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Spécialité : Dynamique des fluides

Présentée et soutenue par Zafer ZEREN

le 29 Octobre 2010

Lagrangian stochastic modeling of

turbulent gas-solid flows with two-way coupling

in homogeneous isotropic turbulence

JURY
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Abstract

In this thesis, performed in IMFT, we are interested in the turbulent gas-solid flows and

more specifically, in the phenomenon of turbulence modulation which is the modification

of the structure of the turbulence due to the solid particles. This mechanism is crucial in

flows with high particle mass-loadings. In this work, we considered a homogeneous isotropic

turbulence without gravity kept stationary with stochastic type forcing. Discrete particles

are tracked individually in Lagrangian manner. Turbulence of the carrier phase is obtained

by using DNS. The particles are spherical, rigid and of a diameter smaller than the smallest

scales of turbulence. Their density is very large in comparison to the density of the fluid. In

this configuration the only force acting on the particles is the drag force. Volume fraction of

particles is very small and inter-particle interactions are not considered.

To model this type of flow, a stochastic approach is used where the fluid element accel-

eration is modeled using stochastic Langevin equation. The originality in this work is an

additional term in the stochastic equation which integrates the effect of the particles on the

trajectory of fluid elements. To model this term, we proposed two types of modeling: a mean

drag model which is defined using the mean velocities from the mean transport equations

of the both phases and an instantaneous drag term which is written with the help of the

Mesoscopic Eulerian Approach. The closure of the models is based on the Lagrangian auto-

correlation function of the fluid velocity and on the transport equation of the fluid kinetic

energies. The models are tested in terms of the fluid-particle correlations and fluid-particle

turbulent drift velocity. The results show that the mean model, simple, takes into account the

principal physical mechanism of turbulence modulation. However, practical closure problem

is brought forward to the Lagrangian integral scale and the fluid kinetic energy of the fluid

turbulence viewed by the particles.

Keywords: Lagrangian stochastic modeling, Gas-solid flows, Two-way coupling, Turbu-

lence modulation, Langevin equation
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Chapter 1

Introduction

1.1 About two-phase flows

Multiphase flows are found in many technological devices and naturally occurring processes

and in this regard they receive much attention from the researchers and scientists from many

different kinds of scientific areas. Chemical engineers, mechanical engineers, those who work

on molecular biology and genetics are thoroughly keen on the theoretical and physical aspects

of these flows where diversity of matters moves together. Diversity is an indication to the

fact that these matters can be any combination of solid, liquid and gas.

Many examples can be found where these flows are the main part of the system. For

example, energy conversion as the flow proceeds through pipes, pumps and valves are the

center of motivation for many industrial coworkers. Gas-solid flows in pneumatic conveying

in circular channels (Soo, 1983), frictional losses or the pressure gradient in these flows are

highly related to oil industry where a solid phase can be joined to the flow from a reservoir

due to drilling the ground (Earls , 2005, Ayala, 2007) or due to the production conditions

(natural wax and asphaltene formation in oil flow). Boiling flows where the liquid phase

is in motion with a bubbly phase have many applications such as in electronic chip-cooling

using microchannels, in heat exchangers etc... Bubble coalescence and growth in cavitations

are some of the important physics occurring in these flows. Gas condensation in natural gas

pipelines caused by the temperature and pressure differences attracts the attention of much

study, as well. The condensation in these applications subject the pipe to two-phase trans-

port. Apart from the electronic chip-cooling, all these examples given are of a macroscale

type. An example for micro scale multiphase flows could be microfluidic devices for man-

ufacturing and processing food. This application is an emerging area in multiphase flow

community. Micro level flows have kindly different physics than their macroscale counter-

part therefore approaches for the prediction of these are significantly different. One of the

1
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advantages in these mechanisms is that in the past these devices were using a macroscale

dispersion by applying energy to the bulk of a material. This was leading to the ice-crystals

in ice-cream or fat droplets in mayonnaise (Skurtys and Aguilera, 2008), for instance. The

conversion of a phase into another such as evaporation of liquid into fine droplets is another

challenging problem where the identification and quantification of the each phase are needed.

There are many methods to parametrize these kinds of flows such as electrical capacitance

tomography (ECT).

Injection of droplets (spray) with a high initial velocity in a still air is very important

in combustion of droplets of liquid fuel or pulverized coal such as in internal combustion

engines, rocket engines etc... The objective is to control the air-particle mixture in order

to obtain a clean and efficient combustion process. Usually dense jet of particles is injected

into motionless air or even a turbulent flow in these applications where particles generate

turbulence or highly interact with the turbulent flow. Then, significant mass, momentum

and energy exchanges between the two phases take place.

Diverse physical phenomena such as thermodynamics, kinematics occurring in many ap-

plications mentioned above requires a careful attention according to a particular flow type

and a solid understanding of the underlying physics.

A rigorous organization of flow types should be constituted in order to make the future

improvements and developments easier to the researcher. Because of the difficulty and the

considerations that will take place in this thesis, two-phase flows where only two interpene-

trating media will be considered and flows with more than two phases will be left out of the

discussion. Considering the general states of matter, the most encountered two-phase flow

types are liquid-solid, liquid-liquid, gas-solid and liquid-gas. In this thesis, gas-solid flows are

going to be considered, hence the term ’gas-solid’ will be used throughout the study. A gen-

eral classification to the gas-solid flows comes with the work of Elgobashi (1994) categorizing

the gas-solid suspensions according to the physical phenomena appearing during the complex

motion. Elgobashi draws attention to two dimensionless numbers, namely: volume loading

αp and mass loading φ. These values indicate the significance of certain physical interactions

such as fluid-particle and particle-particle interactions Crowe et al. (1998). Volume loading

αp is the ratio of the total volume of dispersed phase to the overall volume of the physical

domain. Mass loading is, on the other hand, is the ratio of the total mass of the particles to

the mass of the fluid.

For αp < 10−4 and φ < 10−2, particle phase is said to have a very dilute loading such that

particle-particle interactions and the effect of particles on fluid turbulence can be neglected.

Dispersed phase’s motion is then fully controlled by the continuous phase. In this regime (also

called as ’one-way coupling’), many studies have been performed to understand the spatial
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dispersion of discrete particles in a turbulent flow field. Certain works showed the spatial

clustering of the particles during their interactions with different flow scales. Fluid element

diffusion and its extension to solid particle dispersion in homogeneous isotropic turbulent

flow field are now well-documented by the well-known works of Taylor (1921), Tchen (1947),

Batchelor (1949), Hinze (1975) and many others. Following this, the effect of gravity on

the agitation of particles, effect of shear on the motion of particles are worked progressively.

Basic question is still on the controlling parameter of the clustering of the particles.

For αp < 10−4 and φ > 10−2, the effects of particles on fluid flow become important

and the spectral structure of the turbulence is influenced by the presence of solid particles.

Turbulent scales interact with the inertial particles and do work to transport them leading to

a dynamic transfer of energy between the turbulent scales and particles. This phenomenon is

called ’turbulence modulation’ and it lacks pure understanding of the mechanism. Literature

indicates that these interactions occur differently according to the particle properties and

turbulent spectrum is modified non-uniformly by low inertia particles. The diversity of the

parameters playing role in different flow types (jets, channel flows etc...) is the primary

reason for the lack of comprehension of this phenomenon (Crowe et al., 1998). Squires and

Eaton (1990), Elgobashi and Truesdell (1993), Kulick et al. (1994), etc... are among many

researchers having studied the modulation of turbulence. Some of the open questions are the

parameters intervening the two-way coupling, the effect of initial conditions, the modification

of the turbulent energy spectrum, dispersion of the particles in presence of two-way coupling

etc...

For 10−1 > αp > 10−4 and φ < 10−2, the particles’ motion governed not only by the

interactions with the underlying fluid motion but also by the inter-particle collisions that

might induce significant physics such as transfer of momentum, heat during the shock and

can significantly affect the spatial distribution of particles. One determining factor is the

relative velocity between the two particles in collision. Relative velocity can be induced by

laminar or turbulent shear, difference in the particle properties etc... Today, the collision

mechanism is shown to be a very complex phenomenon initiated with the studies of mono-

and bi-disperse particles in a turbulent flow field. However, studies showed clearly that a

range of particle diameters exists in gas-solid flows leading to different physical phenomenon

related to collision such as coalescence, agglomeration etc... Determination of a proper

collision frequency is the center of motivation to well-predict the flows in which these kinds

of interactions occur.

For αp > 10−1, the flow is referred as dense flow (also named ’granular flow’) where

the interparticle collisions are significantly important. Mostly particle-particle interactions

govern the dynamic motion in this regime.
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A good comprehension of the nature of the disperse phase is needed in all of the areas

mentioned above in order to understand, improve and develop new techniques, new devices

or take necessary precautions against the natural phenomena in which gas-solid flows occur.

The phenomena could exist simultaneously or separately in a flow according to a specific

problem.

1.2 Importance of turbulence modulation and modeling of

two-phase flows

In the course of this study, the turbulence modulation will only be considered out of all

the possible interactions mentioned above. In Stanford University, end of 70s, during an

experience performed on a vertical diffuser at the outlet section of a fluidized bed through

which a gas-solid flow is let out, relatively dilute loading of particles are seen to have an

important effect on the mean velocity field giving rise to the work of modulation of turbulence.

Developing a code, assuming the particles as point sources affecting the turbulent flow field

developed by Crowe et al. (1977) (will be explained in chapter 2 in detail), many experimental

or numerical studies followed on understanding the two-way coupling mechanism and how

to integrate it on numerical models.

In free turbulence, the studies of Maxey et al. (1997), Gore and Crowe (1989), Parthasarathy

and Faeth (1990), Squires and Eaton (1990), Mizukami et al. (1994), Elgobashi and Truesdell

(1993), Kenning and Crowe (1997), Boivin et al. (1998), Druzhinin and Elgobashi (1999),

Ahmed and Elgobashi (2000), Sundaram and Collins (2000), Vermorel et al. (2003) have

shown the importance of very small particles effecting the structure of the turbulent en-

ergy spectrum. There are also theoretical works of Yarin and Hetsroni (1994), Yuan and

Michaelides (1992) investigating to incorporate the wake effect of particles with relatively

high diameters into the turbulence models. Hwang and Eaton (2006a,b) studied experimen-

tally the effect of particles on the fluid turbulence where they showed that when the high

turbulence rates are required, the attenuation of the turbulent kinetic energy by the particles

can cause serious problems. More recently, Garćıa (2001), Boivin et al. (2000) discusses the

extension of modeling the two-way coupled flows using LES approach to capture the flow

dynamics more in detail in numerics.

In wall-bounded turbulence, Fessler et al. (1994), Uijttewaal and Oliemans (1996) studied

the dispersion and deposition of particles in vertical pipe flows experimentally. Portela and

Oliemans (2003) studied the channel flow, Rani et al. (2004) studied the turbulent pipe

flow laden with inertial particles. Nasr and Ahmadi (2007), Benavides and van Wachem

(2008), Chan et al. (2005) are among the many researchers that investigated the fluid-particle
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interactions in flows with wall bounded vertical or horizontal domains. They drew attention

to the fact that the particles interact with turbulence differently in the center of the channel

and in the near-wall region.

According to all these studies, it is clear that the real problem of two-way coupling is that

the enhancement or the attenuation of the turbulence do not have a consensus on specific

particle parameters and the modification of the turbulent spectrum is very difficult to explain,

especially, due to non-uniform modulation by low-inertia particles. In this purpose, the

theoretical work of Gore and Crowe (1989) related turbulent intensity modification to the

ratio dp/Lf where dp is the particle diameter and Lf is the integral scale of turbulence. They

observed that for small ratio of dp/Lf , turbulent intensity attenuates and for high ratio of

dp/Lf , turbulent intensity increases. Experimental studies in the literature showed that the

maximum of turbulence attenuation occurs when the particle size is close to the Kolmogorov

scales of turbulence (Kulick et al., 1994). However, the material density of the particles

were not included in this reasoning that saw many objections. Yarin and Hetsroni (1994)

then proposed using the particle Reynolds number, Rep, in order to explain the increases

and decreases in turbulence intensities. With high particle Reynolds numbers, particles have

higher relative velocities compared to their fluid environment and they start to shed vortices.

Coherently in very low particle Reynolds number regime, the works of Squires and Eaton

(1990), Elgobashi and Truesdell (1993) have put in evidence that the highly inertial particles

tend to modify the turbulence spectrum uniformly at each turbulent scale whereas low-inertia

particles tend to modify it more non-uniformly, e.g., enhancement in high wavenumbers and

attenuation in low wavenumbers.

Modeling of gas-solid flows are based on two distinct approaches namely; Euler-Euler

methods where each phase is regarded as a continuum and they are coupled through inter-

facial transfer terms and Euler-Lagrange methods where particle phase is discrete and each

particle is tracked individually. Euler-Euler methods are described in detail in the works

of Ishii (1975), Delhaye (1981). The approach is basically to write the continuum trans-

port equations of both phases where each equation has the transfer term accounting for the

mean and turbulent transfer of quantities between the phases. These methods are difficult

to formulate and require constants therefore showing uncertainties according to the problem

considered. Nevertheless, Euler-Euler methods are now the center of attention for the indus-

trial partners because of their capability to predict certain types of flows of practical interest

without much cost and reliability. Euler-Lagrange methods can be referred in the works

of Elgobashi and Truesdell (1993), Squires and Eaton (1990). Approach solves the dynamic

equation of motion of each particle and advances them in time. In this regard, Euler-Lagrange

methods are very costly and become prohibitive easily with increasing particle numbers but

they are very precise in terms of extracting particle statistics for any flow type. Therefore
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the interaction between the two methods can be seen as practical Euler-Euler models moti-

vate many modeling studies using the informations obtained from Euler-Lagrange methods.

Especially with the help of kinetic theory, Euler-Euler models advanced enormously in the

last two decades and sure it will continue.

1.3 Aim of this study

This thesis stands at the continuation of these studies to improve the understanding the

two-way coupled flows by using a Lagrangian approach for the particle phase. Basic reason

to use a Lagrangian approach is that these interactions occur along the particle trajectories

and are therefore very difficult to take into account in Eulerian models which are defined

at fixed points. Newly emerging powerful numerical tool Lagrangian stochastic models are

going to be used to model the fluid turbulent velocity along the particle and fluid element

trajectories. The aim is not only to understand the underlying physics of modification to

the turbulent energy spectrum, especially due to low-inertia particles, but also to settle the

stochastic equations governing the turbulent motion in presence of two-way interactions.

These equations in turn will be able to lead to the Eulerian continuum equations for the

fluid phase.

From modeling point of view, interest in this study is to lie down the equations in the

context of Lagrangian stochastic modeling that will imitate the equations written in the

Navier-Stokes formalism which are assumed in microscopic level. The tendency to reduce

the number of degrees of freedom which is well-established purpose in Lagrangian stochastic

models is the main driving fact of this thesis. So the equations obtained should help the

improvements and developments of not only the codes using the stochasticity which are

pretty novel in the community, but also the codes largely used in industry as of k − ǫ type.

On the numerical experiment side, the intention is to perform 3D time dependent simula-

tions of gas-solid flows in order to analyze and to understand the Lagrangian characteristics

of the solid particle dispersion in presence of two-way coupling. Main challenges reside in the

difficulty and exhaustivity of the precise calculation of the variables related to the gas-solid

flows such as correlations of any type. Direct Numerical Simulation (DNS) without ad-hoc

modeling assumptions are going to be used in order to form a database and to compare the

computations from the models. Fluid phase is assumed to be homogeneous isotropic sta-

tionary turbulence with periodic boundary conditions in a cubical domain far from any wall

effects. No mean flow gradients exist then to complicate the problem. Indeed, it is a known

fact that in presence of shear or mean gradients, the structural changes in the turbulent
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kinetic energy spectrum are not separable from one another. As a last point, gravity is also

neglected in order to simplify the problem.

Solid, spherical, indeformable monosize distribution of particles with dilute loading are

used in this study. Their diameters are smaller than the Kolmogorov scales so as not to

include any wake-induced effect on the structure of turbulence. Particles have much higher

density than the fluid phase to exclude certain forces acting on them (details are in chapter

2). Interparticle collisions are negligible because of very low volume fractions. With these

assumptions, particles should cover certain properties of more realistic particle or droplets

encountered in real applications mentioned above. Therefore, the configuration considered

in this thesis is much of a fundamental type which has to allow to analyze and to understand

the basic mechanisms of two-way coupling in order to propose a model.

In the light of these facts, the thesis is going to flow in following way:

Chapter 2 will talk about the motion of single particle in a turbulent flow. Specifically,

the definition of the forces acting on a single particle due to the underlying turbulent flow

will take place after which the simplifying hypotheses concerning the study will be discussed.

The notion from a single particle motion to the motion of a particle cloud will be discussed.

This will follow with the discussion of the homogeneous isotropic turbulence and how to

keep it stationary in time. Stochastic forcing scheme of Eswaran and Pope (1988) is going

to be discussed and a reference flow field is going to be generated in order to be used for the

one-way and two-way coupled simulations. It is going to be seen that the stochastic forcing is

well capable of generating a proper turbulent flow field with proper statistics. However, due

to its requirement of inverse Fourier Transform, it is costly and inverse FFT is problematic

in parallel environment (the code used is parallel).

In chapter 3, linear forcing scheme is going to be implemented on different initial condi-

tions, namely: one generated by the stochastic forcing and the other is the Passo-Pouquet

type spectrum. The purpose is to use the advantages of linear forcing which is very rapid

and easy to code to obtain proper statistics. However, it is going to be seen that the scheme

is further attention due to its lack of producing good statistical properties.

Chapter 4 will initiate the modeling of gas-solid flows in the context of Euler-Euler models

in the frame of the kinetic theory. The chapter is going to talk about the evolution of the

Euler-Euler models and the incorporation of the probabilistic description to reformulate the

equations. Statistical or probabilistic description of the particle phase is going to be followed

by the modeling the fluid-particle correlations for which the classical Euler-Euler methods

(also named ’two-fluid models’) are not able to propose a model.
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The problems of modeling fluid-particle turbulent drift velocity and particle phase high-

order moments are going to be discussed in chapter 5 and Lagrangian stochastic models

will follow. These models use stochasticity in differential equations to imitate the natural

processes more realistically. Stochasticity covers the random forces perturbing the process

in an infinitely small time separation. Two equations are going to be proposed, one for the

fluid velocity along the fluid element trajectories and the other for the fluid velocity along the

solid particle trajectories. Due to the modulation of the fluid statistics by the particles, the

originality in these equations will be an additional two-way coupling term which is not known

a priori and should be modeled. Two propositions will be used at this level one is a mean

drag term using the mean velocities of the both phases from mean momentum transport

equations and the other is an instantaneous drag term using the mesoscopic particle velocity

written in the context of the mesoscopic Eulerian formalism (MEF) developed by Février et

al. (2005). These two models should carry the importance of the spectral content of the two-

way coupling term, e.g., the non-uniform effect of low-inertia particles on turbulent scales.

The models will be the first and significant part of a proposed methodology to determine the

unknown coefficients in stochastic equations.

Chapters 6 and 7 are about the measurement of fluid and particle statistics, energy spec-

trum of turbulence and the tests of the models with comparison to the Direct Numerical

Simulation (DNS) of an ideal case corresponding to the stationary homogeneous isotropic

turbulence without gravity. The modification of the turbulence characteristics such as inte-

gral time and length scales, turbulent Reynolds numbers will be reported in order to analyze

the modification of the turbulent flow. In chapter 7, the statistics concerning the particle

phase will be reported and analyzed in terms of particle Lagrangian correlations. Then the

Lagrangian stochastic modeling results are going to be discussed in terms of the fluid-particle

covariance and turbulent drift velocity in order to evaluate the models.



Chapter 2

Numerical simulation of fluid

turbulence and solid particle

trajectories

2.1 Introduction

In this chapter, the dynamic equation governing a single spherical particle’s motion in in-

teraction with a turbulent flow will be discussed. The equation corresponds to the dynamic

equation of motion written in classical Newtonian mechanics as a force F applied on a par-

ticle is equal to the mass of the particle times the acceleration of the particle. Definition

of the forces acting on a particle due to the interactions with the underlying turbulent flow

will be discussed and necessary hypotheses will be made so as to reduce the difficulty of the

problem. This thesis considers spherical, indeformable particles all with the same diameter.

Their diameters are much smaller than the smallest scales of turbulence (Kolmogorov scale,

ηK), dp << ηK , and particles have fairly larger density than the fluid, ρp >> ρf , leading

to neglect certain forces in the equation of particle motion. These assumptions are, nev-

ertheless, not crucial considering the wide range of applications of small dense particles in

many processes such as fluidized beds, sandstorms in deserts etc... The final equation will

be composed of only the drag force written in the context of point particle sources.

In order to determine the forces acting on a particle in a turbulent flow, fluid velocity

surrounding the particle has to be provided. This requires the solution of the governing

equations of the fluid motion around a particle which becomes overly difficult with increasing

number of particles. The complexity lying in the fact that infinite number of degrees of

freedom, spatial and temporal structures of very large and very small space dimensions

9
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and temporal scales, coexist and interact with each other, is increased with the additional

particles. Navier-Stokes equations governing the fluid motion take into account properly all

the interactions in the motion of the fluid. However, an analytical solution does not exist and

requires the numerical methods and the high power capacity of today’s computers. Today

the most reliable method to solve these equations is Direct Numerical Simulation (DNS)

using no modeling approach. They are used widely in order to observe time evolution of

three dimensional turbulent flow fields and therefore regarded as a numerical experiment.

Throughout this thesis, many numerical computations have been performed in order to

simulate particle motion and dynamics of turbulence corresponding to Direct Numerical

Simulations of 3D unsteady compressible Newtonian fluid equations of Navier-Stokes type

and Lagrangian dynamic particle equation written in the frame of the Newton’s second law

of motion. Therefore DNS method will be the subject of the second part of this chapter.

To finish, the most important part in implementation of two-way coupling is the definition

of the force acting on the fluid due to the particles. This force is difficult to define explicitly

due to the long-range interactions between the particle disturbance and the flow field. The

disturbance can be imagined in two different forms: the first is the direct perturbation to

the eddies due to the presence of the particles and the second one is the hydrodynamic

interactions due to the wake of particles. The back effect of the particles on the fluid can be

written as the force applied by the fluid on the particle with an opposite sign (action-reaction

principle). Further simplifications are proceeded for the particles considered in the context

of this thesis. Very small particles can be regarded as the point sources perturbing the fluid

motion and their wakes are negligible to interact indirectly with the turbulent scales. Method

called particle source in cell (P.S.I.C.) can then be utilized in order to perform numerical

experiments.

2.2 Single particle motion in a turbulent flow field

A single particle motion in a turbulent flow is going to be studied. Particles are considered

spherical with the coordinates (x(n)) of nth particle’s center defining its position in space and

with the velocity vector (u
(n)
p ). Each particle has a density, ρp, and the diameter, dp. In the

context of the thesis, all the particles have the same density, ρp, and the same diameter, dp,

which is called a monodisperse distribution.

2.2.1 Dynamic equation of a single particle motion in a turbulent field

Forces acting on a spherical object in a laminar flow was first studied by Stokes (1851)

considering the no-slip boundary conditions at the particle surface. Boussinesq (1885), Basset
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(1888) et Oseen (1927) considered the same problem with taking into account the distortion

of the streamlines around the sphere and writing an equation of motion dependent on the

Reynolds number of the flow around the object. Therefore a reference formulation of the

equation of particle motion called ’BBO equation’ was formulated. This equation is still used

today and it is the subject of many research.

Faxen (1924) worked on a more realistic configuration in which a fixed particle is let in a

non-uniform unsteady fluid flow. The BBO equation is then extended by Tchen (1947) to the

cases where the fluid phase is in turbulent motion. Tchen improved the equation by intro-

ducing the unsteady forces acting on the particle due to the acceleration of the surrounding

fluid. Corrsin and Lumley (1956) points out some of the discrepancies of the Tchen’s ex-

pression and takes into account the pressure gradient. Buyevich (1966), Riley (1971) works

on Tchen’s expression of fluid acceleration considering further the viscous stresses. Recent

works of Maxey and Riley (1983) and Gatignol (1983) gave the form of the equation that is

used currently.

2.2.1.1 Theoretical background

Following the works mentioned above, today, the forces acting on a particle or a droplet due

to a turbulent flow can be written as:

• drag force

• gravitational force

• fluid acceleration

• added mass

• history force

More forces could be included in presence of large shear rates, rapid particle rotation due to

the velocity gradients over the particle diameter (Saffman, 1965). However, in the context of

this thesis, all the particle rotations will be negligible. The definition of the forces mentioned

above except the gravity force is based on the integration of the viscous stress tensor τij and

the pressure over the particle surface
∫
S τij.~ndS and

∫
S −p.~ndS, respectively, that should

satisfy the governing equations of turbulence.

Coherently with the works mentioned, the forces acting on a particle are grouped under

two categories. These categories are composed of a force acting on a fluid element that occu-

pies the particle’s position and undisturbed by the particle’s presence and a force resulting
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from the perturbation of the streamlines owing to the particle’s presence. It can formally be

written that:

ρpVp
dup,i

dt
= F1,i + F2,i (2.1)

dxp,i

dt
= up,i (2.2)

where F1 term is the force applied on the fluid element taking into account the local pressure

gradient and gravity. F2 is the force by the perturbation due to the particle presence such

as drag, added mass etc...

Another categorization of the forces is given by Crowe et al. (1998) as steady and unsteady

forces. Steadiness characterizes the stationary time behavior of the relative velocity between

the fluid and the particle. Steady-state drag force, pressure gradient fall into this category.

Unsteady forces correspond to the acceleration of the relative velocity leading to a deviation

between the fluid element and the particle trajectories. Added mass, Basset forces fall into

this category. Crowe et al. (1998) also pay some attention to the definition of the force acting

on not a single particle but on a cloud of particles. Lack of promising knowledge on this

subject feels the need of more research. In the context of this thesis, many of the forces acting

on the particle are going to be neglected due to the hypotheses of the study. Therefore, this

categorization will not be considered more after this point.

2.2.1.2 General equation

For the particles used in this thesis;

dp ≤ ηK (2.3)

Rep =
dpvr

νf
< 1 (2.4)

where the relative velocity vr is written as:

vr = up − uf@p (2.5)

The forces F1 and F2 are written as:

F1 = ρpVp
Duf@p

Dt
+ Vp(ρp − ρf )g (2.6)
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F2 = Vp
18ρfνf

d2
p

(uf@p − up + FFaxen)

+
1

2
ρfVp

d

dt
(uf@p − up + FFaxen)

+Vp
9ρf

dp

√
νf

π

∫ t
−∞

d

dτ
(uf@p − up + FFaxen)

dτ√
t− τ

(2.7)

In this equation, ρp and ρf are the density of particle and fluid, respectively. Vp is the volume

of a particle, g is the gravitational acceleration, uf@p is the fluid velocity locally unperturbed

by the particle’s presence. FFaxen terms are the terms to take into account the curvature of

the streamlines perturbed by the particle presence (Faxen, 1924). Gatignol (1983) extends

this equation to the particles with diameter of the order of Kolmogorov scales (dp ≈ ηK) and

introduces the notion of the fluid velocity integrated over the particle’s volume and surface

to derive the Faxen terms.

F1 term takes into account the pressure gradient and gravity. The first term in F1 in-

troduced by Tchen on intuitive bases, and the Archimede force obtained as a solution of

Navier-Stokes equations.

F2 is the force due to the particle perturbation to the fluid flow. The first term is drag

force related to the viscosity of the fluid initially written by Stokes (1851). The second term

is the added mass force induced by the relative acceleration of a fluid element and a particle.

It is about the acceleration and deceleration of the particles causing the acceleration or

deceleration of the fluid therefore causing a relative motion. The third term is the Basset force

(Basset, 1888) taking into account the historical effects of the relative particle acceleration

the boundary layer. Rivero (1991) showed that for bubbles, this force is negligible considering

small Reynolds numbers Rep << 300.

In equations 2.6 and 2.7, D/Dt and d/dt represent the time derivatives following the fluid

element trajectory and solid particle trajectory, respectively. In gas-solid flows with particles

smaller than the Kolmogorov scales of turbulence and for very low particle Reynolds numbers,

Minier (1988) showed that these two derivatives are equal. In flows where the added mass

force acts on the particles, these derivatives become different (Magnaudet, 1995).

The notion of the unperturbed fluid velocity:

All the formulations above require providing the fluid velocity at the position of the

particle, which is symbolized as uf@p. It is important to note that this velocity does not

exist. It is an imaginary variable of the fluid which should exist if there were no particle at

a space point which belongs to a particle. However, the definition uses this velocity because

it is the only information concerning the fluid at the particle position and it is an accessible

value in numerical simulations. It will be seen later on that the rigorous solution of the
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fluid requires the solution of the governing equations of turbulence on a domain from which

particles are extracted, in other words, equations should be solved around each inclusion.

Unfortunately, with the inclusion of large number of particles, it becomes unfeasible.

2.2.1.3 Hypotheses of the study and the equation retained

Simplifications considered in this study includes particles with

• Small particle diameter, dp ≤ ηK

• Large density ratio, ρp >> ρf

• Small particle Reynolds number, Rep < 1

• only translational motion, no rotation of particles

• no gravity

In dilute turbulent flows, for large density ratios, such as considered in this study, of the

order O(103), pressure gradient and added mass forces are negligible. Desjonqueres et al.

(1986) showed that in terms of particle dispersion and particle agitation, Basset force is also

negligible. Following these simplifications, the forces on the inclusion are composed only

of the drag force and the gravity. To further simplify the problem, the gravity is also not

considered. Then the equation is written as:

Fp

mp

dup

dt
=

uf@p − up

τp
(2.8)

where τp is the particle relaxation time given as:

τp =
ρpd

2
p

18µf

1

fD
(2.9)

fD is the correction factor which is written as:

fD = (1 + 0.15Re0.687
p ) (2.10)

given by Schiller and Nauman (1935).

The last point is that this equation is related to an isolated particle or a droplet interacting

with the turbulent field. The dispersion, agitation of the particles and the effect on the

turbulence are the main aims in this study. Therefore a lot of effects could be questioned

in terms of negligibility. However, the forces acting on a cloud of particles are not well
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understood today. Therefore to exclude the additional problems, the forces are restricted to

the drag.

More profoundly, the following assumptions are considered in this thesis,

• No hydrodynamic interactions between neighboring particles (no wake of a particle

effect another particle)

• No interparticle collisions (very low volumetric loading of particles)

These hypotheses allow to solve the equation of motion independently for each particle.

However, the two-way coupling mechanism requires an expression of the backforce acting

on the fluid. This detail is going to be discussed in the third section of this chapter. With

the hypotheses and explanations performed so far, the particle phase simulations should be

enough to produce reliable results along with the DNS simulations of the fluid phase. In any

case, results will be compared either to an experimental measure or to a numerical calculation

performed in the literature.

2.2.1.4 Numerical solution of the equation of particle motion

In Euler-Lagrange simulations, the difficulty of the particle phase is the numerical solution of

the equation of particle motion requiring the undisturbed velocity of the fluid at the particle

position, uf@p. The fluid element trajectories are easier to solve so the first attention goes

to the Lagrangian tracking of fluid elements. The required equation for this operation is:

dxf (t)

dt
= uf (xf (t), t) (2.11)

This equation is the governing equation for a fluid element, a non-inertial particle. Then

basically the Lagrangian interpolation used for the trajectory of inertial particles could be

used. This equation is then used, in the context of this study, to calculate the trajectories

of fluid elements.

Solution of the equation of particle motion is more complicated and requires the integra-

tion of the equations:

dxp(t)

dt
= up(t) (2.12)

dup(t)

dt
=

uf@p − up

τp
(2.13)

As mentioned, this equation requires the locally unperturbed velocity of the fluid at the

particle position. This velocity will be referred as, uf@p, @p symbol meaning at the position
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of the particle considered. Unperturbed velocity of nth particle is the velocity undisturbed

by the nth particle however it is disturbed by all the other Np − 1 particles of the system.

Imprecise calculation of this velocity causes a deviation in the drag force calculation. As

Boivin (1996) notes that in case of lack in calculation, the fluid velocity of the next time step

will be affected leading to a miscalculation of the drag force.

Lagrangian tracking to the solid inertial particles is performed. In this context, the

particle motion equation is solved for each particle by the Runge-Kutta scheme of 3rd order

implemented in the code. This scheme requires the prediction and correction of the velocity

for 3 substeps and as noted by Février (2000) increasing the number of steps (degree of the

scheme) does not improve the results much. Therefore the time step dt for the equation of

particle motion is taken as equal to the time step of turbulence.

Periodic boundary conditions are used for the particles (for the fluid as well) conceding a

reference initial point to a particle whose position evolves periodically in space.

Fluid velocity is computed only at the discrete grid points so an interpolation scheme is

needed in order to obtain the fluid velocity at the particle center which is the subject of next

section.

2.2.1.5 Ghost particle test

The precise solution of the particle trajectories (also the trajectories of fluid elements) is de-

pendent on the precision of the interpolation scheme which is used to obtain the undisturbed

fluid velocity to calculate the force acting on the particle. In accordance with this force,

particle is timestepped. When there is no two-way coupling, the moments of the particle

phase depends on the calculation using this velocity. However, in the presence of two-way

coupling, this velocity is also modified and an account should be provided in order to show

that the fluid velocity seen by the particle is the same as the one of the turbulent field’s

non-perturbed fluid velocity. Therefore, this fluid velocity is very difficult to calculate and

some tests are needed in presence of two-way coupling.

The local undisturbed fluid velocity uf@p is computed by interpolation of the simulated

velocity at the grid points to the position of the particle. As noted by Boivin (1996), the

projection of the force term to the grid node can affect the fluid velocity (solution of the

Navier-Stokes equation) and can create unphysical oscillations. Therefore the drag term

of the next time step would be affected. To test this, a simple test proposed by Vermorel

et al. (2003) is performed. Two groups of particles introduced into the flow with random

distribution without any correlation neither with the other particles nor with the fluid. One

of the groups will be ghost particles, e.g., they are one-way coupled with the turbulent flow.
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The other group is physical particles. If the PISC approximation is valid then the statistics

of these two groups of particles should be in an acceptable margin. The statistical difference

in the fluid-particle covariance qfp of the two groups is shown in figure 2.1. As seen on the
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Figure 2.1: Statistical difference between the physical particles and ghost (one-way cou-
pled) particles.

figure, the statistical difference between the two groups is less then 1% and this is verified in

the totality of the simulations performed in this thesis.

