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Abstract

In this experimental study, the focus is made on the characterization of the dynamics of solid
neutrally buoyant particles embedded in a freely decaying, nearly isotropic turbulence, with
a weak mean flow. The particles are spherical with diameters several times larger than the
Kolmogorov scale. The study of this flow configuration is still challenging both theoretically
and numerically. Due to large particle sizes, the local flow around particles can not be consid-
ered as uniform and due to fluid-particle density ratio of around unity, the history and Basset
forces cannot be neglected in comparison with the viscous drag force. Particle equation of
motion is then fully non-linear, in contrast to the equation for heavy particles with diameters
smaller then the Kolmogorov scale, for which only the Stokes drag is considered.

In several experimental and numerical studies, the effect of particle size on velocity and accel-
eration statistics has been investigated (Homann & Bec 2010 ; Qureshi et al. 2008 ; Ouellette
et al. 2008 ; Xu & Bodenschatz 2008). In the case of isotropic turbulence, Homann & Bec
(2010) show that while the PDF of the particle velocity normalized by the square root of its
variance does not vary with particle size, the variance itself is size dependent. A scaling rela-
tion for particle velocity variance has been proposed by using the Faxen correction (Gatignol
1983) which takes into account the non uniformity of the fluid flow at the scale of the particle.

The aim of our research is to further study the dependence of particle dynamics on particle
size. To that purpose, a turbulence generator has been set-up and the resulting turbulence is
characterized. Then the flow was seeded with millimeter sized, neutrally-buoyant particles
and the velocity of the two phases have been measured simultaneously. Simultaneous mea-
surements of particle and surrounding fluid velocities show that although the global velocity
statistics of the two phases have comparable values, the particles may have different local
velocity from the velocity of the neighboring fluid.
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1 Introduction

This chapter is dedicated to the introduction of the study presented in this thesis. Since the
study involves turbulence, a brief introduction to this phenomena is given in the second sub-
section of this chapter. While only the classical view of turbulence is presented in this chapter,
more recent aspects of the turbulent flows, such as their intermittency, will be discussed in
the third chapter of the present thesis.

Different models of the motion of a solid particle in a fluid flow are presented. Beginning
with the simplest and most used model : the point-like particle model, which consists on
considering the particle as mass points, i.e. neglecting their size ( and hence the related size
effects ) in comparison to the smallest eddy size of the flow. Some important results and
predictions of this model are also presented. Then the more complicated and less understood
case of particles with finite size (i.e. larger than the smallest scale of the flow) is presented.
The study of the motion these particles is particularly challenging, since their equation of
motion is fully non-linear.

1.1 General introduction

A large number of industrial and natural occurrences of the turbulent flows involve the pres-
ence of inclusion in fluid undergoing turbulent motion.

In nature one interesting example is the transport of aerosol particles in the atmosphere. These
aerosol can both originate from natural phenomena (transport of sand by violent winds, air-
borne ash issued from volcanic activities ...) or industrial activities (pollution from industrial
activities). In both cases, it is of interest to predict the evolution of the concentration of the
aerosols in space and time, i.e. to be able to predict their diffusion in the atmosphere.
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In the industry, the particle laden turbulent flow configuration is involved in a several reactive
or non-reactive mixing process. One of the most studied in the literature being the combustion
of fuel in thermal engines : generally the fuel is introduced into the combustion chamber as a
spray and the resulting droplets interacts with the fluid turbulence in the combustion chamber
and evaporates ; the understanding of the interaction of the fuel droplets with the flow is of
interest to predict the rate of evaporation of the particles and the efficiency of the combustion
reaction.

The understanding of particle–turbulence interaction is therefore of central importance for
several scientific and engineering disciplines, and have drawn the attention of a wide research
community.

Mainly these studies have been concerned with the study of particles with a size significantly
larger than the smallest length scale of the flow, and density larger than the fluid density. This
is mainly due to the relative simplicity of their equation of motion, since the dominant effect
is the drag force. Albeit its simplicity, the dynamics of these kind of particles in a turbulent
flow have shown a rich phenomenology, mainly controlled by their relaxation time, that is the
time required to a particle to adapt it velocity to that of the surrounding fluid velocity.

When this time is sufficiently small compared to the smallest time scale of the flow, the par-
ticle can be considered as a tracer ; conversely, when this time is relatively large, the particles
move in fashion which is often different from the surrounding fluid ; in this case the particle
is called inertial. In addition, When the particle mass loading is sufficiently large (of the order
of 10�2) the presence of the particles may influence significantly the carrier turbulence sta-
tistical properties, resulting in “turbulence modulation” by the particles. Previous studies of
particle-laden flows have shown that a dilute dispersion of fine particles can either augment or
attenuate the carrier-phase turbulent kinetic energy. Other effects of particles presence have
been reported in the literature, such the modification of the turbulence spectrum (Boivin et
al. 1998).

One important aspect of the dynamics of inertial particles is their dispersion by turbulence,
first investigated in the framework of the Tchen-Hinze theory (Hinze 1975). These studies
have shown that the particles disperse less rapidly when increasing inertia. The diffusion of
inertial particles have also been studied experimentally by Snyder & Lumley (1971).

More recent studies have emphasized other aspects of inertial particles dynamics : the inertial
particles have been shown to form clusters, i.e. to concentrate preferentially in particular lo-

10



cations of the flow, this phenomena is known in the literature as “preferential concentration”.
Inhomogeneous distributions of inertial particles in turbulent flows have also been observed
in several experiments (Aliseda et al. 2002 ; Salazar et al. 2008) and simulations (Sundaram
& Collins 1997 ; Collins & Keswani 2004 ; Fevrier et al. 2005). The clustering is due to the
fact that in a turbulent flow, inertial particles with small to moderate inertia and sizes smaller
than the Kolmogorov length scale tend to move to regions with high strain and low vorticity
(Bec 2005).

Nevertheless, different flow configurations require to take into account the non-uniformity of
the fluid flow at the scale of the particle size, or involve particles having a density close to the
fluid density. In this cases the equation of motion of the particle is then fully non-linear, in
opposition to the previous case of dense and point-like particles.

A direct numerical approach will consist on simulating the fluid flow at the vicinity of the
surface of each particle in the flow. Although this approach yield interesting and fundamental
results about the dynamics of finite size particles, it can not obviously be applied directly to
cases involving a large number of particles or a highly turbulent and complex flows, since it
is computationally costly. As an alternative one may seek for simplified models of particles
motion in order to solve their motion. This model have to take into account the non-uniformity
of the fluid flow at the scale of the particles and the interaction of the particle with its own
wake, through the Basset-Boussinesq history term.

This aspect of particle dynamics in the case of neutrally buoyant particles have been studied
by Ouelette & al. (2008), who measured simultaneously the velocity of the particles and the
surrounding fluid, these particles were suspended in two-dimensional chaotic flow.

The aim of the present thesis is to generalize this study to the case of three-dimensional, fully
turbulent flow. To our best knowledge, experimental comparison of local velocities in this
case are still lacking.

To that purpose, a turbulence generator has been set-up and the resulting turbulence has been
characterized. Then the flow was seeded with small, neutrally-buoyant particles and the ve-
locities of the two phases have been measured simultaneously. This thesis is organized as
follow, The rest of the present chapter is dedicated to the presentation of the particle equa-
tion of motion and the reviewing of previous experimental and numerical investigation of the
dynamics of neurally buoyant particles in turbulence.
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In the second chapter, we will describe the constructed experimental set-up and the velocime-
try techniques used in this study. The focus is made first on the design of the turbulence gen-
erator, aimed to yield an isotropic and homogeneous turbulence with a weak mean flow. Then
we discuss how the the simultaneous velocimetry technique, based on optical discrimination
between flow tracers and neutrally buoyant particles, have been adapted to our specific case.

The third chapter is dedicated to the study of the statistical properties of the generated tur-
bulence in the absence of the particles. The departure from isotropy, homogeneity and local
isotropy are quantified, and the characteristic length and time scales of the flow are measured.
In the last chapter the dynamics of the particle is studied and is compared to the dynamics of
the surrounding fluid, using the simultaneous velocimetry technique.

1.2 Turbulence

As we shall see, the dynamics of particles is directly affected by the properties of the turbulent
flow by which their are carried. Turbulent flows are characterized by their complexity and the
coexistence of fluid motion at different scales from the large scale at which the kinetic energy
is produced to the smallest scales at which it is dissipated. In this section we will introduce
some of the most important notions about turbulence that will be used later.

The focus is made on the case of homogeneous and isotropic turbulence where the two points
velocity statistics are only dependent on the distance between the two points. Although such
flows are not widespread in nature, they have been considered widely for the study on tur-
bulence phenomena since they lead to simplified equations of the velocity statistics. In this
subsection we will introduce some concepts and quantities pertaining to the turbulence phe-
nomena, which will be extensively used in the following.

The central idea consists on considering the fluid motion to be organized in eddies of different
sizes which are exchanging energy. The largest eddies are directly governed by the flow
geometry and the turbulence generation mechanism (for example they have a size of the order
of the the grid mesh in grid generated turbulence). Generally the kinetic energy, through the
turbulence generation mechanism, is directly injected at these scales, they thus contain most
of the flow kinetic energy.

Due to inertia, the large eddies beak-up in smaller and smaller eddies, in a process called
energy cascade ; this lead to the coexistence of a whole range of eddy size in the turbulent
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flow, the extension of which increases with the flow Reynolds number. At the end of the eddy
breaking process, the eddy size become so small that the viscous effect dominate over the
inertial effects. At those scales the kinetic energy of the flow is dissipated into heat by the
effect of viscosity ; this range of eddies, responsible of most of the dissipation is called the
dissipative range. In between, lies a range of eddies performing inertial energy exchange,
where both the effects of viscous dissipation and large scales are negligible ; these eddies
constitute what is called the inertial sub-range.

When the turbulence is in equilibrium, the dissipation rate of kinetic energy by viscosity
matches the rate of energy transfer between the eddies. In this case, an important result is the
fact that the statistics of eddies belonging to the inertial and dissipative scales are independent
from the large scales and not dependent of the flow geometry. They have universal statistical
features highlighted in the two Kolmogorov similarity hypothesis.

The first hypothesis states that in an isotropic turbulence with sufficiently high Reynolds
number, the statistics of dissipative range are locally isotropic and only dependent on fluid
viscosity and the value of the mean viscous energy dissipation. By combining the two param-
eters ν and ε on which the velocity statistics depends, we can obtain the two space and time
scales ηk = (ν3/ε)1/4, τk = (ν/ε)1/2, called the Kolmogorov length and time scales.

The second hypothesis states that it exist a range of time and length scale, sufficiently smaller
than the integral scale, where the velocity differences statistics at these scales depend uniquely
on the dissipation. The scales where the second hypothesis is valid is referred to as the iner-
tial sub-range. For all the time and space scales τ and r sufficiently larger than ηk and τk but
sufficiently smaller than the large scales, all statistical laws depends only on the value of the
viscous dissipation (Yaglom & Monin 1975).

These hypothesis have permitted an universal approach to the study of turbulent flows, since
they can be applied to a wide variety of high Reynolds flow in nature and industry. In addition
they have constituted an important basic theoretical framework to the study of such flows.
Several predictions of the Kolmogorov hypothesis have been verified experimentally. Those
prediction are mainly related to turbulence spectra shape, and turbulent kinetic energy decay
rate and dynamics.

However, the small scales dynamics of the turbulence are not sufficiently well described by
this theory. Different refinement to that theory have been added to the theory, mainly in order
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to take into account the non-Gaussianity of the time or space increments of the fluid velocity
field.

1.3 Point-particle model

This section is dedicated to the presentation of the equation of motion of a single particle in
a fluid flow. These equations are of interest since they permit the modeling of the motion of a
particle in a fluid flow. Generally this modeling can leads to interesting results pertaining to
the kinetic energy or the dispersion an ensemble of particles in a fluid flow.

There is no general equation for the motion of a particle of an arbitrary size in and arbitrary
flow. In order to be able to write down equations, one needs to consider simplified flow
configurations. The simplest flow configuration considered in the literature is the case of a
uniform creeping flow ( highly viscous flow ) in the vicinity of the particle, with the particle
moving with a constant velocity. In this case the Navier-Stokes equation around the particle
can be simplified to yield a linear equation of motion for the particle. This simplification yield
the point like particle model, which is largely used in the literature due to its simplicity.

The local fluid flow around a spherical solid particle is resolved and the simplifying equations
are used in order to permits the analytical solution of the flow around the particle and thus
deduce the force applied on the inclusion.

In the limit of creeping flow, i.e. vanishing Reynolds numbers Re! 0, the Navier-Stokes
equations are simplified : the convective term representing the inertia is negligible compared
to the viscous term which becomes :

∇p = ν∇
2~u f , ∇.~u f =~0

The creeping flow can be considered as a vorticity diffusion process, with the motion of the
particle in the fluid causing the vorticity production due to the no-slip condition on its sur-
face. The produced vorticity diffuses from particle surface to the outer fluid due to viscosity
(Batchelor 2000). In the following , the vorticity diffusion equation is first set, then solved
using the boundary conditions imposed by the no-slip condition on the surface of the particle
and the uniformity of the flow field at infinity. This flow configuration is axi-symmetrical
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about the particle axis thus we might use the “Stokes stream function” ψ which can be re-
garded as a definition a “potential vector” from which the fluid velocity field can be deduced
(Batchelor 2000 ; Clift et al. 2005). Using this mathematical device, the fluid flow velocity
field is resolved along with the pressure distribution around the particle, so the drag force
experienced by the particle can be estimated. The case of unsteady motion is then analyzed
in a similar fashion, and the general equations of particle in an unsteady creeping flow are
eventually set.

First we consider the case of a spherical particle in a steady translational motion with a ve-
locity ~U parallel to the symmetry axis, in an otherwise still and unbounded creeping fluid
flow. The viscous term in the Navier-Stokes equation can then be expressed in terms of vor-
ticity ~ω = ∇�~u f by using the incompressibility condition we end up with an equation of the
diffusion of the vorticity from the particle surface to the surrounding fluid as :

∇
2~ω =~0

In the case of axi-symmetric flow the fluid velocity field can be deduced from the stream
function ψ , the value of 2πψ(~x) is the volumetric flow rate through a surface delimited by a
circle centered on the axis of symmetry and passing by~x. The fluid velocity is related to the
stream function by :

~u f = ∇�~B with ~B =
ψ

r.sinθ
~eφ

The vorticity is deduced from the stream function as :

~ω = ∇�~u f = ∇� (∇�~B)

And it can be shown that (Batchelor 2000) :

~ω =
E2ψ

rsinθ
~eφ

with the operator E2 being :

E2 =
∂ 2

∂ r2 +
1
r2

∂ 2

∂θ 2 �
cotθ

r2
∂

∂θ
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To solve the vorticity diffusion equation we will rewrite it in terms of stream function :

∇
2~ω =�∇� (∇�~ω) =� E4ψ

(rsinθ)2~eφ =~0

Leading to the fourth order differential equation for the stream function :

E4
ψ = 0

Finally we add the relevant boundary condition on ψ at the surface of the particle and at
infinity to solve the equation above :
– No-slip condition :~u f = ~U at the particle surface r = rp

– Uniform stream flow at infinity~u f !~0 as r! ∞

Expressing these boundary conditions in terms of a stream function leads to the solution (Clift
et al. 2005) :

ψ =Ur2sin2
θ

(
3
4

rp

r
� 1

4
r3

p

r3

)
To deduce the overall force applied by the fluid on the particle, we first evaluate the stress
tensor at any point on the particle surface, then integrate it around the whole surface of the
particle. The stress tensor at position r = ra is constituted from the normal stress tensor,
deduced from the distribution of the pressure , and the tangential tensor deduced from the
velocity distribution, the final expression for the Stokes drag force is :

~FD = 3πdpµ~U

Now we consider the case of a sphere in rectilinear oscillatory motion along a unique mode
ω in the sphere axis (Landau & Lifshitz 1987) :

U(t) =Uωe�iωt

We first consider the simple case of translational oscillating motion of the particle with one
mode, always under the creeping flow assumption the problem become an unsteady vorticity
diffusion equation :

∂

∂ t
~ω = ν∇

2~ω

And it can be solved in the same fashion as above by the use of the stream function method.
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The total drag on the sphere is obtained as above by integrating the stress tensor on the surface
of the particle.

~FD = 3πµdp~U +
πd2

p

12
ρ f

d~U
dt

+
3
4

πd2
p

(
2µ~U

δ
+δρ f

d~U
dt

)

Where δ is the distance from the particle surface beyond which the flow can be considered
as non-rotational and below which the flow is rotational.

