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General Introduction 

Laser interferometry is a well-established technique, widely used in the 

industrial and laboratory environments to measure displacement, velocity (of both 

solid targets and fluids), vibration and distance. 

The usual techniques rely on an external interferometer, i.e. an optical 

transducer made up of lenses, prisms and mirrors, which is read-out using laser 

light or white light. This is the case for the well-known Michelson and Mach-

Zehnder interferometers. 

Optical feedback interferometry, also called self-mixing effect, is similar to 

conventional two beam interferometry but without all of the auxiliary bulk. A 

small fraction of the laser beam backscattered from diffusely-reflecting surfaces 

re-enters the laser active cavity and affects its spectral properties. This back-

reflected light is then “self-mixed” with the standing wave in the active optical 

cavity. Intensity modulation has been explained in terms of interference between 

this standing wave and the laser beam coupled back into the cavity  [1]. This 

generates, in particular, a variation of the laser optical power, called self-mixing 

interference, which can be monitored for sensing achievement  [2].  

History of the self-mixing effect goes back to 1960 when the laser was 

invented. It was noticed that external feedback into the laser cavity induces 

intensity modulation in the output of a gas laser  [3]. A few years later, the first 

laser Doppler velocimeter, in which the laser cavity was used as an optical mixer 

was presented  [4]. It was also noticed that, similarly to traditional interferometry, 

the fringe shift caused by an external reflector corresponds to the optical 

displacement of λ0/2, where λ0 is the operating wavelength of the laser. 

Self-mixing interferometry has been exploited by many laboratories in order 

to develop different measurement applications for velocimetry  [5], displacement, 

distance and vibration measurements  [6]- [7]- [8], ranging  [9] and 3D-imaging  [10]. 

Recently, the self-mixing technique has also been introduced to everyday 

practical applications. It is reported to have been used in optical touch sensitive 

interfaces  [11], where two self-mixing interferometers measure the movement of 
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the fingertip. The movement of the finger is used to control the optical scroll 

device. 

Self mixing effect was studied in all type of lasers. However, most of these 

recent applications are based on a semiconductor laser as a source. For example, 

recent studies are founded on collecting the self-mixing signal by monitoring the 

change of the voltage across the diode itself and this in setups using especially 

VCSEL. This will help simplifying even more the experimental setup of such a 

type of sensors  [12]. 

This is representative of the present state-of-the-art even if researches still use 

other sources like gas  [13] or solid state lasers  [14]. 

Another type of light sources where the self-mixing effect was studied is the 

low-coherence light sources like super luminescent diodes (SLD)  [15]. Self-mixing 

effect in these sources has been demonstrated in applications of low coherent 

interferometry such in medical applications  [15] or even in applications of 

tomography  [16]. 

In this study, the  Chapter I will introduce the physical principle of the self-

mixing effect in a semiconductor laser and then will present a brief state of the art 

of some of the applications of this type of sensors. 

 Chapter II will focus then on studying the self-mixing signals in the moderate 

feedback regime introducing the phenomenon of loss of peaks and its outcome 

on some of the displacement measurement methods. 

 Chapter III will treat the strong feedback regime showing the feasibility of a 

relative displacement sensor in this regime and characterizing this sensor in terms 

of precision, linearity and harmonic distortion. 

Finally,  Chapter IV consists of an opening on the different applications of the 

sensor developed earlier in chapter III such as modal analysis. It was used to study 

a thin clamped plate and to detect impacts in carbon fiber beams. 
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Chapter I. Physical Principle and Applications 

of the Self-Mixing Effect 

I.1. Introduction: 

Semiconductor lasers or laser diodes are the most commonly used lasers. 

They are small, normally pumped directly with an injection current and hence, 

they are very convenient for low cost applications such as CD/DVD players, laser 

printers or laser pointers. This type of lasers is also the light source of most of the 

optical telecommunication systems which was the essential application behind the 

development of the semiconductor lasers. Laser diodes are still finding new 

application fields ranging from medical imaging to environmental sensing. 

Since the beginning of use of lasers in telecommunications and in CD/DVD 

players, engineers encountered a problem caused by the backscattered light being 

reinjected in the laser cavity and changing its power and wavelength of emission. 

This was evoked early after the discovery of semiconductor lasers in the late 

sixties and early seventies  [3]- [4], and notably in order to minimize the feedback in 

optical fiber communications  [2]. The solution found was the use of optical 

isolators in order to eliminate this undesirable effect, but this increased the price 

and complexity of the complete system. 

However, this effect induced a sensibility in the emission power and 

frequency to the laser to target distance variations, which holds a very high 

importance for sensing applications. 

In the following chapter, the physical principle of self-mixing will be studied 

in the first part, exploiting how the optical feedback affects the emission 

properties of a laser diode and defining the basic relationships ruling its behavior. 

In the second part of the chapter, some of the applications covering different 

fields of use of the self-mixing effect will be studied. 
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Part A. Theoretical Study of the Self-mixing Effect 

I.2. Physical Principle of Self-Mixing: 

 

LD 

PD 

 
Figure I.1. Example of a commercial Package of laser diodes. 

Many commercialized laser packages contain a monitor photodiode mounted 

behind the laser diode ( Figure I.1). This photodiode is usually used in order to 

compensate for the drifts of the threshold current, caused by variations of the 

temperature of the junction that may affect the emission power.  

Due to back-emission of laser diodes, this same photodiode can also be used 

in order to monitor the variations of the emitted power when subject to optical 

feedback such as in all self-mixing sensors. 

In order to understand the physical principle of self-mixing, one should begin 

by examining the behavior of a laser in the case of free running emission and then 

study the effects of feedback on the different laser parameters. 

I.2.1. Case of Free Running Emission: 

The cavity of a free running laser diode can be modeled by a Fabry-Perot 

cavity of a length l delimited by two interfaces I1 and I2 ( Figure I.2). 

In this figure l is the length of the active cavity of the laser, I1 and I2 are the 

rear and front facets of the cavity respectively. 
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Figure I.2. Schematic arrangement for a free running state laser diode. 

The amplitude of the reflection coefficients of the electrical field are r'1 on the 

I1 interface and r2 on the I2 interface. The optical power propagating from I1 to I2, 

P1→2, can be expressed as in the following equation  [2]: 

 ( ) ( ) ( )1 2 1 2 0 exp pP z P gz zα→ →= −  (1.1) 

Where g is the gain of the active medium, αp the loss coefficient mainly caused by 

the absorption of the free carriers and z is the propagation direction between I1 

and I2. 

Natural emission of a diode is a spontaneous emission and in order to have 

laser emission, two conditions have to be fulfilled. The first one concerns the gain 

of the active cavity, linked to the number of the free carriers in the active zone in 

the case of population inversion. The other condition concerns the phase from 

which will be determined the emission frequency of the laser. 

These conditions can be deduced from the expressions of the electrical fields. 

The electrical field propagating from z=0 to z=l can be approximated by 

( ) ( )1 2 1 2P z E z→ →≈ and then can be written as follows: 

 ( ) ( )1 2 1 2
10 exp
2 aE z E j z zρ γ→ →

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 (1.2) 

With ρ is the wave vector and γa the coefficient of absorption in the active 

medium: 

 0 02 e

c
πμ νρ =  (1.3) 

 a pgγ α= − +  (1.4) 

r1' r2

I1 I2

0 l

z
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Where μe0 represents the effective refraction coefficient of the phase of the 

active medium, ν0 being the emission frequency of the laser diode and c the light's 

celerity. 

After traveling through the active medium, the electrical field will be reflected 

on the I2 interface and then its expression can be written as follows: 

 ( ) ( ) ( ) ( )( )2 1 2 1
1exp
2 pE z E l j l z g l zρ α→ →

⎛ ⎞= − − + − −⎜ ⎟
⎝ ⎠

 (1.5) 

E1→2(0) and E1→2(l) are related by the equations expressed in (1.6) introducing 

the reflection coefficients: 

 
( ) ( )
( ) ( )

1 2 1 2 1 1

2 1 2 1 2 2

0 ' 0 on the I interface.

on the I interface.

E z r E z

E z l r E z l
→ →

→ →

= = =

= = =
 (1.6) 

The above equations expressing the electrical field leads to the emission 

condition (1.7) of a laser diode without optical feedback  [17]: 

 ( )0 0
1 2 0

4' exp 1e
th pr r j l g l

c
πμ ν α⎛ ⎞− + − =⎜ ⎟

⎝ ⎠
 (1.7) 

The resolution of the condition presented in equation (1.7) in terms of phase 

and module leads to the determination of both key parameters of the laser gth0 and 

ν0. 

gth0 being the threshold gain without any feedback i.e. the minimum gain 

needed for laser emission: 

 ( )0 1 2
1 ln 'th pg r r
l

α= −  (1.8) 

The second parameter obtained from the resolution of the emission condition 

is the emission frequencies, ν0, given by the following equation: 

 ν
μ

=0
02 e

cq
l

 (1.9) 

Where q is an integer, and thereby, for each value of q corresponds an 

emission frequency and hence a longitudinal emission mode. 
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I.2.2. Case of Laser Diode Submitted to Optical Feedback: 

 
Figure I.3. Setup for a Michelson interferometer. 

In presence of a target in the direction of emission, light will be diffused and a 

part of this diffused light will be coupled back into the laser cavity changing 

thereby its emission characteristics. The self-mixing setup may be compared to a 

classic Michelson interferometer as represented respectively in  Figure I.3 and in 

 Figure I.4. 

 
Figure I.4. Setup for a Self-Mixing interferometer. 

From these two previous figures it can be seen that a similitude exist between 

these two setups but the self-mixing setup is a lot simpler where all the expensive 

optical components (mirrors, isolators and beam splitters) are not needed. The 

system is auto aligned as both the laser diode (LD) and the photodiode (PD) are 

included in one package. 

I.2.2.a. Theory of The Equivalent Cavities: 

In order to explain the self-mixing effect, the theory of equivalent cavities 

must be introduced. The space between the front facet of the laser and the target 

can be considered as an external cavity coupled to the internal active cavity inside 

the laser diode as shown in  Figure I.5. 

Target

PD     D0 

L.D.

Beam 
Splitter 

Isolator D0

Target

Reference 
Mirror

PD

LD 
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Figure I.5.  Internal and external cavities. 

In fact, both the active Fabry-Perot cavity and the external cavity can be 

replaced by an equivalent cavity ( Figure I.6) of width leq and with a complex 

equivalent amplitude reflectivity index req given later on by equation (1.12)  [17].  

 
Figure I.6. Equivalent cavity. 

By neglecting the multiple reflections within the external feedback for a weak 

to moderate feedback (since the targets reflectivity r3<<r2) then req can be written 

as the reflected electrical field at the interface I2, Er, divided by the incident field 

Ei. In this case, a plane wave propagating along the z axis is considered and its 

electrical field e(t,z) is written as follows: 

 ( ), exp F

zd t
cz ze t z B j t with t

c c dt
ω

⎛ ⎞⎛ ⎞Φ −⎜ ⎟⎜ ⎟⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎝ ⎠⎝ ⎠= Φ − − =⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (1.10) 

Where B is the amplitude of the wave, Φ, its phase and ωF the pulsation of the 

wave in presence of the target. 

Let ei(t,z) be the incident electrical field and er(t,z) the one reflected by the 

target. Now considering that the variation of the target's speed is negligible during 

the time of flight of the wave ( 2D D cτ = ) the expression of the fields at the 

r1' req

I1 I2

0 leq 

z

r1' r2

I1 I2

0 l

I3

D

z 
r3



Physical Principle and Applications of the Self-Mixing Effect 

October 2008  12 

interfaces may be written: Ei the incident field, Er1 the one reflected at the I2 

interface and Er2 the field reinjected in the laser cavity after being reflected by the 

target. 

 

( ) ( )( )( )

( )
( )( )

( )

0

1 2

2
0

2 2 3 2

2

,0 exp ,0

,0
,0 ' exp

,0

D

D

D

t

i i F

r i

t

F

r r t
F

Ft
F

E e t B j t dt

E r E

t dt
E e t t r t B j c V t dt

c V

τ

τ
τ

ω

ω

ω

−

−

−

= =

=

⎛ ⎞⎡ ⎤
+⎜ ⎟⎢ ⎥

⎜ ⎟⎢ ⎥= = −⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥+⎣ ⎦⎝ ⎠

∫

∫

∫

 (1.11) 

Where t2, and t'2 respectively, is the transition coefficient of the I2 interface 

from the laser diode to the outside and respectively from the outside to the laser 

diode. The first integral term represent the phase difference of the wave due to 

the laser to target path and the second term the phase difference caused by the 

opposite path. 

Considering normal incidence at the laser surface then t2t'2=1-r22; and 

moreover, neglecting the frequency shift due to the Doppler Effect, thereby, the 

equivalent reflectivity index can be approximated using a limited development as 

follows: 

 ( ) ( )2 1 exp ,0Dt
r

eq Ft
i

Er t r j t dt
E

τ
ζ ω

−⎡ ⎤⎛ ⎞⎡ ⎤= = + ⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦⎝ ⎠⎣ ⎦∫  (1.12) 

Where ( )2
2 3 21 r r rζ = − is the coupling parameter between the target and the 

laser cavity. 

In this case, the emission condition is unchanged by replacing the parameters 

without feedback with parameters taking into account the feedback such as r2 is 

replaced by req. 

 ( )1
4' exp 1eF F

eq thF pr r j l g l
c

πμ ν α⎛ ⎞− + − =⎜ ⎟
⎝ ⎠

 (1.13) 

gthF being the threshold gain under feedback. 

As mentioned earlier the resolution of this condition in terms of phase and 

amplitude leads respectively to the determination of the permitted emission 

frequencies and the variations of Output Optical Power (OOP). 
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I.2.2.b. Threshold Gain and Permitted Emission 

Frequencies: 

Looking back at both equations (1.7) and (1.13) they can be united in one 

single equation as follows: 

 

( )( ) ( )( )0 0
2

0 0
0

0

exp exp 1

4

4

2

eq
thF th F

eF F
F eq

e

F

r
g g l j

r

l
c

lWith
c

q

πμ ν

πμ ν

π

⎡ ⎤
− − Φ −Φ =⎢ ⎥

⎣ ⎦
⎧Φ = +Φ⎪
⎪
⎪Φ =⎨
⎪
−Φ = −Φ =⎪
⎪⎩

 (1.14) 

The resolution of the modulus part of the equation in (1.14) gives the 

threshold gain gth of the laser under feedback. On the other hand, the resolution of 

the phase equation gives the emission frequency under feedback: 

 ( )0 cos 2thF th F Dg g
l
ζ πν τ− = −  (1.15) 

 ( ) ( )0 0 0
4 sin 2thF th eF F e F D

l
c
π μ ν μ ν ζ πν τΦ −Φ = − +  (1.16) 

The phase equation when solved can be rewritten as follows: 

 ( )( )0 sin 2 arctan 0
2L F F D

D

Cν ν πν τ α
πτ

ΔΦ = − + + =  (1.17) 

In equation (1.17), two new terms were introduced α the linewidth 

enhancement factor and the coupling coefficient C defined as follows: 

 21D

l

C τε ζ α
τ

= +  (1.18) 

Where τl is the time of flight of propagation of light inside the active cavity. 

On the other hand, it can be seen that this equation accounts for effect of the 

distance through τD and for the effect of the light retro-diffused by the target 

through ζ. ε is a parameter accounting for the fraction of light effectively 

reinjected in the laser's cavity  [18]- [19]. However, this parameter has to take into 

account the fact that the emitted beam is Gaussian and will be modified by the 

target before being reinjected in the laser cavity. Thereby the interference will be 
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between two different intensity spectrums which causes space overlapping. If the 

alignment was perfect ε should be equal to unity and hence C should be mainly 

limited by the coherence length of the laser. 

Looking back at the equation (1.17), ΔφL may be simulated (using MATLAB) 

and plotted as a function of (νF-ν0) for different values of C ( Figure I.7). The zero 

crossings of these curves corresponds to solution of the phase equation and 

thereby possible emission frequencies or modes of the laser. 

 
Figure I.7.  Solution of the phase equation for different values of C 

Depending on the number of solutions, on which C has a major effect, the 

functioning of the laser can be divided into five regimes as shown in Figure I.8. 

In this figure, κext=ζε represents the effective optical power reinjected in the 

laser cavity whereas D0 is the distance separating the laser diode and the target at 

t=0. Both these two parameters represent the varying parts of C thereby this 

figure shows indirectly the laser emission modes as a function of C. 

 Figure I.7 showed that for values of C lower than 1 corresponding to weak 

levels of feedback only one solution can be found for equation (1.17) meaning 

that the laser will have one single lasing mode when subject to feedback which 

maybe encountered in the case of a lot of non-corporative targets.  
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Figure I.8. Different functioning regimes of a laser diode under feedback. 

Now, for stronger feedbacks (i.e. C>1) the phase equation may have several 

solutions. In fact, if the case of maximum 3 possible solutions is studied the limit 

of this regime may be found numerically by solving equation (1.17). Ca is the 

maximum value of C corresponding to only three solutions and which can be 

calculated and found to be Ca≈4.7  [20]. In this case, the laser was found to stay 

monomode because, among the three possible modes, only the mode having the 

narrowest spectral width will be chosen by the laser  [21]. 

For the higher functioning modes III, IV and V, the power reinjected is very 

important giving them some special characteristics. In fact, in the regime III the 

laser is perfectly monomode and the spectral width is very narrow. Regime IV, is 

the coherence collapse regime in which the laser diode loses all its coherence 

properties (spectral width around the GigaHertz). Finally in regime V, the laser 

comes back to being monomode with a very high rejection on the lateral modes of 

the laser cavity. This regime is characterized by a very narrow spectral width and is 

usually used to obtain stable monomode sources. 
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I.2.2.c. Optical Output Power of a Laser Diode 

Submitted to Feedback: 

On the other hand, in order to express the optical emitted power, the electron 

rate equations at stationary operation must be considered for the free running 

state  [22]- [23]. 

 ( )0 0
0 0

1
g

n

dn ndJ v N g n
dt e dx τ

= − −  (1.19) 

Where n0 is the density of electrons in excess, t is the time, e is the elementary 

charge of an electron, J in the current density, vg is the group velocity, N0 is the 

photon's density and finally τn is the average lifetime of electrons. 

In the above equation, all carriers are supposed to be injected in the active 

zone of the laser diode; which can be obtained through a double hetero-junction 

as shown in  Figure I.9. 

 
Figure I.9. Structure of a double heterpstructure Fabry Perot laser 

Now considering simultaneously the case of a laser diode in its free running 

state (index 0) and with feedback (index F) it is possible to construct the following 

equation system (considering in both cases a constant current density J and a 

linear gain). 

 
( )

( )

0
0 0

thlin
g th nul

n

thFlin
g F thF nul

n

ndgJ v N n n
ed dx

ndgJ v N n n
ed dx

τ

τ

⎧ = − +⎪⎪
⎨
⎪ = − +
⎪⎩

 (1.20) 

Where d is width of the active zone of the laser diode. nnul is the electrons' 

density permitting to have a zero gain. The indexes th and lin correspond 

respectively to a threshold value and to a linear value (of the gain). 