2.2.1.6 Interpolation scheme

Different schemes exist in the literature for the interpolation procedure and they are usually

classified according to their levels of order. 3rd order Lagrangian polynomial interpolation

scheme is used in this study requiring 43 grid variables surrounding the particle. Order 3

means that the second derivatives are precisely solved. The advantage of this scheme is that

it takes into account all the flow scales precisely and it is largely discussed by Boivin (1996),

Balachandar (1989) in terms of cost and feasibility. It is less costly than the sophisticated

methods such as spectral interpolation as noted by Laviéville (1997).
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2.3 Fluid turbulence simulation

2.3.1 Introduction - General considerations

Underlying flow field dispersing the particles is considered turbulent in this study. The

fluid medium is characterized as a three-dimensional continuum implying that the smallest

scale of motion ηK (also called Kolmogorov scale) is much larger than the molecular motion

defined using the mean free path, λ. Therefore only the scales of equal to and larger than

the Kolmogorov scales are of interest. This allows the definition of a fluid element that can

be tracked in a Lagrangian manner as explained in the section of numerical solution of the

equation of particle motion. Fluid elements are still very large in comparison to the molecular

scales and much smaller than the Kolmogorov scales. This turbulent scales should then be

solved in order to analyze the time evolution and characteristics of turbulence in order to

extract information about the flow considered.

As explained in the introductory section of this chapter, turbulence is regarded as the

superposition of many number of degrees of freedom (so-called ’scales’ or ’structures’ from

now on) in time and in space interacting with each other. The smallest scales can be of a

size that is not seen by an human eye (usually symbolized as ηK), the largest scales can be

of dimensions as big as several kilometers depending on the geometry (will be referred as Lf

in this study). The quantity of the scales is characterized by a dimensionless number called

Reynolds number, ReL. It is defined as:

ReL =
uf,rmsLf

νf
(2.14)

where characteristic turbulent velocity is defined as:

uf,rms =

√
2

3
q2f (2.15)

Fluid kinetic energy q2f is defined as:

q2f =
1

2

〈
u

′

f,iu
′

f,i

〉
(2.16)

To characterize the small scales, another Reynolds number is introduced:

Reλ =
uf,rmsλg

νf
(2.17)

where λg is the Taylor length scale and it can be calculated using the two-point correlations,

as will be seen later on.
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At this level, the characteristic small scales are to be introduced to be used later on

to further characterize turbulence. Small scale characteristics are obtained by dimensional

analysis as:

ηK = (ν3
f/ǫ)

1/4 (2.18)

τη = (νf/ǫ)
1/2 (2.19)

where ηK is the Kolmogorov length scale and τη is the characteristic timescale of Kolmogorov

scales.

2.3.2 Navier-Stokes equations and solution

Navier-Stokes equations are a system of non-linear second order partial differential equa-

tions in four independent variables; position in three coordinates (x) and time (t). They

provide the evolution of the fluid velocity at a point in time. Classification of the partial

differential equations helps to choose a particular method for the solution of a considered

equation. However, a common property of Navier-Stokes equations is that they cannot be

mathematically classified, nevertheless, they carry many of the characteristics of the partial

differential equations which can be classified as hyperbolic, elliptic or parabolic (Ferziger and

Péric, 2000).

No analytical solution exists for the general Navier-Stokes equations, except for some

special cases such as inviscid flows, therefore numerical discretization in time and in space

is widely used method of solution. All the fluid turbulent scales can be represented by

numerical discretization. This discretization, however, requires sufficient computing power

and resource to compute the each scale whose quantity increases rapidly with the Reynolds

number, ReL. This in turn restricts the maximum reachable Re. It is known that industrial

application of DNS is impossible for many processes and it is regarded mostly as a numerical

experiment tool and interesting for the academic studies. Use of DNS as a research tool and

the new challenges for the recent and far future are summarized in the work of Nasr and

Ahmadi (2007).

Foundations of DNS were laid at the National Center for Atmospheric Research laboratory

by Fox and Lilly (1972). Orszag and Patterson (1972) simulated a 323 three dimensional

turbulence flow with a Reynolds number based on the Taylor length scales Reλ of 35. Rogallo

(1981) extended the application to homogeneous turbulence subjected to mean strain in

spectral space. First application to a plane channel flow was performed by Kim et al. (1987).

DNS method uses no model and is directly created for the purpose of solving the Navier-

Stokes equations. Depending on the order of space and time discretization, it can capture all
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of the flow scales for a low Reynolds number flow. The space discretization should be larger

than the Kolmogorov scales. In the study conducted here, the space step is of the order of

Kolmogorov scales or larger (∆x ≈ ηK). Time discretization should also be small enough to

capture the birth and death of an Kolmogorov scale.

Dimensionless Navier-Stokes equations for a compressible Newtonian viscous fluid is writ-

ten as:

∂ρf

∂t
+
∂ρfuf,i

∂xi
= 0 (2.20)

∂ρfuf,i

∂t
+
∂ρfuf,iuf,j

∂xj
= − ∂p

∂xi
+
∂τij
∂xj

(2.21)

∂ρfE

∂t
+
∂(ρfE + p)uj

∂xj
=

∂uiτij
∂xi

− ∂qi
∂xi

(2.22)

where the first equation is the conservation of mass and the second one is the conservation

of momentum. E is the total energy, q is the heat flux. τij is the visous stress tensor given

as:

τij = µf

(
∂uf,i

∂xj
+
∂uf,j

∂xi
− 2

3
δij
∂uf,k

∂xk

)
(2.23)

The energy E is given by:

E =
1

2

3∑

k=1

u2
f,k +

p

ρf (γ − 1)
(2.24)

p = ρfrgT (2.25)

where rg is the universal gas constant, γ is the ratio of specific heats at constant pressure

and constant volume.

2.3.3 Numerical approach, description of the code NTMIX3D

Numerical approach used in this thesis is DNS method solving directly the discretized Navier-

Stokes equations at space grid points with ∆x space step and dt time step. The code utilized

is called NTMIX3D developed in collaboration with CERFACS, IFP (Institut Francais du

Petrol), EM2C and IMFT initiated some 20 years ago. The code is intended primarily to

solve the turbulent reactive flows then enhanced with a Lagrangian particle tracking routine

in order to extend it to two-phase turbulent combustion problems. It is a compressible

code and parallelized with MPI platform capable of simulating flow problems admitting high

computer resources.
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Spatial discretization:

6th order compact finite difference scheme for space discretization (Lele, 1992) and 3rd

order Runge-Kutta scheme for time advancement of the equations, hence the high precision

and more realistic simulation of turbulent flows. Space discretization for the first derivative

u
′

f =
∂uf

∂x for a point inside the domain is written as:

3u
′

f,i+1 + 9u
′

f,i + 3u
′

f,i−1 =
1

∆x

(
1

4
uf,i+2 + 7uf,i+1 − 7uf,i−1 −

1

4
uf,i−2

)
(2.26)

where ∆xi is the space step in ith direction. Because of the derivatives, the representation of

the range of scales is very realistic. Compact schemes are known as quasi-spectral schemes

called also of Padé type. They can handle different mesh geometries and admit different

boundary conditions.

6th order discretization is not valid over the boundaries because it has a centered for-

mulation. At the boundaries special scheme is considered by reducing the order of the

approximation. At the boundary, this equation is written in 3rd order as:

2u
′

f,i + 4u
′

f,i−1 = − 1

∆x
(−5uf,i + 4uf,i−1 + uf,i−2) (2.27)

And for the points neighboring to the boundary points, 4th order scheme is written as:

u
′

f,i+1 + 4u
′

f,i + u
′

f,i−1 =
3

∆x
(uf,i+1 − uf,i−1) (2.28)

For the second order derivatives, the derivation follows a similar procedure (for more details

see Baum, 1994). The timestep is imposed using the CFL number of 0.35 due to the stability

considerations in the code.

Temporal discretization:

3rd order (3 step) explicit Runge-Kutta schemes use the propagation of information over

three intervals (Vichnevetsky and Bowles, 1982). Choice of the time integration effects also

the space integration especially in the sense of allowable time step of the simulation. Spectral

schemes have no numerical dissipation therefore the time integration should not induce any

numerical dissipation, either. The following procedure can be written for the time integration

of NTMIX3D:
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uf (t+ ∆t) = uf (t) + ∆tF (t,uf )

F (t,uf ) =
1

4
K1 +

3

4
K3

K1 = F (t,uf )

K2 = F (t+
∆t

3
, y +

∆t

3
K1)

K3 = F (t+
2∆t

3
, y +

2∆

3
K2) (2.29)

where u is the function (velocity field) to be integrated, ∆t is the time step, F is the time

derivative of u. More detailed information can be found in (Hoffman, 2002, Press et al.,

2001). The maximum time step dt corresponding is determined by the CFL number.

2.3.4 Turbulence forcing

Turbulence considered in this study was a fully developed turbulence far from any boundary.

Moreover, homogeneity and isotropy were needed because of the fundamentality of the study.

Homogeneity means that quantitatively mean quantities do not show variation in all points

of the flow field. Isotropy, on the other hand, means that the statistics do not depend

on a particular direction. Apart from being fundamental, the study considers the two-way

coupling mechanism which is not well understood. Indeed, anisotropy, inhomogeneity need

consideration of additional mechanisms such as mean gradients, correlations of higher order

etc... These effects can induce an indirect effect on the flow and on the interactions with the

particle phase and their neglecting is only possible with homogeneous, isotropic turbulence

because no average shear and mean velocity gradient could occur in this kind of flow.

Homogeneous isotropic turbulence does not exist in nature, it can only be obtained by

some special arrangements in experimental studies such as translational grid (Morize et al.,

2007) or static grids (Comte-Bellot and Corrsin, 1971), jet flows in confined tubes (Risso

and Fabre, 1997). In numerical environment, it is easier to obtain. There are two options:

imposing an initial energy spectrum (Passot-Pouquet spectrum, for example) and leave it to

decay in time exponantially, the other method is to start with an initial field and forcing it to

an isotropic and homogeneous flow state. The latter choice is possible with artificial forcing

which is the subject of the next section and has the advantage of achieving a stationary state

for the turbulent statistics such as kinetic energy, dissipation etc... The former choice has

a decaying (non-stationary) type turbulence making the statistics possible for certain time

range whereas forced turbulence lends itself easily to statistical examination and statistics

obtained are more robust with time and space averages.
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Turbulence decays because of the viscous effects converting the kinetic energy of the tur-

bulence into heat. Therefore turbulence has a dissipative nature and without the continuous

feeding of energy from an external source, it decays. This continuous source of energy is arti-

ficially added as a divergence-free term to force the turbulent velocity in turbulence forcing.

Artificial energy added has to be dissipated by the action of small scales, in other words,

the level energy added to the system and the dissipation rate should be equal so that the

energy could keep stationary level. Following section considers the stochastic method of cal-

culation for this term, whereas in next chapter, another method, called Linear forcing, will

be analyzed.

Turbulence forcing is not a new idea. Different deterministic methods have been already

implemented by Siggia and Patterson (1978), Kerr (1981), Siggia (1981). A common method

used in these studies is to keep the Fourier modes of the flow stationary in time. The

common drawback of all these studies is that either they generate a turbulence that could

not be modified by external effects such as particles, or they generate a turbulent state which

is pretty far from reality.

Stochastic spectral forcing and a recently developed deterministic method will be consid-

ered in this study. Basic difference between them is that in stochastic methods coefficients

are calculated in spectral space and transformed into physical space by inverse Fourier trans-

form. The force is applied on the low wavenumber (large scales) of turbulence to assure the

non-contamination of the small scales (large wavenumbers) in the dissipation range by the

artificial algorithm. In deterministic method, forcing term is directly calculated in physical

space using the statistics of turbulence. They are going to be compared in terms of the

properties of turbulence and for the computational cost for the study of the gas-solid flows.

Navier-Stokes equation now is written with the turbulence forcing term fi for an incom-

pressible flow as:

∂uf,i

∂t
+
∂uf,iuf,j

∂xj
= − 1

ρf

∂p

∂xi
+ νf

∂2uf,i

∂x2
j

+ fi (2.30)

The forcing term by definition has zero mean;

< fi >= 0 (2.31)

2.3.4.1 Spectral forcing

Spectral forcing is developed initially by Eswaran and Pope (1988). The large scales are

proposed to be forced by the term calculated with the help of stochastic Langevin equation
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written as:

bi,m(k, t+ ∆t) = (1 − ∆t/TF )bi,m(k, t) +

√
2σ2

F ∆t

TF
δW (2.32)

where m = 1, 2 is real and imaginary part of the coefficient bi, i indicates a component. ∆t

is the time step of the process here equal to the time step of turbulence, TF is the correlation

time of the process and σF is the amplitude. δW is a Gaussian distributed random number

with the mean 0 and variance 1. Using the random number, this second term produces the

stochastic part of the process and it represents the fluctuations occurring due to an unknown

source.

This equation is solved for the wavenumbers kmin < k < kmax where kmin is the

minimum and kmax is the maximum wavenumber. Exterior to this range, the coefficient

bi,m(k, t)|k<kmin ,k>kmax
is zero. Initially, Eswaran and Pope (1988) proposes to force in the

range ]0, 2k0] and ]0, 2
√

2k0] where k0 is the base wavenumber of the domain defined as

k0 = 2π
Lb

, Lb being the one side of the cubical domain. Février (2000) proposes to force the

wavenumbers in the range [2k0, 6k0]. Such a forcing was demonstrated to give a turbulent

field with a better statistical properties such as better isotropy and exponential correlations

in time. Along with the work of Eswaran and Pope (1988), Eswaran and Pope (1988) showed

that the small scales of turbulence are not modified by this modification of wavenumbers.

Therefore in this study, the proposition of Février (2000) to use the range [2k0, 6k0] was

followed. Therefore, the same method as Février’s is going to be adapted to analyze the flow

field in terms of homogeneity and isotropy.

The coefficients bi do not necessarily satisfy the continuity (divergence-free field) of the

velocity field, therefore, Eswaran and Pope (1988) proposes to perform a projection with the

operator:

aF
i = bi − ki

kjbj
k2

(2.33)

Coefficients aF
i is added to the Navier-Stokes equations in spectral space written as:

∂uf,i

∂t
(k, t) = ai(k, t) + aF

i (k, t) (2.34)

where ai(k, t) is the convection, diffusion, pressure gradient. Once the coefficient aF
i (k, t)

is calculated, it can be converted to the physical space using inverse Fourier transform to

calculate the forcing term fi. To satisfy the continuity equation further in accordance with the

numerical schemes implemented in the code, modified (effective) wavenumber keff is used

in order to reduce the differentiation errors. This wavenumber for the 6th order compact
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Figure 2.2: Turbulent kinetic energy balance. Solid line: turbulent kinetic energy, q2f ,
Dashed-line: energy dissipation rate, ǫ, Dotted line: energy production, P .

scheme is defined as (Baum, 1994):

keff =
1

∆x

28sin(kh) + sin(2kh)

18 + 12cos(wh)
(2.35)

The wavenumber in the calculation of the projection operator has been replaced by keff

and this modification improved the divergence of the forcing term aF
i significantly but the

divergence of the final turbulent field is not observed to have much improvement. Therefore

the use of the modified wavenumber is not considered in the simulations performed in this

study.

Stationary level of turbulence statistics is reached after several eddy turnover time as seen

on figure 2.2 after the balance is settled between the production of turbulence kinetic energy

and its dissipation.

The dissipation rate ǫ is defined as:

ǫ = 2νf < s
′

ijs
′

ij > (2.36)

where s
′

ij is the fluctuating part of the deformation-rate tensor sij which is written as:

sij =
1

2

(
∂uf,i

∂xj
+
∂uf,j

∂xi

)
(2.37)
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Production term Pf can be calculated by the formula:

Pf =< u
′

f,ifi > (2.38)

The oscillations around a mean value of each statistical value in the stationary period are

remarkable (see figure 2.2). These oscillations are due to the stochastic term in the Langevin

equation that does not produce the same kinetic energy from one timestep to another.

2.3.4.2 Numerical implementation of stochastic forcing scheme

In single phase flows:

As noted in preceding section, the implementation of stochastic forcing scheme requires

the inverse Fourier transform of the forcing coefficients bi calculated in spectral space. Due

to the code NTMIX3D being in parallel platform, the implementation of inverse FFT is

difficult. Therefore the calculation of the source term due to the turbulence forcing should

be adapted to the parallel environment. To overcome the difficulty of parallel environment

for the inverse FFT, an additional processor is considered to perform the inverse FFT and

send the data to the processors solving the Navier-Stokes equations. Representation of

the solution configuration is shown in figure 2.3. The extra processor n + 1 performs the

stochastic calculation of the force coefficients and inverse FFT. Then it sends the data (force

coefficients) to the processors solving the Navier-Stokes equations.

Figure 2.3: Representative figure showing the configuration of simulations to perform
inverse FFT in parallel platform.

Due to the additional processor, the duration of the calculations are important in terms

of synchronization between the processors, e.g., the additional processor only performs the

inverse FFT whereas the other processors solve the Navier-Stokes equations. For a good
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synchronization, the inverse FFT should be performed faster than the solution of the Navier-

Stokes equations.

tNavier−Stokes ≥ tinverse FFT (2.39)

Time consumptions of the processors are compared in figure 2.4 for single phase flows. As

seen, using more than 16 processors is not feasible due to the duration that processors must

wait for the n+ 1nd processor finishes the inverse FFT and sends the data.
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Figure 2.4: Time consumptions of NTMIX3D per step compared to the calculation of
inverse FFT for N3

x DNS application.

In gas-solid flows:

For gas-solid flows, the least number of particles used in this study is 262144 and to calcu-

late the Lagrangian statistics of the fluid turbulence another 200000 fluid elements are used.

In addition, the two-way coupling mechanism which requires the interpolation-projection of

the fluid variables and backforce is also costly. With these additional computations, in the

entirety of the simulations performed in this thesis, the condition tNavier−Stokes ≥ tinverse FFT

has always been satisfied. Thus, 64 + 1 processors are used for all the simulations.

2.3.4.3 Analysis of the turbulence characteristics

The spatial and temporal dimensions of turbulent scales are important in terms of charac-

terizing the turbulence, it can be noted, in passing, that they are the basic focus for the

modeling of turbulent flows along with the viscosity. To calculate precisely the space and
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time scales of turbulence, one-point and two-point statistics are used. The validation of

the homogeneous isotropic stationary turbulence was already performed by Février (2000),

therefore the same methodology will be followed. In the next subsections, the one-point and

two-point correlations will be compared in terms of homogeneous isotropic turbulent flow

field obtained by stochastic forcing scheme defined.

One-point correlations are used to determine the time scale (life time) of large or small

eddies. They can be calculated in an Eulerian or in a Lagrangian frame.

Eulerian one-point correlations are defined as:

RE,ij(τ) = 〈uf,i(x, t)uf,j(x, t+ τ)〉 (2.40)

where 〈.〉 indicates an ensemble averaging operator. In isotropic turbulence, tensor descends

to the diagonal components as:

RE(τ) =
1

3
〈uf,i(x, t)uf,i(x, t+ τ)〉 (2.41)

Time scale related to the Eulerian correlations is defined as:

TE =
1

RE(0)

∫ ∞

0
RE(τ)dτ (2.42)

TE is the timescale during which the fluctuating velocity decorrelates from itself. A practical

calculation of Eulerian one-point correlations involves the evolution of the fluid velocity at

a large number of arbitrarily distributed points in the flow domain and using the spatial

averages. The fluid velocities are stored at the spatial grid points therefore a practical way

of calculating the correlations is the consideration of the velocities at grid points. Using

the stationarity in forced turbulence, the correlations can further be improved by using time

averages for the correlations calculated for a certain number of realizations separated by a

decorrelation time interval.

Lagrangian one-point correlations require marked fluid particles and are defined similarly

as:

Rf
L,ij(τ) = 〈uf,i(xf (t), t)uf,j(xf (t+ τ), t+ τ)〉 (2.43)

where fluid elements are followed during their motion. In isotropic turbulence, only the

diagonal components are enough to calculate, then the correlation is written as:

Rf
L(τ) =

1

3
〈uf,i(xf (t), t)uf,i(xf (t+ τ), t+ τ)〉 (2.44)
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Time scale related to the Lagrangian correlations is defined as:

T f
L =

1

Rf
L(0)

∫ ∞

0
Rf

L(τ)dτ (2.45)

which is the timescale during which the eddy completes its rotation. Calculation of La-

grangian correlations faces the same difficulties as the calculation of Eulerian counterparts

but in parallel codes, there is also an additional difficulty which is the particles changing the

domain from one processor to another. Initial velocities of each particle should be commu-

nicated between the processors in order to accurately calculate the Lagrangian correlations.

These correlations need to be calculated using large number of points or fluid elements,

arbitrarily located in the flow domain. Nevertheless, the grid points and 200000 fluid ele-

ments are used to calculate the Lagrangian and Eulerian properties of the fluid turbulence.

Sequential simulations are used to average the correlations (and further statistics) in order

to increase the precision of the calculations during 10TE .

Eulerian and Lagrangian correlations of the flow field obtained using the stochastic forcing

are presented in figure 2.5. The Eulerian correlations follow the exponential curve, coherently

with the postulate of Tennekes (1975) which supposes that the small scales are transported

by the large ones. This, the Eulerian correlations have more rapid decay for small time

separations. Therefore, Eulerian correlations take a form closer to the exponential curve

then the Lagrangian counterparts. In turn these correlations confine with the Taylor frozen

turbulence hypotheses where the Eulerian correlations are exponential and the large scales

move with a characteristic velocity u′ of turbulence.

Another time scale Te can be associated to an Eulerian timescale during which a large

eddy completes its passage with reference to a fix point. Formally it is written as:

Te =
Lf

u′ (2.46)

where Lf is the characteristic length of the large scales calculated using two-point correla-

tions.

Eulerian two-point correlations in very general form are written as:

Re,ij(r, t) = 〈uf,i(x, t)uf,j(x + r, t)〉 (2.47)

where r is the separation in any direction in space. In homogeneous stationary turbulence,

statistics do not vary with position x or time t therefore spatial correlations are the function

of separation r only. Using the isotropy, the two point correlations reduce to longitudinal
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Figure 2.5: One-point correlations of the flows obtained with stochastic forcing.

and translational correlations which are written as:

f(r) =
1

3

〈uf,i(x)uf,i(x + rei)〉
u2

f,rms

(2.48)

g(r) =
1

3

〈uf,i(x)uf,i(x + rej)〉
u2

f,rms

(i 6= j) (2.49)

Using the incompressibility, Karman and Howarth (1938) gives a relation connecting these

two correlations. It is written:

g(r) = f(r) +
r

2

d

dr
f(r) (2.50)

Karman & Howarth relation is verified by the stochastic forcing as seen in figure 2.6.

Consistently with the incompressibility condition, the transversal correlations have a negative

region after 1 large length scale. Proper isotropy is obtained where the large scales are one-

tenth of the length of the domain. Hence the effect of the boundary conditions on the flow

field is negligibly small.
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Figure 2.6: Two-point correlations of the flows obtained with stochastic forcing.

These two correlations allow the definition of two space scales, namely: longitudinal and

transversal large scales. They can be calculated by:

Lf =

∫ ∞

0
f(r)dr (2.51)

Lg =

∫ ∞

0
g(r)dr (2.52)

According to the relation of Karman and Howarth, in homogeneous isotropic turbulence, the

large scales are related to each other as:

Lf

Lg
= 2 (2.53)

Based on the two-point correlation functions, the Taylor length scale can be calculated

as:

λ2
f =

(
−1

2

d2f

dr2

)−1

r=0

(2.54)

λ2
g =

(
−1

2

d2g

dr2

)−1

r=0

(2.55)
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In practice, these scales can be calculated using the turbulent kinetic energy and dissipation

rate as:

λg =
√

15νfu
2
f,rms/ǫ (2.56)

Three-dimensional energy spectrum E(k, t) of turbulence can be calculated from the two-

point spatial correlations using the relation:

E(k) =
1

2

∫ ∫ ∫
uTF

f,i (k)uTF∗
f,i (k)dk (2.57)

where TF is the Fourier transform operator and ∗ symbol indicates a complex conjugate

in complex plane. In forced homogeneous isotropic turbulence, turbulent kinetic energy is

evolved by the action of viscosity and the artifical production by the forcing. Time evolution

of the turbulent energy spectrum is given as:

∂E(k, t)

∂t
= P (k, t) − 2νfk

2E(k) (2.58)

where P (k, t) is the production of turbulent kinetic energy which is fulfilled by the forcing

algorithm.

The spectrum of the turbulent flow generated by the stochastic forcing is presented in

figure 2.7 compared with the experimental measurements in grid turbulence of Comte-Bellot

and Corrsin (1971). At the high wavenumber end of the spectrum (small scales), kinetic

energy follows concretely the experimental measurements. kηK parameter is also superior

to one which implies a good resolution of the smallest scales of turbulence (Eswaran and

Pope, 1988). At the low wavenumber end, the DNS measures are sensibly different than

the experimental measures which is related to the forcing scheme. Due to the low Reynolds

number of the flow (restricted by DNS), there is no sensible inertial zone. Nevertheless,

the stochastic forcing is capable of producing the low wavenumber curvature measured in

experiments. This is attributed to the forcing range ([2k0, 6k0]) which does not introduce

any energy to the largest scale.

Further characterization of homogeneous isotropic turbulence is done by analyzing the

probability density function (pdf) of the fluctuating velocity. Homogeneous isotropic tur-

bulence is characterized by Gaussian distribution of velocity fluctuations in space. This

property is satisfied in all simulations performed. For the sake of keeping place, only the

results of the stochastic forcing field will be presented.

Probability distribution of the fluctuating fluid velocities in the flow field generated by

the stochastic forcing is presented in figures 2.8 and 2.9. It is clear that the velocity field is
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Figure 2.7: 3D kinetic energy spectrum of the flow field obtained using stochastic forcing.

characterized by the Gaussian distribution.
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Figure 2.8: Probability distribution of the velocity fluctuations of the flow field obtained
using stochastic forcing.
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Figure 2.9: Probability distribution of the velocity fluctuations of the flow field obtained
using stochastic forcing, in logscale.

It is a known fact, however, that the distribution of the longitudinal or transversal velocity

gradients deviate from the normal distribution (Gaussian) as seen in figures 2.10, 2.11 and

2.12, 2.13. This deviation is measured using the two parameters; third and fourth order

moment of the velocity gradients written as:

Sk =

〈(
∂uf,i

∂xi

)3
〉

〈(
∂uf,i

∂xi

)2
〉3/2

(2.59)

Tk =

〈(
∂uf,i

∂xi

)4
〉

〈(
∂uf,i

∂xi

)2
〉2 (2.60)

Third order moment Sk indicates the skewness of the pdf around a mean value and they

are much encountered in flows with high gradients of turbulence intensity. Fourth order mo-

ment Tk measures the flatness of the pdf and they are encountered widely in turbulent/non-

turbulent interface flows such as edge of a free turbulent flow. Skewness different from zero

(like in non-gaussian distribution) is a known fact because in realistic turbulence cases, the

skewness appears in the production term in the transport equation of vorticity. In order



Chapter 2. Numerical simulation of fluid turbulence and solid particle trajectories 35

to generate turbulence, the velocity gradients should be different from zero. This point is

largely discussed in the book of Townsend (1956). Since these mechanisms do not exist in

the work conducted here, the ordinary values for these variables should be obtained.

−0.4 −0.2 0 0.2 0.4
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
p
d
f

Longitudinal velocity gradient

 

 
DNS Measurement
Gaussian Dist.

Figure 2.10: Probability distribution of the longitudinal derivative of velocity fluctuations
of the flow field obtained using stochastic forcing.

As a last point, the values of Sk and Tk are well within the range of −0.3,−0.4 and 3.5, 4.0,

respectively. Therefore, the stochastic forcing generates kindly good turbulent velocity fields

with proper characteristics coherent to a homogeneous isotropic frozen turbulence.

Linear forcing scheme, on the other hand, will be discussed in next chapter.

2.4 Initiating the study of two-way coupling

So far, the governing equation for the motion of solid particles have been written under the

effect of drag coefficient. The other forces are neglected because of the hypotheses conducted.

Then the governing equations for the turbulent flow have been written and the turbulence

has been characterized in terms of homogeneous isotropic stationary hypotheses.

As mentioned in the introductory chapter, in most industrial flows, the particles are highly

inertial and their effect on the fluid turbulence can not be ignored. Therefore in this section,

the study of two-way coupling will be initialized by defining the force acting on the fluid. As

will be seen, this force is very difficult to write in exact form which is of many discussions.
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Figure 2.11: Probability distribution of the longitudinal derivative of velocity fluctuations
of the flow field obtained using stochastic forcing.
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Figure 2.12: Probability distribution of the transversal derivative of velocity fluctuations
of the flow field obtained using stochastic forcing.

The chapter will end by giving the reference case which is used throughout the thesis for

gas-solid flow simulations which are of DNS+DPS type and they are mostly to calculate the
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Figure 2.13: Probability distribution of the transversal derivative of velocity fluctuations
of the flow field obtained using stochastic forcing.

time and spatial correlations of both phases. DNS restricts the highest Reynolds number

reachable, nevertheless, the expectation is that the simulations performed should allow the

analyze of the basic statistics and correlations and should allow the construction of a database

to which models can be compared and tested.

2.4.1 Force acting on the fluid

Turbulence effect on a particle is expressed as a source term in the equation of dynamic

motion of particles (equation 2.12). Physically, turbulence sees the particles as sources

therefore addition of a term representing this effect to the right hand side of the Navier-Stokes

equation suffices. This idea first proposed by Migdal and Agosta (1967). The Navier-Stokes

equations are then written as:

∂uf,i

∂t
+ uf,j

∂uf,i

∂xj
= − 1

ρf

∂p

∂xi
+ νf

∂2uf,i

∂x2
j

+ fi + fui
(2.61)

where fui
is the force acting on the fluid in ith direction due to the particles. In Euler-

Lagrange simulations such as simulations conducted in this study, the definition of the back-

effect of the particles on the fluid is relatively easy. On one hand, this is because the action-

reaction principle of Newton can be used, e.g., the force acting on the particle due to the

fluid acts on the fluid with an opposite sign. On the other hand, due to the low volumetric
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loading of particles and ideal type turbulence field, no other phenomenon than the two-way

coupling is not considered.

Mathematically, the force acting on the fluid is taken into account through the conditions

on the surface of the particles where the fluid velocity is equal to the velocity of particle.

Therefore a full account of particle’s effect on the turbulence requires the resolution of the

Navier-Stokes equations around each particle which becomes prohibitive rapidly with increas-

ing particle number in the domain. However, for particles much smaller than Kolmogorov

scales, velocity of the particle at its surface can be assumed equal to the velocity at its cen-

ter. Based on this simplification for very small particles, Crowe et al. (1977) developed the

point-source approach in which a ponctual force defined at the position of each particle and

projected onto the Eulerian grids.

2.4.2 Point source approximation

Point source method is based on multipole formulation of the drag force. In Stokes’ flow,

disturbance induced by inertial particles decays slowly with the distance r (r > dp). As

noted by Climent and Maxey (2009), the source term due to the particles Fp,i can be written

in multipole expansion as:

fui
(x, t) =

N∑

n=1

[(
Fn

i + Fn
ij
∂

∂xj
+ Fn

ijk

∂

∂xj∂xk
+ ...

)
δ(x − xn

p )

]
(2.62)

where δ(x − xn
p ) is the Dirac delta function and xn

p is the position of nth particle.

The accuracy of the expression increases with the number of moments included inside

the brackets, Fn
i monopole, Fn

ij dipole, Fn
ijk quadruple and so on (Saffman, 1973, Durlofsky

et al., 1987). This expression of the force field was tested in a Stokes’ flow with vanishing

inertia (very low particle Reynolds number) which is given by the Navier-Stokes equations:

0 = − ∂p

∂xi
+ µ

∂2uf,i

∂x2
j

+
N∑

n=1

[(
Fn

i + Fn
ij

∂

∂xj
+ Fn

ijk

∂

∂xj∂xk
+ ...

)
δ(x − xn

p )

]
(2.63)

Solution to this equation is given by:

uf,i(x) = u∞f,i(x) +

N∑

n=1

[(
Fn

i + Fn
ij

∂

∂xj
+ Fn

ijk

∂

∂xj∂xk
+ ...

)
Oij(x− xn

p )

]
(2.64)
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where Oij(x) is known as Oseen tensor or Stokeslet (Durlofsky et al., 1987) written as:

Oij(x) =
1

8πµ

(
δij
r

+
xixj

r3

)
(2.65)

where δij is the Kronecker delta function.

Therefore the Oseen tensor indicates that the perturbation of a particle to the fluid field

is composed of two terms: one proportional to 1/r and the other 1/r3. The dipole term Fij

is zero because particles do not rotate around their axis. More details on the solution of the

perturbation due to a moving body in a small Reynolds number flow can be found in the

book of Batchelor (1967). As noted by Koch (1990), for the Stokes’ flows and for very small

particles in comparison to Kolmogorov scales, only the long range interactions are effective.

Using this approximation, all the terms in the above relation except the first order term drop

out. Therefore only the first order term which becomes equal to the force Fp,i rests to effect

the turbulent field.

Fn
p,i = Fn

i (2.66)

Therefore the force term in Navier-Stokes equation can be written as:

fui
=

〈 Np∑

n=1

(F
(n)
p,i δ(x − x(n)))

〉
(2.67)

In this relation, it is clear that the two-way coupling term is defined at the position of

particles. The particles move in a arbitrary manner in the flow domain so that they can

be close to the Eulerian nodes or not. To distribute the effect of the particle force on the

Eulerian nodes, the PSIC method is going to be used. This scheme takes into account the

fact that a particle situating close to a node will largely effect the fluid velocity at this node,

but the nodes far will see an effect relatively weak. Therefore the force should be weighted

by the distance between the particle and 8 nodes surrounding the particle.

As noted by (Boivin, 1996), this projection can be seen as a filter and can be written for

any variable ψ as:

ψ̂(x, t) =

∫

∆
ψ(x

′

, t)H∆(x − x
′

)dx (2.68)
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where H∆ is spatial low-pass filter which has a characteristic length equal to the grid spacing.

The projection operator can be written as:

H∆(x − x
′

) =

{
Π3

i=1(1 − ξi) (xi − x
′

i) ≤ ∆xi

0 (xi − x
′

i) > ∆xi

where ∆xi is the grid spacing in ith direction and ξi =
∣∣∣x − x

′
∣∣∣ /∆xi

2.4.3 Reference case for the study

To finish the chapter, the reference flow case which is used in all gas-solid simulations in

this work will be presented here. This case will be used as an initial condition for all of the

simulations with varying particle properties such as mass-loading, particle material density

etc. performed during this thesis. This should allow to observe the evolution of the turbulence

properties due to different particle phase conditions such as inertia, number of particles etc...