δ =
√

2ν/ω

The first term of the equation of ~FD is the standard Stokes drag. The second is the “virtual
added mass or the “acceleration response” of the surrounding fluid to the acceleration of
the particle (Batchelor 2000). The virtual added mass term is the same as the one obtained
from potential flow theory (i.e by considering the unsteady motion of a sphere in a potential
inviscid flow ) (Auton et al. 1988). These two terms are not related directly to the oscillation
frequency ω so they can be understood as the permanent response of the fluid to the imposed
oscillating particle motion. The two last terms are directly function of oscillation frequency
and thus can be understood as the fluid transient response to the imposed particles oscillatory
motion at a unique frequency ω . The generalization to multiple frequency motion and then
to the general case of arbitrary motion is done by representing particle velocity as a Fourier
integral :

U(t) =

∞̂

�∞

Uωe�iωtdω

Therefore, by integrating the transient fluid response term over all values of ω , the general
equation of arbitrary motion for a spherical particle in a creeping flow is set :

~FD = 3πµdp~U +
πd3

p

12
ρ f

d~U
dt

+
3
2

d2
p
p

πρ f µ f

tˆ

�∞

(
d~U
dt

)
t=s

dsp
t� s

The last term in the above equation is commonly referred to as the “Basset history term”
and includes the effect of past particle accelerations weighted as (t� s)�1/2. The form of the
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history term results from the vorticity diffusion from the surface of the particle (Clift et al.
2005 ; Landau & Lifshitz 1987).

This equation for small particles is very complex and different numerical studies (Bec 2005 ;
Babiano et al. 2000) have used a simplified model taking into account only for the stokes
drag force and the added mass :

d~up

dt
= β

d~u f

dt
+

1
τp

(~u f �~up)

Where β = 3ρ f /(ρ f +2ρp) is the added mass coefficient and τp = d2
p/(12βν f ) is the particle

relaxation time. When normalized by the Kolmogorov length scale of the flow the relaxation
time gives the Stokes number of the particle St = τp/τk this non-dimensional number is of
importance since it characterize the inertial behavior of the particles. In addition, particles
clustering is shown to be maximal for St = 1 by several authors (Bec 2005 ; Fevrier et al.
2005).

1.4 Finite-sized neutrally buoyant particles

The presented derivation above is the simplest one found in the literature and have been used
only to set the basic theoretical framework. More general and rigorous derivations of the
equation of motion have been proposed by several authors (Maxey 1983 ; Gatignol 1983) for
the more general case of non-uniform creeping flow, and with the particle rotation and torque
taken into account. The first to consider the effect of fluid flow local curvature on drag was
Faxen, who shows that the local curvature introduce a correction on the drag force (Happel
& Brenner 1983). For higher Reynolds numbers, i.e for non-creeping fluid flows, some ex-
perimental and numerical studies have tried to fit the equation issued from the creeping flow
assumptions to high Re flows by recovering modified drag and added mass coefficient from
their results (for reviews see E. E. Michaelides (1997) ; Efstathios E. Michaelides (2003) ;
Clift et al. (2005)).

Faxen correction An equation for spherical particle motion taking into account the non-
uniformity of the fluid velocity at the scale in a creeping flow have been proposed by several

18



authors (Maxey 1983 ; Gatignol 1983). The derivation performed is based on the distinction
between unperturbed and perturbed flow field by the presence of the particles.

Each of the two flow fields is resolved separately, and so is the resultant stress tensor at
the surface of the particle. The perturbed fluid flow is resolved by Fourier transforming the
unsteady creeping flow equation, and the general solution is deduced from the particular so-
lution in the case of uni-modal translational oscillating motion. The resulting force on the
particle (and also the torque on the particle) is deduced by the integration of the stress tensor
along the particle surface, which yields terms containing fluid velocity and acceleration inte-
grals along particle surface and volume. The resulting particle modified equation of motion
is (Gatignol 1983) :

~FD = mp
d~up

dt
=�3πµ f dp(~up�

〈
~u f
〉

Sp
)+

πd3
p

6
ρ f

〈
d~u f

dt

〉
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πd3
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12
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〉
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ˆ
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Are the fluid unperturbed velocity average along particle surface and the unperturbed fluid ac-
celeration average along particle volume. If the particle diameter is sufficiently small dp/λ �
1 the first order expansion of those quantities about the center of the sphere yields to (Gatignol
1983) : 〈

~u f
〉

Sp
=~u f p(~xp)+(d2

p/24)∇2~u f p(~xp)+O(d4
p)〈

d~u f

dt

〉
Vp

=

(
d
dt

)
(~u f p +(d2

p/40)∇2~u f p(~xp)+O(d4
p))

Where the ~u f p(~xp) and ∇2~u f p(~xp) are the unperturbed velocity and velocity gradients at
the position of the particle ~xp. The first order of this Taylor development is called “Faxen
correction” and account for the curvature of unperturbed flow at the particle location.

The case of neutrally buoyant particles is of interest as a reference because it “isolate” finite
size effects : since ρp = ρ f the particles dynamics are expected to be affected mainly by
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spatial filtering of the velocity field, instead of the dominant temporal filtering as in the case
of small and heavy particle. It is also of experimental practical interest since it avoid particle
dynamics to be effected by crossing trajectory effect due to gravity, and are the easiest to
suspend in the absence of a strong mean motion as it is the case in our experiments. In
addition, such particles are involved in several measurements techniques. Such examples
include the use of large neutrally buoyant balloons to measure the turbulence Lagrangian
spectra in the atmospheric boundary layer (Hanna 1981) or the use of large floaters (roughly
1m in scale) in the oceanic boundary layer (Lien et al. 1998).

In the case of neutrally buoyant particles, the slip velocity is small so in the limit of small
particles size, i.e. for dp/λ sufficiently small it can be shown that (Homann & Bec 2010) :

~up '
〈
~u f
〉

Sp
'~u f +(d2

p/24)∇2~u f +O(d4
p)

Stated differently, this means that particles behave like tracers with respect to the filtered
undisturbed fluid velocity field

〈
~u f
〉

Sp
. This hypothesis have been the starting point of recent

theoretical and numerical studies (Homann & Bec 2010), the aim of which is to understand
how the spatial filtering may influence particles velocity and acceleration statistics. These
studies have been interested in setting the limit of validity of the point-like particle model and
proposing simple yet accurate models for finite size particles dynamics. This effort is mainly
motivated by the obviously prohibitive computational cost of accurately computing the fluid
flow at the scale of small yet finite-sized particles, specially for real world applications where
a large number of particles is involved.

In the following, different theoretical implication regarding the particles velocity statistics
are drawn from this minimal model. They mainly consist on scaling of two phase velocity
differences statistics with particle size. Some of this scalings have been verified numerically
by different authors, but to our best knowledge no experimental study have been dedicated to
the verification of this minimal model.

A first consequence one can draw from this model is its inability to catch clustering effects,
if any, since the resulting “ synthetic” particles velocity field is divergence free (Homann &
Bec 2010). Another consequence is that the relative velocity is dependent on d4

p as leading
order (Calzavarini et al. 2012) :
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~up�
〈
~u f
〉

Sp
= O(d4

p)

We focus now on the behavior of velocity difference with changing particle diameter. By
squaring the equation of the minimal model and retaining only second order terms in d2

p, we
end up with :

~u2
p�~u2
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d2

p

12
~u f .∇

2~u f

Considering the specific case of isotropic turbulence with no mean motion, the fluctuating
and total velocities of the two phases are always equal, thus the Taylor length scale as λ 2 �〈
j~u f j
〉
/
〈∣∣∇2~u f

∣∣〉 (Calzavarini et al. 2009). So by averaging the previous equation :
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Where ε is the viscous dissipation and λ the Taylor scale estimated as λ 2 = (5ν

〈
~u2

f

〉
/ε).

An important consequence of this scaling is that it guaranties that the particles mean kinetic
energy is always smaller than the fluid mean kinetic energy. This model is of importance since
int permit a simple prediction on the kinetic energy of the particles from the knowledge of
the kinetic energy of the fluid and the Taylor length scale of the flow. However, this minimal
model need to be checked in the range of it is validity need to be set. As we shall see, at this
point, no experimental verification of the scaling is provided in the literature.

In the next section we will present different numerical an experimental studies for the case of
interest. we will summarize main conclusions of those studies and compare them to the those
drawn from the minimal model.
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1.5 Previous works on �nite size neutrally buoyant

particles

In this section, the main studies on the velocity statistics of finite sized neutrally buoyant
particles embedded in a chaotic flow are reviewed. Important discrepancies between the dif-
ferent studies are stressed, and their accordance with the consequences of the minimal model
presented previously is highlighted. Although no clear conclusion can be drawn on the depen-
dence of velocity statistics on particles size, all the presented studies agree on the similarity
of the normalized velocity P.D.Fs of the two phase, regardless of the size of the particles. The
two principal study cited here have been devoted to testing and discussing the consequences
of the minimal model on velocity statistics. Only the individual dynamics of the particles
have been considered, and the back effect of particles on the fluid is not considered. Other
recent studies have been concerned with the case of relatively higher mass loading and how
then carrier turbulent flow is modified. Since our study is concerned with the small the vol-
ume loading, the modification of turbulence by the presence of neutrally buoyant particles is
not reviewed here, interested readers are referred to studies such as (Yeo et al. 2010).

What is measured We first present the numerical methods and experimental techniques
used by the different reviewed studies, along with their framework and parameters. Prior to
any comparison, we first define clearly what is actually measured by the different investiga-
tors and under which experimental conditions or numerical parameters.

Beginning with numerical studies, in the latest work of Calzavarini et al. (2012), different
Lagrangian model equations are used to track the particle in the fluid flow field. These models
are : the classical stokesian model (with constant drag and added mass coefficients) ; the
non stockesian drag (with a particle Reynolds number dependent drag coefficient) ; and the
viscous drag (with history term addition). The three different Lagrangian models are used to
resolve the acceleration (and hence the velocity) of the particle from the values of the filtered
fluid velocity and acceleration. First the stokesian drag and added mass are activated then
the other force terms, with the aim to investigate the influence of the different force terms
on the particles velocity statistics. The Lagrangian model is one way, so that the presence
of the particle do not modify the fluid velocity around, the measured fluid velocity at the
position of the particle is thus truly unperturbed and fits the rigorous definition given by the
theory. The implementation of the Faxen is based on a Gaussian approximation : the filtered
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velocity field
〈
~u f
〉

Sp
is first computed by applying a convolution with a Gaussian envelope

on the fluid velocity field (Calzavarini et al. 2009). The Gaussian filter do not correspond to
the rigorous definition of the spatial filtering on a a spherical shell, but have been used by the
author because it is computationally less expensive.

In Homann & Bec (2010) study, no Lagrangian model is used, instead a pseudo-penalization
method is used to impose a no-slip condition at the surface of the particle. It consist on
imposing a strong drag on the fluid at the location of the particle, so it tend rapidly to a solid
motion. The hydrodynamical force experienced by the particle is computed by integrating the
stress tensor over a homogeneous grid located at the surface of the spherical particle. Then the
surface integral of the fluid velocity

〈
~u f p
〉

Sp
is computed from evaluating the average velocity

on spherical shells surrounding the particle. Only one particle at time was used in order
to avoid particle-particle hydrodynamical interactions. These simulations take into account
local disturbance of the fluid flow by the presence of the particle (as noted by the authors a
wake like structure is visible in the vicinity of the particle). Computations were conducted
for a moderate Reynolds number of Reλ = 32 , the ratio between particles diameter and the
Kolmogorov length scale Φ between 2 and 14.

Two experimental studies are reviewed here, In the first investigation made by Qureshi (2009)
(see also Qureshi et al. (2007)) the turbulence is generated behind a grid in a closed wind tun-
nel with a mean velocity of the fluid U = 15 m.s�1. The used particles are actually soap
bubbles inflated with helium in order to match their density to the surrounding air. The par-
ticles are injected individually the resulting seeding is thus very small and no turbulence
modulation is expected. Using a 1D acoustic Doppler velocimetry particles are individually
tracked and their stream wise velocity component is measured along their trajectory. Fluid
velocity is measured separately using hot wire anemometery (prior to seeding).

In a different series of experiments made by Ouellette et al. (2008), a quasi two dimensional
flow is generated by driving electromagnetically a thin layer of an electrolytic KCl solution
using a square lattice of permanent magnet with alternating polarity. The flow is seeded with
particle of different diameters. The one of 80 µm diameter are used as tracers, the remaining
particles of diameter 0.92 mm and 2 mm are the finite size particles with Stokes numbers
between 0.5� 10�2 � StL � 7.6� 10�2 based on the distance L between the magnets . A
visualization zone of 7.5 cm� 7.5 cm is imaged at a frequency of 30Hz so the particles
can be tracked, then velocity and acceleration are measured by fitting polynomials to short
segment of trajectories.
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Study ReL Reλ L/ηk λ/ηk Φ = dp/ηk dp/λ StL = τp/TL St = τp/τk Remarks

HOMANN BEC 68 32 24 11.3 2$ 17 0.17$ 1.5 pseudo� penalization method

CALZAVARINI 95.45 31 35 11 0$ 32 0$ 2.9 Lagrangian model

QURESHI 1621$ 1758 155.6$ 165 243$ 270 23.3$ 24.65 12.5$ 25.06 0.53$ 1 wind tunnel experiment

OUELETTE 72$ 220 � � � � � 0,53.10�2 $ 7,6.10�2 � 2D chaotic f low experiment

Present study < 180 4$ 5 1$ 2 towed grid turbulence

TABLE 1.1: Previous studies parameters

Velocities statistics Several authors have compared the velocity P.D.F of the two phases
for different values of Reynolds numbers and size ratios, in the case of neutrally buoyant
particles. A common and fundamental observation is that the the P.D.F of the velocity nor-
malized by variance is not effected by the size of the particles and fits well with a Gaussian
distribution. In the case of 2D chaotic flow (Ouellette et al. 2008), the same observation is
made by the investigators, although the normalization is by fluid velocity variance. A compar-
ison with fluid velocity PDF is made and no sensible difference between the two is observed.
interestingly enough this is the only direct comparison between fluid and particles velocity
PDFs found in the literature.

Velocity variance di�erence As seen in the previous paragraph no clear influence of the
particles size on velocity statistics have been observed by previous investigators. However
the effect of particles size on particles velocity variance have been extensively studied in the
case of isotropic turbulence. The aim of the numerical and theoretical studies reviewed here
is to check the minimal model in order to assert to what extend does it describe accurately
the particles dynamics statistical features.

The only experimental evidences of two phases velocity variance differences in the case of
isotropic intense turbulence have been provided by Qureshi’s results, who shows that, in
contradiction with all theoretical predictions, no influence of particles diameter is found on
particles velocity fluctuation, which fluctuate slightly and with no clear trend around the value
of fluid velocity fluctuation. This result is rather surprising with regard to the high size ratios
involved : Φ > 12 and dp/λ = 0.53$ 1, it is also inconsistent with the theoretical prediction
of d2

p variance growth. A closer examination of authors data shows a discrepancy between
�3% and 8.7% in particles fluctuation levels compared to fluid velocity fluctuation level,
which compare well with the values from numerical simulations but for smaller size ratios
Φ� 4.
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Numerically, the most resolved simulation to our best knowledge are reported by Homann &
Bec (2010). The pseudo-penalization method without the use of an a priori Lagrangian model
offers higher accuracy but with a significantly higher computational cost. In this study the
authors have compared the minimal model deduced from the first order Faxen correction to
the actual velocity variance du from the simulations results. The authors show that the scaling
fits well data for scales ration Φ < 4 (This observation have been confirmed by Calzavarini’s
results).

For larger values of Φ the variance difference is shown to behave as Φ2/3 suggesting a scaling
reminiscent of the inertial range scaling : the velocity variance difference may be interpreted
as the second order Eulerian structure function of the velocity field, with dp the spatial separa-
tion. Hence, following K41 theory this quantity should scale with d2/3

p for dp included in the
turbulence inertial sub-range. Authors then conclude that beyond this size ratios the inertial
scale physics begin to dominate particles dynamics. Nevertheless this conclusion have to be
taken cautiously since the inertial range is small in these simulations (Reλ = 32) . The mea-
sured two phases velocity variance difference for Φ� 4 is smaller than 10%. For 6�Φ� 14
the difference ranges from 14% to 27%.

Calzavarini’s study first focuses on the effects of different Lagrangian models on the two
phases velocity variance differences. For size ratios smaller than Φ� 6 the three considered
models seems to yield to close values of variance differences. At higher size ratio different
models results begin to diverge signally : the stokesian drag model is shown to be inconve-
nient since it leads to a particle velocity variance larger than that of the fluid which is pre-
sented by the authors as an unphysical results since particles cannot have on averages larger
energy that the carrier fluid. This incoherence is cured by the addition of the non-stockesian
term.

Still, the resulting model results show a large discrepancy with results from Homann & Bec
(2010) study for large size ratios. Authors then conclude that the most complete model ac-
counting for the Basset-Bousinesq history term is the one that fits the best Homann and Bec
results, although no clear scaling for high size ratios is found from their results . Hence au-
thors a propose a different explanation for the 2/3 scaling introduced by previous authors : the
change of scaling may be due to an effect of the viscous drag and specially the non-stokesian
term.

Although no clear agreement is found between the two studies, an agreement is reached on
the tendency of variance difference to increase with particles size. This observation still lack
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an experimental support, since the only available experimental evidence do not share this
conclusion.
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2 Experimental set-up and

techniques

2.1 Overview

This chapter is dedicated to the description of both the experimental set-up and the velocime-
try techniques used in this investigation.

