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 Abstract:  

    The genetic control of tocopherol, phytosterol, percentage of seed protein, oil and fatty acids content in 

a population of recombinant inbred lines (RILs) of sunflower under various conditions are studied 

through QTL analysis using genetic-linkage map based on SSR markers and introducing some important 

tocopherol and phytosterol pathway-related genes, enzymatic antioxidant-related genes, drought-

responsive family genes and Arabidopsis SEC14 homologue genes. Three important candidate genes 

(HPPD, VTE2 and VTE4), which encode enzymes involved in tocopherol biosynthesis, are mapped to 

linkage group 8(LG8) and LG14. One of the most important candidate genes coding for sterol 

methyltransferase II (SMT2) enzyme is anchored to LG17 by CAPS marker. Four SNPs are identified for 

PAT2, Arabidopsis Sec14 homologue gene, between two parents (PAC2 and RHA266). PAT2 is assigned 

to LG2 by CAPS marker. Squalene epoxidase (SQE1) is also assigned to LG15 by InDel marker. Through 

other candidate genes, POD, CAT and GST encoding enzymatic antioxidants are assigned to LG17, LG8 

and LG1, respectively. The major QTL for total tocopherol content on linkage group 8 accounted for 

59.5% of the phenotypic variation (6.TTC.8), which is overlapped with the QTL of total phytosterol 

content (7.TPC.8). Under late-sowing condition, a specific QTL of palmitic acid content on linkage group 

6 (PAC-LS.6) is located between ORS1233 and SSL66_1 markers. Common chromosomic regions are 

observed for percentage of seed oil and stearic acid content on linkage group 10 (PSO-PI.10 and SAC-

WI.10) and 15 (PSO-PI.15 and SAC-LS.15). Overlapping occurs for QTLs of oleic and linoleic acids 

content on linkage groups 10, 11 and 16. Seven QTLs associated with palmitic, stearic, oleic and linoleic 

acids content are identified on linkage group 14. These common QTLs are linked to HPPD homologue, 

HuCL04260C001. QTLs controlling various traits such as days from sowing to flowering, plant height, 

yield and leaf-related traits are also identified under well-, partial-irrigated and late-sowing conditions in a 

population of recombinant inbred lines (RILs). The results do emphasis the importance of the role of 

linkage group 2, 10 and 13 for studied traits. Genomic regions on the linkage group 9 and 12 are 

important for QTLs of leaf-related traits in sunflower. We finally identified AFLP markers and some 

candidate genes linked to seed-quality traits under well-irrigated and water-stressed conditions in gamma-

induced mutants of sunflower. Two mutant lines, M8-826-2-1 and M8-39-2-1, with significant increased 

level of oleic acid can be used in breeding programs because of their high oxidative stability and heart-

healthy properties. The significant increased level of tocopherol in mutant lines, M8-862-1N1 and M8-

641-2-1, is justified by observed polymorphism for tocopherol pathway-related gene; MCT. The most 

important marker for total tocopherol content is E33M50_16 which explains 33.9% of phenotypic 

variance. One of the most important candidate genes involving fatty acid biosynthesis, FAD2 (FAD2-1), 

is linked to oleic and linoleic acids content and explained more than 52% of phenotypic variance. 
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Résumé: 
  Le tocophérol,  le phytostérol, le pourcentage de protéines des graines, l'huile et les teneurs en acides gras ont 

été mesurés dans une population de lignées recombinantes (RILS) de tournesol, cultivées sous conditions de 

sécheresse, irrigation et semis tardif. Une analyse génétique de QTL a été réalisée à partir de ces mesures, en 

utilisant une carte génétique basée sur des marques SSR et avec des gènes candidats (1) impliqués dans la voie 

métabolique de tocophérol et phytostérol, (2) des gènes codant des antioxydants enzymatiques, (3) des gènes 

liés à la sécheresse et (4) des gènes homologues à SEC14 chez Arabidopsis. Trois gènes candidats importants 

(VTE4, VTE2 et HPPD), qui codent pour des enzymes impliquées dans la biosynthèse du tocophérol, ont été 

cartographiés sur les groupes de liaison LG8 et LG14. Quatre SNPs sont identifiés pour PAT2, le gène 

homologue chez Arabidopsis SEC14, entre les deux parents (PAC2 et RHA266) et un SNP, identifié par 

alignement de séquences est converti en marqueur CAPS pour permettre l'analyse génotypique des RIL. Les 

gènes homologues à SFH3, HPPD, CAT et CYP51G1 ont été cartographiés grâce à la mise au point de 

marqueurs dominants, tandis que des marqueurs co-dominants ont permis la cartographie des gènes homologues 

à  SEC14-1, VTE4, DROU1, POD, SEC14-2 et AQUA. Les gènes POD, CAT et GST, codant pour des 

antioxydants enzymatiques, ont également été cartographiés sur les groupes de  liaison 17, 8 et 1, 

respectivement. Le QTL majeur pour la teneur en tocophérol a été identifié sur le groupe de liaison 8, qui 

explique 59,5% de la variation phénotypique (6.TTC.8). Il colocalsie  également  avec le QTL identifié pour la 

teneur en phytostérol (7.TPC.8). Sous condition de semis tardif, un QTL spécifique de la teneur en acide 

palmitique a été identifié sur le groupe de liaison 6 (PAC-LS.6). Il est situé entre les marqueurs ORS1233 et 

SSL66_1. Les QTLs pour le pourcentage d'huile de graines et la teneur en acide stéarique colocalisent sur les 

groupes de liaison 10 (PSO-PI.10 et SAC-WI.10) et 15 (PSO-PI.15 et SAC-LS.15). Sept QTLs associés à teneur 

en acides palmitique, stéarique, oléique et linoléique sont identifiés sur le groupe de liaison 14. Ils sont liés à 

l’homologue du gène HPPD. Par ailleurs, les caractères agronomiques tels que les jours du semis à la floraison, 

la hauteur des plantes, le rendement et la morphologie foliaire ont été étudiés. Des analyses association 

génétique ont permis d’identifier des QTLs intérêts sur les groupes de liaison 2, 10 et 13 pour les caractères 