The parametrization of the stochastic forcing is presented in table 2.1. Briefly, σF determines

the variance of the forcing. Turbulent kinetic energy of the flow generated is directly linked

to this parameter. Considering the compressibility of the code used in this study, variance

of forcing can not take very large values. Table 2.1 presents the maximum of this parameter

with the 1283 DNS simulation. TF determines the Eulerian correlation time TE. Prescription

of this value requires couple of a priori simulations. TF is taken equal to the Eulerian eddy

passing time Te which gives the ratio TE/Te ≈ 1. The range of the forced wavenumbers

determines directly the length of the large scales, Lf . Determination of the parameters

explained in Février (2000) in more detail.

Table 2.1: Parametrization of stochastic forcing for NTMIX3D

Variable Symbol Value

Variance of forcing σF 0, 0003523
Characteristic timescale TF 6, 54
Range of wavenumbers forced − [2k0, 6k0]

The characteristics of the reference flow field is given in table 2.2. It should be noted

that DNS simulations were conducted for the study in a 1283 cubic domain whose one side

is considered 2π to simplify the calculation of spatial wavenumbers. Reynolds number of 100

corresponds to sufficiently high turbulence achieved with the configuration. In any case, this

flow should provide useful information in order to analyze the fluid-particle interactions in

following chapters.

In conclusion, the stochastic forcing generates turbulent flows with more proper character-

istics corresponding Taylor frozen turbulence which is homogeneous, isotropic and stationary.
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Table 2.2: Statistics of the reference monophase simulation (all numbers are non-
dimensional).

Variable Symbol Value

Characteristic velocity u
′

0, 088
Fluid kinetic energy q2f 0, 0118

Dissipation ǫ 7, 7.10−4

Turbulent Reynolds number ReL 100
Taylor Reynolds number Reλ 48
Size of the box Lb 2π
Longitudinal integral scale Lf/Lb 0, 0864
Transversal integral scale Lf/Lg 1, 9797
Taylor length scale λg/Lb 0, 0438
Kolmogorov length scale ηK/Lb 0, 0032
Maximum wavenumber kmaxηK 1, 2608
Eulerian integral timescale
/ eddy turnover time TE/Te 1, 02
Lagrangian integral

timescale T f
L/TE 0, 8275

Kolmogorov timescale τη/Te 0, 131

The forcing scheme applied to the sufficiently large scales of turbulence is well verified in pre-

ceding sections in comparison to the work of Février (2000). Forcing in the range [2k0, 6k0]

is already compared to different range of forced wavenumbers by Février (2000) therefore no

further comparison will be considered in the following chapters.





Chapter 3

Linear deterministic forcing scheme

3.1 Introduction

It is stated that the stochastic forcing requires the transformation of the data from spectral

space to the physical space which requires the inverse FFT. It is known that in parallel

computing environment, the FFT is a delicate case. To overcome this difficulty, an addi-

tional processor is considered to perform only the inverse FFT and send the force data to

the processors solving the motion of the fluid turbulence. It is direct to ask if any other

method can serve faster than the stochastic forcing to force the turbulence with the proper

characteristics.

To the purpose of accelerating the code, in this chapter, linear forcing is studied. The idea

is to replace the stochastic forcing scheme with the linear forcing scheme which is known to

be fast and easy to embed in a code (Rosales and Meneveau, 2005) and therefore to avoid

the difficulties encountered in using the stochastic forcing. Then the question stays that,

Is linear forcing scheme capable of generating a turbulent flow field with good homogeneity

and isotropy?. This question is going to be answered in this chapter in comparison with the

stochastic forcing scheme.

Two linear forcing schemes are going to be discussed, one is the initial idea of Lundgren

(2003) and the other is the implementation of Toutant (2006). It is going to be seen that

both schemes generate turbulent flows pretty far from the homogeneous isotropic turbulence.

For the sake of the gas-solid flows in this thesis, the results of this section are going to be

judged pragmatically. Therefore, the reasons why these schemes are successful or not will

not be discussed in detail.

43
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3.2 Physical forcing scheme

3.2.1 Linear Forcing Scheme 1

The initial idea of Lundgren (2003) was to use the properties of homogeneous isotropic

turbulence, itself, e.g., the turbulence production term in the transport equation written for

the fluid velocity fluctuation is indeed linearly proportional to the fluctuation velocity and

therefore turbulence can be forced by a term proportional to the fluid fluctuation velocity.

The forcing term in the Navier-Stokes equations can then be written as:

fi = Buf,rms (3.1)

where B is a constant calculated by the relation B = ǫ/3u2
f,rms where u2

f,rms = 〈u.u〉 /3 is the

rms velocity of the turbulence. Prescription of the constant B and keeping it constant during

the simulation impose an eddy turnover time (Rosales and Meneveau, 2005) to the flow. Very

low Mach numbers considered in this study permits the calculation of the dissipation rate ǫ

by considering incompressibility.

3.2.2 Linear Forcing Scheme 2

Linear forcing can also be formulated by keeping the turbulent kinetic energy constant and

letting the dissipation rate to oscillate. This scheme is implemented first by Toutant (2006)

in his thesis. The procedure is to multiply the velocity with a coefficient calculated using

the ratio of energy levels of two consecutive time steps. It is written as:

uf,final(t) = u(f, t)

√√√√q2
t−1

f

q2
t

f

(3.2)

where uf,final is the velocity at the time t as uf (t), q2
t

f is the fluid turbulent kinetic energy

at time t. This scheme keeps the kinetic energy exactly at the same level.

One important point for the linear forcing is that it effects the entire scales of turbulence

and it requires an initial velocity field. However, it is very easy to code and to embed into a

numerical code and much less time consuming than spectral forcing.
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3.3 Parametrization of simulations

Two types of forcing have been implemented in order to compare the results of the linear

scheme to the results of spectral forcing scheme. Two initial conditions are considered as:

• Velocity field with Passo-Pouquet spectrum

• Velocity field forced with stochastic forcing

The intention in these tests is to keep the flow statistics obtained using stochastic forcing

constant in time via a more feasible scheme. Then Passo-Pouquet scheme will be a test

condition to observe the forcing scheme works properly.

3.3.1 Initial condition with Passo-Pouquet spectrum

A solenoidal isotropic velocity field can be generated by the Passo-Pouquet (Passot and

Pouquet, 1987) spectrum which is written as:

E(k) =
16√
π/2

u2
0k

4

k5
0

exp

(
−2k2

k2
0

)
(3.3)

where u2
0 is the initial input rms velocity and k0 is the wavenumber at which the maximum

of E(k) occurs. These values are arbitrarily chosen as:

k0 = 1 (3.4)

u0 = 0.03 (3.5)

For this simulation, initial value of B is 0.011. The parametrization of the stochastic forcing

is shown in table 3.1. Initial flow statistics of the flow field are presented in table 3.2.

Table 3.1: Parametrization of stochastic forcing to generate initial condition for linear
forcing schemes

Variable Symbol Value

Variance of forcing σF 0, 000051
Characteristic timescale TF 20
Range of wavenumbers forced − [2k0, 6k0]

For more details about this spectrum function, interested reader may refer to Boughanem

and Trouvé (1996), Vermorel et al. (2003), Rosales and Meneveau (2005).
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Table 3.2: Statistics of the initial flow field with Passo-Pouquet spectrum

Variable Symbol Value

Characteristic velocity u
′

0, 0294
Fluid kinetic energy q2f 0, 0013

Dissipation ǫ 2, 8516.10−5

3.3.2 Initial condition with stochastic forcing

A similar flow field to the one for the Passo-Pouquet spectrum is generated with the stochastic

forcing scheme. The parameter B has the value of 0.0135. The characteristics of the flow

field are given in table 3.3.

Table 3.3: Statistics of the initial flow field with stochastic forcing

Variable Symbol Value

Characteristic velocity u
′

0, 0351
Fluid kinetic energy q2f 0, 0019

Dissipation ǫ 5, 0.10−5

Turbulent Reynolds number ReL 82
Taylor Reynolds number Reλ 40
Size of the box Lb 2π
Longitudinal integral scale Lf/Lb 0, 1
Transversal integral scale Lf/Lg 2, 06
Taylor length scale λg/Lb 0, 0516
Kolmogorov length scale ηK/Lb 0, 0042
Maximum wavenumber kmaxηK 1, 64
Eulerian integral timescale
/ eddy turnover time TE/Te 1, 09
Lagrangian integral

timescale T f
L/TE 0, 6816

Kolmogorov timescale τη/Te 0, 1257

3.4 Results and comparison of the schemes

Quantitative results obtained with the two schemes initialized by the two conditions are

presented in tables 3.4 and 3.5. Qualitative analyses are presented in following sections.

3.4.1 Turbulent kinetic energy balance

Figure 3.1 presents the evolution of the turbulent kinetic energy for the application of the

two linear forcing schemes to two different initial conditions. The initial increase of the
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Table 3.4: Linear forcing applied to initial velocity field with Passo-Pouquet spectrum

Variable Symbol Scheme 1 Scheme 2

Characteristic velocity u
′

0, 0417 0, 0299
Fluid kinetic energy q2f 0, 0026 0, 0013

Dissipation ǫ 5, 1.10−5 3, 2.10−5

Turbulent Reynolds number ReL 122 66
Taylor Reynolds number Reλ 55 35
Size of the box Lb 2π 2π
Longitudinal macroscale Lf/Lb 0, 1339 0, 1560
Transversal macroscale Lf/Lg 1, 13 2, 134
Taylor length scale λg/Lb 0, 0608 0, 0545
Kolmogorov length scale ηK/Lb 0, 0041 0, 0046
Maximum wavenumber kmaxηK 1, 6387 1, 83
Eulerian integral timescale
/ eddy turnover time TE/Te 1, 2865 1, 7163
Lagrangian integral

timescale T f
L/TE 1, 0463 0, 7

Kolmogorov timescale τη/Te 0, 1173 0, 1405

Table 3.5: Linear forcing applied to initial velocity field generated with stochastic forcing

Variable Symbol Scheme 1 Scheme 2

Characteristic velocity u
′

0, 0552 0, 0340
Fluid kinetic energy q2f 0, 0046 0, 0017

Dissipation ǫ 1, 0.10−4 4, 5.10−5

Turbulent Reynolds number ReL 163 126
Taylor Reynolds number Reλ 66 40
Size of the box Lb 2π 2π
Longitudinal macroscale Lf/Lb 0, 1345 0, 1685
Transversal macroscale Lf/Lg 1, 1127 2, 44
Taylor length scale λg/Lb 0, 0548 0, 527
Kolmogorov length scale ηK/Lb 0, 0034 0, 0043
Maximum wavenumber kmaxηK 1, 3512 1, 6875
Eulerian integral timescale
/ eddy turnover time TE/Te 1, 6711 0, 9831
Lagrangian integral

timescale T f
L/TE 0, 4736 0, 7191

Kolmogorov timescale τη/Te 0, 1051 0, 0808

turbulent kinetic energy levels up to three times larger values is remarkable for the first

scheme ’Linear forcing scheme 1’. High levels of fluctuations in the stationary period are also

remarkable. These oscillations should be due to the forcing entire range of scales therefore

an enhanced activity of all the scales of turbulence. B coefficient is calculated in order to

control the equilibrium between the kinetic energy production and dissipation. In a settled

equilibrium, this parameter prescribed at the beginning of a simulation should be equal to
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its value calculated along the simulation. It is presented in figure 3.2 where it is clear that

after 30 eddy turnover times, the coefficient recovers its initial fixed value after an initial

sudden increase which states that the kinetic energy balance has been settled.
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Scheme 1 applied to stochastic field
Scheme 1 applied to Passo-Pouquet spectrum
Scheme 2 applied to both initial conditions

Figure 3.1: Turbulent kinetic energy of the flow simulations obtained by linear forcing
applied to two initial conditions.

Second forcing scheme ’Linear forcing scheme 2’ produces very weak oscillations, as seen

on figure 3.1, that evolution of the kinetic energy is rather constant.

Dissipation levels for all the simulations are presented in figures 3.3 and 3.4. Coherently

with the initial decrease in kinetic energy, dissipation rate increases initially for the first

linear forcing scheme. The second scheme, on the other hand, generates initial increase in

the dissipation rates which then return close to its initial value.

For both schemes, the oscillatory stationary periods are remarked which lengthens the

necessary period to perform the statistics. For stochastic forcing, statistics performed during

10Te is enough whereas in first linear forcing scheme, it surely requires more than 35Te.

Nevertheless, the second scheme generates very smooth kinetic energy evolution in time

which results in small time period requirement for statistics.
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Figure 3.2: Coefficient B for the linear forcing indicating the balance of kinetic energy
production and dissipation rates (scheme 1).
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Figure 3.3: Turbulent kinetic energy dissipation rate for the flow simulations with initial

Passo-Pouquet spectrum.
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Figure 3.4: Turbulent kinetic energy dissipation rate for the flow simulations with initial

stochastic flow field spectrum.

3.4.2 One-point correlations

Figures 3.5 up to 3.8 present the Eulerian and Lagrangian correlations of the simulations

performed using the Linear forcing schemes applied to two different initial conditions.

Flow fields obtained using the first linear forcing scheme are seen to have the Eulerian and

Lagrangian correlations highly oscillatory. These correlations are averaged over 30TE which

should be large enough to precise calculation of the correlations. The oscillations are basically

due to the high fluctuations of the kinetic energy from timestep to timestep (see figure 3.1)

using the scheme applying energy to the entire range of eddies. Therefore, to obtain smooth

correlation curves, even larger number of realizations is needed which becomes a consuming

task.

From the other part, rapid descent of the Lagrangian correlations are well captured in

the first scheme, however, the Eulerian correlations do not follow the exponential curve,

especially, for the scheme applied to the stochastic field.

The correlation curves of the flows obtained using the second scheme are very smooth

and they are converged (see figures 3.7 and 3.8). After a rapid decrease up to 1 or 2Te, the

correlations decrease slowly until zero correlation. Lagrangian correlations are seen to be

less dependent on the forcing scheme, however, Eulerian correlations are highly dependent.
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Figure 3.5: One-point correlations of the flows obtained with linear forcing, scheme 1
applied to the Passo-Pouquet spectrum initial conditions.
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Figure 3.6: One-point correlations of the flows obtained with linear forcing, scheme 1
applied to the stochastic flow field spectrum initial conditions.

This is in coherence with the hypothesis of Tennekes (1975) where the fluid elements follow

the turbulence at small scales.
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Figure 3.7: One-point correlations of the flows obtained with scheme 2 applied to the
Passo-Pouquet spectrum initial conditions.
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Figure 3.8: One-point correlations of the flows obtained with scheme 2 applied to the
stochastic flow field initial conditions.

Finally, the decrease in the correlation curves points out a turbulent field with wide range

of different eddy sizes. The large scales will be reported at the end of the chapter where the
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two-point correlations are analysed along with the spatial spectrum of the turbulent kinetic

energy.

3.4.3 Two-point correlations

Linear forcing applied to the velocity field with Passo-Pouquet spectrum and to the velocity

field obtained by stochastic forcing generates spatial correlations as shown in figures 3.9 and

3.10. It is immediately remarked the increase in the correlations which do not necessarily

tend to zero. This increase results in the increase of the length of the longitudinal large

scales. It is also to be noted that the longitudinal and transversal length scales tend to each

other and the transversal correlation highly deviates from the Karman & Howarth relation

by not having a negative region.
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Figure 3.9: Two-point correlations of the flows obtained with scheme 1 applied to
Passo-pouquet spectrum.

Therefore the large scale in longitudinal and transversal direction become closer in length,

Lf/Lg ≈ 1. Isotropy in the domain also decays due to the increased eddy lengths.

The second linear forcing scheme also generates flow fields far from the frozen turbulence

(figures 3.11 and 3.12). The longitudinal correlations do not tend to zero and the transversal

correlations have a wide negative region therefore not satisfying the Karman & Howarth

relation.
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Figure 3.10: Two-point correlations of the flows obtained with scheme 1 applied to
stochastic flow field spectrum.
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Figure 3.11: Two-point correlations of the flows obtained with scheme 2 applied to
Passo-pouquet spectrum.
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Figure 3.12: Two-point correlations of the flows obtained with scheme 2 applied to
stochastic flow field spectrum.

3.4.4 Spectral analysis

As a final point of the analyses of the turbulence characteristics of the two schemes, spec-

tra of the flow fields obtained are presented in figures 3.13 and 3.14. Deviation from the

experimental measurements are visible for the simulations with each initial condition using

the first linear forcing scheme and at each wavenumber. First linear forcing scheme increases

the turbulent kinetic energy of the flow and the length of the large scales therefore results in

higher Reynolds numbers which become unrealistic beyond the capability of DNS simulations

with the resolution used in this thesis. In accord with this, the spectra extends to higher

values of kηK parameter (more then 2).

Second linear forcing scheme, on the other hand, generates flow field with more realistic

spatial spectra keeping the initial kinetic energy of the flow constant and it seems more

advantageous then the first scheme which is highly oscillatory.
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Figure 3.13: 3D kinetic energy spectrum of the flow field obtained using linear forcing
schemes applied to Passo-Pouquet spectrum initial conditions.
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Figure 3.14: 3D kinetic energy spectrum of the flow field obtained using linear forcing
schemes applied to stochastic flow field spectrum initial conditions.
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3.4.5 Conclusion

Linear forcing scheme proposed by Lundgren (2003) is analyzed in this chapter in order to

generate turbulent flow field with proper characteristics. It is shown with the DNS simula-

tions that both linear forcing schemes are capable of generating stationary turbulent quan-

tities, however, the statistical character of turbulence is far from the homogeneous isotropic

turbulence. More study should be done in order to improve the schemes.

Due to the pragmatic results of this chapter, it seems that stochastic forcing is more

advantageous in terms of turbulence characteristics. It is clear that good turbulent flow

field would help analyze the complex effect of solid particles on the structure of the flow.

Therefore, the gas-solid simulations are carried out with the turbulence generated by the

stochastic forcing scheme.





Chapter 4

PDF modeling of gas-solid flows

4.1 Introduction

Modeling particulate flows has many interesting applications and one of the leading studies

is the work of Prigogine and Herman (1971) who modeled successfully the urban vehicle

traffic using the kinetic models. In this model, two phases are formed by the vehicles with

rapid motion and the ones with slow motion. In gas-solid flows, the same principle holds

and two-fluid models utilize the idea of continuum, which is used for gas or liquid turbulent

motion for example, for the two phases of the system. Then a governing equation can be

associated to each phase taking into account the principal physical phenomena. Intrinsic

interactions between the each phase are taken into account through the interfacial transfer

terms.

Two-fluid models are of the family of average models (constructed in Eulerian manner)

where an infinitesimal volume, over which the averages are conducted, includes an homoge-

neous sample of the each phase. Therefore a Lagrangian fluid element in the sense used in

monophase turbulence cannot be defined in two-fluid models because there is not a strict

distinction between the two phases. Two-fluid models are not without problems, they face

the common drawbacks of the averaged models such as the requirement of universal constants

and constitutive equations. Zhang and Roco (1993) notes that these models can describe the

true physics of gas-solid flows only partially. Including nature of fluid-particle interactions

occurring, which is the subject of this thesis, the nature of these flows is very complicated.

Many details of the classical two-fluid models can be found in the book of Ishii (1975).

Buyevich (1971) initiated a probabilistic approach which takes into account different phys-

ically important phenomena and therefore avoiding much of the uncertainties of Eulerian

modeling. Basically, similar set of equations to the two-fluid models were derived which

59
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takes into account the phenomena such as particle dragging along the turbulence, particle-

particle collisions, particle-wall collisions etc... Transport equations were derived for the first

three moments of the particle distribution function and closure for the third order moments

with a Boussinesq type approximation has been settled. The approach was enhanced by a

stochastic Lagrangian equation which takes into account the fluid velocity along the trajec-

tory of solid particles Simonin et al. (1993). Therefore the notion of fluid-particle interactions

and turbulent drift velocity, which plays very important role in mean and turbulent momen-

tum transfer between the two phases, were inherently modeled in Lagrangian frame with

corresponding transport equations. This model has been shown to produce good results in

two-phase jet flows Simonin (1991) and in boundary layer flows (He and Simonin, 1994) and

the other works are Simonin et al. (1995), Laviéville (1997).

In this chapter, probabilistic approach will be explained with the derivation of the moment

equations of the dispersed phase. First glance at the meaning of the probability functions is

needed in this sense.

4.2 Statistical description of the particle phase using a prob-

abilistic approach

In the context of this thesis, the mono disperse particles are distributed through the domain

and their characterization is done with a probability distribution function in analogy to

the kinetic theory of gases. The same idea is also possible polydisperse particles but it is

beyond the scope of this thesis (Simonin, 2000). According to the formalism, each particle is

represented by a velocity and a position which form the realizations of each particle. Once

the particle realizations are settled, a distribution (or equally named probability density)

function can be associated.

4.2.1 One-point probability density function fp

Imagining a volume element dV in space inside which a number of particles exists with

velocities in the range [u + du, v + dv,w + dw], the number of particles within the volume

dV will be proportional to dV dudvdw and a density function which is also a function u, v,w

and t time. This density function is said to be the probability density function and it is

defined with analogy to the kinetic theory of gases (Jeans, 1946, Chapman and Cowling,

1970, Peirano and Leckner, 1998). It measures the number of particles lying in the ranges of

the variables on which the function depends.
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More formally, a probability density function (pdf shortly) fp(cp;x, t) is introduced in

order to characterize the spatial and temporal distribution of particles. It is a one-point,

one-time Eulerian pdf of particle velocity cp in phase space and it provides the probability

of finding a sphere with its center at x and at time t and with the velocity cp. Accordingly,

the number of particle centers at x + dx and with velocity cp + dcp is given by:

fp(cp;x, t)dxdcp (4.1)

The pdf function completely defines the random variable cp in terms of all the one-point

statistics and can be used to calculate the average values of any function depending on the

particle properties. This is written as:

< Ψ >p (x, t) =
1

np(x, t)

∫
Ψ(cp)fp(cp;x, t)dcp (4.2)

for a function Ψ depending on cp, for example. In this relation, np is the particle number

density. As will be seen later on, more random variables are possible to add to this function

in order to extend its range but all additional variables come with an extra term in the

transport equation.

With analogy to the kinetic theory of gases, particle phase is macroscopically characterized

with a number density function, np(x, t), which provides the average number of particles

per unit volume, with a mean particle velocity Up(x, t), and with a kinetic stress tensor,

< u
′

p,iu
′

p,j >p (x, t) where
′

symbol indicates a fluctuating variable. These averages can be

calculated as:

np(x, t) =

∫
fp(cp;x, t)dcp (4.3)

Up(x, t) =
1

np(x, t)

∫
cpfp(cp;x, t)dcp (4.4)

< u
′

p,iu
′

p,j >p (x, t) =
1

np(x, t)

∫
[cp,i − Up,i(x, t)][cp,j − Up,j(x, t)]fp(cp;x, t)dcp (4.5)

Averages of higher order is possible but will not be considered here.

4.2.2 Transport equation for fp

It would not be complementary if this pdf function is not fulfilled with a transport equation

which provides its evolution. The first three order moments of the transport equation will

then correspond to the continuity np, mean momentum up and kinetic energy < up,iup,j >

transport equations of the particle phase.
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The pdf function fp can be obtained by averaging over a large number Nf&p, of gas-solid

flow realizations, Hf&p, (Reeks, 1980, Derevich and Zaichik, 1988, Reeks, 1991, Hyland,

1995), as:

fp(cp;x, t) = lim
Nf&p→∞


 1

Nf&p

∑

Nf&p

Np∑

m=1

W (m)
p (cp,x, t,Hf&p)


 (4.6)

whereNp is the number of particles and W
(m)
p is the fine-grained distribution function defined

as:

W (m)
p (cp,x, t,Hf&p) = δ(x − x(m)

p (t))δ(cp − u(m)
p (t)) (4.7)

Here, δ(.) is the Dirac delta function. Considering this fine-grained pdf, a transport equation

can be derived by taking the time derivative of the fine-grained pdf from equation 4.7 as:

∂W
(m)
p

∂t
= −∂W

(m)
p

∂xi

dx
(m)
p,i

dt
− ∂W

(m)
p

∂cp,i

du
(m)
p,i

dt
(4.8)

where d
dt is the derivative following the trajectory of particles.

Let us introduce a conditional average of a Lagrangian particle quantity Ψp with respect

to the particle velocity up = cp as:

< Ψp|cp > fp = lim
Nf&p→∞


 1

Nf&p

∑

Nf&p

Np∑

m=1

W (m)
p (cp,x, t,Hf&p)Ψ

(m)
p (t)


 (4.9)

By taking the average of the two-sides of the equation 4.8, according to 4.9, it can be

written that:

∂fp

∂t
= − ∂

∂xj

[
fp <

dxp,j

dt
|cp >

]
− ∂

∂cp,j

[
fp <

dup,j

dt
|cp >

]
(4.10)

where the particle trajectory and velocity equations can be replaced by their forms written

in Lagrangian frame for mth particle as:

dx
(m)
p,j

dt
= u

(m)
p,j (4.11)

du
(m)
p,j

dt
=
F

(m)
p,j

m
(m)
p

(4.12)

This equation is referred as the kinetic pdf transport equation (also can be referred as the



Chapter 4. PDF modeling of gas-solid flows 63

Vlasov ‡ or Liouville † type equation) and using the discrete forms written above, it is usually

written as:

∂fp

∂t
+

∂

∂xj
[cp,jfp] +

∂

∂cp,j

[〈
Fp,j

mp
|cp

〉
fp

]
= 0 (4.13)

where the force term
Fp,j

mp
which accounts for all the forces on the particle is averaged con-

ditionally on cp which is shown by the notation < .|cp >. Instead of solving the kinetic pdf

equation for each particle and averaging, such as the case would be with the equation written

for a one-particle pdf in stead of the fine-grained pdf, this equation considers directly the

mean terms and for gas-solid flow realizations constitutes a fundamental simplicity.

Closure of the kinetic transport equation for fp:

Equation of discrete particle motion was modeled in chapter 2. Using the equation 2.12,

the force term in the equation 4.13 can be written as:

∂

∂cp,j

[〈
dup,j

dt
|cp

〉
fp

]
=

∂

∂cp,j

[〈
uf@p,j − up,j

τp
|cp

〉
fp

]
(4.14)

As can be noted, the calculation of the instantaneous force acting on the particle due to the

interactions with the fluid phase requires the Lagrangian temporal derivative of fluid velocity

uf@p at particle position which is not available a priori. This leads to the requirement of a

joint pdf which is handled later on.

The kinetic equation 4.13 can be enhanced by an additional term on the right-hand side

accounting for the particle-particle interactions which is largely studied by Boltzmann ∗.

4.2.3 Moment equations of the particle phase

Once the transport equation for the one-point one-time pdf fp is given, it is possible to

derive the spatially continuum equations of the high-order moments of the pdf function. The

statistical moments np, Up,i and < u
′

p,iu
′

p,j >p are considered in this thesis. Higher orders

are possible but they are very difficult to model.

The general procedure to obtain the mean < Ψ >p of a function over the particle phase

of any function Ψ(cp), which depends on cp, is composed of the multiplication of the kinetic

‡Anatoly Alexandrovich Vlasov, 1908-1975, was a Russian theoretical physicist prominent in the fields of

statistical mechanics, kinetics, and especially in plasma physics. He obtained the same transport equation

without collisions for a system where the external force is due to the electromagnetic force.
†Joseph Liouville, 1809-1882, was a French mathematician who first obtained a kinetic transport equation

for a distribution function defined in phase space using a similar to the one presented in equation 4.9.
∗Ludwig Eduard Boltzmann, 1844-1906, worked largely on the closure of the collisional term. He committed

suicide by hanging himself due to the fact that he was not sharing the same idea about the closure of this

term as his contemporaries and this conflict was feeding his malady of rapid mood alternation.
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PDF transport equation 4.13 with Ψ and integrating it over the entire phase space of cp.

The pdf fp is assumed to have zero value at infinity leading to the simplifications in the

derivation procedure.

The general equation derived by the integration method of Enskog † and it is written as

(Enskog and Sven, 1922, Chapman and Cowling, 1970):

∂

∂t
(np < Ψ >p) +

∂

∂xj
(np < cp,jΨ >p) = np

〈
dup,j

dt

∂Ψ

∂up,i

〉

p

(4.15)

for functions depending on the fluctuating quantities Ψ(cp − Up), it is written as:

∂

∂t
(np < Ψ >p) +

∂

∂xj
(np < cp,jΨ >p) = np

〈
dup,j

dt

∂Ψ

∂up,i

〉

p

+np

〈[
∂Ψ

∂t
+ cp,j

∂Ψ

∂xj

]〉

p

(4.16)

These two equations allow access to the moment equations of the dispersed phase and they

will be used from now on.

4.2.3.1 Particle number density balance equation, Ψ = 1

The particle number density balance equation is obtained by taking Ψ = 1 in the equation

4.16. The equation is written as:

∂

∂t
(np) +

∂

∂xj
(npUp,j) = 0 (4.17)

In case of coalescence or agglomeration, the right hand side of this equation has additional

terms. This equation is analog to the continuity equation written for monophase fluid flows.

4.2.3.2 Mean momentum balance equation, Ψ = up,i

Mean momentum equation of the particle phase is obtained by taking Ψ = up,i. The equation

is written as:

np
∂

∂t
Up,i + npUp,j

∂Up,i

∂xj
=

∂

∂xj

[
−np < u

′

p,iu
′

p,j >p

]
+ np

〈
Fp,i

mp

〉

p

(4.18)

†David Enskog, 1884-1947 is a Swedish mathematical physicist.
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where the first term on the right hand side is the turbulent transport of mean momentum

by the velocity fluctuations and the final term takes into account the exchange of mean

momentum with the fluid phase due to the perturbations induced by the particle (due to the

two-way coupling). The final term can explicitly be written using the general description of

the drag force 2.8 as:

np

〈
Fp,i

mp

〉

p

= −np

〈
ρf

ρp

3

4

CD

dp
|vr| vr,i

〉

p

(4.19)

where CD is the drag coefficient of the particle, vr,i = up,i − uf@p,i is the relative velocity

between the two phases. The drag coefficient is written as (Schiller and Nauman, 1935):

CD =
24

Rep

(
1 + 0.15Re0.687

p

)
(4.20)

For gas-solid flows with uniform property particles in Stokes regime (Rep < 1), the relation

4.19 leads to the simple form:

np

〈
Fp,i

mp

〉

p

= −np
1

τp
Vr,i

1

τp
=
ρf

ρp

18νf

d2
p

(4.21)

Vr,i = 〈vr,i〉p is the mean relative velocity between the particle velocity and surrounding fluid

velocity. The mean relative velocity can be written as:

Vr,i = [Up,i − Uf,i] − Vd,i Vd,i = 〈uf@p,i − Uf,i〉p (4.22)

where Vd,i is the so-called fluid-particle turbulent drift velocity. It is measured as a conditional

average of the undisturbed fluid velocity with reference to the particle distribution.

Vd,i is important in gas-solid flows because it accounts for the turbulent dispersion of

particles due to the transport by large turbulent scales (Simonin and Viollet, 1990). It is

simply the correlation between the fluctuating fluid velocity field and the particle spatial

distribution.
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4.2.3.3 Particle kinetic stress tensor equation, Ψ =< u
′

p,iu
′

p,j >p

The final equation of this section concerns the kinetic stress tensor equation attributed to

the particle phase which is written as:

np
∂

∂t
< u

′

p,iu
′

p,j >p +npUp,m
∂

∂xm
< u

′

p,iu
′

p,j >p=

− ∂

∂xm

[
np < u

′

p,iu
′

p,ju
′

p,m >p

]

−np

[
< u

′

p,iu
′

p,m >p
∂Up,j

∂xm
+ < u

′

p,ju
′

p,m >p
∂Up,i

∂xm

]

+np

[
<
Fp,i

mp
u

′

p,j >p + <
Fp,j

mp
u

′

p,i >p

]

(4.23)

The first term on the right hand side is the triple correlations which is the transport of

the kinetic stress tensor by the turbulent particle velocities. It can be modeled using the

Boussinesq approximation derived from the third order transport equation of the dispersed

phase Simonin (1991).

The second term is the production term by the work of mean velocity gradients on the

kinetic stresses.

The third term, on the third line, takes into account the interactions with the fluid phase.

The last term takes into account the turbulent interactions between the particle and fluid

phase and it can create or destruct the particle agitation according to the fluid-particle

covariance tensor < u
′

p,iu
′

f@p,j >. Indeed, this term can be written more explicitly as:

np

[
<
Fp,i

mp
u

′

p,j >p + <
Fp,j

mp
u

′

p,i >p

]
=

−np

τp

[
2
〈
u

′

p,iu
′

p,j

〉
p
−
〈
u

′

f@p,iu
′

p,j

〉
p
−
〈
u

′

p,iu
′

f@p,j

〉
p

] (4.24)

The particle kinetic stress tensor can be contracted using the isotropy and the particle

agitation can be defined as:

q2p =
1

2

〈
u

′

p,iu
′

p,i

〉
p

(4.25)

In the equation of mean momentum and particle kinetic stress tensor, it has been shown

that the fluid statistics viewed by the particles uf@p are not present and should be mod-

eled. In literature, different propositions exist for the closure of these quantities such as
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the closure of Derevich and Zaichik (1988), Reeks (1991, 1993). Simonin et al. (1993) pro-

poses a Langevin equation using the stochastic description of fluid turbulence to compute

the Lagrangian statistics of the fluid phase encountered during the particle trajectories. This

equation provides a closure to the fluid-particle joint probability density function (joint pdf)

transport equation which will be the subject of the next section.

Once the transport equation is obtained for the joint pdf, the Eulerian continuum equa-

tions for the drift velocity Vd and the fluid-particle covariance qfp are possible to be derived.

4.3 Statistical description of the system using a joint proba-

bilistic approach

The force acting on the particles can be written in the form:

Fp,i

mp
= −up,i − uf@p,i

τp
(4.26)

and it requires the fluid velocity at the particle position, uf@p. The acceleration term in the

kinetic PDF transport equation 4.13 requires closure using a fluid velocity pdf conditioned

on the particle’s velocity, cp. This is formally written as:

〈
Fp,i

mp
|cp

〉
=

∫
−cp,i − cf,i

τp
ff (cf |cp)dcf (4.27)

where ff (cf |cp;x, t) is the probability that a particle with a velocity cp views a fluid velocity

between the range (cf , cf + dcf ), at point x, at time t.