In order to generate a nearly homogeneous and isotropic turbulent flow, a towed grid turbu-
lence generator have been set-up. Its design is described and discussed in the first part of this
chapter.

In order to measure the velocities of both phases simultaneously, two whole field velocimetry
techniques have been combined in a two camera set-up. The two velocimetry techniques
particle image velocimetry and particle tracking velocimetry are first introduced separately,
then the combination of the two techniques is described.

2.2 Experimental set-up

Introduction Since the early days of the experimental investigation of turbulent flow, dif-
ferent apparatus have been used in order to generate, at the scale of the laboratory, highly
turbulent flow with well defined properties. Due to the relative simplicity of its mathemati-
cal description, the homogeneous and isotropic study is a widely used academic configura-
tion to study turbulent phenomena. From the beginning of experimental turbulence research
(Townsend & Taylor 1948 ; Stewart & Townsend 1951 ; Batchelor 1953), the use of the grid
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in wind tunnels was extensively used to generated turbulent flow with satisfying homogene-
ity and isotropy. This flow configuration however have several drawbacks, the most important
being the weak turbulence intensity, that is ratio of the generated turbulent kinetic energy to
the mean kinetic energy of the flow.

Then, an interesting feature is to generated an isotropic turbulent flow avoid from mean mo-
tion : if the larger part of the injected energy is converted into turbulent motion, it is easier to
generated highly turbulent flow. A classical example of such set-ups is the Von Karman flow,
which consists on generating a turbulent flow between two counter rotating disks resulting in
a flow with small mean motion. The main drawback of such apparatus is to show a certain
small scale anisotropy (Ouellette et al. 2006). This set-up have however been successfully
used for investigating the motion of inertial particles in turbulent flows (Volk, Calzavarini, et
al. 2011).

Another widely reported method to generate mean flow free turbulence is diffusive turbu-
lence : in this case the turbulence is produced by a steady flow and transported by turbulent
diffusion of momentum far from the region where it was created. This leads to a station-
ary flow without advection but inhomogeneous in one direction (Risso & Fabre 1997). One
method of generating diffusive turbulence is the oscillating grid setup, which have used by
several authors to study turbulent mixing layers (McKenna & McGillis 2004 ; Fernando &
De Silva 1993). The turbulence is produced by a horizontal grid oscillating in the vertical
direction inside a square tank. At a certain distance z far from the grid diffusive turbulence is
obtained.

In their experiments Yang & Shy (2003) used a comparable apparatus to study the modifi-
cation of settling velocities of heavy particles in an aqueous turbulence. It consists on a pair
of vertically oscillating grids producing an intense stationary turbulence in the core region
between the grids. It is shown that this region has almost zero mean velocities, and is roughly
homogeneous in horizontal directions. In addition, the isotropy is nearly achieved with a
velocity r.m.s ratio of 1.2 (Shy et al. 1997).

Another set-up consist on translating (rather than oscillating) the grid at a constant velocity
from the bottom to the top of a water square tank. The grid is then kept fixed at the top of
the tank and the turbulence is let to decay freely. Such a device, called towed grid turbulence
generator, have been previously used for the study of quantum turbulence in liquid helium
(Stalp et al. 1999). Recently C. Morize et al. (2005) (see also Cyprien Morize 2006) used this
device in order to study the decay of an isotropic turbulence submitted to a bulk rotation.
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For all those methods of turbulence generation, the existence of a mean secondary flow in the
vertical plan have been observed in the different studies and found as a vortex of characteristic
scale comparable to the height of the water tank . This secondary flow was measured by
comparing the total kinetic energy and turbulent kinetic energy, the ratio was found to be 2 to
3 in the case of freely decaying turbulence (Morize 2006). Several authors (Fernando & De
Silva 1993 ; Staplehurst et al. 2008) have proposed design criteria to reduce the strength of
the secondary motion, this is discussed further.

Turbulence generator In our experimental study, the choice has been made on towed
grid generated turbulence. One realization of the turbulent flow is produced by moving the
grid upward, in a glass tank filled with filtered water, at a velocity of U = 1 m/s along a stroke
of 0.5 m (with acceleration and deceleration along 0.1 m), the turbulence then decays freely
until the next stroke. The tank is equipped with a surface tray, so the flow is not perturbed by
the free surface motion.

To make converged statistics 500 independent realizations are considered. The grid is at-
tached to a linear slide which is set in motion by an electrical motor connected to a controller.
A schematic representation of the turbulence generator is shown in figure 2.1 .

The electrical motor is synchronized to the image acquisition system through a specifically
designed synchronization box designed by H. Ayrolle at the IMFT : this box generates a first
signal to trigger one grid motion cycle. This cycle consists on first moving the grid down
gently at a velocity of 0.1m/s, then to move it up at a velocity of 1m/s in order to generate
the turbulence.

The box generates a second delayed signal to trigger camera acquisition during a user speci-
fied time interval (acquisition window). These two signals are synchronized to the frequency
of the LASER source (figure 2.2). The delay between two successive grid motion cycles is
set to 54.4 s equivalent to 1000 integral time scales ; such a large delay has been chosen in
order to avoid sustaining the mean flow. In our experiments the initial time t.U/M = 0 is
taken at the end of grid stroke. The PIV measurements are triggered at t.U/M = 40, where
the turbulence is considered to be homogeneous and isotropic (Morize 2006).

Cycle motion repetitiveness has been assessed by checking the position of the grid in images
taken at the same stage for several cycles. The position of the grid have been found not to

31



FIGURE 2.1: Scheme of the towed grid turbulence generator, with the PIV set-up. To generate
the turbulent flow the grid moves upward in the water tank, the turbulence then
decays freely until the next stroke of the grid.

vary noticeably, we thus conclude that the repetitiveness of the grid motion is satisfactory for
the purposes of our experiments.

Grid design The most important part of the turbulence generation system is the grid, on
which relies the quality of the generated turbulence. The first constraint on the grid design is
the reduction of the mean flow ; Fernando & De Silva (1993) put forward a design criterion to
reduce this flow by choosing judicious near wall conditions : The grid need to obey to reflec-
tive symmetry with reference to the walls of the tank. In their experiments two grid designs
are tested : the first case corresponds to a grid design which respects symmetry criterion while
in the second case the design does not match that criterion : the mean flow is shown to be
reduced more than 4 times with the first design. The symmetry criterion has been respected
when designing the grid : the spacing between the wall and the nearest parallel bar is half a
grid mesh size M/2.

Another method to reduce the mean motion has been used by Staplehurst et al. (2008) : the
authors have clamped a square tube to the back of the grid so that both the grid and the tube
are lowered through the tank at the same time, and the authors report a diminution by a factor
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FIGURE 2.2: Scheme of the synchronization between grid motion and acquisition system.

of around 5 of the strength of the mean flow. Nevertheless this method is not used in our
experimental set-up due to design restrictions.

As shown in figure 2.3 the grid is made of square rods of sides 1cm with a mesh size M =

4.5cm, and a solidity σ = 0.395 which is close to the solidities of grids usually used in wind
tunnels (Mohamed & Larue 1990). In order to avoid the deformation of the grid by the drag
force applied by the fluid motion, the grid rods were made of duralium, an aluminum alloy.
We have previously used a PVC plastic grid and observed a significant planar deformation,
we thus rule out the use of this material. However rotational oscillations of the grid around the
bar axis are noticed which may cause the grid to hit the tank walls and to cause scratchings
on the glass walls ; to avoid this, we added Teflon (PTFE) pins at the both ends of the rods of
the grid.

2.2.1 Particles

After characterizing the generated turbulence, the flow is seeded with solid particles made of
polystyrene. It is important to note that particles are not injected but they are added to the
water tank initially and they are used for all the experiments.

Polystyrene has been chosen because its density is the closest to that of water. To achieve
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FIGURE 2.3: The used grid with the dimensions in millimeter

a better density match for the two phases water density is increased by salt addition and
measured using a hydrometer before filling the tank (the water is filtered before filling the tank
to eliminate both salt particles and dust particles). Then the settling velocity of the particles
in the still water is measured by tracking the particles in successive images acquired by a
camera. The settling velocity of the particles is found to be Vs = 6.76.10−4 m/s in average
for a measured water density of ρ f = 1.037g/ml ; this settling velocity is negligible compared
to fluid velocity r.m.s u0 since Vs/u0 = 2.24.10−2 at t.U/M = 66.6 the particles buoyancy is
thus considered to be negligible in comparison with the other forces .

We chose particles with diameters of around 1 mm, hence significantly larger than the Kol-
mogorov length scale, which is estimated to be of the order of 200 µm ; the achieved Stokes
number close to 1. Prior to their use, the polystyrene particles were sieved to obtain a distri-
bution of diameter between dp = 1.12−1.8 mm. We measured the diameters of a sample of
58 particle by imaging these particles, the histogram of measured diameters is shown in fig-
ure 2.4. The measured diameters are shown to vary between 1mm and 1.5mm, the dominant
value being close to 1.4mm.

The volume loading of the particles in the water tank was set to Φv = 3.10−3 ; the choice of
such a small loading is intended to make negligible both turbulence modulation and inter-
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FIGURE 2.4: Histogram of used particles diameters

particle hydrodynamic interactions, while having a sufficient number of detected particles in
the measurement volume.

2.3 Particle image velocimetry

2.3.1 Principle

At the contrary of the previous precise velocimetry techniques used in fluid mechanics, such
as the Hot Wire Anemometer (HWA) which have been used in the first experimental inves-
tigations of the turbulence, or the more recent Laser Doppler Anemometer (LDA), the PIV
yield the whole flow velocity field. Classical PIV techniques used hereinafter gives only two
of the three velocity components over a measurements plan. Advanced PIV techniques such
as stereoscopic PIV can give the three components.

From the pioneering research works in the eighty’s (e.g. Utami & Ueno 1987) the particle
image velocimetry technique have been set it self as one of the leading velocimetry methods
in fluid mechanics. The use of digital imaging systems instead of photographic films have
further increased the use of the PIV and simplified the batch processing of the resulting
images.

The basic idea of the PIV technique is to measure the displacement of tracer particles of a
given fluid flow between two successive images taken at a time ∆t apart. The flow is seeded
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with those tracers particles and illuminated using a light sheet, the commonly used light
source is a dual cavity LASER : each cavity emits a Laser pulse, the two pulses are separated
by a time ∆t. The light is reflected by the tracers and received by a CCD sensor, the camera
acquisition being synchronized with the LASER source to yield one image frame per cavity
pulse. The method used hereinafter to deduce the tracers from the two successive acquired
image is called “Correlation image velocimetry” (CIV) and have been introduced by Fincham
& Spedding (1997), this method is described in the following.

The first frame images is subdivided into small pattern boxes of size B pixels, each box being
centered around a node of a measurement grid defined by the user. Provided that B and ∆t are
small enough to yield reduced out-of-plan motion and in-plan tracers displacement, then most
of the particle images contained in a pattern box of the first frame centered at coordinates
(x1,x2), will appear in the second frame within a search box of size S = 2Dmax +B where
Dmax is the estimated maximum in-plane flow displacement in pixels. Thus if the tracers
undergo a simple translation D < Dmax, the group of images within each box will retain a
similar pattern.

A pattern matching technique is then best suited in order to calculate the displacement D of
the tracer ensemble. The ensemble of the pixels contained in each pattern box in the first
frame is cross-correlated with a shifted same size pattern box in the second frame, within the
defined search box. For each applied shift a correlation coefficient is associated. This yields
a two-dimensional correlation function, and the shifting corresponding to the largest local
maxima of this function is the most likely mean integer displacement of the tracers contained
in the pattern box. Furthermore, in order to achieve a sub-pixel accuracy a local curve fit of
the correlation coefficient matrix is performed : the local maxima of the correlation function
is fitted and the corresponding non-integer shift is computed.

However, the hence computed correlation peak may not be associated with the true displace-
ment of the fluid in the sample box, especially when the correlations are weak, there is always
some chance of a random pattern correlation giving vectors that are false. This is due to the
presence of “secondary” local maxima of the correlation function, which may be larger than
the “principal” local maxima associated with the actual particle motion. Those secondary
peaks are associated with the random spatially uncorrelated errors and not to the actual dis-
placement. The ratio of the principal to the secondary local maximas of the correlation func-
tion are called peak detectability (Adrian & Westerweel 2010), and may be understood as
an analogous to the signal-to-noise ratio of the displacement measurement : an optimal PIV
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measure yield a detectability significantly larger than 1.

In order to enhance the principal peak detectability the correlation function at a given position
of the grid is multiplied by the correlation function at the neighbor position in the measure-
ment grid (distant by B/2). Since the maximum of the correlation function, corresponding to
the physical displacement, should be close at neighboring positions, the multiplication there-
fore enhance the strength of the principal peak, while reducing the strength of secondary
peaks, since those peaks are related to a random error and are hence spatially uncorrelated.
This method,called correlation based correction (CBC) technique, have been first proposed
by Hart (2000).

After this process, false vectors do remain. Those vectors are unrelated to the neighboring
flow, and should stand out when compared with their neighbors. In the CIV software a vector
correcting routine is implemented which compares each vector with its neighbors computing
the relative deviations in both magnitude and direction, the most deviant neighbor is dis-
carded (Fincham & Spedding 1997). The results from this first iteration are improved in a
second iteration with reduced pattern box search zone, using the prior knowledge of the local
deformation rate and rotation is used to refine the pattern matching.

After describing the general principles of the used PIV technique, the imaging set-up and cor-
relation parameters used in our measurements of the unladen turbulent flow will be presented
and discussed.

2.3.2 Operation

The generated turbulence has been first characterized in the absence of the particles with
Particle Image Velocimetry technique PIV, the velocity fields where computed using CIV
software. The flow is seeded with borosilicate hollow glass spheres tracers of size 10 µm,
which is significantly smaller than the flow Kolmogorov length scale. The tracers loading
have been successively increased until reaching an average 45000 to 50000 tracers images
per frame.

Laser Those tracers were illuminated using a vertical light sheet, which is generated by
an Nd :YAG pulsed LASER light source with an energy output of 150mJ for each cavity,
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at wavelength of λ = 532 nm. The light sheet is formed by expanding the laser beam in the
vertical direction by means of a cylindrical lens. Since the laser have a diameter (8mm) that
does not match the desired thickness of the light sheet a long focal length spherical lens is
applied to obtain the desired thickness, which can be tuned by varying the position of the
spherical lens. Despite its simplicity , the main drawback of such a systems is that it does not
yield to a constant laser sheet thickness ; this may be corrected by adding a cylindrical lens
which corrects the diverging sheet into a collimated sheet (Adrian & Westerweel 2010).

We measured the light sheet thickness at the tank wall using a photosensitive paper. Due to
the expected isotropic and tri-dimensional character of the flow, the LASER sheet thickness
is taken equivalent to the interrogation window size B. For the present measurements, the
interrogation window for the first cross-correlation is B= 24 pixels, corresponding to 3.4 mm.
In consequence, in order to reduce the out plan motion, the LASER sheet thickness need to
be close to the interrogation window size B. Consequently, in our experiments the thickness
being set to about 5 mm in the middle of the tank (note that this is an estimation based on the
value of the thickness at the wall of the tank). As shown by PIV images the main drawback
of the non constancy of the light thickness is to yield a non-uniform illumination of the
measurement volume, since the illumination decay in the direction of the light propagation.

Since the velocity of the fluid varies significantly through the decay, the delay ∆t between
the two pulses is variable during the decay, from a value of ∆t = 9.10�3 s at the beginning
of the decay to ∆t = 25.10�3 s at the end. The choice of the delay between the two pulses
is conditioned by the desired average displacement of the tracers and by the reduction of the
out-of-plane motion. The time between the two pulses should be chosen to achieve mean dis-
placements sufficiently small in order to minimize displacement gradients and out-of-plane
motion, yet sufficiently large to have significant measurements For the the values of ∆t used,
a typical measurement produces a mean displacement between 2� 3 pixels at every con-
sidered stage of the decay, which is expected to result in small displacement gradient in the
interrogation window, reducing the corresponding bias (Raffel et al. 1998).

Prior to the measurements, in order to ensure that the two pulses used from the two cavities
are focused on the same volume, we perform a co-linearity test. This test consists on cross-
correlating the two images issued from laser pulses emitted from the two cavities at very
small time lag apart, hence no motion of the tracers between the two pulses is expected . The
resulting correlation coefficients are found to be larger than 0.8, thus proofing the good co
linearity of the two cavities.
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Camera The light scattered by tracers passes through an imaging system to be caught
by a CCD sensor (PCO sensicam 12 bits), in two successive frames, each corresponding to
one LASER pulse. Each cavity emits light pulses at a frequency of 10 Hz, the acquisition
frequency of the CCD sensor being 5 Hz (the frequency of the camera is set by its read-out
time).

First, the camera optical axis is first made perpendicular to the water tank wall, and the field
of view of the camera was set to a size of 20 cm�11.8 cm using a test card (figure 2.5) placed
at the position of the desired measurement volume. This test card is also used to measure the
magnification of the whole optical system, that is the correspondence pixel to millimeter.