étudiés, d’autres QTLs identifies sur les groupes de liaison 9 et 12 mettent en avant l'importance de ces régions 

génomiques pour les caractères de  morphologie foliaire. Nous avons finalement identifié des marqueurs AFLP 

et quelques gènes candidats liés aux caractères impliqués dans la qualité des graines sous conditions irriguée et 

stress hydrique chez une population de mutants (M8). Deux lignées mutantes, M8-826-2-1 et M8-39-2-1, 

produisent un niveau significativement élevé d'acide oléique peuvent être utilisées dans les programmes de 

sélection en raison de la haute stabilité à l'oxydation et des propriétés cardiovasculaire apportés par l’acide 

oléique qu’elles produisent. L'augmentation du niveau de tocophérol dans les lignées mutantes, M8-862-1N1 et 

M8-641-2-1, est justifiée par le polymorphisme observé pour le gène, MCT, impliqué dans la voie métabolique 

du tocophérol. Le marqueur le plus important pour le contenu en tocophérol total est E33M50_16 qui explique 

33,9% de la variation phénotypique. Un des gènes candidats les plus importants concernant la biosynthèse des 

acides gras, FAD2 (FAD2-1), est lié à la teneur en acides oléique et linoléique. Il explique plus de 52% de la 

variation phénotypique. 
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                  Abbreviations:  
RILs: recombinant inbred lines 

DSF: days from sowing to flowering 

PH: plant height 

LN: leaf number 

DLN: dried leaf number 

LAF: leaf area at flowering  

LAD: leaf area duration  

HD: head diameter 

HW: head weight  

HN: head number  

TGW: 1000 grain weight  

GYP: grain yield per plant  

BIO: biomass 

PSP: percentage of seed protein  

PSO: percentage of seed oil  

PAC: palmitic acid content  

SAC: stearic acid content  

OAC: oleic acid content 

LAC: linoleic acid content  

TTC: total tocopherol content  

TPC: total phytosterol content  

CG: candidate genes  

HRM: high-resolution melting  

CAPS: cleaved amplified polymorphic sequence    

GG: genetic gain  

CIM: composite interval mapping  
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 1.1 Sunflower  
  

  Sunflower (Helianthus annuus L.) is a member of the family Compositae (Asteraceae). The 

basic chromosome number is n = 17. The genus includes diploid, tetraploid and hexaploid 

species. The closest relatives appear to be Tithonia, Viguiera and Phoebanthus (Heiser et al. 

1969). The common sunflower (H. annuus) is the most important species grown commercially, 

although other species are also cultivated, e.g. H. tuberosus, which is grown for production of 

edible tubers, and several other species grown as ornamentals.  

Sunflower (Helianthus annuus L.) is one of the few crop species that originated in North 

America. It was probably a "camp follower" of several of the western native American tribes 

who domesticated the crop (possibly 1000 BC) and then carried it eastward and southward of 

North America. Sunflower was probably first introduced to Europe through Spain, and spread 

through Europe as a curiosity until it reached Russia where it was readily adapted. The Spanish 

name for sunflower, ‘‘girasol,’’ and the French name ‘‘tournesol’’ literally mean ‘‘turn with the 

sun,’’ a trait exhibited by sunflower until anthesis, after which the capitula (heads) face east. 

Heiser et al. (1969) proposed a species classification of the genus Helianthus including 14 

annual and 36 perennial species from North America (in three sections and seven series) and 17 

species from South America. More recent classifications (Jan and Seiler 2007) have introduced 

some modifications. The new classification brings the number of species to 51, with 14 annual 

and 37 perennial species. 

Sunflower seed oil is the fourth most important vegetable oil in world trade at present. 

Conventional sunflower produces a healthful oil with great consumer acceptance because of 

its high content of monounsaturated and polyunsaturated fatty acids as well as high vitamin E 

content. In recent years, new sunflower oil types for specific applications, mainly in the food 

industry, have been developed through conventional breeding approaches. Unlike other 

oilseed crops such as soybean and canola, commercial sunflower has not been subject to 

transgenic breeding so far. However, sunflower breeders have been very successful in 

attaining a wide diversity of breeding objectives, from developing novel seed oil quality types 

to incorporating genetic resistance to most of the pests and diseases that threaten the crop. 
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1.2 Seed and germination 
 

   A sunflower seed is an ‘Achene’. When dehulled, the edible remainder is called the 

‘sunflower kernel’. The ‘seed coat’ consists of the ovary wall and testa fused together. The 

sunflower’s germination differs from the broad bean and pea because, once the radicle has 

emerged, it is the hypocotyl which elongates. This has the effect of either dragging the 

cotyledons from the fruit wall or carrying the entire fruit above soil. Hypocotyl elongates 

and draws cotyledons from the fruit wall. Often the fruit wall is carried out of the soil with 

the cotyledons. It falls off when the cotyledons expand. All steps of sunflower seed 

germination are illustrated in Fig 1.1.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.1 Sunflower seed germination a) radicle emerges b) hypocotyl elongates and draws  
cotyledons from the fruit wall c) cotyledons are brought above the soil d) cotyledons open 
out, exposing the plumule 
(www.biology-resources.com/documents/plants-seeds-4.doc) 
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1.3 Sunflower seed compositions  
 
  

    1.3.1 Protein  
 

 Sunflower is an important oil seed crop that can also be a valuable source of protein. 

Sunflower meal is a potential source of protein for human consumption owing to its high 

nutritional value and lack of antinutritional factors (Sosulski 1979). The structure and 

functionality of two major protein fractions in sunflower seed are described in detail by 

Gonzàlez-Pérez and Vereijken (2007). 