4.3.1 One-point joint probability density function ffp

According to the probability theory, the conditional probability is classically written as:

ff (cf |cp;x, t) =
ffp(cf , cp;x, t)

fp(cp;x, t)
(4.28)

where ffp(cf , cp;x, t) defines the probability density of a particle with a velocity cp and a

fluid element with cf are at the position x at time t. The conditional probability function

verifies the condition:

∫ ∞

0
ff (cf |cp;x, t)dcf = 1 (4.29)
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ffp(cf , cp;x, t)dcpdcf gives the number of particles having the velocity in the range

cp, cp + dcp in interaction with fluid elements having velocity in the range cf + dcf . This

is called the fluid-particle joint probability density function and will open the way for the

modeling of the source term in the kinetic transport equation of fp. Indeed, the closure of

fp transport equation depends directly on the closure of ffp transport equation. From the

other part, joint pdf avoids the complicated use of a conditional pdf ff (cf |cp;x, t) due to

the fact that this pdf is not equal to the standard pdf of the fluid velocity ff(cf ;x, t).

ff (cf |cp;x, t) 6= ff (cf ;x, t) (4.30)

Joint pdf can be integrated in the particle velocity space dcp as:

fp(cp;x, t) =

∫
ffp(cf , cp;x, t)dcf (4.31)

It defines the conditional probability ff (cf |cp) and particle probability function fp, leading

to the fact that the source term in the kinetic pdf transport equation can be written as:

np

〈
Fp,i

mp
|cp

〉
=

∫
−cp,i − cf,i

τp
ffp(cf , cp)dcf (4.32)

More interested reader may refer to the thesis of Laviéville (1997).

4.3.2 Transport equation for ffp

As explained in the previous section, the fluid velocity along the particle trajectory should

be provided because it is not available a priori and requires modeling. In fact, in two-fluid

models, an additional particle momentum flux occurs due to the fluctuating fluid velocity at

the particle position. Two-fluid models are not capable of proposing new models for this flux.

Simonin et al. (1993) then considers a stochastic equation in order to propose a Lagrangian

model for the fluid velocity along the particle trajectories. Then the transport equation for

the joint pdf ffp could be written and closed with the help of stochastic processes.

The transport equation of ffp can be derived in the same way as 4.13 written as:

∂ffp

∂t
+

∂

∂xj
[cp,jffp] +

∂

∂cp,j

[〈
dup,j

dt
|cf , cp

〉
ffp

]

+
∂

∂cf,j

[〈
duf@p,j

dt
|cf , cp

〉
ffp

]

=

(
∂ffp

∂t

)

coll

(4.33)
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where the third and the fourth terms on the left hand side are the acceleration terms. The

fourth term has a derivative d/dt of the fluid velocity along the particle trajectory (fluid

velocity viewed by the particles) taking into account the forces acting on the fluid element

at the particle position. It is to be noted that this derivative is not, in a strict sense, the

acceleration of the fluid element, it is the time derivative of the fluid velocity along the

particle trajectory.

Along with the transport equation fp, interparticle collisions are not considered here,

either. Therefore:

(
∂ffp

∂t

)

coll

= 0 (4.34)

The term with dup/dt can be explicitly written in the same way as in the equation for fp.

For the term duf@p/dt, stochastic approach of Simonin et al. (1993), Simonin (2000) will be

used in this study consistent with the stochastic definition of a turbulent field (Haworth and

Pope, 1986). This equation will be extended to the gas-solid flows where the carrier phase

is modified by the existence of point particles. In the primitif approach of Simonin et al.

(1993), the equation does not hold a term for the two-way coupling effect, e.g., the effect of

particles on the fluid viewed. Therefore this effect will be represented by an additional term

which is to be modeled.

Once the stochastic equation is closed, the pdf transport equation allows to write the

continuum transport equations for the fluid-particle turbulent drift velocity Vd appearing in

mean momentum equation and fluid-particle velocity covariance < u
′

p,iu
′

f@p,j > appearing in

the particle kinetic stress tensor transport equation using the moment methods as:

npVd =

∫
[uf@p − Uf ] ffp(cp, cf ;x, t)dcfdcp (4.35)

np

〈
u

′

f@pu
′

p

〉
p

=

∫
[uf@p − Uf ] [up − Up] ffp(cp, cf ;x, t)dcfdcp (4.36)

4.4 Conclusion

In this chapter, no development is performed but only the classical Euler-Euler and proba-

bilistic approach of Simonin et al. (1993) are briely explained. Coherently with the literature,

the equations generate terms for the turbulent drift velocity and fluid-particle fluctuation ve-

locity correlation which are not known and should be modeled. In next chapter, Lagrangian

stochastic approach is going to be extended to the gas-solid flow cases where the carrier fluid

phase is modified by the effect of particles.





Chapter 5

Lagrangian stochastic modeling of

gas-solid flows with two-way

coupling

5.1 Introduction

Basic difficulty lying in modeling gas-solid flows is the large turbulence scales’ contribution

to the particle transport by turbulent drift velocity and the interactions between the two

phases giving rise to the fluid-particle velocity covariance (Simonin, 1991). It has been noted

that the probabilistic approach closed using the stochastic Lagrangian equation for the fluid

velocity along the solid particle trajectory handles naturally these characteristics particularly

in gas-solid flows.

The fluid velocity viewed by a particle along its trajectory is the local velocity uf@p non-

perturbed by presence of the particle as if the particle were not at its position (Gatignol,

1983, Maxey and Riley, 1983). However, it is modified by all the surroundingNp−1 particles

of the system leading to the turbulence modification. Nevertheless, stochastic Langevin

equation is modeled neglecting this modification which can lead to discrepancies in flows

where the particle phase have large effect on the carrier phase statistics. In this chapter,

a compensating term will be added for this effect to the Langevin equation. Such a study

was initially performed by Boivin (1996) but with some discrepancies. In this thesis, the

two-way coupling term will be modeled with two different approaches with different physical

meanings and they will be compared in terms of accounting for turbulent particle dispersion

and fluid-particle correlation statistics in the following chapters.

71
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Initially, the basic approach of stochastic Lagrangian type will be introduced and dis-

cussed in terms of turbulence modeling (the approach of Haworth and Pope, 1986). It is a

statistical method representing a turbulent flow with large number of stochastic elements in

Lagrangian manner and it will play a primary role in the developments performed in this

thesis which treats discrete solid particles moving in a random Lagrangian manner. From

one part, the necessary parameters and topics will be defined and discussed in relation to

the stochastic modeling which can treat stochastic processes in two different formulations,

a probability distribution point of view and a trajectory point of view. Trajectory point of

view will be chosen in this study. From the other part, modeling of the two-way coupling

term will be performed and practical relations will be derived from the transport equations

of turbulent drift velocity and fluid-particle covariance tensor. The proper modeling should

then correspond to the fundamental physical mechanisms in two-way coupled flows.

5.2 Lagrangian stochastic approach

Because the turbulence is regarded as superposition of many degrees of freedom, direct

numerical computation (DNS) of all the scales is feasible only for ideal and small Reynolds

number flows. Thus, as in statistical physics, one is not interested in modeling of the entire

range of scales in turbulent flow field but desires some limited information included in a

reduced description. From modeling point of view, Lagrangian stochastic approach is based

on the probabilistic description of the flow field leading to this purpose. The levels of modeling

can be resumed as (Minier and Peirano, 2001):

Navier-Stokes equations: microscopic description

↓

Stochastic equations: mesoscopic description

↓

Mean Reynolds equations: macroscopic description

where the down arrows indicate going to less detailed information about the flow field.

Navier-Stokes equations are assumed at the microscopic level containing all the relevant

scales of turbulence. However, this level should not be confused with the molecular micro-

scopic approach to turbulent flows where the simple equations define the fluid molecule’s

kinetic motion. Mean Reynolds equations such as the equation of mean velocity or second



Chapter 5. Lagrangian stochastic modeling of gas-solid flows 73

order tensor have a macroscopic (the least detailed) information about the system. Conse-

quently, model equations, which will be improved in this thesis, enter the modeling from the

mesoscopic level.

Probabilistic description primarily requires the notion of particles and fields (Minier and

Peirano, 2001). Primitively, positions and velocities of all the elements can be collected in a

distribution function for which a transport equation is written or another way is to formulate

a stochastic equation which defines the trajectory of each particle in the system. Then one

can move to derivation of the macroscopic field equations which is generally the final interest

of turbulence modeling.

These two possible probabilistic visions of the turbulence field is called the pdf point of

view and trajectory point of view, respectively.

5.3 Trajectory and PDF point of views

Before going into the detail of the stochastic modeling, some preliminary subjects should be

revised briefly.

Stochastic process:

A stochastic process, also called random process, is defined as the series of random vari-

ables usually indexed by time t. Randomness is represented by a noise term which would

appear in an equation governing the process. A rather general equation in differential form

can be given as (Pope, 2002):

dX(t) = A(X(t), t)dt +B(X(t), t)dW (t) (5.1)

where A is the drift coefficient and B is the diffusion coefficient. These coefficients generally

depend on the independent variable, t in this case, and the random variable X(t). These co-

efficients can also be taken as vectors, tensors, etc... Drift term is a deterministic term which

is correlated for successive timesteps. W (t) is the isotropic Wiener process representing the

rapid fluctuations or random noise. It is a stochastic term which has zero autocorrelation

in time and it gives the equation 5.1 undetermined character. According to this equation,

the time evolution of X(t) is represented by a correlated A term which determines the prop-

agation of information and an uncorrelated BdW term which represents the undetermined

diffusion of information in probability space.

Solution to the equation 5.1 can be found by integration to find a relation for X but this is

not possible with classical calculus because the stochasticity needs to be treated. Indeed, the
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calculus in which the random character is dealt coherently is called stochastic calculus (also

called Itô calculus) whose basics were founded by Kiyoshi Itô. Due to the Wiener process,

the evolution of X(t) has infinite variability even for very small time increments which makes

X(t) indifferentiable. Therefore Riemann sums are not applicable such as used in classical

calculus for the numerical integrals. In the context of stochastic calculus, different limiting

process should be applied in order to perform the integration. This will not be discussed

here more than this, interested reader can refer to the books of Lemons (2003) and Oksendal

(2003).

The basic advantage of the stochastic processes is that the noise term corresponds to

introduction of arbitrariness to the evolution of X(t) which is inherent to many natural

phenomena. Deterministic modeling of physical mechanisms can not treat the uncertainty

generated by this arbitrariness. To better comprehend the subject, in figure 5.1 an example

solution of an ordinary differential equation is given and in figure 5.2, an example solution

to a stochastic differential equation is shown where the small rapid oscillations (due to the

stochastic term W (t)) perturb the evolution (Evans, 2006).

Figure 5.1: Solution of an ordinary differential equation follows a smooth line.

Figure 5.2: Solution of a stochastic differential equation is enhanced by random pertur-
bations during very small time separations.

As noted above, the stochastic processes can be realized in two different manners which

consider the trajectories of the particles performing random motion and the time evolution

of the distribution function of these particles (a pdf function). Consider a random variable

X(w, t) where w indexes the spatial position, for example, and its sample space is the range

[xa, xb]. t represents time. Two point of views can be imagined as;

• For a fixed time t, a distribution function p(x, t) can be associated to the random

variable X(w),

• For a fixed w, X(t) is a function in time and represents the trajectory of the process.
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In the first option, a governing equation is required in order to obtain the time evolution of

the pdf p(x, t). This is called pdf point of view and there exists a couple of equations for

this task such as forward or backward Kolmogorov equations, Liouville equation and Fokker-

Planck equation. In the second option, a particle is tracked in Lagrangian manner and this

view is widely used in turbulent fluid element or solid particle dispersion studies (Minier and

Peirano, 2001).

5.3.1 Trajectory point of view

In trajectory point of view, large number of stochastic particles is introduced into the domain

and each is individually tracked by a stochastic equation. The equation imitates the Navier-

Stokes equations which are regarded as expressing the trajectory of fluid elements by the

relation:

dx∗i = u∗f,idt (5.2)

du∗f,i =

(
1

ρf

∂p

∂xi
+ νf

∂2uf,i

∂x2
j

)∗

dt (5.3)

The sign ∗ is to separate the real velocity and the velocity of a stochastic particle. Navier-

Stokes equations are accepted at the microscopic level, as explained above, and the method

is to write a stochastic trajectory equation for the velocity of a fluid element which should

provide the same statistics as the reference equations but with a reduced description.

In contrast to the pdf view in which the purpose is to directly determine the Eulerian and

Lagrangian pdfs, in trajectory view, the turbulent statistics are assumed known in order to

specify the coefficients of the stochastic equation 5.1. Once these coefficients are determined,

one can obtain the Lagrangian pdf using the stochastic equation.

5.4 Langevin Equation for monophase turbulent flows (ReL →
∞)

Langevin equation is a prototype stochastic differential equation which is used widely for

fluid element dispersion in turbulent flows. It models the chaotic motion of a fluid element

analogous to Brownian motion observed in molecular movements in rarefied gases as described

by kinetic theory. A primary concern for the Langevin equation is the Brownian motion

which is first formulated by Einstein and later by Smoluchowski. Paul Langevin in 1908

takes another point of view by considering the same problem and treats the velocity of a

fluid element as a stochastic process instead of its position. The common point of view of
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these great researchers was that the motion of the particle was pretty far from the inclusion

in Newtonian dynamics.

Langevin’s insight is that the forces acting on a particle due to the underlying turbulent

flow were basically of two types; first a viscous drag which particle experiences during its

motion and second a very rapid instantaneous force due to the effect of many collisions of

the particle with the other fluid elements (Lemons, 2003).

A rather general form of Langevin equation defining the trajectory of a Lagrangian fluid

element is written by Pope and Haworth (1986). The Navier-Stokes equations can be written

in Lagrangian form as:

duf,i(t) =

[
− 1

ρf

∂P

∂xi
+ νf∇2Uf,i

]
dt

+

[
− 1

ρf

∂p
′

∂xi
+ νf∇2u

′

f,i

]
dt

(5.4)

and the corresponding Langevin equation is written as:

du∗f,i(t) →֒
[
− 1

ρf

∂P

∂xi
+ νf∇2Uf,i

]
δt

+Au
′

f,iδt+BδWi(t)

(5.5)

The two last terms of drift and diffusion in Langevin equation are directly recognized analo-

gously to the general stochastic equation 5.1. u
′

f,i is the fluctuating velocity of the fluid, Uf,i

is the mean velocity, P is the mean and p
′
is the fluctuating pressure. The coefficients A and

B of the Langevin equation are out of the question for the moment, the stochastic term will

be discussed.

Wi(t) is the term corresponding to Wiener process, in honor of Norbert Wiener (1894-

1964), which is continuous in time but indifferentiable stochastic process. As shown in figure

5.2, even on very small dt, the stochastic process Xt fluctuates enormously and for small

increments, Wiener process models the Brownian motion. It is constructed as a random

walk model under the family of Markov chains or Markov processes (Andrey Markov, 1856-

1922). Markov processes model a memoryless process where the status of the system at the

time step t+ dt depends only and only on time step t, not previous time steps. As a useful

detail, the stochastic Langevin equation used in this thesis is appropriate only if the Markov

process is continuous in time. There are also dispersion models constructed with discrete

Markov chains, however, it is shown by Borgas and Sawford (2000) that they are inconsistent

with Kolmogorov hypothesis in homogeneous turbulence.
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Wiener process forms the base on which many stochastic differential equations and diffu-

sion processes are constructed. The general properties are given as:

〈δWi〉 = 0 (5.6)

〈δWiδWj〉 = δijδt (5.7)

where the process is characterized by zero mean and by δt covariance.

In turbulent flows, use of the Langevin equation has two basic advantages:

• Lagrangian point of view is more adapted to the fluid element turbulent motion.

• Stochasticity adds to the numerical signal representing a certain variable (such as

velocity fluctuation at a fix point) a random character which is closer to the real

processes observed in nature.

As will be seen later on, these characteristics are also valid for gas-solid flows. Before, it

is better to mention about the physical meanings of the terms in Langevin equation.

5.4.1 Drift and diffusion terms in Langevin equation

The first term in Langevin equation Au
′

fdt is the drift term and it is linear in the independent

variable u. This is why it is called a linear Markov model. The anisotropic deterministic

drift tensor A forms basically the closure for the second order moment models also for the

pdf evolution equation (Pope, 1994). Haworth and Pope (1986) notes that this tensor should

be modeled in terms of mean quantities such as < u
′

f,iu
′

f,j >, ∂Uf,i/∂xj , ǫ. A dimensional

analysis indicates that this term has the unit of inverse of time [1/second]. The characteristic

time scales can be found using the large scales of turbulent flow and the dissipation time

scale. However, Haworth and Pope (1986) notes that no timescale can be extracted from

this one point closure therefore ǫ is assumed known a priori and they descend to a model

of type A = f(∂Uf,i/∂xj , < u
′

f,iu
′

f,j >). For statistically stationary, homogeneous isotropic

turbulence, the choice of A is only one which is written as:

A = − 1

T f
L

(5.8)

where the consistency with the exponential decay of the correlation function derived from

the Langevin equation is satisfied.

The second term BδWi models the inertial zone scales, however, not the smallest Kol-

mogorov scales because Langevin equation is quantitatively incorrect for very small time



Chapter 5. Lagrangian stochastic modeling of gas-solid flows 78

separations. As noted by Haworth and Pope (1986), this term is consistent with Kolmogorov

first hypothesis and validated using the Lagrangian structure function defined as:

DL,ij(s) =< [uf,i(t+ s) − uf,i(t)][uf,j(t+ s) − uf,j(t)] > (5.9)

where s is the time separation. In isotropic turbulence, only the diagonal components are

enough to calculate, therefore, the function can be contracted as:

DL(s) =
1

3
DL,ij(s)δij (5.10)

For sufficiently large ReL flow, Kolmogorov hypothesis predict for T f
L >> s >> τK that

the Lagrangian structure function is written as:

DL(s) = C0 < ǫ > s (5.11)

where C0 is the universal Kolmogorov constant and < ǫ > is the mean dissipation rate of

the turbulent kinetic energy. The derivation of the Lagrangian structure function from the

Langevin equation 5.5 results in

D∗
L(s) = B2s (5.12)

By comparing the two structure functions, the coefficient B is obtained as:

B =
√
C0ǫ (5.13)

Due to the accepted validity of the Kolmogorov hypothesis for the all kinds of turbulence,

this relation should be independent of the flow conditions in sufficiently large ReL turbulent

flows. However, it has been shown by Pope (2002) that in homogeneous shear flows, the

stochastic term, B, is not locally isotropic and requires modification. It is noted that this

could be due to the low Reynolds number of the flow considered in the study. High Reynolds

number DNS simulations are needed in order to extract information and conclude on the

subject.

To compare the Langevin modeling to the second-order turbulence modeling, the tur-

bulent kinetic energy transport equation derived from the Langevin equation 5.5 should be

matched with the transport equation derived from the Navier-Stokes equations. In station-

ary, homogeneous isotropic turbulence, this matching is written as:

dq2f
dt

= 2Aq2f +
3

2
C0ǫ = 0 (5.14)
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Using the isotropic form for the closure of A as A = −1/T f
L , the Lagrangian timescale is

obtained as:

T f
L =

4

3C0

q2f
ǫ

(5.15)

Thus, the model is valid for the scales of inertial range for a high Reynolds number flow.

Extension to the low Reynolds number flows was proposed by Sawford (1991) and will not

be considered here (see chapter 7).

It is not possible to separate the drift and diffusion terms to treat them. For example,

for very high Reynolds number flows, the molecular diffusion term in Navier-Stokes equation

can be assumed equal to zero. Therefore, the pressure gradient will be modeled in both drift

and diffusion terms of Langevin equation. Then, it is more proper to note that they model

the turbulent spectrum in ensemble.

In the light of all these modeling issues of the two-way coupling terms in Langevin equa-

tions, it is fundamental to note that one-to-one matching between the Langevin equation

and the Navier-Stokes equations is not possible. It is to say that Au
′

fdt term can not be

referred to model the fluctuating pressure gradients and consequently BδWi does not model

only the viscous effects. They model these effects jointly. As will be more clear in the follow-

ing sections, this restricts the fact that an additional term, which is supposed to take into

account the two-way coupling effect of the particles, needs a rigorous modeling in the sense

that effect of particles on what range of fluid scales is not known precisely. This modeling is

the subject of the last section of this chapter.

Langevin equation can now be extended to include the particle effects on the fluid element

trajectories.

5.5 Fluid velocity along the fluid element trajectories in two-

way coupled flows

Having explained the basic advantages, Langevin equation will be extended to gas-solid flows

where the two-way coupling is significant. As explained in section 5.4, Langevin equation

should model the fluid element trajectory as the Navier-Stokes equations which have an

additional term for the effect of the particles (see chapter 2). Therefore it is straightforward

to add an implicit term to the Langevin equation. The Navier-Stokes equations 2.61 can be
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written in Lagrangian form as:

duf,i(t) =

[
− 1

ρf

∂P

∂xi
+ νf∇2Uf,i

]
dt

+

[
− 1

ρf

∂p
′

∂xi
+ νf∇2u

′

f,i

]
dt+ fui

dt+ fidt

(5.16)

Langevin equation is written as:

du∗f,i(t) →֒
[
− 1

ρf

∂P

∂xi
+ νf∇2Uf,i

]
δt

+Af,ij

(
u∗f,j(t) − Uf,j

)
δt+Bf,ijδWj − Π∗

uf,i
δt

(5.17)

where Π∗
uf,i

is the two-way coupling term. Form of this term will be kept implicit, for the

moment, and will be modeled in the last section. The definition of the problem is that

as noted in previous section, Af and Bf models the turbulent spectrum, simultaneously.

However, the effect of the particles on the scales of turbulence is known to be very complex

and therefore the two-way coupling term should be properly modeled in order to take into

account properly the physics of the flow.

The turbulence forcing is taken into account with the fi term in Navier-Stokes equations.

∗ symbol in the Langevin equation is used to separate the stochastic particle’s velocity from

the real particle’s one.

The equations above are for a very general gas-solid flow. The studied flow configuration

in this thesis is the forced stationary turbulence which should be represented by one more

additional term to the Langevin equation. Nevertheless, this term will not be used to simplify

the problem because it also requires modeling which is not obvious a priori. Thus the

turbulence forcing effect would be imposed to the drift and diffusion terms of the Langevin

equation.

The tensors Af,ij and Bf,ij is going to be simplified as Afδij and Bfδij because of the

isotropy of the flow field. In representing turbulent flows, Bf is accepted as a coefficient

therefore dependance on independent or dependent variables is omitted. As mentioned above,

this term has already been validated against the data produced from Lagrangian structure

function in the context of Kolmogorov’s first hypothesis (Yeung and Pope, 1989).

Thus, the Langevin equation will completely be determined by the coefficients Af , Bf

and the two-way coupling term Π∗
uf,i

. Af and Bf will be modeled in terms of fluid one-point

statistics using the two-way coupling term closed.
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5.5.1 Autocorrelation function

In homogeneous isotropic turbulence, only one component of the correlations is enough to

be calculated. The Lagrangian autocorrelation function of the fluid velocity is defined as:

Rf
L,ij(t) =< u∗

′

f,i(t0)u
∗′

f,j(t0 + t) > (5.18)

With the assumption of isotropy of the fluid turbulence, only the diagonal components are

enough to be calculated, then the correlation function can be written as:

Rf
L(t) =

1

3
Rf

L,ij(t)δij (5.19)

The differential equation is obtained by performing a change of variables and multiplying

the equation 5.17 by u∗
′

f,i(t0) and following by an ensemble averaging. It is written as:

dRf
L(t)

dt
= AfR

f
L(t) − 1

3

〈
u∗

′

f,i(t0)Π
∗
uf,i

(t0 + t)
〉

(5.20)

and the Lagrangian time scale is defined as the integration of Rf (t):

T f
L =

1

Rf
L(0)

∫ ∞

0
Rf

L(t)dt (5.21)

5.5.2 Mean momentum equation

Gas-solid flows with negligible solid particle volumetric fraction (αp << 1) are considered

in this study. The corresponding mean momentum equation derived from the Navier-Stokes

equations 2.61 is written as:

∂Uf,i

∂t
+ Uf,j

∂Uf,i

∂xj
= − 1

ρf

∂P

∂xi
+ νf∇2Uf,i +Di + 〈fui

〉 (5.22)

The term Di on the right hand side takes into account the turbulent transport and is written

as:

Di = − ∂

∂xj

〈
u

′

f,iu
′

f,j

〉
(5.23)

The fourth term represents the two-way coupling effect. It is written in the point-particle

approximation as:

〈fui
〉 = − 1

ρf

〈 Np∑

n

F
(n)
p,i δ(x− x(n)

p )

〉
(5.24)
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where Fp,i is the force exerted by the fluid on a single particle and ρf is the fluid density.

Fp,i is written as:

Fp,i = −mp
up,i − uf@p,i

τp
(5.25)

where mp is the mass and τp is the relaxation time of the particles. Inserting the expression

(5.25) into the mean drag term, the term 〈fui
〉 can be written as:

〈fui
〉 = −npmp

ρfτp
Vr,i (5.26)

where Vr,i is the mean relative velocity defined as Vr,i = Up,i−Uf,i−Vd,i. The last term is the

mean of the turbulence forcing effect which is zero due to the stochastic forcing configuration.

The model mean momentum equation corresponding to the Langevin equation 5.17, may

be derived in general form as:

∂Uf,i

∂t
+ Uf,j

∂Uf,i

∂xj
= − 1

ρf

∂P

∂xi
+ νf∇2Uf,i +Di −

〈
Π∗

uf,i

〉
(5.27)

As can be noted, drift and diffusion terms do not appear in the mean flow equations. The

second necessary condition for the Langevin equation modeling to be a good approximation

is then:

〈
Π∗

uf,i

〉
= −〈fui

〉 (5.28)

5.5.3 Fluid Reynolds stresses transport equation

It has been noted that the Langevin equation provides closure to the second order moments

and the third condition 5.7 relates the second order Reynolds stress equations derived from

Navier-Stokes using classical methods and derived from Langevin equation using stochastic

calculus. The exact second order Reynolds stress tensor equation derived from the Navier-

Stokes equations 2.61 is written as:

∂
〈
u

′

f,iu
′

f,j

〉

∂t
+ Uf,m

∂
〈
u

′

f,iu
′

f,j

〉

∂xm
= Df,ij + Pf,ij − ǫf,ij + ΠRf,ij

+ 〈Fi〉 (5.29)



Chapter 5. Lagrangian stochastic modeling of gas-solid flows 83

The first term, Df,ij, is the turbulent transport of the Reynolds stress by the fluctuating

velocity. The second term, Pf,ij is the production term. They are given as:

Df,ij = − ∂

∂xm

[〈
u

′

f,mu
′

f,iu
′

f,j

〉
+

1

ρf

(〈
u

′

f,ip
′

δjm

〉
+
〈
u

′

f,jp
′

δim

〉)]
(5.30)

Pf,ij = −
〈
u

′

f,iu
′

f,m

〉 ∂Uf,j

∂xm
−
〈
u

′

f,ju
′

f,m

〉 ∂Uf,i

∂xm
(5.31)

ǫf,ij is the dissipation rate and ΠRf,ij
term is the one taking into account the two-way coupling

and it is written as ΠRf,ij
=
〈
u

′

f,jfui

〉
+
〈
u

′

f,ifuj

〉
. 〈Fi〉 is the turbulence forcing term and

it can be written as 〈Fi〉 =
〈
u

′

f,ifj

〉
+
〈
u

′

f,jfi

〉
.

Formally, the last two contributions to the turbulent transport term Df,ij are separated

to form a different term usually symbolized as Φf,ij. They indicate the correlation between

the fluid fluctuating velocity and the fluctuating pressure field. The term is written as:

Φf,ij = − 1

ρf

[〈
p
′ ∂u

′

f,i

∂xj

〉
+

〈
p
′ ∂u

′

f,j

∂xi

〉]
(5.32)

Physically this term corresponds to the redistribution of the turbulent stresses between the

different components of the Reynolds tensor. For the modeling of this term, the reader is

referred to the work of Gibson and Launder (1978).

The Reynolds stress tensor equation corresponding to the Langevin model, equation 5.17,

is obtained by multiplying the equations written for i and j by cross-indiced velocity and

then averaging over the fluid phase. It is written as:

∂
〈
u

′

f,iu
′

f,j

〉

∂t
+ Uf,m

∂
〈
u

′

f,iu
′

f,j

〉

∂xm
= Df,ij + Pf,ij

+Afδim

〈
u

′

f,ju
′

f,m

〉

+Afδjm

〈
u

′

f,iu
′

f,m

〉

+B2
fδij + Π∗

Rf,ij

(5.33)

where Π∗
Rf,ij

= −
〈
u

′

f,jΠ
∗
uf,i

〉
−
〈
u

′

f,iΠ
∗
uf,j

〉
is the coupling term. It is to be noted that the

production term Pf,ij does not include the pressure-velocity correlations.

It should be noted that the symbol ∗ in u
′

f is omitted except for the two-way coupling

terms, from now on, to impose the fact that the statistics obtained from stochastic modeling

should be the same as the ones obtained from Navier-Stokes.
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To connect the terms Langevin equation for the fluid element trajectory to the second

order closure models, it is fundamental to match the equations 5.29 and 5.33 (Haworth and

Pope, 1986). With the necessary simplifications, this matching is written as:

0 = Φf,ij − ǫf,ij + ΠRf,ij
+ 〈Fi〉 = Afδim

〈
u

′

f,ju
′

f,m

〉
+Afδjm

〈
u

′

f,iu
′

f,m

〉

+B2
fδij + Π∗

Rf,ij
(5.34)

In second order modeling, the triple correlations and all the terms on the right hand side of

the equation 5.29 needs to be modeled. However, in the Langevin model, the triple correlation

term does not require modeling because it is already determined by the pdf function. In the

configuration considered, the relation equals to zero due to the turbulence forcing term, as

recognized in the relation 5.34.

This general relation is the one to be satisfied by the stochastic modeling for any kind of

turbulent gas-solid flow. Forced turbulence corresponds to the homogeneous and isotropic

steady turbulence where the convective, unsteady, turbulent transport and turbulent pro-

duction terms are zero. It can be inferred that the right hand side of this equation models

the fluctuating pressure-velocity correlations, dissipation rate of the turbulent kinetic en-

ergy, two-way coupling and the turbulence forcing effect. The necessary condition that the

stochastic model has to satisfy is simply written by taking the right hand side of the preceding

relation and contracting the indices for isotropic turbulence:

2Afq
2
f +

3

2
B2

f + Π∗
q2

f
= 0 (5.35)

Here, the last term Π∗
q2

f

is the fluid-particle interaction term contracted using the hypoth-

esis isotropy from its general form in equation 5.34. This term is an unknown and should be

modeled.

5.6 Fluid velocity along the solid particle trajectories

In previous chapter, a transport equation for the fluid-particle joint pdf is written. The

equation holds the force terms acting on the particle and on the fluid velocity at the position

of the particles. The latter is an unknown and should be modeled in order to close the

transport equation.
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5.6.1 Closure to the Lagrangian derivative term along particle trajectory

In the last two decades, there were some attempts to close the fluid velocity viewed by the

particles. Some of them are explained briefly in next paragraph.

Assuming a Gaussian velocity field, Derevich and Zaichik (1988) proposed a model for

the net acceleration of a fluid element through the turbulent scales. However, Simonin

et al. (1995) points out that this scheme is not consistent when there is shear in the flow

considered. Koch (1990) defined an algebraic model assuming isotropic particle motion. This

model is restricted to the particle Reynolds numbers (Rep) very small and Stokes numbers

very large. Reeks (1992, 1993) derived a closure model taking into account the Lagrangian

history effects as described by Kraichnan (1965). All these models are derived without

considering a transport equation for the quantity considered and all should be tested against

a rigorous experimental data.

Writing a complete transport equation for the fluid-particle turbulent drift velocity and the

fluid-particle covariance was first conceived by Simonin et al. (1993). The idea was to write

the equations which includes all the possible phenomena such as anisotropy, inhomogeneity,

shear etc... Formally, the time derivative of the fluid velocity along the particle trajectory

can be written as:

duf@p,i

dt
≈ uf@p,i(x + up,iδt, t+ δt) − uf@p,i(x, t)

δt
with τη << δt << τp (5.36)

where τη is the Kolmogorov time scale. The increase of the fluid velocity along the trajectory

of a particle can be written with reference to an initial point at (x, t). It is better to relate

this velocity first to fluid element motion at time t + δt, first, because the velocity at the

fluid element position exists and can be obtained using Navier-Stokes equations whereas fluid

velocity at the particle position do not exist. A schematic motion of a fluid element f and a

particle p is shown in figure 5.3. The velocity of the fluid element at (x + updt, t + dt) can

Figure 5.3: Deviation of the trajectory of a particle with finite inertia from the trajectory
of a fluid element
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be written as:

uf@p(x + updt, t + δt) = uf@p(x + uf@pδt, t+ δt) + δuf@p (5.37)

where δuf@p is the difference between the fluid velocities at time t + δt, at positions of the

particle and the fluid element (see the figure). It can be written as:

δuf@p = uf@p(x + upδt, t+ δt) − uf@p(x + uf@pδt, t+ δt)

δuf@p = Uf (x + upδt, t+ δt) + u
′

f@p(x + upδt, t+ δt)

−Uf (x + uf@pδt, t+ δt) − u
′

f@p(x + uf@pδt, t+ δt)

(5.38)

Term uf@p(x + uf@pδt, t + δt) in relation 5.38 can be written with reference to the initial

value at time t, e.g., therefore letting the uf@p following the particle trajectory to be written

with reference to the initial value. With some algebra the final relation is written as:

uf@p(x + upδt, t+ δt) = uf@p(x, t)

+ [uf@p(x + uf@pδt, t+ δt) − uf@p(x, t)]

+ [Uf (x + upδt, t+ δt) − Uf (x + uf@pδt, t+ δt)]

+
[
u

′

f@p(x + upδt, t+ δt) − u
′

f@p(x + uf@pδt, t+ δt)
]

(5.39)

This is the classical writing of the increment of the fluid velocity seen by the particle phase

(Simonin, 1996, Laviéville, 1997, Peirano and Leckner, 1998).

The first contribution [uf@p(x + uf@pδt, t+ δt) − uf@p(x, t)] is the Lagrangian increment

of fluid velocity along the trajectory of a fluid element and can be obtained using the Navier-

Stokes equations. u@p should not be confused here because this contribution follow the

motion of the fluid element and the element moves with the velocity uf@p(x, t) to reach its

position at t+ δt. Formally, Lagrangian increment of the fluid velocity can be written as:

[uf@p,i(x + uf@pδt, t+ δt) − uf@p,i(x, t)] =

[
− 1

ρf

∂p

∂xi
+ νf∇2uf@p,i(x, t)

]
δt (5.40)

The second contribution [Uf (x + upδt, t+ δt) − Uf (x + uf@pδt, t+ δt)] is the Eulerian

increment of the velocity due to the mean velocity difference following the fluid element and

the particle. It is usually modeled, by neglecting the spatial gradients of the fluid-particle
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turbulent drift velocity ∂Vd/∂x, as:

[Uf (x + upδt, t+ δt) − Uf (x + uf@pδt, t+ δt)] = [up,j − uf@p,j]
∂Uf,i

∂xj
δt (5.41)

It is to be noted that this term is very important, since the sketch presented above does

not consider clearly the effect of the particle inertia or mean drift. Indeed, particle inertia

tending to zero τp → 0, the two trajectories become the same. Particles become tracers

following perfectly the streamlines. In literature, different decomposition of the fluid and

particle velocities in this relation has been performed such as in the studies of Pozorski and

Minier (1998), Minier and Peirano (2001). With particles and flow configuration considered

in this thesis, the coherence with the past works will be used and the relation 5.41 is chosen

for further development.