Then the tuning of the optical system is performed : the aperture of the lens f# should be large
enough to enough scattered light, while yield a camera depth of field that is larger than light
sheet thickness in order to avoid the presence of out of focus tracers images in the resulting
PIV image.

The depth of field is related to the aperture number as δz = 4(1 + 1
M )2 f 2

# λ (Raffel et al.
1998) where M is the magnification (the size of each pixel of the CCD sensor is 8 µm, the
magnification is estimated as M = 0.05). For an aperture number of f# = 4 the depth-of-field
is δz = 1.4 cm which is larger than the sheet thickness, thus for this aperture number all tracers
images are expected to be in focus ; this confirmed by the visual inspection of PIV images. If
the aperture number was reduced to f# = 2, the resulting depth of field will be equal to 3.5 mm

which is smaller than the Laser sheet thickness, which may lead to significantly out-of-focus
tracer images. Thus the aperture number f# = 4 is found to achieve the best compromise.

Besides, the size of the particle image should be larger than 1 pixel in average in order to
reduce the bias of the measured displacements towards integer values, a phenomenon called
“peak-locking” (Raffel et al. 1998). The expected focused tracer image size is given by the
diffraction limited image diameter, which can be calculated using δs = 2.44 f#(M + 1)λ =

5.45 µm, the tracer image size is hence smaller than a pixel size (8 µm) with the used aperture
number. Instead of changing f# we rather choose to de-focus slightly in order to “blur” and so
increase tracers images size, the resulting size is found to be 1.8 pixels on average. This de-
focusing have been found to reduce the peak-locking, by checking the resulting displacement
histograms.
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FIGURE 2.5: The used test card. The mark indicate the vertical center of the measurement
volume and is matched with the center of the image.

After the acquisition of the images, a cross-correlation analysis is per-
formed in order to measure the tracers displacement between the two frames. The pattern box
size is set to B = 24 pixels for the first interrogation and B = 16 pixels for the second, The
search box sizes were set to S = 48 pixels for the first interrogation and S = 40 pixels for the
second interrogation, yielding a maximal accessible displacement of 11 pixels in both cases.

The choice of B and S sets respectively the spatial resolution and the dynamic range of the PIV
measurement. In our case since B/ηk � 10, at the early stage of the decay (t.U/M = 66.66)
small scales of the turbulence are not resolved by the present measurements. However our
measurement’s spatial resolution is sufficient to resolve Taylor scale λ since B = λ/1.8 at
the beginning of the decay (For the estimation of both ηk and λ , see the chapter “Fluid
turbulence”). The used search box size is found to be sufficiently large since a displacement
of 11 pixels is rarely measured, the average displacement being 2 to 3 pixels. An example
of the resulting PIV measures is shown figure 2.6 : the resulting values of the correlation
coefficient are mainly large than 0.5 proofing the quality of the cross-correlation analysis.
Nevertheless, the inspection of the displacement histograms shows the occurrence of a slight
peak-locking.

40



5 10 15
0

2

4

6

8

10

x (cm)

y
 (

cm
)

(a)

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

500

1000

1500

2000

u
1
 (pixels)

(b)

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

200

400

600

800

1000

1200

1400

u
2
 (pixels)

(c)

0 0.2 0.4 0.6 0.8 1
10

0

10
1

10
2

10
3

10
4

Correlation coefficient

(d)

FIGURE 2.6: (a) Example of obtained PIV field, the number of vectors have been reduced for
clarity. (b) and (c) Histogram of the displacements in pixels. (d) Histogram of
the correlation coefficient.
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2.4 Particle tracking velocimetry

The particle tracking velocimetry (PTV) technique consist on tracking the motion of indi-
vidual particles between the two successive camera frames, in contrast with the PIV, which
deals with an ensemble of particles contained in an interrogation window. Thus each particle
image needs to be first detected on each camera frame and their positions estimated, then the
two particles images need to be matched, i.e. identified as belonging to the same particle,
without ambiguity ; the difference of position of the two particle images gives the particle
displacement. Those three stages of the PTV process are detailed in the following.

Detection The acquired images consists of white particle images on dark background.
Therefore, the common procedure for detecting particle images is by means of image seg-
mentation : typically, a gray level-threshold applied to label all pixels with gray levels ex-
ceeding the threshold value as particle images and all other pixels as background. The pixels
belonging to particle images are tagged 1 and the background pixels are tagged 0, the result-
ing images are hence called binarized images (figure 2.7).

A visual inspection of the acquired images shows that it contains a large number of particles
images, all of them are not included in the measurement volume. The particles included
in the thickness of the Laser sheet are considered to be the largest and the most illuminated
particle images, the other particles outside the Laser sheet being illuminated through multiple
scattering. The value of the size and gray scale threshold is then set to eliminate the later from
the images ; after a visual inspection of the particles images we set the gray scale threshold
to 10000 (while the maximum gray scale is 65535) and the size threshold to an equivalent
diameter of the particles images of 4 pixels.

Other methods for particles detection have been reported in the literature. Takehara & Etoh
(1998) have introduced the mask correlation method which is basically a pattern recognition
method : it consists on cross-correlating the entire acquired image with a “mask”, i.e. a model
particle image with Gaussian illumination profile, the correlation maxima then corresponds
to the detected particles locations in the image. The authors show that this method works
only when the particles images illumination profile is nearly Gaussian, which is not the case
in our experiments since the particles saturate over several pixels. Another method used by
Khalitov & Longmire (2002) is based on the detection of local maxima of the illumination
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in the images. This method cannot by used in our experiments for the same reason : the
saturation of the particle images over several pixels, i.e. the truncated illumination profile.

Centroid position After the detection of the particle image located in the measurement
volume, the position of each detected object is estimated through its centroid. The centroid of
each particle is computed as the barycenter of the ensemble of the pixels belonging to the bi-
narized particle image weighted by their gray-level values. If the particle images are perfectly
circular and the illumination profile perfectly symmetrical around the particle image center,
this method yields an unbiased estimation particle image location. However, the centroid of
particle images with an asymmetric shape yields a biased estimate for the particle location
(Adrian & Westerweel 2010).

Thus an estimation of the circularity of the binarized particle image is needed in order to
evaluate the bias on the centroid, this may be provided by the eccentricity : provided that the
particle image may be approximated by an ellipse the eccentricity is the ratio of the distance
between the foci’s of the ellipse and its major axis length. The value is between 0 and 1 : an
ellipse whose eccentricity is 0 is actually a circle, while an ellipse whose eccentricity is 1 is
a parabola.

The histogram particle image eccentricities at t.U/M = 84.4 is shown in figure 2.8 for the two
camera frames : it is shown that most of the particle images can be considered as circular,
since the most probable value of eccentricity is around 0.3 ; it shows however that a non
negligible number of particles have an eccentricity larger than 0.6.

A visual inspection of some particle images having the largest eccentricities shows that some
of them may cause erroneous displacement of the centroid between the two frames ; examples
of the high eccentricity particles images causing erroneous displacement are shown in table

2.1. Some causes of errors are :
– The “crescent like” particle images, which are probability due to an obscuration by a par-

ticle outside the measurement volume.
– Particles which are to close to each other may be counted for as one object after image

binarization (such problem may alternatively be resolved by eroding particle images in
order to separate them).

Thus a threshold of eccentricity of 0.7 have been chosen in order to ensure a good symmetry
of particles image used for the measurement and to avoid errors in the estimation of the
displacement of the particles.
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(a) Detection (b) Localization (c) Matching

FIGURE 2.7: Particle tracking velocimetry process

When the bias errors are identical for particle image centroid on both frame, they cancel each
other, and thus the measured particle displacement (which is the difference of the two centroid
positions) is unaffected by this bias (Adrian & Westerweel 2010). However, when the particle
shape changes significantly between the two frames, the bias errors are different and doesn’t
cancel each other, hence introducing a bias on the measurement of the displacement. Stated
differently, the large variations of the particle shape between the two frames may induce a
displacement of particle centroid which is different from the “physical” displacement of the
particle.

Thus we verify the change of the shape of the binarized particle image between the two
frames, by comparing the change in both eccentricity and diameter between the two frames.
As depicted in figure 2.9 the eccentricity and diameter are shown to be unchanged or slightly
changed between the two frames. Thus, the measured particle displacement is often unaf-
fected by bias on the particle centroid.
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FIGURE 2.8: Histogram of the measured eccentricity of the detected particles image, on both
of the camera frames.

Frame1 Frame2 displacement (pixels) eccentricity

17.5906 0.8390

19.3859 0.8473

15.0862 0.8507

12.2610 0.9033
TABLE 2.1: Examples of the cases of high eccentricities leading to erroneous centroid lo-

calization and displacements. The dots represents the position of the weighted
centroid of the object.

Tracking After the detection and the estimation of the position of each particle image, the
next step is to identify for each particle image in the first frame the corresponding image in
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FIGURE 2.9: Di and εi are the diameter and the eccentricity of the particle image in the frame
i = 1,2. For the two ratios the most probable value is 1

the second frame. When the displacement of the particle images is small with respect to the
mean spacing of the particle images, the matching particles pairs can be found by pairing
each particle image in the first frame with its closest neighbor in the second frame (Adrian &
Westerweel 2010). This is verified in our case, since the mass loading is small.

For each particle image centroid, the tracking algorithm find the closest neighbor in the sec-
ond frame within a search radius of 20 pixels. This limit have been validated by visually
checking the largest detected displacement detected by the algorithm, and by verifying the
resulting displacement histograms : if the search radius is too small, the histogram will be
truncated at large values.

This tracking algorithm was tested in two ways :

First by applying a simple known movement to an image issued from the PTV measurement,
and comparing the applied displacement to the one measured by the tracking algorithm. Thus,
we impose a displacement by translating an image with equal values along the two directions
x1 and x2. Then the displacement computed by the algorithm Dmeas is compared to the im-
posed displacement Dimp, and the average difference

〈
Dmeas�Dimp

〉
is computed over the

300 images.

The results for different values of the imposed displacement Dimp are reported figure 2.10.
The discrepancy is found to be on average smaller than one pixel for values of Dimp smaller
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than 10 pixels. The average discrepancy then grows rapidly with the imposed displace-
ment.Since the tracking algorithm matches each particle in the first frame to its neighbor
in the second frame, an erroneous matching always leads to an underestimation of the actual
displacement. This explain the fact that the average measured displacement is always larger
than the imposed (actual) displacement.

In our measurements, the time between the two frames have been chosen to ensure a mean
displacement of 5� 7 pixels ; thus the resulting displacement measurements are weakly af-
fected by the errors on particles matching.

The second test of the tracking algorithm was performed by applying a random known dis-
placement on synthetic particle images, this test is described in details ins the Master thesis
of Jean (2011).

The test was performed for different numbers of particles in the images (densities) Np and
different maximal displacements Dmax. For each of these parameters the ratio C of the number
of correct matching to the total number of matching is computed and shown in figure 2.11.
The results of the tests shows that more than 90% of the particles are correctly matched
when the images contain less than 60 particles, even for largest maximum displacement of
15 pixels. In our experiments, the images contain 14 particles in average and the average
displacement is between 5 and 7 pixels. Thus this tracking can be used confidently in our
experiments, the matching rate is expected to be larger than 90%.
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FIGURE 2.10: Imposed displacement Dimp against its difference with the mean measured dis-
placement Dmeas
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FIGURE 2.11: The rate of correct particles matching C versus the number of particles per
image N, for different maximal displacements in pixels Dmax. Results issued
from tests on synthetic images performed by Jean (2011)

2.5 Simultaneous velocimetry

The aim of our experimental study is to measure simultaneously the velocities of the two
phases and then to compare them locally. To that purpose, the velocimetry technique for
the continuous phase (PIV) and dispersed phase (PTV) should be combined and operated
simultaneously.

Several techniques are reported in the literature for combining the two techniques. One set
of techniques is based on the separation of particle and fluid tracers images during the post-
processing of the acquired image by means of various image processing techniques (Khalitov
& Longmire 2002 ; Kiger & Pan 2000 ; Vignal 2006). Those techniques are based on the
recognition of the large particle tracers, and their elimination from the image prior to the
cross-correlation analysis of the resulting images. The main advantage of those methods is the
simplicity of the associated set-up, since only one black & white camera is needed. The main
drawbacks of such techniques are the presence of “holes” at the location of the eliminated
particle images, which make it impossible to measure the velocity of the fluid sufficiently
close to particle position.
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2.5.1 Optical discrimination

Another set of methods is based on optical discrimination : each phase emits light at a dif-
ferent wavelength (color). This is generally done using a fluorescent dye encapsulated in the
tracer particles. The fluorescent dye absorbs energy at the laser wavelength and emits light at
a longer wave-length, i e with a different color , while the dispersed phase reflect the incoming
light at the same wavelength.

To separate the two signals one may use a color camera to record the images and separation
the two phases by their color (i.e. splitting the RGB channels) in the post-processing step. An-
other method consists on using a two camera set-up where each camera is dedicated to one
phase ; the tracers dedicated camera being equipped with an appropriate cut-off filter in order
to receive only the fluorescent light emitted by the tracers. This method have been success-
fully used by Poelma (2004) to study the modification of an isotropic turbulence due to the
presence of the particles (see also Poelma, Westerweel, et al. (2005) and Poelma, Westerweel,
et al. (2007) ). We chose to use this method of phase discrimination for our experiments.

Thus, the flow was seeded with DANTEC fluorescent polymer tracers of size 20�50 µm and
the dedicated camera equipped with a cut-off filter, thus receiving only the fluorescence signal
and avoiding to catch the light reflected by the polystyrene particles (figure 2.12). As shown
by the rhodamine absorption and emission spectrum (figure 2.13), the fluorescent tracers
absorb the incoming light at a wavelength of 532 nm and re-emit it at a higher wavelength
> 550 nm.

The used filter have a cut-off wavelength of 550 nm so a large part of the fluorescent light
passes through the filter, while the light emitted by the particles is blocked, since its wave-
length is significantly below the cut-off wavelength. However, a visual inspection of the re-
sulting PIV images shows that the polystyrene particles appears on those images. This is
explained by the fact that the particle do reflect the fluorescent light emitted by the tracers.

The presence of particle images may influence the cross-correlation results of PIV images
and hence the resulting fluid tracer displacement : in order to eliminate them, we apply an
intensity threshold to the PIV images prior to the cross-correlation. The chosen threshold
have to be sufficiently large to eliminate particle images, while avoiding to eliminate too
much tracers images, and preserving sufficient gray levels in order to ensure the quality of
the cross-correlation. Based on these criteria, the chosen threshold is 6000, as shown in figure

2.14 this threshold yields a particle free PIV images.
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Figure 2.12: Simultaneous velocimetry set-up scheme. The fluorescent tracers absorb the
incoming light at the LASER source wavelength 532 nm and re-emit it at a
higher wavelength > 550 nm. The PIV dedicated camera is equipped with an
appropriate cut-off filter, thus receiving only the light emitted by the tracers.

FIGURE 2.13: Emission and absorption spectra of the rhodamine, from Poelma (2004)

50



(a)

(b)

(c)

FIGURE 2.14: (a) Portion of the original PIV image, showing the presence of particle images
in PIV images (b) corresponding PTV image (c) PIV image after thresholding
at 6000
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However, the resulting images are shown to be full of “holes” i.e. area void of tracers images,
and to contain fewer gray levels. Thus, in order to ensure the good quality of the cross-
correlation analysis, a large pattern box is needed. We chose a pattern box of size of B =

64 pixels with an overlap of 75%, this value have been shown to yield to an acceptable
values of the correlation coefficient, although some resulting velocity vectors are non-valid, as
suggested by the presence of “holes” in the velocity field (figure 2.15). This may be explained
by both the observed holes in the PIV images, and the out-of-plane motion, since the time
lag ∆t between the Laser pulses have been increased and the light sheet thickness reduced, in
comparison with the previous standard PIV measurements (see the next subsection).

Conversely, although the PTV camera catches both the images of tracers and particles. the
applied thresholding for particles detection do eliminates the tracers images, so the result-
ing binarized image and the subsequent displacement measurements are not affected by the
presence of the tracers.

2.5.2 Operation

Camera The used velocimetry set-up is similar to a standard PIV set-up, except the use of
two cameras and fluorescent tracers. The main difficulty of this set-up is to make the view
field of the two cameras strictly identical. This is achieved by using a view field splitter
(figure 2.16), which is an optical set-up constituted from an elliptical beam splitter and an
elliptical mirror ; those two optical components are placed at 45° from the cameras optical
axis so that their section seems circular. Two camera supports are associated to the view
field splitter, which are designed to enable the fine tuning of the camera position along the
three axis of translation and three axis of rotation. The relative positions of the two cameras
in the horizontal plane is set in order to yield the same optical length and hence the same
magnifications for both cameras, this is first checked by comparing the two images of the test
card issued from each camera (the same issued card used for PIV) .

