nm

trph
nm

trph bbnnBB ;min.,min
,,

,
),(

, ∑∑ ==       (3.80) 

o Chemical transiting exergy 

I

II

II
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,
),(
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where (m, n) is a combination of the input stream (i.e. m) and the output stream (i.e. n) which are 

physically connected: 

Note that, to solve the problem highlighted when considering the heat exchanger example 

physically connected input/output streams have to be inventoried. In general, in any process 

simulator, the input streams of a unit operation are almost always physically connected to the output 

streams, except for a heat exchange module on which heat and cold streams are represented. In the 

example shown in Figure 3.40, there are two groups of physically connected streams groups I and II.  

 
Figure 3.40. A group of material connected streams 

EXAMPLE: HEAT EXCHANGE 

Considering again the example of heat exchanger described in Figure 3.38 we can calculate the transiting   

exergies. 

)_,_()_,_(
,

outHotinHotoutcoldincold
trph BBB +=

      

(3.82)

 [ ] [ ] ph
outhot

ph
incold

ph
outhot

ph
inhotinhot

ph
outCold

ph
inColdincold

trph BBbbnbbnB ________
, ;min.;min. +=+=  

(3.83) 

kW 81.275.106.1, =+=trphB

       

(3.84)

 As the heat exchanger does not perform any chemical transformation, the chemical transiting exergy is equal the 

total input (output) chemical exergy:    

41.203246.67795.1354, =+=trchB
      

(3.85) 

Then, the resulting utilizable exergy coefficient is equal to: 
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The heat exchanger example permits to demonstrate the qualities of the utilizable exergy 

coefficient. Indeed, in comparison with the simple exergy efficiency (0.99), this indicator gives the 

right impression of the process as it is not close to the unity. In addition, we can note that the 

utilizable exergy coefficient leads exactly to the same value as the rational efficiency without the 

need of user to define the function of unit operation. Moreover, Sorin et al. (1998) demonstrated the 

strength of this new utilizable exergy coefficient for the thermodynamic assessment of chemical 

reactors. Whereas the conventional coefficient of exergy efficiency decreases with the conversion 

of studied reactor, the utilizable exergy coefficient has a smooth maximum which establishes the 

thermodynamic compromise between energy consumption and conversion rate.  

 

 Contrary to the conventional coefficient of exergy efficiency which promotes solutions 

minimizing the exergy losses per unit of exergy output, the utilizable exergy coefficient 

promotes solutions which minimize the exergy losses per unit of produced exergy.   

 

Thanks to these results, Sorin et al. (1998) concluded that the utilizable exergy coefficient is 

a more suitable criterion of a thermodynamic performance a chemical system. Therefore, the 

utilizable exergy coefficient seems to be the most promising exergy efficiency. 

 

3.3.5 Conclusion on exergy efficiencies 

Table 3.3 summarizes all of these exergy efficiencies by presenting the positive and negative 

points on them, in addition of implantation aspects of these criteria in process simulators. This table 

permits to draw some pertinent conclusions for the selection of the most appropriate exergy 

efficiency that could be implemented in a process simulator.  The first expressions (simple exergy 

efficiency or coefficient of exergy efficiency) are very simple to implement but may lead to 

misleading conclusions and give a wrong impression of the process under study. However, they 

are really accurate formulation for process where all the component of incoming exergy flows 

(physical and chemical) are transformed to other components (e.g. for utility systems). This 

formulation should then be implemented in a process simulator but its utilization should be 

restricted to such processes. Rational efficiency, which intends to evaluate the performance of the 

system from given desired effect, was a promising solution. However, the definition of the desired 

effect of a unit operation and of the global flowsheet can sometimes be a hard task for the user and 

can also lead to ambiguous results. Finally, intrinsic efficiency and utilizable exergy coefficient not 

only eliminates the need for user interactions, but also makes it possible to calculate exergy 

efficiency of different unit operations together in a given zone. Certainly the utilizable exergy 

coefficient appears to be most promising, as it excludes from the numerator the waste streams. 



 

 

 
 

Table 3.8. Comparison of exergy efficiencies 

 

 

Name Advantages Shortcomings Implementation in Process Simulators Remarks on unit operation or processes 

Simple Efficiency 
Easy to calculate 

- Insensitive to changes in process 

- Not good for diagnosis steps 

- not accurate when only physical exergy is 
modified 

Very easy 
- Adequate  for energy systems 

- Fails for those with waste stream to 
environment 

Coefficient of Exergy 
Efficiency (taking into 

account External Losses) 

- Consideration of external exergy loss 

- Good for preliminary diagnostic steps 

- Insensitive to changes in process 

- not accurate  when only physical exergy is 
modified 

Engineer needs to classify streams into 
“waste” streams and useful ones - Adequate for energy systems 

Rational Efficiency - Specific for each unit operation 

- Sensitive to changes in processes- 

- Undefined for some unit operations 

- Requires a clear definition of the desired 
output for each unit operation 

-  Engineer needs to classify streams into 
“waste” streams and useful ones. 

- Fully-automated calculation is impossible  
Interaction of user is needed. 

- Function of each unit operation in the 
particular process required. 

- Nothing to do with units like throttling valve, 
and all other fully- exergy-dissipative units 

Intrinsic Efficiency . 

Sensitive to changes in processes 

- Manual calculation is cumbersome. 

 A process simulator is needed. 

- Not considering waste streams. 

Fully-automated calculation is possible as the 
Interaction of user is not needed. 

- Suitable for the process with a high transiting 
exergy (e.g. chemical reactor with conversion 

less that 100% 

Utilizable Exergy 
Coefficient - Consideration of external exergy loss 

- Manual calculation is cumbersome. 

 A process simulator is needed. 

 

 

Engineer needs to classify streams into 
“waste” streams and useful  ones 

- A comprehensive criterion for automated 
process synthesis (Sorin et al. 2000) 



 

 

 

Figure 3.41 Exergy analysis methodology for retrofitting 
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3.4 METHODOLOGIES OF EXERGY ANALYSIS 

As highlighted previously, when performing an exergy analysis, one must distinguish two cases: 

the exergy analysis for synthesis and design purposes and the exergy analysis for the diagnosis and 

retrofitting of existing processes.  

In this section and in the case studies presented in the Chapter 5, we have chosen to limit 

ourselves to the exergy analysis dedicated to the retrofitting and optimization of existing processes. 

Concerning this aspect, a lot of case studies can be found in the literature (Doldersum 1998; Geuzebroek 

et al. 2004; Graveland & Gisolf 1998; Kim et al. 2001). Unfortunately, most of these analyses simply 

calculate the irreversibilities and external losses of each unit operation and sometimes exergy efficiencies 

but do not propose technological solutions to improve the global performance of the process. To fill this 

gap, this section introduces a systematic and sequential methodology starting from the modeling and the 

diagnosis of the existing process based upon exergetic criteria and resulting in a set of proposals for 

improvement and optimization of the process. 

 

3.4.1 Detailed presentation of the methodology 

The global flowchart of the methodology for retrofitting of processes based upon exergy analysis is 

represented in Figure 3.41. As highlighted in this figure, the methodology is composed of four stages: 

modeling of the process, diagnosis, proposal of a retrofit scheme and finally optimization of the final 

scheme. In this section, each stage will be detailed. 

 

3.4.1.1 Modeling of the global process 

This preliminary step intends to prepare the data for the further analysis of the process. This step is 

certainly the most delicate task of the methodology: indeed, extracting the data from a real process is a 

very time-consuming task; moreover, the relevance of the proposed solution given at the end of the 

procedure strongly depends on the accuracy of the model. This stage is composed of four steps:  

Data Extraction: The energy analysis of an industrial site always requires performing a rigorous 

data extraction. This data extraction consists in collecting all the necessary data for mass and heat 

balances on the process and on the existing utility system. In this step, discussions with the site 

manager are essential in order to be able to classify the process data according to process 

specifications, degrees of freedom, process parameters. Furthermore, concerning the existing 

utility system, it is essential to answer the following question: Can the process/utility system be 

completely replaced or is the purpose of the analysis just to improve the existing process/ utility 

system?  

Modeling of the process: The collected information is then capitalized by performing heat and 

mass balances which can either be performed on a simple spreadsheet or using more advanced 

tools such as process simulation software. In the proposed approach, ProSimPlus® simulator has 

been used. 
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Decomposition of the process into functional zones: The exergy analysis is intended to be 

applied to real industrial case studies; in this situation, the considered process may be very 

complex processes and composed of different functional zones. As an example, Figure 

3.42represents the TAME (tertiary Amyl Methyl Ether) unit of a crude oil refinery process 

considered by Rivero et al. (2004) for exergy analysis. As illustrated in Figure 3.42, different 

functional sections have been considered: sections dedicated to the preparation of reactants 

(depentanizer section), reaction sections, by-products recovering sections (methanol recovering 

section) and product purification sections (raffinate washing section). This decomposition will permit 

to make the analysis easier by classifying the functional zones according to their exergy efficiency.   

To generalize this approach, a generic decomposition of a given process is presented in Figure 3.43. It 

will always be possible to decompose any process according to this scheme: i.e. with reactant preparation 

sections, reaction sections, washing or recovery sections and support processes (wastewater sections, hot 

and cold utility production zones). 

 

Figure 3.42. Decomposition of the process into functional zones 

Isoamylene 
washing section

Depentaniser section Reaction section

Raffinate washing section

Methanol recovering section

Rectification section
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Figure 3.43. A generic decomposition of a process 

 

Classification of the streams according to waste and useful streams: As highlighted in Section 

3.2.2, the evaluation of exergy efficiencies requires a classification of outlet material streams of each 

functional zone as waste stream or useful streams. To make this step easy, by default, process 

simulator will consider all the outlet streams as useful streams. Depending on the considered 

process, the engineer will use his knowledge of the process to change the status of some outlet 

material streams from “useful” to “waste”.  

 

3.4.1.2 Diagnosis of the process 

The second stage is performed using the process simulator and the model implemented in stage 1.  

This stage can be decomposed in 2 steps. 

Exergy balance on the global process (calculation of exergy efficiency): The exergy coefficient 

less than ηmax means the process under operation has potential for improvements. Note that this 

value is chosen by the user. In the case study presented in Chapter 5, the coefficient of utilizable 

exergy coefficient is chosen as the exergy efficiency and the value of 0.95 is taken for ηmax . 

Classify the process zone according to their exergy efficiency: The exergy efficiency makes it 

possible to determine the critical points of the system. It means that exergy efficiency makes a 

hierarchy of unit operation in such a way that measures can be applied in the units operations where 

they will be most effective. This stage aimes at classifying the functionnal zones according to their 

exergy efficiency in order to locate the major energy savings.  

 

Reactant preparation
section I

Reactant preparation
section II

Reaction section I Reaction section II

Washing section

Recovery section

Hot Utility section Cold  Utility section 

Wastewater
treatment section 
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3.4.1.3 For each zone: proposal of a retrofit scheme 

As mentioned before, most of the case studies in the literature stop at the end of the second stage. 

In the methodology we propose, the third stage used the results of the second one to identify and solve 

the main source of exergy losses. For that purpose, each functional zone is analyzed more precisely.  

First, a graphical representation of the external and internal exergy losses occurring in each unit 

operation with bar and pie diagrams (Figure 3.44, Figure 3.45, Figure 3.46 and Figure 3.47) are 

proposed.  

 

Figure 3.44. Bar diagram for external exergy losses 

 

 

Figure 3.45. Pie diagram for external exergy losses 
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Figure 3.46. Pie diagram for internal exergy losses 

 

 

Figure 3.47. Bar diagram for internal exergy losses 

Then, solutions are proposed. Generally speaking, the internal exergy losses can be reduced 

through development of the process or technology improvement. Based on the analysis made on the 

Section 3.2, one can identify technical solutions to improve the performances of the process to complete 

this task, Table 3.2 which enumerates the major sources of irreversibility and gives us the ways for 

process improvement on each class of unit operations can be used.  

Concerning external exergy losses, they can be reduced by means of thermal, mechanical and 

chemical treatment of effluents. Section 3.2.2 shows several ways to exploit the exergy associated with 

them. One can identify technical solutions to improve the performances of the process based on Table 

3.3 which enumerates the ways for process improvement on each type of external loss. 

At the end of this step, all the technological solutions have been listed. Certainly all these solutions 

cannot be implemented either for economic reason or because of technical constraints inherent to the 
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process. This third step aims at selecting the most relevant modifications. Finally, the simulation of the 

retrofit scheme is performed in order to check the accuracy of proposed solutions.  

 

3.4.1.4 Optimization of the process 

The former stage may have pointed out some degree of freedom such as operating parameters of 

some critical unit operation (e.g. operating pressure or temperature, reflux ratio). For that reason, the last 

stage of the methodology recommends an optimization step in order to determine the optimal values for 

these parameters. To find the optimum solution, a trade-off between exergy efficiency (e.g. utilizable 

exergy coefficient) and capital cost is performed.  

 

3.5 CONCLUSION 

This chapter presents the formulation of exergy balances on a real process. To do so, in addition of 

exergy of material stream calculated in Chapter 2, in this chapter, the exergy of work and heat are 

calculated. After exergy balance, its results are exploited in such a way to make modification on the 

process flowsheet to reduce exergy losses. Dividing exergy losses into two categories of internal and 

external, different solution are presented. For each category of exergy loss, the source of losses and the 

way for improvement are presented. These are tabulated to become as a guideline tool to serve 

engineers as a panel of solutions. To illustrate the application of these tables, different examples are 

presented as well.  

In addition of exergy losses, to optimize the process properly, the exergy efficiencies are reviewed 

to find the most proper one to be implemented in a process simulator. It has been illustrated through a 

step-wise illustrative examples, that intrinsic efficiency and utilizable exergy coefficient not only eliminates 

the need for user interactions, but also makes it possible to calculate exergy efficiency of different unit 

operations together in a given zone. Ultimately, the utilizable exergy coefficient appears to be most 

promising as it excludes from the numerator the waste streams.  

Furthermore, a complete methodology is presented starting from the diagnosis of the process 

according to exergetic criteria and resulting in a set of proposals for modification and improvement of the 

process. Moreover, our methodology is implemented in commercial process simulator to promote its 

utilization by any engineer. Although exergy analysis by definition aims to serve as a tool for conceptual 

process design, this approach is real engineering approach toward achieving this objective. Particularly, it 

is a rigorous approach for dealing with industrial flowsheets with several zones and also different process 

constraints.   
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4.1 EXERGY ANALYSIS USING PROCESS SIMULATORS 

As highlighted in Section 2.1.2, a lot of exergy analysis studies have been published in the 

literature since 1985. For example, Kotas (1985) carried out the exergy analysis based on the manual 

calculation without using any software. This means that in addition of need for competence of exergy 

experts, the procedure for exergy analysis was cumbersome. As shown in the Chapter 2 and 3 

implementation of exergy analysis in process simulators, requires exergy calculation along with the 

traditional energy and mass balances. However, to facilitate this step of exergy analysis, during these last 

ten years, each case study usually gave rise to the development of dedicated exergy calculation tools. 