The third contribution
[
u

′

f@p(x + upδt, t+ δt) − u
′

f@p(x + uf@pδt, t + δt)
]

is the Eulerian

increment of the fluctuating fluid velocity seen by the particles due to the relative motion

between the particle and the fluid element. It takes into account the effect of crossing

trajectories effect in presence of mean drift and it requires modeling.

5.6.2 Closure by a Langevin type equation in one-way coupled flows

In contrast to the Langevin model for the fluid velocity along the fluid element trajectory,

Langevin model for the fluid velocity along the discrete particle trajectory is not founded

rigorously. The latter phenomenon is surrounded by difficulties such as relative motion

between the two phases which is mentioned in previous section. As demonstrated by the

works of Simonin et al. (1993), the relative motion, which occurs under the effect of gravity

for example, influences the one-point correlations of fluid velocity seen by the particles. The

effect is mentioned under the name of ’crossing trajectories effect’.

Taking into account the relative motion, Simonin et al. (1993) proposed a general Langevin

equation which models the contributions [u
′

f@p(x+uf@pδt, t+δt)−u
′

f@p(x, t)] and [u
′

f@p(x+

upδt, t+ δt)−u
′

f@p(x+uf@pδt, t+ δt)], simultaneously. The model is written in general form

as:

uf@p,i(x + up,iδt, t+ δt) = uf@p,i(x, t)
[
− 1

ρf

∂P

∂xi
+ νf∇2Uf,i

]
δt

+ [up,j − uf@p,j]
∂Uf,i

∂xj
δt

+Gfp,ij [uf@p,j − Uf,j] δt+BfpδWfp,i

(5.42)
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where the second line is the Navier-Stokes equation for the mean fluid velocity but without

two-way coupling term. The third line is the Eulerian increment in mean fluid velocity

due to the relative motion as modeled in section 5.6.1. The last line terms are the basic

terms of the Langevin equation which models the increase in the Eulerian and Lagrangian

fluctuation velocities together.

Gfp,ij is the second order tensor which is modeled in terms of the mean one-point statistics

(Haworth and Pope, 1986). Basically, Gfp,ij should be the function of Reynolds stress tensor,

mean velocity gradients. The closure for this term can be derived using the monophase

approach.

Following the work of Haworth and Pope (1986), it can be proposed an isotropic form as:

Gfp,ij = − 1

T f@p
L

δij (5.43)

where T f@p
L is the Lagrangian timescale of the fluid seen by the particles and δij is the

Kronecker delta function. Simonin et al. (1993) integrates the anisotropy to this relation and

proposes the form:

Gfp,ij = − 1

T f@p
L,⊥

δij −


 1

T f@p
L,//

− 1

T f@p
L,⊥


β (5.44)

β =
Vr,i

|Vr|
Vr,j

|Vr|
(5.45)

where the symbols ⊥ and // indicate timescales in perpendicular and parallel direction to

the direction of the relative velocity, respectively. More details can be found in Simonin et

al. (1993), Laviéville (1997).

The second term in the third line of the Langevin equation 5.42 BfpδWfp,i is the noise

term which represents sudden, random effects perturbing the fluid velocity. To be coherent

with the Kolmogorov similarity hypothesis, an isotropic model for this term can be written

as:

Bfp =
√
C0ǫ (5.46)

According to Haworth and Pope (1986), the general form of the fluid velocity increment

along the particle trajectory can be written as:

δuf@p,i = Hfp,i(uf@p,up)δt +BfpδWfp,i (5.47)
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and the Lagrangian derivative of fluid velocity along a particle trajectory can be issued from

a general transport equation of Fokker-Planck type. Therefore the source in the joint pdf

transport equation 4.33 can be written as:

∂

∂cf,j

[〈
duf@p,i

dt
|cf , cp

〉
ffp

]
=

∂

∂cf,j
[〈Hfp,i(uf@p,up)|cf , cp〉 ffp]

− ∂

∂cf,j

[
∂

∂cf,j

(
1

2
Bfpffp

)] (5.48)

The joint pdf transport equation can then be used for the derivation of the continuum moment

equations. But for the flows that are considered in this thesis, as noted, this equation is going

to be extended to the two-way coupling cases which is the subject of next section.

5.6.3 Closure by a Langevin type equation in two-way coupled flows

As noted by Peirano and Leckner (1998), the Langevin equation proposed by Simonin et al.

(1993) written above is for dilute flows. For the flows where the carrier phase is modified

by the particles, the equation should pose an additional term for the effect of particles on

the fluid velocity viewed. Using the same reasoning as in section 5.5, a two-way coupling

term can equally be added to this equation. The general form of the Langevin model is then

written as:

du∗f@p,i(t) =

[
− 1

ρf

∂P

∂xi
+ νf∇2Uf,i

]
δt

+Af@pδij

(
u∗f@p,j − Uf,j

)
δt+Bf@pδijδWj − Π∗

uf@p,i
δt

+(up,j − u∗f@p,j)
∂Uf,i

∂xj
δt

(5.49)

where f@p denotes the quantity of fluid at the position of the particle. Apart from the

terms already explained above for the fluid element equation, the last term in this equation

accounts for the deviation of the particle trajectory from the fluid element trajectory.

For a recapitulation, it must be said that the uf@p is the unperturbed fluid velocity

at the particle position but it is perturbed by the effect of all the other particles of the

system, especially by particles surrounding the particle in question. The same form could be

considered for the two-way coupling term in this equation as the one in the equation 5.17 for

the fluid velocity along fluid element trajectories by analogy.

This equation is going to serve to derive the turbulent drift velocity transport equation

and the fluid-particle fluctuating velocity covariance equation. Equally, it provides a compre-

hensive closure for the source term in the joint pdf transport equation. However, because the
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trajectory point of view has been adapted in this study (see section 5.3), the first and second

moment equations will be derived from this stochastic equation using stochastic calculus.

5.6.4 Fluid autocorrelation function seen by the particles, R
f@p
L

Differential equation governing the autocorrelation function of the fluid fluctuating velocity

along the solid particle trajectories can be derived using the equation 5.49. The autocorre-

lation is defined as:

Rf@p
L,ij (t) =

〈
u∗

′

f@p,i(t0)u
∗′

f@p,ij(t0 + t)
〉

p
(5.50)

For homogeneous isotropic turbulence, it can be written:

Rf@p
L =

1

3
Rf@p

L,ij δij (5.51)

Contracting the equation 5.49, i = j, and multiplicating it by u∗f@p,i(t+ t0), the differential

equation can be written as:

dRf@p
L (t)

dt
= Af@pR

f@p
L (t) − 1

3

〈
u∗

′

f@p,i(t0)Π
∗
uf@p,i

(t0 + t)
〉

p
(5.52)

The integration of this autocorrelation function will give the Lagrangian timescale of the

fluid seen by the particles as:

T f@p
L =

1

Rf@p
L (0)

∫ ∞

0
Rf@p

L (t)dt (5.53)

5.6.5 Drift velocity transport equation, Vd

Fluid-particle turbulent drift velocity is defined as the mean fluid fluctuation velocity seen by

the particles, written as Vd,i =
〈(
u∗f@p,i − Uf,i

)〉

p
. Written in the two-fluid formalism, this

mean fluctuation velocity is not zero because of the existence of a correlation between the fluid

fluctuation velocity field and the spatial distribution of particles. The transport equation

governing the turbulent drift velocity is derived by the subtraction of the exact mean fluid

velocity equation 5.22 obtained from the Navier-Stokes equations, the transport equation for

the mean fluid velocity seen by the particles obtained from the Langevin equation 5.49, and
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it is written as:

np
∂Vd,i

∂t
+ npUp,j

∂Vd,i

∂xj
= −np

∂
〈
u

′

f@p,iu
′

p,j

〉
p

∂xj
+ np

∂
〈
u

′

f,iu
′

f,j

〉

∂xj

−
〈
u

′

f@p,iu
′

p,j

〉

p

∂np

∂xj
− npVd,j

∂Uf,i

∂xj

+npAf@pVd,i − np

〈
Π∗

uf@p,i

〉

p
− np 〈fui

〉

(5.54)

First two terms on the right hand side of the equation take into account the turbulent

transport. The third and fourth terms are the production terms due to the particle density

gradients and the mean fluid velocity gradients, respectively. The fifth and sixth terms

originate in the Langevin equation 5.49 and take into account the fluid acceleration at the

particle position and two-way coupling effects, respectively. The final term is the two-way

coupling term originating from the mean momentum equation 5.22.

5.6.6 Transport equation for fluid Reynolds stresses seen by the particles,

< u
′

f@p,iu
′

f@p,j >p

A transport equation for the Reynolds stresses seen by the particles can be derived from the

Langevin model, equation 5.49, it is obtained by multiplying the equations written for i and

j by cross-indiced velocity and then averaging over the particle phase. It is written as:

np

∂
〈
u

′

f@p,iu
′

f@p,j

〉
p

∂t
+ npUp,m

∂
〈
u

′

f@p,iu
′

f@p,j

〉
p

∂xm
= Df@p,ij + Pf@p,ij

+npAf@p

〈
u

′

f@p,ju
′

f@p,i

〉
p

+npAf@p

〈
u

′

f@p,iu
′

f@p,j

〉
p

+npB
2
f@pδij + Π∗

Rf@p,ij

(5.55)

where the two-way coupling term is given as:

Π∗
Rf@p,ij

= −np

〈
u

′

f@p,jΠ
∗
uf@p,i

〉

p
− np

〈
u

′

f@p,iΠ
∗
uf@p,j

〉

p
(5.56)

and the turbulent dispersion and production terms are given as:

Df@p,ij = − ∂

∂xm
np

〈
u

′

f@p,mu
′

f@p,iu
′

f@p,j

〉

p
(5.57)

Pf@p,ij = −np

〈
u

′

f@p,iu
′

f@p,m

〉
p

∂Uf,j

∂xm
− np

〈
u

′

f@p,ju
′

f@p,m

〉
p

∂Uf,i

∂xm
(5.58)
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By contracting the indices of this tensor, we can define the fluid turbulent kinetic energy

seen by the particles as:

q2f@p =
1

2

〈
u

′

f@p,iu
′

f@p,i

〉
p

(5.59)

and contracting the indices for the homogeneous isotropic stationary turbulence, it is obtained

that:

2Af@pq
2
f@p +

3

2
B2

f@p + Π∗
q2

f@p
= 0 (5.60)

5.6.7 Fluid-particle velocity correlation equation

The fluid-particle correlation equation is obtained from the particle dynamic equation (rela-

tion 5.25) and Langevin equation (equation 5.49) by cross multiplication with the velocity

fluctuations and averaging. It is written as:

np

∂
〈
u

′

f@p,iu
′

p,j

〉
p

∂t
+ npUp,m

∂
〈
u

′

f@p,iu
′

p,j

〉
p

∂xm
= Dfp,ij + Pfp,ij

+np

〈
u

′

f@p,i

Fp,j

mp

〉

p

+npAf@p

〈
u

′

f@p,mu
′

p,i

〉
p

−np

〈
u

′

p,jΠ
∗
uf@p,i

〉
p

(5.61)

The first term on the right hand side, Dfp,ij , is the turbulent transport. The second term,

Pfp,ij is the production term. They are given as:

Dfp,ij = − ∂

∂xm
np

〈
u

′

f@p,iu
′

p,ju
′

p,m

〉
p

Pfp,ij = −np

〈
u

′

f@p,iu
′

p,m

〉

p

∂Up,j

∂xm

−np

〈
u

′

p,ju
′

p,m

〉
p

∂Vd,i

∂xm

−np

〈
u

′

p,ju
′

f@p,m

〉
p

∂Uf,i

∂xm

(5.62)

By contracting the indices of the tensor for the isotropic turbulence, fluid-particle covari-

ance can be defined as:

qfp =
〈
u

′

f@p,iu
′

p,i

〉

p
(5.63)
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It is now to model the coupling terms, Π∗
uf,i

and Π∗
uf@p,i

, to obtain a general form for the

constants Af , Af@p, Bf and Bf@p for closure of the Langevin equation and reformulate the

moment equations.

5.7 Modeling the two-way coupling term in homogeneous

isotropic turbulence

The drift term in the Langevin equation corresponds to a memory effect on the trajectory of

the fluid element, in addition, the diffusion coefficient corresponds to the random effects. In

the classical methodology, for homogeneous isotropic turbulence, Pope (1994) considered the

drift and diffusion terms in terms of the Lagrangian timescale of the fluid elements. Then

the model parameters do not leave a choice, they are determined using the consistency of

the Langevin model with the Kolmogorov hypothesis. This model agrees well with the DNS

measurements (Yeung and Pope, 1989) for large Reynolds number flows where the diffusion

at the molecular level is negligible for the large scales of turbulence. For more realistic flows,

the generalized Langevin model is written with modified drift term to include anisotropy or

inhomogeneity, however, the diffusion effect is still determined by the Kolmogorov hypothesis

(Haworth and Pope, 1986). Then the drift term may be imposed using the consistence of

the Langevin approach with the second-order transport equation (see equation 5.34). The

methodology can be written as:

• Determination of the coefficient Bf using the Kolmogorov hypothesis

• Determination of the tensor Af,ij using the fluid Reynolds stress transport equation

In homogeneous shear flows, Pope (2002) further proposed not to consider the Kolmogorov

hypothesis for the determination of the diffusion term but to determine it from the consistence

with the Reynolds stress transport equation. The drift term is assumed to be determined

from the Lagrangian correlation function. He changed the above methodology as follows:

• Determination of the tensor Af,ij using the fluid Lagrangian autocorrelation function

• Determination of the tensor Bf,ij using the fluid Reynolds stress transport equation

In this thesis, even though the flow we consider is homogeneous and isotropic, we will

follow this methodology. Indeed, in gas-solid flows, the Langevin equations 5.5 and 5.42 are

modified by the two-way coupling effect. In the preceding sections, it has been shown that the

Langevin equations, 5.17 and 5.49, proposed are completely determined by the coefficients

Af , Bf , Af@p, Bf@p and the two-way coupling terms, Π∗
uf,i

,Π∗
uf@p,i

.
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Once these coefficients and the two-way coupling terms are given, closed Langevin equa-

tions should lead to:

1. the same fluid Lagrangian time scales, T f
L and T f@p

L , as the ones calculated by the

autocorrelation function from the DNS experiments

2. the same two-way coupling terms as the one derived from the Navier-Stokes equation

(the term 5.26)

3. the same kinetic energy transport equation (q2f ) as the one derived from the Navier-

Stokes equations (only for the Langevin equation for fluid elements, equation 5.17).

In addition, in homogeneous isotropic turbulence, the fluid-particle correlations derived

from the closed Langevin equations should be consistent with the Tchen-Hinze theory of

particle dispersion which is found to be verified from the simulations performed in this thesis

(as will be shown in chapter 7).

It is important to understand that, in this thesis, the closure for the terms Af , Af@p

and Bf , Bf@p will be determined by the closure of the two-way coupling terms. Therefore

the steps to determine the coefficients of the Langevin equation consistent with the above

conditions will be as follows:

• A priori modeling of Π∗
uf,i

and Π∗
uf@p,i

satisfying the condition 2

• Derivation of the Lagrangian autocorrelation functions and kinetic energy transport

equations in the frame of the Langevin model approach

• Determination of Af , Af@p and Bf , Bf@p in terms of the gas and particle properties to

satisfy the conditions 1 and 3

• Model predictions of the drift velocity and fluid-particle covariance and comparison

with DNS+DPS results

The general equations serving for the three conditions mentioned above will be derived in the

next section. Afterwards, the chapter will end with the modeling of the two-way coupling

term.

Two spatially continuous type of drag forces have been used in this study. They are

of mean and instantaneous type, respectively. Following sections are dedicated to these

subjects. For simplification of the problem at this stage, it is to be noted that the separation
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of the two terms, Π∗
uf,i

and Π∗
uf@p,i

, will not be performed here. Therefore it will be written

that:

Π∗
uf@p,i

= Π∗
uf,i

(5.64)

This assumption is reasonable considering the forces acting on a fluid element and a fluid

element at the position of a particle due to the surrounding solid particles. In case of a solid

particle, the fluid element will be disturbed due to the surrounding particles but not due to

the particle in question.

5.7.1 Modeling with the mean drag force

Following the reasoning of Haworth and Pope (1986), the two-way coupling term in the

instantaneous Navier-Stokes equation 2.61 can also be decomposed into mean and fluctuating

parts.

fui
= 〈fui

〉 + f
′

ui
(5.65)

Then the first proposition is to model the two-way coupling terms Π∗
uf,i

,Π∗
uf@p,i

in Langevin

equations 5.17 and 5.49 using the mean force 〈fui
〉. It can be formally written as:

Π∗
uf@p,i

= Π∗
uf,i

=
np

ρp
〈Fp,i〉 = −npmp

ρfτp
(Up,i − Uf,i − Vd,i) (5.66)

where Vd is the drift velocity appearing with the averaging operator.

Important consideration in this modeling is that the fluctuating part of the two-way

coupling term fui
is assumed in the drift and diffusion terms, Af , Af@p, Bf , Bf@p, of the

Langevin equations. Therefore turbulent interactions between the fluctuating velocities of the

particle and the fluid phase are not effected by the mean two-way coupling term in stochastic

modeling. Thus, using this modeling, the direct two-way coupling effects on the statistical

quantities of the fluid such as Lagrangian temporal correlations, fluid kinetic energies, fluid-

particle covariance and the drift velocity are absent, as will be seen in the equations derived.

5.7.1.1 Autocorrelation functions

The general form of the differential equation (equation 5.20) can be rewritten as:

dRf
L(t)

dt
= AfR

f
L(t) (5.67)
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The second term in the equation drops out because of the averaging. Solving this differential

equation, Lagrangian autocorrelation is written as:

Rf
L(t) = Rf

L(0)eAf t (5.68)

e.g., the same expression as in the one-way coupled flows is obtained. Integrating the auto-

correlation function, the Lagrangian timescale T f
L is related to the coefficient Af as:

Af = − 1

T f
L

(5.69)

where T f
L = 1

Rf
L
(0)

∫∞

0 Rf
L(t)dt.

Similarly, the general form of the differential equation for Rf@p
L is written as:

dRf@p
L (t)

dt
= Af@pR

f@p
L (t) (5.70)

and the solution is written as:

Rf@p
L (t) = Rf@p

L (0)eAf@pt (5.71)

The integration results in the Lagrangian timescale of the fluid along particle trajectories

T f@p
L related to the coefficient Af@p as:

Af@p = − 1

T f@p
L

(5.72)

The model 5.71 is compared to the DNS measurements, in figure 5.4, for two simulations

(not all presented for convenience), for different mass-loadings, φ, which is defined as φ =

ρpαp/ρf where αp is the volumetric loading of particles written αp = (Npπd
3
p/6)/L

3
b . As seen,

for low mass loading, exponential modeling takes better account of the small time separations

with reference to the high mass loadings for which the turbulent Reynolds numbers are much

smaller. Nevertheless, for both simulations, exponential curve does not predict well the

correlation behavior for small time separations due to the small turbulent Reynolds numbers

of the flows.

In one-way coupled flows without gravity without any mean flow, it has been shown by

Deutsch (1992) that the Lagrangian timescale T f
L along the fluid element trajectories and

along the solid particle trajectories T f@p
L can be equal up to some percentage. Then the

classical assumption can be written as:

T f@p
L = T f

L (5.73)



Chapter 5. Lagrangian stochastic modeling of gas-solid flows 97

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

 

 

τ

N
o
rm

a
li
ze

d
R

f
@

p
L

exp(−τ/T f@p
L )

DNS Measurement

φ increases

Figure 5.4: Comparison of the correlation of the fluid velocity viewed by the particles
measured from DNS to the exponential form obtained with the mean drag model, St0 = 0.25

Using this assumption, the mean drag model leads to the equivalence of the coefficients Af

and Af@p:

Af@p = Af (5.74)

5.7.1.2 Mean momentum equation

Mean of the two-way coupling term in Langevin equations is written as:

〈
Π∗

uf,i

〉
= −npmp

ρfτp
(Up,i − Uf,i − Vd,i) = −npmp

ρfτp
Vr,i (5.75)

As the relation implies, the first model satisfies the condition given by relation 5.28. Therefore

the model is consistent with the mean fluid velocity transport equation.

5.7.1.3 Turbulent kinetic energy equations

To remind the general relation obtained at the end of the section 5.5.3, for stationary homo-

geneous isotropic turbulence, it was written that:

2Afq
2
f +

3

2
B2

f + Π∗
q2

f
= 0 (5.76)
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Given the form of the term Π∗
uf,i

(relation 5.66), the source term in the kinetic stress equation

due to interactions with particles is zero, Π∗
q2

f

= 0.

It is important to note at this point that the terms with constants Af and Bf takes

into account turbulence forcing, the particle effects, viscous dissipation, pressure-velocity

correlations and implicitly the fluctuating part of the drag term fui
. It is direct to obtain a

relation for the Lagrangian time scale from this last relation. As a result, it can be written:

Bf =

√
−4

3
Afq

2
f (5.77)

Similarly, the transport equation for the fluid kinetic energy seen by the particles is

simplified as:

2Af@pq
2
f@p +

3

2
B2

f@p + Π∗
q2

f@p
= 0 (5.78)

Given the form of the drag force Π∗
uf@p

, the two-way coupling term Π∗
q2

f@p

= 0. The

relation leads then to the coefficient Bf@p as:

Bf@p =

√
−4

3
Af@pq

2
f@p (5.79)

It has been shown by Deutsch (1992), Boivin (1996) that the fluid second order tensor

along fluid element trajectory and solid particle trajectory for very large density ratios (ρp >>

ρf ) have negligible bias in one-way coupled gas-solid flows without mean flow and without

gravity.

q2f@p = q2f (5.80)

then using the assumption 5.74, this leads to:

Bf@p = Bf (5.81)

5.7.1.4 Fluid-particle turbulent drift velocity prediction

Simplifying the transport equation of turbulent drift velocity ( equation 5.54) for stationary

homogeneous isotropic turbulence, following relation is obtained:

0 = −
〈
u

′

p,iu
′

f@p,j

〉
p

∂np

∂xj
+ npAf@pVd,j (5.82)
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The number density flux of particles due to the fluid-particle turbulent drift velocity is

obtained as:

npVd,i =

〈
u

′

p,iu
′

f@p,j

〉
p

Af@p

∂np

∂xj
(5.83)

It is to be noted that the term of the particle dynamic equation cancels out with the two-way

coupling term coming from the Langevin equation along the particle trajectory. Therefore

the same equation as in the case of one-way coupled flows is obtained e.g., there is no direct

effect of two-way coupling on the drift velocity. However, it will be shown in chapters 6 and

7 that Af@p and Af are modified by two-way coupling effects therefore leading to indirect

modification of the turbulent drift velocity.

5.7.1.5 Fluid-particle velocity covariance prediction

Simplifying the general form of the fluid-particle covariance equation (equation 5.61) for the

same conditions as above, it is written as:

np

〈
u

′

f@p,i

Fp,j

mp

〉

p

+ npAf@pδij

〈
u

′

f@p,iu
′

p,j

〉
p

= 0 (5.84)

As can be noted, the two-way coupling term coming from the Langevin equation for uf@p,i

disappears because of the averaging operator. Contracting the indices i and j, this equation

leads to:

qfp =

(
1

1 −Af@pτp

)
2q2f@p (5.85)

where qfp =
〈
u

′

f@p,iu
′

p,i

〉
p

is the fluid-particle covariance and q2f@p = 1
2

〈
u

′

f@p,iu
′

f@p,i

〉
p

is

the fluid turbulent kinetic energy seen by the particle phase. By this derivation, it can be

concluded that with the mean drag model, two-way coupling does not directly effect the

fluid-particle correlations but the effect could occur through the modulation of Af@p or q2f@p.

5.7.1.6 Interim conclusion on the mean drag model

The mean drag model considers a mean force acting on the fluid due to the particles. Phys-

ically, this model considers that the particles do not directly effect the fluid statistics; the

fluid-particle turbulent drift velocity, fluid kinetic energy viewed by the fluid elements and

solid particles and fluid-particle covariance. Therefore, for these statistics, the same set of

equations as in the one-way coupled flows are obtained. The model is hence practical and
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considers that the particle dispersion in a two-way coupled flow can be analyzed as in one-way

coupled flows.

5.7.2 Modeling with the instantaneous drag force

Two-way coupling term fui
in the Navier-Stokes equation 5.16 can be written as the instan-

taneous force term as:

fui
= − 1

ρf

Np∑

n=1

−mp

u
(n)
p,i − u

(n)
f@p,i

τp
δ(x − x(n)

p ) (5.86)

In fact, the calculation of this term at the particle position requires the interpolation of

the velocities of the surrounding particles to the position of the particle in question. In an

Eulerian grid, this process is performed in two steps, first by interpolation of the particle

velocities onto the Eulerian grid nodes, and then interpolation to the position of the particle in

question. Février (2000) refers to this velocity as the mesoscopic particle velocity symbolized

by ũp in the frame of the Mesoscopic Eulerian Formalism. Therefore instead of using the

instantaneous particle velocity up, using mesoscopic particle velocity would be more proper

to define the backforce of particles. As will be explained a few paragraphs later, this velocity

is a kind of average velocity calculated by dividing the domain into small subdomains and

performing the average of the particle velocities in each subvolume.

This model will take into account the interaction between the fluid and the cumulative

effect of particles in local regions. It is written as:

Π∗
uf@p,i

= Π∗
uf,i

= − ñpmp

ρf τp
(ũp,i − uf@p,i) (5.87)

where ñp is the particle number density defined in the context of mesoscopic Eulerian for-

malism. It is related to the total particle number density as 〈ñp〉 = np where 〈·〉 is the

averaging operator over the large number of two-phase flow realizations. The average of a

particle property, say ψ, in the frame of the mesoscopic Eulerian formalism is then related

to the particle number density-weighted average as 〈ñpψ〉 = np 〈ψ〉p.

Using of mesoscopic velocity is not direct in gas-solid flows where the turbulence is mod-

ified by the particles and requires some comments.
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5.7.2.1 Application of Mesoscopic Eulerian Formalism to two-way coupled flows

Base of Mesoscopic Eulerian Formalism

It is known that the spatial distributions of particles can cause significant changes in the

physics of the both phases. For example, Sundaram and Collins (2000) showed that the spa-

tially concentrated particle distribution modifies the collision frequency of particles. Parallel

to this, Elgobashi and Truesdell (1993) demonstrated that the particle spatial distributions

can modify the energy spectrum of turbulence non-uniformly.

Février et al. (2005) develops an Eulerian formalism in which the effect of spatial particle

distributions are taken into account in gas-solid flows where the both inter-particle collisions

and turbulence modification are not considered. According to the formalism, two particles

in a turbulent flow field can be very close to each other but can have uncorrelated velocities

due to their inertia. Therefore, the formalism considers the particles placed in the same

fluid realization where the difference in initial conditions of particles, either in inertia or in

position for large number of particle realizations, is quickly magnified by the fluid-particle

one-way interactions. After a time range long enough, particles forget the initial conditions

and they are fully controlled by the turbulence.

These fluid-particle interactions lead to different particle-particle and particle-fluid cor-

relations according to the inertia and allow the particle velocity to be divided into two

contributions; a correlated part and an uncorrelated part. Thus the total particle velocity

can be written as:

u(n)
p (t) = ũp(x

(n)
p (t), t) + δu(n)

p (t) (5.88)

where δup is referred to as the residual velocity of a particle which has higher portion of the

total particle velocity for high inertia particles. It is of a Lagrangian character, proper to the

particle, and is spatially uncorrelated particle velocity giving tendency to a quasi-Brownian

motion. ũp is spatially correlated velocity and as Février (2000) notes it is shared by all

the particles of the system. It corresponds to an Eulerian continuous particle velocity which

tends to follow the fluctuations of the fluid velocity.

One-point statistics defined with the mesoscopic velocity

The mean velocity is defined as:

npŨp = 〈npũp〉p (5.89)
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Mean mesoscopic kinetic energy is defined as:

npq̃
2
p =

1

2

〈
ñpũ

′

p,iũ
′

p,i

〉
(5.90)

In this thesis, the most required quantity is the mesoscopic kinetic energy of particles due

to the derivations of the second order quantities from the Langevin equations, when the

two-way coupling term is modeled with mesoscopic velocity. The mesoscopic energy of the

particle mesoscopic velocity is calculated using the two-point correlations due to the number

of particle restrictions in the study. Therefore, the next section is dedicated to the definition

and the computation of the particle mesoscopic kinetic energy.

Two-point correlations of the mesoscopic velocity

Mesoscopic particle kinetic energy q̃2p is calculated in DNS simulations using the La-

grangian two-point correlations of two particles m and n of the system written as:

R̃pp,ij(x, x+ r, t) =< u
′(m)
p,i (x, t)u

′(n)
p,j (x+ r, t)|x = x(m)

p (t);x+ r = x(n)
p (t) > (5.91)

with m 6= n. In homogeneous isotropic turbulence, the two-point correlations can be written

in terms of the longitudinal and transversal components. Longitudinal component is written

as:

Fpp(r, t) =
1

3
< u

′

p,i(x, t)u
′

p,i(x+ rei, t)|x = x(m)
p (t);x+ rei = x(n)

p (t) > (5.92)

and transversal component is written as:

Gpp(r, t) =
1

3
< u

′

p,i(x, t)u
′

p,i(x+ rej, t)|x = x(m)
p (t);x+ rej = x(n)

p (t) > (5.93)

with m 6= n. As seen in figure 5.5 (taken from the work of Février, 2005), as the inertia

increases, the spatial correlation normalized by the total agitation of particles q2p decreases as

the space separation r tends to zero (r → 0). This is in coherence with the inertial particle

motion where two particles could be close enough to each other having velocities completely

uncorrelated. Then it can be concluded that as the space separation tends to zero, the

correlations tend to the mesoscopic particle kinetic energy:

lim
r→0

Fpp(r) = 2q̃2p/3 (5.94)
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Figure 5.5: Two-point correlations of particle velocities, image taken from the work of
Février et al., 2005. Circles: smallest inertia, stars: highest inertia.

Table 5.1: Particle Characteristics

ρp/ρf dp/ηK Nptotal

12000 0.0751 4x1283

Application to two-way coupled gas-solid flows

The application to two-way coupled gas-solid flows is not obvious due to the fact that a

single fluid realization can not be defined in this kind of flows. Indeed, the fluid realization is

the one imposed to the effects of particles and different particle initial conditions correspond

to different fluid realizations.

To search on the existence of a time range during which the fluid realization rests the

same for different particle initial conditions, two populations of particles are introduced into

the same fluid realization all with the same properties except their initial positions. The

properties of the populations are summarized in table 5.1. Characteristics of turbulent field

is summarized at the end of chapter 2. Two populations were time-stepped without two-way

coupling so that they settle to an equilibrium with the turbulent flow. The statistics of the

particle phase and the fluid phase seen by the particles were settled to the similar levels for

both classes. This final field was referred as at time t/Te = 0. The spatial distributions of

both phases are shown in figure 5.6. Once two populations were obtained with very similar

initial characteristics in the same fluid realization, they were separated into two simulations
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Figure 5.6: Initial particle distributions at reference time t/Te = 0 of group A on the
left, of group B on the right. These distributions are then two-way coupled to modify the

turbulence.

and time-stepped with two-way coupling. The difference between the turbulent fields in these

two simulations was observed and calculated by the normalized relation:

D =




〈
(uA − uB)2

〉

urms
A urms

B




1/2

(5.95)

where uA signifies the velocity of the fluid at a grid point in the first simulation with group

A particles and uB is the one of the fluid in the second simulation with group B particles.

〈.〉 indicates volume averaging.

Time behavior of D is shown in figure 5.7. As seen, the difference is more than %10 and it

increases in time. The deviation of the fluid velocity field of the group A from the one of the

group B is due to the minute initial differences of particle positions which is amplified due to

the non-linear chaotic nature of turbulence. This is called in the turbulence community as

’butterfly effect’. Consequently, the definition of a single fluid realization seems not possible.

It should be noted in passing that the simulations use the same stochastic series to generate

the turbulence forcing effect. So it can be concluded that the differences represented in the

figure 5.7 are due to the two-way coupling, there is no disturbance coming from the turbulence

forcing.

To overcome the chaotic nature of turbulence, two populations were introduced into the

same fluid realization but only one of the populations was two-way coupled with the turbu-

lence. The other group is ghost particles as explained in chapter 2 (section 2.4.2). Then the

source terms fui
of the two group particles in the Navier-Stokes equation were compared to
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Figure 5.7: Statistical difference measured by the factor D (relation 5.95) between the
flow fields in two simulations in which group A and group B particles are two-way coupled,

respectively.

each other. Two simulations were performed in which groups A and B are active, respec-

tively. The difference between the source terms were expected to depend on the number of

particles per cell. Fundamentality here is that the two groups of particles in the same fluid

realization form different particle initial conditions and the ghost particles, being not coupled

with the flow, increase only the precision of the calculation of mesoscopic variables.

One-point statistics of the two groups in the same fluid realization are shown in figure

5.8 and for both phases, as seen, they are the same. This means that the particles hold the

same mesoscopic field whether they are coupled to the flow or not. Turbulent velocity field

responding to these different particle initial conditions are shown in figures 5.9. Topology

of the field looks the same. Analyzing closely the field, the regions in the dashed-lines are

shown in figures 5.10. The dots in the figure shows the approximative centers of the vortices

and it is seen that these vortices have slight deviations.

Quantification of the difference was performed using the normalized parameter D and the

trace in time is shown in figure 5.11 normalized by the initial value. As seen, the difference

stays constant for more than one eddy turnover time. The initial peak in the trace is due

to the transition of both fluid and particles to arrive at a new equilibrium. It can also be

inferred that the changing the active group from A to B has the same effect on the difference

which is found to depend largely on the number of particles, e.g., increasing the number of
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Figure 5.8: The evolution of statistics of the two groups of particles, A,B, in the
same fluid realization, in time after the two-way coupling is turned on, group A is active

and B is ghost particles.
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Figure 5.9: Vector fields of the flow simulation at time t/Te = 8 with two groups of
particles in the same realization. On the left the flow with group A is active (two-way

coupled) and B is ghost, on the right, the inverse.

particles reduces the difference. This behavior of the parameter D allows one to be able to

change the particle initial conditions and with large enough number of particles, the same

fluid realization is obtainable. Therefore using the mesoscopic velocity in the definition of

the drag force relation is possible.
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Figure 5.10: Dashed regions in figure 5.9
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Figure 5.11: Statistical difference between the particle source terms fui
of the two groups

A,B introduced into the same fluid realization; solid line: group A is active, B is ghost,
dashed line: group B is active, A is ghost.