Before performing any measurement we need to verify that the two cameras are focused on
exactly the same field of view. First the optical axes of both cameras are made perpendicular
to the water tank wall, then the camera are made aligned precisely to each others: the position
of the PIV camera is set and taken as a reference. Then both cameras are focused on a
“calibration image” placed at the center of the water tank which is a computed generated
synthetic tracers image (figure 2.17). Thus, the images captured by the two camera resemble
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FIGURE 2.15: (a) Example of the two phases velocity fields : fluid velocity in gray and par-
ticle velocity in black (b) and (c) Histogram of the tracers displacements (c)
Histogram of the correlation coefficient used from the PIV measurements on
fluorescent tracers.
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Figure 2.16: The field of view splitter and the two associated camera supports

to tracers image issued from a standard PIV set-up and can be cross-correlated in order to
estimate the relative misalignment field between the two cameras. The calibration consist
then on fine-tuning the position of the PTV camera in order to reduce this displacement and
hence the related misalignment with the PIV camera. The final cross-correlation result is
shown in figure2.17 the misalignment ranges from 5 to 7 pixels.

In the post-processing of PTV results, the misalignment field is used to correct the position
of the particles. The calibration process is repeated at each measurements day: the camera
position may slightly change due to different factors (e.g. temperature variation). The mis-
alignment field is shown not to changes significantly, so the same misalignment field is used
to correct particles positions for all the two phase flow realizations.

Laser In order to have a sufficiently intense fluorescent signal, the light received by the
tracers should be increased. In order to maximize the the light received by the tracers, the
power of the Laser source have been increased to 200 mJ and the thickness of the LASER
sheet reduced to about 2 mm.

One of the difficulties of the simultaneous velocimetry is the choice of the time lag ∆t between
the two frames. The two used techniques PIV and PTV require different optimal values of
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Figure 2.17: (a) The used calibration image (b) The measured measured misalignment be-
tween the cameras, the misalignment ranges from 5 to 7 pixels.
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∆t, and a compromise is hence to be found. On one hand, in order to achieve optimal PIV
measurements, the tracers displacement should be small on average ( see previous section).
On the other hand, in order to make the uncertainty on centroid position small in comparison
to the measured displacement of the particles, it should be ideally larger in average than the
particle image size, which is around 10 pixels ; such a large average displacement is not
achievable since in will lead to a significant out-of-plan loss of particles images. Finally the
time lag was set in order to achieve 5�7 pixels of average displacement for both phases.

An example of the results obtained from the simultaneous velocimetry is shown in figure

2.15. The particular advantage of this technique is remarkable: the velocity of the particles
and the nearest fluid tracers can be measured simultaneously ; that is the presence of the
particles do not yield to “holes” or false vectors in the fluid velocity field. Consequently, this
velocimetry method is suited for the differences between the velocity of each particle and the
surrounding fluid.

2.6 References

Adrian, R.J. & Westerweel, Jerry, 2010. Particle Image Velocimetry, Cambridge University
Press.

Batchelor, G.K., 1953. The Theory of Homogeneous Turbulence, Cambridge University
Press.w

Fernando, H.J.S. & De Silva, I.P.D., 1993. Note on secondary flows in oscillating-grid,
mixing-box experiments. Physics of Fluids A: Fluid Dynamics, 5, p.1849.

Fincham, A.M. & Spedding, G.R., 1997. Low cost, high resolution DPIV for measurement
of turbulent fluid flow. Experiments in Fluids, 23(6), pp.449-462.

Hart, D.P., 2000. PIV error correction. Experiments in Fluids, 29(1), pp.13-22.

Jean, A., 2011. Etude expérimentale du transport turbulent de particules de taille finie.
Institut de Mécanique des Fluides de Toulouse.

Khalitov, D.A. & Longmire, E.K., 2002. Simultaneous two-phase PIV by two-parameter
phase discrimination. Experiments in Fluids, 32(2), pp.252-268.

56



Kiger, K.T. & Pan, C., 2000. PIV technique for the simultaneous measurement of dilute
two-phase flows. Journal of Fluids Engineering, 122, p.811.

McKenna, S.P. & McGillis, W.R., 2004. Observations of flow repeatability and secondary
circulation in an oscillating grid-stirred tank. Physics of Fluids, 16, p.3499.

Mohamed, M.S. & Larue, J.C., 1990. The Decay Power Law in Grid-Generated Turbulence.
Journal of Fluid Mechanics, 219(-1), pp.195-214.

Morize, C., Moisy, F. & Rabaud, M., 2005. Decaying grid-generated turbulence in a rotating
tank. Physics of Fluids, 17(9), p.095105.

Morize, Cyprien, 2006. De la turbulence 3D en déclin à la turbulence anisotrope dominée
par la rotation. Université Denis Diderot - Paris VII.

Ouellette, N.T. et al., 2006. Small-scale anisotropy in Lagrangian turbulence. New Journal

of Physics, 8(6), pp.102-102.

Poelma, C., Westerweel, J. & Ooms, G., 2007. Particle-fluid interactions in grid-generated
turbulence. Journal of Fluid Mechanics, 589(1), pp.315–351.

Poelma, C., Westerweel, J. & Ooms, G., 2005. Turbulence statistics from optical whole-field
measurements in particle-laden turbulence. Experiments in Fluids, 40(3), pp.347-363.

Poelma, Christian, 2004. Experiments in particle-laden turbulence. Delft University of Tech-
nology.

Risso, F. & Fabre, J., 1997. Diffusive Turbulence in a Confined Jet Experiment. Journal of

Fluid Mechanics, 337(-1), pp.233-261.

Raffel, M., Willert, C.E. & Kompenhans, J., 1998. Particle image velocimetry: a practical

guide, Springer.

Staplehurst, P.J., Davidson, P.A. & Dalziel, S.B., 2008. Structure Formation in Homogeneous
Freely Decaying Rotating Turbulence. Journal of Fluid Mechanics, 598(-1), pp.81-105.

Shy, S.S., Tang, C.Y. & Fann, S.Y., 1997. A nearly isotropic turbulence generated by a pair
of vibrating grids. Experimental Thermal and Fluid Science, 14(3), pp.251-262.

57



Stalp, S.R., Skrbek, L. & Donnelly, R.J., 1999. Decay of Grid Turbulence in a Finite Channel.
Physical Review Letters, 82(24), pp.4831-4834.

Stewart, R.W. & Townsend, A.A., 1951. Similarity and Self-Preservation in Isotropic Turbu-
lence. Philosophical Transactions of the Royal Society of London. Series A, Mathematical

and Physical Sciences, 243(867), pp.359 -386.

Takehara, K. & Etoh, T., 1998. A study on particle identification in PTV particle mask
correlation method. Journal of Visualization, 1(3).

Townsend, A.A. & Taylor, G., 1948. Experimental Evidence for the Theory of Local Isotropy.
Mathematical Proceedings of the Cambridge Philosophical Society, 44(04), pp.560-565.

Utami, T. & Ueno, T., 1987. Experimental Study on the Coherent Structure of Turbulent
Open-Channel Flow Using Visualization and Picture Processing. Journal of Fluid Mechan-

ics, 174(-1), pp.399-440.

Vignal, L., 2006. Chute d'un nuage de particules dans une turbulence diffusive. Etude des

couplages entre phases par diagnostics optiques. Thesis Institut National Polytechnique de
Toulouse

Volk, R. et al., 2011. Dynamics of Inertial Particles in a Turbulent Von Kármán Flow. Journal

of Fluid Mechanics, 668, pp.223-235.

Yang, T.S. & Shy, S.S., 2003. The settling velocity of heavy particles in an aqueous near-
isotropic turbulence. Physics of Fluids, 15(4), pp.868-880.

58



3 Fluid turbulence

3.1 Overview

In this chapter the turbulent flow is characterized in the absence of the particles using the
standard PIV technique. The aim is first to investigate the degree of homogeneity and isotropy
of the turbulence and to appreciate the intensity of the mean motion.

Then the focus is made on the small scale dynamics of the generated turbulence. This is
of primarily interest with regard to the study of the motion of the particles, since the local
two phases velocity differences are mainly related to the dynamics of scales of the order or
larger than the particle diameter. First the velocity gradients statistics, used for the estimation
of the viscous dissipation, are presented ; then the velocity differences statistics for larger
separations are computed. In both cases we asses the local isotropy of the generated flow.
The flow resulting Reynolds number based on the Taylor scale λ was Reλ = 180 at the stage
of the decay t.U/M = 66.6, the generated flow is then fully turbulent at the beginning of the
decay.

3.2 Large scale dynamics

In this section we are interested in the dynamics of the largest, energy containing scales of
the generated turbulence. As shown by several authors (McKenna & McGillis 2004; Morize
2006), the confinement of the flow may generate a “secondary” mean flow; this mean flow
will be first characterized through its spatial structure and its its strength in comparison with
the turbulent motion.
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Then the focus is made on the turbulent motion. First the isotropy and homogeneity of the
turbulent motion are quantified and compared to the values found in the literature for the case
of wind tunnel static grid generated turbulence without upstream contraction.

Finally the decay dynamics of the flow are investigated: we compute the decay exponent of
the turbulence kinetic energy, and compare the measured temporal decay rate to an estima-
tion of the viscous dissipation rate computed from the available turbulent velocity gradients.
This comparison is made in order to evaluate the influence of the mean motion on the decay
dynamics.

Since the flow is a priori not homogeneous, we shall make a difference between the average
taken over the space and over the realizations. To that purpose we define the averaging opera-
tor over the realizations h...iL, and the spatial averaging operator over the whole measurement
field h...iS. The total averaging operator is defined as the combination of the two operators
and is written as h...iT = hh...iLiS. The local mean velocity components at each position
(x1,x2) are Um,i(x1,x2) = hui(x1,x2)iL where ui is the velocity component along the direc-
tions i = 1,2. The turbulent velocity field is defined as ut,i(x1,x2) = ui(x1,x2)�Um,i(x1,x2)

and the turbulent velocity r.m.s field is u,i(x1,x2) =
〈
u2

t,i
〉1/2

L . These averaging operators are
used in the following.

Mean motion First we verify the spatial configuration and intensity of the mean flow. In
figure 3.1 a snapshot of the mean velocity field ~Um is presented. The main observation con-
cerns the particular spatial configuration of the mean flow : the velocity field shows vertical
“streak-like” structures with alternating directions, the shape of which may recall the wake of
the grid’s rods. However the periodicity of the Streak-like structures are different from that
of the grids rods, so these streaks are not linked to the grid’s rod wake. The spatial structure
of the mean flow seems also to change with the decay: the central streaks disappears while
the two lateral streaks seems not to change in an important way.

At this point, no clear explanation to the observed spatial configuration of the mean flow is
advanced. In addition, this observation is in contradiction with the observations of the mean
flow in similar apparatus were the mean motion is in form of large vortical structure (Morize
2006).

One of the objectives of the construction of the turbulence generator is to generate a turbulent
flow with the weakest mean flow possible. We need to show that the turbulent mean motion is
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Figure 3.1: a) Mean velocity field at t.U/M = 84.4, the number of vectors have been reduced
for clarity. Vertical “streak-like” structures are visible, with alternating up and
down directions. b) Turbulent kinetic energy map at t.U/M = 84.4.
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weak in comparison to the turbulent flow. i.e. the confinement do not generates an important
mean flow, and the energy injected in the flow through the motion of the grid is mainly
converted into turbulent motion.

The intensity of the turbulent motion compared to the mean motion is quantified through the
ratio of the spatial averages of the turbulent kinetic energy to the kinetic energy of the mean
motion ec,t/Ec,m where ec,t =

1
2

〈
2u,21 +u,22

〉
S and Ec,m = 1

2

〈
2U2

m,1+U2
m,2
〉
. This ratio is shown

in figure3.2 at different stages of the decay. From these figures, we conclude that the turbulent
motion is always stronger than the mean motion (in the contrary of the what is the case for
other turbulence generating setups, such as wind tunnel ).

Isotropy and homogeneity Then, we verify both the homogeneity and isotropy of the
turbulent motion. One of the consequences of the statistical isotropy of the turbulent flow is
the condition of probability conservation under rotation which implies that the statistical mo-
ments of any order of the three velocity component are equal. For the second order statistics
this yield : 〈

u2
t,1
〉

L =
〈
u2

t,2
〉

L =
〈
u2

t,3
〉

L

The first consequence of the conservation under rotation have been verified at different times
of the decay by computing the spatial average I =

〈
u,2/u,1

〉
S of the ratio of the two velocity

components r.m.s. The ratio I remains in the range [1.1,1.2] , which compares well with the
values reported for static grid turbulence in a wind tunnel without contraction (Comte-Bellot
& Corrsin 1966).

The turbulence generated in a static grid wind tunnel have been generally considered as ho-
mogeneous in two directions, and the main experimental results concerning isotropic turbu-
lence have been obtained using such apparatus (Comte-Bellot & Corrsin 1966). However
wall effects reduce the domain of lateral homogeneity, and different studies (Grant & Nisbet
1957; Ertunç et al. 2010) have shown important departure from homogeneity for different
velocity statistics. In the case of cylindrical rod grid, Grant & Nisbet (1957) have measured
the inhomogeneity of the mean velocity and the r.m.s of the fluctuating velocity in a plane
normal to the mean flow situated at 80 mesh-sizes downstream the grid. The spatial disper-
sion compared to the mean of the fluctuating velocity r.m.s in the direction of the mean flow
is found to have a maximum of 30%. However, no sensible spatial dispersion of the mean
velocity in the stream wise direction have been found by the authors. The inhomogeneity
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of the mean velocity stream wise have been measured by Ertunç et al. (2010) in a similar
apparatus, and found of a maximal value of 2%.

In our case, in order to quantify turbulence’s homogeneity, the mean spatial dispersion of
the turbulent velocity r.m.s about the mean for the two measured components is obtained by

using the quantity Hi = 100
〈(

u,i�
〈
u,i
〉

S

)2
〉1/2

S
/
〈
u,i
〉

S. Until t.U/M = 150, spatial dispersion
is found smaller than 11%. The inhomogeneity is often greater for the r.m.s velocity in the
direction of the grid motion, suggesting that the initial large scale inhomogeneity induced
by the grid motion persists throughout the decay. This inhomogeneity may also originate
from a non-negligible mean motion which occurs due to the confinement by the wall of the
tank (McKenna & McGillis 2004). In figure 3.1 we represents the spatial distribution of the
turbulent kinetic energy of the flow at time t.U/M = 84.4.

Decay dynamics Now we turn attention to the temporal decay dynamics of the generated
turbulence. For a homogeneous isotropic turbulence, the turbulent kinetic energy decay in
time following a power law ec,t � t�n where the value of the exponent is often found to be
close to n = 1. The decay of the component energies is shown in figure 3.2, the measured
decay exponent is found to be closer to n = 1.1, which is comparable with values reported in
the literature for wind tunnel grid turbulence (Mohamed & Larue 1990).

The time decay of the turbulent kinetic energy at a given point is due to different mecha-
nisms: convection by the mean motion, production by the mean shear, transport by turbulent
fluctuations, viscous diffusion and viscous dissipation. Thus the production convection or
diffusion of turbulent kinetic energy is due to mean motion or spatial homogeneity of the
flow velocity field. In a homogeneous turbulence, the time variation of the turbulent ki-
netic energy is solely due to viscous dissipation which is related to the smaller scales of
the turbulence spectra. Under the local isotropy hypothesis the viscous dissipation rate in
our experiments may be computed from the available components of the velocity gradients
ε = 3ν

(〈
s2

11
〉

L +
〈
s2

22
〉

L

)
+12ν

〈
s2

12
〉

L with si j =
1
2

(
∂ut,i
∂x j

+
∂ut, j
∂xi

)
being the local shear stress

(Tanaka & Eaton 2007; Adrian & Westerweel 2010). However as it will be shown in the next
section, the velocity gradients are not fully resolved due to the limited spatial resolution of
our measurements. The computed values of velocity gradients statics are to be considered as
rough estimations.

The resulting spatial average of the computed local viscous dissipation rate εS = hεiS is com-
pared to the decay rate of the mean turbulent kinetic energy εT =� d

dt hetiS (figure 3.3). These
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two terms are equal in freely decaying isotropic turbulence. In our case however a significant
discrepancy between the two dissipation rates is observed with εT being 50% larger than εS

at t.U/M = 60. This non negligible discrepancy then decays until the two terms became
equal at t.U/M = 110. This discrepancy may be explained by the underestimation of the the
velocity gradients due to the limited spatial resolution of the PIV measurements, thus leading
to an underestimation of the viscous dissipation rate εS. However, it is not clear why this dis-
crepancy reduces with time. Another possible explanation is the effect of the TKE production
terms which are not included in εS.

Length and time scales The computed values of the dissipation rates are used to esti-
mate the length and time scale pertaining to the dynamics of the small scales, namely the
Kolmogorov and Taylor scales ηk = (ν3/εS)

1/4 and τk = (ν/εS)
1/2. We choose to use our

estimation of the viscous dissipation rate εS to compute these scales because this quantity is
exclusively linked to the small scale dynamics, In this case, no production of TKE by the
mean flow.whereas the temporal decay rate εT includes the contribution of the large scales.
The discrepancy affects the estimation of the Kolmogorov scale, due to it’s dependence on
∼ ε

�1/4
S . Hence an underestimation on εS of say 50% will lead to an overestimation of the

Kolmogorov length scale of only 20%.