 
  
 
   .3.2 Fatty acids  

 
 Sunflower seed oil is composed of unsaturated fatty acids (90%); oleic and linoleic acids 

and the rest (10%) containing saturated fatty acids; palmitic and stearic acids (Dorrel and 

Vick, 1997; Pérez-Vich et al., 2002a). 

Biosynthesis of fatty acids is now well understood in sunflower seeds. Palmitic acid can be 

generated by fatty acid synthetase I (FASI) (Cantisán et al., 2000). Stearic acid is formed 

from palmitic acid by fatty acid synthetase II (FACII), which lengthens palmitic acid (16:0) 

by two carbon atoms to produce stearic acid (18:0) (Pleite et al., 2006). Later, stearic acid 

can be either desaturated by ∆9-desaturase (stearoyl-ACP desaturase) which catalyses the 

first desaturation of stearic acid (18:0) to oleic acid (18:1) (Heppard et al., 1996; Lacombe et 

al., 2001; Vega et al., 2004) or hydrolyzed by acyl-ACP thioesterase. Finally, linoleic acid is 

formed from oleic acid by ∆12-desaturase (oleoyl-PC desaturase), which catalyses the 

second desaturation of oleic acid (18:1) to linoleic acid (18:2) (Garcés and Mancha, 1991). 

 

   1.3.3 Tocopherol and phytosterol 
 
    Sunflower contains minor components such as tocopherol and phytosterol with interesting 

properties for human health. Tocopherols are fat-soluble compounds with vitamin E activity. 

In sunflower seed oil, total tocopherol content represents the sum of α, β, γ, and δ tocopherol 

and total phytostertol content is the sum of campesterol, stigmasterol, β-sitosterol, ∆7-

campesterol, ∆5-avenasterol, ∆7-stigmasterol and ∆7-avenasterol (Ayerdi Gotor et al. 2007). 

Forms of tocopherol determined by the number of methyl groups on the chromanol ring (Fig 

1.2). Oilseed crops reveal large variation in the levels of the different tocopherols and total 
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tocopherol content (Marwede et al. 2005). In sunflower seed oil, 96% of total tocopherol is α 

tocopherol whereas in soybean 59% of total tocopherol is γ tocopherol (Kamal-Eldin and 

Andersson 1997). The function of tocopherols in animal systems is generally related to the 

level of α tocopherol activity. Tocopherols have the ability to quench free radicals in cell 

membranes, protecting polyunsaturated fatty acids from damage. An imbalance in the 

production of free radicals and the natural protective system of antioxidants may lead to 

oxidized products, capable of harming tissues  (Food and Nutrition Board and Institute of 

Medicine,  2000). Tissue damage from free radicals is considered to be related to chronic 

diseases such as cardiovascular disease, neurological disorders, cancer, cataracts, in 

flammatory diseases, and age-related macular degeneration (Bramley et al., 2000). In plants, 

it is suggested that the protection of photosynthetic apparatus and polyunsaturated fatty 

acids from oxidative damage caused by reactive oxygen species (ROS) are the main 

photosynthetic and non photosynthetic function of tocopherol, respectively (Trebst et al. 

2002; Velasco et al. 2004; Cela et al. 2009; Semchuk et al. 2009).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

        

1.3.3.1 Tocopherol pathway 
 
   Tocopherol biosynthetic pathway can be divided in to four following steps:  
 

Fig. 1.2 Forms of tocopherol determined by the number of methyl groups 
on the chromanol ring  
(http://en.wikipedia.org/wiki/Tocopherol) 
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                  1.3.3.1.1 Synthesis of homogentisic acid (HGA) 
    
 Homogentisic acid (HGA) contributes to the chromanol head of tocopherol. HGA is the 

common precursor to tocopherols, can originate either via the conversion of chorismate to 

prephenate and then to p-hydroxyphenylpyruvate (HPP) via a bifunctional prephenate 

dehydrogenase in bacteria (Fig 1.3) or via the synthesis and conversion of the intermediates 

arogenate, tyrosine, by the shikimate pathway, and HPP in plants. HPP is then converted to 

HGA by p-hydroxyphenylpyruvate dioxygenase (HPPD) (Fig 1.3) (Norris et al 1998; 

Valentin et al. 2006). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       
 

       1.3.3.1.2 Synthesis of phytylpyrophosphate (PDP) 
   

   Tocopherols are a member of the class of compounds referred to as the isoprenoids. Other 

isoprenoids include carotenoids, gibberellins, terpenes, chlorophyll and abscisic acid. A 

central intermediate in the production of isoprenoids is isopentenyl diphosphate (IPP). 2 

pathways, Cytoplasmic and plastid-based pathways (Fig. 1.4) to generate IPP have been 

reported. Phytyl pyrophosphate (PDP) is an intermediate in the side chain of tocopherol. In 

Fig. 1.3 Synthesis of homogentisic acid (HGA) in bacteria and plants 
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plastid-based pathway or MEP pathway (Fig. 1.4); 4-phosphocytidyl-2C-methyl-D-erythritol 

is converted into 4-diphosphocytidyl-2C-methyl-D-erythritol-2 phosphate by the action of 

the translation product of chB. 4-diphosphocytidyl-2C-methyl-D-erythritol-2 phosphate is 

converted into 2-C-methyl-D-erythritol, 2, 4-cyclophosphate by the translation product of 

ygbB. The latter compound is converted by the translation product of gcpE into (E)-1-(4-

hydroxy-3-methylbut-2-enyl) diphosphate. Subsequently, the translation product of LytB, in 

turn catalyzes the conversion of (E)-1-(4-hydroxy-3-methylbut-2-enyl) diphosphate to 

isopentenyl diphosphate. Geranylgeranyl diphosphate (GGDP) is synthdized from 

isopentenyl diphosphate by geranylgeranyl diphosphate synthase1. PDP can be generated 

either from GGDP directly by geranylgeranyl diphosphate reductase (GGDR) or phytol and 

ATP by a phytol kinase (VTE5) present in chloroplast stroma (Fig. 1.5) (Valentin et al. 

2006). 