250 - 500 μm 5 - 15 μm 5o - 10o

0.1 - 0.2 μm

30o - 50o

Far-Field 
Pattern 
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Now, relying on equation (1.20) and considering that Δn=nthF-nth0 has a small 

value, it is possible to express the photons' density when the laser is under 

feedback as a function of their density when the laser is in the free running state. 

 
( )

0
0

0

1

1

lin
g

n
F th

lin
g th nul

dgv
dn NN N n

dgv n n
dn

τ
⎡ ⎤⎛ ⎞ −⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥= − Δ

⎛ ⎞⎢ ⎥−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (1.21) 

Equation (1.15) expressed the gain of the diode in presence of a target as a 

function of its gain when by itself, thereby it is possible to introduce the phase 

2πνFτD in the expression of the photons' density (1.21) as follows  [23]: 

 ( )0 1 cos 2F F DN N m πν τ⎡ ⎤= +⎣ ⎦  (1.22) 

Where m is a parameter representing the modulation of the laser. 
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 (1.23) 

Finally, considering the proportionality between the photons' density and the 

emitted optical power, this last can be written as follows  [22]- [23]: 

 ( )( )0 1 cos 2F F DP P m πν τ= +  (1.24) 

Looking back at the expressions of the emission Optical Output Power 

(OOP) (equation (1.24)) and the frequency under feedback (equation (1.17)), they 

are both a function of the laser-target distance through τD. Hence, both will be 

modified if this distance changes or if the injection current is modified (through 

ν0) or if both of them change. These expressions are then of major importance 

when studying self-mixing for metrological purposes since they relate the distance 

to the emitted OOP the one that can be easily monitored through the control 

photodiode as mentioned earlier. 
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Part B. Different Applications of the Self-Mixing 

Effect 

I.3. Advantages of Self-Mixing Sensors 

As mentioned earlier, the self-mixing (SM) signal was, and still is, considered 

as a parasite signal in applications like telecommunications and CD/DVD readers. 

The self-mixing causes the lowering of the efficiency of these systems. However, 

when exploiting, the expression of the OOP in presence of a target, both the 

power (1.24) and the frequency (1.17) are modified by variations of the distance 

separating the laser diode from the target making it very suitable for distance and 

displacement measurements  [2]- [24]- [25]. 

This last characteristic gave the SM effect a sensing ability which was 

accentuated by different other advantages such as: 

 The simple and compact set-up since the sensor is self-aligned there is 

no need for any of the expensive external optics used in traditional 

interferometry ( Figure I.4). 

 No external photodetector (PD) is required, because the signal is 

provided by the monitor photodiode contained in the laser diode (LD) 

package ( Figure I.1). Moreover, even this PD was eliminated in some 

recent SM setups monitoring the variations of the LD voltage directly  [12]. 

 The sensitivity of the scheme is very high, being a sort of coherent 

detection that easily attains the quantum detection regime (i.e. sub-nm 

sensitivity in path length is possible)  [19]. 

The first demonstrations of this principle used gas lasers to detect the 

Doppler shift caused by a moving remote reflector  [4]. After that, self-mixing 

sensors knew the first complete self-mixing interferometer/vibrometer  [26] and 

the use of a laser diode (LD) as a source and a detector at the same time  [27]. 

Remote sensing applications based on the self-mixing effect in low-cost 

commercial Fabry–Perot (FP) LDs have appeared in the scientific literature first in 
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1986  [27]- [28], demonstrating the feasibility of velocity, distance and displacement 

measurements  [27]- [28].  

I.4. Displacement Measurement 

Displacement measurements are achieved in different domains using multiple 

sensing technologies like resistive, inductive, capacitive, ultrasonic, magnetic and 

piezoelectric technologies  [29]. Due to its simplicity, self-mixing interferometry is 

being exploited more and more in different sensing domains such as in particular 

displacement measurement or vibration analysis. 

I.4.1. Basic Principle 

As mentioned earlier equations (1.17) and (1.24) giving the expressions of the 

emitted frequency and optical power are important. They both depend on the 

distance separating the laser from the target and the injection current. In fact, both 

will stay constant if the LD is driven by a DC injection current and if the laser to 

target distance is kept constant. However, when a back-reflection is generated by a 

moving target in the direction of light emission, the optical length of the external 

cavity is varying and consequently the length of the equivalent cavity is modified 

too, affecting the spectral properties of the laser.  

The  Figure I.10 represents saw-tooth like fluctuations of a self-mixing signal 

(i.e. for a weak feedback 0.1<C<1) corresponding to a sinusoidal displacement. 

The OOP was expressed in (1.24) as an amplitude modulation where the 

phase is given by Φ=2πνFτD. Moreover, similarly to traditional interferometry, the 

full swing of power matches to a half-wavelength displacement (considered 

theoretically as corresponding to a phase-shift of 2π). 

 ( )2 2 2D Dπν τ π λΔ = ⇔ Δ =  (1.25) 

A method traditionally used to retrieve the displacement with a basic 

resolution of λ0/2 is the fringe counting method based on considering that the 

number of saw-tooth like fringes is directly proportional to the displacement. It 

consisted in counting these power fluctuations and adding them with their proper 
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sign. For a motion in one direction, if N fluctuations are detected, the 

corresponding displacement of the target is theoretically given by D=N.λ0/2. It 

will be demonstrated later in this manuscript that this method should be limited to 

the weak feedback regime. 

On the other hand, the asymmetric shape of the saw-tooth like signal was 

experimentally observed  [22]- [29]. It was found that the influence of the variation 

of the refractive index on the feature of fringe inclination is related by the 

linewidth enhancement factor α in equation (1.17). It permits to directly recover 

the target direction of displacement ( Figure I.10). 

 
Figure I.10. Saw-tooth like fluctuations for a sinusoidal displacement. 

In order to compare, such information can be conventionally achieved with 

two interferometry channels. In the case of single-channel optical feedback 

interferometry the only optical component required is a lens used to collimate the 

laser source in the purpose of focusing the emitted light on the remote target 

showing the advantage of simplicity of these systems. 

Other methods for increasing the resolution of displacement measurement 

exist such as the phase demodulation  [30] that will be exploited in details in 

chapter II or like the use of extended Kalman filters  [31], the use of wavelets 

transforms or even genetic algorithms  [32]. 

I.4.2. Effect of The Speckle 

The speckle effect is an effect encountered when light is reflected by a 

diffusing surface, where the back-scattered beam shows a characteristic random 

texture ( Figure I.11). 
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Figure I.11. The randomly spotted texture of the Speckle effect. 

This spatial-coherence destruction of the beam is caused by the interaction 

with the diffuse surface roughness  [33]- [34] in two levels. First a specular 

reflection corresponding to a mirror reflection generating a very directive beam; 

and the a diffusing or Lambertian diffusion spreading the light uniformly in the 

space ( Figure I.12)  

 
Figure I.12. Emission diagram of a regular surface 

When the roughness of the target's surface is comparable to the emission 

wavelength then there will be a creation of elementary-sources diffusing back the 

light and interfering with each others causing the randomly spotted texture shown 

in  Figure I.11. Now the fluctuation between constructive and destructive 

interferences will induce a fading in OOP as shown in  Figure I.13. As only 

incremental measurement is achieved for displacement sensing, data can be lost 

because of a very poor signal-to-noise ratio, whereas within a speckle grain, the 

fringe visibility is still adequate to perform a measurement. 
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Figure I.13. OOP fading caused by the speckle effect 

In order to overcome this limitation caused by the speckle effect, many 

methods were developed such as bright speckle tracking systems  [35]. 

I.4.3. Increase of Resolution 

Different signal processing methods have been proposed to increase the basic 

resolution beyond half-wavelength. A fast modulation of the optical path 

difference of a feedback interferometer will modify the round-trip external delay. 

For example, this can be achieved by using the electro-optical properties of a 

lithium Niobate crystal acting as a phase modulator  [6]. Theoretically, N self-

mixing signals can be used and with phases spaced by 2π/N and sample them 

properly to reconstruct the displacement with a resolution of λ0/2N. 

Experimentally, a DSP card has been used for simultaneous monitoring in order 

to achieve a resolution of λ0/10 with 5 phase-shifts. This type of sensors has been 

used as a direct diagnostic tool to characterize fabricated microstructures like 

MEMS and MOEMs  [36]. A silicon vibrating gyroscope has been tested in order 

to tune the resonance frequency and maximize the quality-factor of the structure 

 [36]. The use of this sensor has then been extended to four-mass gyroscope and 

microresonators showing how feedback interferometry is suitable for 

characterizing silicon microstructures  [37]. A hybrid opto-mechanical gyroscope 

has also been developed with a MEMS-like mechanical resonator combined with 

this sensor for optical readout  [38]. A simplified version of this sensor consists in 

the linearization of the normalized optical power which has been approximated by 



Analysis of Self-Mixing Moderate and Strong Feedback Regimes for Mechatronics Applications. 

Joseph EL ASSAD  23 

an ideal saw-tooth signal  [39]. Even if there is no need for preliminary 

measurements of parameters, this solution is limited to moderate feedback but 

with a resolution of around λ0/12. 

I.5. Vibration Measurement 

Vibration measurement is essential in many mechanical or mechratonic fields 

where it can be used to minimize or eliminate the resultant vibration noise. There 

are also examples where the noise is not the key parameter, but rather a parameter 

for quality control of the manufactured products. For example, excessive vibration 

can damage the product, limit processing speeds, or even cause catastrophic 

machine failure. 

The study of self-mixing (SM) principle for the design of sensors in order to 

measure vibrations is reported since 1996  [40] where the small dimensions and the 

low-cost of such sensors are among the main practical reasons why researchers 

have concentrated their attention on this technique. 

Self-mixing sensors were privileged in this type of applications because of 

different facts such as its high sensitivity, large bandwidth and a large dynamic 

range up to 70 KHz and 100 dB  [41]. Moreover, it is able to function on different 

types of surfaces without any optical modulation and permitting equally to 

measure low frequency vibrations. The sensor developed in  [40] permitted to 

measure vibrations of approximately all types of surfaces with a bandwidth 

between 0.1 Hz and 70 KHz with a maximal peak to peak amplitude of 180 μm. A 

special algorithm was developed in order to analyze in real time the self-mixing 

signal permitting thereby to track the velocity variations of the target. 

In 2004, a self-mixing sensor used in piezoelectric transducers 

characterization  [42] permitted to measure the velocity and vibrations of solid 

targets with results comparable to those obtained by the conventional laser 

Doppler velocimeter (LDV). The technique used was similar to the one used in 

LDV where it was able to treat the signals even in presence of speckle with the 

simplicity of self-mixing sensors. 
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I.6. Velocity Measurements 

Velocity measurement is an essential parameter for safety and profitability of 

manufactured systems in different areas like aerospace, automotive, metallurgy or 

paper industry. In fact, there is an increasing need for remote sensing with rough 

targets in hostile environments or for in-line assembly processes as contact 

devices can ruin the items being measured. 

Non-contact measurements can be performed with ultrasonic or microwaves 

devices but with poor spatial definition and therefore optoelectronic systems are 

an alternative solution of great interest. LDV is a very accurate method extensively 

developed for surface speed measurements but it is expensive because it requires 

high stability of both optics and mechanics  [43]. An emerging method is the 

Tracking Laser Doppler Velocimetry (TLDV) which optimizes the tracking 

algorithm strategy compared to the LDV. Feedback interferometry presents the 

significant advantages of being compatible with a wide range of target 

characteristics (roughness, color …) still at a very low-cost. 

More recent application was the conception of an onboard velocity sensor 

using the self-mixing effect. Roughness of the target surface, wet target surfaces, 

non-controlled changes of incident angle, and speed vector vertical components 

have been considered during this development. A first prototype has been 

designed with an automotive application so to illustrate its feasibility. This low-

cost prototype presents an interesting basic performance. In order to improve the 

accuracy as well as the robustness of the system, a double-laser diode sensor has 

then been tested successfully by removing the influence of the pitching and the 

pumping effects  [44]. 

I.6.1. Physical Principle 

The technique of velocity measurement using self-mixing sensors is based on 

the Doppler-Fizeau effect  

 2 F
D

VF
λ

=  (1.26) 
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Where FD is the Doppler frequency that corresponds to the frequency of the 

saw-tooth like self-mixing signal and VF is the velocity of the target. In fact, 

velocimetry was the first application of the self-mixing effect as the first 

realizations were accomplished using a gas laser He-Ne  [4] and with CO2 lasers 

 [44]- [45]. However these sources were able to determine the Doppler frequency 

only in a reduced frequency span. 

It was until the mid 80's  [46] laser diodes were first used in weak feedback in 

order to determine the Doppler frequency with a spectrum analyzer or in 

moderate feedback in order to determine the movement direction through the 

peak inclination. 

Recently VCSELs (Vertical Cavity Surface Emitting Lasers) were used in 

velocimetry around their bias point  [47]. Although their signal to noise ratio 

(SNR) would have increased in their bistable mode but the signal in this case 

would lose his sawtooth like shape and will have instead a square shape causing 

thereby the loss of information about the displacement's direction. 

I.6.2. Measurement of Rotation Velocities 

The self-mixing sensors may be used also in order to measure velocities of 

displacements that are not necessary in the propagation direction where in this 

case the Doppler frequency is given by the following equation: 

 ( )2 cosF
D

VF
λ

= Ψ  (1.27) 

Where in this case, VF is the module of the velocity vector having ψ as an 

angle with the propagation direction. 

This Doppler frequency can be easily determined by applying a real time Fast 

Fourier Transform (FFT) to the self-mixing signal. However, this measurement 

will be strongly affected in the case of rough target's surfaces. A second order 

auto-regressive algorithm will then be applied to the SM signal in order to 

ameliorate the system resolution by a factor of 10  [48]. 
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I.6.3. Speckle Velocimetry 

Speckle as explained earlier was considered as a parasite effect degrading the 

efficiency of displacement measurement SM systems. 

However it may be used in order to measure the velocity of rough targets 

with a velocity perpendicular to the direction of the propagation, minimizing 

thereby the Doppler effect as ψ=π/2. When the surface will have a translation 

movement, a part of the beam will be reinjected inside the cavity and the speckle 

effect will cause a random variation of the OOP. It was shown in  [5] that, using 

two laser sensors, there will be a linear relationship between the autocorrelation of 

the speckle signal and the velocity of the rough moving surface. 

This type of sensors was used in order to determine the surface's roughness 

and to accomplish then a surface classification using a neural network  [5]. 

I.6.4. Medical Applications 

Self-mixing sensors were exploited in different medical fields because of their 

advantages previously exploited, especially their compact size and their ability to 

access to far measurement points without contact. 

In fact SM sensors were used in different medical fields. First of all the 

measurement of the velocity of the blood flow inside the arteries was performed. 

In this case, the laser diode will be pigtailed with an optical fiber that will be 

inserted inside the blood vessel with a catheter. Thereby, the beam will penetrate 

inside the blood flow and a part will be diffused by the blood cells with a 

frequency Doppler shift. The backscattered beam will then be mixed inside the 

active cavity with the lasing modes at their original frequency giving thus the 

Doppler velocity of these cells. Such sensor was used in order to measure the 

blood flow inside the pulmonary artery of a pig  [49]. These measurements along 

with the same blood canal enable the doctors to detect an irregular diminution of 

a blood vessel permitting them to perceive many deceases. Particular 

cardiovascular deceases may be detected where since the beginning of the 1960's, 

different methods were developed in order to measure the red cells velocity. 

However, their bandwidth, of approximately 3Hz, did not permit these sensors to 
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evaluate the blood velocity of animals with a high heart pace. By fixing the fiber 

optic of a SM sensor at the skin with a precise angle of 30o (i.e.) the blood flow (of 

a sheep i.e.  [50]) can be measured using equation (1.27). 

Moreover, a linear equation was found between the autocorrelation of the SM 

signal disrupted by the speckle and the human blood flow measured at the top of 

the finger  [51]. This was realized using only a laser diode, its control photodiode 

and a collimating lens without the need of any contact with the skin. 

Finally, self-mixing sensors were used in the detection of the muscular 

vibrations known as mechanomyography or MMG used in sport medicine in 

order to diagnose the neuromuscular deceases and the ageing of the muscular 

structure in order to avoid possible injuries  [52]. 

I.7. Absolute Distance Measurements 

In this type of sensors, and contrary to all the other types introduced in this 

manuscript, the injection current is not constant but modulated by a triangular 

signal. Thereby, in this case, the external cavity length can be constant, however 

the equivalent Fabry-Perot cavity's length will be modified because of equivalent 

variations of the active cavity's length caused by the current modulation. 

The first sensor of this type was conceived by Berheim and Fritsch in 1986 

 [53] having a resolution of 15mm over a distance of 1.5m. In 1998, the capabilities 

of the sensor were ameliorated using the Fabry-Perot laser diode LD64110N 

accomplishing thereby a resolution of 4mm over a measured distance of 3m  [7]. 

I.8. Conclusion 

The theory of self-mixing was introduced showing its advantages for different 

sensing applications such as displacement or velocity measurements. 

One of the main advantages of this type of sensors is the simplicity of the 

system which is being simplified more and more by using new light sources. For 

example, VCSELs present a low threshold current ideal for embedded systems. 

New self-mixing VCSEL sensors are now being conceived without a photodiode 
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where the variations of the OOP are monitored by looking directly at the changes 

of the voltage across the laser diode itself  [12]. 

First commercialized self-mixing sensors are newly launched by Philips 

through their "Twin-Eye" laser sensor  [11] adopted by different computer mice 

manufacturers such as the new high resolution A4tech gaming mouse or the 

Logitech V400 mouse  [54]. This same sensor would be implemented by Philips 

also in mobile phones  [55], PDAs or laptop computers in order to reduce the size 

and price occupied by usual inputs such as touch screen, mechanical joysticks or 

touch pads. 

As a conclusion, self-mixing is an emerging technique which is newly 

commercialized, proving its interest in terms of cost and simplicity for future 

mass-market applications ranging from medicine to transportation. 
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Chapter II. Analysis of a Self-Mixing Signal for 

Displacement Measurements Using a Laser 

Diode under Moderate Feedback  

II.1. Introduction: 

In the last two decades, several studies proved that the Laser Diode (LD) 

Self-Mixing (SM) interferometry is an innovative solution for different 

applications of vibration, displacement and velocity measurements  [2]- [25]- [42]-

 [56]. The simplicity of SM based sensors makes them very convenient for 

industrial use due to the ability of their integration into more complicated 

measurement systems. 

These sensors are based on the fact that when a moving target reflects or 

diffuses the light back, a part of this light is coupled back into the laser cavity, 

interfering thereby with the lasing beams and thus, inducing pseudo periodic 

variations of the Optical Output Power (OOP). As in classic interferometry, each 

peak of these variations corresponds theoretically to a λ0/2 of displacement where 

λ0 is the emitted wavelength under free running conditions. 