The integral length scale gives a spatial scale of the largest eddies. In our experiments, it
is defined as integration of the longitudinal spatial correlation coefficient over the measured
spatial separations smaller than the visualization field span Dmax. Example of the computed

longitudinal fi(r) =

〈
ut,i(~x).ut,i(~x+r.~ei)

〉
T〈

u2
t,i

〉
T

and transverse gi(r) =

〈
ut,i(~x).ut,i(~x+r.~e j)

〉
T〈

u2
t,i

〉
T

correlation

coefficients, for each velocity component i are shown in figure 3.4 . The resulting integral
scales L fi =

´ Dmax
0 fi(r)dr are depicted in figure 3.5. The integral scales are shown to be close

to the grid mesh size and to vary very slowly with the decay.

Finally the Taylor length scales of the flow have been computed from both the velocity com-
ponents gradients λi =

√
2
〈
u2

t,i
〉
/
〈
(∂ut,i/∂xi)2

〉
and the spatial average of viscous dissipation

rate λε =
√

30νhu2
t,1i/εS (figure3.6). The resulting values are found to be close (around 1cm)

and slowly varying with the decay.
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Figure 3.4: longitudinal fi an transverse gi correlation coefficients, for each velocity compo-
nent i at t.U/M = 84.4.
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2i, and the Taylor scale deduced from the viscous

dissipation λε =
√

30νhu2
t,1i/εS .

3.3 Small scales dynamics

3.3.1 Velocity gradients statistics

Computation of velocity gradients First we describe briefly the method used to es-
timate the velocity gradients from the measured PIV velocity fields. Primarily it is worth
recalling the bias pertaining to the computation of those gradients: first the noise associated
to velocity measurements, which is amplified when computing associated spatial derivatives.
Second the spatial resolution of the measurements which sets the accuracy of velocity gradi-
ents computations. And finally the oversampling of PIV interrogation, i.e. the 50% interro-
gation windows overlapping in our case.

The gradient is computed as the ratio of velocity difference to the spacing between two close
points of the measurement grid : δu/δx with δx sufficiently small, thus the noise related to
the velocity gradients εδu is increased in comparison with the noise related to the velocity
measurements εu since εδu � εu/δx. Additionally, the minimum spacing δx is determined by
the size of the interrogation window B which sets the spatial resolution of our measurements:
a poor spatial resolution may lead to an underestimation of the velocity gradients.
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To estimate the velocity gradients from our measurements, we compute the differences of ve-
locity issued from close but non overlapping interrogation windows. This insures the fact that
the two velocity measurements are weakly correlated, i.e. are not issued from measurements
that share the same tracers (Raffel et al. 1998):

∂ut,i

∂x1
(x1,x2) =

ut,i (x1 +δx,x2)�ut,i (x1�δx,x2)

δx
, where δx = B/2

What we actually compute is proportional to velocity differences with the second smallest
possible separation permitted by the spatial resolution of our measurements. However, in the
following we will show that this estimation, albeit its roughness, leads to results in relatively
good agreement with other results issued from more accurate experimental and numerical
studies and theoretical predictions, which will lead us to assume that our computations are
good estimation of actual velocity gradients. We will then use those values to estimate other
differential quantities pertaining to the turbulent flow, chiefly the viscous dissipation rate.

In figure 3.7, the longitudinal and transverse velocity gradients PDF are shown at t.U/M =

84.4; the values of the PDF are issued from all the turbulent velocities measured at this stage
of the decay from 500 independent realizations, so the number of velocity measurements used
for each PDF is 7.3106. The measurements can not obviously all be considered as statistically
independent, since the velocities in a turbulent field remain strongly correlated at separations
of the order of the integral length scale.

Local isotropy First we check the local isotropy of the generated turbulence: the first
Kolmogorov hypothesis states that for sufficiently large Reynolds numbers, the local isotropy
related condition of invariance under rotation of the two points joint velocity statistics at
small separations induce that the longitudinal (or transverse) velocity gradients issued from
the two velocity components should have similar PDFs 1. As shown in figure3.7 ∂ut,1/∂x1

and ∂ut,2/∂x2 collapse on the top of each other, so are the PDF of ∂ut,1/∂x2 and ∂ut,2/∂x1.
Since for example ∂ut,1/∂x1 and ∂ut,2/∂x2 can be deduced from each other by a rotation of
90°, this illustrate the high degree of isotropy of the small scales (local isotropy) achieved in
our experiment, despite the observed large scale anisotropy and inhomogeneity.

1. The fluid velocity gradients PDFs have been compared to the turbulent velocity gradients PDF and have
been shown to collapse at the top of each others. Thus one expect the total and turbulent velocity gradients sta-
tistical moments to be close. Besides, this may also confirm the local homogeneity of the generated turbulence.
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Figure 3.7: Turbulent velocity gradients PDFs at time t.U/M = 84.4, the continuous line
represents a Gaussian distribution.

On the other hand, the transverse and longitudinal gradients PDFs are not similar, seemingly
due to a larger dispersion around the mean of the values of the transverse gradients; this
stem from the relationship between longitudinal and transversal structure functions, under
the conditions of local isotropy and non-compressibility of the fluid, which stats that trans-
verse structure function is always larger than longitudinal one for the small to intermediate
scales comprised in the inertial sub-range. More precisely, for separations comprised in the
dissipative range, the predicted ratio is 2, while for the inertial sub-range, the ratio is 4/3. In
our measurements, however the separation between velocity vectors used for gradient compu-
tations is roughly 10 times larger than the Kolmogorov length scale, and thus the theoretical
ratio of 2 is not exactly matched by our velocity gradients estimations. This is shown in fig-

ure 3.9, were the ratios 2h(∂ut,i/∂xi)
2i/h

(
∂ut,i/∂x j

)2i, expected to be equal to 1 have been
computed through the decay. In this figure, it is also shown that the value of the ratio varies
relatively slowly with the decay (from 1.4 to 1.3 in 200.M/U).

Intermittency The normalization of gradients values by their respective standard devia-
tion σ

(
∂ut,i/∂x j

)
leads to the superposition of their respective PDFs, as shown in figure 3.8,

except for the right tails: the normalized gradients PDF seems to be slightly more skewed
towards negative values, whereas the transverse velocity gradient PDF shows a remarkable
symmetry (Sreenivasan & Antonia 1997 ; Yaglom & Monin 1975). The normalized and non-
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normalized PDFs have been both compared to a normal distribution with the same means
and variances, and large deviations in the tails are observed in comparison to the normal
distribution: the turbulent velocity gradient PDFs seems to have a higher “peakiness”.

The departure from Gaussianity is a signature of turbulence intermittency: the form of the
velocity gradients PDFs suggest that the probability for nearly zero and very large values
are higher than predicted by a normal distribution, while the probability of moderate values
is smaller. Such distributions are encountered in “bursting” signals, where long periods of
nearly zero values alternate with short periods of high values of the signal. The observed
intermittency thus translates the fact that velocity derivatives related quantities, such as vis-
cous dissipation rate and vorticity, are highly localized in space: for example one expect that,
although the flow kinetic energy may be distributed rather uniformly, i.e. with moderate de-
viations from the spatial average, its dissipation rate is conversely mainly concentrated on
some regions of the flow, were most of the dissipation occurs. This induces a contradic-
tion with the K41 theory, as pointed out first by Landau & Lifshitz (1987). Refinement of
the K41 theory have been performed, based on the assumption that the dissipation is log-
normally distributed, hence mean square velocity gradients are also log-normally distributed
(Kolmogorov 1962).

In order to quantify the degree of intermittency of the velocity gradients throughout the decay
we need to quantify the degree of departure from a Gaussian distribution. Thus we compute
the skewness of the distribution and its flatness, at different stages of the decay. In a freely
decaying, homogeneous and isotropic turbulence , the velocity gradient skewness is related
to the production term of enstrophy by the strain field. The enstrophy is produced by the
strain field and dissipated by viscous effects, and for the term related to the strain field to
be positive, the velocity gradients skewness should be negative (Yaglom & Monin 1975 ;
Davidson 2004 ; Townsend 1980).

As shown in figure 3.10 the skewness of longitudinal velocity gradients is negative as ex-
pected, and has a value of around �0.15, while the skewness of the transverse velocity gra-
dients is roughly ten times smaller. The skewness seems not to vary significantly with the
decay, but rather oscillates around a value for each case, with no clear tendency. The veloc-
ity gradients skewness is lower than previously reported values in the case of wind tunnel
grid turbulence, which is �0.4 (Wyngaard 1970); these data have been issued from different
measurements in laboratory and natural flow, performed with a sufficient resolution to accu-
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rately estimate velocity derivatives 2. In contrast our values involve only spatial increments
of the filtered fluid velocity field, due to the limited resolution of our measurements. This
may explain the observed discrepancy with literature’s results.

The velocity gradients flatness seems to decay slightly from 5.5 to 4.5 as shown in figure 3.11;
this may be due to the fact that the Reynolds number or the turbulence strength decreases with
the decay, leading to a lesser intermittency of the turbulent flow. Indeed as the TKE decay,
the Reynolds number based on the mesh grid decreases from 1350 to 900. Nevertheless, the
values of the velocity gradient flatness are in better agreement with the literature (Van Atta &
Antonia 1980).

Exponential tails Finally, it is worth noticing that the tails of the PDF seems to stretch
along straight lines in semi-log plot, showing that they may be approximated by an exponen-
tial distribution, whereas the PDF core is more likely to be approximated by a Gaussian, in
agreement with some previous studies (Kida & Murakami 1989; Tabeling et al. 1996; Shafi
et al. 1997). For sufficiently large values of normalized velocity gradients, the PDF fits the

function: P
(
ξi j
)
� exp

(
�βi jξi j

)
, where ξi j = (∂ut,i/∂x j)/

√
h
(
∂ut,i/∂x j

)2i are normalized
velocity gradients and β

�
i j are related exponential PDF decay rate. As shown in figure 3.12

and figure 3.13, this function seems to fit well the tails of both longitudinal and transverse
gradients PDFs. We shall stress the difference between the decay rate of the right tails β

+
i j

and the left tails β
�
i j .

For all the considered stages of the decay, the two decays rates are found to differ for longi-
tudinal velocity gradients, this fact translate the previously observed skewness of the related
PDF. On the other hand, the two decay rates remain close for transversal gradients, as ex-
pected from the observed symmetry of the corresponding PDF. The values of decay rates
are almost constant over the decay and are found to be close to 2 in absolute value, which
in good agreement with results of Kida & Murakami (1989) for instance. It can be easily
demonstrated that the exponential shape of the PDF at large values leads to the fact that of
moments of successive order increases linearly with the order, as shown by Kida & Murakami
(1989) and Frenkiel & Klebanoff (1971) .

2. Some authors (Wyngaard) have inferred velocity spatial derivatives from the temporal ones, using the
frozen turbulence hypothesis, the used hot wire anemometer cut off frequencies were of the order of the Kol-
mogorov time scales. Others (Shafi) have used spatially close HWA to measure directly spatial derivatives.
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Figure 3.8: Normalized turbulent velocity gradients P.D.F at time t.U/M = 84.4; comparison
with a normal distribution of mean 0 and standard deviation 1 (continuous line).
Large deviations of the PDFs tails for the Gaussian distribution are noticed, which
is a signature of turbulence intermittency.
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Figure 3.9: Ratios of longitudinal to transverse velocity gradients at different stages of the
decay : (*) 2h(∂ut,1/∂x1)

2i/h(∂ut,1/∂x2)
2i, (+) 2h(∂ut,2/∂x2)

2i/h(∂ut,2/∂x1)
2i.

The mass conservation and local isotropy imposes a value of 1 for the two ratios,
but the computed values as significantly higher.
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Figure 3.10: Evolution of the velocity gradients skewness h
(
∂ut,i/∂x j

)3i/h
(
∂ut,i/∂x j

)2i3/2

with the decay. The two longitudinal velocity gradients have negative skewness.
for legend see figure3.8.

Figure 3.11: Velocity gradients flatness throughout the decay. No clear tendency is noticed.
The values are all larger than 3, the flatness of a normal distribution, hence
confirming the observed intermittency.. For legend see figure3.8.
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Figure 3.12: Longitudinal velocity gradients exponential tails at t.U/M=84.4; each tail of the
PDF is compared to an exponential distribution P(x) = exp(�βx), where β is
the exponential decay rate. The right tail exponent decay rate is larger than
the left tail decay rate, translating the previously noticed skewness of the PDF
toward negative values.

Figure 3.13: Transverse velocity gradients exponential tails at t.U/M = 84.4 ; The two com-
puted tails exponential decay rates are similar, as expected from the observed
symmetry of the PDF.
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3.3.2 Velocity di�erences statistics

The previous subsection was devoted to the estimation of the turbulent flow velocity gradients
which are related to the dynamics of the smallest eddies of the turbulence, responsible for
most of the dissipation. In this section we are interested in the distribution of turbulent kinetic
energy across the whole spectrum of eddy sizes and the inter-scales energy flux. Additionally
we will verify the degrees of independence between large and small scale motion, by both
checking the flow isotropy at scales included in the universal equilibrium range, and assessing
the extend of the inertial sub-range.

The distribution of the energy across eddies and energy exchange between different eddies
is often characterized by the energy spectra. This may be otherwise achieved in the real
space, by considering the velocity structure functions. The statistics of velocity differences
at a separation r may be used to characterize the dynamics of eddies of size r since the mean
kinetic energy at scales r or less is of the order of the second order longitudinal structure
function DL,i (r) = h(ut,i (~x+ r.~xi)�ut,i (~x)) ²i (the transverse structure function is DN,i (r) =

h
(
ut,i
(
~x+ r.~x j

)
�ut,i (~x)

)
²i), but is dominated by the contribution from eddies of larger size

r.

The intermediate eddies of the energy cascade are responsible of transferring the energy from
the large energy containing eddies to the small dissipative eddies. Their dynamics may be
characterized using statistical moments of the velocity differences at a given separation r

included in the inertial sub-range. From similarity hypothesis, and considering the spatial
average of dissipation over the whole fluid flow, Kolmogorov derived a simple power-law
relationships for structure functions for separations r comprised in the inertial sub range;
the structure function is expected to behave theoretically as: DL,i(r) �C(εr)2/3 , DN,i(r) �
C0(εr)2/3. Where the constants C � 2 and C0 = (4/3)C are universal, i.e. independent from
the nature and the turbulent flow and its Reynolds number.

Now let’s consider a scale of velocity ur for separation r, the characteristic time of the
decay of eddies of size r is then r/ur thus the decay rate of energy for this eddy size is
u2

r/(r/ur) = u3
r/r . Since the dissipation rate is the same for all eddies included in the quasi-

equilibrium range and equal to the viscous dissipation rate u3
r/r�ε , one then may assume

u3
r � h(ut,i (~x+ r.~xi)�ut,i (~x))

3i so h(ut,i (~x+ r.~xi)�ut,i (~x))
3i � εr which leads to the con-
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stancy of the velocity differences skewness:

Si (r) = h(ut,i (~x+ r.~xi)�ut,i (~x))
3i/h(ut,i (~x+ r.~xi)�ut,i (~x))

2i3/2 = cte

Thus the equilibrium hypothesis leads to the conclusion of independence of the velocity dif-
ference skewness is independent from the separation across the inertial sub range, and from
similarity hypothesis it can be shown that S1 (r) =�(4/5)C�3/2 � 0.3 3.

The large scales anisotropy and inhomogeneity have been shown to influence sensibly the
small scales, even for high Reynolds number flows, where a large scale separation occurs
(Ouellette et al. 2006). This obviously is in disagreement with the K41 theory hypothesis
which states the independence of small and large scale motion when Reynolds number tend
to infinity. In our case, since the Reynolds number of our flow is moderate, the independence
between large and small scale motion is less expected than in the above cited study, we predict
a limited extension of the inertial range (although as it will be recalled further, a precise
criteria for quantifying this extend is hard to set in our case) and a relative local anisotropy
due to the expected interaction of small and large scales.

In the previous section, the small scale isotropy has been assessed by the estimation of the
“velocity gradients”, in the following we check the local isotropy for larger separations. If
the turbulence is locally isotropic the two components longitudinal (or transverse) structure
functions should be equal DL,1 = DL,2 , DN,1 = DN,2 ; thus a comparison at the time t.U/M =

84.4 of the decay is made for longitudinal structure function and transverse structure function
in figure 3.14. At this time, the flow Reynolds number based on the Taylor scale is estimated
at 250. The two components longitudinal structure functions are equal up to separations of
the order of the mesh grid (equivalent to the integral length), for this range, the value of the
ratio between the two lies between 1 and 1.05, confirming the local isotropy assumption for
those scales of the turbulence. On the other hand, for transverse structure function however,
the values for the two components begin to diverge earlier. The observed isotropy of the
small-scales persists until t.U/M = 146.6, then anisotropy began to appear in form of a larger
discrepancy between the two longitudinal structure functions. This anisotropy is thought to be
due to the lesser strength of the turbulence motion in comparison with the highly anisotropic
mean motion at those decay stages.