 

 

 

 

Cytoplasmic-based pathway 

Isopentenyl diphosphate 
(C5H12O7P2) 

Fig. 1.4 Isopentenyl diphosphate (IPP) pathways 
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           1.3.3.1.3 Joining of HGA and PDP 
 

  2-Methyl-6-phytyl-1,4-benzoquinol (MPBQ) is formed after the condensation of HGA and 

PDP by homogenitisate phytyltransferase (VTE2). MPBQ can be either cyclized by 

tocopherol cyclase (VTE1) to form δ tocopherol or methylated by VTE3 to form 2, 3-

Dimethyl-5-phytyl-1, 4- benzoquinol (DMPBQ) (Fig. 1.6) (Porfirova et al. 2002; Shintani et 

geranylgeranyl diphosphate synthase1 

Geranylgeranyl diphosphate(GGDP) 
              (C20H36O7P2) 

Isopentenyl diphosphate (IPP) 

geranylgeranyl diphosphate 
reductase (GGDR) 

Phytylpyrophosphate (PDP) 
(C20H42O7P2) 

Fig. 1.5 Synthesis of Phytyl pyrophosphate (PDP) 



 20

al. 2002; Collakova and DellaPenna 2003; Semchuk et al. 2009). DMPBQ can be cyclized 

by VTE1 to form γ tocopherol (Sattler et al. 2003). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
               

Fig. 1.6 Condensation of homogentisic acid (HGA) and phytylpyrophosphate (PDP) 
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           1.3.3.1.4 Methylation of an aromatic ring 
 

  α-tocopherol can be generated by methylation of γ-tocopherol via γ-tocopherol methyl-

transferase (VTE4) (D'Harlingue and Camara 1985). β-tocopherol is formed from δ-

tocopherol by methylation of the 5 position by VTE4 (Fig. 1.6). Also β-tocopherol can be 

directly converted to α-tocopherol by tMT2 via the methylation of the 3 position (Norris et 

al. 2004). 

1.4 Molecular map of sunflower 
 

   Sunflower, as one of the most important dicot crops, has been studied for construction of 

molecular genetic map. The first map of sunflower was reported by Gentzbittel et al. (1995) 

and Berry et al. (1995), using RFLPs markers. Gentzbittel et al. (1999) presented an updated 

version of the above-mentioned map, using more RFLPs markers. Two other maps were also 

published, using RFLPs (Jan et al. 1998) and RFLPs and AFLPs (Gedil et al. 2001). 

Molecular genetic-linkage map based on 459 SSRs, has been constructed by Tang et al. 

(2002), which is the first reference map of sunflower based on single- or low-copy public 

SSR markers. Genetic map of our department (Poormohammad Kiani et al. 2007) contains 

304 AFLP and 191 SSR markers with the total length of 1824.6 cM and a mean density of 

one locus every 3.68 cM. 

 

1.5 Objectives  
 

The objectives of this research are:  

- To map some important tocopherol and phytosterol pathway-related genes, enzymatic 

antioxidant-related genes, drought-responsive family genes and Arabidopsis Sec14 

homologue genes,  

- To identify chromosomal regions associated with quantitative variation of tocopherol, 

phytosterol, protein, oil and fatty acid compositions under several environments and 

conditions and to validate the extent to which these candidate genes affect quantitative 

phenotypic variability for the studied traits in sunflower grains. 

- to map QTLs for leaf-related traits such as dried leaf number (DLN), leaf number (LN), 

leaf area at flowering (LAF) and leaf area duration (LAD), yield-related traits such as head 

diameter (HD), head weight (HW), 1000 grain weight (TGW), grain yield per plant (GYP), 

biomass (BIO) and other traits such as days from sowing to flowering (DSF) and plant 
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height (PH)  in recombinant inbred lines by using saturated SSR and AFLP linkage map of 

our department (Poormohammad Kiani et al. 2007a), in the field with well-,  partial-

irrigated and late-sowing conditions   

- To assess the genetic variability and to identify AFLP markers and polymorphic 

candidate genes associated with seed-quality traits under well-irrigated and water-stressed 

conditions in gamma-induced mutants of sunflower. 
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Chapter 2 
 

Materials and methods 
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  2.1 Plant materials 
      
  2.1.1 Population of recombinant inbred lines (RILs) 
 

  The recombinant inbred lines (RILs) used in this research have been developed through 

single seed descent from F2 plants, derived from a cross between PAC2 and RHA266 

(Flores Berrios et al. 2000). Both parental lines are sunflower public inbred lines. RHA266 

has been obtained from a cross between wild H. annuus and Peredovik by USDA and PAC2 

is an INRA-France inbred line from a cross between H. petiolaris and ‘HA61’ (Gentzbittel 

et al. 1995). 

    

      2.1.2 Population of mutants (M8) 
 

  The sunflower restorer inbred line ‘AS613’ has been produced in our laboratory from a 

cross between two genotypes (‘ENSAT-125’ and ‘ENSAT-704’) through a single-seed 

descent (SSD) programme (Sarrafi et al. 2000). The seeds of ‘AS613’ were exposed to 

gamma rays at the Atomic Energy Center (Cadarache, France) with a dose of 75 Grays. 

Mutants population have been developed through modified SSD method (Sarrafi et al. 

2000). Regarding to morpho-physiological studies, among a population of about 2000 

gamma-induced mutants of sunflower, 23 M8 mutants were selected for quantitative 

analysis. 

 

2.2 Experimental conditions 
 

       2.2.1 Experimental conditions for RILs 
 

  Three independent experiments were undertaken at Teheran University campus of Karaj. 

Experimental design was a randomized complete block with three replications. Seeds of 89 

RILs and their two parents were sown in the field under well-, partial-irrigated and late-

sowing conditions. Each genotype per replication consisted of one row, 4m long, 50cm 

between rows and 25cm between plants in rows. The distance between the replications of 

well-irrigated and partial-irrigated treatments was 7m. The so-called ‘well-irrigated’ 

condition plots were irrigated once every week, whereas for the second condition (partial-
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irrigated), irrigation was controlled and adjusted by the observation of wilting threshold of 

the leaves. Partial water deficit was started 45 day after sowing at the near flower bud 

formation stage and continued up to maturity. The sowing dates were: normal sowing on 

May and late sowing on July.   