Calculation of the mesoscopic kinetic energy in two-way coupled flows:

As noted in section for two-point statistics of the mesoscopic particle velocity, the particle

mesoscopic kinetic energy is calculated from the Eulerian two-point correlations of the parti-

cle phase (relation 5.92). To compare the measurements in two-way coupled flow simulations

to the one-way coupled simulation measurements of Février (2000), the empirical model for
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q̃2p written as:

q̃2p
q2f@p

=

(
q2p
q2f@p

)1.5

(5.96)

This relation is tested in DNS+DPS measurements and the results are plotted in figure

5.12. The particle mesoscopic energy follows remarkably the line
(
q2p/q

2
f@p

)1.5
for each mass-

loading and each inertia.
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Figure 5.12: Relation 5.96 to calculate the mesoscopic particle energy.

5.7.2.2 Autocorrelation functions

Differential equation governing the Lagrangian autocorrelation of the fluid can be derived

from the Langevin equation 5.17 and it is written as:

dRf
L(t)

dt
= AfR

f
L(t) − 1

3

〈
u

′

f,i(t0)Π
∗
uf,i

(t0 + t)
〉

p
(5.97)

dRf
L(t)

dt
= AfR

f
L(t) +

φ

τp

(
Rfp

L (t) −Rf@p
L (t)

)
(5.98)
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where Rfp
L (t) is the correlation between the particle velocity fluctuation and the local fluc-

tuations of the fluid velocity viewed by the particle, it is written as:

Rfp
L,ij(t) =

〈
u

′

f@p,iu
′

p,j

〉
p

(5.99)

Using the homogeneity and isotropy, it can be rewritten as:

Rfp
L =

1

3
Rfp

L,ijδij (5.100)

This equation cannot be solved directly due to the co-existence of non-perturbed velocity

uf@p in the definition of Π∗
uf,i

(see general equation 5.87) and of the perturbed fluctuating

velocity u
′

f in the equation.

Differential equation governing the Lagrangian autocorrelation of the fluid Rf@p
L is written

as:

dRf@p
L (t)

dt
= Af@pR

f@p
L (t) − 1

3

〈
u

′

f@p,i(t0)Π
∗
uf@p,i

(t0 + t)
〉

p
(5.101)

dRf@p
L (t)

dt
= Af@pR

f@p
L (t) +

φ

τp

(
Rfp

L (t) −Rf@p
L (t)

)
(5.102)

To solve this equation, the differential equation is derived for the Rfp
L as:

dRfp
L (t)

dt
=

1

τp
Rf@p

L (t) − 1

τp
Rfp

L (t) (5.103)

The solution of the differential equations 5.101 and 5.103 is possible with matrix methods.

Rf@p
L is written as:

Rf@p
L (t)

2q2f@p

=
(a− c) + φ

τp

qfp

q2

f@p

2a
ed1t +

(a+ c) − φ
τp

qfp

q2

f@p

2a
ed2t (5.104)

where the coefficients a, b, c, and d1 and d2 are written as:

a =

√

A2
f@p +

(
φ

τp

)2

+

(
1

τp

)2

− 2

(
Af@p

φ

τp
−Af@p

1

τp
− φ

τp

1

τp

)
(5.105)

c = −Af@p −
1

τp
+
φ

τp
(5.106)

d1 = −0.5

(
−Af@p +

φ

τp
+

1

τp
− a

)
(5.107)

d2 = −0.5

(
−Af@p +

φ

τp
+

1

τp
+ a

)
(5.108)
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and for Rfp
L :

Rfp
L (t) =

−2q2f@p + qfp

(
1 − τp

2 (x− a)
)

τa
ed1t +

2q2f@p − qfp

(
1 − τp

2 (x+ a)
)

τa
ed2t (5.109)

where x is written as:

x = −Af@p +
1

τp
+
φ

τp
(5.110)

Integration of the function 5.104 gives the Lagrangian time scale, T f@p
L , and the coefficient

Af@p is derived as:

Af@p = − 1

T f@p
L

[
1 + φ

qfp

2q2f@p

]
(5.111)

The correlation function 5.104 is compared to the DNS measurements and plotted in figure

5.13, for the smallest inertia St0 = 0.25 and for the smallest and the largest mass-loading.

Qualitatively, the model does not reproduce the measured correlation function where the

deviations are visible for small time separations, small τ . Nevertheless, the area under the

curves are similar meaning that the model recovers correctly the Lagrangian timescale viewed

by the particles. From the other part, the deviations for small time separations could be

associated to the model being formulated for turbulent flows with infinite Reynolds number.

In section 5.7, an hypothesis corresponding the Tchen-Hinze theory of particle dispersion

has been made. Tchen-Hinze relation basically relates the fluid kinetic energy and fluid-

particle covariance as:

qfp

2q2f@p

=
η

η + 1
(5.112)

η =
T f@p

L

τp
(5.113)

Then, the expression of the correlation function Rf@p
L (t) can be rewritten as:

Rf@p
L (t)

2q2f@p

=
(a− c) + φ

τp

2η
η+1

2a
ed1t +

(a+ c) − φ
τp

2η
η+1

2a
ed2t (5.114)

and the coefficient Af@p can be rewritten as:

Af@p = − 1

T f@p
L

[
1 + φ

η

η + 1

]
(5.115)
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Figure 5.13: Comparison of the Langevin model 5.104 for the correlation of the fluid
velocity viewed by the particles to the DNS measurements, St0 = 0.25

Using the solution for Rf@p
L (t) and the solution for Rfp

L (t), the differential equation for

Rf
L(t) can be solved by simple means of ordinary linear differential equations. The solution

for Rf
L(t) is written as:

Rf
L(t) =

f1
1

−Af+d1
e(−Af +d1)t + f2

1
−Af +d2

e(−Af +d2)t + C

e−Af t
(5.116)

where C is the constant determined with the initial conditions. It is written:

C = q2f − f1
1

−Af + d1
+ f2

1

−Af + d2
(5.117)

where f1 and f2 are written as:

f1 = − φ

τp

2q2f@p + qfp(1 − τp

2 (x− a))

τpa
− 1

a

(
q2f@p(a+ c) − qfp

φ

τp

)
(5.118)

f2 =
φ

τp

2q2f@p − qfp(1 − τp

2 (x+ a))

τpa
− 1

a

(
q2f@p(a− c) + qfp

φ

τp

)
(5.119)

with

x =
1

T f@p
L

+
φ

τp
+

1

τp
(5.120)
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Integrating the solution 5.116, T f
L can be obtained as:

T f
L =

1

2q2f

[
−f1

1

(Af + d1)d1
+ f2

1

(Af + d2)d2
+

C

Af

]
(5.121)

From this relation Af could be determined in general form as:

Af =
1

T f
L

g(η, φ, qfp, q
2
f@p, q

2
f ) (5.122)

where it should be noted that the fluid statistics viewed by the particles and the fluid ele-

ments appear simultaneously. In two-way coupled flows, there is no a priori intuition for the

evolution of these statistics in contrast to the one-way coupled flows where q2f@p = q2f and

T f@p
L = T f

L . Nevertheless, the coefficient Af and the Lagrangian timescale of fluid element T f
L

will not be used on the continuation of the thesis because our aim here is to model the fluid

statistics viewed by the particles. Therefore, we don’t proceed further for these coefficients.

5.7.2.3 Mean momentum equation

The two-way coupling term with the mesoscopic drag modeling is written as:

〈
Π∗

uf,i

〉
= − mp

ρpτp
(〈ñpũp,i〉 − 〈ñpuf@p,i〉) (5.123)

where:

〈ñpũp,i〉 = npUp,i (5.124)

〈ñpuf@p,i〉 = np (Uf,i + Vd,i) (5.125)

so it can be written as: 〈
Π∗

uf,i

〉
= −npmp

ρf τp
Vr,i (5.126)

As the relation implies, model using mesoscopic drag force also satisfies the condition given

by relation 5.28.

5.7.2.4 Turbulent kinetic energy equations

Let us recall the general relation obtained at the end of the section 5.5.3, for stationary

homogeneous isotropic turbulence:

2Afq
2
f +

3

2
B2

f + Π∗
q2

f
= 0 (5.127)
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It is important to note that the terms with Af and Bf takes into account turbulence forcing,

viscous dissipation, pressure-velocity correlations. Particle effects are taken into account

using the mesoscopic drag force term. The term is written as:

Π∗
q2

f
= npmp

〈
u

′

f,i

Fp,i

mp

〉

p

= − φ

τp

(
2q2f@p − qfp

)
(5.128)

where q̃fp = qfp.

To obtain Bf from relation 5.127, Af could be derived from the relation 5.121. Bf

coefficient will be derived as a general form from the relation 5.127 as:

Bf =

√
2

3

[
2Afq

2
f − Π∗

q2

f

]
(5.129)

Bf coefficient will not be considered due to the fact that our aim in this thesis is the modeling

of the fluid statistics viewed by the particles, like Af . Therefore, we leave the discussion at

this level.

Transport equation for the turbulent kinetic energy viewed by the particles derived from

the equation 5.55 leads to the following relation with necessary simplifications:

2Af@pq
2
f@p +

3

2
B2

f@p + Π∗
q2

f@p
= 0 (5.130)

The explicit form of the term Π∗
q2

f@p

includes the average of the local instantaneous particle

number density < ñpψ >p, which can be written as < ñpñpψ > /np (using the transformation

< ñpψ >= np < ψ >p). Neglecting the preferential concentration effects, the term will be

simply equal to np < ψ >p. Then the two-way coupling term can be written as:

Π∗
q2

f@p
= − φ

τp

(
2q2f@p − qfp

)
(5.131)

using the relation φ = npmp/ρf .

To determine Bf@p from equation 5.130, the expression of Af@p given in 5.115 is used:

B2
f@p =

4

3

q2f@p

T f@p
L

g(η, φ) (5.132)

where g is written with the help of the Tchen-Hinze relation 5.112 as:

g(η, φ) = 1 + 2φ
η

η + 1
(5.133)

with η =
T f@p

L

τp
.
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5.7.2.5 Fluid-particle turbulent drift velocity prediction

Simplifying the transport equation of drift velocity for stationary homogeneous isotropic

turbulence, following relation is obtained:

0 = −〈up,iuf@p,j〉p
∂np

∂xj
+ npAf@pVd,i − np

〈
Π∗

uf@p,i

〉
p
− np 〈fui

〉 (5.134)

At this point, it is worth saying that the two-way coupling has a contribution to the turbulent

drift velocity transport equation. Using the second condition of the modeling, which is〈
Π∗

uf@p,i

〉
= −〈fui

〉, and decomposing the particle number density as ñp = np + ñ
′

p, this

term can then be written as:

npVd,i =
〈up,iuf@p,j〉p

Af@p

∂np

∂xj
+

1

Af@p

mp

ρfτp

(〈
ñ

′

pñpũp,i

〉

p
−
〈
ñ

′

pñpuf@p,i

〉

p

)
(5.135)

The second term on the right-hand side of this equation shows the importance of the spatial

segregation of the particles. As seen, in the case of an instantaneous drag effect, the transport

equation for the drift velocity is different from the equation in one-way coupled flows.

5.7.2.6 Fluid-particle velocity correlation prediction

Using the hypotheses of stationary homogeneous isotropic turbulence, the fluid-particle co-

variance equation is written as:

〈
u

′

f@p,i

Fp,j

mp

〉

p

+Af@p

〈
u

′

f@p,iu
′

p,j

〉
p

=

− φ

τp

(〈
u

′

f@p,iu
′

p,j

〉
p
−
〈
ũp,iu

′

p,j

〉
p

)
(5.136)

Contracting the indices i and j, this equation leads to the relation:

qfp = 2
(
q2f@p + φq̃2p

) 1

1 + φ−Af@pτp
(5.137)

where q̃2p = 1
2

〈
ũ

′

p,iũ
′

p,i

〉
is the mesoscopic energy of particles. In this relation, the mesoscopic

particle kinetic energy is the unknown and should be modeled.

5.8 Conclusion

In this chapter, the Lagrangian stochastic modeling of the gas-solid flows for homogeneous

isotropic stationary turbulence with point particles is extended to the cases where the fluid
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phase is modified by the existence of the solid particles. The extension is reflected in an

additional term in the trajectory equations for the fluid velocity seen by the fluid elements

and solid particles. This additional term is to be modeled due to the lack of information on

the spectral content of the drift and diffusion terms of the Langevin equation. Two models

are proposed for the closure of this term, namely: a mean drag force using the mean velocities

of the both phases from the mean transport equations, and the other an instantaneous drag

force written with the help of the mesoscopic particle velocity defined in the frame of the

mesoscopic Eulerian formalism.

The principal idea of using the Langevin equation for the trajectory of fluid elements,

equation 5.17 is that this equation imitates the Navier-Stokes equations written in Lagrangian

form. The advantage is that this stochastic equation uses the reduced description of the flow

field and models a real physical phenomenon. The Langevin equation for the fluid velocity

along the particle trajectories is to predict the fluid statistics viewed by the particles during

their motions to precisely calculate the drag force acting on the particles. In this regard, the

mean drag model results in the mean fluid transport equation coherent with the one derived

from the Navier-Stokes equations. On the second order equations, this model assumes that

the two-way coupling does not induce a direct effect on the second order quantities, e.g., the

fluid kinetic energies, q2f , q2f@p and the fluid-particle covariance qfp, e.g., the model predicts

that the two-way coupling does not produce or destroy these quantities directly. This effect

is taken into account in the drift and diffusion coefficient terms of the Langevin equation.

The instantaneous model proposed takes into account the effect of the particles on the

fluid turbulence structure more properly due to the mesoscopic particle velocity defined with

the local averages. Physically, this force considers the collective effect of the particles on the

turbulent preferential scales. In this sense, it is already known that particles can extract

energy from some of the turbulent scales and inject it to the preferential scales of turbulence

(see the section 6.5 for the modulation of the spectra), especially for the small inertia particles

which are more sensible to the turbulent scales than the high inertia particles. The model

eventually results in more complex first and second order equations for the particle-turbulence

statistics and there are extra terms to be modeled such as the particle mesoscopic energy

and an additional term in the fluid-particle turbulent drift velocity transport equation due

to the segregation of non-inertial particles.

In chapter 7, these models’ results will be compared to the measurements from the

DNS+DPS experiments to test their validity. For validation, the Tchen-Hinze theory for

the particle dispersion (based on the fluid-particle covariance) and the particle flux due to

the drift velocity will be used.





Chapter 6

Fluid statistics from DNS+DPS

results

6.1 Introduction

In this chapter, dynamic state in macroscopic level of turbulence interacting with a cloud

containing Np particles will be studied. The particles are in motion due to the underly-

ing interactions with the continuum phase and due to their finite inertia, they modify the

structure of turbulence. The carrier continuum phase is homogeneous isotropic turbulent gas

forced with the stochastic forcing scheme developed by Eswaran and Pope (1988), to keep

both phases’ statistics in stationary level. The range of the turbulent scales forced is chosen

as [2k0, 6k0] following the advices of Février (2000) (see chapter 2 for details). The domain

involving the gas-particle motion is a cube whose one side is of length Lb = 2π and is far

from any wall effects. It has periodic boundary conditions on borders which creates infinite

space for particles’ spatial dispersion. Gas phase is treated in Eulerian manner requiring

definition of fixed points to create a grid and solving the time evolution equation of the fluid

velocity at these points. This equation corresponds to Navier-Stokes equation which impose

the balance of momentum in an elementary volume equal to the volume of cells covering the

domain.

Discrete particles in motion are of very small diameter dp, specifically, smaller than the

Kolmogorov scales ηK of turbulence. The density ratio of the particles to the gas is of the 3rd

order of magnitude which allows to neglect most of the forces effecting the discrete particle’s

trajectory. Finally, only the Stokes’ drag force will be taken into account (see chapter 2 for

more details). Throughout the chapter, two distinct limits for particle properties will be

considered:

117
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• Very large inertia (τp >> Tfluid) particles where the particles respond none of the

fluid scales and perform a pure random motion (Abrahamson, 1975). Because the

inter-particle collisions are not treated in this thesis, this motion is referred rather as

random uncorrelated motion.

• Very small inertia (τp << Tfluid) particles where the particles follow perfectly all the

oscillations in the fluid motion, e.g., they act like fluid elements. This limit is also

called ’passive scalar’ limit.

Between the two limits, particles respond more or less different scales of turbulence which

constitutes the basic difficulty for modeling discrete motion of particle with finite inertia.

Therefore in this thesis, the particle inertia is imposed by modifying the particle density ρp

of the particles (this will be discussed in parametrization of simulations). It could also be

modified by varying the particle diameter dp which leads to polydispersity but this is not the

purpose in this thesis (see the definition of τp given by relation 2.9).

Fluid-particle simulations will be presented in this section. For the fluid phase, the sim-

ulations are of DNS type and for the particles they are of DPS type. First, the effect of

the particles on the fluid phase turbulent kinetic energy and the rate of energy dissipation

will be discussed with reference to the literature. Finally, the distribution of the turbulent

kinetic energy among the spatial wavenumbers will be discussed taking the 3D energy spec-

trum of the fluid into consideration. Next, the effect of two-way coupling on the Lagrangian

correlations of the fluid phase will be discussed. Then Lagrangian structure function for all

simulations will be presented. In fact, these correlations and structure functions help under-

standing of the spatial dispersion of the particles which will be analyzed using the models

proposed in the following chapter.

Basically, the purpose here is to understand the underlying mechanisms occurring in two-

way coupled gas-solid flows. Specifically, the effect of the particles on the turbulent statistics,

such as fluid Lagrangian timescales, turbulent kinetic energy etc., will be reported. Wherever

necessary, the results will be embedded into the literature survey of this kind of gas-solid

flows.

6.2 Description and parametrization of simulations

16 simulations were performed with different mass-loadings φ and different particle inertia

τp. For each simulation, particles were introduced into the reference turbulent flow of which

characteristics are summarized in table 2.2. Reynolds number of the flow based on the large

scales’ length Lf is around 100. Therefore the inertial zone of the turbulence is very limited
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Table 6.1: Parametrization of simulations. Values in the table show the number of particles

Np, St0 =
(
τp/T

f
L

)

φ=0

is the initial Stokes number of particles.

φ, St0 0.25 0.5 1.0 2.0

0.16 1 × 1283 0.5 × 1283 0.25 × 1283 0.125 × 1283

0.32 2 × 1283 1 × 1283 0.5 × 1283 0.25 × 1283

0.65 4 × 1283 2 × 1283 1 × 1283 0.5 × 1283

1.32 8 × 1283 4 × 1283 2 × 1283 1 × 1283

Table 6.2: Particle physical properties (all numbers are non-dimensional).

St0 0.25 0.5 1.0 2.0

ρp/ρf 2000 4000 8000 16000
(dp/ηK)φ=0 0.1323 0.1323 0.1323 0.1323

(see spectra in figure 2.7). Number of particles Np in each simulations is presented in table

6.1. Particle parameters to impose different particle relaxation times are presented in table

6.2.

It is to be noted that the turbulence modulation is a physical process which is characterized

by two parameters, namely; the mass-loading φ and Stokes number Stf@p after the Irish

mathematician George Gabriel Stokes (1819-1903). Mass loading of the particle phase is

defined as:

φ =
ρp

ρf
αp (6.1)

where αp is the volumetric loading of particles written as:

αp =
Npπd

3
p/6

L3
b

(6.2)

Stokes number St serves to characterize the inertia of the particles and it is, in this thesis,

defined as:

Stf@p =
τp

T f@p
L

(6.3)

where T f@p
L is the fluid Lagrangian time scale measured along the particle trajectory. The

definition of Stokes number is so chosen in this study due to the importance of T f@p
L in

turbulence modulation. Indeed the fluid velocity at the position of nth particle is not modified

by the nth particle in question but it is modified by all the Np − 1 particles surrounding the

particle n. Therefore, T f@p
L will be the one modified primarily by the particles and its value
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in two-way coupled simulations is not known a priori depending on the one-way coupled

simulations. Therefore to characterize the simulations, the relaxation time τp, normalized by

the Lagrangian timescale T f
L of one-way coupled simulations:

St0 =

(
τp

T f
L

)

φ=0

(6.4)

and mass-loading φ were used (see the table 6.1). Simulations correspond to investigate the

response of turbulence, from one part, to a fixed loading of particles with different inertia,

from the other part, to a fixed particle inertia with different mass loadings. A representative

2D field view of turbulence with particles is shown in figure 6.1.
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Figure 6.1: Fluid 2D velocity vector field with representative particle positions (particle
dimensions are not realistic).

6.3 Calculation of statistics

6.3.1 Eulerian statistics

The Eulerian statistics concerning the fluid phase were all calculated using the spatial grid

points. Due to the forced turbulence, the statistics were improved using time averages, as
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well. Statistical operator < . > is defined as the arithmetical average over large number

of realizations of the phenomenon to be averaged. A representative graph 6.2 shows the

periods during which the statistics, either Eulerian or Lagrangian, were calculated. Initially,
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Figure 6.2: Representative figures showing the making of statistics for one-way and two-
way coupled flows, for particles and turbulence

monophase turbulence was forced to a stationary level during which the statistics of turbu-

lence have then been calculated (top figure). The statistics of the turbulence were calculated
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at least for a time period of 10Te. In principle, this length of the calculation of the statistics

provides the sufficient precision (Février, 2000).

Particles were introduced into the reference turbulent flow field at the end of 10Te (In

graph, it corresponds to t = 100). Particle initial velocities were put equal to the fluid velocity

at their positions (u
(n)
p = u

(n)
f@p) and their distribution was fairly homogeneous throughout the

domain. They were then time-stepped with the turbulent flow field without two-way coupling.

According to the results of Wang and Maxey (1993), particles put 3 to 5τp to arrive at the

equilibrium which is well verified in our simulations. All the statistics reported in this

chapter concerning the one-way coupled simulations were performed during this stationary

period. Around 10Te or 4, 5T p
L period were used to obtain precise statistics. For particles

with increasing inertia τp, this calculation becomes exhaustive due to T p
L increasing.

Finally, afterwards, two-way coupling was put on (t = 170 on the graph) and another

equilibrium was waited for the fluid and particle phases. Statistics concerning the two-way

coupled flows were calculated in this range again for another 10Te.

6.3.2 Lagrangian statistics

The statistics concerning the particles were calculated by performing the averages over the

particle phase and profiting from the stationarity of the forced turbulence. One-point and

two-point statistics were calculated using arithmetic averaging over the number of particles

Np with the operator defined as:

〈Ψ〉p =
1

Np

∑

Np

Ψ (6.5)

where p symbol indicates the averaging over the particle phase.

Lagrangian correlations:

Lagrangian one-point correlations were calculated using the quantities along the particle

trajectories such as uf , uf@p or up. In each simulation, two clouds of particles were simulated

one of which is the solid particles and the other one is the fluid elements which are both

treated in Lagrangian manner. Lagrangian correlations are defined in isotropic turbulence

as:

Rf
L(τ) =

1

3
〈uf,i(xf,i(t), t)uf,i(xf,i(t+ τ), t+ τ)〉 (6.6)

Rf@p
L (τ) =

1

3
〈uf,i(xp,i(t), t)uf,i(xp,i(t+ τ), t+ τ)〉p (6.7)

Rp
L(τ) =

1

3
〈up,i(xp,i(t), t)up,i(xp,i(t+ τ), t+ τ)〉p (6.8)
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where f denotes a fluid variable and p denotes a particle variable. f@p indicates a fluid

variable at the position of a particle. The indices are omitted due to the isotropic turbulence

in which only the diagonal components are enough to be calculated. It can be noted that

these correlations should tend to the second order statistical quantities of the phases in the

limit as:

lim
τ 7→0

Rf
L(τ) =

2

3
q2f (6.9)

lim
τ 7→0

Rf@p
L (τ) =

2

3
q2f@p (6.10)

lim
τ 7→0

Rp
L(τ) =

2

3
q2p (6.11)

These correlations were used in calculating the characteristic timescales of particles which

are defined as:

T f
L =

1

Rf
L(0)

∫ ∞

0
Rf

L(τ)dτ (6.12)

T f@p
L =

1

Rf@p
L (0)

∫ ∞

0
Rf@p

L (τ)dτ (6.13)

T p
L =

1

Rp
L(0)

∫ ∞

0
Rp

L(τ)dτ (6.14)

where T f
L is the fluid Lagrangian timescale and it indicates the duration for which a fluid

element stays in a large eddy. T f@p
L is the Lagrangian timescale seen by the particles and

it is a measure of fluid-particle interactions. T p
L is the particle Lagrangian timescale which

indicates a timerange for which particle has a memory of its past velocity.

Another statistical correlation can be added which is Rfp
L indicating the fluid-particle

velocity correlation. With analogy to what has been written above, it can be written:

lim
τ 7→0

Rfp
L (τ) =

1

3
qfp (6.15)

where qfp is the fluid-particle covariance. However, this correlation was never measured in

this study.

6.4 Modulation of the turbulent kinetic energy and the dis-

sipation rate

Two-way coupling mechanism is regarded in three major points (Clift et al., 1978, Peirano and

Leckner, 1998). Dominant mechanisms in two-way coupled flows are first the work done by

the turbulent eddies to transport the particles (dominant effect for point particles, dp < ηK),
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vortex shedding caused by particles with high Reynolds number, Rep and particle wake-

turbulence interactions. In the flow fields without gravity and without external effects such

as mean flow etc..., Squires and Eaton (1990), Elgobashi and Truesdell (1993) showed that

point particles with small particle Reynolds numbers have tendency to reduce the turbulent

kinetic energy due to the non-existence of a production mechanism.

Turbulent kinetic energy balance of the two-way coupled simulation (for St0 = 12 and

φ = 0.16) is presented in figure 6.3. As remarked, the production term P , calculated by the

relation 2.38, is sensibly constant after the addition of the particles to the reference field at t =

100. Two-way coupling term Πq2

f
and the dissipation rate ǫ descend to the equilibrium values.

Kinetic energy balance equation can be written, for isotropic homogeneous turbulence, briefly

as:

dq2f
dt

= P − ǫ− Πq2

f
(6.16)

As seen, production term P balances the ǫ+Πq2

f
to an acceptable accuracy. The difference,

which counts to 7%, should be due to the interpolation of the back force onto the Eulerian

grid by the interpolation scheme, explained in section 2.2.1.6.
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Figure 6.3: Turbulent kinetic energy balance in presence of particles (Simulation φ = 0.16
and St0 = 2.0, ReL = 96)

The evolution of the turbulent kinetic energy for different mass loadings and particle

inertia is presented in figure 6.4. Coherently with the works mentioned above, it is observed
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that the turbulent kinetic energy decreases.
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Figure 6.4: Modification of the turbulent kinetic energy with reference to the reference
flow’s kinetic energy (see table 2.2)

Modulation of the turbulent kinetic energy seems weakly dependent on the particle inertia

which is in coherence with the works of Squires and Eaton (1994), Boivin (1996). Coherently

with the work of Boivin (1996), the modulation follows the line 1/(1+φ). It is remarked that

for the same mass loading, different Stokes numbers do not result in the same fluid kinetic

energy. This is due to the interaction of the particles with different scales of turbulence

according to their inertia. For the smallest inertia particles (St0 = 0.25) used in this study,

particles preferentially concentrate on the peripheries of the large scales (subject will be

investigated in the next chapter). According to this, the reduction in the turbulent kinetic

energy is slightly more significant for the flows with small-inertia particles which interact

more with the turbulence (Ferrand et al., 2003).

Modulation of the dissipation rate is presented in figure 6.5. It is marked that the descent

does not follow the 1/(1+φ) line. Instead, the line 1/(1+φ)2 seems more satisfactory to define

the decrease. Moreover, it can be noted that the decrease is more dependent on the inertia

and the mass loading of particles. Indeed, the smallest inertia causes the minimum reduction

in the dissipation rate (here around %60). As noted by Squires and Eaton (1991b), this is due

to the preferential concentration of small-inertia particles which results in the increase of the

fluid velocity fluctuations on the small scales due to the local perturbation of particles. This
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in turn increases the viscous dissipation of the turbulent flow and therefore the reductions

in the both quantities q2f and ǫ are not of the same order.
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Figure 6.5: Modification of the turbulent dissipation rate with reference to the reference
flow’s dissipation rate (see table 2.2)

As a complementary figure, the modification of the turbulent characteristic timescale q2f/ǫ

with reference to the uncharged flow is presented in figure 6.6. It can be noted that for small

inertia particles St0 = 0.25, the modification is constant for each mass-loading and indicates

to a %20 of increase with reference to the uncharged flow. On the other hand, inertial

particles St0 = 2.0 results in increasing q2f/ǫ ratio with the mass-loading.

The reduction in the turbulent and Taylor scale Reynolds numbers of each simulation

is presented in figures 6.7 and 6.8. It is seen that for each simulation turbulent Reynolds

number is modified between 20 and 30% whereas Reλ is practically not modified for the

highest inertia particles and for all loadings. For small inertia particles, there is up to

30% of descent in the Reλ. Considering the definition of turbulent Reynolds number, this

behavior should be due to the modulation in the turbulent kinetic energy levels presented

above, therefore the modulation in the characteristic velocity u
′
of turbulence. Modification

in the taylor scale Reynolds number will be useful for the discussion in the section for the

Lagrangian structure function at the end of this chapter.

As shown in figure 6.9, the large scales, after the two-way coupling is turned on, are fairly

similar in length, e.g., they are almost one tenth of the length of the domain, Lb. It should
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Figure 6.6: Modification of the characteristic timescale of turbulence q2f/ǫ with reference
to the uncharged flow.
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Figure 6.7: Modification of the turbulent Reynolds number, ReL

be noted that the large scales’ length is imposed by the stochastic forcing scheme used (see

chapter 2).
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Figure 6.8: Modification of the Taylor scale Reynolds number, Reλ
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Figure 6.9: Modification of the integral scales of turbulence

Considering the eddy turnover time defined as Te = Lf/u
′
, the decrease in the turbulent

characteristic velocity u
′

causes the eddy turnover time to increase. Therefore after the

coupling, the large eddies have similar lengths with reference to the one-way coupled flow
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but they turn with more slower velocity.

The modification of the Taylor length scales are presented in figure 6.10. In contrast to

the integral scales, Taylor length scale is modified by the effect of particles. More clearly, for

the smallest inertia particles, not very significant modification has been observed which is not

true for the highest inertia particles. For highest inertia particles, increase in mass-loading

results in increase in the Taylor length scale. However, considering the modulation of the

turbulent kinetic energy, q2f , the decrease in the turbulent kinetic energy is compensated by

the increase in the Taylor length scale for the highest inertia particles St0 = 2.0, hence the

Reynolds number based on the Taylor scale is not modified significantly with reference to

the uncharged flow. On the other hand, for smallest inertia, interestingly, Taylor length scale

is not significantly modified by the two-way coupling mechanism, therefore the Reλ values

decrease.
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Figure 6.10: Modification of the Taylor length scale

6.5 Modulation of 3D turbulent energy spectrum

It is fundamental to investigate the effect of the particles on different scales of turbulence.

In the work of Elgobashi and Truesdell (1993), it has been observed that for large inertia

particles, the modulation of spectrum of turbulence is more uniform whereas for the small

inertia particles, the modulation is non-uniform, e.g, different scales of turbulence respond
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differently to the particles. Turbulent energy spectra after the two-way coupling is turned

on are presented in figures 6.11 and 6.12 for the smallest and the largest inertia, respectively,

and for all mass loadings. Net decrease in the kinetic energy is marked immediately but the

energy budget, the distribution among different scales of turbulence, significantly changed.
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Figure 6.11: Modification of the turbulent 3D spectrum of the reference flow by the
addition of particles, for small inertia particles

Coherently with the literature, for small inertia particles (figure 6.11), the modification

of the spectrum is non-uniform. It is observed a net decrease in the low wavenumber range,

however, small scales seem more and more active with the increase in mass loading of particles

after an initial immediate descent for φ = 0.16. This results in a net change in the rate of

energy transfer between the scales (slope of the spectrum). Boivin (1996) showed that the

small scales could even be more energetic than they were in one-way coupled flows with

high turbulent Reynolds number (one-way coupled simulation is shown by dashed lines).

These results are in coherence with the work of Elgobashi and Truesdell (1993) and Squires

and Eaton (1994) where they showed that the increase in energy for the large wavenumbers

is recompensated by the decrease in the low wavenumber scales. Therefore, globally, the

modification depends on both the mass loading φ and also the inertia of the particles τp.

For large inertia particles (presented in figure 6.12), modification seems more uniform.

Interestingly, the modification at the very low wavenumber end of the spectrum is less sig-

nificant than the flows charged with low inertia particles (presented in figure 6.11).
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Figure 6.12: Modification of the turbulent 3D spectrum of the reference flow by the
addition of particles, for large inertia particles

These movements of the spectra clearly shows that the particles with low inertia extracts

collectively kinetic energy from some of the scales of turbulence and reinject it to the prefer-

ential scales of turbulence. As noted by Février (2000), this reinjection of kinetic energy to

certain scales of turbulence could be possible with the collective motion of particles which

is a correlated motion and could be described by the mesoscopic velocity ũp of the particles

(see section 5.7.2). Therefore the energy transferred to the uncorrelated motion of particles

would be dissipated by the action of viscosity. Then the model proposed in section 5.7.2,

should cover these movements of the spectra.

6.6 Modulation of the Eulerian and Lagrangian temporal cor-

relations of turbulence

In previous sections, it has been seen that the decrease in the kinetic energy level of turbulence

leads to the increase in the eddy turnover time, Te. Parallel to this, the temporal correlations

and timescales of turbulence with two-way coupling will be investigated in this section. The

definition and the method of calculation of these correlations are already mentioned in section

2.3.4.3, so will not be discussed here, any further.

Eulerian one-point correlations are presented in figures 6.13 and 6.14. As seen, for each
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Figure 6.13: Modification of the Eulerian one-point correlation of the fluid fluctuation
velocity, for small inertia particles

inertia and all the mass-loadings, correlations increase for a fixed time separation. This

is in consistence with the increase in Te e.g., eddies turning more slowly results in larger

decorrelation time according to an immobile observer. The modulation of the Lagrangian

timescales are shown in figure 6.15. The dependence of the Eulerian decorrelation timescale

on the particle inertia and mass-loading is complicated, as can be noted from the figure. It

seems that with increasing mass-loading and particle inertia, Eulerian timescale gets larger.