Looking back at equation (1.18), it can be seen that depending on the target's 

surface reflectivity, the distance separating the laser from the moving target and 

the emission power, different values of the coupling factor are possible. 

These variations of the coupling factor will be perceived through their effect 

on the shape of the variations of the OOP ( Figure I.8). These shapes will impose 

differences in the needed signal processing making thereby the measurement more 

complex. 

In this chapter, we will first remind the principles of the behavioral model and 

the phase unwrapping method used along this study. Then the effect, of both the 

linewidth enhancement factor and the coupling coefficient, on the shape of the 

self-mixing signal is studied along with the variations of C as a function of the 
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distance separating the laser and the target. Afterwards, the theory of loss of peaks 

in the moderate feedback regime is introduced and the number of peaks is studied 

as a function of different key parameters. Finally, the effect of this loss of peaks 

on both the fringe counting and phase unwrapping techniques is studied. 

II.2. Behavioral Model of LD under Feedback 

This model, conceived earlier  [57], simulates the behavior of a laser diode 

subject to different feedback levels caused by a target at a certain distance. In fact, 

this model will give at its output the self-mixing signal from the displacement, the 

linewidth enhancement factor and the coupling coefficient as inputs. Going back 

to the basic equations derived in chapter I, the phase equation (2.1) and the 

variations of the optical output power under feedback (2.2) are rewritten and two 

new variables, named xF(t) and x0(t), could be defined respectively in equations 

(2.3) and (2.4)  [57]. 

 ( )( )0 sin 2 arctan 0
2F F D

D

Cν ν πν τ α
πτ

− + + =  (2.1) 

 ( )( )0 1 cos 2F F DP P m πν τ= +  (2.2) 

 ( ) ( )
( ) ( ) ( )2 2

2F F
F

D t
x t t t

t
π πν τ
λ

= =  (2.3) 

 ( ) ( )
( ) ( ) ( )0 0

0

2 2
2

D t
x t t t

t
π πν τ
λ

= =  (2.4) 

This will enable us to rewrite equations (2.1) and (2.4), using these variables, 

respectively as follows: 

 ( ) ( ) ( ) ( )0 sin arctanF Fx t x t C x t α⎡ ⎤= + +⎣ ⎦  (2.5) 

 ( ) ( ){ }0 1 cos FP t P m x t⎡ ⎤= + ⎣ ⎦  (2.6) 

Now, equation (2.5) could be seen as an injective non linear relation G 

between xF(t) and x0(t) and could be expressed as follows  [57]: 

 ( ) ( )0 ; ;Fx t G x t C α= ⎡ ⎤⎣ ⎦  (2.7) 

However, the model will deduce the OOP variations, using equation (2.6), 

from the displacement, and hence x0(t). In fact, P(t) is expressed as a function of 
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xF(t) and thereby it is necessary to define a causal relationship between xF(t) and 

x0(t), this is the inverse function F=G-1: 

 ( ) ( ) ( )1
0 0; , ; ,Fx t G x t C F x t Cα α−= =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  (2.8) 

The previous equations derived in this paragraph may seem complicated not 

showing the transformations of the displacement into OOP variations. Thereby 

these equations will be described through a bloc diagram exploiting the behavioral 

model. 

First of all, in the case of weak feedback, i.e. C<1, the F function has only one 

solution and the value of the model can be described as follows  [57]. 

 
Figure II.1. Bloc diagram of the behavioral model in the case of C<1 

In the case of C<1, the look up table consists of a simple interpolator since 

the F function has only one solution in each case. When C increases, i.e. C>1, the 

F function will have more solutions and the value of k will have to be determined 

through an infinite set of comparators ( Figure II.2) in order to be able to deduce 

xF(t) and in this case the model can be described throughout the bloc diagram in 

 Figure II.3  [57]. 

 
Figure II.2. Comparator used in the bloc diagram of the behavioral model in the case of C<1 
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Figure II.3. Bloc diagram of the behavioral model in the case of C>1 

After deducing xF(t) from the bloc diagrams described previously in both 

cases, the OOP variations can be approximated by applying a cosine function to 

their outputs. 

It can be seen through equation (2.5) that the solution will depend on both 

factors α and C. Even thought the linewidth enhancement factor can be directly 

measured, previous studies showed that, for Fabry-Perot laser diodes, α has the 

only effect of translating the SM signal along the time axis without changing its 

shape  [57]. On the other hand, it is well-known that C has a fundamental effect on 
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the shape of the SM signal. Both these effects will be studied in details farther in 

this chapter. 

II.3. Phase Unwrapping Method 

The principle of phase unwrapping method is illustrated in  Figure II.4 and 

can be split up into two principal steps. The first one concerns the rough 

estimation � ( )Fx t  of xF(t), which is based on remarkable properties of solutions to 

the non linear phase equation (2.5). Actually it is shown in  [17]- [58] that xF(t) 

exhibits many discontinuities with phase jumps approximately (for large values for 

C) equal to 2π. Thereby � ( )Fx t can be retrieved by adding or subtracting 2π to 

xF(t), depending on the direction of displacement, every time a discontinuity 

occurs. After an Automatic Gain Control (AGC) normalizes P(t) making P(t)/P0 

ranging over the [-1,1] interval. An arc cosine function  is used to get xF(t) modulo 

π ( Figure II.4). Next the derivative of the arccos(P(t)) is thresholded ( Figure II.4), 

and converted to normalized transitions  by a transition detector ( Figure II.4). 

Then an integrator adds or subtracts 2π depending on the sign of the 

discontinuity. This phase correction is an approximation because the actual phase 

jump depends on C  [17]- [58].  

 
Figure II.4. The first step of the algorithm: (a) Normalized optical output power P(t), (b) arccos(P(t)/mP0), (c)derivative of 

arccos(P(t)/mP0), (d) Transitions and rough reconstruction of xF (t). 
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This estimation will be improved by the second step where the signal 

processing step deals with the joint estimation of C, α and D(t). The whole 

procedure is synthesized with the schematic block diagram shown in the following 

figure. 

 
Figure II.5. Complete bloc diagram of the phase unwrapping method. 

The algorithm is based on the idea that discontinuities caused by irregular 

movements of the target are considered far less frequent than discontinuities of 

P(t) and xF(t) due to the non linear behavior of equations (2.5) and (2.6). This 

hypothesis is realistic in mechatronics where the target, for example a piezoelectric 

transducer (PZT), is driven by a sinusoidal signal allowing it to move smoothly.  

In this case, equation (2.5) could be then rewritten as follows: 

 ( ) ( ) ( )0 sin 0F Fx t x t C x t tθ= + + ∀ >⎡ ⎤⎣ ⎦  (2.9) 

Where θ=xF(0)+arctan(α) is constant. Therefore it is possible to choose an 

optimal set of parameters � optC and $θ opt minimizing the discontinuities of the 

reconstructed phase � ( )Fx t with the Nelder-Mead simplex method, specified by the 

optimization of the criterion J(C,θ) expressed as follows  [59]: 

 ( )( ) ( ) ( )0 0min , min 1
n

Arg J C Arg x n x nθ = − −∑  (2.10) 

( ) ∈�0 ,x n n  being the discrete form of equation (2.5). 
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Figure II.6. Criterion J(C,θ) permitting to find the optimal couple (

ˆ
optC

,
$optθ ) 

This criterion depends on the instantaneous power of the reconstructed signal 

discontinuities. The optimized reconstructed phase x0(t) is then used to estimate 

D(t) through equation (2.4).  

II.4. Effect of The Linewidth Enhancement Factor 

The linewidth enhancement factor effect on the shape of the self-mixing 

signal is usually considered as a simple transition along the time axis in the case of 

Fabry-Perot lasers (4<α<7)  [57]. 

In fact,  Figure II.7 shows simulations of the self-mixing signal, using the 

model developed in  [57], for different values of α of 4 and 7 showing the 

insensibility of the shape of the self-mixing signal to α in the case of Fabry-Perot 

lasers, and thereby the signal processing method is not changed by variations of α. 
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Figure II.7. Self-mixing signal for different values of α=4 (in blue) and 7 (in red) 

II.5. Effect of The Coupling Factor C 

The previous study of the effect of the linewidth enhancement factor showed 

that α is more of a second order parameter in the case of Fabry-Perot lasers, and 

thereby in the case of this study where this type of lasers is used. However, the 

coupling coefficient introduced in equation (2.11) has a major effect, where the 

number of possible lasing modes, i.e. solutions of equation (2.5), is strongly 

affected by C. 

 21D

l

C τε ζ α
τ

= +  (2.11) 

Therefore, a deeper study of the effect of this coefficient was conducted 

where the  Figure II.8 shows simulations of different self-mixing signals for 

different values of C. 

Depending on the number of possible lasing modes, and thereby on the 

values of C, the self-mixing effect has been divided into different regimes of very 

low feedback (C=0.1), low feedback (C=1), moderate feedback (C=7) and strong 

feedback (C=30).  shows the self-mixing signal corresponding to the different 

values of C and the corresponding generating displacement having an amplitude 

of 8λ0/2 and a mean value of 1m. 
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 Figure II.8 shows the strong effect of the coupling coefficient on the shape of 

the self-mixing signal. For very low feedback the signal peaks (i.e. discontinuities) 

have a sinusoidal form. If C is increased, i.e. into the low feedback regime, the 

variations of the OOP are continuous and have a sawtoothlike shape. For larger 

values of C, the variations of the OOP begin to present hysteresis, typical 

symptom of the moderate feedback regime. The more the coupling coefficient 

increases and the more the hysteresis will be emphasized until arriving to a peak 

free signal for high values of C. 

  
Figure II.8. Simulations of a) the generating displacement having a peek to peek amplitude of 8λ0/2: D(λ0/2) and the self-mixing signal 

for different values of C b) C=0.1,c) C=1,d) C=7,e) C=30. 

The next figure shows a zoom of different parts of the  Figure II.8 showing 

for C=0.1 the sinusoidal peak, for C=1 the sawtoothlike peak shown also for C=3 

but this time with hysteresis. 
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Figure II.9. Effect of C on the shape of the peaks. 

All this can be explained by going back to the phase equation (2.5) where for 

0.1<C<1 the phase equation has only one solution and the laser emission remains 

singlemoded and a conventional saw-tooth like signal can be monitored. Now for 

1<C<4.6034, the laser can not be considered theoretically as a singlemode laser 

anymore because the phase equation can have up to five numerical solutions from 

which only three can match this relationship and may exist physically  [60]. As the 

system becomes bistable, one of the three solutions is always instable. Though the 

laser has a propensity to oscillate in the external cavity mode with minimum 

threshold gain  [61], it has been demonstrated that most of the power is in the 

mode with the narrowest linewidth  [62]- [63]- [64]. This is due to a longer duration 

of oscillation in this mode. Practically, such a property induces that only one 

among the three possible modes is lasing. Transition from one mode to another 

occurs as the phase condition is changed because the external round trip delay is 

slightly modified during the displacement of the target. The frequency separation 

between upward and downward mode hops depends on C  [65].  

Further increase of the feedback level (C > 4.6) corresponds to five potential 

lasing modes. Even if the criterion of mode hopping is unchanged, the spectral 

behavior of the laser becomes more complicated because of the increasing 

number of possible lasing modes. 
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On the other hand, this hysteresis effect can be explained considering the F 

function defined earlier in the case of moderate feedback where the following 

figure shows the numerical function and the effective physical behavior of xF(t) as 

a function of x0(t). This late, plotted in bold line, shows the mode hoping of the 

laser causing the hysteresis effect observed earlier in the self-mixing signal. In fact, 

when xF(t) arrives to the value where the derivative of the F function is infinite, it 

changes abruptly. If the temporal variation of D(t) is such as x0(t) passes from x0A 

to x0D and back to x0A, then the couple [xF(t), x0(t)] will follow the trajectory A, B, 

C, D, E F and back to A. The non linearities of the F function will induce a 

memory effect causing the hysteresis effect  [57]. 

 
Figure II.10. The F function showing hysteresis (C=3 and α=5): the numerical resolution of equation (2.5) in dotted pink line compared to 

the physical behavior of the laser diode in blue bold line. 

By observing the SM signal depicted in  Figure II.8, another characteristic of 

the moderate feedback signal can be observed. This can be noticed comparing 

figures a and b with figures c and d where the peaks on the high part of the signal 

(called “high peaks”) has an amplitude less than those on the lower part (called 

“low peaks”). In fact,  Figure II.11 presents the power as a function of the round 

trip time when the target approaches the laser (a) or moves away from it (b). 

The arrows show the physical evolution of the OOP whereas the plain line 

shows the phase equation presented numerically. It maybe seen that the plain line 

arrows are smaller than the dotted ones which explains that in a SM signal having 
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hysteresis, the “high” peaks are smaller than the “low” ones which will be also 

observed experimentally later in  Figure II.17. 

 

 
Figure II.11. Plot of  OOP as a function of the round trip time in the case of moderate feedback. 
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II.5.1.a. Variations of The Coupling Coefficient With 

The Distance: 

The coupling coefficient has proven to have a major effect on the self-mixing 

shape affecting thereby the different signal processing methods to be used in 

order to accomplish different measurements. Looking at equation (2.11), if 

everything is perfectly aligned C should be only limited by the coherence length of 

the laser. This is not the case in reality because different loss parameters will 

influence (and limit) its variations. Therefore a study of the variations of the 

coupling coefficient as a function of distance was accomplished through the 

following experiment. 

 
Figure II.12. Experimental setup. 

The experimental setup consisted of a LD mounted in front of a vibrating 

piezoelectric transducer (PZT) that could have been moved farther or closer, 

changing thereby the distance separating the LD and the PZT. An attenuator was 

added to the setup in order to keep C in the limitations of the SM behavioral 

model  [57]. In order to eliminate the fading due to the speckle effect  [66], an 

adhesive micro-prism surface was added on the reflecting facet of the target. 

The first experiment depicted the variations of the coupling coefficient as a 

function of distance; the resulting curve is plotted in  Figure II.13.  

Difficulties were caused by the mechanical alignment inducing the local 

variation of C on the reflecting surface of the PZT and required thereby to hit the 

same point of the surface at every data acquisition. This was accomplished by 

setting a reference point and pointing it each time a measurement was done. 

Attenuator 

 Displacement 
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Figure II.13. Variation of C as a function of the distance D0 with corresponding photos of the laser beam. 

 Figure II.13 shows that first, for short distances (less than 2 meters), C tends 

to increase with distance, which can be seen in equation (2.11) where the gain 

brought by τD (due to the increase of D) will be greater than the losses expressed 

by ε (generally considered as a constant from 0.16 to 0.5  [67]- [68]) and by the 

attenuation expressed in ζ. This will be sustained until a certain distance where C 

will reach its maximum value (limited in the case of this experiment to a value of 8 

because of attenuation). Then the losses will overtake the added gain causing the 

values of C to drop. 

Another augmentation in the values of C, caused this time by the shape of the 

collimated laser beam was observed at a distance around 3.5 m. This may be 

understood considering the different shapes of the beam spot shown in the 

photos added to the curve in  Figure II.13. In fact, at short distances the spot is 

ellipsoidal with its major axis directed vertically; it becomes more circular as the 

distance increases causing thereby more energy to be injected in the laser cavity 

and inducing a higher coupling coefficient. If the distance D is increased more, the 

spot will lose its circular shape changing back to the elliptical shape with a 

horizontal major axis this time. 

The experiment was repeated several times in different conditions.  Figure 

II.14 shows another repetition for short distances where a smoother beginning of 

the curve can be noticed. In this curve higher values of C were obtained because 

of the absence of attenuation, the peak value of C was, this time, around 140 cm 

being caused by the variation of the experimental conditions (i.e. temperature, 

attenuation, target …). 
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Figure II.14. Measurements of the coupling coefficient for short distances. 

As mentioned earlier, if the target is taken farther from the laser, losses 

become more important and C decreases more and more which is also shown in 

the  Figure II.15 representing another experience with different circumstances 

(room and junction temperature, attenuation and distances).  

 
Figure II.15. Measurements of the coupling coefficient for far distances. 

Again, the peak value of C, caused by the waist of the collimated beam, is 

observed this time around 4.7 to 5 meters shown clearly in the previous curve.  

Looking again at equation (2.11) it can be seen that C is also influenced by the 

surface of the target through different parameters such as ε and ζ. This was shown 
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through the following experiment where the variations of C for a given constant 

laser-target distance (D0=40 cm) was measured by translating the laser spot on the 

surface of an adhesive micro-prisms adhesive paper. The result is depicted in 

 Figure II.16 where variations of C between the values of 1.9 and 5 can be noticed. 

This will complicate any measurement requiring a constant value of C since it 

becomes very crucial to hit exactly the same point from the same distance. 

 
Figure II.16. Variation of C, for a constant D0, by translation from right to left of the laser spot on the micro-prism surface in function with 

the number acquisitions. 

II.6. Study of a Self-Mixing Signal under Moderate 

Feedback  

II.6.1. Observations in The SM Signal under Moderate 

Feedback: 

As mentioned earlier, the different SM signals presented in  Figure II.8 

correspond to the same displacement and were obtained just by changing the 

coupling coefficient. However, it can be noticed that the number of peak is not 

the same for all those signals although the displacement's amplitude was kept 

constant (10λ0/2) (i.e. for C=0.1 and 1 the number of peaks was 10 whereas for 

C=7 it dropped to 9 and for C=17 to 5). 

This "loss of peaks" was also observed in experimental signals as  Figure II.17 

shows. Signals in this figure, taken from the previous experiment depicting C as a 

function of distance, shows a diminution of the number of peaks from 3 peaks at 

the distance of 50cm where C=2.21, to 2 peaks at the distance of 173 cm where 

C=5 and farther to only one peak at the distance of 230 cm and a C=8.32 (same 
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for the distance of 250 cm and C=7.17). C was calculated using the method 

developed earlier in  [30]. 

 
Figure II.17. Experimental Signals Showing Peak Disappearance. 

This peak disappearance can be seen even better looking, in  Figure II.18, at 

the simulations of the F function for different values of C of respectively 2, 4, 12 

and 16 keeping always the same value of the displacement's amplitude and the 

same value of the initial laser to target distance. 

The following figure is another proof of the loss of peaks where looking at 

the discontinuities of the F function, that corresponds to the peaks of the SM 

signal, their number diminishes from 6 in the case of C=2 (corresponding to the 

3λ0/2 displacement), to 5, 3 and 2 in the case of respectively C=4, 12 and 16. 
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Figure II.18. Simulations of the F function for different values of C respectively of 2, 4, 12 and 16. 

Looking even closer at this loss of peaks issue, a displacement with an 

amplitude of 8λ0/2 having then 16 peaks in its self-mixing corresponding signal 

was simulated. The variation of the number of peaks due to different levels of 

feedback was studied for a continuous variation of C.  Table II.1 shows the values 

of C corresponding to the disappearance of each pair of peaks respectively (i.e. the 

Peak Nb. corresponds to the number of the pair of peaks disappearing). Since 

peaks are disappearing from both the upper and lower parts of the signal, the 

discussion will be conducted around the loss of pair of peaks and not peaks 

anymore. 