       

      2.2.2 Experimental conditions for mutants 
 

   Two independent experiments were undertaken in randomized complete block design with 

three replications. Seeds of mutants and original line (AS613) were sown in the field under 

well-irrigated and water-stressed conditions. Each genotype per replication consisted of one 

row, 4m long, 50 cm between rows and 25 cm between plants in rows. The distance between 

replications of well-irrigated and water-stressed treatments was 7m. The so-called ‘well-

irrigated’ condition plots were irrigated once every week, whereas for the second condition 

(water-stressed), water deficit was started 45 days after sowing at the stage near flower bud 

formation and continued up to maturity.    

 

2.3 Trait measurements 
 

      2.3.1 Morpho-physiological traits (Fig. 2.2) 
 

 DSF (days from sowing to flowering) and PH (plant height) were measured for RILs and 

their parental lines at the plot scale (on the line, when 50% of the plants were at the 

flowering stage). Leaf-related traits such as LN (leaf number), DLN (dried leaf number), 

were recorded at anthesis, and leaf length (L) and width (W) of all green leaves were 

measured at flowering stage, and total leaf area at flowering (LAF) was calculated with the 

formula: LAF= 0.7L×W (Alza and  Fernandez-Martinez 1997). Green leaf area of the plants 

was determined weekly from flowering to harvest in order to evaluate green leaf area with 

respect to time. An integral of weekly leaf area was considered as being an estimate of leaf 

area duration (LAD, m2 days). At harvest, yield components such as HD (head diameter), 

HW (head weight), HGW (100 grain weight), GYP (grain yield per plant) and BIO 

(biomass) were measured. HN (head number) was also measured when 50% of the plants 

were at the anthesis. Three plants per genotype per condition per replication were randomly 

chosen for evaluation of the mentioned traits. 
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     2.3.2 Seed-quality traits (Fig. 2.2) 
 

 Percentage of seed protein (PSP), percentage of seed oil (PSO), palmitic acid content 

(PAC), stearic acid content (SAC), oleic acid content (OAC), linoleic acid content (LAC), 

total tocopherol content (TTC) and total phytosterol content (TPC) were measured by the 

FOSS NIRSystems 6500. Forty grams of sunflower seeds per genotype per condition per 

replication were ground in a Knifetec 1095 Sample Mill (1975, FOSS, Tecato, Hoganas, 

Sweden) three times for 10 s each. A FOSS NIRSystems 6500 spectrophotometer (Foss 

Analytical, Denmark) was used to collect spectra from the ground sunflower seeds using a 

small round cup with a quartz window. The reflectance (R) of each sample was measured as 

log of 1/R from 400 to 2500 nm at 2 nm intervals. Eight hundred sixty and 660 spectra 

database were used for tocopherol and phytosterol prediction, respectively. The absorption 

maximum around 1700-1800 and 2300-2400 nm were due to oil and fatty acid content. The 

area near to 2180 nm was related to protein content.  

 

 

 

 

 

 

 

 

 

 

 

 

 

1-Forty grams of sunflower seeds 
were ground in a Knifetec 1095 
Sample Mill (1975, FOSS, 
Tecato, Hoganas, Sweden) three 
times for 10s each. 

2-Transferred to small round 
cup with a quartz window 

3- A FOSS NIRSystems 6500 
spectrophotometer (Foss Analytical, 
Denmark) was used to collect spectra 
from the ground sunflower seeds 
using a small round cup with a quartz 
window. 

Fig. 2.1 Near-infrared spectrum of sunflower ground 
seed from 400 to 2500 nm expressed as log 
(1/Reflectance) 
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      2.3.2 .1 Solvent extraction of lipids 

 The extraction of the total oil content was performed by hexane (n-hexane, Prolabo/Subra, 

Toulouse, France) extraction using an accelerated solvent extractor apparatus (ASE 200, 

Dionex, France) with an isopropanol/hexane mixture (5:95 v/v) during 20 min. Then, the 

solvent was removed from the extracts under low pressure evaporation (Rotavapor, Bioblock 

Scientific HS 40 HUBER, Heildorph, Germany). Lipid extracts were weighed and 

tocopherol content was analyzed. 

 

     2.3.2.2 Tocopherol determination 
 

  Total tocopherol for some samples was achieved using a high-performance liquid 

chromatography  (HPLC) (SpectraPhysics, Thermo Separation Products, USA) with a 

normal-phase LiChrosorb Si60 column, 250cm x 4mm x 5µm (CIL, Cluzeau, France) (ISO 

9936, 1997). The mobile phase was a mixture of hexane/isopropanol (99.7:0.3 v/v) at 

1mL/min flow rate. One gram of oil sample was diluted in 25 mL of hexane and 20µl was 

injected into the HPLC. Detection was performed with fluorescence detector (excitation 

wavelength = 298 nm and emission wavelength=344nm: Waters 2475 multi λ). Total 

tocopherol content was calculated as the sum of α, β, γ, and δ-tocopherol contents and 

expressed in mg kg-1 oil.   

 
      2.3.2.3 NIRS calibration  

Prediction equations were calculated with a modified partial least-squares regression 

(MPLS) model after 4 outlier elimination passes (WINISI 1.02 - Infrasoft International 

LLC). With the MPLS regression method, factors are extracted in decreasing order of 

reliance measured by covariance with the response variable. To prevent overfitting in 

calibration, the number of factors is optimized by cross-validation in calibration set. 

Previous mathematical treatment was applied on each spectrum: a standard normal variate 

and detrend (SNV/detrend) scatter correction, a first-derivative transformation, and a 

smoothing on four data points. The equation with the highest coefficient of determination 

(R²) and the lowest standard error (SE) of the calibration was used to predict the tocopherol 

and the phytosterol values of the validation set. 