The ratio TE/Te is presented in figure 6.16. As seen, the ratio reaches at the values around

1.25 for high inertia particles. This should be acceptable due to the stochastic forcing that

generates high levels of oscillations from one timestep to another. This in turn can cause some

inprecise calculation of the correlations and finally the Eulerian timescale TE . Therefore the

fluid turbulent field keeps its homogeneity and isotropy after the two-way coupling is turned

on.

Note on stochastic forcing scheme:

It should be mentioned in passing that the parameters of stochastic forcing calibrated

in second chapter (see table 2.1) are not modified after the two-way coupling is turned on.

Therefore the equality TF = TE = Te is verified for the one-way coupled simulations but for

the two-way coupled simulations, it is TF < TE ≈ Te.
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Figure 6.14: Modification of the Eulerian one-point correlation of the fluid fluctuation
velocity, for large inertia particles.
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Figure 6.15: Modulation of the Eulerian timescale calculated from the one-point correla-
tions

Lagrangian temporal correlations are presented in figures 6.17 and 6.18. For small inertia

particles, it is seen that the correlations increase with increasing mass loading whereas,
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Figure 6.16: Ratio of the characteristic timescales with the effect of two-way coupling,
TE/Te = 1 for the reference flow field (see table 2.2).

for the high inertia particles, the correlations seem weakly dependent on the mass loading.

The variation of the Lagrangian timescale with the mass-loading and the particle inertia is

presented in figure 6.19. More steep increase is remarked for small inertia particles where

the value is up to 1.9 times the uncharged flow value.

The motivation in Lagrangian stochastic models is to write down the trajectorial equation

of motion of discrete elements, of which the statistics must be predicted out of this equation.

This behavior of the Lagrangian correlations presented above has to be taken into account

by the stochastic model equation 5.17 for the fluid element trajectories.

6.6.1 Classical stochastic modeling for single phase flows

As shown in section 5.4.1, stochastic modeling leads to the Lagrangian timescale, T f
L , written

as:

T f
L =

4

3C0

q2f
ǫ

(6.17)

where C0 is the Kolmogorov constant usually taken equal to 2.1. Therefore here the La-

grangian timescale is written in terms of turbulent quantities which are of practical impor-

tance in terms of turbulence modeling.
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Figure 6.17: Modification of the Lagrangian one-point correlations, for small inertia
particles
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Figure 6.18: Modification of the Lagrangian one-point correlations, for large inertia par-
ticles



Chapter 6. Fluid statistics from DNS+DPS results 136

0 0.5 1 1.5
1

1.2

1.4

1.6

1.8

2

 

 

T
f L
/
T

f L
| φ

=
0

φ

St0 = 0.25
St0 = 0.5
St0 = 1.0
St0 = 2.0

Figure 6.19: Modification of the Lagrangian timescale of the fluid elements

6.6.2 Extension to the two-way coupled gas-solid flows

The Langevin equation for single phase flows was extended to the two-way coupled gas-

solid flows with an additional term Π∗
uf,i

to account for the effect of the particles on the

fluid element trajectories. The additional term Π∗
uf,i

was defined with two different models,

namely: mean and instantaneous models.

Mean model:

Using the mean model given by relation 5.66, due to the statistical operator, the La-

grangian structure function derived from the Langevin equation 5.17 is written as:

D∗
L(s) = B2

fs (6.18)

with Bf =
√
−4

3Afq
2
f . The ∗ symbol represents the quantity of a stochastic particle governed

by the Langevin equation.

If the consistency with the Kolmogorov hypothesis is used for the coefficient Bf , then

it will be written as Bf =
√
C0 < ǫ > and the relation for Lagrangian timescale T f

L will

be written as 6.17. According to the relation 6.17, the Lagrangian timescale is linearly

proportional to the q2f/ǫ. Presented Lagrangian correlations of the fluid element velocities

show variations in presence of two-way coupling mechanism as presented in figure 6.20.
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Figure 6.20: Ratio of the Lagrangian timescale T f
L to the characteristic turbulence

timescale q2f/ǫ, see relation 6.17

As shown in the figure, the ratio T f
L/(q

2
f/ǫ) does not have a constant value, but, it is a

coefficient changing according to the mass loading and particle inertia which is due to the

variations in the Kolmogorov constant C0. The value of this parameter is largely discussed in

the literature and it has been shown already by Yeung et al. (2006) that increasing turbulent

Reynolds number, ReL, C0 approaches to the asymptotic limit of 7.0. For small Reynolds

numbers, ReL, a value of 3.0 is seen to produce good results (Sawford and Tivendale, 1992).

It is significantly important in stochastic models because it controls the Lagrangian timescale

of the fluid T f
L and significantly difficult to measure in low Reynolds number turbulent flows

such as used in this thesis.

Instantaneous model:

Using the instantaneous model 5.87, the Lagrangian structure function is derived as:

D∗
L(s) = B2

fs+
φ2

τ2
p

[
2q̃2p − 2qfp + 2q2f@p

]
s2 + 2Af

φ

τp

[
qfp − 2q2f@p

]
s2 (6.19)

where Bf and Af could be determined from the relations 5.129 and 5.121, respectively. The

determination of these coefficients should be useful in order to calculate the magnitude of

the second and third terms in 6.19 but requires an hypothesis because the relations hold

the fluid statistics viewed by the particles and the fluid elements. From the other part, the

solution of 5.121 seems not possible analytically.
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To investigate the behavior of C0 precisely, Lagrangian structure function must be studied

which is the subject of the next section.

6.7 Modulation of the Lagrangian structure function

To examine the fluid element velocities on different scales of turbulence, the best method is

to use the Lagrangian structure function DL(s). Second-order Lagrangian structure function

carries great importance to the research on small scales of turbulence due to its superiority to

precisely characterize a turbulent flow (Kolmogorov scale similarity) than an Eulerian scaling

law. However, in high Reynolds number turbulent flows, Lagrangian statistics are extremely

difficult to be obtained, even in numerical environment (no need to mention on laboratory

experiments). From the other part, this function is also important to stochastic modeling

because these models try to predict it to satisfy the coherence with the scale similarity law of

Kolmogorov. Detailed explanation of this function and its utility can be found in the book

of Monin and Yaglom (1975).

Measurements of DL for the two-way coupled simulations performed are presented in

figures 6.21 and 6.22.
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Figure 6.21: Modification of the Lagrangian structure function, for low mass loading

As seen, with increasing particle inertia, high mass loading of particles modifies the struc-

ture function of fluid elements more significantly than the low mass loadings. After initial
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Figure 6.22: Modification of the Lagrangian structure function, for high mass loading

increase, all the curves approach to a stationary value which is larger for small loading

φ = 0.16 (comparing the figures). However, both mass loading shows an initial sudden de-

crease and then following increase with the particle inertia which should be an effect due to

the turbulent dissipation-rate.

As noted by Yeung et al. (2006), DL(s) has a rise and a fall when normalized by ǫs due

to its limiting behaviors. Normalized curves are presented in figures 6.23 and 6.24.

Coherently, a peak is obtained in the normalized structure function curves where the peak

corresponds to the Kolmogorov constant C0. In fact, for large Reynolds number turbulent

flows, instead of very short peak value, sufficiently large range of constant value is obtained

where a scaling could be applied (Yeung et al., 2006). However, the Reynolds numbers

considered in this thesis are fairly low due to the restrictions imposed by DNS. Considering

the modification in the Reynolds number Reλ based on the Taylor length scale, λ, figure

6.8 shows that there is not much variation in the normalized DL curves with increasing

relaxation times, τp, for φ = 0.16. This is in coherence with the Reλ which does not show

much variation for increasing τp and φ = 0.16, either.

For high mass loading, φ = 1.32, figure 6.24 shows that increasing τp, the peak value (C0)

increases and for the highest value of τp, it arrives at the level of C0 values of flows with

mass loading φ = 0.16. Figure 6.23 is in coherence with the figure 6.8 of modification of Reλ

in that for highest particle relaxation time, Reλ of the flow does not vary with reference to
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Figure 6.23: Modification of the normalized Lagrangian structure function, for low mass
loading
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Figure 6.24: Modification of the normalized Lagrangian structure function, for high mass
loading

the uncharged flows. Therefore, obtained value of C0 is similar to the values of obtained in

flows with φ = 0.16. For smallest τp and φ = 1.32, figure 6.24 shows that the Reλ is reduced
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up to 30% of the uncharged flow value. C0 accordingly diminishes and the minimum value

obtained 1.80 is clearly below the results obtained by (Yeung et al., 2006). This could be

attributed to the two-way coupling mechanism which has large effect on the small scales (see

the section 6.5 for the turbulent spectra).

Therefore, Lagrangian structure function curves show dependency on both the φ and τp for

small Reynolds number flows. From the other part, for the low Reynolds numbers considered

in this study (even lower values are obtained with the effect of particles), determination of the

precise value of C0 is difficult and strictly it is not a constant. For a summary, the evolution

of the C0 values as a function of the Reynolds number based on the Taylor length scale Reλ

is presented in figure 6.25 where the measured values are compared to the literature. In the

range of Reynolds numbers considered in this thesis, the values seem to agree with the values

reported by Yeung et al. (2006).
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Figure 6.25: C0 values measured from DNS+DPS for two-way coupled flows.

Based on these findings, the modeling approach of Pope (2002) is more adequate due to

the low Reynolds numbers used in this study. Therefore in the methodology presented in

section 5.5, first the coefficient Af is determined using the correlation function and then once

knowing Af , the coefficient Bf can be determined from the q2f transport equation instead of

considering the Lagrangian structure function.
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6.8 Conclusion

In this chapter, basically, measurements of the effect of particles with finite inertia on the

turbulence are reported. Measurements correspond to the DNS for the fluid phase and

DPS for the particle phase. The interphase momentum transfer term in the Navier-Stokes

equation is modeled using the point source approach (see chapter 2). It has been found that

the inertial point particles decrease the turbulent kinetic energy in absence of external effects

such as gravity, mean flow etc... also the turbulent kinetic energy spectrum is modified more

non-uniformly by the effect of small inertia particles which highly interacts with turbulent

scales. This findings are coherent with the literature reported.

An important point in this chapter is that the Lagrangian structure function is modified

in a complex manner by the effect of high and small inertia particle resulting in different

behavior of the Lagrangian timescale, T f
L . This results in dependence of the Kolmogorov

constant C0 on particle inertia τp, particle loading φ and Taylor scale Reynolds number Reλ.

Due to this restriction, the diffusion term in stochastic Langevin equation is modeled using

the second order Reynolds tensor (see section 5.5.3) instead of using the Lagrangian structure

function in the context of Kolmogorov scale similarity hypothesis.

The next chapter will talk about the comparison of the stochastic modeling results to the

DNS+DPS results obtained in this section.



Chapter 7

Simulation and modeling of

fluid-particle correlations

7.1 Introduction

In this chapter, the Lagrangian stochastic modeling presented in chapter 5 is going to be

compared to the results of DNS+DPS. Indeed, in the previous chapter, it was shown that

point particles can effect the turbulence structure and the cascade of kinetic energy to a

large extent according to the particle inertia τp and mass loading φ. Therefore it is essential

that the stochastic modeling of fluid element trajectories and the fluid velocity viewed by

the solid particles must well predict the dispersion of particles in a turbulent flow modified

by the presence of particles, fluid phase statistics viewed by the particles and fluid elements.

The chapter is written in the following order:

First, particle dispersion is going to be analyzed in terms of the autocorrelation functions

of particle velocities and fluid velocity viewed by the particles. Autocorrelation function of

the fluid viewed is once measured from the DNS+DPS and once derived from the Langevin

model proposed. It is going to be clear that in low Reynolds number flows considered in this

thesis, the Langevin modeling poorly predicts this correlation due to its infinite Reynolds

number hypothesis. However, it is going to be shown that the low Reynolds number effects

can be taken into account by the proposition of Sawford (1991) when mean drag model is

used. Then the particle dispersion coefficient will be reported.

Second, particle statistics will be analyzed to validate the models. The practical relations

derived in chapter 5 are going to be used to this purpose. It is going to be seen that the

statistics viewed by the particles can be fairly different than the statistics viewed by the fluid

143
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elements. This can cause in reduction in the dispersion coefficient for certain mass loadings.

The nature of this statistical difference will be explored in the preferential concentration of

particles.

As a final point, to complete the particle dispersion study, the fluid-turbulent drift velocity

will be analyzed in a colored particle number density gradient configuration. It will be seen

that both models are able to predict with some errors the particle fluxes due to the drift

velocity which corresponds to the transport of particles due to the large turbulent scales. For

more detailed explanation of drift velocity see the section 5.6.5. The instantaneous model

results in more complicated relation for this flux’s expression and it is difficult to measure

and to model. Results than lets think that the mean drag model has more advantages than

the instantaneous model.

7.2 Analysis of solid particle dispersion in turbulent flow field

7.2.1 Fluid element diffusion

It is known that turbulence diffuses scalar quantities better than a laminar flow. Diffusion

of fluid elements in a turbulent flow has been studied initially by Taylor (1921) who gave a

general relation for the fluid element displacement tensor using Lagrangian reference frame

following the fluid element in 2D formalism. As also verified by the work of Corrsin (1961),

the problem of turbulent diffusion is more suitably analyzed in Lagrangian reference frame

than in Eulerian frame. However, the Lagrangian studies, being very costly to perform,

Eulerian studies are known to be much more practical and therefore are the focal point of

researchers in academy and in industry.

In Eulerian study of diffusion, generally, a transport equation for the spatial concentration

c of scalar is considered. Ignoring the details of the flow and transport of scalars, a mean

transport equation for the scalar concentration is written as:

∂ < c >

∂t
+ < uf,i > .∇ < c >= (Dt

f,ij +Dm)∇2 < c > (7.1)

where Dm is the molecular diffusion coefficient and Dt
f,ij is the diffusion coefficient cor-

responding to the turbulent mixing due to the large scales. Major drawback in Eulerian

formulation is the lack of a consistent model for the flux of the scalar due to the turbu-

lent velocity fluctuations, < u
′

f,ic
′
>. In general, a gradient diffusion model is used for this

turbulent flux as < c
′
u

′

f,i >= Dt
f,ij

∂<c>
∂xj

.
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To determine the diffusion coefficient, Taylor (1921) expresses the displacement tensor of

a fluid element in a turbulent flow field in terms of Lagrangian correlations as:

d

dt
< [xf,i(t) − xf,i(0)][xf,i(t) − xf,i(0)] >=

∫ t

0
(Rf

L,ij(τ) +Rf
L,ji(τ))dτ (7.2)

Using the fluid element displacement tensor, Batchelor (1949) defines the diffusion coef-

ficient of a fluid element, Dt
f , as:

Dt
f,ij =

1

2

d

dt
< [xf,i(t) − xf,i(0)][xf,j(t) − xf,j(0)] > (7.3)

For long time separations, the diffusion coefficient is written in its general form as:

lim
t→∞

Dt
f,ij =

1

2

√
< u

′2
f,i >< u

′2
f,j >(T f

L,ij + T f
L,ji) (7.4)

For homogeneous isotropic stationary turbulence, only the trace of the tensor needs to be

calculated and the dispersion coefficient is written as:

Dt
f =

2

3
q2fT

f
L (7.5)

According to this relation, it can be said that the dispersion of fluid elements are controlled

by the large scales of turbulence.

7.2.2 Solid particle dispersion

The extension of the formalism presented for the fluid element diffusion to the dispersion

of solid particles in a turbulent flow is performed initially by Tchen (1947) and following

researchers are Hinze (1975), Gouesbet et al. (1984), Squires and Eaton (1991a) etc... The

particle dispersion coefficient is written in terms of the displacement tensor, according to

these studies, as:

Dt
p,ij =

1

2

d

dt
< [xp,i(t) − xp,i(0)][xp,j(t) − xp,j(0)] > (7.6)

Dt
p,ij =

1

2

√
< u

′2
p,i >< u

′2
p,j >(T p

L,ij + T p
L,ji) (7.7)

where u
′

p,i is the fluctuating particle velocity in ith direction, T p
L is the Lagrangian timescale

of particles (see relation 6.12).
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In the long time limit, long time particle dispersion coefficient Dt
p is written, similarly in

isotropic homogeneous stationary turbulence, as:

Dt
p =

2

3
q2pT

p
L (7.8)

In the context of this relation, according to the inertia τp of particles, two different mech-

anisms are thought:

• Large agitation q2p (see figure 7.1) of particles which have very short memory (small

T p
L, small τp)

• Small agitation of particles but with long memory (see figure 7.2) of the preceding

velocity, leading to the same dispersion coefficient Gouesbet et al. (1984)
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Figure 7.1: Behaviour of particle agitation, q2p, with the particle inertia τp (see the relation
7.8)

As seen in figure 7.3, the dispersion coefficient is well verified, up to an error of 5%, by

the particle phase statistical quantities. The imprecisions in the small particle inertia (right

hand side of the graph) part should be due to the particles which are in interaction with the

small scales of turbulence.

The physical effects explained above are consisted in the drag term of the particle equation

of motion 2.7. For many gas-solid flow configurations, particle equation of motion can be
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Figure 7.2: Modification of the Lagrangian correlations of particle fluctuation velocity for
lowest and highest mass loadings.

greatly simplified. For example, if the density of the particle’s is much larger than the fluid

density, many of the forces in the equation of motion is negligible with reference to the drag

term. When the particles obey the Stokes law, the drag term becomes linear in the relative

velocity vr. Therefore typically, there are two mechanisms playing role in the dispersion of

particles, namely:
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Figure 7.3: Dispersion coefficient calculated using the particle statistics, see relation 7.8

• Particle inertia (memory effect)

• Drift (in presence of a body force such as gravity.)

For the point particles (see chapter 2) considered in this thesis, these forces are the

significant ones. The gravity is not taken into account for further simplification to the

problem. However, the last section of this chapter has the intention to start such a study.

7.3 Theory of Tchen-Hinze for the particle dispersion

7.3.1 Classical theory of Tchen-Hinze

First analytical study on the relation between the fluctuating motion of particles and the

one of fluid was done by Hinze (1975). Tchen (1947) linearized the equation of motion for a

spherical particle in a turbulent flow and obtained expressions for the diffusion coefficient of

fluid elements and the dispersion coefficient of particles. The turbulence used in the study

is homogeneous isotropic and stationary. Most restrictive assumption is that the particle

interacts with the same fluid element during its motion. However, as is well documented in

literature, in turbulence, fluid elements are continuously stretched and distorted, therefore,

this assumption is not widely applicable and saw many objections.
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For small time separations, Tchen (1947) obtains:

Dt
p

Dt
f

=
u

′2
p

u
′2
f

(7.9)

where up is the velocity of the particle and uf is the velocity of the fluid in the vicinity of

the particle.

For long time separations, this relation becomes:

Dt
p

Dt
f

= 1 (7.10)

implying that for long time separations, the dispersion of particles and fluid elements are the

same, e.g., they disperse in the same rate.

Hinze (1975) analyses the hypotheses of Tchen and put the one mentioned above in

question. Performing a spectral analysis, Hinze (1975) refinds the results of Tchen and

assuming an exponential form e−t/T f
L for the Lagrangian correlations for the intermediate

time separations, he relates the spatial spectrum of fluid elements to the one of particles as:

Ep,ij(ω) = Q(ω)Ef@p,ij(ω) (7.11)

where the transfer function Q(ω) is written as:

Q(ω) =
1

1 + ω2τ2
p

(7.12)

where ω is the frequency. Function Q(ω) indicates an effect that the particles with increasing

inertia are more and more independent of the high frequency oscillations of the turbulence

and have trajectories more rectilinear. On the other hand, for very small inertia, particles

behave like the fluid elements following the oscillations of the smallest scales.

After some algebra, Hinze (1975) derives famous relation for the agitation of the particles

in terms of the fluid kinetic energy as:

2q2p = qfp = 2q2f
T f

L

T f
L + τp

(7.13)

7.3.2 Extension of the theory of Tchen-Hinze

Deutsch and Simonin (1991), Deutsch (1992) extends the theory of Tchen-Hinze by putting

the certain hypotheses of Tchen in question. They first replace the fluid-particle relative
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instantaneous velocity in the expression of drag term by the mean relative velocity to linearize

the particle relaxation time τp appearing in equations of mean motion.

The second extension includes the independence of the particle of its fluid environment.

Therefore, it is not obligatory that particle will follow the same fluid element during its

motion, instead, it changes its fluid environment. This effect is largely enhanced by drift

velocity (due to the gravity, for example) which is not taken into account in this work.

Basically, Deutsch and Simonin (1991) introduces the notion of fluid viewed by the particle

uf@p during its motion and a priori, the statistics of the fluid viewed by the particles are not

the same with the statistics viewed by the fluid elements. By redoing the analysis of Tchen,

they derive the dispersion coefficient of particles as:

Dt
p =

2

3
q2f@pT

f@p
L (7.14)

for isotropic homogeneous stationary turbulence.

Fluid velocity correlations along particle trajectories are presented in figure 7.4. It is

remarked that for increasing inertia, whatever the mass loading is, particle-turbulence in-

teraction time T f@p
L decreases coherently with the particle dispersion mechanism explained

above. Indeed, inertial particles interact less with the turbulent scales and the timescale is

smaller with reference to the non-inertial particles. The figures also verify that the definition

of Stokes number Stf@p = τp/T
f@p
L is more convenient with T f@p

L because the particle’s ef-

fects are more pronounced on this timescale (see the figures 6.17 and 6.18 for the modulation

of Lagrangian correlations of fluid element velocities).

Presented in figure 7.5, the particle dispersion coefficient is calculated using the fluid

statistics seen by the particles and it is shown that the fluid statistics are well capable of

defining the dispersion whatever the mass loading and the inertia. It is worth noting that the

expression 7.14 is independent of the two-way coupling mechanism and of any assumption

of the correlation curve. Therefore these results are not surprising.

By assuming an exponential form for the Lagrangian correlations of the fluid velocity

during the particle trajectories, they derive the particle agitation in terms of the fluid kinetic

energy viewed as:

2q2p = qfp = 2q2f@p

T f@p
L

T f@p
L + τp

(7.15)

and a fundamental relation for the Lagrangian timescale T p
L is derived as:

T p
L = T f@p

L + τp (7.16)
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Figure 7.4: Modification of the Lagrangian correlations of fluid velocity correlation viewed
by the particles for lowest and highest mass loadings

Figure 7.6 presents the evolution of the fluid-particle velocity covariance qfp in terms of the

particle inertia for each mass loading φ with comparison to the one-way coupled flows. It is

remarked that the Tchen-Hinze relation 7.15 works very well as in the one-way coupled flows.

For very small inertia particles (right hand side), particles are correlated with the fluid scales

(fluid-particle covariance is high) which in coherence with the Lagrangian analyses of particle
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Figure 7.5: Dispersion coefficient calculated using the fluid statistics viewed by the par-
ticles, see relation 7.14

motion by the theory initial of Tchen (1947). Highly inertial particles are less correlated to

the turbulent fluctuations and their covariances is relatively small (left hand side). Two

mechanisms are clear on the figure:

First: as the mass loading increases, for a fixed τp, the data points move right and upwards

on the graph. This is primarily due to the increase of the Lagrangian timescale T f@p
L due

to the modulation of turbulence. For a fixed τp, this results in the reduction of the Stokes

number of particles and the data points move rightwards. Upward movement of the points

is related to the increase in the ratio qfp/(2q
2
f@p) due to the interaction of the small inertia

particles with the turbulent scales. This could be, on one hand, due to the increase of the

fluid-particle correlations due to the interactions of particles with smaller scales of turbulence,

and on the other, due to the decrease in the fluid kinetic energy viewed by the particles.

Second: as the τp increases, for a fixed φ, the data points move to the left and downwards

on the graph. This is due to the particles becoming more inertial with reference to the tur-

bulent large scales. Therefore particles interact less with the turbulent scales and covariance

decreases.

As remarked on the graph, the theory of Tchen-Hinze correctly defines the evolution of

the covariance as a function of Stokes number for large inertia particles (left hand side of the

graph). However, the theory has tendency to underestimate the ratio, qfp/2q
2
f@p, for small
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Figure 7.6: Tchen-Hinze relation 7.15 verified for two-way coupled flows compared to the
one-way coupled flows, φ = 0

inertia. Therefore, deviations are observed for the small inertia (right hand side) part of the

graph.

7.3.2.1 Low Reynolds number effects

As explained in the preceding section, the relation of Tchen-Hinze depends on the closure of

the fluid Lagrangian correlation function. As noted by Hinze (1975), exponential form for

these correlations is accurate only for the flows with infinite Reynolds number. For finite

Reynolds numbers, the relation does not work due to the correlations deviating sensibly

from the exponential curve. Specially, significant deviations are observed in the small time

separations, as will be seen, in the next paragraph.

Sawford (1991) develops a stochastic model for the acceleration of the fluid elements taking

into account the low Reynolds number effects. Hierarchically, this model is a second order

process requiring two timescales as input for the memory effects of fluid elements, namely:

Lagrangian timescale at the energetic scales’ level, and Kolmogorov scale at the dissipative

level. By the means of these timescales, Sawford (1991) achieves to take the Reynolds number

into account in the model which is written as:

3

2

Rf
L(τ)

q2f
=

1

1 −
√
Re∗

[
exp(−

√
Re∗

T f∗
L

τ) −
√
Re∗exp(− τ

T f∗
L

)

]
(7.17)
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where Re∗ is a Lagrangian Reynolds number defined as:

Re∗ =
16a2

0

C4
0

Re2λ
15

(7.18)

where C0 is the Kolmogorov constant measured from DNS, a0 is the acceleration constant

which may be given as:

a0 = 0.13Re0.64
λ (7.19)

T f∗
L is the Lagrangian timescale corresponding to the flow with infinite Reynolds number

and given as:

T f∗
L =

T f
L

(1 +Re∗−0.5)
(7.20)

The correlations for the small time separations can be taken into account using this model,

as seen on figure 7.7 for one of the simulations (not all presented for convenience).
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Figure 7.7: Sawford correlation 7.17 presented for the simulation St0 = 0.25 and φ = 1.32,
ReL = 65

As seen on the figure 7.8, the expression 7.17 seems to work also for the correlation of the

fluid velocity viewed by the particles.
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Figure 7.8: Sawford correlation 7.17 used for the Lagrangian correlation of fluid velocity
viewed by the particles, presented for the simulation St0 = 0.25 and φ = 1.32, ReL = 65

Tchen-Hinze relation can then be rewritten in the form:

2q2p = qfp = 2q2f@pη
1 +

√
Re∗ + η√

Re∗ + (1 +
√
Re∗)η + η2

(7.21)

where η =
T f@p

L

τp
.

As seen on figure 7.9, using the same relation for the correlations Rf@p
L , a very good

agreement is obtained.

7.3.3 Modification of the dispersion coefficient by the two-way coupling

In the classical theory of Tchen-Hinze, it is obtained that the long time diffusion coefficients

of fluid elements and solid particles are equal, Dt
p = Dt

f . However, it has been found by ana-

lytical analysis by Reeks (1977), that this is not the case and particle dispersion is generally

higher than the diffusion of fluid elements. This result is then confirmed by the results of

Pismen and Nir (1978). Both these researchers have investigated the gas-solid flows in ho-

mogeneous isotropic turbulence without the effect of gravity (no drift). More recently Fung

and Perkins (1989) analyzed the particle motion and found the same results.

The increase in the dispersion coefficient has also been observed in the experimental and

numerical works (Crowe et al., 1985, Lazaro and Lasheras, 1992, Longmire and Eaton, 1992).
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Figure 7.9: Tchen-Hinze relation 7.21 using the Sawford correction 7.17

According to the work of Reeks (1977), the modification of the dispersion coefficient is due

to the inertia of the particles, with the hypothesis that the statistics seen by the particles

and fluid elements are the same. In one-way coupled simulations of Février (2000), this

hypothesis is well verified for different Stokes numbers and varying turbulent Reynolds num-

bers. Therefore, in the frame of the analysis of Reeks (1977), it was shown that Lagrangian

correlation seen by the particles Rf@p
L tends to the Lagrangian correlations of fluid elements,

Rf
L, in the scalar limit, and tends to RE in high inertia limit and T f

L < T f@p
L < TE . Wang

and Stock (1993) gives the semi-empirical relation out of the experimental measurements for

the evolution of the Lagrangian timescale viewed by the particles as:

T f@p
L

TE
= 1 −

(
1 − T f

L/TE

)
(1 + τp/TE)−0.4(1+0.01τp/TE) (7.22)

This relation will be tested later on. For the time being, representative Lagrangian cor-

relation of the fluid velocity viewed by the particles are seen in figures 7.10 and 7.11. It

seems that the correlations Rf@p
L is between the Lagrangian correlation of fluid elements and

Eulerian one-point correlations for the largest and smallest inertia particles.

Figure 7.12 presents the dispersion coefficients calculated by the relations 7.3 and 7.6 with

comparison to the results of Deutsch and Simonin (1991) and theoretical relation of Pismen

and Nir (1978). It is clear that in the range T f
L/τp = [1, 10] the dispersion coefficient of

particles reaches up to 20% higher values of the diffusion of fluid elements. It is interesting
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Figure 7.10: Comparison of the Eulerian and Lagrangian correlations of fluid velocity for
St0 = 0.25 and φ = 1.32, ReL = 65
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Figure 7.11: Comparison of the Eulerian and Lagrangian correlations of fluid velocity for
St0 = 2.0 and φ = 1.32, ReL = 76.

to note that this increase is not predicted by the relation of Pismen and Nir (1978). As in

the work of Février (2000) and many others cited above, the general idea is that the particle
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dispersion phenomenon is controlled at the macroscopic level of the flow. It has been shown

by Deutsch and Simonin (1991) that this increase is due to the collection of the particles

to the preferential zones in the flow due its finite inertia (an augmentation in the T f@p
L )

therefore particles interact more with the turbulent scales. However, in the results reported

here, this point is not clear due to the fact that two-way coupling mechanism affects both

q2f@p and T f@p
L .
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Figure 7.12: Modification of the dispersion coefficient with reference to the diffusion
coefficient of fluid elements due to the two-way coupling, solid line corresponds to the theory

of Pismen and Nir (1978).

In passing, it can be noted that Février (2000) also showed that this augmentation is not

due to the stochastic forcing scheme.

For a last step, the modification of the values of the dispersion coefficient with reference

to the uncharged flows are presented in figure 7.13 for all of the simulations. It is clear that

the increasing mass loading reduces the dispersion of the particles. Particle Stokes number

also plays a role on the dispersion but it is weaker than the effect of mass-loading and for

the mass loading of 0.16, it practically has very small effect. Therefore it can be concluded

that due to the decrease in turbulent Reynolds number of the flows, with increasing mass

loading, particles disperse less.
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Figure 7.13: Modification of the dispersion coefficient with reference to the uncharged
flows due to the two-way coupling.

7.3.4 Effect of two-way coupling on the fluid statistics viewed by the par-

ticles

In one way coupled flows, the fluid kinetic energy is shown to be sensibly the same as the one

seen by the solid particles, therefore the Lagrangian timescale T f@p
L is the one effecting the

dispersion of particles. In this section, this phenomenon will be studied in two-way coupled

flows.

Fluid kinetic energy seen by the particles is presented in figure 7.14 for all of the simula-

tions with one-way coupled simulations and the results of Deutsch and Simonin (1991). It is

immediately remarked that one-way coupled simulations, q2f@p is considerably constant for

each particle inertia. The results of simulations of present thesis are in coherence with the

results of Deutsch and Simonin (1991). However, in two-way coupled simulations, increasing

mass loading leads to the reduction of the kinetic energy q2f@p up to 25% of the fluid kinetic

energy q2f (for modification of the fluid kinetic energy from the one-way coupled flows, see

figure 6.4) which should be accounted in stochastic modeling.

Evolution of the Lagrangian timescale seen by the particles T f@p
L is presented in figure

7.15 with comparison to the semi-empirical relation of Wang and Stock (1993) (for the

modification of the Lagrangian timescale with reference to the one-way coupled flow, see

figure 6.19). Clearly, the one-way coupled simulation results are totally in coherence with
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Figure 7.14: Modification of the fluid kinetic energy q2f@p viewed by the particles due to

the particles, q2f corresponds to the fluid kinetic energy of the two-way coupled flow.

the results of Deutsch and Simonin (1991) and they are partially in coherence with the

results of the theoretical relation 7.22 for the highest and lowest inertia particles. However,

the relation 7.22 does not predict the increase in the range T f
L/τp = [1, 20]. For two-way

coupled flow simulations, increasing deviations are observed in this range with the increasing

mass-loadings that the highest value is probably larger than the Eulerian timescale, TE, of

the turbulence indicating that the analysis of Reeks (1977) is not satisfied in all the flow

simulations performed. This increase in T f@p
L is an indication to the particles interacting

longer with the large turbulent scales than the fluid elements with increasing mass loading.

The differences between q2f and q2f@p could be due to the preferential concentration mech-

anism. Indeed, the increase in T f@p
L is associated to the this mechanism in which particles

collect to the peripheries of the turbulent large scales due to the centrifugal effect (Squires

and Eaton, 1991b, Deutsch and Simonin, 1991). Effect of preferential concentration makes

the subject of the next section.

7.3.5 Effect of preferential concentration on the statistics viewed by the

particles

In the scalar limit, particles have very small inertia and they follow all the fluctuations of

the fluid scales perfectly leading to the intuition that the particles should be homogeneously
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Figure 7.15: Modification of the Lagrangian timescale T f@p
L viewed by the particles due to

the particles, T f
L corresponds to the Lagrangian timescale of the two-way coupled flow, solid

line is the relation 7.22 for the T f
L/TE = 0.727 (mean value over the ensemble of simulations)

distributed throughout the domain (note the flow is incompressible meaning that two fluid

elements exponentially move away from each other (Falkovich et al., 2001). In the opposite

case, particles, due to their inertia, do not follow any of the fluctuations of the turbulent scales

and therefore they have more rectilinear trajectories. The particles are not then correlated

to the turbulent velocity field and therefore they should be randomly distributed, as well. In

between these two limits, particles respond to more or less different scales of turbulence and

they preferentially collect to the zones of weak vorticity and strong shear.

Maxey (1987), Squires and Eaton (1991b), Eaton and Fessler (1994) explains the collection

of particles in terms of the centrifugal force tending to throw the particles from the centers

of the turbulent scales to the peripheries due to maximum vorticity. The mechanism of

preferential concentration is still an open question in that the mechanism depends either

on the small or on the large scales is not well understood. Works of Wang and Maxey

(1993), Wang et al. (2000) show that the mechanism is controlled by the small scales of

turbulence. However, there are other works, such as the one of Wang and Squires (1996),

showing that the mechanism is not only related to the small but also large scales. Finally,

Février (2000) refinds the results reported in the literature and effects extensive study on

different turbulent Reynolds numbers. The method of Février (2000) seems more realistic in

terms of characterizing the preferential concentration, therefore it will be used in this study.