Some of these studies performed in Aspen Plus are reported in Table 4.1 and are classified according to 

the application fields (petrochemicals, utility systems, renewables). The tools used for exergy analysis for 

theses case studies only use the results of mass and energy balance from process simulator and then 

calculate exergy somewhere outside of the process simulator. Although these tools provided satisfactory 

results for the considered case study, they did not contribute to obtain a generic tool usable later for other 

case studies. To fill this gap, some authors have attempted to integrate exergy tools in the same 

commercial process simulators as presented in next section. 

Table 4.1. List of some exergy analysis case studies in Aspen Plus 

Type of process Reference Description 

Petrochemicals 

(Araújo et al., 2007) Distillation processes 

(Wang & Zheng, 2008) Natural Gas-based Acetylene Process 

(Hajjaji et al., 2012) Hydrogen production via the steam methane reforming 
process 

(Tzanetis et al., 2012) Sorption enhanced and conventional methane steam 
reforming 

Renewables 

(Ptasinski et al., 2002) Methanol from the sewage sludge process 

(Panopoulos et al., 2006a) High temperature solid oxide fuel cell integrated with novel 
thermal biomass gasification 

(Delsman et al., 2006) Integrated fuel processor and fuel cell (FP–FC) system 

(Ojeda & Kafarov, 2009) Enzymatic hydrolysis reactors for transformation of 
lignocellulosic biomass to bioethanol 

(Ojeda et al., 2011) Ethanol production from lignocellulosic biomass 

(Vitasari et al., 2011) Biomass-to-synthetic natural gas (SNG) process via indirect 
gasification of various biomass feedstock 

(Cohce et al., 2011) Biomass-based hydrogen production system 

(Ofori-Boateng et al., 2012) Microalgal and jatropha biodiesel production plant 

(van der Heijden & Ptasinski, 
2012) 

Thermochemical ethanol production via biomass gasification 
and catalytic synthesis 

(Peralta-Ruiz et al., 2012) Microalgae oil extraction based on exergy analysis 

Utilities (Bram & De Ruyck, 1997) Evaporative cycle 
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(Vidal et al., 2006) Refrigeration 

(Panopoulos et al., 2006a) Hydrogen fired combined cycle with natural gas reforming and 
membrane assisted shift reactors for CO2 capture 

(Tirandazi et al., 2011) C2+ recovery plants refrigeration cycles 

(Xie et al., 2012) Fuel cell based micro combined heat and power cogeneration 
system 

(Gutiérrez Ortiz et al., 2012) The supercritical water reforming of glycerol for power 
production 

(Ratlamwala & Dincer, 2012) Cu-Cl cycle based integrated system for hydrogen production 

(Espirito Santo, 2012) A building internal combustion engine trigeneration system 

(Mahabadipour & Ghaebi, 2013) Development and comparison of two expander cycles used in 
refrigeration system of olefin plant based on exergy analysis 

 

4.1.1 ExerCom: calculation of exergy for Aspen Plus and Pro/II 1(Scheihing, 2004) 

ExerCom is a plug-in software routine to calculate exergy in Aspen and Pro/II (see Figure 4.1). It 

has been developed and is owned by Jacobs Consultancy in Leiden (The Netherlands). It aims at 

calculating the exergy of gases and liquids in a flowsheet modeled in Aspen or Pro/II. It calculates the 

chemical exergy according to Szargut’s reference state, a mixing exergy and the physical exergy using 

the formulation described by (Hinderink et al., 1996). Additionally, it calculates a list of enthalpies relatives 

the reference conditions of Szargut. The database for the standard chemical exergy and enthalpy can be 

changed by the user. The result of the calculation is then added to the stream output and can be exported 

for further processing (Scheihing, 2004). 

 

Figure 4.1.  ExerCom for Aspen and Pro/II(Scheihing, 2004) 

Moreover, the additional Psage-developed program interfaces directly with the Aspen Plus and 

ExerCom results to calculate exergies of heat, work, and solid streams around individual process units 

and the overall process model. Exergies of heat streams not calculated by ExerCom are computed from 

enthalpies using the Carnot quality factor. Exergy inflows not included within the model boundaries 

(mainly refrigeration and separation units) are estimated based on exergetic efficiencies of similar units. 

                                                      

1http://www.cocos.nl/en/548/ccs/ccs_energieadvies.html 

 

http://www.cocos.nl/en/548/ccs/ccs_energieadvies.html
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ExerCom was used for exergy analysis of advanced separation enhanced water-gas-shift 

membrane reactors (Carbo et al., 2006) and an oxy-combustion process for a supercritical pulverized 

coal power plant with CO2 capture (Fu & Gundersen, 2010).The power efficiency penalty related CO2 

capture is 10.2 % points, where the air separation unit contributes 6.6 % points and the purification-

compression unit contributes 3.6 % points. The main exergy losses related to CO2 capture take place in 

the compressors in the air separation unit and the purification-compression unit. If the CO2  recovery rate 

decreases from 95.1 % to 91.5 %, the power efficiency can be increased 0.3 % points. The net power 

efficiency can be increased 0.2 % points by heat integration between the air separation unit and the 

purification-compression unit. The power efficiency can be further improved by an optimal design of the 

sub-ambient heat exchanger network. 

 

4.1.2 Open-source calculator for Sim42 (Montelongo-Luna et al., 2007) 

Based on the method described (Hinderink et al., 1996), an open-source exergy calculator of 

material streams for the open-source chemical process simulator of Sim42 (Cota Elizondo, 2003) was  

developed (Montelongo-Luna et al., 2007). As Sim42 is an open source program, this permitted the 

seamless inclusion of the exergy calculations into the source code of the simulator without linking any 

external computer routines to the simulator. Unlike most chemical exergy calculators, its chemical exergy 

is calculated based on a uncommon reference environment (van Gool, 1998). This exergy calculator does 

not carry out the full exergy balance including heat and work stream. This open-source exergy calculator 

was recently used for development of the a new exergetic criterion (Montelongo-Luna et al. 2011) to 

measure the relative exergetic efficiency and the controllability of a process when a proposed process 

and control structure is postulated.  

 

4.1.3 Excel and VB-based tools (Querol et al., 2011; Abdollahi-Demneh et al., 2011) 

A Microsoft Excel-based exergy calculator for Aspen Plus® which facilitates the thermoeconomic 

analysis has been developed (Querol et al., 2011). It calculates exergy of heat, work and material 

streams where the mixing exergy is being considered to be a part of physical exergy. The reference 

environment is based on the most common one (Szargut et al., 1988). This tool presents some critical 

shortcomings as it requires very strict constraints concerning the Aspen model characteristics: the main 

one is associated with rules for the name of equipments and streams. For example, all the streams must 

be named with 5 digits; the first 3 are equal for all the streams with same composition. These rules make 

exergy analysis not user-friendly as expected when it is integrated in a commercial process simulator 

such as Aspen Plus.  

Another tool based upon Visual Basic enables the calculation of exergy for of material streams in 

Aspen HYSYS has been developed where the chemical exergy is itself being considered to be composed 

of different components (Abdollahi-Demneh et al., 2011). The used reference environment (Szargut et al., 

1988) can be adapted to the case under study by modifying of the reference temperature, pressure and 

composition but its database covers a limited number of chemical elements. Furthermore, proposed 
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procedure for exergy calculation has been implemented by utilizing fifteen main user variables for 

material streams. For exergy analysis via process simulator softwares such as HYSYS, it is better to 

access the physical and chemical exergies of process streams within the flowsheet. This is not 

achievable unless user variables defined for process stream. For example, the required Visual Basic (VB) 

code for user variable named Ambient Temperature which is applicable to each of the user variables by 

changing the name of user variable within the VB code.  

Although such computer-aided exergy calculations make exergy analysis more accessible, exergy 

analysis within process simulators is not still straightforward. When specifying the constraints of an 

implementation of exergy analysis in ProSimPlus, our main priority was to make the calculation of exergy 

as easy and straightforward as enthalpy calculations.  

To achieve this goal, a first VBScript based prototype of the exergy calculation tool has been 

developed and validated through academic examples. Then based upon these tests, a complete 

specification draft for an integration of the exergy function in the Simulis Thermodynamic software has 

been prepared. This chapter presents the VBScript prototype and its results and summarizes the 

important specifications. 

 

4.2 EXERGY CALCULATION OF MATERIAL STREAMS IN PROSIMPLUS 

4.2.1 A VBScript library dedicated to material stream exergy calculation 

4.2.1.1 Description of the scriptlet 

In a first step, a prototype has been developed using the VBScript language in ProSimPlus to give 

different subroutines for calculating the components of the exergy of material streams. The Windows 

Script module (Figure 4.2) makes it possible to create quickly and simply your own modules of calculation 

in the ProSimPlus simulation environment. These modules, once created, can be used exactly in the 

same way as those which are provided with ProSimPlus. Their use is completely transparent and does 

not need any additional handling. Each Windows Script module is described (programmed) directly in the 

ProSimPlus graphical environment using a simple but powerful language. This language, Microsoft 

VBScript, is a simplified version of Microsoft Visual Basic. It allows writing simply the source code of a 

module. 

This macro use the result of mass and enthalpy balance at the end of simulation by ProSimPlus 

and also use the accessible functions of the Simulis to calculate exergy of streams based on the 

equations given in Chapter 2.  

http://msdn.microsoft.com/en-us/library/t0aew7h6.aspx
http://msdn.microsoft.com/en-us/library/t0aew7h6.aspx
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Figure 4.2.  Windows Script in ProSimPlus® 
 

The calculation of the exergy is based on the procedures (Figure 4.3) which are described as 

follows: 

o Definition of the reference environment (subroutine DefinitionReferenceEnvironment)   

This procedure is used to define the conditions for the reference environment. The database of standard 

chemical exergy (Rivero& Garfias, 2006a) is used at the fixed temperature, pressure and composition as 

pointed out in Chapter 2. This procedure must be called before calculating of molar exergy of streams.  

o Split multiphasic streams (subroutine SplitStream) 

As mentioned in Section 2.2.1, the streams are supposed to be monophasic. This procedure is used to 

split multiphasic stream into several monophasic streams and then to calculate the exergy of each 

monophasic stream.  

o Standard chemical exergy calculation for each cluster of components (subroutine 

StdChemExergyDataBank) 

This procedure is used to build a data bank of standard chemical exergy of components existing in the 

flowsheet. To do so, first each component is broken down into its chemical elements using the 

DecompFormula. Then, for each stream to calculate the molar chemical exergy, the standard chemical 

exergy will be called by ChemExStd_Finder. The ElementStdChemEx (i.e. a database containing the 

chemical exergy of all elements including the standard database available with Simulis Thermodynamics) 

are matched with DecompFormula to calculate the chemical exergy. 
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o Molar physical exergy calculation for each material stream  (subroutine PhysExergyMaterialStream)   

This procedure calculates the physical exergy of the material stream. It uses procedure of CalcH&S to 

call enthalpy and entropy functions from Simulis Thermodynamics. As a part of 

PhysExergyMaterialStream, another procedure MecaThermEx (based on the procedure of CalcHAndS) 

calculates the contributions of mechanical and thermal exergy.  

o Molar chemical exergy calculation for each material stream (subroutine ChemExergyMaterialStream) 

This procedure calculates the chemical exergy of the material stream starting with calling 

StdChemExergyDataBank as a procedure to calculate the standard chemical exergy of the component 

found in the flowsheet based on the calculation methodology given in literature (Rivero& Garfias, 2006a).  

o Chemical, physical and total exergy flow calculation for each material stream (subroutine ExergyFlow) 

Having calculated molar exergy of streams, now the exergy flow in kW is computed to let the user for 

further exergetic criteria. As the exergy breakdown into chemical, thermal and mechanical are known in 

the mole basis, accordingly the exergy flow breakdown will be provided in thermal, mechanical, chemical 

components as well as total exergy flow. 



 

 

 

Figure 4.3.  Calculation of exergy of material streams in ProSimPlus® 
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4.2.1.1 Integration in ProSimPlus as Scriptlets 

ProSimPlus allows the user to easily develop calculation routines involving available 

thermodynamic functions. As a consequence, it has been decided to develop the preliminary exergy 

calculation tool using the ProSimPlus Scriptlets functions. As illustrated in Figure 4.4, by copying the VB 

Script code in ProSimPlus installation directory, the new function becomes available to any user of the 

software.  The list of Scriptlets in the group of Exergy as a menu, appears by right-clicking on the project 

area.  

 
Figure 4.4.  Calling the Scriptlet for material stream 

 

4.2.2 Presentation of results 

4.2.2.1 Exergy tables 

By calling the scriptlet “Exergy of Material Streams” associated to the global flowsheet, the 

calculation of exergies for all the material streams contained in the flowsheet is performed and a table 

(Figure 4.5) containing the molar chemical and physical exergies and the exergy flux is displayed.  

 
Figure 4.5.  Table of exergy of material streams in ProSimPlus® 
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4.2.2.1 Exergy distribution of streams 

Another Scriptlet has been developed to visualize the distribution of exergy of stream in form of pie 

diagrams. The menu of exergy appears by a right-click on a stream. It displays the exergy breakdown into 

chemical exergy and physical exergy. Note that except for streams encountered in utility systems mainly 

containing water, it is not surprising to observe a chemical exergy much greater than the physical exergy. 

An illustration of the results of this Scriptlets is given in Figure 4.6.  

 
Figure 4.6.  Distribution of exergy of material streams in ProSimPlus® 

 

4.2.3 Validation 

The proposed calculation methodology must now be validated through various case studies of the 

literature. Although the numerical examples of calculation of exergy flow are not numerous, we can rely 

on three numerical examples provided by literature (Kotas, 1985; Hinderink et al., 1996; Montelongo-Luna 

et al., 2007).  

• Example 1: Gaseous stream 

A numerical example from literature (Kotas, 1985) is taken to calculate exergy of a mixture of air 

and carbon monoxide at a temperature of 125°C and a pressure of 2.1 bar. This stream is gaseous both 

at the given temperature and pressure and also in the reference conditions. This makes possible to 

measure the deviation when there is no phase change. The simulation was performed by ProSimPlus 

using the ideal model. The simulation data are listed in Table 4.2. 