The performance of this NIRS model, for the estimation of tocopherols and phytosterols, 

was determined by the following parameters: the standard error of calibration (SEC), the 

coefficient of determination in calibration (RSQ), the standard error of cross-validation 

(SECV), the coefficient of determination of cross-validation (1–VR) and the standard error 
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of prediction (SEP). Near infrared reflectance (NIR) spectroscopy, has been successfully 

used as an alternative technique to classical methods in due to determine multiple 

parameters such as proteins, oil content, fatty acid compositions (Pérez-Vich et al., 1998; 

Velasco & Becker, 1998; Biskupek-Korell & Moschner, 2007; Ebrahimi et al., 2008; 

Ebrahimi et al., 2009). In previous study in our laboratory,a relatively good correlation 

between NIRS results and HPLC and GC method for total tocopherol (R2 = 0.64) (Ayerdi 

Gotor et al., 2007) and total phytosterol content (R2 = 0.61) (Ayerdi Gotor et al., 2008; 

Calmon et al. 2009) were observed. We have obtained a very good correlation between the 

HPLC analysis and the NIRS predictions (R² = 0.76).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Fig. 2.2 All studied traits  



 29

2.4 Molecular analysis 
 

    2.4.1 DNA Extraction and PCR program 
 

 The genomic DNA of PAC2, RHA266, RILs, original and mutant lines  were isolated and 

DNA quantification was performed by picogreen (protocole is included in appendix). The 

PCR program was: 4 min at 94 °C followed by 35 cycles; 30 s at 94 °C, 30 s at (55 °C or  58 

°C), 1 min at 72 °C and at last, 5 min at 72 °C. 

              2.4.2 AFLP genotyping   

 
 Different MseI/EcoRI primer combinations were used for AFLP genotyping. The AFLP 

procedure was conducted as described by Rachid Al-Chaarani et al. (2004). 

         2.4.3 Candidate Genes (CGs)    

 
 Some important tocopherol pathway-related genes, phosphoglyceride transfer-related genes, 

enzymatic antioxidant-related genes, drought-responsive genes and fatty acid biosynthesis-

related genes were studied.   Respective sequence data for candidate genes coding for these 

proteins were obtained from The Arabidopsis Information Resource (www.arabidopsis.org). 

In order to seek the helianthus homolog sequences to the Arabidopsis genes, we used the 

Compositae EST assembly clusters, available at the Helianthus-devoted bioinformatics portal 

Heliagene (www.heliagene.org). The Helianthus EST clusters presenting the reciprocal blast 

with the highest score and lowest E value with regarding to the original Arabidopsis genes 

were chosen for our studies. All primers were designed by MATLAB. Between 2 to 4 various 

primer combinations per each candidate gene were tested on agarose gel. After sequencing; 

SNP-PHAGE, through the website at http://www.heliagene.org/, was applied for analyzing 

sequence traces from both parents to identify SNPs. Genotyping was done by SNP-based 

CAPS marker and high resolution melting (HRM) as well as directly on agarose gel.  

 

   2.4.4 High-Resolution Melting (HRM)   
 

  HRM was performed in capillaries of a Light Cycler® 480 Real-Time (Roche Applied 

Science) with the cycling program consisting of 5 min of initial denaturation at 95 °C and 60 

cycles of 15 s at 95 °C, 15 s at 58 °C and 20 s at 72 °C. Melting curves were generated by 

ramping from 70 to 95 °C at 0.02 °C/s. The gene scanning module in the LightCycler® 480 
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software was used to normalize raw melting curve data by setting pre-melt and post-melt 

signals of all RILs and parental lines to uniform values and then to modify the normalized 

curves across a temperature axis as well as to plot the melting curve differences between 

them.  

 2.4.5 Cleaved Amplified Polymorphic Sequence (CAPS) marker  
 

   SNPs between PAC2 and RHA266 for sterol C-methyltransferase (SMT2), delta24-sterol 

reductase (DWF1) and patellin2 (PAT2), Arabidopsis Sec14 homologue gene, were identified 

through multiple sequence alignments using SNP-PHAGE. Then they were converted to 

CAPS marker to allow genotyping of RILs via www.biophp.org/minitools/restriction_digest/demo.php  

and http://helix.wustl.edu/dcaps/dcaps.html (alll sequences are included in appendix). The 

following protocol was used for DNA digestion: sterile and deionized water 6.8µl, RE 10X 

buffer 1 µl, PCR-product 2 µl and restriction endonuclease (10 u/µl) 0.2 µl. Incubation at 37 

°C for 2 hours was performed (Promega-usage information). All samples were incubated at 65 

°C for 10 min to deactivate restriction enzyme.  

 

 2.5 Statistical analysis 

        
   2.5.1 Statistical analysis for RILs  
 

  Data were analyzed using SAS PROC GLM (SAS Institute Inc. 1996) and SPSS. Statistical 

analysis was carried out in order to determine the main effect of RILs for the studied traits. 

The mean of RILs and that of their parents were compared for both traits. Genetic gain (GGB) 

when the best RIL is compared with the best parent and genetic gain (GG10%) when the 

mean of the top 10% selected RILs is compared with the mean of the parents, were 

determined for the studied traits. Additive and environmental variances as well as narrow-

sense heritability were calculated according to Kearsey and Pooni (1996), using least-square 

estimates of genetic parameters. 

        2.5.2 Statistical analysis for mutants  

   The data were analyzed using SPSS. Correlations among traits in each of condition were 

determined. The association between AFLP markers and candidate genes with the quantitative 

traits was estimated through stepwise multiple regression analysis, where each quantitative 

trait was considered as an dependent variable while AFLP markers and candidate genes were 

treated as an independent variable. To select independent variables for the regression 
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equation, F-values with 0.045 and 0.099 probability were used to enter and remove, 

respectively.       