In fact, it was noticed that the peaks disappear each pair after the other, i.e. 

one peak from the upper part of the signal and the other from its lower part. In 

fact,  Figure II.19 shows the simulation of a self-mixing signal for a C=1 generated 

by a displacement having a peak to peak amplitude of a=8λ0/2 and the 

corresponding self-mixing signal for C=4. The first signal exhibits 16 peaks 

whereas the other signal shows only 14 peaks and that considering a displacement 

period meaning a peak disappeared from the upper side of the signal 

(corresponding to the target moving away from the laser) and another peak 

disappeared from the lower part (corresponding to the movement in the other 

direction). 
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Figure II.19. Pair of peaks disappearance. 

Peak Nb. C ΔC1 - ΔC’1 ΔC2 

1 2.7 2.7 
6.3 

2 6.3 3.6 

3 9.25 2.254 
6.354 

4 13.35 4.1 

5 15.5 2.15 
6.35 

6 19.7 4.2 

7 22.3 2.6 
6.2 

8 25.9 3.6 

9 28.5 2.6 
6.25 

10 32.15 3.65 

Table II.1. Consecutive peak disappearance for continuous variation of C. 

The values of C corresponding to the disappearance of ten peaks, noted in 

 Table II.1, shows that the first peak disappears for C=2.7 whereas the second 

peak disappears for C=6.3. Let ΔC1 and ΔC'1 be the needed feedback level to be 

added in order to make an odd or even numbered pair of peaks disappear 

respectively and ΔC2 the needed feedback to make two pairs of peaks disappear. 

Then, it can be noticed that for the disappearance of the odd numbered pair of 

peaks (pair of peak number 1, 3, 5, …), noted in italic, a feedback increase of 

ΔC1=2.46 was needed; whereas, for even numbered pair of peaks (in bold) a 

higher average value was needed (ΔC’1=3.83) giving us therefore an average step 

of ΔC2=6.29 needed for the disappearance of two pairs of peaks. 
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Moreover, in the self-mixing signal, a movement of amplitude n* λ0/2 will 

have 2*n peaks due to the movement in both directions. So, the disappearance of 

the last pair of peaks of a displacement (corresponding to the value of C noted 

Cm) with variable amplitude varying from λ0/2 to 20λ0/2 was studied and the 

results were depicted in the following table: 
Amp. (λ0/2) Cm Amp. (λ0/2) Cm 

1 7 11 70 

2 14 12 77 

3 20 13 83 

4 26 14 89 

5 33 15 96 

6 39 16 102 

7 45 17 108 

8 52 18 114 

9 58 19 121 

10 64 20 127 

Table II.2. Disappearance of the last pair of peaks of a displacement with variable amplitude varying from λ0/2 to 20λ0/2 

Looking back again at the difference between two consecutive rows it is 

possible to find again ΔC2 as this experiment comes back to looking at each of the 

disappearances of the following pair of peaks of a displacement of 20λ0/2. This 

experiment will reveal its importance during the study of strong feedback signals 

in the next chapter. However, it is interesting to look again at the average value of 

ΔC2 being in this case of 6.316, in the case of  Table II.2, showing approximately a 

quasi-constant value. 

Finally, considering the above results the step of disappearance of two pairs 

of peaks is quasi-constant and has an average value of ΔC2=6.3 (from both  Table 

II.1 and  Table II.2). Despite the difficulty of setting a threshold accurately for 

peak disappearance leading to a bad resolution, the results in both simulations 

were similar with a relative error less than 1%. 

II.6.2. Interpretation of The Peak Disappearance: 

Looking back at the F function it can be plotted again defining this time φ as 

the position of x0(t=0) relatively to the corresponding kπ-θ ( Figure II.20), it can be 

written as follows: 
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 ( ) ( ){ }2 0 int 0D t D tϕ π ⎡ ⎤= = − =⎣ ⎦  (2.12) 

Afterwards, the rising and falling edges of the F function (x0,R(k) and x0,F(k) 

respectively) can be defined as being the points where its derivative in equal to 

zero. This leads to the following expressions of x0,R(k) and x0,F(k) respectively 

 [57]: 

 ( ) ( )0 sinRx k k Cπ θ β β= − + +  (2.13) 

 ( ) ( ) ( )0 2 sinFx k k Cπ θ β β= + − − −  (2.14) 

Where ( )arccos 1 Cβ = − . 

Finally, x0(t=0) is the value of x0 corresponding to the displacement at t=0 

and am is also the corresponding amplitude of x0(t) caused by the variations of 

amplitude of D(t) a: am=a/2π. 

 

Figure II.20. Plot of function 
( ) ( )0 ; ,Fx t F x t C α⎡ ⎤= ⎣ ⎦  moderate or strong feedback 

This figure, shows that, for C>1, the F function can be conceived as a 

juxtaposition of different segments Curve (k-2), Curve (k), Curve (k+2),… with k an 

even integer  [57]. 

Now, in order to explain the disappearance of peaks; the opposite problem of 

peak appearance will be considered. In fact, a new pair of peaks appear when the 

amplitude variation of the phase x0(t) around φ exceeds x0,F(k-2) or x0,R(k) passing 

thereby to the next line corresponding to k-2 or k+2 consecutively causing a 
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discontinuity in the signal and generating thereby a pair of peak in the self-mixing 

signal. 

These conditions can be written successively as follows: 

 ( ) ( )0 02
2 2

F R mx k x k aϕ
− −

− ≤  (2.15) 

 ( ) ( )0 02
2 2

F R mx k x k aϕ
− −

+ ≤  (2.16) 

The equation (2.15) corresponds to variations of x0 exceeding x0F(k-2); 

whereas, equation (2.16) corresponds to x0 exceeding x0R(k). 

Then the limit condition for peak appearance can be written as follows: 

 ( ) ( )0 02
2 2

F R mx k x k aϕ
− −

± =  (2.17) 

Substituting x0R(k) and x0F(k-2) by their expressions defined respectively in 

(2.13) and (2.14) the limit condition expressed previously in (2.17) could be 

rewritten as follows: 

 ( ) ( )1 sin sin
2 2

mak C k Cπ θ β β π θ β β ϕ− − − − + − − ± =  (2.18) 

This can be expressed more clearly as follows: 

 ( )2 2 sin 2 mC aβ β ϕ+ ± =  (2.19) 

 ( )sinγ β β= +  (2.20) 

γ, defined in equation (2.20), is a non linear term that can be approximated 

using an asymptotic development as shown in the following equation: 

 
( ) 1sin

2 2

2

C
C

C

πβ β

π

+ ≈ + +

≈ +

Second Order Developpement

First Order Developpement
 (2.21) 

Considering a first order development equation (2.19) can be approximated as 

follows: 

 2 2
2 mC aπ ϕ⎛ ⎞+ ± ≈⎜ ⎟

⎝ ⎠
 (2.22) 

This last equation gives the approximate values of C corresponding to a peak 

appearance when exceeding x0R(k) (C1) or x0F(k-2) (C2). 
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1

2

2
2
2
2

m

m

aC

aC

π ϕ

π ϕ

− − +
=

− + +
=

 (2.23) 

With ( )0 sinCϕ β β≤ ≤ + . For C1 to exist am must satisfy the following 

condition ( )2 2 sinma Cπ β β≥ + +  where as for C2 it will be 

( )2 2 sinma Cπ β β≥ − − . 

It is to be noticed that if, 0ϕ = meaning that the variation of x0(t) is centered at 

kπ θ− , both the two pairs of peaks will appear at the same time which is logical 

considering  Figure II.20 because both x0,F and x0,R moves at the same speed. 

Next, the condition of appearance of the next pair of peaks will be 

considered, this will happen for: 

 ( ) ( )0 04 2
2 2

F R mx k x k aϕ
− − +

± =  (2.24) 

Leading to values of C (C'1 and C'2) that can be written as follows: 

 
'

1

'
2

5 2
2

5 2
2

m

m

aC

aC

π ϕ

π ϕ

− − +
=

− + +
=

 (2.25) 

It is possible now to calculate the equivalent feedback needed for the 

appearance of a pair of peaks or what was previously called ΔC2: 

 ' '
2 1 1 2 2C 2 6.28C C C C πΔ = − = − = ≈  (2.26) 

This expression can only confirm the observation of a constant ΔC2 made 

earlier and this independently from the different laser parameters like θ or k or 

even the initial conditions such as φ and the initial value of the coupling 

coefficient. This means that whatever the amplitude of variation of x0(t) (thereby 

displacement), whatever is the initial distance separating the laser diode and the 

target D0 (thereby C0 and φ) adding a feedback equivalent of 2 2C πΔ =  causes an 

extra pair of peaks to disappear from the SM signal. 

All these results were encountered throughout simulations using the model 

developed in  [57] where in both experiments ( Table II.1 and  Table II.2) the error 

encountered on the value of ΔC2 was 0.17% in the first experiment and 1.1% in 
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the second which is acceptable taking into account the difficulty of finding the 

exact value of C corresponding to the disappearance of peaks in both cases. 

Moreover, the first simulation was conducted for a D(t=0)=20mm, then the 

corresponding φ, calculated using equation (2.12), will be ( )0.707 2ϕ π= . As stated 

before, φ=0 or φ=2π corresponds to both pairs of peaks appearing (or 

disappearing) at the same moment which can be written as ΔC1=ΔC'1. Now if the 

relationship between φ on one side and ΔC1 and ΔC’1 on the other side is 

approximated by a linear relationship then it is possible to express ΔC1 and ΔC'1 

as follows: 

 
( )

1 1 1 1

0.707 22

' 1 ' 0.707

ifif

C C C C

ϕ πϕ π ⎧ == ⎫
⎪⎪⇔⎬ ⎨

⎪ ⎪Δ Δ = Δ Δ =⎭ ⎩

c c  (2.27) 

On the other hand, through simulations shown in  Table II.1 ΔC1/ΔC’1 had 

an average value of 0.643 instead of 0.707 leading to a relative error of 9% due to 

the imprecision of determination of the exact moment of disappearance of a pair 

of peaks and the approximation of linearizing equation (2.27). 

II.6.3. Effect of The Initial Position through φ 

The position relative to kπ-θ, φ, was defined in (2.12). Simulations showed 

that φ has no effect on the value of ΔC2, however, it affects the values of ΔC1 and 

ΔC'1 this means that it will affect the feedback level at which each of the two pairs 

of peaks will disappear within the 2π interval. 

n 

 φ=-π/3 φ=π 

C 
ΔC1 

ΔC’1 
ΔC2 C 

ΔC1 

ΔC’1 
ΔC2 

1 2.408 2.408  2.71 2.71  

2 6,730 4.322  6.451 3.741  

3 8.845 2.115 6.437 9.125 2.674 6.415 

4 13.052 4.207 6.322 12.773 3.648 6.322 

5 15.152 2.1 6.307 15.431 2.658 6.306 

6 19.348 4.196 6.296 19.069 3.638 6.296 

7 21.445 2.097 6.303 21.724 2.655 6.293 

8 25.635 4.19 6.287 25.358 3.634 6.289 

Table II.3. Simulations of the SM signal for a continuously varying values of C for two different values of D0 (φ) 
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In fact,  Table II.3 shows the simulation of the disappearance of eight 

consecutive pairs of peaks for two different values of φ=-π/3 and φ=π. This table 

permits to show the absence of any effect of φ on the values of ΔC2 and to show 

however its influence on the values of ΔC1 and ΔC'1. 

Investigating more this influence, ΔC1 and ΔC'1 were calculated through 

simulations with the same amplitude of displacement but with different values of 

φ as shown in the following table. 
φ ΔC1 ΔC’1 γ-φ 

0 6.3 6.3 6.3287 

π/5 1.32 5.05 5.4878 

π/4 1.61 4.76 4.713 

π/3 2.15 4.228 4.1892 

π/2 3.17 3.23 3.149 

3π/5 4.34 2.1 2.097 

2π/3 4.06 2.4 2.518 

π 6.4 6.2 6.295 

Table II.4. Different values of ΔC1 and ΔC’1 for different values of φ for a constant amplitude of vibration 

 Table II.4 showed calculation of γ-φ, where the value of C at which a pair of 

peaks disappears was considered in order to calculate γ and the mean value was 

considered. It can be observed through this table that ΔC’1≈γ-φ and ΔC1≈2π-γ+φ, 

this observation being made with a relative error of 2.4%. It is also to note that 

this effect was symmetric relatively to φ=0 where considering negative values of φ 

will give the same values as the ones obtained in  Table II.4. 

II.6.4. Mechanism of Peak Disappearance 

Now that the instance of disappearance in terms of feedback level is 

calculated, the next step is to look closer at the mechanism of peak disappearance 

in order to understand more how these peaks are disappearing. 

While investigating the mechanism of disappearance, it was observed that in 

fact there were two different mechanisms one for the odd numbered pair of peaks 

and the other for the even numbered ones. 

In fact,  Figure II.21 shows the disappearance of a pair of peaks from a SM 

signal generated by a 10λ0/2 displacement. The SM signal corresponding to a 
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C=2.42 is plotted with a plain line, to C=2.6 with a dashed line and to C=3 with a 

dotted line. 

 
Figure II.21. Odd numbered pair of peaks disappearance 

It can be seen that for the odd numbered pair of peaks the disappearance 

happens in the higher part of the signal where the two small peaks diminishes 

until disappearing completely as it is shown for the dotted curve. 

Whereas the following figure shows the disappearing of even numbered pair 

of peaks happening at the lower part of the curve. 

 
Figure II.22.  Loss of an even numbered pair of peaks from the lower part of the signal (C=4 plain line, C=6.99 dotted line and C=6.3 

dashed line) 

This figure shows how the peak will diminish continually as seen from C=4 to 

C=6.3 until disappearing and passing directly to the next peak as seen for C=6.99 
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leading to the loss of a peak in both the higher and lower parts of the signal and 

thereby a pair of peaks. 

Now looking at the effect of φ on the mechanisms of peak disappearance, the 

whole interval of variation of φ was considered i.e. between -π and π. As stated 

earlier, simulations shows a symmetry of the effect of φ according to φ=0. In fact, 

 Figure II.23 shows a comparison between the disappearance of the same pair of 

peaks in the cases of φ=π/2 and φ=-π/2 for the same value of C where the pair of 

peaks disappear from the upper part of the signal in the case of φ=π/2 and from 

the lower part in the case of φ=-π/2, confirming thereby the symmetry according 

to φ=0. 

 
Figure II.23. Comparison between the disappearance of a peak for both φ=π/2 and φ=-π/2 both for C=2.97. 

Looking now at where the missing peaks disappear, signals for φ=0 and for 

different values of C were simulated and plotted in  Figure II.24. 
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Figure II.24. Simulations showing time differences between consecutives peak disappearances. 

This figure shows that for C=5.5 (OOP having 6 peaks) the time occupied by 

the “zone 1” indicated in  Figure II.24 is 8.4*10-4s; whereas, for C=11.5 (having 4 

peaks) it is 11*10-4s and finally, for C=18 (having 2 peaks) it is 13.6*10-4s.  

On the other hand, the time occupied by one peak has an average value of 

approximately 1.32*10-4s. The difference between two consecutive disappearances 

(between C=5.5 and C=11.5 or between C=11.5 and C=18) is 2.6*10-4s 

corresponds to approximately double the time occupied by one peak. Thereby, it 

could be concluded that when the two pairs of peaks disappear (simultaneous two 

pairs since φ=0) half of them going inside the upper part of the signal 

corresponding to the change of the displacement's direction (zone 1) and the 

other half going to the lower part. Thereby, this part of the signal will not 

represent anymore only the excess fringes but will contain also all the disappeared 

peaks. 

II.6.4.a. Calculation of The number of Peaks in SM 

Signal: 

After establishing conditions of appearance/disappearance of peaks and 

understanding how these peaks appear or disappear the next step will be to 
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determine the number of pair of peaks (N) in a certain SM signal knowing the 

value of the corresponding φ and C. 

In fact, each time a discontinuity appears in the SM signal the number of pair 

of peaks N in increased by 1. Thereby, this number can be seen as equal to the 

number of intervals x0,F(k)-x0,R(k) (corresponding each to a signal's discontinuities) 

present in the variation interval of x0 corresponding to 0 2 mx a π±  ( Figure II.25). 

x0 can be written as follows: 

 ( ) ( ) ( )0
0

2 2 sin 2
2 m M

D t
x t k a f tπ π θ π π ϕ

λ
= = − + +  (2.28) 

Where fM is the mechanical vibration frequency whereas, φ can be seen as the 

mean value of x0(t) relatively to kπ-θ ( Figure II.20) which allows us thereby to 

calculate its mean value ( Figure II.25) as follows: 

 ( ) ( )
0

0

2
2

D t
x t kπ π θ ϕ

λ
= = − +  (2.29) 

 
Figure II.25. Calculation of the number of intervals x0,F(k)-x0,R(k) present in the variation interval of x0 corresponding to ±2aπ. 

Looking back at the expressions of x0,F(k) and x0,R(k) defined in equations 

(2.15) and (2.14), then, the expressions of kb and ke, numbers of the first and last 

segments of x0,F(k)-x0,R(k) completely included in the variation interval of x0, can 

be exploited as follows: 

 ( )2 2
2 2

2
m

b

k a
k floor

π ϕ γ π
π

⎡ ⎤− + + −
= + ⎢ ⎥

⎣ ⎦
 (2.30) 

 22
2

m
e

k ak floor π ϕ γ π
π

+ − +⎡ ⎤= ⎢ ⎥⎣ ⎦
 (2.31) 
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Where "floor" is the function giving the lower integer part of its argument, 

leading, finally, to the following expression of N: 

 1
2

e bk kN −
= +  (2.32) 

Equation (2.32) allows the calculation the number of pair of peaks and to 

study how N is influenced by the different parameters such as C, φ and the 

amplitude of displacement. 

First of all, the effect of C will be studied for a fixed amplitude of 

displacement and a fixed value of φ. As expected,  Figure II.26 shows a step 

function that diminishes by 2 every time C is increased by approximately 2π which 

confirms the theory developed earlier in equation (2.26). 

 
Figure II.26. Number of pairs of peaks N as a function of C for constant amplitude of variation and a constant value of φ. 

Furthermore, it was seen before that φ affects only the values of ΔC1 and 

ΔC’1 and not ΔC2 ( Table II.4). This is shown in  Figure II.27 where the whole 

interval of variation of φ was considered between -π and π. N was diminished only 

by one pair of peaks proving also the symmetry to φ=0. 
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Figure II.27. Effect of φ on the number of peaks. 

Another interesting information can be seen in this figure where if C 

increases, the first pair of peaks will disappear for smaller values of φ. 

Finally the effect of the displacement's amplitude was studied where it 

revealed to have a linear effect when C is constant since adding λ0/2 to the 

amplitude will add a pair of peaks to the SM signal. 