Table 4.2. Data for simulation (Kotas, 1985) 
Parameter Value 

Mass flowrate (kg/s) 0.5 

Molar fraction of Air 0.85 

Molar fraction of CO 0.15 

T (°C) 125 

P (bar) 2.1 

Model Ideal 
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The comparison between the results of literature (Kotas, 1985) and our calculator are given in 

Table 4.3. It can be seen that the values obtained are very close to those of the literature. 

Table 4.3. Comparison of results 

 ProSimPlus (Kotas, 1985) Deviation (%) 

Chemical exergy (kW) 697.7 698.4 0.1 

Physical exergy (kW) 38.3 38.9 1.5 

 

The deviation in chemical exergy is due to different reasons. The main one is using different tables 

of standard chemical exergy. In our work, we have used the recent standard table (Rivero & Garfias, 

2006a) compared to reference (Kotas, 1985). In addition, the deviation related to physical exergy is 

relatively higher. This is mainly due to the assumption where the mixture is taken to behave as an ideal 

mixture.  

• Example 2: Liquid / vapor stream at (T00, P00) 

It is particularly difficult to find in the literature a detailed numerical example for liquid/vapor stream 

at (T00, P00). However, the example presented here are taken from the literature (Hinderink et al., 1996). 

This example allows measuring the deviation associated with phase transition. This stream is fully vapor 

at 150°C and partially liquid at T00 and P00 (vapor fraction: 0.8). The data required for the simulation of the 

stream are given in Table 4.4. 

Table 4.4. Data for simulation (Hinderink et al., 1996) 

Parameter Value 
Mass flowrate (mol/s) 1000 
Molar fraction of H2O 0.22 
Molar fraction of N2 0.75 

Molar fraction of CO2 0.02 
Molar fraction of NO 0.005 
Molar fraction of CO 0.005 

T (°C) 150 
P (atm) 1 
Model SRK 

 

The literature (Hinderink et al., 1996) defines a term corresponding to the exergy of mixing, which 

in our case is spread over the chemical and physical exergies. It is therefore impossible to validate the 

calculation of chemical and physical contributions. However, we can compare the value of the total 

exergy (Table 4.5). The low difference between the examples in the literature and our own calculation 

validates the calculation of exergy of streams. The deviation in total exergy might be due to different 

reasons. The first one is different vapor faction of the stream at T00, P00 as two different simulators are 

used to flash the stream to T00, P00. As reported in Table 4.6, as a consequence of deviation of 

composition of vapor phase at T00, P00, there will be an obvious deviation in result of exergy. Second 
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reason is use of different standard chemical exergy tables. In our work, we have used the recent standard 

table (Rivero & Garfias, 2006a) compared to reference (Szargut, 1988). 

Table 4.5. Comparison of results 

 ProSimPlus (Hinderink et al., 1996) Deviation (%) 

Exergy (kW) 3746.8 3977 5.8 

 
Table 4.6. Comparison of composition of streams in Aspen Plus and ProSimPlus at T00 and P00 

 ProSimPlus (Hinderink et al., 1996) 
Phase Liquid Vapor Liquid Vapor 

Mole fraction     
Water 1.00 0.0310 1.00 0.0227 

Nitrogen 0.00 0.9317 0.00 0.9398 
Carbon dioxide 0.00 0.0248 0.00 0.0251 

Nitric oxide 0.00 0.0062 0.00 0.0063 
Carbon monoxide 0.00 0.0062 0.00 0.0063 

 

In summary, calculation of the molar exergy of a mixture by the equations given in Chapter 2, 

results in 1.5% and 5.8% deviation from the examples taken from literature (Kotas, 1985; Hinderink et al., 

1996), respectively.  

 

• Example 3 : Global flowsheet  

The last validation example concerns a global process. The process is dedicated to the Natural 

Gas Liquid recovery (Montelongo-Luna et al., 2007). The exergy analysis of this process in the reference 

paper has some ideal assumptions which make the process far from real conditions. For example, the 

flash separation at stage 1, 2 and 3 were chosen to be isentropic in literature (Montelongo-Luna et al., 

2007).  However, in this step to have a comparable simulation file, only for the purpose of validation, the 

process conditions are taken as they were in the literature. But in Chapter 5, there have been some 

modifications on conditions of process to obtain more realistic conditions. 

 
Figure 4.7.  Natural gas stabilization (Montelongo-Luna et al., 2007) 
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The deviation in molar exergy might be due to different reasons. The first one is different 

composition of stream at T00, P00 as two different simulators are used to flash the stream to T00, P00. 

Second reason is use of different standard chemical exergy tables. In our work, we have used the recent 

standard table (Rivero & Garfias, 2006a) compared to reference (van Gool, 1998). 

Table 4.7 summarizes the results of validation by comparing the results obtained by (Montelongo-

Luna et al., 2007) with the ones obtained using the macro we developed. Although in the reference work 

(Montelongo-Luna et al., 2007) different RE (van Gool, 1998) is chosen, it can be seen the maximum 

deviation for molar exergy flow is 2.35% which is acceptable. The deviation in molar exergy might be due 

to different reasons. The first one is different composition of stream at T00, P00 as two different simulators 

are used to flash the stream to T00, P00. Second reason is use of different standard chemical exergy 

tables. In our work, we have used the recent standard table (Rivero & Garfias, 2006a) compared to 

reference (van Gool, 1998). 

Table 4.7. Validation with the literature 

Material 
Stream Total Exergy (kJ/mol) 

 ProSimPlus Literature Deviation % 
111 2215.50 2164.63 2.35 
112 2215.89 2164.63 2.37 
113 1400.78 1373.17 2.01 
121 2833.82 2788.01 1.64 
122 2836.02 2790.20 1.64 
131 3500.35 3461.02 1.14 
132 3502.46 3463.00 1.14 
123 2108.40 2109.33 -0.04 
124 2110.36 2111.30 -0.04 
133 2852.35 2882.63 -1.05 
134 2859.87 2889.87 -1.04 
102 4466.14 4490.76 -0.55 
101 1913.63 1905.28 0.44 

4.3 CONCLUSION 

For the purpose of exergy balance, all types of exergy associated with material, heat and work 

streams in a process and its related utilities, has to be calculated. In this chapter, implementation aspects 

of exergy calculations related to material streams in ProSimPlus are presented. Having reviewed different 

existing exergy tools in commercial process simulators, enable us to implement exergy in our process 

simulator in a more user friendly way. In the developed calculator, the exergy is now as accessible as 

enthalpy in ProSimPlus. This means after simulation, exergy of streams can be seen for each single 

stream. However, the calculation type of exergy is limited to retrofit case. Further implementation aspects 

of exergy analysis in ProSimPlus will be carried out in a project funded by ANR. 

 



 

 

5. Application: NGL Recovery Process 
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5.1 INTRODUCTION 

As demonstrated in Chapters 2 and 3, exergy analysis is an efficient tool dedicated to the 

diagnosis and retrofitting of existing processes. It enables to pinpoint the major source of 

inefficiencies of a given process and suggest guidelines for improving and optimizing its 

performances. In Chapter 3, the implementation of exergy calculation in ProSimPlus simulator has 

been validated with different examples from literature. In this chapter, the value of the developed 

tool is demonstrated and the concepts discussed in the previous chapters are illustrated through a 

simple example. 

The case study concerns the Natural Gas Liquid recovery process already analyzed by 

Montelongo-Luna et al. 2007. The exergy analysis of this process in the reference paper has 

several shortcomings which need to be overcome. First, with an estimated value close to one, the 

use of simple exergy efficiency is not adequate to promote the exergy. Then, the case study only 

considers the NGL process excluding the utility system, which is not relevant when trying to 

optimize the energy efficiency of an integrated process. Finally, the presented analysis was limited 

to internal exergy losses without taking into account external exergy losses. Above all, no step-wise 

approach was presented to show how we can use exergy analysis as a diagnostic tool for 

improvement of the existing process.  

All these above-mentioned limitations become an incentive to take this sample flowsheet and 

enrich it considerably for analysis with use of a generic step-wise exergy analysis which could be 

general and applicable for any flowsheet. 

 

5.2 DESCRIPTION OF THE PROCESS 

Natural Gas Liquid (NGL) is a term for the mixtures of methane, ethane, propane, butane, 

and natural gasoline extracted from natural gas. Natural gas liquids recovery consists in removing 

and gathering propane, butane and other heavier hydrocarbon products from natural gas. The 

process is often used to reduce a gas stream's heating value to meet pipeline tariff requirements 

while removing excess liquids that may condense and cause problems in transmission. The liquids 

are accumulated in an on-site tank and later trucked to a refinery for fractionation into its saleable 

hydrocarbon components. The end results is a gas stream that meets pipeline quality standards 

with the benefit of a by-product which provides additional revenue for the producer (Tuckergas 

2012). 

Figure 5.1 represents the block flow diagram for a stabilization train of natural gas containing 

traces of oil. To satisfy the specifications of marketing, natural gas needs to be stabilized. In this 

process, the natural gas (C1 to C9 hydrocarbons) is separated into a stabilized condensate (C4 to 

C9 hydrocarbons) and a saleable gas (C1 to C4 hydrocarbons). In our case, as the amount of 

natural gas is not so high, a full Natural Gas Liquid (NGL) recovery train is not economically 

justifiable and a simple stabilization scheme is chosen (Montelongo-Luna et al. 2007). 
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Along this process, a rich gas is heated in three heaters followed by separators where the 

inlet gas streams are flashed. At each step, the outlet liquid stream is sent to the next flash where 

the pressure is reduced further. The liquid stream from the last flash is the stabilized condensate. 

On the other hand, the outlet gas streams from all of the separators are mixed together with same 

pressure to obtain a stabilized gas product stream with the desired specifications as reported in 

Table 5.1 (Montelongo-Luna et al. 2007).  

 

Figure 5.1.  Block diagram of the NGL recovery process 

Table 5.1. Specification of the NGL process 

Components Recovery ratio (%) 
in gas product 

Recovery ratio (%) 
in liquid product 

Methane 99.96 0.04 
Ethane 99.59 0.41 

Propane 98.17 1.83 
Isobutane 95.40 4.60 
n-Butane 93.79 6.21 

Isopentane 86.90 13.10 
n-Pentane 84.46 15.54 
n-Hexane 69.76 30.24 
n-Heptane 52.44 47.56 
n-Octane 36.04 63.96 
n-Nonane 23.29 76.71 

 

To meet the heating requirements of the process, a relative high pressure steam at 10 bar 

with 80°C degree of superheat for all three separation stages is used (see Figure 5.1). As well as 

steam heating, electricity is required to drive the compressors at the second and third stages of 

stabilization where pressure drop causes the flash separation. The required electricity for the base 

case is imported from the external electricity grid. 

Process Constraints: Ahead of simulation, a set of assumptions and process constraints 

should be taken into account. In this study, due to the constraints imposed by process side, the 

process conditions should be maintained as it is in the existing flowsheet. On the contrary, 

conditions of utility can be modified to obtain optimum conditions. 
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5.3 SIMULATION 

5.3.1 Thermodynamic model 

To represent the systems involved in different process zones as accurately as possible, 

ProSimPlus simulator allows the definition of different thermodynamic models. For the process 

under study, the following models are used:  

• In the NGL process and the fuel gas combustion sections: Peng–Robinson equation of state is 

chosen because of the following reasons: 

o The mixture is not a liquid strongly non-ideal as it is made of hydrocarbons. 

o It has hydrocarbons lighter than C5 such as methane, ethane, propane, isobutane, n-butane 

and isopentane. 

o It does not have hydrogen as it is made of hydrocarbons. 

o Operating temperature is not less than -30°C as it is in the range of 10-141°C. 

• The utility system exclusively contains water: a water specific thermodynamic model 

embedded in ProSimPlus has been chosen. This model is applicable for both water and steam as it 

consists of pure water. 

 

5.3.2 Process Simulation 

Figure 5.2 presents the ProSimPlus flowsheet of the process. The flowsheet is divided into 

two zones: the zone 1 refers to process whereas zone 2 concerns the utility system. To name the 

equipments, the first letter indicates the equipment type, the first number represents the process 

zone and the second number represents the stage if there is, e.g., F-210 is a flash in zone 2 and 

for the first stage. For the streams, a three-digit number is used where the first digit represents the 

zone, the second digit represents the stage, and the third digit represents the sequence in the 

flowsheet (e.g. 1 for inlet and 2 for outlet). 

All the required data and specifications for the simulation of the process and the utility 

system are given in Table 5.2, Table 5.3, Table 5.4 and Table  5.5. The operating parameters of 

utility system (i.e. splitting ratio of stream 211 and 221 in the S-202, water make-up flowrate steam 

251) are adjusted to obtain the desired outlet temperatures of heaters E-210, E-220 and E-230 

reported in Table 5.3. In addition, the fuel flowrate (stream 261)  is adjusted to keep the flue gas 

(stream 263) temperature equal to 300°C which is much higher than the acid dew point (140°C). As 

listed in Table 5.2, the feed (stream 111) (C1 to C9 hydrocarbons) has to be separated into a 

stabilized condensate (stream 102) (C4 to C9 hydrocarbons) and a stabilized gas (stream 101) (C1 

to C4 hydrocarbons). For that purpose, a rich gas is heated in three heaters followed by separators 

where the inlet gas streams are flashed. As well as heating for the gas stream (streams 111, 121 

and 131) at the inlet of each stage, a pressure drop is done to vaporize the volatile component into 
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the vapor phase.  The stage 1 does not have pressure drop and the separation made by heating of 

stream up to 68°C by low-pressure steam (stream 211). The inlet stream (stream 121) of stage 2 

(F-120) is first heated up to 124°C and then it goes through a pressure drop of 2075 kPa. The inlet 

stream (stream 131) of stage 3 (F-130) is first heated up to 134°C and then it undergoes a pressure 

drop of 1700 kPa as listed in Table 5.3.  

Table 5.2. Composition of the feed 

 Compound Mole fraction 
C

om
po

si
tio

n 
of

 th
e 

fe
ed

 Methane 0.316 
Ethane 0.158 

Propane 0.105 
i -Butane 0.105 
n-Butane 0.105 
i -Pentane 0.053 
n-Pentane 0.053 
n-Hexane 0.027 
n-Heptane 0.026 
n-Octane 0.026 
n-Nonane 0.026 

Flowrate 490 kmol/hr 
Temperature 10 °C 

Pressure 4125 kPa 

 

The outlet gas streams (101) from all of the separators (F-110, F-120, F-130) should be 

mixed together to be sent into the pipeline. Therefore, they should be mixed with same pressure 

(4125 kPa) to avoid any deviation of stream which can cause the gas from one pipe goes to 

another pipe. To do so, the stabilized gas product from each stage is pressurized by compressors 

(C-120, C-130) with isentropic efficiency of 75% (see Table 5.3). 