 

2.6 QTL and map construction 
 

  Some of the studied candidate genes were introduced in our map (Poormohammad Kiani et 

al. 2007) based on SSR markers using CarthaGene 0.999 (Schiex and Gaspin 1997). Chi-

square-tests were performed for segregation distortion of each locus. Loci were assembled 

into groups using likelihood odds (LOD) ratios, with a LOD threshold of 4.0 and a maximum 

recombination frequency threshold of 0.35. Multiple locus order estimates were performed for 

each linkage group. The likelihoods of different locus orders were compared and the locus-

order estimate with the highest likelihood was selected for each linkage group. The Kosambi 

mapping function was used to calculate map distances (cM) from recombination frequencies. 

Mapchart 2.1 was used for graphical presentation of linkage groups and map position of the 

studied candidate genes. The chromosomal locations of QTLs for the studied traits were 

resolved by composite interval mapping (CIM), using Win QTL Cartographer, version 2.5 

(Wang et al. 2005) with the mean values of three replications for each RIL in each condition. 

The genome was scanned at 2-cM intervals; with a window size of 15 cM. Up to 15 

background markers were used as cofactors in the CIM analysis with the programme module 

Srmapqtl (model 6). Additive effects of the detected QTLs were estimated with the Zmapqtl 

program. The percentage of phenotypic variance (R2) explained by each QTL was estimated 

by Win QTL Cartographer.   
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 Abstract   
  Sunflower contains tocopherol, non-enzymatic antioxidant known as lipid-soluble vitamin 

E, and phytosterol with interesting properties, which can result in decreased risk for chronic 

diseases in human and with several beneficial effects in plants. The genetic control of 

tocopherol and phytosterol content in a population of recombinant inbred lines (RILs) of 

sunflower under several environments and conditions is studied through quantitative trait 

loci analysis (QTL) using genetic-linkage map based on SSR markers and introducing some 

important tocopherol and phytosterol pathway-related genes, enzymatic antioxidant-related 

genes, drought-responsive family genes and Arabidopsis Sec14 homologue genes. Three 

important candidate genes (HPPD, VTE2 and VTE4), which encode enzymes involved in 

tocopherol biosynthesis, are mapped to linkage group 8(LG8) and LG14. One of the most 

important candidate genes coding for sterol methyltransferase II (SMT2) enzyme is 

anchored to LG17 by CAPS marker. Four SNPs are identified for PAT2, Arabidopsis Sec14 

homologue gene, between two parents. PAT2 is assigned to LG2 by CAPS marker. Squalene 

epoxidase (SQE1) is also assigned to LG15 by InDel marker. Through other candidate 

genes, POD, CAT and GST encoding enzymatic antioxidants are assigned to LG17, LG8 and 

LG1, respectively. One to 6 QTLs are identified, depending on the trait and environments. 

The major QTL for total phytosterol content on linkage group 8 accounted for 55.1% of the 

phenotypic variation, which is overlapped with the QTL of total tocopherol content. GST, 

POD, SMT2 and SEC14-2 genes showed co-localization with QTL for phytosterol content. 

Two candidate genes, HPPD and SFH3, exhibited co-localization with QTL for tocopherol 

content (7.TTC.14, 6.TTC.14, 7.TTC.16, 5.TTC.16). The candidate genes associated with 

tocopherol and phytosterol, especially HPPD and SMT2, could be precisely used for 

alternation of the tocopherol and phytosterol content of sunflower seeds by development of 

functional markers. 

 

Key words: Tocopherol, Phytosterol, QTL, candidate gene, Sunflower 

 

Abbreviation: RIL, recombinant inbred line; SSR, simple sequence repeats; CG, candidate 
gene; SNP, single-nucleotide polymorphism; CAPS, cleaved amplified polymorphic 
sequence; InDel, insertion/deletion; HRM, high-resolution melting; NIRS, near-infrared 
reflectance spectrometry; HPLC, high-performance liquid chromatography; TTC, total 
tocopherol content; TPC, total phytosterol content; CIM, composite interval mapping; 
QTL, quantitative trait locus. 
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3.1. Introduction  
  Sunflower contains minor components such as tocopherol and phytosterol with interesting 

properties for human health. Phytosterols are products of the isoprenoid biosynthetic 

pathway naturally present in plants and occurring exclusively in the cytoplasm. Phytosterols 

are present in different plant parts and mostly in seeds. Their level depends on species and 

sunflower seeds contain a quite high concentration (Mouloungui et al., 2006). The role of 

phytosterols in plant growth and developmental processes like cell division, polarity and 

morphogenesis (Lindsey et al. 2003; Schaller 2004), embryogenesis (Clouse, 2000), 

membrane fluidity and permeability (Schaller 2003), as anti-inflammatory (Bouic, 2001) and 

as anti-oxidation activities (Van Rensburget et al., 2000) has been also well known. In 

sunflower seed oil, total phytostertol content represents the sum of campesterol, 

stigmasterol, β-sitosterol, ∆7-campesterol, ∆5-avenasterol, ∆7-stigmasterol and ∆7-

avenasterol (Ayerdi Gotor et al. 2007). Tocopherol (α, β, γ, and δ-tocopherol) belongs to the 

Vi tamin E class of lipid soluble antioxidants that are essential for human nutrition. The 

function of tocopherol in human and animal systems is generally related to the level of α-

tocopherol activity. Alpha-tocopherol has a maximum vitamin E activity (Kamal-Eldin and 

Appelqvist 1996). Oilseed crops reveal large variation in the levels of the different 

tocopherols and total tocopherol content (Marwede et al. 2005). Among oil seed crops 

sunflower grains mainly contain α tocopherol, which accounts for more than 95% of the 

total tocopherols, whereas in soybean 59% of total tocopherol is γ tocopherol (Kamal-Eldin 

and Andersson 1997). In plants, it is suggested that the protection of photosynthetic 

apparatus and polyunsaturated fatty acids from oxidative damage caused by reactive oxygen 

species (ROS) are the main photosynthetic and non photosynthetic function of tocopherol, 

respectively (Trebst et al. 2002; Velasco et al. 2004; Cela et al. 2009; Semchuk et al. 2009). 