 
Figure II.28. Variation of N in terms of a and C 

It can be clearly seen that as C increases the number of peaks diminishes 

according to a step function whereas as a increases the number of peak increases 

also linearly. 
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Furthermore,  Figure II.29 shows the variation of N as a function of both the 

amplitude of displacement a and φ for a constant value of C (C=4). This figure 

shows once more the symmetry of the variations of N in respect to φ=0 where 

this figure is a linear repetition of the effect of φ for C constant presented in 

 Figure II.27, which is very reasonable regarding the purely linear effect of the 

variations of amplitude. 

Finally, an interesting information will be the combined effect, for a constant 

amplitude of displacement, of both the coupling factor C and φ.  Figure II.30 

shows both the effect of φ presented in  Figure II.27 and the step function 

representing the effect of C. 

 
Figure II.29. N as a function of both the amplitude of displacement a and φ for a constant value of C (C=4) 
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Figure II.30. Combined effect of C and φ on the number of peaks N. 

II.7. Application to Displacement Measurements 

As mentioned earlier, a variation of C of 2π (2.26) causes two pairs of peaks 

to disappear (or appear), each of them disappearing (or appearing) for even 

smaller variations of the coupling coefficient (as low as C=1.32  Table II.4). This 

will reduce seriously the resolution of fringe counting techniques since each peak 

has to represent a target displacement of λ0/2 which is not the case anymore in 

most cases  [69]. 

In industrial mechatronic applications, such as vibration measurements, 

keeping D0 constant or hitting exactly the same point of the sensed surface is not 

realistic at all. Thereby, since both these conditions affect the coupling coefficient, 

fringe counting techniques are practically unusable in this type of applications. 

This means that the measurement error of the previously discussed sensors will be 

increased by λ0/2 each time a pair of peaks disappears.  

This section illustrates a method enabling to measure a displacement even 

when the above-mentioned mechanism of appearance/disappearance occurs, i.e. 

when the number of peaks of the OOP is no more proportional to the number of 

half-wavelength displacements. 
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This method is based on the fact that when peaks disappear the SM signal is 

following directly the displacement of the target ( Figure II.31) and that the 

disappeared peaks will be present inside the pointed parts of the signal as shown 

previously in  Figure II.24.  

 
Figure II.31. Simulations showing how SM signal follows the displacement (having an amplitude of 4λ0/2) while losing peaks. 

Then, all the remaining peaks will be detected by unwrapping the phase of the 

signal, i.e. with a threshold detection of the derivative of arccos(P(t))  [30] or when 

the signal is noisy, by using a continuous wavelet transform  [70]. Each detected 

peak corresponds to a half-wavelength displacement as in usual fringe counting 

methods. The difference resigns in adding this integer number of λ0/2 

displacements to the part of the signal called “zone 1” in  Figure II.24 including 

both the excess fringe (i.e. the fraction of λ0/2 as the amplitude of displacement 

has no reason to be exactly equal to an integer number of λ0/2) and the 

disappeared peaks present in the pointed part of  Figure II.31. 

Furthermore a detailed study of the theoretically simulated effect of the 

changes of C on the measurement error of the described method is plotted in 

 Figure II.32 

This figure compares this error to the added error in the case of fringe 

counting techniques clearly showing the large difference between the two 

compared errors. Considering in example the case of C=8 the error encountered 

in the phase unwrapping method is approximately 92nm whereas the additional 

error caused by the peak disappearance is λ0/2 for φ=π/2 and λ0 for φ=0 in the 

case of the fringe counting technique. 
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Figure II.32. Comparison between the additional error due to peak disappearance in fringe counting techniques and the simulated theoretical 

error of the above discussed method. 

On the practical side,  Figure II.33 shows two of the experimentally acquired 

samples. These samples correspond to acquisitions having different values of C 

but corresponding to the same displacement amplitude of 9.562 µm as detected by 

a capacitive sensor with a resolution less then 2 nm. These samples show different 

numbers of peaks corresponding for an increasing C where the number 

diminishes from 25 to 20. 

 
Figure II.33. Experimental samples of acquired OOP signals showing lost of peaks. 
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 Table II.5 shows the different amplitudes as detected by the described 

method compared with the ones measured by the capacitive sensor for an 

experiment of 10 acquisitions. 

Table II.5. Comparison between the amplitude of vibration between the capacitive sensor and the described method 

It can be seen in this table, that the average measurement error is 

approximately 3.27% corresponding in this case to 0.312 µm. On the other hand, it 

can be clearly seen that the number of peaks varies from 25 down to 20 meaning 

that the resolution in the case of fringe counting techniques would has been 

degraded in 30% of the signals corresponding to signals with 24 peaks by λ0/2 (i.e. 

0.3925 µm), in 20% of the signals corresponding to signals with 23 peaks by 2λ0/2 

(i.e. 0.785 µm), in 10% of the signals corresponding to signals with 21 peaks by 

4λ0/2 (i.e. 1.57 µm) and in 30% corresponding to signals with 20 peaks by 5λ0/2 

(i.e. 3.925 µm). 

Finally only in 10% of the acquisitions the number of peaks was directly 

proportional to the displacement showing that the fringe counting technique can 

be no more used for displacement measurements leading to an average error of 

approximately 1.61 µm. 

II.8. Conclusion 

Many idiosyncrasies in experimental moderate self-mixing signals for 

displacement measurements were observed, studied and explained in this chapter. 

C N 
Amp.  

SM 

Amp.  

Capa 

SM/ 

Capa. 

Error 

(%) 

28.6 20 23.087 9.557 2.4157 3.9 

11.73 23 23.982 9.583 2.5025 4.1 

9.82 23 23.981 9.583 2.5024 4.2 

4.13 25 24.674 9.557 2.5817 2.7 

26.96 20 23.4672 9.557 2.4555 2.3 

23.57 20 23.6052 9.557 2.4699 1.7 

25.08 21 23.5027 9.583 2.4525 2.4 

3.76 24 24.8865 9.557 2.6040 3.6 

4.28 24 24.8007 9.557 2.5949 6.3 

7.93 24 24.3065 9.531 2.5503 1.5 

  24.0292 9.562 2.5129 3.27 
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First, the problem of peak disappearance was brought up through 

experiments, simulations and a complete interpretation as it was shown that an 

increase of C by 2π would cause two pairs of peaks to disappear, all of this with 

errors less than 1.5%. This will have major effect on self-mixing displacement 

sensors as the fringe counting methods will not be very accurate anymore for 

moderate or strong feedback regimes. 

Then the experimental variation of this coupling factor was depicted showing 

the influences of the distance to the target, the total external cavity losses and the 

roughness of the target surface showing that keeping C constant in vibration 

measurements is not realistic at all. 

Afterwards, it was shown that the phase unwrapping method, described 

above, permits to reduce the displacement measurements errors to 3.27% 

approximately when a peak of the optical output power does not correspond 

anymore to a half-wavelength of displacement. 

Moreover, the strong feedback, defined by a complete disappearance of the 

sawtoothlike variations of the optical output power, was proven to be not only 

due to the coherence collapse of the laser (i.e. when C is high) but also to depend 

on the displacement amplitude of the target, and thereby maybe encountered for 

low values of C in the case of small amplitude displacements ( Figure II.30). As a 

consequence, as it will be shown in the next chapter, a laser under strong feedback 

(after the complete disappearance of its peaks) would also be able to measure the 

relative displacement of a target even without the need of any signal processing 

algorithm if this regime can be maintained long enough  [71]. 
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Chapter III. Strong Feedback Regime 

III.1. Introduction 

In the previous chapter, it was shown that the number of pairs of peaks in a 

self-mixing signal will diminish by two every time the coupling factor C is 

increased by 2π.  Figure II.8 illustrated this peak disappearance effect and especially 

the last part of this figure shows a peak free signal following exactly the 

displacement. This corresponds to a laser in the strong feedback regime where no 

interferometric discontinuities remain. In this case, the laser accomplishes a sort 

of an injection detection of the time of flight between the laser and the target. 

Generally, sensing applications using the self-mixing effect were developed in 

the weak  [72] and moderate  [59] feedback regimes. The strong feedback has also 

been investigated for angle measurement  [73], demonstrating for the first time 

that a laser can even be used for sensing purposes in this regime reputed for its 

instability. This regime has the advantage of giving a real time image of the 

displacement having exactly the same frequency and an amplitude proportional to 

the one of the displacement itself without the need of any signal processing. 

Displacement self-mixing sensors operating in this regime are developed for the 

first time. Thus they revealed to be very attractive for a wide range of applications 

such as the real time modal analysis or real time relative displacement 

measurement  [71]. 

The first part of this chapter will present the so called strong feedback regime 

studying the peak free signals and simplifying the behavioral model in the 

particular case of this regime in order to demonstrate the statistical aspect of this 

type of signals analytically and through different simulations and experiments. 

The second part, will introduce a conception and characterization of a relative 

displacement sensor in terms of linearity and total harmonic distortion through 

different simulations and different experiments. 
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III.2. The Self-Mixing Signal in The Case of Strong 

Feedback 

III.2.1. Variable Changes and The Rewriting of The Self-

Mixing Equations 

As stated before, the emission wavelength's fluctuations can be found by 

solving the phase equation (2.5)  [57]- [59]- [74]: this can be rewritten as follows 

doing a simple change of variables: 

 
( ) ( ) ( )
( ) ( ) ( )

0 0 arctan

arctanF F

X t x t

X t x t

α

α

= +

= +
 (3.1) 

 ( ) ( ) ( )( )0 sin 0F FX t X t C X t t= + ∀ >  (3.2) 

xF(t) and x0(t) being defined respectively in equations (2.3) and (2.4). C was 

defined in equation (2.11) showing that the only parameter depending on the 

target's surface is ζ. 

Moreover the variations of the OOP due to the feedback can be now 

rewritten as follows: 

 ( ) ( ) ( )( )( ) ( )1
0

1 cos tan '
F F

P t P m X t P P tα−= + − = + %  (3.3) 

Where P' and � ( )P t  represent respectively the constant and time variant parts 

of the emitted power. 

 � ( ) ( ) ( )( )0 cos arctanFP t mP X t α= −  (3.4) 

III.2.2. Strong Feedback Signals (Peak Free Signals) 

It was shown before, that increasing the feedback level by 2π will make two 

pairs of peaks disappear (equation (2.26)). It could be imagined then, that at a 

certain feedback level, sufficiently high, the self-mixing signal will not have any 

peaks left. 

In fact  Figure III.1 shows simulations of different SM signals generated by the 

same displacement (2λ0/2) where as expected for C=1 the signal has 4 peaks 

where for C=7 it has only 2 peaks and for high values of C (i.e. C=17) it has no 
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peaks left. The laser diode performs then a sort of injection detection process 

sensitive to the variations of the round trip power attenuation in the external 

cavity for the strong feedback regime. 

 
Figure III.1 Simulations of the SM signal generated by D(t) for C=1 (4 peaks), C=7 (2 peaks) and C=17 (0 peaks)  

Thereby, the OOP will have the same shape and frequency as the 

displacement with an amplitude proportional to its amplitude; this is illustrated in 

 Figure III.2 that shows the SM signal following different shapes of the generating 

signal and  Figure III.3 that shows simulations for different amplitudes of 

displacement proving that the SM signal's amplitude is proportional to the 

displacement's amplitude. 

 
Figure III.2 Simulations of strong feedback SM signal generated by different shapes of displacements. 
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Figure III.3 Simulations of strong feedback SM signal generated by displacements with different amplitudes (a). 

Actually, it was shown that this sinusoidal signal proportional to the target 

displacement can be obtained for low values of C if the displacement has a 

sufficiently small amplitude (a). In fact  Figure III.4 shows the minimum feedback 

needed in order to have a peak free OOP corresponding to different amplitudes 

of variation of D)t)  [71]. 

 
Figure III.4 Feedback corresponding to peak free OOP signal for different amplitudes a. 

This figure shows the values of C giving a peak free signal for each amplitude 

of displacement (a). As an example for a displacement of amplitude around λ0 (i.e. 
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0.785μm in our case) a feedback corresponding to a C of 5.25 is enough to have a 

peak free OOP or even for an amplitude of displacement of 3λ0 (i.e. 3.55μm in our 

case) a feedback corresponding to a C of 18 is needed. It is to be noted that these 

values of C are a function of the distance D(t=0)=D0 through φ and may vary 

according to its changes where  Figure III.4 was plotted for φ=π/4. 

III.2.3. Theoretical Behavior Model of a Laser under Strong 

Feedback 

Now, considering small fluctuations of xF(t) around kπ  and high values of C 

corresponding to the strong feedback regime ( Figure II.20), the equation (3.2) can 

be approximated by a first order Taylor development as follows: 

 ( ) ( ) ( )( ) 0
0 1F F F

X CkX t X t C X t k X
C

ππ +
+ − ⇒

+
� �  (3.5) 

Then, substituting XF by its expression into equation (3.4), � ( )P t can be 

expressed as follows: 
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0 1
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sin tan
1 1
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α

−

−
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+

%
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 (3.6) 

Substituting now X0(t) by its expression in equation (3.6), ( )P t% can be written 

as follows: 
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( ) ( )

( )( ) ( )
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1

0
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1
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4 sin tan
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−
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⎢ ⎥−
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⎢ ⎥
⎢ ⎥+⎣ ⎦

%% %  (3.7) 

Equation (3.7) points out the linear relationship between the displacement 

D(t) and the OOP fluctuations ( )P t%% in the case of strong feedback and small 

amplitude regime. Considering equation (1.23), m can be rewritten as follows  [51]: 

 0m m ζε=  (3.8) 
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Where m0 is the proportionality coefficient of m to ζ and ε. Then using the 

expression of C from equation (2.11) it is then possible to write �� ( )P t  more 

explicitly 

 

( )
( ) ( )( )

( ) ( )( ) ( )

1
0

0

1
0 0

2
2

0

4 sin tan

4 sin tan

1D

l

mP D t
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m P D t
D t M

π α

λ
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τλ α
τ

−

−

= =
+

%% �

 (3.9) 

M2 is the conversion factor permitting the transformation of the OOP 

variations detected into a displacement of the target when the laser is under strong 

feedback. 

It can be noticed that theoretically this parameter depends on the nature of 

the laser diode (α, τl and m0) and on the initial conditions (P0, λ0, τD and xF(0)) but 

does not depend on the surface reflectivity (κext) nor the coupling efficiency γ.  

A self-mixing signal corresponding to a rather high optical feedback (C=8) 

relatively to the amplitude of vibration (λ0/2) is simulated using the behavioral 

model  [57] and equation (3.9) in  Figure III.5. 

 
Figure III.5 Simulations of self-mixing signals corresponding to a sinusoidal displacement of an amplitude of λ0/2 and a C=8 

using equation 8 (dotted line) and the behavioral model developed in  [57] (plain line). 

This figure verifies that the previous approximations made in order to obtain 

equation (3.9) are applicable for relatively high values of C and small 

displacement's amplitudes. 
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Moreover, different simulations of calculations of the conversion factor M2 by 

varying the coupling coefficient were accomplished and traced in blue in the 

following figure. On the other hand, looking back on equation (3.9) it can be seen 

that it is has hyperbolic variation in respect to C. This equation was reported in 

the following figure after normalization to mP0. It can be seen that when C 

increases the red curve rejoins the blue ones asymptotically. However, it is to be 

noted that the values of C needed to be sufficiently high (C=10) in order to 

validate the approximations made in equation (3.9) whereas physically lower 

values of C are sufficient ( Figure III.4). 

 
Figure III.6 M2 as a function of C obtained by the behavioral model in blue and by equation (3.9) in red 

III.2.4. Statistical Aspect of The Variations of The OOP 

Different simulations using the model developed in  [57] showed that the 

linear relationship between ( )P t%%  and D(t) had a statistical aspect when 

considering the amplitude of the OOP variations for the same amplitude of 

displacement ( Figure III.7). On the other hand, this figure showed that the 

frequency of the OOP followed exactly the displacement frequency. 
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Figure III.7 Repetitions of the simulation of the same sinusoidal displacement showing the statistical aspect of the OOP 

variations amplitude. 

In order to illustrate explicitly this statistical aspect, the equation (3.4) is 

considered again and the expression of ( )P t% is rewritten substituting XF by its 

expression in equation (3.5). 
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cos tan
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C
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⎛ ⎞+

= −⎜ ⎟⎜ ⎟+⎝ ⎠
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This expression can be approximated using a Taylor first order development 

around X0(0)=X0(t=0). 
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With k0 the number of the curve segment of the function F(t) chosen at t=0 

( Figure III.8). 

Considering back now the expression of ( )'P t%% , it may be rewritten as a 

function of the displacement when both X0(t) ((3.1)) and x0(t) ((2.4)) are 

substituted by their expressions: 
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Where ( )D t% is the instantaneous displacement reported to D0 i.e. 

( ) ( ) 0
D t D t D= −% ; D0 being the initial laser to target distance at t=0. When 

considering that the displacements are sinusoidal and that the target is not moving 

at t=0, then D0 corresponds also to the mean value of distance around which the 

target is moving. 

 
Figure III.8 XF(t) as a function of X0(t) (F function). 

This expression gives another expression of the conversion factor 

( ) ( )%% %
2

M =D t P'' t between the OOP variations and the displacement as follows: 
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 (3.13) 

This factor has a double statistical aspect caused by both D0 and k0. In fact, 

when the laser is turned on the target is at an unknown statistical distance D0 

which sets the first statistical variable. Once D0 is set (i.e. X0(0)), the laser will lock 

on one of the different segments fixing thereby statistically k0 ( Figure III.8).  

Moreover, in the case of strong feedback with high values of C the traditional 

shape of the function F is replaced by a group of quasi-parallel quasi-horizontal 

lines as represented in  Figure III.9. 
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Figure III.9 F function for different values of C 

Since the displacement has a small amplitude, it is possible to assume that 

after triggering on one of the different triggers (i.e. one of the parallel lines) the 

laser will stay on this trigger as long it is not turned off. In fact, once the laser is 

powered, x0(t=0) will be fixed through D0. Then the laser will fix a triger k0 (and 

keep it), and thereby M2, chosen initially in an arbitrary manner, will be kept after 

that constant. 

III.2.5. Statistical Study of M2 

It was stated before that k0 is chosen arbitrary when the laser is powered. 

However, k0 will be chosen from a finite number of triggers to which X0(0) 

belongs ( Figure III.8). Calculating the width of a trigger  [57], it is given by     

x0,R(k)-x0,F(k-2) which are defined by equations (2.13)  [57]: 

 
( ) ( )
( ) ( ) ( )

1
0,

1
0,

tan

2 tan
R

F

x k k

x k k

π α γ

π α γ

−

−

= − +

= + − −
 (3.14) 

Where ( ) ( )( )-1 -1γ=cos -1 C +Csin cos -1 C , leading to a segment width of 2γ.  
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In order to calculate the number of the possibilities N' that may be chosen by 

k0 the following condition must be satisfied: 

 
( ) ( ) ( )
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1 1
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 (3.15) 

k1 and k2 being the first and the last values of k corresponding to peak free 

signal. γ can be approximated using an asymptotic development to the first order 

as ≈γ C+ π 2 . This approximation allows us to deduce both k1 and k2 and thereby 

N’ as follows: 
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−
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Where floor(x) is a function that gives the lower integer part of a decimal. 