Table 5.3. Input data for process simulation 

Parameter Value 

Outlet temperature of heater E-210 (°C) 68 

Outlet temperature of heater E-220 (°C) 124 

Outlet temperature of heater E-230 (°C) 134 

Stage 1 (F-110) pressure drop (kPa) 0 

Stage 2 (F-110) pressure drop (kPa) 2075 

Stage 3 (F-110) pressure drop (kPa) 1700 

Gas Product (101) pressure (kPa) 4125 

C-120 isentropic efficiency 75% 

C-130 isentropic efficiency 75% 
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To meet the heating requirements of the process, a relative high-pressure steam (stream 

256) at 10 bar is used (see Table 5.4). As this steam should be hot enough to heat all three 

separation stages, 80°C degree of superheat is taken. The process streams (streams 111, 121, 

131) are heated up by the steam condensation in heat exchangers (E-210, E-220, E-230) and 

condensate is throttled down to 3 bar. The condensate (stream 241) is returned at 3 bar and is 

mixed with the boiler water makeup (stream 251) to feed the steam boiler. Note that a small portion 

of steam at 10 bar (stream 254) is used in the deaerator (D-201) to separate air from return-

condensate (stream 243). 

Table 5.4. Input data for simulation of the utility system 

 

 

 

 

 

 

As well as steam heating, electricity is required to drive the compressors (C-120, C-130) at 

the second (F-120) and third (F-130) stages of stabilization where pressure drop causes the flash 

separation. The required electricity for the base case is imported from the external electricity grid.  

The operating parameters of utility system (i.e. splitting ratio of stream 211 and 221 in the S-

202, water make-up flowrate steam 251) are adjusted to obtain the desired outlet temperatures of 

heaters E-210, E-220 and E-230 reported in Table 5.3. In addition, the fuel flowrate (stream 261)is 

adjusted to keep the flue gas (stream 263) temperature equal to 300°C which is much higher than 

the acid dew point (140°C). 

Table 5.5. Setpoints and variables for the base case 

Setpoints Variables 

Outlet temperature of heater E-210 = 68°C Splitting ratio of the splitter S-201 

Outlet temperature of heater E-220 = 124°C Splitting ratio of the splitter S-201 

Outlet temperature of heater E-230 = 134°C Water make-up flowrate 

Flue gas temperature = 300°C Fuel flowrate 

 
 

Parameter Value 

Stack temperature (°C) 200 

Degree of superheat of HP/MP  steam (°C) 80 

Temperature of return condensate (°C) 134 

Pressure of return condensate (bar) 3 

  



 

 

 

Figure 5.2.  Natural gas stabilization 
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5.3.3 Nominal heat exchanger network 

As shown in Figure 5.3, the HP steam (stream 256) in S-202 is divided into three portions. 

The process streams 111, 121 and 131 are heated up by the steam condensation in heat 

exchangers E-210, E-220 and E-230 in parallel. 

 
Figure 5.3.  Grid diagram of heat exchanger network for the base case 

 

Although many types of heat transfer equipment are used in the industries, the most 

commonly used type (the shell-and-tube heat exchanger) is taken for our case study. In the 

conceptual design of heat exchanger, the overall heat transfer coefficient can be taken from tables 

in literature (Ludwig 2001) as a guide to the order of magnitude. For our case, 283.91 Wm-2K-1 is 

taken for overall heat transfer coefficient (U) as the steam is used as a hot fluid and hydrocarbon is 

on the cold side. Then required effective outside heat transfer surface area based on net exposed 

tube area can be calculated as explained in Appendix F and are reported in Table 5.6. 

 Table 5.6. Heat transfer Area 

Heat 
Exchanger Q (MW) U (W m-2 K1) T1 T2 t1 t2 LMTD (°C) A (m2) 

E-210 1.170 283.9 200 179 10 68 149.7 27.5 

E-220 0.879 283.9 200 179 68 124 92.4 33.5 

E-230 0.135 283.9 200 179 124 141 57.0 8.4 

 

 

 

 

U= 283.91 Wm-2K-1

E-230E-220E-210

180 °C200 °C
201

68 °C 10 °C 111

124 °C 68 °C 121

141 °C 106 °C 131
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5.4 EXERGY ANALYSIS 

The exergy analysis tools introduced in the Chapter 4 offers the possibility to perform 

automatic calculations of exergy of material and heat streams and to present the result of exergy 

balances in different forms such as pie or bar diagram (Ghannadzadeh et al. 2011a). In addition, 

Chapter 3 presents the exergy analysis through step-wise methodologies. The application of the 

retrofitting methodology is presented in the following section by step-by-step analysis of the case 

study. 

5.4.1 Modeling of the global process 

Data extraction and modeling of the process: This stage has been explained in 

Section5.3. 

Defining the functional zones of the process: This task for our case study has already 

been done in the Section 5.3. The flowsheet is divided in two main zones (process zone and utility 

system) as shown in Figure 4.  

Classifying streams:  « Waste » vs. « Useful » Streams: As demonstrated earlier, the 

exergy analysis requires the definition of the utilization of the streams (i.e. waste or useful) by the 

user. In this case study all the material streams leaving the process are useful whereas all the 

material output streams in the utilities system are considered as waste streams as they are directly 

rejected into the environment. As a consequence, in this specific case study, external exergy loss 

will only be associated with the utility system. 

Table 5.7. Useful and waste streams definition 

Zone Material 
Stream Useful / Waste 

1 101 Useful  
102 Useful  

2 

263 Waste 
253 Waste 
252 Waste 
242 Waste 

 

5.4.2 Diagnosis of the process 

5.4.2.1 Exergy balance on the global process 

The main task is exergy calculation of streams. Table 5.8 summarizes the total exergy and 

the exergy flows for each material streams. The exergy flow of the most streams in zone 1 is 

approximately 10 times higher than zone 2. This is because of use of hydrocarbons in this zone 

unlike zone 2 where the water is the main component. This difference can be clearly seen in the 

Grassmann diagram shown in Figure 5.4. 
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Table 5.8. Exergy calculation of streams 

Zone Material 
Stream 

Total Exergy 
(kJ/mol) 

Total Exergy Flow 
(kW) 

Zone 1 

111 2215.50 30586.16 
112 2215.89 30591.54 
113 1400.78 8337.90 
121 2833.82 22254.66 
122 2836.02 22271.96 
131 3500.35 14352.56 
132 3502.46 14361.22 
123 2108.40 7912.65 
124 2110.36 7920.03 
133 2852.35 7000.88 
134 2859.87 7019.33 
102 4466.14 7350.80 
101 1913.63 23269.09 

Zone 2 

261 78.51 2813.20 
251 9.50 134.50 
263 4.94 177.29 
256 25.16 1452.06 
254 25.16 14.52 
241 34.03 1749.70 
242 34.03 194.41 
252 9.50 26.90 
211 25.16 769.85 
221 25.16 578.47 
222 12.06 277.26 
232 12.06 42.76 
231 25.16 89.22 
212 12.06 368.99 

 

5.4.2.2 Calculation of exergy efficiency 

As listed in Table 5.9, performance improvement of the process can be evaluated based on 

several criteria which make analysis of the process very complex. To fill this gap and facilitate 

further optimization of the process, the utilizable exergy coefficient proposes an aggregated 

criterion including all the aspects listed in Table 5.9. 

Table 5.9. Performance of the base case 

Parameter Base case 
Fuel demand (kg/hr) 224.6 
Water makeup (t/hr) 1.03 

Electricity demand (MW) 0.191 
Internal exergy losses (MW) 2.764 
External exergy losses (MW) 0.292 

Total exergy loss (kW) 3.056 
Utilizable exergy coefficient 0.89 
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The utilizable exergy coefficient of 0.89 means the process which is under operation has 

potential for improvements. However, the Grassmann diagram shows the relative small 

irreversibility as the exergy of hydrocarbons (e.g. 30.586 MW exergy of stream 111) are relatively 

high and do not let us to see the contribution of each unit operation which make total irreversibility 

of 2.764 MW.  

Table 5.9 reports that exergy loss is more due to internal rather than external exergy losses. 

It means that the improvement of the energy efficiency of the process requires adjustments on the 

process configuration rather than recycling of effluent streams. To find the main source of exergy 

losses, a detailed exergy analysis of each unit operation has to be carried out. This analysis will be 

presented in the next section. 

 

5.4.2.3 Capital cost of the heat exchanger network 

The stream pressure has a relation with minimum temperature approach and certainly the 

required surface area of heat exchangers E-210, E-220 and E-230. To complete the analysis of the 

process, estimation the capital cost of heat exchangers as a function of surface area needs to be 

performed. For that study, the costing law (Hall et al. 1990)  has been adopted: 

Cost (USD) = 30800 + 750A0.81         (5.1) 

where 30800 represents a fixed cost of installation independent of the area, and A represents the 

surface area. To use this costing law, it is assumed that plant life is 6 years and capital interest is 

10% per year. The heat exchangers are assumed to be made of carbon steel and operate under 10 

bar in both sides of shell and tube.  

Note that use of ProSimPlus simulator permits to implement very easily the cost calculation. 

The use of another law more relevant for the considered case study would not be difficult to be 

implemented.  

Assuming 283.91 Wm-2K-1 as the overall heat transfer coefficient, investment cost of HEN 

will be 120,241.9 USD.  

 

5.4.2.4 Classify the process zone according to their exergy efficiency 

For each zone, exergy efficiency is calculated and is reported respectively in Table 5.10 and 

Table 5.11.As expected, the utility system displays much lower exergy efficiency. This means that 

the higher potential for improvement relies on this zone. 
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Table 5.10. Exergetic criteria for zone 1 (process) 

Exergetic criteria   
External exergy loss (kW) 0 
Internal exergy loss (kW) 686.50 
Total exergy loss (kW) 686.50 
Utilizable exergy coefficient 0.99 

 
Table 5.11. Exergetic criteria for zone 2 (utility system) 

Exergetic criteria   
External exergy loss (kW) 292.13 
Internal exergy loss (kW) 2 077.64 
Total exergy loss (kW) 2 369.77 
Utilizable exergy coefficient 0.09 

 

The high utilizable exergy coefficient of zone 1 is because of use of high efficient equipments 

in this zone such as compressors (0.75) and flash. In addition, zone 1 does not discharge any 

effluent streams as all the streams are useful as shown in Grassmann diagram (Figure 5.4). 

Consequently, the external exergy losses are zero.  

On the other hand, zone 2 has very low utilizable exergy coefficient. This is due to the 

several reasons such as no power generation in addition of discharge of flue gas, vent and 

condensate losses into the environment as shown in Grassmann diagram (Figure 5.4). Therefore, 

instead of throttling of steam through the valves a more efficient system such as cogeneration can 

be used. 



 

 

 

Figure 5.4.  Grassmann diagram 



 

 

5.4.3 Proposal of a retrofit scheme 

5.4.3.1 Zone 1 - Internal and external exergy losses of unit operations 

By representing the external and internal exergy losses occurring in each unit operation with 

bar diagram (see Figure 5.5), one can identify technical solutions to improve the performances of 

the process. In this zone, external exergy losses are null whereas some unit operations have high 

internal exergy losses (or irreversibilities); these losses can be reduced through development of the 

process or technology improvement.  

 
Figure 5.5.  Internal and external exergy losses (kW) for the base case (zone 1) 

 

Flash separator (F-110, F-120, F-130): Unlike F-110 which is only heated up, F-120 and F-

130 are both heated up and undergo pressure drop (i.e. throttling process). That is the reason why 

the exergy loss in F-110 is zero. The throttling process is main cause to have a relative high exergy 

loss for F-120 and F-130. The throttling process is a part of the separation process. It means that it 

is intrinsic of the flash separation. Therefore keeping this technology will not allow us to reduce the 

exergy losses. Although based on Table 3.3 expanders can be solutions to reduce exergy losses, 

the process streams unlike utility streams are not possible to be expanded through turbines. 

Compressor (C-120, C-130): Thanks to a relative high isentropic efficiency (75%), theses 

compressors do not cause high exergy losses. Although the temperature reduction of inlet stream 

can reduce exergy losses based on Table 3.3, there is a risk of condensation of natural gas liquids 

in the compressor. Therefore, the temperature of inlet stream has to be kept as it is in the base 

case. 

Gas mixer (M-101): The gas mixer causes relative exergy losses. As reported in Table 3.3 

its exergy loss is due to mixing of stream with different conditions. In this case, the exergy losses 

are due to the temperature and composition difference. As the operating conditions of separators 

cannot be changed, the compositions cannot be consequently changed. However, the streams can 

be mixed isothermally to reduce the exergy losses associated with non-isothermal mixing. 
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5.4.3.2 Zone 2 - Internal and external exergy losses of unit operations 

o Internal losses 

The same analysis is performed for the utility system. Figure 5.6 displays the internal and external 

exergy losses of each unit operation.  

 
Figure 5.6.  Internal and external exergy losses (kW) for the base case (zone 2) 

Steam boiler (B-201): As can be seen in Figure 5.6, the largest irreversibilities occur in the 

steam boiler (B-201). Intrinsic irreversibility due to the combustion is unavoidable; however, 

according to Table 3.3 solutions exist to reduce the internal exergy loss such as preheating of 

combustion air through an economizer. 

Heat exchanger (E-210, E-220, E-230): The second-largest irreversibility occurs in the heat 

exchanger network and mostly in the heat exchanger E-210 because of the large temperature 

difference between hot and cold streams. This point reveals that the utility system is poorly 

integrated with the process. To improve the process, a temperature difference as small as possible 

but higher than ∆T min (i.e. 10°C) must be used.  

Throttling valve (V-210, V-220, V-230): Due to pressure drop, V-210, V-220 and V-230 

display a high exergy loss. According to Table 3.3, replace these valves by steam turbines can be 

a solution.  

Deaerator (D-201): Its exergy loss is due to mixing of high-pressure steam with the 

condensate. This is the principle of deaeration process to separate air from condensate. As there is 

no other technology available to do this, we have to bear the exergy losses caused by deaerator. 

 

o External losses 

Contrary to zone 1, utility system displays non-negligible external losses. To reduce these 

external losses, Figure 5.7 presents in a pie diagram the external losses for each unit operation 

and gives the contribution of chemical and physical exergy losses. 

0.
5 

  

99
.6

   

74
.8

   

33
.6

   

36
.3

   13
0.

6 
  

34
8.

1 
  

50
0.

0 
  

19
.3

   

14
2.