The transverse structure function shows hence a reduced range of scales where the small

3. The exposed reasoning is used by Davidson (2004) and is rather simplistic. For rigorous exposition and
demonstration of the above scaling see Yaglom & Monin (1975) and Davidson (2004).
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scales isotropy is verified, in comparison with the longitudinal structure function. This have
been observed by Arad et al. (1998) in the case of atmospheric boundary layer turbulence
where the effect of large scale flow anisotropy is shown to be weak on the longitudinal struc-
ture function while significant on the transverse structure function. As proved earlier, the
turbulent motion in our case shows also a certain anisotropy, thus this large scale anisotropy
is then expected to induce the observed small scale anisotropy.

For a similar flow configuration, Sreenivasan & Dhruva (1998) and Dhruva et al. (1997)
suggests that the mean shear may be the cause of the observed local anisotropy. Similar con-
clusions have been drawn from DNS made by Pumir & Shraiman (1995) were a violation
of the small-scales isotropy has been observed for a homogeneous shear flow. In our case
however, the mean shear although it exists, as it can be shown from the inspection of a mean
velocity field, is expected to be weak and thus it influence on the small scales is not expected
to be significant. The mean shear relates more generally to the flow inhomogeneity, and its
effect on small-scales has been recently investigated by Blum et al. (2010) in a flow configu-
ration close to ours, where the turbulence is generated by an oscillating grid in a water tank.
The turbulence is shown to be highly inhomogeneous near the grid and more homogeneous
at the center of the tank. The structure function was conditioned by the local large scale flow,
and has been shown to depend sensibly on the value of the large scale velocity.

In conclusion, we believe that the flow inhomogeneity and thus the related mean flow anisotropy
is chiefly responsible for the observed anisotropy of the small scales for transverse structure
function, due to the fact that the mean flow gradient is mainly in the transverse direction
∂Um,2/∂x1. For higher separations, the two component’s structure function differs notice-
ably, translating the expected large scales anisotropy. We also notice that the second compo-
nent structure function is always larger than the first, and this may be explained by the fact
that the energy is also always larger for the former component.

The range of scale at which the local isotropy seems to be verified may define both the inertial
and dissipative sub-ranges of the present turbulent flow. The value of the structures functions
with separations belonging to the inertial range are expected to follow the two-third law.
Since there is no systematic method at our disposal to set the limits of this range, we rather
check which “portion” of the structure function fits well the two-thirds law as displayed
in figure3.14, this portion extend to less than a decade, with the noticeable exception of
the transverse structure function along the second velocity component, which do not seems
to follow the two-thirds law for any ranges of separations. Thus we conclude that of this
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stage of the decay, the inertial range extend from r � λ ! 4λ . For this range we check the
relation DN,1/DL,1 = 4/3 , which is a consequence of the similarity hypotheses and mass
conservation, and the computed ratio lies between 1.2 and 1.36.

Do the conclusions made for this particular stage hold for other stages at the beginning of the
decay? To answer this question we compare the normalized form of the structure function
C1 = D(r)(εr)�2/3 at three stages of the decay in figure 3.15 . One first observes that for
any stage the value of the Kolmogorov coefficient seems not to be constant but rather varies
noticeably with the decay, in contradiction with the expected universality of this coefficient.
The value for the beginning of the decay seems to be closer to the theoretical value of 2, which
may also suggests that the small scales dynamics may not show a good similarity throughout
the decay. Besides, The size of the inertial sub range, defined by the separations comprised
in the function plateau, seems not to change significantly from different stages of the decay,
although we expect that the size of the inertial range to decrease, since the Reynolds number
is decreasing.

Finally we turn attention to the skewness of the velocity differences for the whole range of
separations. As noted previously in the introduction, the skewness is expected to be constant
in the inertial sub range since the dissipation rate is the same for every eddy size. As depicted
in figure 3.16 for three different stages of the decay 0.3.

3.4 Conclusions

In this chapter, the generated turbulence have been characterized using a standard PIV tech-
nique. The most important feature of our experimental set-up is to generate an homogeneous
and isotropic turbulence with weak mean flow. Those features, pertaining mainly to the large
scale motion, have been thus investigated first. The departure of the turbulent velocity field
from the isotropy and homogeneity have been found to be small, suggesting that the used
turbulence apparatus is well suited for the study of isotropic turbulence.

However, a non negligible mean motion have been observed and found to be highly anisotropic
and inhomogeneous, but weaker than the turbulent motion. This mean motion is structured
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(a)

(b)

Figure 3.14: a) Longitudinal second order structure function DL,i(r) =
〈(
~ut,i(~x)�~ut,i(~x +

r.~xi)
)2〉 at t.U/M = 84.4. The separation is normalized by the Taylor scale

λ (computed from εs). The two structure functions values are close up to sep-
arations of the order of r � 4λ , suggesting the local isotropy for this range of
separations. Besides, DL,i are shown to fit the two-thirds law for the range of
separations r � λ ! 4λ , which may then define the inertial sub-range. Inset:
the “compensated” structure functions. b) Transversal second order structure
function DN,i(r) =

〈(
~ut,i(~x)�~ut,i(~x+ r.~x j)

)2〉 at time t.U/M = 84.4. The val-
ues of the two structure functions differs earlier than for longitudinal functions.79



Figure 3.15: Comparison of the Kolmogorov coefficient C1 = D(r)(εr)�2/3 at different
stages of the decay.

Figure 3.16: The first velocity component longitudinal velocity differences skewness at three
different stages of the decay. For every stage, the skewness is fairly constant for
separations from 0.3λ to 2λ . Noticeable is the fact that for the smallest mea-
sured separation is sensibly outside the inertial range, since the corresponding
absolute value of the skewness is smaller than 0.3.
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into vertical “streak like” structures which may be related to the moving grid wake; inter-
estingly, the “vortex like” structure of the mean flow reported in previous studies have not
been observed in our experiments. The mean flow is shown to be however weaker than the
turbulent motion.

Then the focus was made on the small scales dynamics of the generated turbulent flow, which
are of primary importance with regard to the local difference between particles and surround-
ing fluid, since this difference is thought to be mainly governed by these small scales. Due to
the limited spatial resolution of our measurements, the whole range of the dissipative scales
cannot be resolved, and so are the velocity gradients and related statistics such as the viscous
dissipation rate; the computed values of theses quantities are only rough estimations. Con-
versely, the spatial resolution of our measurements is sufficient to resolve the dynamics of
eddies belonging to the inertial sub-range.

The small scales dynamics are investigated through both the computation of velocity gradi-
ents and velocity differences for a range of separations. First, the velocity gradients statis-
tics are investigated in order to illustrate important notions pertaining to turbulence theory,
namely the intermittency and the local isotropy.

The velocity differences statistics gives a more precise account for the small and intermediate
scales dynamics: our results confirm the local isotropy of the flow for the smallest measured
scales; although a slight anisotropy is observed for the inertial scales, which is thought to be
related to the anisotropy of the mean motion. More importantly, a clear inertial sub-range of
separations, following the classical Kolmogorov two thirds law, is observed.
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4 Particle Dynamics

4.1 Overview

The present chapter is dedicated to the characterization of the dynamics of the neutrally
buoyant particles suspended in the generated turbulent flow. With the velocimetry set-up
previously described, we were able to measure simultaneously the velocity of each particle
and the surrounding fluid, and thus to compare the velocity of the two phases locally and
globally.

We first compare the particles size and viscous relaxation time to the Kolmogorov length and
time scales respectively, for different stages of the decay. As shown in figure 4.1, the parti-
cles have a diameter 4 times larger than the Kolmogorov length scale, and a viscous Stokes
number larger than 1. We recall that these ratios are to be taken as an estimation since the
Kolmogorov scales used here are computed using the estimated values of the viscous dissi-
pation rate

〈
εS
〉
. However, the important conclusion of this comparison is that the particles

are significantly larger than the Kolmogorov scale and have a relaxation time close to the
Kolmogorov time scale.

Thus both inertia and finite size effects are expected to influence particles dynamics, and the
particles cannot be considered as tracers. The study presented in this chapter is aimed to
reveal any effect of particles finite size and inertia on their dynamics.

To that purpose, the results issued from the simultaneous velocity measurements of the avail-
able 610 independent two phase flow realizations are exposed. as the statical convergence test
shows in figure 4.2, the number of detected particles in all the realizations seems sufficient to
yield converged second order statistics.

This chapter is organized as follows: first the modification of the turbulent flow by the par-
ticles is studied through the comparison of velocity statistics and the decay dynamics to the
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Figure 4.1: Comparison between particle scales and turbulence scales
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Figure 4.2: Particle velocity convergence tests. The particle velocity variance varies only
slightly when the number of involved particles is larger than 1000.

unladen flow dynamics. The comparison will be shown not to be straightforward, due to the
modification of the experimental conditions. Next, the velocity statistics of the two phases
are compared to each other, in order to reveal any global differences between the two phases
dynamics. A slight discrepancy between the mean kinetic energies of the two phases is ob-
served, to which several explanation are suggested. Finally, the local velocity differences
between each particle and the surrounding fluid are quantified. This difference is shown to
be statistically significant, and several possible explanations are discussed.
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4.2 Turbulence modi�cation

Even though the mass loading of particles is small, the turbulence may slightly be modified
by their presence. The aim of this section is to quantify this modification.

The influence of particles on carrier turbulence may results in several possible modification
of the fluid flow: The turbulent kinetic energy (TKE) may be damped or enhanced, and its
decay dynamics may be modified, both those effects are investigated. Additionally, inertial
particles have been shown to modify the turbulent energy spectrum of the carrier turbulence
(Boivin et al. 1998). In this section we are going to study the modification of turbulence
velocity statistics and decay rate. However, the spectrum modulation will not be studied.

First of all, the focus is made on the modification of the TKE after the addition of particles
to the flow. As depicted in figure 4.3 the total TKE ec,t =

1
2

〈
(2u,21 +u,22 )

〉
shows a slight

diminution of less than 3% between the laden and unladen flows, this quantity is then consid-
ered to be fairly unchanged. However, the inspection of the TKE for each velocity component
separately shows higher differences between the laden and unladen flows: a decrease of 10%
to 13% for the first component and an enhancement between 8% and 13% for the second
component.

This variation may be primarily due to the modification of experimental conditions, specifi-
cally the change of grid position, since the grid have been removed and put-back between the
two measurements. This introduce a different inclination of the grid ( the grid is not perfectly
horizontal). A visual inspection of the generated mean velocity field before and after grid
removal shows a different spatial configuration, suggesting a modification of the mean flow
due to the change of the grid position. The modification of the mean motion may lead to a
modification of the distribution of the flow energy between the two measured components.

Despite the observed modification of the values of TKE in separate directions, the results
suggest that the decay rates of the TKE are fairly unchanged between the laden and unladen
cases. This suggest that the viscous dissipation, and thus the velocity gradients statistics,
are unaffected by the particles presence. This leads us to conclude the modification of the
turbulence by the particles is weak .
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Figure 4.3: Decay of the turbulent kinetic energy, comparison between single-phase flow (�)
and two-phase flow (�) . The turbulent kinetic energies and their decay rates
remain close.
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4.3 Velocity and position statistics

In this section the velocity statistics of the two phases, issued from the simultaneous ve-
locimetry measurements, are compared. The aim is to reveal global and statistically signif-
icant differences between the dynamics of the two phases, prior to the investigation of the
local velocity differences. The PDFs of the particle and the fluid velocities are first compared
and the degree of homogeneity of the spatial distribution of the particles in the flow field is
quantified. Then the mean kinetic energies of the two phases are compared throughout the
decay.

It should be noted that for the fluid phase, the focus is both on the local fluid velocity ~u f p at
the closest position to the particles and the non-local fluid velocities ~u f , i.e not conditioned
by particles presence. The two phases local velocity differences are quantified by comparing
the velocity of each particle ~up to the closest measured fluid velocity ~u f p. These different
vectors are represented in figure4.4

The maximal distance between a particle and the nearest fluid velocity vector is B/2 =

1.32 mm, this separation is of the order of the particle’s diameter; which is equivalent to
4 to 5 Kolmogorov scales. We then avoid the use of interpolation of the fluid velocity at the
position of the particle, which may induce an error on the computed velocity difference. In
addition, the concept of fluid velocity at the position of the particle is not straightforward to
understand physically (since obviously the fluid is not present in the volume occupied by the
particles). On the other hand, a linear interpolation scheme has been successfully used by
Ouellette et al. (2008), where the error induced by the interpolation was rigorously quanti-
fied and shown to be statistically negligible in comparison with the measured fluid-particles
velocity differences.

4.3.1 Results

Velocity statistics: We first compare the particle velocity ~up to the fluid velocity at par-
ticles position ~u f p and overall fluid velocity ~u f P.D.Fs at two different stages of the decay:
t.U/M = 84.4 and t.U/M = 128.8 (figure 4.5): the PDFs for the two velocity components
seem close to each other, which suggest both that the particles sample homogeneously the
fluid flow and that the two phases have close velocity statistics.
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Figure 4.4: Scheme of the computation of the velocity differences. The particle velocity ~up
is compared to the nearest fluid velocity vector ~u f p, by computing the relative
velocity ~vr and the angle θ between the two vectors. The other fluid velocity
vectors in the field are written as~u f .
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Figure 4.5: Velocity PDF comparison: u1,p is the particles velocity first component, u1, f p is
the fluid velocity near the particle position, u1, f is the non-local fluid velocity, the
dashed line represents a Gaussian distribution. The velocity PDF of both phases
collapse fairly well at the top of each others and fit well a Gaussian distribution ,
with the notorious exception of u f ,2due to the inhomogeneity of the fluid flow in
the second direction.
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Additionally, the normalized particle velocity P.D.F are compared at two different stages
of the decay (figure 4.6). Since the mean velocity field is evolving throughout the decay,
the mean velocity is subtracted and the result is normalized by the timely particles velocity
standard deviation σ(ui). No statistically significant differences are observed between the
resulting P.D.Fs, leading us to conclude that the particles normalized velocity P.D.F is self-
similar through the decay.

The degree of homogeneity of the spatial distribution throughout the measurement volume is
investigated by computing the radial distribution function (RDF) gpp(r) = npp(r)/np which
is a measure of the probability of finding two particles separated by a distance r, and is
defined as the ratio of npp(r) the number of particle couples separated by a distance r to
the total number over the realizations np of detected particle at a given stage of the decay.
This operator have been used by several authors to quantify particles clustering (Sundaram &
Collins 1997; Xu & Bodenschatz 2008).

In parallel, we randomly generate a synthetic homogeneous distribution of positions the num-
ber, the number of which at each realization is equal to the average number of particles in
the measurement volume. We then compute the RDF out of this distribution and compare it
the RDF of an actual particle RDF for one stage of the decay as depicted in figure4.7 . The
values of the two functions are fairly close to each others which suggests that the particles
have a weak tendency to cluster. However, these conclusions have to be considered carefully
: due to the small number of particles in the viewing area (14 in average) particle clusters are
difficult to identify.

We turn attention to the comparison of the kinetic energies of the two phases. Figure 4.6

depicts the temporal decay of mean kinetic energies ec,m = 1
2

〈
2u2

1 +u2
2
〉

for each phase. It is
shown that the kinetic energies of the particles and the surrounding fluid are close and decay
with the same rate, as suggested by the previous comparison of the velocity PDFs. The local
and global kinetic energies are also close confirming the fact that the particles sample the
flow field homogeneously.

However particle mean kinetic energy is always larger than both local and global fluid mean
kinetic energies with a discrepancy of around 6%. The particle velocity component mean
squares are also shown to be larger than the local fluid velocity mean square, with a discrep-
ancy ranging from 3.6% to 14.2% for the horizontal component and 3% to 8% for the vertical
component. Nevertheless, the energy difference has not been observed to have a clear trend
with the decay.
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Figure 4.6: Comparison of the P.D.F of normalized velocities between two stages of the de-
cay: no significant difference is observed between the two P.D.F’s, showing that
the shape of the normalized PDF remains unchanged throughout the decay.
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Figure 4.7: Radial distribution function (RDF) compared at different stages of the decay. (a)
The separation r is normalized by the maximal detected separation rm for each
case. The values of the RDF are close to each other for the different stages of
the decay, suggesting that the spatial distribution of the particles do not vary sig-
nificantly with the decay. (b) The value of the RDF for the particles at a stage
of the decay is compared to the RDF of a computer generated uniform distribu-
tion of positions in the viewing area (the separation is normalized by a scale of
particle diameters dp = 1mm). The values of the two RDF are found to be close,
suggesting that no particle clustering occurs for any stage of the decay.
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4.3.2 Discussion

The absence of clustering for the neutrally buoyant particles has been confirmed by other
studies, with a higher number of particles (Fiabane et al. 2012; Tagawa et al. 2012). They
have shown that the particles remain homogeneously distributed over a significantly large
range of Reynolds and Stokes numbers and size ratios (in Fiabane et al. 2012, the Reynolds
number is varied from Reλ = 160! 395 and the Stokes number St = 1.6! 24.2 ). The
authors thus conclude that the neutrally-buoyant particles never cluster.