Based on this statistical theory and on equation (3.13) a model was conceived 

in order to calculate the M2 factor. The statistical variable D0 was approximated by 

a Gaussian variable whereas k0 was approximated by a uniformly distributed 

variable limited between k1 and k2. The validity of this choice will be justified 

farther in this study. 

 Figure III.10 shows an histogram obtained by this model for a C=9. It shows 

the combined effect of both Gaussian and uniformly distributed variables where a 

certain repetition of a Gaussian distribution may be visualized. 

The effect of both random variables is more or less accentuated by the values 

of C. It can be seen that if C has a small value the effect of D0 is more important 

where the histogram shown in  Figure III.11 simulated for C=5 shows a quasi-

Gaussian distribution. 

 



Analysis of Self-Mixing Moderate and Strong Feedback Regimes for Mechatronics Applications. 

Joseph EL ASSAD  77 

 
Figure III.10 Histogram obtained by simulation for a C=9 using the previous model. 

 
Figure III.11 Histogram obtained for C=5 

When the value of C increases, simulation histograms showed a combined 

effect of both random variables ( Figure III.10). If very large values of C are 

considered the effect of D0 is attenuated and the effect of k0 overtakes (3.13) 

where  Figure III.12 shows an histogram simulated for a C=300. 

 Figure III.13 shows a typical histogram for a 1/sin(u) random variable where u 

is a uniform random variable. The resemblance between  Figure III.12 and  Figure 

III.13 can be understood looking back at equation (3.13) considered for high 

values of C. 
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Figure III.12 Histogram obtained by simulation for a C=300 using the previous model. 

 
Figure III.13 Histogram of 1/sin(u) where u is a uniform random variable 

The effect of the wavelength and the distance on the histograms of M2 can be 

obtained through simulations. First, it can be seen, by comparing  Figure III.14 

and  Figure III.15 that the wavelength has no major effect on the shape of the 

probability distribution nor on the values of M2 obtained. 
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Figure III.14 Histogram for a M2 with λ0=785nm and D0=1m 

 
Figure III.15 Histogram for a M2 with λ0=1300nm and D0=1cm 
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Figure III.16 Histogram for a M2 with λ0=785nm and D0=40cm 

On the other hand,  Figure III.14 and  Figure III.16 shows the effect of the 

distance, relevant in terms of values of M2 encountered which were significantly 

modified. It is however of less importance in terms of shape of the probability 

distribution which is essentially modified by the values of C emphasizing the 

dominance of k0 or x0(0) as stated earlier. 

It is to be noted that this statistical aspect remains in moderate or weak 

feedback. In fact,  Figure III.17 shows a simulation of the F function for the same 

values of C=5 and a=3 but k0 and D0 were simulated, as previously, by a Gaussian 

variable and a uniformly distributed variable respectively. 

This figure shows that in this case the number of discontinuities is the same 

in both cases. The only difference is that right and left parts of these simulations 

were not the same. However, the addition of both these parts is approximately the 

same ((189.6-187.9)+(225.5-222.4)=1.7+3.1=4.8s) for the first simulation and 

((38.82-35.76)+(73-71.66)=3.06+1.34=4.4s) for the second one. 
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Figure III.17 F function for statistically varying k0 and D0. X in this figure represents the value of x0 and Y the value of xF. 

Investigating this issue further, the OOP corresponding to these simulations 

was plotted in the  Figure III.18 and the time occupied by the humps (pointed 

areas) was calculated ((4.854-4.658)=0.196s and (5.362-5.156)=0.206s for the 

humps of the first simulation, (4.833-4.682)=0.151s and (5.343-5.18)=0.163s for 

the second simulation. Looking at the respective differences (0.196-0.151=0.045s 

and 0.206-0.163=0.043s) it can be seen that it is the same in both cases meaning 

that what diminishes in one hump is found in the other if D0 and k0 are varying 

statistically. Moreover the amplitude of this hump is approximately the same in 

both cases (0.9085-0.4796)+(0.4796+0.9978)=0.4289+1.4774=1.9063 for the first 

simulation and (0.907-0.03863)+(0.03863+0.9997)=1.9067 in the case of the 

second simulation. 

Looking back on how the displacement is reconstructed by the phase 

unwrapping method ( II.3) it can be seen that this statistical effect will not have an 

influence on the reconstructed displacement if no peaks were lost. The 

reconstructed displacement corresponding to the previous simulations is plotted 

in  Figure III.19. This figure shows the displacements corresponding to the 

previous simulations reconstructed by the phase unwrapping method developed in 

 [59]. It can be seen that both displacements are similar where both overlaps one 

over the other. 
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Figure III.18 OOP for statistically varying k0 and D0. X in this figure represents the time and Y the amplitude of the OOP. 

 
Figure III.19 Reconstructed displacements for statistically varying k0 and D0 

It is to be noted that variations of D0 (i.e. φ) may induce the disappearance of 

only one pair of peaks ( II.6.3) but this will not affect seriously the resolution of 

the phase unwrapping method where it was shown previously ( II.7) that the 

relative error will be around 3.27% in this case ( Figure II.32). 
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III.3. Experimental Statistical Study 

Different experiments were made in order to understand better the variations 

of M2. The first experiment, shown in  Figure III.20, consisted of a rotating shutter 

placed between the laser diode and the PZT (separated by approximately 100cm) 

cutting the beam completely because of its dark rough surface resetting thereby 

both statistical variables. 2000 measurements were achieved with the SM sensor 

and validated using a capacitive sensor installed inside the PZT. They were 

acquired using a 16 bit acquisition card during an eleven hours experiment. The 

real difficulty in this experiment was to find the convenient rotation speed of the 

shutter so the signal processing unit has the time to accomplish the acquisition. 

 
Figure III.20 Experimental setup 

 Figure III.21 shows the histogram of the experimentally measured values of 

M2. This figure shows similarities with  Figure III.10 in terms of statistical 

distribution (i.e. the mixed effect of both k0 and D0) and especially the occurrence 

frequencies. On the other hand, the values of M2 encountered in this figure were 

modified because of the sensibility of the control photodiode and the gain of the 

electronic circuit. 

Signal Processing 

Laser Rotating shutter 

M2

PZT
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Figure III.21 Experimental histogram obtained throughout 2000 measurements of M2. 

This experiment was repeated in  Figure III.22, with this time 2500 

acquisitions lasting for 15 hours approximately and the result was similar to the 

one obtained in  Figure III.21 with the mixed effect of the Gaussian D0 and the 

normally distributed k0. 

 
Figure III.22 Experimental histogram obtained throughout 2500 measurements of M2. 
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III.4. Feasibility of The Sensor under Strong Feedback 

It was shown previously through simulations that the laser, under strong 

feedback, will accomplish a sort of injection detection following exactly the 

displacement in terms of amplitude and frequency. This will also be shown 

through different experiments using the experimental setup of  Figure II.12.  Figure 

III.23 shows the FFT of the different SM signals generated by displacements 

having different frequencies of 330, 500, 800 and 1000 Hz. This figure proves 

experimentally that the SM signal follows the displacement at exactly the same 

frequency where the counter-measurement was made by a high resolution 

capacitive sensor mounted inside the PZT itself. 

Moreover,  Figure III.24 shows the response of the laser to different excitation 

signals like sinusoidal, triangular and square. Both time and frequency domains are 

verified, and both showed very high correspondence with the counter-

measurement accomplished this time by a fibered sensor by Philtec. 

 
Figure III.23 FFT of the displacement given by both the SM sensor (grey) and the capacitive sensor (black) for different excitation 

frequencies. 
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Figure III.24  Experimental results for different shapes of excitation 

Next the linearity of the sensor was tested as the  Figure III.25 shows the 

measured displacements for a sinusoidal excitation signal and amplitudes of 1, 2, 

4, and 5V the resulting measured power is in the next table. 

 
Figure III.25 Reconstruction of the displacements fir excitations of 1, 2, 4 and 5V. 
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 Table III.1 shows in bold the theoretical proportions of the amplitude of the 

driving signals while in italic are reported the proportions of the amplitudes of the 

OOP. 
Amplitudes 

(a.u.) 
0.30767 0.5277 1.1323 1.4049 

0.30767  0.5 0.25 0.2 

0.5277 0.583  0.5 0.4 

1.1323 0.272 0.466  0.8 

1.4049 0.219 0.376 0.806  

Table III.1. OOP’s amplitudes obtained for sinusoidal displacements with a generating signal amplitudes of 1,2,4, and 5V. 

The average error reflecting the linearity of the sensor as measured 

experimentally is of approximately 8% which is very acceptable considering the 

fact that the PZT itself will not respond linearly to these different amplitudes. 

On the other hand, the FFT of the SM signal was compared to the FFT of 

the transfer function approximated to be equal to the FFT of the impulse 

response multiplied by the FFT of the driving signal. Once again, both spectrums 

showed similarities. The main frequency was measured to be at 366.2Hz by the 

SM sensor, whereas, it was found to be 360.1Hz through the approximation of 

the mechanical displacement corresponding to an error of 1.7% which is 

acceptable. 

 
Figure III.26 FFT of the approximation of the mechanical displacement compared to the FFT of the OOP under strong feedback. 

X represents the frequency in Hz and Y the power in dB. 
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III.5. Simulation Results 

III.5.1. Study of The Linearity of The System 

The linearity of the self-mixing signal was furthermore investigated through 

different simulation using the behavioral model  [57] in the case of strong 

feedback. 

First, the transfer function of the laser diode under strong feedback was 

estimated for different values of C and for the same displacement amplitude.  

 
Figure III.27 Transfer function estimation for different levels of feedback of C=5, 15 and 30 and a constant amplitude of 

displacement. 

 Figure III.27 shows the estimation of this transfer function using the Welch 

method  [75] for C=5, 15 and 30 respectively for the same amplitude of 

displacement. This transfer function shows a linearity that increases with the 

values of C. For C=5 the low-pass frequency of the system is around 166 Hz and 

its high-pass frequency is around 1160 Hz. These values passes respectively to 76 

Hz and 1170 for C=15 and finally for C=30 the system will be perfectly linear all 

over the considered frequency spectrum. 

The system's linearity was studied furthermore using the correlation function. 

This function can be defined between two signals (x and y) at a certain frequency 
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(ω) in terms of power spectral of both signals (Rx(ω) and Ry(ω)) densities and 

cross-spectral density (Rxy(ω)) as follows: 

 ( )
( )

( ) ( )
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xy
xy

x y

R
C

R R
ω

ω
ω ω

�  (3.18) 

In fact the coherence function will have values between 0 and 1 where 0 will 

correspond to uncorrelated signals and 1 to perfectly correlated signals. 

 Figure III.28 shows the coherence functions for different values of C and 

different amplitudes of displacement a. It exhibits a strong influence of the 

augmentation of the amplitude of vibration on the coherence function. This 

influence may be compensated by an increase of C, the coherence function 

keeping a value around 0.8 even for high amplitudes when the feedback is strong 

enough. This coherence function is ameliorated with respect to the hypothesis of 

small fluctuations of xF(t) and high-values of C.  

 
Figure III.28 Coherence function for different values of a and C. 

 Figure III.29 shows different transfer function estimations for a C=25 and for 

different amplitudes of 10, 20 and 30λ0/2. The augmentation of the amplitude 

induces a degradation of the transfer function similar to the one caused by the 

diminution of the coupling coefficient. 
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Figure III.29 Transfer function estimation for the same level of feedback of C=25 and different amplitudes of displacement. 

These results are in good accordance with the previously-reported theoretical 

analysis showing the relationship between C and a to obtain the strong feedback 

regime  [76]. It demonstrated that an OOP without fringes can be observed even 

for small values of C if a is small enough ( Figure III.4). 

III.5.2. Analysis of the total harmonic distortion 

The previous study showed that some non-linearities may appear for high 

amplitudes of displacement or when the coupling coefficient is not high enough. 

Thereby, the effect of these non-linearities was investigated through a study of the 

total harmonic distortion (THD) that expresses the power added by the system at 

the harmonics of the input's fundamental frequency: 
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 (3.19) 

Where NH is the number of the studied harmonics and Ui is the voltage 

found at each of these harmonics whereas, U1 is the voltage measured at the 

fundamental frequency of the signal. 

The THD was plotted as a function of C for different values of a ( Figure 

III.30). It shows that for the same amplitude of displacement the TDH increases 



Analysis of Self-Mixing Moderate and Strong Feedback Regimes for Mechatronics Applications. 

Joseph EL ASSAD  91 

generally when values of C decrease. This figure also shows that for increasing 

amplitudes of displacement the TDH will have values that are also increasing 

generally. 

 
Figure III.30 TDH for different values of C and different displacement's amplitudes. 

Similarly this study showed a decreasing TDH for increasing values of C and 

decreasing values of a. However the TDH is generally under 10% which is 

relatively low. 

III.6. Experimental Results 

III.6.1. Experimental Analysis of The System's Linearity 

The time consuming frequency sweeping method used previously with SM 

sensors  [72]- [77] is not needed anymore as a noise covering the whole frequency 

spectrum can be applied directly to the structure. The sensor will then provide a 

complete spectrum response from only one measurement. 

The experimental setup consisted of a piezoelectric transducer (PZT) used as 

a target at a distance of approximately 1m. The PZT was driven by a quasi-white 

noise generated by the sound card of a computer. The reference measurement was 

provided by a capacitive sensor mounted inside the PZT having an announced 

resolution of 2nm and a linearity of 1%. 
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The sensor was firstly tested with the PZT surface covered with a blue micro-

prisms retro-reflective adhesive paper that represented a very cooperative target 

for the strong feedback regime. 

 Figure III.31 shows the transfer function estimation (TFE) still using the 

Welch method  [75] between the different considered signals. In plain line is the 

transfer function between the displacement as provided by the capacitive sensor 

(d(t)) and the self-mixing signal (sm(t)). The dashed line is the transfer function 

between the driving signal of the PZT g(t) and sm(t). Finally, the dotted line is the 

transfer function between g(t) and d(t). 

 
Figure III.31 Transfer function estimation between the different acting signals where g(t) is the driving signal, d(t) is the 

displacement as measured by the capacitive sensor and sm(t) the OOP fluctuations of the self-mixing sensor. 

It can be seen from both TFE between sm(t) and g(t) and between sm(t) and 

d(t) that the sensor showed a very high linearity between 4 Hz and 1 Khz 

considering a 4 dB margin. On the other hand, the degradation of the system's 

linearity beyond 1 Khz was caused (partially or completely) by the PZT itself as 

verified through the TFE between g(t) and d(t). 

The coherence function between the self-mixing signal and the displacement 

showed a strong correlation in the considered bandwidth ( Figure III.32). The 

coherence had a value higher than 0.9 for frequencies up to 800 Hz and conserved 

a value higher than 0.7 for frequencies up to 1 Khz. 
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Figure III.32 Coherence function between the SM signal and the displacement as provided by the capacitive sensor 

The results found experimentally proved the high linearity of the sensor and 

its compatibility for different modal analysis applications. 

III.6.2. Effect of The Target's Surface Type 

Equation (3.9) showed analytically that the response of the sensor did not 

depend on the reflectivity of the target nor the coupling efficiency. In order to 

verify this theory, the previous experiment was repeated for other types of 

surfaces such as a gray micro-sphere adhesive paper or the metallic surface of the 

PZT itself which is representative of surfaces used in mechanical structures 

( Figure III.33). Finally in order to point out the limitations of the system, a target 

consisting of a very rough sandpaper was used. 
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Figure III.33 TFE for different surface types of blue micro-prisms, grey micro-spheres, gray metallic surface of the PZT itself and 

pink sandpaper. 

The system showed similar linearities for all of the surfaces and had very 

similar transfer functions in exception of the sandpaper. 

The coherence function was also plotted for the three first surfaces ( Figure 

III.34). These coherence functions confirmed the results obtained with the 

transfer function estimations. The linearity of the system is relatively independent 

from the reflectivity of the considered surface. The displacement and the SM 

signal are strongly correlated for different types of surfaces whenever the sensor is 

kept in the strong feedback regime. 

 
Figure III.34 Coherence function for different types of target's surfaces. 
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Although the sandpaper experience did not give the expected results it had a 

major interest as it showed that for low amplitude vibrations, the OOP variations 

without fringes are obtained, the SM signal being compared to the displacement 

after elimination of the noise from both of them ( Figure III.35). 

 
Figure III.35 OOP signal compared to the displacement (in dotted line) for a very rough sandpaper surface (after noise 

elimination). 

By increasing the vibration amplitude, fringes appeared and the usual fading 

caused by the speckle effect was clearly observed ( Figure I.13)  [66]. 

As a consequence, a sensor subject to strong feedback is more robust to this 

disturbance even if the difficulty is to maintain the sensor under this regime with 

such rough targets. The differences obtained between the rough target and the 

cooperative targets can be explained by the approximations in the Lang-

Kobayashi equations  [74] traditionally used for describing the self-mixing effect. 

As a matter of fact, contributions from non-linear gain suppression, 

spontaneous emission, and multiple reflections are neglected. Moreover, local 

variations of C due to fluctuations in the amplitude and the phase of the scattered 

light because of the random pattern of the target surface are not yet considered in 

the behavioral model. 
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III.6.3. Relative Displacement Measurements 

This sensor has proven throughout simulations and experimentations to be 

linear in the case of high values of C and low displacement amplitudes. Moreover, 

considering usual targets for mechatronic applications, this sensor is fairly robust 

to the influence of the speckle effect and relatively independent of the reflectivity 

of the surface. 

All these characteristics make this sensor very attractive for displacement 

measurements. However, the gain coefficient expressed in equation (3.13) has a 

statistical aspect as caused by D0 and k0 fixed arbitrary each time the sensor is 

powered. 

This statistical aspect of M2 restricts the displacement measurements possible 

using this sensor to the case of only relative displacement measurement and not 

absolute displacement.  

In the following experiment displacements with different amplitudes were 

measured by both the capacitive sensor and the self-mixing and  Table III.2 shows 

the different measured amplitudes. It is to note that all these measurements were 

made without turning off the laser thereby it is possible also to verify how much 

M2 will be experimentally constant. 

Capacitive  

Sensor (μm) 

SM Sensor  

(V) 
M2 (μm/V) 

Displacement 

considering 2M  (μm) 

Error 

(nm) 

Error  

(%) 

0.2204 0.0322 6.8447 0.2253 4.9 2.2% 

0.3344 0.0486 6.8806 0.3401 5.7 1.7% 

0.4473 0.0628 7.1226 0.4396 7.7 1.72% 

0.7265 0.1016 7.1506 0.7112 15.3 2.1% 

Table III.2. Different M2 calculations without turning off the laser for different displacement amplitudes. 

This table shows an average conversion factor of 2 6.9996M m Vμ= for 

these different four measurements. This leads to an average error of 1.93% in 

respect to the average value. This proves that M2 is fairly constant while the laser 

is not turned off. 