0 
  

69
.3

   

80
.8

   

Internal Exergy Loss (kW)
External Exergy Loss (kW)

20
92

.6



 137 
 
 
 

 

 

Figure 5.7 External exergy losses 

Flue gas (stream 264) - steam boiler (B-201): The external exergy losses associated with 

the steam boiler is due to its flue gas. To reduce this external loss chemical and thermal 

recuperation of flue gas can be applied. Although the recovery of its chemical exergy needs a 

system such as solvent based capture of CO2 from flue gases (Cousins et al. 2011), the physical 

exergy can be recovered by a simple waste heat exchanger. As shown in Figure 5.7 up to 61.8 kW 

exergy can be recovered by a reduction of temperature of flue gas (stream 263) into the ambient 

temperature. 

Vent (stream 253) – deaerator (D-201): The exergy losses of deaerator are due to both 

physical and chemical exergy losses as shown in Figure 5.7. To exploit the thermal component of 

exergy of the hot vent stream of deaerator (stream 253), a waste heat exchanger might be a 

solution. Its condensation in a recovery heat exchanger till ambient condition can save up to 57.8 

kW exergy. 

Condensate purge (stream 242) - condensate system (C-201): As shown in Figure 5.7, 

the exergy losses of condensate system are more due to physical exergy rather than chemical 

exergy losses. To exploit the thermal component of exergy of the condensate purge (stream 242) 

up to 140.2 kW, a waste heat exchanger can be installed to recover its heat down to 25°C. 

 

5.4.4 Screening unit operation based on exergy efficiency and process constrains 

The simple exergy efficiencies are very easy to calculate and have been given by 

Montelongo et al. (2007). However, in the NGL process, where the major part of exergy input 

consists in the chemical exergy which remains unchanged, the simple exergy efficiency is quite 

restrictive. It is not surprising to obtain the simple exergy efficiency close to one for all the unit 

operations except for the steam system as shown in Montelongo et al. (2007). In such a process, it 

would be better to calculate the utilizable exergy efficiency as reported in Figure 5.8. 
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Figure 5.8.  Utilizable exergy coefficient for unit operations (zone 1) 

As pointed out in Section 5.4.2.4and can also be seen in Figure 5.8, the zone 1 is relatively 

high efficient. Therefore, zone 2 should be chosen as a zone which is a promising zone to yield 

high potential for improvement. The utilizable exergy coefficient for zone 2 is calculated as reported 

in Figure 5.9.  

 

Figure 5.9.  Utilizable exergy coefficient for unit operations (zone 2) 

The efficiency equal to zero for V-210, V-220 and V-230 pinpoint the focus where it is likely 

to yield the greatest potential. Note that it is not surprising to find exergy efficiency of zero as these 

three valves do not have any useful function rather than depressurizing the steam. 

The exergy efficiency of each unit operation and the process constraints must then be 

analyzed together to prioritize the feasible process modifications. Although the steam boiler (B-201) 

has the largest potential, its intrinsic irreversibility due to the combustion needs chemical 

modifications (e.g. solvent based capture of CO2 from flue gases, (Cousins et al. 2011) which 

needs further investigation. This process constraint limits us to the thermal and mechanical 
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modifications. Therefore, only retrofit options related to physical exergy (such as installation of an 

economizer) will be taken into account. 

In addition, heat exchanger E-210 with the second-largest potential will be revamped as far 

as the process constraints allow. As mentioned earlier, to reduce the irreversibilities in heat 

exchangers, it is necessary to reduce the driving force between hot and cold streams. As the 

process streams cannot be modified, it is decided to reduce the inlet temperatures of the steam by 

expansion through turbines. For that purpose, steam turbines are preferred over the simple 

expanding valves as the steam turbines can provide the required shaft power for stages 2 and 3. 

Based on this analysis, a modified flowsheet is created which is presented in the next section. 

 

5.4.5 The retrofit scheme 

5.4.5.1 Description of the retrofit scheme 

As we have pinpointed the sources of exergy losses and screened the unit operation to be 

modified, we are in the position to propose a retrofit scheme based on the analysis of sources of 

irreversibilities. 

Steam boiler (B-201): As mentioned earlier to reduce the internal exergy loss, combustion 

air is preheated through an economizer (E-202) where flue gas is used for heating. In addition, this 

will contribute to reduce the external losses as the physical exergy of flue gas will be recovered by 

the economizer.   

Heat exchanger (E-210, E-220, E-230): To reduce the driving force between hot and cold 

streams and to keep the steam hot enough to meet the heating demand of the process, the steam 

is expanded to 4.5 bar for the last stage and 3 bar for the first and second stages. Note that 

compared to the base case, the degree of superheat of steam generated by the boiler, is fixed to 

be 80°C to avoid the steam condensation in the steam turbine which can damage the machine. It 

means for the values less than 80°C, there will be condensation in the steam turbine. In other 

words, 80°C is the minimum degree of superheat of steam generated in the steam boiler. 

Throttling valve (V-210, V-220, V-230): According to Table 3.3, as these valves are 

operating in temperature above ambient, therefore their replacement by a steam turbine can be 

solutions. The operating conditions of the steam turbines are based on the process side as pointed 

out above for heat exchangers (E-210, E-220 and E-230). 

Dearator (D-201): To exploit the thermal component of exergy of the hot vent stream of 

deaerator, a waste heat exchanger (E-253) is proposed. The temperature of vent is reducing down 

to 25°C to exploit its total thermal exergy.  

Condensate system (C-201): To exploit the thermal component of exergy of the 

condensate purge a waste heat exchanger (E-242) is installed. The temperature of condensate 

loss is reducing down to 25°C. 
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The improved configuration of the process and its grid diagram are presented in Figure 5.10 

and Figure 5.11. To simulate the modified flowsheet, the outlet temperature of process streams in 

heater E-210, E-220 and E-230 has to be fixed to 68, 124 and 134 °C, respectively. To reach these 

specifications, splitting ratio of the S-201 and S-202 distributing the steam among the heaters, and 

water make-up flowrate are modified by the simulator. In addition to keep the flue gas temperature 

equal to 200°C (which is still higher than the acid dew point, 140°C), the fuel flowrate is also 

modified by the simulator (see Table 5.13). 

 
Figure 5.10. Grid diagram of heat exchanger network for the retrofit 

Table 5.12. Setpoints and variables for the revamped flowsheet 

Setpoints Variables 

Outlet temperature of heater E-210 = 68°C Splitting ratio of S-201 

Outlet temperature of heater E-220 = 124°C Splitting ratio of S-202 

Outlet temperature of heater E-230 = 134°C Water make-up flowrate 

Flue gas temperature = 200°C Fuel flowrate 

 
Table 5.13. Input data for simulation of utility for revamped flowsheet 

 

 

 

 

 

  

E-130E-120E-110

134 °C154 °C231

68 °C 10 °C 111

124 °C 68 °C 121

141 °C 106 °C 131

148 °C188 °C211, 221

Parameter 
 
 
 
 
 
 
 
 
 

Value 
 
 Stack temperature (°C) 200 

Degree of superheat of HP steam (°C) 80 

Temperature of return condensate (°C) 134 

Pressure of return condensate (bar) 3 

Steam turbine isentropic efficiency 75% 
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5.4.5.2 Performance of the retrofit scheme 

Table 5.14 compares the performance of the base case and the retrofit one. As highlighted 

in this table, the use of low-pressure steam for heating reduces both fuel and water demand while 

increases cogeneration potential as more latent heat can be taken from the condensation of steam 

in the lower pressure. As the process cannot undergo any modification, it is left out of the 

optimization where the exergy efficiency will be defined only for the utility system.  

Table 5.14. Comparison of performance of the base case and integrated retrofit configurations 
Parameter Base case Retrofit 

Fuel demand (kg/hr) 224.6 220.1 
Water makeup (t/hr) 1.03 0.63 

Electricity demand (MW) 0.191 0 
Internal exergy losses (MW) 3.007 2.628 
External exergy losses (MW) 0.292 0.17 

Utilizable exergy coefficient of utilities 0.09 0.17 

As listed in Table 5.14, performance improvement of the integrated process is noticeable 

based on several criteria which makes analysis of the process very complex. To fill this gap and 

facilitate further optimization of the process, the utilizable exergy coefficient proposes an 

aggregated criterion including all the aspects listed in Table 5.14. 

 

5.4.5.3 Capital cost of the retrofit scheme 

Reducing the provided stream pressure necessarily results in a reduction of the minimum 

temperature approach and certainly increasing of the required surface area of heat exchangers E-

210, E-220 and E-230. Estimation the capital cost of heat exchangers as a function of surface area, 

based on the costing law (Hall et al. 1990) is performed. Assuming 283.91 Wm-2K-1 as the overall 

heat transfer coefficient, investment cost of retrofitted HEN is 150,754.4 USD.  

 

Table 5.15. Comparison of CAPEX of the base case and integrated retrofit configurations 
 HEN CAPEX  (USD) 

Base case 120,241.9 
Retrofit 150,754.4 

 

Compared to the base case, an economizer is added in retrofit flowsheet. This economizer 

results in fuel saving. Assuming 0.015 $/kWh as a fuel cost (Varbanov et al. 2004), the fuel cost for 

base case and retrofit are calculated as listed in Table 5.16. Taking into account a profit from fuel 

saving, the installation of economizer results in 22% return on investment. 

 

Table 5.16. Fuel cost for base case vs. retrofit 

 Fuel demand 
(kg/hr) 

Heating 
value (MWh) 

Fuel cost 
(USD) 

Base case 224.6 
 
 

24436480 366547.2 
Retrofit 220.1 23946880 359203.2 



 

 

 

 
Figure 5.11.  Improved process & utility flowsheet 
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5.5 BI-CRITERIA OPTIMIZATION 

In order to offer a decision support in retrofitting step, we propose to perform a bi-criteria 

optimization. 

5.5.1 Optimization framework 

In this study, optimization tool of ProSimPlus® is used to perform a bi-criteria (exergetic 

efficiency/ investment cost) optimization. The details of the optimization model are as follows. 

The optimization method chosen to solve the flowsheet optimization problem is based upon 

the feasible path method. In this approach, the equality constraints of problem are satisfied for 

every intermediate estimate of the decision variables along the path towards the optimal solution 

(Kisala et al. 1987). This method combines optimization module with a specification module (see 

Figure 5.12). 

 

Figure 5.12. A method combines optimization module with a specification module 

The specification module unit can be used to handle the constraints related to recycles in 

order to discharge the optimization module unit with these process constraints. In this case, the 

user must supply the calculation sequence and the optimization module which is necessarily the 

master block. It means the optimization module unit encloses the convergence loop managed by 

the specification module.  

 

5.5.1.1 Formulation of the optimization problem 

• Objective function 

Two criteria must be optimized:  

• Maximize the exergetic efficiency 

• Minimize the HEN cost (Hall et al. 1990) 

To perform this optimization problem, an ε-constraint procedure (Lim et al. 1999) is carried 

out and a Pareto front is build for support of decisions making.  
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One of the most popular methods for multiobjective optimization is to minimize a convex 

combination of objectives and thus to convert the multiobjective problem to a parametric single 

objective problem (Lim et al. 1999): 







 + 610

).-(1cy).(efficien-Min:Function Objective CAPEXωω     (5.4) 

where, 0.10.0 ≤≤ ω and the utility functions (i.e. exergetic efficiency and HEN CAPEX) are linearly 

combined with the objective functions and the parametric weighting factors (ω) under the constraint 

set.  Note that as the efficiency and CAPEX do not have the same order of magnitude, the CAPEX 

is divided by 106. To achieve this objective function, the pressure of two steam mains (i. e. MP and 

LP) are chosen as the variables for the reasons provided earlier.  

It should be noted that this approach is acceptable when all of the objective functions and the 

constraints are convex. In this case, the Pareto curve is also convex. Though computationally more 

expensive, this approach gives an idea of the shape of a non-inferior solution surface and provides 

the user with a trade-off among the various objectives (Lim et al. 1999). 

 

• Decision variables 

Decision variables are as follows: 

• LP pressure 

• MP pressure 

• Water flowrate 

• Fuel flowrate 

To define the bonds for LP and MP, in addition of constrains such as Eq. 5.11, the operating 

conditions of LP and MP should be taken into account.  

In the case of minimum pressure of LP, the condensate system plays the role. As the 

condensate system is operating at 3 bar, the minimum pressure of LP is 3 bar as well. In the case 

of the maximum pressure of MP, the steam boiler plays the role. As the steam boiler is operating at 

10 bar, the maximum pressure of MP is 10 bar as well. According to the constraints given in Eq. 

5.11, the maximum pressure of LP steam should be 1 bar less than the MP pressure. As the 

maximum pressure of MP is 10 bar, the maximum pressure of LP becomes 9 bar. Likewise, the 

minimum pressure of LP is 4 bar. 

For fuel and water flowrate the bonds are listed in Table 5.17. They are based on the 

sensitivity analysis where it is observed that the fuel flowrate is changing in the range of 4003-4011 



 145 
 
 
 

 

kg/hr (Figure 5.13b and Figure 5.13d). To be on the safe side, the bonds for fuel flowrate is chosen 

to be 3000-5000 kg/hr as reported in Table 5.17. Likewise, the water flowrate is changing in the 

range of 740-800 kg/hr (Figure 5.13a and Figure 5.13c). To be on the safe side, the bonds for 

water flowrate is chosen to be 100-1000 as reported in Table 5.17 

Table 5.17. Bonds for action variables 

Name of module Variable 
Bonds 

Min Max 

Specification module LP pressure (bar) 3 9 

MP pressure (bar) 4 10 

Optimization module Water flowrate (kg/hr) 100 1000 

Fuel flowrate (kg/hr) 3000 5000 

 

 

Figure 5.13. a) Sensitivity analysis on water flowrate as a function of MP pressure, b) Sensitivity analysis on 
fuel flowrate as a function of MP pressure, c)Sensitivity analysis on water flowrate as a function of LP 

pressure, d) Sensitivity analysis on fuel flowrate as a function of LP pressure 

 

• Model constraints  

For a feasible heat transfer from steam levels to process section, a set of constraints is 

needed. Temperature of all hot streams (steam) should be always greater than temperature of all 

cold streams (process) as follows: 

10112211 ≥−TT           (5.5) 

10122221 ≥−TT

          

(5.6)
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10132231 ≥−TT

          

(5.7)

 

10111212 ≥−TT

          

(5.8)

 

10121222 ≥−TT

          

(5.9)

 

10131232 ≥−TT

                       

(5.10) 

Obviously, the exhaust pressure of second stage of turbine should be lower than the first 

stage. A difference of 1 bar is chosen between the two stages of turbines: 

1211231 >− PP  
        (5.11) 

The single equality constraints concerning utility system consists in fixing the flue gas 

temperature to acid dew point (473 K).  