Considering the particles used in this study are perfectly neutrally buoyant, the discrepancy
observed in our results between the two phase kinetic energies seem non-physical, since the
particles cannot have a larger kinetic energy than the fluid flow by which they are transported.
This discrepancy is also in contradiction with the results reported in other studies of neutrally
buoyant particles in isotropic turbulence (Homann & Bec 2010; Calzavarini et al. 2012). In
these studies the particles kinetic energy has been found smaller than the fluid kinetic energy
for a large range of particle diameters. In addition, if spatial filtering (particle finite size
effect) is ignored, the Tchen-Hinze theory for the specific case of neutrally-buoyant particles
with finite relaxation time predict that the two phases kinetic energies should be equal in an
isotropic turbulence, whatever the relaxation time value is (Hinze 1975).

Thus the observed discrepancy is first thought to originate from a bias on particle and/or fluid
velocity measurements. This bias may leads to an overestimation of particle displacement
and/or an underestimation of the fluid tracer displacement. To quantify the displacement
differences of particles and tracers in pixels we computed the average displacement in pixel
during the decay; average particle’s displacement is found to be always larger by about 0.1
pixels (2.5%) than the average fluid tracers displacement, this discrepancy is rather small with
regard to the measurement precisions of both PIV and PTV. In the following the possible bias
sources related the two velocimetry techniques will be discussed.

The uncertainty related to the particle tracking velocimetry is mainly due to the uncertainty on
the particle images weighted centroid localization, as have been shown in the second chapter.
The position of the weighted centroid for each particle image depends on its illumination
profile, which may change significantly between the two camera frame (as a consequence
of the out of plane motion of the particles, for example); this may induce an “apparent”
displacement of the computed centroid not related to the actual displacement of the particle,
thus introducing an error on the particle displacement measurement.
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The size of the particle images is of 10 pixels in average ; if the illumination profile is Gaus-
sian the uncertainty is at least of the order of 0.5 pixels. The measurement of the displacement
involves the computation of the centroid for the two particle images on both frames ; thus the
uncertainty on the displacement is at least of the order of 2�0.5 = 1 pixel. The uncertainty is
in fact higher, since the illumination profiles are not Gaussian, but rather saturate over several
pixels. However it is not clear why this uncertainty leads systematically to an overestimation
of the particles displacement and kinetic energies.

The measurement of the tracers displacement is less sensitive to variation of the light intensity
between the two frames, since each cross-correlation computation involves several tracers
images. On the other hand, the resulting measured displacement is a spatial average of the
displacement of the tracers included in each interrogation window, the resulting measured
displacement is biased toward lower values.

4.4 Velocity di�erence statistics

In this section the statistics of the velocity differences between the particles and the surround-
ing fluid flow are presented and discussed. The section aim is to investigate the local velocity
differences between the two phases and to give an interpretation to these results. A similar
approach is proposed by Ouellette et al. (2008) in the case of 2D chaotic flow, and thus a
systematic comparison is made with his results for the larger and most inertial particles he
used ( dp = 2mm, ReL = 220, StL = 7.6�10�2). The main questions guiding the following
investigation are: to what extent do the particles follow the motion of the surrounding fluid?
And how the spatial and temporal filtering (i.e. finite-size and inertia) effects may influence
the particle dynamics?

As detailed in the introduction of this chapter, the velocity differences are expected to occur
due to the finite size and inertia of the particles. However, some other origins may also
explain the velocity discrepancy, related mainly to the measurements bias.
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4.4.1 Results

Before computing the local velocity difference statistics between the two phases we first
inspect visually the fluid-particle velocity joint probability density function for each compo-
nent, represented in figure 4.9. Most of the values belong to the median line x2 = x1, with
some non-negligible dispersion about this line. This suggests that the particles mainly have
velocities close to that of the fluid, but velocity discrepancy occurs with a finite probability.

To further confirm these observations, the focus is made on the local velocity difference statis-
tics. We compare each particle velocity to the nearest fluid velocity and compute the relative
velocity~vr =~up�~u f p. In order to compare velocity differences statistics at different stages
of the decay, we consider the normalized relative velocity components vr,i/

√〈
u2

f p,i

〉
whose

PDF is shown in figure 4.10 at two different stages of the decay, and compared to a Gaussian
distribution. The PDF’s shape and values show several interesting features discussed in the
following.

The PDFs are weakly skewed, but are flatter than a normal distribution (the PDF kurtosis is
estimated to be always larger than 10, although the available number of realizations is not
sufficiently large to yield exact estimations of high statistical moments). The shape of the
PDF shows the intermittent nature of the two phase velocity differences : mainly the particles
follow well the surrounding flow, but large departure from local fluid velocities occurs. Addi-
tionally, The PDF’s tails seems to be well approximated by an exponential distribution, as is
the case for the PDF of eulerian spatial or temporal fluid velocity increments. Moreover, the
comparison of the normalized PDFs at two stages of the decay shows that the shape doesn’t
change significantly throughout the decay. This observation suggests that the local velocity
differences are self-similar throughout the decay.

The inspection of the PDF values shows that, although the most probable value of velocity
differences is zero, significant two phases velocity discrepancy occurs with a finite, non-
negligible probability: Based on the assumption of exponential tails for the PDF, on can show
that the particles have a probability of 19% to have a relative velocity equal or larger than
half of the r.m.s of the fluid velocity, which corresponds to a displacement close to 2.5 pixels.
Thus the values of the velocity discrepancy between the two phases are non-negligible and
cannot be solely due to measurement bias.

Furthermore, the two relative velocity components may be considered simultaneously through
the normalized norm of the relative velocity w =

∥∥~up�~u f p
∥∥/〈∥∥~u f p

∥∥〉
T , also considered by

95



Ouellette et al. 2008. In figure 4.11 the P.D.Fs of w are shown at the two different stages of
the decay and compared to Ouellette et al. 2008: in our experiments the probability of having
a finite relative velocity is higher and decays slower with increasing w in our case. However,
the two PDFs have close shapes.

The inspection of P.D.F tails shows a finite probability of having velocity differences of the
order of the fluid velocity average norm.

To confirm the statistical significance of the local velocity differences we compute the average〈
w
〉
=
〈∥∥~vr

∥∥〉
T/
〈∥∥~u f p

∥∥〉
T which is shown in figure 4.12 for different stages of the decay. The

norm of the relative velocity is to be on average larger than 30% of the fluid velocity average
norm

〈∥∥~u f p
∥∥〉

T , we conclude that on average the local fluid velocity discrepancy is larger
than the possible measurement bias.

One interesting remark is the slow temporal decay of the normalized velocity differences,
which confirms the previous observation of the similarity of the relative velocity norm PDFs
between two distant stages of the decay. Additionally, the decay tendency suggests that w

decreases with decreasing Reynolds number (since the Re decreases with the decay); this
may explain the fact that our values of w are higher in comparison to the values of Ouellette
et al. (2008) since the Reynolds number is significantly higher in our case.

The highlighted velocity difference may originate from a difference of velocity norm between
the particles and the surrounding fluid or a misalignment of the two velocity vectors. These
two causes of velocity differences may be isolated and studied separately by computing the
normalized difference of velocity norms δu = (

∥∥~up
∥∥�∥∥~u f p

∥∥)/〈∥∥~u f p
∥∥〉

T and the angle θ =

arccos(~up.~u f p/
∥∥~up
∥∥∥∥~u f p

∥∥) between the two vectors. The PDF of these two quantities are
represented in figure4.13 and figure 4.14, and a comparison is made with Ouelette’s results.

Concerning the velocity norm differences, the shape of the P.D.F of δu at the two considered
stages of the decay are symmetrical, suggesting that the particles are equally likely to move
slower or faster than the surrounding fluid. Furthermore the shape of the PDF is flatter than
a Gaussian distribution and its tails are also exponential. The inspection of the angle PDF
shows that the particles have a finite probability to move in a direction significantly different
for that of the fluid. In fact, the particles have an estimated probability of more than 16% to
move with an angle larger than π/6 from the direction of the motion of the surrounding fluid.
We conclude that the velocity differences between the two phases are both due to velocity
norm differences and misalignment of the velocity vectors.
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4.4.2 Discussion

As emphasized previously the velocity difference between the two phases is not negligible
and is beyond the measurement uncertainties. It is then thought to have a physical origin, even
though the measurement errors contribute to the observed discrepancy. In this subsection, we
discuss the possible origins of the observed two phases velocity differences.

As shown previously, a major feature of the velocity differences statistics is their intermit-
tency, which may suggest a link with other intermittent quantities of the turbulent flow, such
as acceleration or Eulerian velocity increments.

If the particle inertia is predominant, then the velocity difference is proportional to the particle
acceleration, as shown by the Stokes equation. On the other hand, if the finite-size effects are
predominant then the velocity differences are proportional to the velocity Laplacian (Homann
& Bec 2010). Both quantities are highly intermittent, since they involve spatial or temporal
derivative of the fluid velocity.

If finally, both temporal and spatial filtering effects are weak, the particles then behave mainly
as tracers. In this case the difference may be attributed to the fact that the velocities are not
measured exactly at the same location. Thus the velocity differences are actually velocity
spatial increments for separations of the order of the distance between the particles and the
closest fluid velocity vector position. This difference obviously increases with the local ve-
locity gradients of the flow. In addition, the effect of filtering of the PIV may also introduce
a difference between the two phases. If the particles are tracers, then velocity discrepancy is
comparable to a difference between a local value of the fluid velocity and the spatially aver-
aged fluid velocity. This difference, when it exists, is caused by the flow velocity gradient
inside the pattern box: the higher the gradients the larger the probability of velocity differ-
ences. Both differences origins scale with the fluid velocity gradients, which are intermittent
quantities.

4.5 Conclusions

In this chapter, the dynamics of neutrally buoyant particles embedded in the turbulent flow
have been measured and compared to that of the fluid. The particles have been found to
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distribute homogeneously over the view field. The overall statistics of the two phases have
been shown to be close, although a slight difference on mean kinetic energies of the two
phases is observed, which is thought to be mainly due to an underestimation of fluid kinetic
energy, inherent to the spatial filtering introduced by the PIV measurement.

However, significant local velocity differences between the two phases have been found to
occur with a finite probability, and the average velocity difference between the two phases
have been found to be significant, suggesting that this difference can be hardly explained by
invoking accumulated bias from both PIV and PTV measurements.

Thence, a physical explanation is searched to the observed discrepancy. In their study Ouel-
lette et al. (2008) suggest that the difference is due to the inertial behavior of the particles.
We rule out this explanation in our case since, as it is shown by Homann & Bec (2010) and
Calzavarini et al. (2012), the inertial effects are not the dominant effects on the dynamics
of neutrally-buoyant finite size particles in turbulence, but rather the finite size effects (i.e.
spatial filtering). An alternative explanation is to consider the particles behaving as tracers,
and the observed discrepancy is then a spatial increments of the velocity between particle
position and the closest measured fluid velocity vector.

At this point, no clear conclusion can drawn regarding the velocity differences between the
two phases. Further investigation with a higher resolution of the measurements and a larger
number number of realizations is needed in order to confirm the observations. Besides, the
effects of measurements bias on the velocity differences statistics still need to be quantified.
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Figure 4.8: (a) Comparison between particles � local � and non-local + fluid mean kinetic en-
ergies ec,m = 1

2

〈
2u2

1 +u2
2
〉
: the values remain close, although the particles kinetic

energy is always larger than the fluid one. The kinetic energies of both phases
decay with the same rate (b)(c) mean square of velocity components : although
the decay rates are close, the discrepancy between the two phases is around 10%.
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Figure 4.9: Fluid particles joint probability PDF at t.U/M = 84.4, the most darker regions
corresponds to the higher probabilities. Solid line represents the median line
y = x . The most probable values are close to the median line.
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Figure 4.10: Normalized relative velocities PDF at two different stages of the decay. The
continuous line represents the Gaussian distribution. The dashed line represents
an exponential distribution, with the following decay rates (a) right tail :�4.66,
left tail 5.34 (b) right tail: �3.71, left tail: 3.34. The tails of the velocity PDF at
time t.U/M = 84.4 are shown to fit well the exponential distribution.
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5 Conclusions and Perspectives

In this experimental study, the focus is made on the characterization of the dynamics of solid
neutrally buoyant particles embedded in a freely decaying, nearly isotropic turbulence, with a
weak mean flow. The particles are spherical with diameters several times larger than the flow
Kolmogorov length scale, but smaller than the integral scale. Due to large particle sizes, the
local flow around particles can not be considered as uniform and due to fluid-particle density
ratio of around unity, the history and Basset forces cannot be neglected in comparison with
the viscous drag force.

Particle equation of motion is then fully non-linear, in contrast to the equation for heavy
particles with diameters smaller than the Kolmogorov scale, for which only the Stokes drag
is considered (Homann & Bec 2010). Recently Ouelette & al. (2008) have studied experi-
mentally the dynamics of small, neutrally buoyant particles embedded in a two-dimensional
chaotic flow. The particles have been shown to have velocity and acceleration statistics close
to that of the fluid, but locally, the particles often move with velocities different from the
surrounding flow.

The aim of the present thesis is to generalize study Ouelette & al. (2008) to the case of
three-dimensional, fully turbulent flow. This flow configuration have not been studied ex-
perimentally, and its numerical study is very expensive, due to the necessity of resolving the
fluid flow around each particles.

To that purpose, a towed grid turbulence generator has been set-up: one realization of the
turbulent flow is produced by moving the grid upward in a water tank with a constant velocity,
the generated turbulence then decays freely until the next stroke. First the characteristics of
the the resulting turbulence have been measured using a standard Particle Image Velocimetry
(PIV) technique. Our results shows that the used apparatus yield a turbulent flow which can
be considered fairly homogeneous and isotropic; in addition, the local isotropy is found to be
verified for the smallest measurable separations.
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Then the flow was seeded with neutrally-buoyant particles of size 4 times larger than the
flow Kolmogorov length scale and with a Stokes number around 1, so that finite size and
inertia effects are expected to influence particles dynamics. In order to measure the velocity
of the particles and the surrounding fluid simultaneously, the two measurements techniques,
PIV and PTV, were combined in a two camera set-up where each camera is dedicated to one
phase. The flow was seeded with fluorescent tracers and the dedicated camera equipped with
a cut-off filter, thus receiving only the fluorescence signal and avoiding to catch the light
reflected by the large particles. This method have been shown to enable successfully the
measurement of the fluid velocity close to the particle.

The aim of the investigation was to reveal any global or local differences between the dynam-
ics of the two phases. We first compared the statistics of the two phases: The global velocity
statistics of the two phases have been shown to be close, although a discrepancy of the 6%
between the mean kinetic energies of the particles and closest fluid is noticed. This discrep-
ancy is non-physical, since the particles cannot have a larger kinetic energy than the flow by
which they are transported. It is thought to be due to an error on particles images tracking
which may induce an overestimation of particles displacement of less than 3% in average, or
to an underestimation of the fluid flow kinetic energy caused by the filtering of the velocity
field resulting from the PIV measurement.

In addition the spatial distribution of the particles have been investigated by computing the ra-
dial distribution function (RDF). The particles have been shown to distribute homogeneously,
in agreement with other studies on the clustering of neutrally buoyant particles. However, the
clustering cannot be detected in our case due to the small number of particles in the visual-
ization field (14 in average).

Then the focus is then made on the statistics of the local velocity differences between the
two phases: We compare each particle velocity ~up to the closest fluid velocity vector ~u f p by
computing the relative velocity~vr =~up�~u f p. The important results of our measurements is
that the norm of the relative velocity is to be on average larger than 30% of the fluid velocity
average norm for the considered stages. Thus, the velocity differences are not negligible, and
can be hardly explained by measurements bias only. In addition, the velocity difference be-
tween the two phases have been found to result from both misalignment and norm differences
between the two velocity vectors.

The observed discrepancy is thus considered to have a physical origin, and several possible
interpretations are discussed. In their study, Ouelette & al. (2008) conclude that the observed
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difference is due to the particle inertia. However, other interpretations can be proposed:
in addition to spatial or temporal filtering effects on particles dynamics due to their finite
size and inertia, the difference may also be attributed to the PIV spatial filtering of the fluid
velocity field, or to the fact that the particle and fluid velocities are not measured at exactly
the same position. The precise origin of the observed velocity difference is still unclear and
is currently under investigation.

As emphasized in the introduction, an important aspects of the dynamics of the neutrally
buoyant particles is the dependence of their velocity statistics with their size; this can be
investigated using our experimental set-up by adding particles with larger diameters. We have
tested the feasibility of applying simultaneous velocimetry techniques to particles of diameter
of 4 mm. Since they have a larger surface, the particles reflect more fluorescence light than
the 1 mm particles, thus a higher intensity threshold need to be applied to PIV images, which
will yield an increased number of holes and generally poorer PIV images quality. Thus,
the application of the simultaneous velocimetry to larger particle is not straightforward and
specific problems may arise,which require an adaptation of this technique.

In addition, the constructed turbulence generator may also serve to study other two phases
flows: the rise of bubbles or the settling of particles in turbulence, although an appropriate
feeding system must be added to the existing set-up in order to enable the control of the
instantaneous mass loading of the particles.
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