Furthermore, this shows that the laser is able to accomplish absolute 

displacement measurement if calibrated each time it is powered.  
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 Table III.2 shows that this absolute displacement may be measured with an 

average precision of 8.4 nm without the need of any signal processing. 

In order to test the relative displacement measurement ability of this sensor 

the measured displacements in table I should be compared and reported to each 

others. In fact,  Table III.3 shows, in italic, the different proportions of the 

displacement's amplitudes measured by the capacitive sensor (i.e. 0.2204/0.3344) 

whereas in bold, are reported the proportions of the displacement's amplitudes 

measured by the SM sensor (i.e. 0.0322/0.0486). 

 
0.0322 0.0486 0.0628 0.1016 

0.2204 0.3344 0.4473 0.7265 

0.0322 
X X X X 

0.2204 

0.0486 1.51 
X X X 

0.3344 1.51 

0.0628 1.95 1.29 
X X 

0.4473 2.03 1.34 

0.1016 3.15 2.09 1.62 
X 

0.7265 3.3 2.17 1.62 

Table III.3. Relative displacement measured by the capacitive sensor (in italic) and by the SM sensor (in bold). Values to be 

compared are symmetrically disposed from one side and the other of the diagonal (X).  

This table shows that this sensor has a good linearity and is able to 

accomplish relative displacement measurement with an average error of 2.64% 

without the need of any signal processing. 

III.7. Conclusion 

In this chapter, a self-mixing sensor operated under strong feedback was 

conceived and characterized in terms of precision, linearity and harmonic 

distortion.  

In the first part of this chapter, the strong feedback regime was presented by 

studying the peak free signals and simplifying the behavioral model in the 

particular case of this regime. Afterwards, this statistical aspect was studied in 

details depicting the effect of different key parameters such as a, C or φ on the 

performances of this type of sensors. φ proved to be more of a second order 
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parameter when compared to the effect a and C had where increases of C or 

decreases of a ameliorate significantly the performances of such sensors. 

The second part, introduced the conception and characterization of relative 

displacement sensor in terms of linearity and total harmonic distortion through 

different simulations and different experiments where it showed a good linearity 

increasing when C increases or a decreases. 

This sensor was able to accomplish relative displacement measurements with 

a relative error less than 2% and a linearity of approximately 2.6% both of these 

being defined experimentally. 
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Chapter IV. Strong Feedback Sensor for Modal 

Analysis 

IV.1. Introduction 

In the pervious chapter, a self-mixing sensor using a laser diode under strong 

feedback was conceived and characterized. This sensor showed a lot of advantages 

for modal analysis where it provided a signal directly related to the displacement in 

terms of amplitude and frequency which can be very useful for real time modal 

analysis  [78]. 

Experimental modal analysis methods are investigation methods recently 

developed in order to ameliorate the conception of dynamical models of real 

structures. In fact, the parameters that allow to have a full representation of the 

dynamical behavior of a linear structure, whatever its complexity is, may be 

resumed into a certain number of key modal parameters such as the resonance 

frequencies, the damping coefficient and the modal vector etc…  

Resonance frequencies are the excitation frequencies for which the studied 

object vibrates with an amplitude abnormally high which may cause its destruction 

such as the famous historical issue of the "Basse-Chaîne" bridge at Angers, France 

which was destructed in 1850 by soldiers marching causing the death of 226 of 

them. Modal vectors, represents the form of deformation of the studied object 

when excited at one of its resonance frequencies; in the case of the bridge, 

previously cited, the modal vector associated to the lowest resonant frequency has 

a U form. 

Thereby, modal analysis can serve as a predictive study where mechanical 

fatigue will induce a progressive modification of the vibration spectrum i.e. a 

shifting of the resonance frequencies or changes in the modal vector. 

This phenomenon was investigated in the aviation field where they were 

affronted to the problem of “undulation” of airplanes. In this phenomenon, the 

aeroelastic coupling between the air and the structure of the plane induced at 
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certain speeds generates a phenomenon of vibrations auto-excited able to destruct 

the structure. This can be predicted if the dynamical characteristics of the 

structure were known. 

In this chapter, the sensor characterized in the previous chapter will be 

applied for modal analysis purposes where in the first part simulations will show 

the quality of frequency response of this type of sensors. In the second part, this 

sensor will be tested in order to test a thin clamped plate and then in the third part 

to test carbon fiber beams. In both cases, the response of the sensor will be 

compared to counter-measurements provided by different types of sensors. 

IV.2. Modal Analysis and Self-Mixing 

The first methods developed between 1950 and 1960 consisted of applying to 

the structure a group of stimulating forces having an amplitude and a phase 

chosen in a manner to have a response proportional to a characteristic mode of 

the associated conservative system ( Figure IV.1)  [79]. These methods are very 

reliable because the investigator can depict each parameter by itself, but they are 

very costly in terms of implementation and needs important investments. 

 
Figure IV.1. Schematic of the general methods of experimental modal analysis. 
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Another type of experimental modal analysis techniques is to apply a white 

noise excitation to the structure and to exploit its response having thereby the 

response of all the vibration modes all over the frequency spectrum without the 

need of any frequency sweeping. However, this type of methods requires, from 

the used sensor, a high fidelity to the vibration of the structure.  [79] 

Different studies of the use of self-mixing sensors in the field of modal 

analysis were accomplished such as the conception of a self-mixing sensor for 

vibration measurement or defect detection  [77] or for structural analysis and 

damping evaluation  [72]. 

The advantage of such non contact sensors in this type of applications is that 

they have a very competitive price compared to other optical sensors. 

The main addition for the use of self-mixing sensors under strong feedback is 

the fact that they provide a real time image of the displacement in terms of 

frequency and amplitude of displacement. This enables the use of white noise 

excitations and to have a direct complete transfer function covering the whole 

vibration spectrum without the need of any signal processing other than a Fast 

Fourier Transform (FFT) which simplifies the time consuming measurement 

iterations used before such in  [72]. 

IV.3. Simulation Results 

The behavioral model developed earlier  [57] permitted simulations of self-

mixing signals in all the feedback regimes. In this paragraph it is used in order to 

simulate the response of a laser diode when submitted to feedback caused by a 

moving target at a distance of 40cm which was excited by a white noise 

displacement. 

 Figure IV.2 shows how a laser diode subject to a strong feedback (C=60) will 

follow the displacement discarding its shape and here after an example of a white 

noise displacement. 
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Figure IV.2. Simulation of the time response of a white noise displacement and the corresponding self-mixing signal. 

However, it is not the time domain which is the most important for modal 

analysis where, as mentioned earlier, the main aim is to determine the resonance 

frequencies and the modal vector. Hence, the interest will be in a frequency 

domain analysis as in  Figure IV.3. 

 
Figure IV.3. Simulation of the frequency response of a white noise displacement and the corresponding self-mixing signal. 

This figure shows the frequency spectrums of both signals shown in  Figure 

IV.2 where a similitude in both frequency and time domains can be seen which 

makes this sensor very suitable for modal analysis applications. 



Analysis of Self-Mixing Moderate and Strong Feedback Regimes for Mechatronics Applications. 

Joseph EL ASSAD  103 

IV.4. Experimental results 

IV.4.1. First experiment: PZT as a target 

The ability of the sensor to determine the vibration frequencies of a structure 

was first studied with simple structures such as a PZT excited by a sinusoidal 

signal at different frequencies of 330, 500, 850 and 1000Hz respectively.  Figure 

IV.4 is a zoom of  Figure III.23. It shows the comparison of the FFT of both the 

SM signal (SM) and the displacement provided by a capacitive sensor (D). It can 

be seen how the OOP follows exactly the signal of the capacitive sensor for 

frequencies up to 1500Hz, this limit being chosen only for visual clarity reasons. 

 
Figure IV.4. FFT of the displacement given by both the SM sensor and the capacitive sensor for different excitation frequencies. 

Looking closer at these signals the FFTs of the self-mixing signals plotted 

above were gathered in one figure ( Figure IV.5) showing how closely the OOP's 

frequency followed the displacement frequency. 
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Figure IV.5. FFT of the SM for different excitation frequencies of 300, 500, 800 and 1000Hz. 

Moreover, the frequency spectrum of the response of the PZT was measured 

by the SM sensor and compared to the one obtained by the capacitive sensor for 

different driving signals (sinusoidal, triangular and square) considered at the same 

frequency of 330Hz ( Figure IV.6). 

 
Figure IV.6. FFT of the displacement given by both the SM sensor and the capacitive sensor for different generating signals. 
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It can be seen that both signals showed good similarities for the whole studied 

spectrum. For example, in the case of a square driving signal, as expected, the odd 

harmonics are more accentuated than in the case of other signals. 

This study was completed by a calculation of the TDH in the case of real 

experimental signals.  Figure IV.7 shows the power spectral density of both the 

sinusoidal driving signal and the SM signal respectively. 

Calculating the power injected by the SM sensor at the harmonic frequencies 

the TDH may be calculated. It is found to be 2.08% using equation (3.19). 

 
Figure IV.7. PSD of the driving signal (a) and the self-mixing signal (b) respectively. 

Finally, in order to study a realistic application of such a type of sensors in 

modal analysis, a white noise was applied to the PZT and the FFTs of the 

displacements measured by both the capacitive sensor and the self-mixing sensor 

were plotted in  Figure IV.8. 

This figure shows a high similarity between the two observed spectrums. A 

frequency span of only 1500Hz was considered for clarity issues. Looking at the 

whole frequency spectrum of the excitation frequencies shows even a higher 

similitude between both signals all over the studied frequency span. 
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Figure IV.8. FFT of the displacement as measured by the capacitive sensor and by the SM sensor. 

IV.5. Thin Clamped Plate 

The second experiment was conducted using a thin plate that was clamped 

very tightly inside a metallic frame. During the first experiments only one laser 

was used pointing at a micro-prism adhesive paper posed on top of an 

accelerometer providing the counter-measurement. The excitation was created 

using a hammer with a force sensor installed on top of it. The shocks were done 

in a way not to have big amplitude of displacement in order to keep the laser in 

the strong feedback without inducing any peaks in the self-mixing signal. 

However, one or two peaks will not deteriorate the measurement since they will 

be induced at a high frequency relatively to the frequencies mechanically 

interesting. The next figure shows the schematic of the conducted experiment. 

 
Figure IV.9. Schematic of the first modal analysis experiment. 
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IV.5.1. Mechanical Theory of Thin Plates 

In order to better understand the measurements of vibration of such plates, 

first of all it is necessary to define a thin plate and to determine the equations of 

its resonance frequencies. 

In fact, a thin plate can be defined as a plate with a thickness h very small 

when compared to its width a' and its length b. In this particular case, the 

Kirchoff's hypothesis of thin plates can be applied. 

This hypothesis consists of two main points: 

 The transverse component of the stress tensor is negligible. 

 Any straight cross section normal to the middle plane remains straight 

during the deformation. 

In a more general way, for a clamped plate, the resonance frequencies 

corresponding to the different vibration modes can be obtained from the 

following equation: 

 ( )

1
2 23

2 2
; 1,2,3,...; 1,2,3,...

2 ' 12 ' 1
ij

ij
Ehf i j

a
λ
π γ ν

⎡ ⎤
⎢ ⎥= = =

−⎢ ⎥⎣ ⎦
 (4.1) 

Where λij is a parameter depending on the studied mode defined in the next 

tables. E is the module of Young (E=69000 MPa in the case of aluminum), ν is 

the Poison's ratio (ν=0.345 for aluminum) and γ’ is the weight per unit of surface. 

The next figure shows the dimensions of the plate used in this experiment 

which allows us to calculate γ'=M/a'.b=8.018Kg/m2. 

 
Figure IV.10. Dimensions and weight of the used plate 

a'=191.31 mm

b=136.9 mm 

M=210

h=3.03 mm 
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λij (ij) Mode Sequence 

a'/b 1 2 3 4 5 6 

0.4 23.65 (11) 27.82 (12) 35.45 (13) 46.7 (14) 61.55 (15) 63.1 (21) 

2/3 27.01 (11) 41.72 (12) 66.14 (21) 66.55 (13) 79.85 (22) 100.9 (14) 

1 35.99 (11) 73.41 (21) 73.41 (12) 108.3 (22) 131.6 (31) 132.2 (13) 

1.397 45.82 81.53 103.33 124.75 150.7 169.8 

1.5 60.77 (11) 93.86 (21) 148.8 (12) 149.74 (31) 179.7 (22) 226.9 (41) 

2.5 147.8 (11) 173.9 (21) 221.5 (31) 291.9 (41) 384.7 (41) 194.4 (12) 

Table IV.1. λij factor for the different possible modes  [86] [80]. 

In our case a'/b =1.397 the corresponding values of λij can be then calculated 

through an interpolation. They will be noted in bold in the previous table. 

Then, it will be possible now to write the resonance frequencies as a function 

of λij as follows: 

 20.4*ij ijf λ≈  (4.2) 

fij (Hz) Mode Sequence 

a'/b 1 2 3 4 5 6 

1 734.2 1497.56 1497.56 2209.32 2684.64 2696.88 

1.397 934.73 1663.21 2107.93 2544.9 3074.28 3463.92 

1.5 1239.71 1914.74 3035.52 3054.7 3665.88 4628.76 

Table IV.2. Resonance frequencies of the different possible modes of the considered plate. 

Going back to  Table IV.1 the resonance frequency is calculated in all the 

cases of a/b=1, 1.397 and 1.5 and represented in the  Table IV.2. 

This will give theoretical values of the resonance frequencies to compare with 

the different measurements accomplished later in this paragraph. However, it is to 

be kept in mind that many approximations were done in order to get these values 

where the plate was not homogenous nor perfectly rectangular nor perfectly 

clamped. Moreover, the exact alloy of aluminum was not known which adds more 

imprecision to the values of the module of Young and the Poisson ratio. 

IV.5.2. Experimental Results: 

IV.5.2.a. Clamped Plate 

As mentioned earlier, the first experiment was conducted with only one laser 

pointing on top of the accelerometer and acquiring instantaneously the 
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acceleration measured by the accelerometer and the displacement achieved by the 

self-mixing sensor. 

 
Figure IV.11. FFT of the vibration of the plate measured by the SM sensor and the accelerometer respectively. X represents the frequency 

in Hz and Y represents the power in dB 

The Fast Fourier Transform (FFT) of these signals was plotted in  Figure 

IV.11 that shows similarities between both FFTs where the resonance frequencies 

were determined by the SM sensor and by the accelerometer. However, the target 

may be not accessible in some cases in order to put the accelerometer where the 

advantage of non contact sensing. Moreover, the accelerometer has a weight of 

few grams that varies the measurement of the frequency by few Hertzs  [77]. 

Another very important advantage of this type of sensors is their low cost and 

their simplicity which facilitates a lot their duplication allowing to have 

simultaneous measurements at different points which simplifies the reconstruction 

of the modal vector. 

As mentioned earlier, a lot of differences resign between the theory of a 

rectangular clamped plate and the experiment conducted hereby. No relevant 

conclusions could be taken comparing both theoretical and experimental results. 
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However the experimental signals obtained by the SM sensor where validated by 

the counter-measurement conducted by the accelerometer. 

An array of six sensors was created by duplicating the circuit used before the 

following figure shows the schematic of the experiment allowing the 

instantaneous multi-point modal analysis. 

 
Figure IV.12. Schematic of the modal analysis of a clamped plate using an array of six lasers. 

The laser array was used to accomplish simultaneous measurements at 

different points of the plate. Acquiring all the signals coming from those sensors 

and the accelerometer gives the FFT at 6 different points simultaneously (one of 

the lasers is always pointing on the accelerometer in order to provide the counter-

measurement). 

These FFTs were plotted in  Figure IV.13 (first the six SM sensors and on a 

larger scale the accelerometer) which shows a similarity in all the resonance 

frequency knowing that differences comes essentially form the limitation of the 

numerical FFT algorithm. The difference in power levels comes from the fact that 

not all the points will vibrate with the same amplitude and from the statistical 

aspect of M2 previously discussed. This last aspect can be omitted if a calibration 

measurement is accomplished. 
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Figure IV.13. FFT of the six SM sensors and the accelerometer. X represents the frequency in Hz and Y the power in dB. 

IV.6. Carbon Fiber Beam 

The experiment conducted with the thin clamped plate was more of an 

academic modal analysis application accomplished just to validate the response of 

the tested sensor. Another type of applications having more industrial importance 

was the detection of impacts in Carbon Fiber Beams or CFBs. This experiment 

was conducted with the help of ISAE-SUPAERO who offered the tested CFBs. 

The use of composite materials in structural components has increased during 

the recent years, by offering enormous potential and benefits to the aerospace 

industry and many other sectors. However composite materials are susceptible to 

delamination from a wide variety of sources which include fabrication stress, 

environmental cyclic loading, handling damage and foreign object impact damage 

 [79] [81]- [82]- [83]. Delamination may lead to the severe degradation of the 

mechanical behavior of structures due to loss of structural integrity. The detection 

of delamination and the study of their influences on the mechanical behavior of 

delaminated composite structures has become an important issue in the last years. 
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IV.6.1. One SM Sensor Tests 

After studying the thin plate in the previous paragraph, the next structure to 

study is a carbon fiber beam (CFB). The CFB was mounted on a shaker that 

vibrates it vertically and the laser was installed on top of it with an accelerometer 

for counter-measurement. Another measurement of the force, applied at the 

middle of the CFB, was accomplished by the force sensor. The following figure 

shows the schematic of the first experiment conducted with only one laser. In all 

the experiments the shaker was excited by a white noise signal generated, by the 

acquisition unit, from a random sequence generated by the PC. 

 
Figure IV.14. Schematic and dimensions of the CFB experiment. 

This CFB was previously characterized using a Polytech vibrometer. Its 

resonance frequencies and principal modes of vibration are plotted in the 

following figure. 
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Figure IV.15. Vibration modes of the CFB. 

On the other hand the FFTs of the three signals given by the force sensor 

(force), the accelerometer (acc) and the SM sensor (SM) were calculated and 

plotted in  Figure IV.16 and  Figure IV.17. 

 
Figure IV.16. First zoom of the FFT of the three signals. X represents the frequency in Hz and Y the power in dB. 

These FFTs showed a high similarity between all three sensors except for a 

noise peak in the SM signal caused by the alimentation noise at 50Hz. Another 

parasite peak appeared in the signal of all the three sensors at 10 Hz which may be 

caused by a vibration of the shaker itself caused by a bad fixation of this last. The 

other peak corresponds to the resonance frequencies of the first vibration modes 

at 31.49Hz. The last peak at 100 Hz is a harmonic frequency of the 50Hz peak. 

The second zoom, in  Figure IV.17, shows another harmonic of the 50Hz at 

300Hz approximately and another resonance frequency of the CFB at 282.2Hz. 

Furthermore the excitation signal sent to the shaker was also acquired and 

used in order to estimate the transfer function estimation (TFE) between each of 
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the different signals and this excitation signal. The result is plotted in  Figure IV.18 

showing the peaks of resonance detected earlier and the 50 Hz peak and its 

harmonics. 