473264 =T
           

               (5.12) 

The process streams have to be heated enough to make separation of NGL possible form 

the natural gas. The feed, the stabilized gas coming from first and second separators have to be 

heated up to 341, 397 and 414 K, respectively. 

341112 =T                         (5.13) 

397122 =T                         (5.14) 

414132 =T

                        

(5.15) 

 

5.5.2 Numerical method 

The Successive Quadratic Programming (SQP) method is an available method implemented 

in ProSimPlus. SQP is an iterative method for nonlinear optimization which is used on problems for 

which the objective function and the constraints are twice continuously differentiable. SQP methods 

solve a sequence of optimization sub-problems, each which optimizes a quadratic model of the 

objective, subject to a linearization of the constraints. The optimization problem is solved when the 

optimality conditions (Karush-Kuhn-Tucked) are satisfied. The Appendix G presents the numerical 

parameters chosen for the optimization step.  

 

5.5.3 Results 

The Pareto front shown in Figure 5.14 is constructed from the optimum points given by 

ProSimPlus and reported in Table 5.18. It exhibits the non-dominated points, i.e. the points where 

the exergy efficiency cannot increase without an increase in capital cost.  

Given this Pareto front, the decision maker is able to choose the “best solution”. A maximum 

value of capital cost can be put and then the maximum expected utilizable exergy coefficient can 

http://en.wikipedia.org/wiki/Nonlinear_programming
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be deduced. Alternatively, efficiency can be targeted and then the minimum available capital cost to 

achieve the target can be deduced. For example, as listed in Table 5.18, for available capital cost 

of 136,502 USD, maximum exergy efficiency that can be achieved is 0.1658 which corresponds to 

7.0 and 3.8 bar for pressure of MP and LP steam main, respectively. Therefore, this kind of 

representation based on cost and exergy calculations in the process simulator constitutes the first 

steps of a decision support system for plant retrofitting. Other key data such as fuel demand and 

water makeup are listed in Table 5.18. 

Table 5.18. The optimum points given by ProSimPlus 

W
eighting Factor 

W
ater Flow

 (kg/hr) 

Fuel Flow
 (kg/hr) 

T-201 P
ressure (atm

) 

T-202 P
ressure (atm

) 

C
A

P
E

X
 

 

E
xergy E

ffiiciency 

0 963.8 4076.3 10.0 9.0 120995.91 0.1231 

0.1 963.8 4076.3 10.0 9.0 120995.81 0.1231 

0.2 894.3 4068.0 10.0 7.0 123636.61 0.1353 

0.3 790.6 4055.6 7.9 4.8 130034.74 0.1539 

0.4 725.2 4048.3 7.0 3.8 136502.64 0.1658 

0.5 693.1 4045.1 6.8 3.3 141388.95 0.1718 

0.6 674.2 4043.4 6.7 3.0 145459.84 0.1754 

0.7 673.9 4043.3 6.6 3.0 145509.60 0.1754 

0.8 649.4 4036.4 4.0 3.0 152340.79 0.1791 

1.0 649.4 4036.4 4.0 3.0 152340.83 0.1791 

 

 
Figure 5.14. Pareto front 
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5.6 CONCLUSION 

Through the case study discussed in this chapter, it was demonstrated that the exergy 

calculation tool developed and implemented into ProSimPlus process simulator allows for quick 

and easy exergy analysis. When performing a simulation in ProSimPlus simulator, the exergy flow 

of each stream is available without any extra effort. Then, an exergy balance on a given system 

(unit operation, process zone or global flowsheet) can enable to estimate the irreversibility and 

external exergy losses. Finally, unlike most approaches and case studies in the literature, the 

analysis goes further by proposing a structured methodology based on the calculation of exergy 

flow to identify areas to be revamped and suggest the ways for improving of the process 

performance. 

More precisely for our case study, the exergy analysis has permitted to highlight an irrelevant 

destruction of exergy in throttling valves. Starting from this observation, the expertise of the user 

and exergy assistant made up of synthetic tables can come together to find a way to exploit the 

mechanical component of exergy. In the considered example, the throttling valves have been 

replaced by the steam turbines. This is not certainly the case for all the ways of improvement on 

the flowsheet where several alternatives can be taken into account. Moreover, given the 

technological solution, exergy analysis can also be a helpful tool to fix the optimal operating 

parameter. In our case study, the, exhaust pressure of steam turbine can be fixed with trading-off 

between the capital cost of heat exchanger and utilizable exergy coefficient. 

Moreover, through this case study it has been shown that the exergy efficiency appears as a 

comprehensive meaningful indicator aggregating various criteria relative to both process and utility 

system performance. The exergy efficiency does not only include operating cost but also 

environmental aspects included in the external exergy losses (waste streams including emitted CO2 

as well as fuel and fresh water). Finally, this criterion can be considered as a universal indicator 

which contrary to a traditional operating cost does not depend on the actual market prices.  
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6. Conclusions and Perspectives 
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The energy issue is a crucial problem and will become increasingly important in the coming 

decades. Higher energy cost and progressively stringent environmental laws are forcing the industrial 

sector to streamline its energy consumption. On industrial sites, the promotion of best practices to enable 

an efficient utilization of energy has emerged as one of the major points of focus. To tackle this challenge, 

process integration appears to be one of the most promising solutions. Instead of placing the emphasis 

solely on production, the current tendency on industrial site consists in optimizing at the same time the 

production (manufacturing unit) and the utility system which usually represents the largest consumer of 

energy (manufacturing unit), thus giving equal importance to both units.  

Among the different approaches existing to optimize the integration of site utility systems, the 

exergy analysis appears as one of the most promising one, as it enables to: 

- Evaluate the inefficiencies of the process,  

- Translate all kinds of inefficiencies to the primary fuel consumption and 

- Propose hints to reduce these inefficiencies. 

Unfortunately this approach, which relies on complex thermodynamic concept, remains difficult to 

understand and is not well mastered by chemical engineers. One solution to promote this kind of analysis 

would be to implement exergy analysis in a process simulator in order to provide engineer with a 

computer aided tool dedicated to this very meaningful analysis. 

The significance of this dissertation lies in its contribution both in theoretical and practical terms. 

In theoretical terms, this work has contributed to:  

o Propose a generic formulation for exergy of material streams that does not depend on the 
thermodynamic model, so that it could be easily be implemented in a process simulator. The 

different contributions of exergy (thermal, mechanical and chemical) have been developed and new 

concept such as the maximal thermal and mechanical recovery potential has been introduced in 

order to pave the way for exergy analysis. 

o Develop a systematic methodology for exergy analysis. To introduce exergy balances in a 

process simulator, it was essential to deal with the different situations that can be encountered when 

modeling a system in a process simulator: the “design situation” in which the process model does 

not include all the details concerning the utilities and the “retrofit situation” which aims at improving 

an existing process. The formulation of the exergy balances has been introduced for both situations 

and some hints for the interpretation of this exergy balances have been given. Synthetic tables 

providing solutions to reduce irreversibilities or external losses have been introduced. Moreover, 

different kinds of exergy efficiency have been defined to provide a new criterion for the optimization 

of the process. 

In practical terms,  

o A first VBScript prototype has been developed to implement the calculation of exergy for the 
material streams in a process flowsheet modeled in ProSimPlus. Thanks to this VBScript program, 

exergy of each material stream appears in a synthesis table next to the traditional thermodynamical 

values such as the enthalpy. This prototype has already been used to redact the business 
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requirement document that will be the basis for the integration of the “exergy function” in Simulis 

Thermodynamics (Stroesser et al. 2012).  

o The case study permitted to demonstrate the benefit of the exergy analysis for the improvement 
of existing processes. First, the exergy analysis permits to make an energy diagnosis of the 

process: it pinpoints the inefficiencies of the process which relies not only on irreversibilities but also 

on external exergy losses. Then, based upon respective values of internal and external losses and 

also thanks to the breaking down of exergy into it thermal, mechanical and chemical contributions, 

some technological solutions are suggested to propose a retrofit process; finally, the exergy 

efficiency criteria enables to optimize the operating parameters of the process in order to improve its 

energy efficiency.  

However, the work presented in this dissertation is only the first step towards a global methodology 

that will contribute to a more rational use of exergy in industrial units. The following recommendations 

were identified during the study, which need to be investigated in greater details. These 

recommendations are directed towards the improvement of the exergy analysis methodology, 

introduction of new concepts, further implementations in ProSimPlus software but also towards future 

extensions a more comprehensive methodology including other approaches such as pinch analysis.  

Concerning the exergy analysis, potential improvement of the methodology mostly concerns the 

improvement of the interpretation of exergy balances process. This step is essential as it permits to 

propose technological solutions for the improvement of the unit operations or for a better utilization of 

external exergy loss (Figure 6.1).  

To interpret the results concerning the irreversibilities of a process, it could be interesting to 

break down the exergy losses into unavoidable and avoidable exergy losses. Exergy analysis can 

only indicate the potential or possibilities of improving processes performance, but cannot state whether 

or not the possible improvement is practicable and economic. Exergy analysis is a thermodynamic study 

that compares real performances of a process to the reversible one; in the ideal process, the driving force 

for heat and mass transfer must be equal to 0. However, any practical process needs a certain driving 

force for the process to take place. Some of the irreversibilities estimated during the exergy analysis are 

necessary and cannot be suppressed. Then, in order to identify potentials for improvements which are 

practical and economic, the method proposed based on the analysis of unavoidable and avoidable exergy 

loss of a system (Feng et al. 1996) can be used. This will allow integrating technological constraints into 

the exergy analysis and proposing more realistic improvement solutions.  

Moreover, currently the determination of relevant technological solutions only relies on the 

engineer’s expertise. To help engineer, tables have been proposed and should be completed at each 

time a new study is concluded. To improve this process and systematically propose more innovative 

solutions, the use of problem-solving, analysis and forecasting tool such as TRIZ (Sushkov et al. 1995) or 

case-based reasoning (Kocsis, 2012) could be imagined. The Laboratoire de Génie Chimique has built a 

skill in this area for the last ten years: it should be employed to improve the Exergy Analysis Methodology 

(Negny, 2012).  
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Figure 6.1. Future extensions concerning exergy analysis 

Concerning the reduction of external losses, some efforts must be made to develop a decision 
making tool enabling to find the best external losses recycling technological solution according to 

the respective values of chemical and maximal potential for thermal and mechanical recovery.  

Finally, the full integration of exergy calculations and exergy analysis in the process 
Simulator ProSimPlus is currently under study (Stroesser et al. 2012a) (Stroesser et al. 2012b). 

On another level, it is important to remind that another approach exists and is usually used to 

improve the energy efficiency of process: the pinch analysis (Linnhoff, 1994). This approach is a well-

known screening and scoping tool that enables to set the "targets" on minimum energy consumption and 

to identify the type of required utility prior to the detailed design of heat exchanger network. It has been 

demonstrated in the literature that it seems appropriate to implement a methodology combining exergy 
analysis and pinch analysis (Feng& Zhu, 1997; Staine & Favrat, 1996). First studies initiated during this 

PhD work permitted to prepare the groundwork for a methodology combining pinch analysis and exergy 

analysis (see Figure 6.2).  At first, Exergy Analysis permits to obtain a diagnosis of the existing process 

as it evaluates the irreversibilities of each unit operation and suggests technical ways to reduce these 

internal exergy losses. Then, it pinpoints and calculates external exergy losses. As exergy is decomposed 

into thermal, mechanical and chemical component, it allows determining the best valorization process. In 

the case of chemical exergy loss, some recycling solutions could be considered. In the case of 

mechanical exergy, cogeneration or heat pump could be implemented. Finally, in the case of thermal 

exergy, the concerned streams can become hot or cold streams for Pinch Analysis. Then, starting from 

the list of hot and cold streams, Pinch Analysis proposes different solutions to optimize both process and 

the utility system and also to reduce the energy consumption of the global system. Finally, calculation of 

the exergetic efficiency of the different configurations can help the process manager to make a choice 

among several solutions. The study of an industrial case study (pulp and paper production) which has 

been presented during the last SFGP (Ghannadzadeh et al., 2011b) and reported in Appendix H permits 

PROCESS SIMULATION

EXERGY   BALANCES

INTERNAL LOSSES EXTERNAL LOSSES

Technological solutions External losses recycling
solutions

• Breaking down the internal
exergy losses into
avoidable/unavoidable losses

• Introduce artificial intelligence in 
exergy analysis (TRIZ or case 
based reasoning)  to propose 
innovative technological
solutions

Analyse the values of the different 
contributions of exergy of a material

stream (chemical, thermal or 
mechanical) to propose the best 

recycling technology

Integrate the Exergy analysis in the 
process simulation software 
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to highlight the strengths of each approach and to propose a first way of combining Exergy Analysis and 

Pinch Analysis in a sequential strategy.  

 

Figure 6.2. A methodology combining pinch analysis and exergy analysis 

Certainly, this methodology is not fully accomplished and should be improved mainly in the choice 

of utilities after the evaluation of external exergy losses. Furthermore, to the development and the 

promotion of such approach in the industrial sites will necessarily require a more robust implementation of 

pinch analysis in ProSimPlus process simulator.  

Most of these recommendations will be dealt with in the context of a three-year ANR project called 

COOPERE (Combining Process Optimization, Energy recovery and Exergy analysis for a better energy 

efficiency of industrial processes) and initiated in March 2012.This project whose academic partners are 

the Laboratoire de Génie Chimique et AgroParistech and industrial partners are ProSim SA and VEOLIA 

will precisely focus on the recycling of streams that increase the external exergy losses on currents 

processes. Emblematic case studies can be found in the food industry where by-products are numerous 

and where we can find some high energy consuming unit operations (dryers for example). To improve 

such processes and increase their exergy efficiency, the project will: 

- Develop a systematic decision making tool to define the most promising recycling technology 

according to the recovery exergy potential of by-products (gasification, combustion, heat pump, gas 

turbine …), 

- Propose a methodology combining pinch analysis and exergy analysis, 

- Develop a software coupled to ProSimPlus that would implement this methodology, 
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- And finally test this methodology and the software through various industrial case studies extracted 

from the food industry. 