The next section is about this method and its application.
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7.3.5.1 Methodology

A widely used practical method of characterizing the preferential concentration is to calculate

the probability distribution P (C) of having C number of particles in an elementary cubical

volume. In perfect homogeneous distribution of particles, this function is equal to the Poisson

distribution which is written as:

P (C) =
e−λλC

C!
(7.23)

where λ is the mean number of particles per elementary volume and C! is the factorial of C.

λ can also be written for homogeneous distribution as:

λ =
Np

Nd
(7.24)

where Np is the number of particles and Nd is the number of elementary volumes covering the

whole domain. It should be noted that P (C) becomes equal to the homogeneous distribution

of Poisson in condition that the number of particles is large.

In non-homogeneous distribution of particles, a quantifying parameter can be defined as:

Σp =
1

λ
(σ − σPoisson) (7.25)

where

σ2 =
∑

C

(C − λ)2P (C) (7.26)

σ2
Poisson = λ (7.27)

Large values of Σp corresponds to a more and more non-homogeneous distribution of

particles.

7.3.5.2 Results

As seen on figure 7.16, the parameter Σp depends on the number of elementary volumes ∆d,x

in one direction. Specifically, for increasingly smaller volumes (large ∆d,x), the parameter

Σp decreases after making a peak value for a fixed inertia. Indeed, Février (2000) notes that

there is an optimum value for the largest Σp and this value should be considered to more

precisely characterize the preferential concentration. Therefore, the maximum value out of

all possible Nd,xs is chosen in this study, following the advices of Février (2000).
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Figure 7.16: Representative presentation of evolution of Σp as a function of the number
of elementary volumes (= ∆3

d,x) covering the domain.

From the other part, Σp will also depend on the inertia of the particles as explained in

the introductory paragraph of this section.

The parameter Σp is quantified in all the simulations considering 260000 particles. Results

in one-way coupled and two-way coupled simulations are plotted in figures 7.17 and 7.18 with

comparison to the results of Février (2000). First of all, either in simulations performed in

this thesis or the simulations of Février (2000) put in evidence of more homogeneous particle

distribution when the inertia approaches the limit values. In between, due to the particles’

behavior of following different oscillations of different scales, the concentration increases.

It is remarked a maximum value around St ≈ 0.2 after which particles again forms a

more homogeneous distribution. The values obtained in this thesis around the maximum

St number are slightly higher than the results of Février (2000) which can be attributed to

the low turbulent Reynolds numbers considered in this thesis due to the restrictions of DNS.

Indeed, as observed by Février (2000), increasing turbulent Reynolds numbers decrease the

preferential concentration and it is explained by the small scales losing their effects on the

mechanism of preferential concentration. This argument goes face to face with the longtime

open question of which scales control the preferential concentration.

More related to the two-way coupling mechanism, the figures show that Increasing mass
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Figure 7.17: Preferential concentration measured in one-way coupled flows.
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Figure 7.18: Preferential concentration measured in two-way coupled flows.

loadings φ do not have an indirect effect on the concentration of particles by just to re-

duce their Stokes numbers by reducing the turbulence levels, and therefore increasing T f@p
L .
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Therefore, as also seen in the figures of Tchen-Hinze (figures 7.6), data points move right-

wards by the effect of two-way coupling. It is to be noted that a maximum value of Σp is

also obtained at the same range as in the one-way coupled simulations of Février (2000).

In conclusion, two-way coupling mechanism does not seem to affect the particles’ spatial

concentration in some special way. It only effects throughout the physical effect on the

turbulence levels by reducing the turbulent Reynolds number. This lets think that the

statistical differences observed in q2f@p and q2f are not due to the preferential concentration

and this should be treated more using the transport equation 5.55 for q2f@p.

7.4 Lagrangian stochastic modeling results

In this section, Lagrangian stochastic modeling results are going to be compared to the

results of DNS+DPS reported in the previous and this chapter.

7.4.1 Mean drag model

As largely discussed in chapter 5, the mean model neglects the effect of two-way coupling

on the second order quantities. For homogeneous isotropic stationary turbulence, transport

equation for the fluid-particle covariance qfp results in simple relation:

qfp =

(
1

1 −Af@pτp

)
2q2f@p (7.28)

where Af@p is derived from the Lagrangian correlation function of the fluid velocity along

the particle trajectories as:

Af@p = − 1

T f@p
L

(7.29)

After some algebra, the relation takes the form:

qfp = 2q2f@p

T f@p
L

T f@p
L + τp

= 2q2f@p

1

1 + Stf@p
(7.30)

As seen, the mean drag model results in the same relation as the relation of Tchen-Hinze

7.15. This similarity is coherent with the condition that the models should satisfy the theory

of dispersion of Tchen-Hinze given in section 5.7. The relation 7.30 is plotted (figure 7.19)

again for convenience in order to do comparison with the figures that will follow. Taking

the low Reynolds number effects using the model proposed by Sawford (1991), the results
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seem promising. Therefore the mean drag model is in coherence with the particle dispersion

mechanism explained in previous sections. Then the question is how to calculate the fluid

statistics T f
L and q2f in a practical way in terms of the fluid statistics viewed by the particles.
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Figure 7.19: Tchen-Hinze relation obtained using the mean drag model, relation 7.30

Classical closures in one-way coupled flows for the fluid statistics seen by the particles are

written as:

T f@p
L = T f

L

q2f@p = q2f (7.31)

These closures lead to the classical theory of Tchen-Hinze given by relation 7.13. As

seen on figure 7.20, the classical theory overestimates the ratio qfp/2q
2
f , especially for small

inertia and high mass loading cases which shows that the fluid statistics seen by the fluid

elements and the solid particles are different. Figure 7.21 plot the Tchen-Hinze relation using

the closure q2f@p. The results indicate that the differences between the fluid kinetic energy

seen by the particles and by the fluid elements are significant cause of deviations from the

Tchen-Hinze curve, evidently, the comparison of the figures 7.19, 7.13 and 7.21 shows that

the difference between T f
L and T f@p

L is not that significant because the x coordinate is plotted

on log-scale for all three figures. The next sections will explore the differences between these

statistics and the causes.
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Figure 7.20: Tchen-Hinze relation using the closures 7.31 leading to the classical relation
of Tchen-Hinze 7.13
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Figure 7.21: Fluid-particle covariance model 7.30 using only the closure q2f@p = q2f

To conclude, the modification of q2f@p causes more significant deviation from the theoreti-

cal Tchen-Hinze curve than the modification of T f@p
L . Therefore the transport equation 5.55
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for q2f@p should help improve the modeling approach with both mean and instantaneous drag

models.

7.4.1.1 A practical closure

A practical closure can be derived for the q2f−ǫmodels by plotting the fluid-particle covariance

model 7.30 by taking instead of Lagrangian timescale, more applicable parameter, q2f/ǫ which

represents a characteristic turbulent eddy turnover time. It can be written as:

T f@p
L = λ

q2f
ǫ

q2f@p = q2f (7.32)

These variables are more convenient in terms of modeling for industrial applications be-

cause they are readily present. Tchen-Hinze relation can be rewritten as:

qfp = 2q2f
λ(q2f/ǫ)

λ(q2f/ǫ) + τp
(7.33)

where λ is a constant. In forced homogeneous isotropic turbulence, the λ can be derived as:

λ =
4

3C0
(7.34)

where C0 is the Kolmogorov constant intended to be universal. In section 6.7, it has been

shown that the value of this number measured from DNS+DPS for two-way coupled simu-

lations is not constant, but, dependent on the mass-loading of the particles (see figure 6.25).

In the simulations performed, the range of measured C0 values and corresponding range of

λ are:

C0 = [1.8, 4.0] λ = [0.33, 0.72] (7.35)

The relation 7.33 is plotted in figure 7.22 along with the range of values of λ measured

from the simulations. Empirical value λ = 0.25 seems to predict correctly the evolution of

the covariance as a function of particle inertia. This implies in turn that a value of C0 around

4.0 seems correct so that the model gives good prediction of the covariance. This result is in

coherence with the work of Boivin (1996).
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Figure 7.22: Practical closure 7.33 for qfp. Lines correspond to the values of λ given in
7.35.

7.4.2 Instantaneous drag model

Using the instantaneous drag model written with the help of the mesoscopic approach, the

fluid-particle covariance transport equation results:

qfp = 2
(
q2f@p + φq̃2p

) 1

1 + φ−Af@pτp
(7.36)

where Af@p is derived from the consistence condition of the Langevin model with the La-

grangian correlations and it is written as:

Af@p = − 1

T f@p
L

[
1 + φ

qfp

2q2f@p

]
(7.37)

The model 7.36 includes the dependence on the mass loading φ. For φ = 0, the extension of

the theory of Tchen-Hinze is obtained.

In the relation, mesoscopic particle kinetic energy q̃2p is also to be modeled. Février (2000)

gives a practical model using the DNS simulation results. The model is written as:

q̃2p = q2f@p

(
q2p
q2f@p

)1.5

(7.38)
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In figure 5.12, it has been already remarked that the mesoscopic particle energy q̃2p obeys

the relation 7.38. Using this relation in equation 7.36 along with the relation for Af@p, a

second-order polynomial can be derived for the ratio qfp/2q
2
f@p as:

φx2 − φκx1.5 + (1 + κφ+ κ)x− κ = 0 (7.39)

where x =
qfp

2q2

f@p

and κ =
T f@p

L

τp
.

This equation has not analytical solution therefore it has been solved by numerical meth-

ods using the software MATLAB. The solution is plotted in figure 7.23. In contrast to the

mean model which is in coherence with the theory of Tchen-Hinze, the instantaneous model

shows increasing deviation with increasing mass loading from the curve for φ = 0 what-

ever the inertia of the particles, therefore quantitatively it gives incorrect prediction of the

fluid-particle covariance.

Using the practical closures for the statistics viewed by the particles given in relation 7.32

with λ = 0.25 which works very well in the mean drag model, the resulting relation is plotted

in figure 7.24. The closures for the κ and x in equation 7.39 are written as:

x =
qfp

2q2f@p

κ = λ
q2f/ǫ

τp
(7.40)

As seen the instantaneous model does not take into account the evolution of the fluid-

particle covariance, especially, for increasing mass-loadings. In contrast to the relation 7.36,

quantitatively, it underestimates the ratio qfp/2q
2
f for increasing mass-loadings.

It is clear that the closure of the mesoscopic particle kinetic energy leads to the incorrect

prediction of the fluid-particle covariance. If the fluid-particle covariance qfp is desired to

satisfy the Tchen-Hinze condition, then it is written as:

qfp = 2q2f@p

T f@p
L

T f@p
L + τp

(7.41)

Equating the two expressions (equation 7.36 and equation 7.41 using the relation 7.37 for

Af@p), a relation is obtained for the mesoscopic particle kinetic energy as:

q̃2p
q2f@p

=
q2p
q2f@p

(
2 −

q2p
q2f@p

)
(7.42)

This expression is plotted in figure 7.25 along with the relation 7.38. It is clear that the

relation overpredicts the measurement values which is not physical. Indeed, a quick analysis
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Figure 7.23: Fluid-particle covariance model 7.36 obtained using the instantaneous drag
model and mesoscopic kinetic energy model 7.38.
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Figure 7.24: Fluid-particle covariance model 7.36 using the closures 7.31 with λ = 0.25.

of the figure implies that the mesoscopic particle kinetic energy is always larger than the
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total agitation of the particles:

q̃2p > q2p (7.43)

which is not physical. According to the figure 5.5 where the Eulerian two-point correlations

of the particle velocities are presented, the field of the mesoscopic particle velocity should

satisfy the relation:

q̃2p ≤ q2p (7.44)

for all inertia.
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Figure 7.25: Comparison of the relation 7.42 to the relation in one-way coupled flows
7.38.

As a conclusion, it can be noted that the relation 7.36 can not predict the evolution of the

fluid-particle covariance as a function of the particle inertia and mass-loading. The analysis

of the mesoscopic particle energy given in figure 7.25 shows that for the model to satisfy

the Tchen-Hinze relation (as observed from the DNS+DPS measurements), the mesoscopic

particle energy should be higher than the particle total kinetic energy q2p which is physically

inconsistent.
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7.5 Analysis of fluid-particle turbulent drift velocity

In this section, the fluid-particle turbulent drift velocity contributing to the spatial dispersion

of particles will be studied. As noted in section 7.2.2, for the particle motion in Stokes

regime, the only important mechanisms effecting the dispersion of particles are inertia and

drift. Inertia is already largely discussed in previous sections. This leaves the rest of the

chapter to the work of drift velocity.

It is known that the drift velocity due to an external force such as gravity causes the

famous ’crossing trajectories effect’, first recognized by Yudine (1959) and Csanady (1963).

This effect in turn reduces the particle dispersion. Many works were done on the effect of

the drift velocity on the dispersion of particles, among many, the works of Meek and Jones

(1973), Reeks (1977), Wells and Stock (1983), Maxey (1987), Koch (1989), Pozorski and

Minier (1998) can be cited. Despite these studies, in presence of gravity, the effect of the

drift velocity on the dispersion of particles is still an open question. Therefore in this section,

as before, the gravity will not be considered to simplify the problem. Nevertheless, the results

of this section is important in the sense that the models proposed would be applicable to a

two-way coupled gas-solid flow where the gravity is important.

7.5.1 Methodology

In the configuration used in this thesis, due to the absence of the gravity, the drift velocity

is negligibly small. Therefore, a method should be constructed to obtain a drift velocity

without adding the gravity. The effect of drift can be artificially generated in a configuration

where a group of particles colored differently from the totality of all the other particles.

These two groups of particles can then be distributed non-homogeneously throughout the

domain by controlling the boundary conditions of the particles.

Two groups of particles, red and blue, are introduced to the domain at the non-dimensional

time t = 100 (see the figure 6.2). After the transient regions, the final equilibrium flow field

between the particles and the fluid is shown in figure 7.26 as a 2D cut-section. Indeed, at

the top side of the domain, if a red particle arrives, it is converted to blue, however, if a blue

particle arrives, nothing is performed on the color of particles. The procedure is the same

for the down side of the domain, but, for red particles. At the end, particle number density

gradients ∂nr
p/∂y and ∂nb

p/∂y are obtained where the indices r and b correspond to red and

blue, respectively. Such a gradient is enough to create an artificial drift and mean particle

velocity as seen on figure 7.27. The particle distribution is uniform in z direction.
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7.5.2 Theoretical study

In such a configuration, mean particle number density np is constant. Then it can be written:

np = nr
p + nb

p = constant (7.45)

The continuity equation for the red particles can be written as:

∂nr
p

∂t
+

∂

∂xj
nr

pU
r
p,j = 0 (7.46)

The mean red particle velocity can be written as:

∂nr
pU

r
p,i

∂t
+

∂

∂xj
nr

pU
r
p,iUp,j = − ∂

∂xj
nr

p

〈
u

′

p,iu
′

p,j

〉r

p
−
nr

p

τp
(U r

p,i − Uf,i − V r
d,i) (7.47)

where ur
p,i = ur

p,i−Up,i is the fluctuation velocity of a red particle with reference to the mean

total particle velocity Up,i.

Precise calculation of the drift velocity carries importance in the exact formulation of

the mean particle velocity equation. The mean fluid velocity and the mean total particle

velocities are written as:

Uf,i = 0 (7.48)

Up,i = 0 (7.49)

due to the construction of the flow configuration. The only hypothesis required is then the

assumption for the turbulent dispersion term on the right hand side of the equation 7.47

which, in homogeneous isotropic turbulence, is:

qr2
p = q2p (7.50)

e.g., the agitation of the red particles is equal to the agitation of the total particles. The

hypothesis is well verified in the simulations performed in this thesis, as shown in figure 7.28.

As seen, the agitations are equal up to 5% error for each mass loading and each particle

inertia.

Performing the necessary simplifications on the equation 7.47 for stationary homogeneous

isotropic turbulence, it can be written as:

0 = − ∂

∂xi
nr

p

〈
u

′

p,iu
′

p,i

〉r

p
−
nr

p

τp

(
U r

p,i − V r
d,i

)
(7.51)
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Figure 7.28: Comparison of the particle agitation of the red particles to the total particle
agitation, hypothesis 7.50.

According to this last relation, it is clear that the particle dispersion due to the agitation

is balanced with the transport of the red particles via their mean velocities and the drift

velocity. Red particle flux due to the drift velocity can be written as:

nr
pV

r
d,i = nr

pU
r
p,i +

2

3
τpq

2
p

∂nr
p

∂xi
(7.52)

According to the relation derived, mean particle transport of particles due to the drift

velocity is composed of two contributions; one is the mean flux due to the mean red particle

velocity and particle agitation. In case of inertia tending to zero, the second term tends

to zero and the particle flux due to drift velocity becomes equal the flux due to the mean

velocity.

7.5.3 Modeling of the flux due to the mean red particle motion

As imposed by the relation 7.52, to model the mean red particle flux due to the drift velocity,

the flux due to the mean red particle velocity should be modeled. Hinze (1975) notes that

the general gradient transport model for these fluxes can be written as:

nr
pU

r
p,i = −Dt

p

∂nr
p

∂xi
(7.53)
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where Dt
p is the particle dispersion coefficient which is written, as a recapitulation of particle

dispersion studied in previous sections, as:

Dt
p,ij =

1

2

d

dt
Yij(t) (7.54)

where Yij is the particle displacement tensor in the Lagrangian dispersion theory of Taylor

(1921).

In the section for particle dispersion, it has been seen that the long time particle dispersion

is written in the fluid statistics viewed by the particles as:

Dt
p =

2

3
q2f@pT

f@p
L (7.55)

(see Deutsch and Simonin, 1993). In figure 7.5, it was shown that this relation works well

for the two-way coupled gas-solid flows.

To close the equation 7.52, the flux due to the drift velocity has also to be modeled.

Because the intention is to lay the justification of the mean transport equation for the

particles, turbulent drift velocity, being an unknown, must be modeled in proper physical

bases and its transport equation should help in the purpose. In chapter 5, transport equation

was already derived for Vd using the Langevin equation 5.49 with the proposed models for

the two-way coupling term Π∗
uf@p,i

. The next section talks about the modeling of the drift

fluxes.

7.5.4 Modeling of the flux due to the fluid-particle turbulent drift velocity

For a recapitulation, the drift velocity transport equation derived from the Langevin model

equation is written as:

nr
p

∂V r
d,i

∂t
+ nr

pUp,j

∂V r
d,i

∂xj
= −nr

p

∂
〈
u

′

f@p,iu
′

p,j

〉r

p

∂xj
+ nr

p

∂
〈
u

′

f,iu
′

f,j

〉

∂xj

−
〈
u

′

f@p,iu
′

p,j

〉r

p

∂nr
p

∂xj
− nr

pV
r
d,j

∂Uf,i

∂xj
+ nr

pAf@p,ijV
r
d,j − nr

p

〈
Π∗

uf@p,i

〉
p

−nr
p 〈fui

〉 (7.56)

For homogeneous isotropic stationary turbulent gas-solid flow, many of the terms will be

canceled and the equation takes the form:

0 = −
〈
u

′

f@p,iu
′

p,i

〉r

p

∂nr
p

∂xi
+ nr

pAf@pV
r
d,i − nr

p

〈
Π∗

uf@p,i

〉

p
− nr

p 〈fui
〉 (7.57)
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As noted, the relation is now written only for the red particles for which the finite value of

drift velocity can be measured from the configuration.

7.5.4.1 Mean drag model

Using the mean drag model 5.66, for the two-way coupling term Π∗
uf@p,i

in above equation,

the fluid-particle momentum transfer terms (the last two terms on the right hand side of

equation 5.61) are equal to each other but with an opposite sign. This leaves the relation as:

nr
pV

r
d,i = −Dt

fp

∂nr
p

∂xi
(7.58)

where Dt
fp is called fluid-particle dispersion coefficient written as:

Dt
fp =

1

3
qfpT

f@p
L (7.59)

where qfp is the fluid-particle covariance.

Most important result of this analysis is that according to this modeling, the drift velocity

is not directly effected by the two-way coupling mechanism.

Relation 7.58 is measured term by term from the DNS+DPS measurements. The results

are plotted in figure 7.29. As seen, the mean model results seems to agree with the DNS+DPS

measurements for each mass-loading (not all shown not to complicate the figure) and for all

the particle inertia. This implies that the mean model correctly predicts the flux of particles

due to the turbulent drift velocity in simple configuration. For high mass-loadings and small

inertia particles, some deviations are visible and this is basicly due to the small inertia

particles which are sensitive to the high-frequency oscillations of the turbulence. From the

other part, insufficient particle numbers considered are also in the source of error in the

configuration considered.

7.5.4.2 Instantaneous drag model

Using the instantaneous drag model given by relation 5.87, in the relation 7.57, the two-way

coupling terms do not cancel each other, and the following relation is obtained:

nr
pV

r
d,i =

< u
′

p,iu
′

f@p,i >
r
p

Af@p

∂nr
p

∂xi
+

mp

Af@pρfτp

(〈
ñ

′

pñpũp,i

〉r

p
−
〈
ñ

′

pñpuf@p,i

〉r

p

)
(7.60)
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Figure 7.29: Verification of the relation 7.58 obtained using the mean drag model (mea-
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Inserting the relation 7.37 for Af@p obtained from the Langevin equation by deriving the

Lagrangian correlations, the relation can be rewritten as:

nr
pV

r
d,i = −κDt

fp

∂nr
p

∂xi
− κ

T f@p
L mp

ρfτp

(〈
ñ

′

pñpũp,i

〉r

p
−
〈
ñ

′

pñpuf@p,i

〉r

p

)
(7.61)

where κ is:

κ =
1[

1 + φ
qfp

2q2

f@p

] (7.62)

As can be noted, the flux due to the turbulent drift velocity has a second term which

is unknown a priori. This term derives basically from the substraction of the two-way cou-

pling terms in the Navier-Stokes equation and in the Langevin equation for fluid element

trajectories and represents the spatial segregation of particles due to their low inertia. The

relation 7.61 has to be closed by modeling this term of which direct measurement is difficult

in DNS due to the insufficient particle numbers Np (see the table 6.1 for parametrization of

simulations). Indeed, mesoscopic quantities require high number of particles for the precision

which is pretty costly, especially for the simulations with very high number of particles.

Considering the relation 7.52, there is no choice but the last term in relation 7.61 must
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be proportional to the gradient of the red particle number density with a proportionality

constant as:

κ
T f@p

L mp

ρfτp

(〈
ñ

′

pñpũp,i

〉r

p
−
〈
ñ

′

pñpuf@p,i

〉r

p

)
= Cf

∂nr
p

∂xi
(7.63)

From relations 7.52 and 7.61, then the coefficient Cf can be written as:

Cf =
2

3
q2f@pT

f@p
L − 2

3
q2pτp − κ

1

3
qfpT

f@p
L (7.64)

This coefficient is measured from the DNS experiments and plotted in figure 7.30. First

thing to remark is that the ratio Cf/D
t
fp increases with increasing mass loading reaching

up to values of 50%. The ratio increases with decreasing inertia but the increase is weaker

with reference to the decrease due to mass loading. Especially, the small inertia particles

give slightly higher ratio due to their increased interactions with the turbulent scales. For

inertial particles, they do not respond much of the turbulent scales therefore practically, the

drift velocity is relatively much smaller. Despite these facts, for high mass loadings, the

ratio is significant which means that the second term in relation 7.61 should be modeled.

Intuitively, figure 7.30 is in coherence with the reduction in the turbulent ReL of the flows for

increasing mass-loadings which in turn increases the preferential concentration (segregation)

mechanism, as already noted in section 7.3.5 and seen in figures 7.17 and 7.18. More rigorous

calculation of this term is to measure from the DNS experiments, however, this is very difficult

due to the fact that mesoscopic variables requires high number of particles which surely can

not be satisfied in the work presented here.

To conclude, the instantaneous model in Langevin equation is not in coherence with the

transport equation of particle mean velocity due to the additional terms.

7.6 Conclusion

In this chapter, the measurements of the particle statistics from the DNS+DPS are presented.

Models proposed in chapter 5 are tested against the DNS+DPS measurements in terms of

fluid-particle velocity covariance and turbulent drift velocity. These statistics are significantly

imporant in Eulerian modeling gas-solid flows in terms of particle dispersion.

In the modeling part, it has been shown that the mean drag model predicts well the

evolution of the fluid-particle covariance with the particle inertia. Same set of equations are

obtained as in the case of one-way coupling and this significantly makes the mean model

easy to implement. Instantaneous drag model written with the help of Mesoscopic Eulerian
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Figure 7.30: Behavior of the coefficient Cf measured from DNS to determine the order
of magnitude of Cf with reference to Dt

fp.

Approach results in relations including the mass-loading of the particle phase, therefore,

containing dependency on the two-way coupling mechanism. The results show that the

classical closures help instantaneous drag model to take into account the evolution of the

fluid-particle covariance with the realistic flow variables, q2f and T f
L . However, the classical

closures are in contradiction with the DNS+DPS results due to the observed differences

between the fluid statistics viewed by the particles and fluid elements. It is shown in the

modeling part that the difference in the fluid kinetic energy is much more important than in

the Lagrangian timescale therefore the transport equations derived in chapter 5 should help

improving the modeling approach.

In the last part, the modeling of the particle fluxes due to the fluid-particle turbulent

drift velocity is studied. The transport equations derived from the Langevin models using

the mean model do not contain two-way coupling term therefore an important result (in

coherence with the work of Vermorel et al., 2003) is obtained, e.g., there is no direct effect of

two-way coupling on the drift velocity. Instantaneous drag model results in more complicated

relations. An extra term is derived to the drift flux expression which seems to be of important

order magnitude as the mass-loading increases.





Chapter 8

Conclusion

The principal objective of this thesis was to extend the Lagrangian stochastic approach to

the gas-solid flows where the carrier continuum phase is modified by the perturbations in

the vicinity of the point particles. The basic purpose of the approach is to predict the fluid

statistics encountered by the solid particles and fluid elements. Indeed, velocity of a fluid

element and therefore of the fluid statistics viewed by the particles are modified due to the

existence of particles. This should be represented by an additional term in the trajectorial

equations which were not being considered in the past to treat gas-solid flows due to the

consideration of flows in dilute regimes. It is known, at least in one-way coupled flows,

that the statistics seen by the particles are capable of well predicting the dispersion of solid

particles. Therefore the same approach could hold in two-way coupled flows, as well.

To arrive these aims, first a turbulent flow field was considered with proper statistical

characteristics, e.g., homogeneous isotropic stationary turbulence. Stochastic forcing scheme,

which is already largely used in the turbulence community, was verified to obtain proper

characteristics of which the most important one in this work was the stationarity. In fact,

stationarity allows statistical analyzes easily. It has been observed that stochastic forcing

was very costly, even in parallel environment, therefore different configuration was installed

in which an additional processor performing the inverse FFT and sending the data to the

processors solving the flow velocity was conceived. From the other part, the stochastic forcing

was seen to have a large effect on the large scales of turbulence, in coherence with the past

works, nonetheless the effect on the small scales were absent.

As a possible alternative to the problem of stochastic forcing configuration, the linear

forcing scheme was implemented on the flow field obtained by stochastic forcing. It is known

that this scheme is very fast and very easy to be embedded into a numerical code. Never-

theless, the obtained turbulence characteristics were pretty far from the homogeneity and

183
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isotropy, therefore, this scheme is thought to require further consideration. Especially, the

scheme seems to be poor in the sense of the statistical calculations due to the large oscillations

generated in the consecutive timesteps.

After preparing a turbulent flow field with proper statistics, the Euler-Euler models are

briefly summarized and the advantages of the probabilistic approach of Simonin (1996) were

explained. Indeed, it is known that the Euler-Euler models are not capable of proposing clo-

sures for the particle dispersion quantities; turbulent drift velocity, Vd, and the fluid-particle

covariance, qfp which depend strongly on the fluid statistics viewed by the particles. In

stochastic approach, these quantities are closed using the Lagrangian way which, in coher-

ence with what has been said in the first paragraph, requires to be extended to the two-way

coupled gas-solid flows. The theory of Lagrangian stochastic modeling was studied next. A

methodology was then proposed to obtain the drift and diffusion coefficients in the Langevin

equations. The hypothesis that the Langevin equation for the fluid element trajectory has:

• The same Lagrangian timescale of the fluid elements, T f
L

• The same mean momentum equation (Uf,i)

• The same turbulent kinetic energy (q2f ) transport equation

as the ones derived from the Navier-Stokes equations.

Langevin equation for the gas velocity viewed by the particles was imposed only one

condition which is:

• Theory of Tchen-Hinze on the particle dispersion

which was verified in the DNS+DPS simulations performed. However, the models are not

known a priori, whether they satisfy this condition or not.

The steps to obtain the stochastic equation coefficients were then proposed as:

• Proposition of a model for the two-way coupling terms in Langevin equations which is

consistent with the mean flow transport equation

• Derivation of the Lagrangian correlations of the fluctuating gas velocity and fluid kinetic

energy transport equation

• Determination of the stochastic equation coefficients using the hypotheses
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For the modeling of the two-way coupling term, the problem is that the deterministic and

stochastic terms in the Langevin equation model the low wavenumber and inertial zone of

the kinetic energy spectrum, respectively. However the additional term for two-way coupling

effect is to be properly defined due to the interaction of particles with different scales of

turbulence according to their inertia and mass-loadings which is well observed in DNS+DPS

results of this study. According to these interactions, particles can extract energy from the

turbulent scales and they can inject it to the preferential scales of turbulence. Two models

were then proposed to take into account these effects, namely: mean and instantaneous

drag models. The instantaneous model was seemed to be more adequate for the complex

interactions between the particles and preferential scales of turbulence but the model is more

complicated than the mean model.

After the modeling of the two-way coupling term, a database was constructed out of

the DNS+DPS results of flows with different mass-loading and different particle inertia.

Flow characteristics, especially the fluid phase, were analysed using the one-point and two-

point correlations in order to observe how the flow responds to the variations in the particle

characteristics. The results obtained were in accord with the literature. It has been observed

that the point particles decrease the turbulence level, ReL number, in relation with their

inertia and with their mass-loading, but the dependence on the particle inertia seems to be

weak. The decrease in ReL was basically due to the reduction in the characteristic velocity of

the turbulence because the turbulence is seen to keep its isotropy and homogeneity after it is

coupled with the particles. Large scales’ length did not change after the coupling. In relation

with the reduction in the turbulence levels, larges scales were less rapid therefore increasing

the eddy turnover and Eulerian decorrelation timescales. Analyzing the modifications in

the Lagrangian structure functions, it has been also verified that the methodology proposed

to obtain the stochastic equation coefficients is more proper because it includes to write the

transport equations including all the related phenomena. The classical use of the Kolmogorov

similarity hypothesis to justify the stochastic coefficient is not used in coherence with the

proposition of Pope (2002) which reveals that this term can be highly anisotropic, in contrast

to the Kolmogorov hypothesis, in shear flows.

Using the DNS+DPS results, the statistics concerning the particle phase were exploited

next. Particle dispersion mechanism which includes the agitation and the relaxation time of

particles is verified showing that a particle with high agitation has a small correlation time

and this results in the same rate of dispersion as a particle with low agitation but with a long

correlation time due to its large inertia. Particle dispersion mechanism is further extended to

the fluid statistics viewed by the particles and it has been observed that in two-way coupled

simulations, as in the one-way coupled flows, the theory of Tchen-Hinze is well capable of
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predicting of the fluid-particle covariance as a function of the particle inertia and the mass-

loading. Very significative results obtained in this study are that the fluid statistics viewed

by the fluid elements and the solid particles are different and the difference increase with

the mass-loading. It was direct that the modifications in the Lagrangian timescale T f@p
L

were due to the particles spending more time in the peripheries of the large fluid scales, an

effect known as preferential concentration. This was shown to be due to the reduction in

the turbulence levels which increases all the characteristic timescales and therefore reduces

the particle Stokes number. However, the differences in the fluid turbulent kinetic energy

viewed by the particles and fluid elements is less clear. No strange effect was observed in the

preferential concentration mechanism to explain this difference. As in the one-way coupled

simulations, particles were seen to collect more to the preferential zones in the flow domain as

the Stokes’ number decreases. This statistical difference should then be more studied using

the transport equations derived in the course of this thesis.

Lagrangian modeling results showed that the mean model has more advantageous than

the instantaneous models. This was basically due to its practical use neglecting the effect of

the two-way coupling on the second order statistics such as gas-particle covariance and gas

turbulent kinetic energy. The mean model is in coherence with the Tchen-Hinze theory of

dispersion which is also verified in the simulations. It is to be noted that there is no term in

the Langevin equation to take into account the effect of the stochastic forcing, despite the

corresponding term in Navier-Stokes equations. Therefore it can be said that the drift and

diffusion terms take into account the forcing effect, as well.

Next logical step is to give practical closures for the fluid statistics viewed by the fluid

elements, in terms of the fluid statistics viewed by the particles. For the mean drag model,

the classical closures were seen not to give correct prediction of these statistics, significantly

due to the statistical differences in the fluid kinetic energies viewed by the both phases. An

even more practical model for the Lagrangian timescale viewed by the particles was proposed

for the q2f −ǫ models which can take into account the evolution of the fluid-particle covariance

as a function of the particle inertia and mass-loading. This model seemed to be in coherence

with the measured values of Kolmogorov constants.

Instantaneous model requires more complicated treatment because the transport equa-

tions have additional terms which are to be modeled. At first glance, mesoscopic particle

kinetic energy should be modeled in order to close the prediction of fluid-particle covariance.

Measured values of the mesoscopic energy was seen to lead to incorrect prediction of the

fluid-particle covariance. Surprisingly, the classical closures were seen to correct qualitative

prediction of the fluid-particle covariance whereas the classical closures are shown not to be

valid in DNS+DPS measurements. Therefore, the theory of Tchen-Hinze was imposed on

the model which leads to the unphysical behaviour of the mesoscopic particle energy.



Chapter 7. Conclusion 187

As a final point, both models were tested on a configuration in which the colored particle

gradient is generated where the particles are dispersed due to an artificially generated fluid-

particle turbulent drift velocity. The mean model was seen to predict correctly, even though

there are some errors due to the imprecisions in the calculations, which means that the two-

way coupling has no direct effect on the turbulent drift velocity. The instantaneous model,

on the other hand, does not neglect this effect and adds an additional term to the relation

of particle flux due to the drift velocity which is pretty difficult to measure from DNS+DPS

results. This term is basically due to the preferential segregation of low inertia particles and

requires modeling. A dimensional analysis showed that this term has significant importance

with the increase in mass-loadings due to the reduction in the Reynolds numbers leading to

higher concentration of particles.
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