 
Figure IV.17. Second zoom of the FFT of the three signals. X represents the frequency in Hz and Y the power in dB. 

Moreover, this TFE showed the third peak of resonance of the CFB 

corresponding to the third vibration mode ( Figure IV.15). This peak was 

undetected in the case of the FFTs because of the noise level and because of the 

limitation of its numerical algorithm. 

 
Figure IV.18. Transfer function between the white noise excitation signal and the different signals given by the accelerometer and both the 

force and SM sensors. X represents the frequency in Hz and Y the power in dB. 
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Furthermore a study of the power spectral densities of all the signals ( Figure 

IV.19) shows the quality of the white noise generated and confirms all the results 

stated earlier from the FFT and the TFE methods. 

 
Figure IV.19. PSD of the white noise excitation signal and the different signals given by the accelerometer and both the force and SM 

sensors. X represents the frequency in Hz and Y the power in dB. 

Before adding the other sensors to this experiment a test had to be done in 

order to confirm the repeatability of such a sensor despite the statistical aspect of 

M2. Four different measurements were repeated while exciting always the shaker 

with a white noise signal without turning off the sensor. The FFTs of the SM 

signals were reported in  Figure IV.20 and showed a correspondence in terms of 

both the resonance frequency peaks and the corresponding amplitude of 

vibration. These two parameters being vital in modal analysis in order to 

reconstruct the modal vector. 
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Figure IV.20. TFE between the SM signal and the excitation signal during four different repetitions. 

IV.6.2. Two SM Sensors Tests 

After making sure that one sensor is detecting the right peaks, another sensor 

was added to the experiment in order to show that two different lasers pointed at 

two different points will detect the same resonance frequencies but with different 

amplitude. However, this difference of amplitude may be induced by the statistical 

aspect of M2 or also by the fact that those two points are not vibrating with the 

same amplitude but all this will not affect the detected frequency as shown in 

 Figure IV.21. 

It must be noted that this is not the same CFB tested in  Figure IV.18 which 

explains the differences in the previously detected frequencies. Moreover, this 

CFB was damaged inducing a frequency shifting as reported earlier  [77]. 
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Figure IV.21. Zoom on one of the vibration modes detected by two SM sensors in addition to the accelerometer and the force sensor. X 

represents the frequency in Hz and Y the power in dB. 

IV.6.3. Tests with an Array of Sensors 

 Figure IV.22 shows the schematic of the experiment involving an array 

consisting of six SM sensors pointing at different points of the CFB vibrated by 

the shaker still excited by a white noise signal. The counter-measurement is 

provided by both the accelerometer and the force sensor. Three different CFBs 

were tested in the case of this experiment: CFBs 16 and 17 were undamaged and 

CFB 11 was damaged. In the case of each CFB the experiment was repeated three 

times. 

The effective aim of this study is to be able to identify if a CFB is damaged or 

not by using an array of SM sensors operated under strong feedback. For this 

purpose the two first undamaged CFBs will be studied first in order to evaluate 

the variances of the resonance frequency caused by fabrication differences and 

then to be compared to the differences with the damaged CFB. 
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Figure IV.22. Schematic of the sensor's array experiments 

IV.6.3.a. Modal Analysis of CFB 16 

CFB number 16 was undamaged and was tested three consecutive times using 

all the six sensors; sensor 1 (sm1(t)) pointed on top of the accelerometer and 

sensor 6 (sm6(t)) pointed at the same point where the force was applied and 

measured by the force sensor. 

 Figure IV.23 shows the transfer function estimation between the excitation 

signal and each of the signals given by the force sensor, the accelerometer and the 

six SM sensors. 

This figure represents one of the three tests accomplished whereas the  Table 

IV.3 represents the detection of all the resonance frequencies corresponding to 

each of the three first modes for all three tests and their average values. 
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Figure IV.23. TFE for the force sensor, the accelerometer and the six SM sensors for the undamaged CFB 16. 

CFB 16 Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz) 

Accelerometer 

31.25 277.3 742.2 

31.25 277.3 742.2 

31.25 277.3 742.2 

Force Sensor 

31.25 277.3 742.2 

31.25 277.3 742.2 

31.25 277.3 742.2 

SM1 

31.25 277.3 742.2 

31.25 277.3 742.2 

31.25 273.4 742.2 

SM2 

31.25 277.3 742.2 

31.25 277.3 742.2 

31.25 277.3 742.2 

SM3 

31.25 277.3 742.2 

31.25 277.3 742.2 

31.25 277.3 742.2 

SM4 

31.25 277.3 742.2 

31.25 277.3 742.2 

27.34 277.3 742.2 
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SM5 

31.25 273.4 742.2 

31.25 277.3 750 

31.25 277.3 742.2 

SM6 

35.16 277.3 742.2 

31.25 277.3 742.2 

31.25 273.4 742.2 

Average Frequency 31.25 277.14 742.52 

Table IV.3. Frequency of each of the vibration modes detected by each of the sensors during three tests in the case of CFB 16. 

It is to be noted that the variations encountered in some of the measurement 

may be due essentially to the numerical errors caused by the limitation of the TFE 

numerical algorithm. 

IV.6.3.b. Modal Analysis of CFB 17 

The experimental setup is the same as the one used for CFB 16, all the CFBs 

have the same dimensions and weights. This should theoretically mean that both 

CFBs should have the same modal vectors or same resonance frequencies. 

However CFB 17 has been studied in order to evaluate the variations of the 

resonance frequencies that may be caused by fabrication variances. 

 
Figure IV.24. TFE for the force sensor, the accelerometer and the six SM sensors for the undamaged CFB 17. 
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 Figure IV.24 shows also the TFE between the excitation signal and each of 

the signals coming from the different sensors and again  Table IV.4 shows the 

frequencies corresponding to each of the first three vibration modes. 
CFB 17 Mode 1 (Hz) Mode 2 (Hz) Mode 3 (Hz) 

Accelerometer 

31.25 281.3 750 

31.25 281.3 750 

31.25 281.3 750 

Force Sensor 

31.25 277.3 750 

31.25 277.3 750 

27.34 277.3 750 

SM1 

31.25 277.3 750 

31.25 277.3 750 

31.25 277.3 750 

SM2 

31.25 281.3 750 

31.25 281.3 753.9 

X 281.3 X 

SM3 

31.25 281.3 750 

31.25 281.3 750 

X 281.3 753.9 

SM4 

31.25 281.3 750 

27.34 281.3 750 

27.34 281.3 750 

SM5 

31.25 281.3 753.9 

31.25 281.3 753.9 

31.25 277.3 753.9 

SM6 

35.16 281.3 753.9 

31.25 281.3 750 

31.25 281.3 753.9 

Average Frequency 30.89 279.97 751.19 

Table IV.4. Frequency of each of the vibration modes detected by each of the sensors during three tests in the case of CFB 17. 

Again the variations of the frequency of 3.9 Hz, or a multiple of it, are caused 

purely by the limitation of the number of points used in the Matlab numerical 

algorithm. Although, if the frequency difference between the two different CFBs 

is calculated, it is of 0.36 Hz for the first mode, 2.83 Hz for the second mode and 

8.67 Hz. 
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IV.6.3.c. Modal Analysis of CFB 11 

This CFB has been damaged in different points of its structure using the drop 

weight method illustrated in the following figure  [84]- [85]. 

 
Figure IV.25. Drop weight method used to impact CFB 11. 

 

 
Figure IV.26. Positions of the impacts of CFB 11. 

 Figure IV.26 shows the positions of the impacted points of CFB 11. The 

objective of this study is to be able to distinguish impacted CFBs from non 

impacted ones. 

Thereby, the FFT of the response of the different sensors will be studied in 

the case of CFB 11. Looking at these TFEs, shown in  Figure IV.27, no differences 

can apparently be found with what was shown in  Figure IV.23 and  Figure IV.24. 

However the frequencies of the vibrations modes are completely different 

from the case of CFBs 16 and 17 which can be seen in  Figure IV.28. 
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Figure IV.27. TFE for the force sensor, the accelerometer and the six SM sensors for the damaged CFB 11. 

 
Figure IV.28. Zoom on the second and third vibrations modes in the TFE in the case of the accelerometer and two of the six SM sensors 

in the case of CFB 11. X represents the frequency in Hz and Y the power in dB. 
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Figure IV.29. Zoom on the second and third vibrations modes in the TFE in the case of the accelerometer and two of the six SM sensors 

in the case of CFB 16. 

 
Figure IV.30. Zoom on the second and third vibrations modes in the TFE in the case of the accelerometer and two of the six SM sensors 

in the case of CFB 17. X represents the frequency in Hz and Y the power in dB. 
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CFB 11 
Mode 1 

(Hz) 

Mode 2 

(Hz) 

Mode 2' 

(Hz) 

Mode 3 

(Hz) 

Mode 3' 

(Hz) 

Accelerometer 

23.44 222.7 250 625 652.3 

23.44 222.7 250 625 652.3 

23.44 222.7 250 625 652.3 

Force Sensor 

23.44 X 246.1 X 652.3 

23.44 X 246.1 625 652.3 

23.44 X 246.1 X 652.3 

SM1 

31.25 222.7 250 621.1 652.3 

31.25 214.8 250 625 652.3 

31.25 222.7 246.1 625 656.3 

SM2 

27.34 222.7 250 628.9 652.3 

27.34 222.7 250 625 648.4 

27.34 222.7 250 X X 

SM3 

27.34 X 250 621.1 652.3 

27.34 230.5 250 628.9 652.3 

X X X 625 652.3 

SM4 

27.34 222.7 250 625 652.3 

27.34 222.7 250 621.1 652.3 

X 222.7 250 625 652.3 

SM5 

27.34 X X 632.8 656.3 

31.25 226.6 246.1 628.9 X 

31.25 222.7 246.1 X 644.5 

SM6 

27.34 226.6 250 632.8 656.3 

27.34 226.6 253.9 628.9 652.3 

31.25 222.7 253.9 X 648.4 

Average Frequency 25.06 223.3 238.45 626.03 652.14 

Table IV.5. Frequency of each of the vibration modes detected by each of the sensors during three tests in the case of CFB 11. 

This table shows that the resonance frequencies have shifted a lot more 

significantly than in the case of comparison between CFBs 16 and 17. In fact, 

when considering mode 2 the difference is 53.84 Hz if compared to CFB 16 and 

56.67 Hz if compared to CFB 17. The difference is even greater if the mode 3 is 

considered where comparing CFBs 11 and 16 leads to a difference of 125.16 Hz 

and comparing CFBs 11 and 17 leads to 116.49 Hz. 

In conclusion, by comparing all the obtained results it can be seen that the 

resonance frequency corresponding to the first vibration mode is approximately 

unchanged for all the three CFBs. On the other hand, looking at the second and 

third vibration modes the frequency shifts between the different beams are noted 

in the following table (relatively to frequencies from  Figure IV.15). 
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CFBs Mode 2 Mode 3 

16-17 1% 1.2% 

11-16 19.2% 16.2% 

11-17 20.2% 17.4% 

Table IV.6. Frequency shift between the different CFBs for modes 2 and 3. 

This table showed that the damage in a CFB can be detected when comparing 

the second and the third resonance frequencies where the difference revealed to 

be a lot more important than the one obtained when comparing two undamaged 

CFBs. 

Finally it could be noticed that other vibration modes were detected by the 

SM sensors and by the accelerometer closely to the second and third vibration 

modes (pointed in  Figure IV.28,  Figure IV.29 and  Figure IV.30). These modes 

were more accentuated in the case of a damaged beam. However no definitive 

mechanical cause was found and they may be caused by a vibration of the shaker 

or a mechanical coupling between the shaker and the CFB. 

IV.7. Conclusion 

In this chapter, an array of sensors using the self-mixing effect under strong 

feedback for modal analysis applications has been designed and tested. 

This setup was used for modal analysis of a thin camped plate and showed 

that it provided a faithful image of the displacement. This proved to be very useful 

where it is possible to apply a white noise excitation and to have a whole 

frequency response from only one measurement. 

This same setup was also used in order to characterize CFBs and proved to 

give good results when compared to a force sensor and an accelerometer. 

Impact detection of CFBs was also achieved, first results showing that the 

resonance frequencies of a damaged CFB were significantly smaller than those of 

undamaged CFBs. 

Further work has to be done in order to quantify the frequency shifts through 

simulations or theoretical studies and to find an explanation for the appearance of 

modes 2' and 3'. Moreover, an optimization of the number of the sensors has also 

to be done in order to be able to reconstruct modal vectors efficiently and to 

deduce the average vibration level (AVL  [72])                                                        . 
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General Conclusion and Future Works 

During this PhD, we were able to show the phenomenon of loss of peaks in 

the self-mixing signals when operating in the moderate feedback regime and to 

study the effect of such a phenomenon on displacement measuring techniques.  

The peak free signal was then introduced, named strong feedback regime, and 

studied in details in terms of relationships between the different parameters of the 

laser and this regime. 

A relative displacement sensor was conceived for the first time in the strong 

feedback regime. This sensor was characterized in terms of precision, linearity and 

harmonic distortion. 

This same sensor showed a lot of advantages for modal analysis applications 

providing a real time loyal image of the displacement without any complicated 

signal processing. This sensor was used for the modal analysis of a thin clamped 

plate and for impact detection in carbon fiber beams. 

Even if this work comes as the prolongation of previous studies; extra work 

has still to be done in different domains concerning the self-mixing effect. 

As a direct sequel of the present work, regarding the modal analysis 

application of the sensor under strong feedback, the number of sensors has to be 

optimized in order to be able to reconstruct the modal vector efficiently. Other 

improvements can be done concerning the bandwidth of response of this sensor 

or regarding the methods used to detect impact in CFBs. 

Moreover, the behavioral model  [57] we have used for all simulations is still 

based on the steady state equations. Current studies will enable us to ameliorate 

this model, taking the speckle effect into account, notably its influence on the 

value of C  [86]. 

However using these steady-state equations may not be applicable anymore 

when studying high frequency displacements such as in the case of RF switches. 

In this case, a new approach of the self-mixing effect would then be investigated, 

based on the non linear dynamic behavior of the laser subject to feedback  [56]. 
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Finally, other studies were conducted in order to conceive displacement 

sensors working in given regimes. For example, extended Kalman filters were 

used for weak feedback where an unwrapping phase method was exploited for a 

laser subject to moderate feedback. The "ideal sensor" will be the one operating 

without the need of changing the signal processing algorithm. The particule 

filtering approach would be able to deduce the displacement in both operating 

regimes. However, as this not yet a real-time solution, another way to explore 

would be keeping the laser in a single operating regime by using adaptive optics. 
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Abstract 

Lasers have been widely used in different types of applications such as 

telecommunications, CD/DVD readers or for sensing purposes. A major 

drawback in their use is the optical feedback caused by an obstacle in their 

direction of propagation. This light reinjected in the active area modifies the 

emission properties of laser diodes and obliges the developers to consider adding 

isolators increasing thereby the complexity and the price of such systems. 

However this optical feedback induces a variation in the emission power and 

frequency in function with the distance to the reflector. This phenomenon, more 

commonly known as self-mixing, is used in different types of displacement, 

velocity and vibration sensors. 

In this work, the physical theory of the self-mixing effect is introduced and 

then a state of the art of its main applications in the different fields of 

instrumentation is accomplished. 

A detailed study of the self-mixing signal in the moderate feedback regime is 

achieved introducing the effect of "loss of peaks", its physical interpretation, 

mechanisms and effect on different types of displacement measurement. 

Afterwards, the discrepancy concerning the strong feedback regime was 

cleared out showing that it may be used for relative displacement measurement. A 

detailed study of this regime covers its statistical aspect and the influence of 

different parameters on this aspect. 

Finally, the self-mixing sensor under strong feedback was introduced in modal 

analysis applications after being characterized. It was applied to study a clamped 

plate or to detect damage in carbon fiber CFBs. This type of sensors proved its 

major advantage of simplicity providing a direct image of the displacement 

without the need of any advanced signal processing. This facilitates its duplication 

where an array of sensors was used in different experiments. 

Key Words: Self-mixing - Optical Feedback Interferometry- Long External 

Cavity- Relative Displacement Measurement - Modal Analysis.
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Résumé 

L’utilisation des lasers est répandue dans le domaine de l’instrumentation. 

Cependant, le fonctionnement de tels dispositifs peut être perturbé par le 

phénomène de rétro-injection optique (ou self-mixing) auquel est soumis la diode 

laser. Cette sensibilité du laser à la rétro-injection optique offre de nombreux 

avantages, notamment pour la mesure de déplacements, de vitesse ou de distance. 

Dans ce travail, nous introduisons le phénomène de self-mixing avant 

d’effectuer un état de l'art des différentes applications de ce type de capteurs. 

Le régime de fonctionnement de rétro-injection optique modérée est d’abord 

étudié en détails en introduisant la notion de perte de pics; en l'interprétant et en 

étudiant son effet sur différentes méthodes de mesure de déplacement. 

Nous étudions ensuite le régime de forte rétro-injection optique en analysant 

son aspect statistique et l'effet des différents paramètres sur cet aspect. Un capteur 

de déplacement relatif opérant dans ce régime est alors conçu et réalisé. 

Après l'avoir caractérisé, l'application de ce capteur était étendue à l'analyse 

modale où il avait l'avantage majeur de donner une image très fidèle du 

déplacement en temps réel sans traitement de signal complexe. Ce capteur est 

alors utilisé pour caractériser une plaque encastrée et pour détecter les impacts 

dans des poutres en fibre de carbone. 
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Analysis of Self-Mixing Moderate and Strong Feedback Regimes 

for Mechatronics Applications 
 
Lasers have been widely used in different types of applications such as telecommunications, CD/DVD readers or 

for sensing purposes. A major drawback in their use is the optical feedback caused by an obstacle in their 

direction of propagation. This light reinjected in the active area modifies the emission properties of laser diodes 

and obliges the developers to consider adding isolators increasing thereby the complexity and the price of such 

systems. 

However this optical feedback induces a variation in the emission power and frequency in function with the 

distance to the reflector. This phenomenon, more commonly known as self-mixing, is used in different types of 

displacement, velocity and vibration sensors. 

In this work, the physical theory of the self-mixing effect is introduced and then a state of the art of its main 

applications in the different fields of instrumentation is accomplished. 

A detailed study of the self-mixing signal in the moderate feedback regime is achieved introducing the effect of 

"loss of peaks", its physical interpretation, mechanisms and effect on different types of displacement 

measurement. 

Afterwards, the discrepancy concerning the strong feedback regime was cleared out showing that it may be used 

for relative displacement measurement. A detailed study of this regime covers its statistical aspect and the 

influence of different parameters on this aspect. 

Finally, the self-mixing sensor under strong feedback was introduced in modal analysis applications after being 

characterized. It was applied to study a clamped plate or to detect damage in carbon fiber CFBs. This type of 

sensors proved its major advantage of simplicity providing a direct image of the displacement without the need 

of any advanced signal processing. This facilitates its duplication where an array of sensors was used in different 

experiments. 
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