At the end, it can be concluded that exergy analysis as a powerful tool for increasing efficiency of 

processes but also sustainability of process by reducing environmental impact. There is no doubt that in 

the near future, this methodology and exergy balances will eventually supplant the traditional enthalpy 

balance and that any chemical engineer will have to be trained and familiar with this new kind of analysis.  
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A. Standard Chemical Exergy
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Table A.1 Standard chemical exergy table (Rivero & Garfias, 2006a) 

Chemical 
Element State Chemical Formula Mole 

Fraction 

Standard 
Chemical 
Exergy 
(kJ/gmol) 

Ag (s) AgCl 1.00E-09 99.30 
Al (s) Al2SiO5 2.07E-03 795.70 
Ar (g) Ar 9.13E-03 11.64 
As- (s) HAsO4 3.87E-08 492.60 
Au (s) Au 1.36E-09 50.60 
B (s) B(OH)3 3.42E-04 628.10 
Ba (s) BaSO4 4.20E-06 775.40 
Be (s) Be2SiO4 2.10E-07 604.30 
Bi (s) BiO+ 9.92E-11 274.80 
Br2 (l) Br 8.73E-04 101.00 
C (s) CO2 3.37E-04 410.27 
Ca (s) CaCO3 1.40E-03 729.10 
Cd (s) CdCO3 1.22E-08 298.40 
Ce (s) CeO2 1.17E-06 1054.70 
Cl2 (g) Cl 5.66E-01 123.70 
Co (s) CoFe2O4 2.85E-07 313.40 
Cr (s) K2Cr2O7 1.35E-06 584.40 
Cs (s) Cs+ 2.34E-09 404.60 
Cu (s) CuCO3 5.89E-06 132.60 
D2 (g) D2O 3.37E-06 263.90 
Dy (s) Dy(OH)3 4.88E-08 976.00 
Er (s) Er(OH)3 4.61E-08 972.80 
Eu (s) Eu(OH)3 2.14E-08 1003.80 
F2 (g) CaF2, 3Ca3(PO4)2 2.24E-04 505.80 
Fe (s) Fe2O3 6.78E-03 374.30 
Ga (s) Ga2O3 2.98E-07 515.00 
Gd (s) Gd(OH)3 9.21E-08 969.00 
Ge (s) GeO2 9.49E-08 557.70 
H2 (g) H2O 2.17E-02 236.12 
He (g) He 4.89E-06 30.31 
Hf (s) HfO2 1.15E-07 1063.10 
Hg (l) HgCl2 5.42E-10 107.90 
Ho (s) Ho(OH)3 1.95E-08 978.70 
I2 (s) IO3 5.23E-07 175.70 
In (s) In2O3 2.95E-09 436.90 
Ir (s) IrO2 3.59E-12 247.00 
K (s) K+ 1.04E-02 366.70 
Kr (g) Kr 9.78E-07 34.30 
La (s) La(OH)3 5.96E-07 994.70 
Li (s) Li+ 2.54E-05 392.70 
Lu (s) Lu(OH)3 7.86E-09 945.80 
Mg (s) Mg3Si4O10(OH)2 8.67E-04 626.90 
Mn (s) MnO2 2.30E-05 487.70 
Mo (s) MoO4 1.08E-07 731.30 
N2 (g) N2 7.63E-01 0.67 
Na (s) Na+ 4.74E-01 336.70 
Nb (s) Nb2O3 1.49E-07 899.70 
Nd (s) Nd(OH)3 5.15E-07 970.10 
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Ne (g) Ne 1.76E-05 27.14 
Ni (s) NiO 1.76E-06 242.60 
O2 (g) O2 2.05E-01 3.92 
Os (s) OsO4 3.39E-13 368.40 
P (s) HPO42 4.86E-07 861.30 
Pb (s) PbCO3 1.04E-07 249.20 
Pd (s) PdO 6.37E-11 138.70 
Pr (s) Pr(OH)3 1.57E-07 963.90 
Pt (s) PtO2 1.76E-11 141.20 
Pu (s) PuO2 8.40E-20 1100.10 
Ra (s) RaSO4 2.98E-14 824.20 
Rb (s) Rb+ 1.46E-06 388.70 
Re (s) Re2O7 3.66E-12 559.60 
Rh (s) Rh2O3 3.29E-12 179.70 
Ru (s) RuO2 6.78E-13 318.60 
S (s) SO4 1.24E-02 609.30 
Sb (s) Sb2O5 1.08E-10 438.20 
Sc (s) Sc2O3 3.73E-07 925.30 
Se (s) SeO4 1.18E-09 347.50 
Si (s) SiO2 4.07E-01 855.00 
Sm (s) Sm(OH)3 1.08E-07 993.70 
Sn (s) SnO2 4.61E-07 551.80 
Sr (s) SrCO3 2.91E-05 749.80 
Ta (s) Ta2O5 7.45E-09 974.10 
Tb (s) Tb(OH)3 1.71E-08 998.50 
Te (s) TeO2 9.48E-12 329.30 
Th (s) ThO2 2.71E-07 1202.70 
Ti (s) TiO2 1.63E-04 907.20 
Tl (s) Tl2O4 1.49E-09 194.90 
Tm (s) Tm(OH)3 7.59E-09 951.80 
U (s) UO3 1.49E-08 1196.60 
V (s) V2O5 1.83E-06 721.30 
W (s) WO4 5.64E-10 828.50 
Xe (g) Xe 8.81E-08 40.27 
Y (s) Y(OH)3 1.00E-06 965.60 
Yb (s) Yb(OH)3 4.61E-08 944.30 
Zn (s) ZnCO3 7.45E-06 344.70 
Zr (s) ZrSiO4 2.44E-05 1083.00 

 



 

 

B. Isentropic Efficiency vs. Rational Efficiency 
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Comparison of the conventional isentropic efficiency with the rational exergy efficiency for rotary 

machines such as turbine is worth noting.  

 

Figure B.1. A typical expander  

Let us take an expander as an example. In power plants expansion generally occurs at 

temperature above the environmental temperature. Most common expander is turbine and is usually 

treated as adiabatic. Hence, the exergy balance for the control surface of the turbine is: 

IBBB OUTIN +=− Shaftwork           (B.1) 

Since the process involves some degree of irreversibility, a part of the input is dissipated. The 

relationship is shown on a Grassmann diagram in Figure B.2. 

 

Figure B.2. Grassmann diagram of turbine  

As the desired output from device is W, it follows that the necessary input is the reduction in the 

exergy of the stream ( OUTIN BB − ). Then the exergetic efficiency becomes: 

OUT

OUT
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Shaftwork

BB
HH

BB
B

IN

IN

IN −
−

=
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=Ψ          (B.2) 

For comparison, the well-established criterion of performance, the isentropic efficiency η can be put 

in the well-known form: 

ISENTROPIC
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IN
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HH
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−
−

=η           (B.3) 

Now, exergetic efficiency (ψ) and isentropic efficiency (η) are two criteria of performance which 

assesses the perfection of the process on different bases. Exergetic efficiency (ψ) compares the actual 
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process with a reversible process with the same inlet and exit. Isentropic efficiency (η) compares the 

actual process with an isentropic process starting from the same inlet state but ending in a different exit 

state, though at the same exit pressure at the actual process.  

To analyze further these criteria, they are rearranged: 

( ) ( )ININ

IN

SSTHH
HH

−+−
−

=Ψ
OUT

00
OUT

OUT         (B.4) 

( ) ( )ISENTROPIC
OUTIN

IN

HHHH
HH

OUTOUT

OUT

−+−
−

=η         (B.5) 

 

Note that the quantity which makes ψ smaller than 1 is ( )INSST −OUT
00

 
which is the irreversibility 

of this processes, shown as a black colored area on the T-s diagram in Figure B.3. The quantity which 

makes the value of η less than 1 is ( )ISENTROPIC
OUT HH OUT− , shown as a grey and black colored area in 

Figure B.3. This enthalpy difference can be regarded a frictional reheat. Because of frictional reheat, the 

enthalpy and exergy of the working fluid in the final state of the actual process are greater than they 

would have been under isentropic conditions.  

 
Figure B.3. Temperature-entropy diagram  
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C. Rational Efficiency Calculation
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C.1 EXPANDER 

The expander can have two possible functions: 

1: Shaftwork generation in power plants (steam turbine) 

Desired exergy output is the power generation: 

Shaftworkoutputexergy  desired BB =          (C.1) 

The different between total exergy input and output through expansion become the exergy used to 

get the power  

OUTusedexergy BBB IN −=           (C.2) 

 

2. Reduce temperature in cryogenic systems (Cryo-expander) 

In subambient process, the primary function of cryo-expander is to obtain higher thermal 

component of exergy. Certainly, there will be power generated by the expander: 

( ) ShaftworkOUTINoutputexergy  desired BBBBB QTT ++−= ∆∆
       (C.3) 

These functions will be achieved at the expense of reduction of mechanical component of exergy of 

given stream: 

PP BBB ∆∆ −= OUTINusedexergy           (C.4) 

 

C.2 THROTTLING VALVE 

It can have two possible functions: 

1. Above ambient: Reduce pressure of steam in power plants 

It is a common practice in steam system to throttle the steam to meet the required conditions at the 

steam mains. As this is a dissipative process, it does not have any desired exergy output: 

0outputexergy  desired =B            (C.5) 

Despite the zero exergy output, the difference between exergy input and output is used or in other 

words, is dissipated: 

OUTusedexergy BBB IN −=           (C.6) 
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2. Sub-ambient: Reduce temperature in cryogenic systems 

In subambient process, the function of this valve is to obtain higher thermal component of exergy.  

TT BBB ∆∆ −= OUTINoutputexergy  desired          (C.7) 

This function is achieved at the expense of reduction of mechanical component of exergy of given 

stream: 

PP BBB ∆∆ −= OUTINusedexergy           (C.8) 

 

C.3 COMPRESSOR 

Depending on the heat exchange between the compressor and the cooling media surround by the 

compressor, there are two possible functions as shown hereunder: 

1. Adiabatic 

In this case through the ‘adiabatic’ process as well as the pressure of the given stream the 

temperature will be increased as well. This means the desired exergy output is difference between exergy 

input and output: 

INOUToutputexergy  desired BBB −=          (C.9) 

This function is achieved at the expense of reduction of shaft power input: 

Shaftworkusedexergy BB =                           (C.10) 

 

2. Non-adiabatic 

As the process is non-adiabatic, the function is the compressor is to keep the temperature of the 

stream fixed as it was at the inlet and increase of pressure: 

PP BBB ∆∆ −= INOUToutputexergy  desired                             (C.11) 

 

This function is achieved at the expense of reduction of shaft power input: 

Shaftworkusedexergy BB =           

                             (C.12) 
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C.4 PUMP 

Generally, it is used to increase the incompressible fluids: 

PP BBB ∆∆ −= INOUToutputexergy  desired                          (C.13) 

This function is achieved at the expense of shaft power input: 

Shaftworkusedexergy BB =                           (C.14) 

 

C.5 A TYPICAL SEPARATOR 

There are a number of processes for separation. For most of them, the function is to separate 

different products from feed. 

HeatUsefulFeed BBBBB +−+= 2Prodcut  1Prodcut  outputexergy  desired                        (C.15) 

 

This function is achieved at the expense of shaft power and heat input: 

ShaftworkHeatUsed BBB +=usedexergy                          (C.16) 

 

C.6 ENDOTHERMIC REACTOR 

There are a number of types of reactor. For most of them, the function is to produce a special 

product from the given material at the feed: 

chch BBB feedprodcutoutputexergy  desired −=                            (C.17) 

 

This function is achieved at the expense of heat input: 

Q
cendothermiBB =usedexergy                            (C.18) 

 

 

 

 



 

 

 
 

Table C.1. Rational efficiency for the most commonly used unit operations 

Defined by the user  Calculated 

Unit operation Function B Desired Output  B Used Exergy efficiency 

Expander 

 

Steam turbine: 

Shaftwork generation 

in power plants 
ShaftworkB  

 

OUTBBIN −  
OUT

Shaftwork

BB
B

IN −
=Ψ  

Cryo-expander: 

Reduce temperature 

in cryogenic systems 

( ) ShaftworkOUTIN BBBB QTT ++− ∆∆  
 

PP BB ∆∆ − OUTIN  
( )

( )PP

QTT

BB
BBBB

∆∆

∆∆

−

++−
=Ψ

OUTIN

ShaftworkOUTIN  

Throttling valve 

 

Reduce pressure of 

steam in power plants 
- 

 
OUTIN BB −  00

OUTIN

=
−

=Ψ
BB

 

Reduce temperature 

in cryogenic systems 

TT BB ∆∆ − OUTIN  
 

PP BB ∆∆ − OUTIN  PP

TT

BB
BB

∆∆

∆∆

−
−

=Ψ
OUTIN

OUTIN  

Compressor 

 

Adiabatic: Increase of 

exergy 
INOUT BB −  

 

ShaftworkB  
Shaftwork

INOUT

B
BB −

=Ψ  

Non-adiabatic: 

Increase of pressure 

PP BB ∆∆ − INOUT  
 

ShaftworkB  
Shaftwork

INOUT

B

PP BB ∆∆ −
=Ψ  

 

   

  

  

  

  

  

  

IN

OUT

 

 

Shaftwork

 

   

  

  

  

  

  

  

 

 

IN OUT

 

   

IN

OUT

  

  

  

  

  

  

 

 

Shaftwork
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Pump 

 

Increase of pressure PP BB ∆∆ − INOUT  

 

ShaftworkB  
Shaftwork

INOUT

B

PP BB ∆∆ −
=Ψ  

Heater or cooler

 

Heating or cooling by 

utilities INOUT BB −  

 

Q
utilityB  Q

utility

INOUT

B
BB −

=Ψ  

Two-streams heat 
exchanger 

 

Heating TT BB ∆∆ − cold_incold_out  
 ( )

( )PP BB

BB
∆∆ −+

−

cold_outcold_in

hot_outhot_in  
( ) ( )PP

TT

BBBB
BB

∆∆

∆∆

−+−

−
=Ψ

cold_outcold_inhot_outhot_in

cold_incold_out
 

Cooling TT BB ∆∆ − hot_outhot_in  

 ( )
( )PP BB

BB
∆∆ −+

−

hot_outhot_in

cold_incold_out  
( ) ( )PP

TT

BBBB
BB

∆∆

∆∆

−+−

−
=Ψ

hot_outhot_incold_incold_out

hot_outhot_in
 

Separator

 

Separation of product 

1 and 2 from feed HeatUsefulFeed BB
BB

+−

+ 2Prodcut  1Prodcut  
 

 

ShaftworkHeatUsed BB +  
ShaftworkHeatUsed

HeatUsefulFeed

BB
BBBB

+
+−+

=Ψ 2Prodcut  1Prodcut   

Endothermic Reactor Production of a special 

product 

chch BB feedprodcut −  
 

Q
cendothermiB  Q

cendothermi

chch

B
BB feedprodcut −

=Ψ  

 

   

  

  

  

  

  

  

 

 

IN
OUT

Shaftwork

in out

Q
utilityB

 

   

  

  

  

  

  

  

 

 

HOT IN HOT OUT

COLD IN

COLD OUT

 

   

  

  

  

  

  

  

Feed

Product 1

Product 2

Shaftwork

Useful Heat

Used Heat
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D. Stream Properties of HDA Process 
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Table E.1. Stream properties (base case) 
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n)
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or

 (o
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S
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at

or
 (i

n)
 

S
ep
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at

or
 

(o
ut

-L
iq

) 

S
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or
 

(o
ut

-v
ap

or
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Temperature (°C)             25.00                30.00              10.00          250.00          180.49          116.89            116.89            200.02            267.46            120.00          116.89            116.89    

Pressure (atm)               1.00                  1.00              38.72            10.00            10.00            32.93              32.93              38.72              38.72              38.72            32.93              32.93    

Total flow (kg/h)    632 524.53       632 524.53       32 267.00       8 377.12       8 377.12       4 974.94       27 292.05       32 267.00       32 267.00       32 267.00       4 974.94       27 292.05    

Mole fractions              

TOLUENE                   -                        -                  0.12                  -                    -                0.30                0.02                0.12                0.03                0.03              0.30                0.02    

BENZENE                   -                        -                  0.01                  -                    -                0.63                0.07                0.01                0.10                0.10              0.63                0.07    

METHANE                   -                        -                  0.74                  -                    -                0.06                0.87                0.74                0.84                0.84              0.06                0.87    

BIPHENYL                   -                        -                  0.00                  -                    -                0.00                0.00                0.00                0.00                0.00              0.00                0.00    

HYDROGEN                   -                        -                  0.13                  -                    -                0.00                0.03                0.13                0.03                0.03              0.00                0.03    

WATER               1.00                  1.00                    -                1.00              1.00                  -                      -                      -                      -                      -                    -                      -      

 
Table E.2. Stream properties (integrated case) 
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or
 

(in
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S
ep

ar
at

or
 

(o
ut

-L
iq

) 

S
ep

ar
at

or
 

(o
ut

-v
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or
)  

Temperature (°C)             25.00                30.00              10.00          250.00          180.49          257.44              36.99            200.00            267.44            120.00          116.89            116.89    
Pressure (atm)               1.00                  1.00              38.72            10.00            10.00            32.93              32.93              38.72              38.72              38.72            32.93              32.93    
Total flow (kg/h)    516 504.76       516 504.76       32 267.00       4 963.27       4 963.27       4 974.96       27 292.04       32 267.00       32 267.00       32 267.00       4 974.96       27 292.04    
Mole fractions              

TOLUENE                   -                        -                  0.12                  -                    -                0.30                0.02                0.12                0.03                0.03              0.30                0.02    
BENZENE                   -                        -                  0.01                  -                    -                0.63                0.07                0.01                0.10                0.10              0.63                0.07    
METHANE                   -                        -                  0.74                  -                    -                0.06                0.87                0.74                0.84                0.84              0.06                0.87    
BIPHENYL                   -                        -                  0.00                  -                    -                0.00                0.00                0.00                0.00                0.00              0.00                0.00    

HYDROGEN                   -                        -                  0.13                  -                    -                0.00                0.03                0.13                0.03                0.03              0.00                0.03    
WATER               1.00                  1.00                    -                1.00              1.00                  -                      -                      -                      -                      -                    -                      -      

 





 

 

 

E. Calculation of Heat Transfer Area 
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Although many types of heat transfer equipment are used in the industries, the most commonly 

used type (the shell-and-tube heat exchanger) is taken for our case study. In the conceptual design of 

heat exchanger, the overall heat transfer coefficient can be taken from tables in literature (Ludwig, 2001) 

as a guide to the order of magnitude. The overall heat transfer coefficient is the sum of the individual 

coefficient of heat transfer for the (a) fluid film inside the tube, (b) scale or fouling film inside the tube, (c) 

tube wall, (d) scale or fouling film outside the tube, and (e) fluid film outside the tube. For our case, 

283.91 Wm-2K-1 is taken for overall heat transfer coefficient (U). Then required effective outside heat 

transfer surface area based on net exposed tube area can be calculated: 

( )corLMTDU
QA =            (E.1) 

where  

corLMTD  : Corrected logarithmic mean temperature difference 

 U: Overall heat transfer (fouled) coefficient 

To determine the true overall temperature difference, the correction factors F shown in Figure E.1 

are used to correct for the deviations involved in the construction of multi-passes on the shell and tube 

sides of the exchanger.  

))(( LMTDFLMTDcor =          (E.2) 

LMTD: defined by Eq. (E.5).  

F: Correction factor as defined by the charts  

Note that R of the charts represents the heat capacity rate ratio, and P is the temperature efficiency 

of the exchanger: 

11

12

tT
ttP

−
−

=            (E.3) 

12

21

tt
TTR

−
−

=            (E.4) 

Based on the temperature profile shown in Figure E.2, the Log Mean Temperature Difference 

(LMTD) is represented by Eq. (E.5). 

LMTD

LTD
GTD

LTDGTD

tT
tT

tTtTT =
−

=









−
−

−−−
=∆

lnln

)()(

21

12

2112       (E.5) 

where 

GTD: Greater Terminal Temperature Difference, 

LTD: Lesser Terminal Temperature Difference, 

LMTD: Logarithmic Mean Temperature Difference, 
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T1 : Inlet temperature of hot fluid 

T2 : Outlet temperature of hot fluid, 

t1 : Inlet temperature of cold fluid, 

t2 : Outlet temperature of cold fluid. 

Note that the logarithmic mean temperature difference should be used when the following 

conditions generally apply for conditions of true counter-current or co-current flow: 

• Constant overall heat transfer coefficient. 

• Complete mixing within any shell cross pass or tube pass. 

• The number of cross baffles is large (more than 4). 

• Constant flow rate and specific. 

• Enthalpy is a linear function of temperature. 

• Equal surfaces in each shell pass or tube pass. 

• Negligible heat loss to surroundings or internally between passes. 

 

Figure E.1.  Correction factor (Ludwig, 2001) 
 

 
Figure E.2.Temperature path in heat exchanger

t1

t2

T2

T1

Temperature 

Enthalpy 



 

 

 

F. Calculation of Utilizable Exergy Coefficient for 

Case Study of NGL Recovery 
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F.1. IDENTIFICATION OF USEFUL STREAMS 

The transiting exergy is defined by equations given in Chapter 3. It requires first the definition of 

useful stream in order to evaluate the term
tr
usefulB . For this case study, the utilizable exergy coefficient is 

calculated for the utility system and the utility/process heat exchangers E-210, E-220 and E-230 are 

included inside the utility systems. As a consequence, the useful streams are the process cold streams of 

heat exchangers E-210, E-220 and E-230, i.e. streams 112, 122 and 132. 

 

F.2. DEFINITION OF MATERIALLY CONNECTED STREAMS 

The definition of the transiting exergy for a given process relies on the definition of materially 
connected streams. As shown in Figure F.1, we can observe the existence of five groups of material 

streams. The three first groups are related to process streams heating in the E-210, E-220 and E-230. On 

the utility side, the fourth group is related to water and fifth group is related to fuel. The different colors 

related to each group and their status (useful or not) are reported in Table F.1.  

Table F.1. Description of groups 

 Color Description Useful (Yes / No) 
Group 1 Yellow Process stream to E-210 Yes 
Group 2 Green Process stream to E-220 Yes 
Group 3 Red Process stream to E-230 Yes 
Group 4 Blue Utility stream (Water) No  
Group 5 Grey Utility stream (Fuel and air) No 

 

F.3. CALCULATION OF TRANSITING EXERGY FOR USEFUL STREAMS 

The next step is to calculate the transiting exergy for the useful streams identified in section F.1 

(i.e. streams 112, 131 and 132 in order to calculate the exergy efficiency. For useful streams of group 1, 

we have: 

[ ] [ ]

[ ] [ ]ch
i

ch
i

i

trchtrch
GROUP

nm

ch
ni

ch
mi

i
nm

nm

trch
nm

trch
GROUP

bbnnBB

bbnnBB

112,111,112111
,

)112,111(
,

1

,
,,

,

,
),(

,
1

;min.;min

;min.;min

∑

∑∑∑

==

==
      (F.1) 

As there is no change in molar flow rate of each chemical component in group 1, the minimum 

molar flow rate is equal to molar flow rate of input stream 111. 

[ ] 111,112,111, ;min iii nnn =           (F.2) 
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Furthermore, the stream 111 is only passing through a heat exchanger. As a consequence, there is no 

change in chemical exergy of streams of Group 1. The minimum molar chemical exergy is equal to molar 

chemical exergy of input stream 111. 

[ ] [ ] ch
i

ch
i

ch
i

ch
ni

ch
mi bbbbb 111,112,111,,, ;min;min ==          (F.3) 

After substituting, we have: 

ch

i

ch
ii

trchtrch
GROUP BbnBB 111111,

111,
)112,111(

,
1 === ∑            (F.4) 

Likewise for groups 2 and 3, the transiting exergy is equal to chemical exergy of 121 and 131, respectively.  

chtrch
GROUP BB 121

,
2 =                  (F.5) 

chtrch
GROUP BB 131

,
3 =               (F.6) 

Concerning the physical transiting exergy, we have: 

[ ] [ ]
[ ] phphphphtrph

GROUP

phph

nm

trph

nm

trph
nm

trph
GROUP

BbnbbnB

bbnnBBB

111111111112111111
,

1

112111112111
,

,
)112,111(

,

,
),(

,
1

;min

;min,min.

===

=== ∑∑
      (F.7) 

Likewise for groups 2 and 3, the transiting exergy is given by following expressions: 

[ ] phphphphtrph
GROUP BbnbbnB 121121121122121121

,
2 ;min ===             (F.8)

 

[ ] phphphphtrph
GROUP BbnbbnB 131131131132131131

,
3 ;min ===          (F.9) 

As a consequence, total transiting exergy is sum of all of transiting exergy of group 1-3: 

trph
GROUP

trph
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trph
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trch
GROUP

trch
GROUP

trch
GROUP

tr
useful BBBBBBB ,

3
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1
,

3
,

2
,

1 +++++=                     (F.10) 

Total exergy input is sum of exergy of streams 261, 262, 251, 111, 121 and 131: 

( ) ( ) 201,
131121111251262261

−++++++= PW
inin BBBBBBBB                    (F.11) 

Total exergy output is sum of exergy of streams 264, 252, 253, 242, 112, 122 and 132: 

202201
132122112

−− ++++= T
W

T
W

out
useful BBBBBB                      (F.12) 

Replacing the values associated with each term in the following equation, the efficiency will be calculated: 

201,
131121111131121111251262261
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Figure F.1. Different groups of materially connected streams 
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G. Parameters of Successive Quadratic 

Programming (SQP) 
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The parameters of SQP method are as follows: 

Tolerance on the Kuhn Tucker parameter: The default value (i.e. 10-4) for the tolerance on the Kuhn 

Tucker parameter is chosen. 

Tolerance for the non-evolution of the variables: The default value (i.e. 10-4) is chosen for the value 

of the deviation on variables between two consecutive iterations below which the deviation is considered 

to be zero. 

Tolerance for the non-evolution of the criterion: The default value (i.e. 10-4) is chosen for the value of 

the deviation on the criterion between two consecutive iterations below which the deviation is considered 

to be zero. 

Tolerance on the violation of the constraints: The default value (i.e. 10-4) is chosen for the minimum 

value below which the constraints are considered satisfied. 

Maximum number of iterations: The default value (i.e. 200) is taken for the maximum number of 

iterations allowed to the optimization process. 

Maximum number of runs in the MCN: The default value (i.e. 1000) is taken for the maximum 

number of runs in the MCN allowed to the optimization process.  

Inequality constraints: The number of inequality constraints of the optimization problem is chosen as 

described earlier. 

Number of rest steps: The default value (i.e. 2) is chosen for number of sequential runs in the MCN 

for initializing the iterative process. 

Intermediates outputs: Allows printing the value of the minimization criterion, the optimization 

variables and the values of the constraints at regular intervals in terms of iterations (by default prints are 

made every iteration). 

Order for the calculation of the gradient: As defined by default, the first order is used to indicate the 

type of finite differences used for the evaluation of the gradient. 

Actions variables–Bounds and increments: As recommended, we have provided the bounds of the 

actions variables (iterative variables for the optimization).  
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NOMENCLATURE 

 

 

 

 

 

 

 

 

 





 

 

General symbols 

Symbol Description Unit 
B exergy flow W  
A  flow of affinity of reaction W 
b molar exergy J/mol 
G  Gibbs free energy flow W 
g  molar Gibbs free energy J/mol 
H enthalpy flow  W 
h  molar enthalpy  J/mol 
n molar flowrate mol/s 
N number of species  - 
NS number of streams - 
P pressure bar 
Q heat flow W  
q heat per mole J/mol 
R universal gas constant 8.3144621J/(mol K) 
S entropy flow  W/K  
s molar entropy  J/(mol K) 
T absolute temperature K 
W power  W 
w work per mole J/mol 
x liquid fraction - 
y vapor fraction - 
z global composition of material stream - 
v  stoichiometric coefficients - 
V velocity  m/s 
g standard gravity  9.80665 m/s2 
l height  m 
f friction factor - 
   

 
Greek symbols 

µ
 

chemical potential  

ω  vapor ratio  
°∆ LvG   standard Gibbs energy of condensation J/mol 

°∆ fG  standard Gibbs energy of formation J/mol 

σ  Stefan–Boltzmann constant W m−2 K−4 

ξ  progress of reaction  

   
 

Subscripts 

c components in the given material stream  
el reference element  
f formation  
gen   generated entropy  
j  reference substance  
 j, i reference substance j from process substance i  
M related to material stream  
Q related to heat stream  
ref references substance   
rev reversible  
useful useful stream  
W related to work stream  
waste waste stream  
Intrinsic  Intrinsic exergy efficiency  



206  
 
 
 

 

utilizable  utilizable exergy coefficient  
degraded  degraded work  
recoverable  recoverable exergy  
 

Superscripts 

* perfect gas  
ch  chemical  
E excess enthalpy or entropy   
L liquid phase  
Ph physical  
V vapor phase  
W work  
ΔP mechanical component of physical exergy  
ΔT thermal component of physical exergy  
In input streams  
Out output streams  
0 standard state (pure-component, perfect gas, T0=298.15 K, P0=1 atm)  
00 standard dead state  
Tr transiting exergy  
P produced exergy  
C consumed exergy  
pu produced utilizable exergy  
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