Epidemiological evidence indicates that tocopherol and phytosterol supplementation can 

result in decreased risk for chronic diseases such as cardiovascular disease, cancer, 

neurological disorders, cataracts, and age-related macular degeneration (Bramley et al. 

2000) and reduction of cholesterol levels in blood (Ostlund 2002). The amount of α 

tocopherol in sunflower seed can be controlled by 3 loci; Tph1 (m), Tph2 (g) and d 

(Demurin 1993; Hass et al. 2006; Tang et al. 2006). The epistasy between Tph1 and d loci 

are reported by Tang et al. (2006) .The level of β tocopherol is increased by d locus in 

mutant inbred lines (m m). The level of γ tocopherol is increased by g locus in mutant inbred 

lines (g g) as a result of knockout of γ tocopherol methyl transferase (Hass et al. 2006). The 
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d locus is mapped to linkage group 4 and the Tph2 locus is placed in linkage group 8 

between ORS312 and ORS599 makers (Hass et al. 2006). The co-segregation of Tph1 with 

SSR markers ORS1093, ORS222 and ORS598 is observed (Vera-Ruiz et al. 2006) . 2-

methyl-6-phytyl-1,4-benzoquinone/2-methyl-6-solanyl-1,4-benzoquinone 

methyltransferase (MPBQ/ MSBQ-MT) paralogs from sunflower (MT1 and MT2) are 

isolated and sequenced (Tang et al. 2006). InDel markers are developed for MT1 and MT2 

and the MT1 Locus is assigned to linkage group 1 (Tang et al. 2002; Tang et al. 2003).  

 Sunflower has been considered for construction of molecular map. The first map of 

sunflower was reported by Gentzbittel et al. (1995) and Berry et al. (1995), using RFLPs 

markers. Gentzbittel et al. (1999) presented an updated version of the above-mentioned map, 

using more RFLPs markers. Two other maps were also published, using RFLPs (Jan et al. 

1998) and RFLPs and AFLPs (Gedil et al. 2001). Genetic-linkage map based on 459 SSR, 

has been also constructed (Tang et al. 2002), which is the first reference map of sunflower 

based on single- or low-copy public SSR markers. Genetic map of our department 

(Poormohammad Kiani et al. 2007) contains 304 AFLP and 191 SSR markers with the total 

length of 1824.6 cM and a mean density of one locus every 3.7 cM. Identification of 

chromosomal regions with effects on tocopherol and phytosterol would increase our 

understanding of the genetic control of these traits. As far as we know QTLs controlling 

total tocopherol content in sunflower have not been reported in the literature. One QTL for 

total sterols was identified on linkage group one that explained 14.3 % of the total variability 

(Alignan et al. 2008). QTLs associated with tocopherol in maize and winter oilseed rape are 

detected (Wong et al. 2003; Marwede et al. 2005). One to five QTLs are identified for α, γ 

and total tocopherol content and α/β tocopherol ratio in winter oilseed rape (Marwede et al. 

2005). Thirty-one QTLs associated with tocopherol content and its compositions were 

identified by composite interval mapping (CIM) in RILs of maize (Chander et al. 2008). 

These QTLs are mapped on sixteen linkage groups except linkage group4. Eight QTLs were 

identified for total tocopherol. On LG5, the QTL of total tocopherol was linked to HPPD 

gene and explained 7.13% of phenotypic variance (Chander et al. 2008). Three QTLs 

controlling total phytosterol content are identified on LG8, 13, 18 in a population consisted 

of 148 DH lines of rapeseed and explained 60% of phenotypic variance (Amar et al. 2008). 

The objectives of this research are to map some important tocopherol and phytosterol 

pathway-related genes, enzymatic antioxidant-related genes, drought-responsive family 

genes and Arabidopsis Sec14 homologue genes, to identify chromosomal regions associated 

with quantitative variation of tocopherol and phytosterol content under several environments 
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and conditions and to validate the extent to which these candidate genes affect quantitative 

phenotypic variability for tocopherol or phytosterol content in sunflower grains.  

 

3.2. Materials and methods  

 

   3. 2.1 Plant materials and experimental conditions 
  The recombinant inbred lines (RILs) used in this research have been developed through 

single seed descent from F2 plants, derived from a cross between PAC2 and RHA266 

(Flores Berrios et al. 2000). Both parental lines are sunflower public inbred lines. RHA266 

has been obtained from a cross between wild H. annuus and Peredovik by USDA and PAC2 

is an INRA-France inbred line from a cross between H. petiolaris and ‘HA61’ (Gentzbittel 

et al. 1995).  

 

    3.2.1.1 First year - France-Toulouse  

 

     3.2.1.1a Greenhouse experiment- Seventy-two RILs and their parents (PAC2 and 

RHA266) were grown in a greenhouse in plastic pots containing a mixture of 40% soil, 40% 

compost, and 20% sand. Temperature was controlled at 25/18 ± 2°C (day/night), relative 

humidity was 65/85 ± 5%, and light was provided to obtain a 16h light period. The 

experiment consisted of a split-plot design with three blocks and one plant per genotype per 

water treatment per block. The main plot was water treatment (well-watered and water-

stressed) and subplot was genotype (RILs and their parents). The RILs and their parents 

were randomized within each treatment–block combination. To simulate water-deficit 

conditions similar to the field, a progressive water stress was imposed at the stage near 

flower bud formation (R1; Schneiter and Miller 1981) by progressively decreasing the 

irrigation to 30% of field capacity during 12 days. Water-stressed plants were then irrigated 

at 30% of field capacity until harvest. Well-watered plants received sufficient water to 

maintain soil water content close to field capacity. Both well-watered and water-stressed 

plants were weighed to maintain the desired soil water content. Midday leaf water potential 

of the youngest fully expanded leaf was about –1.8 MPa in water-stressed plants, 

corresponding to a severe water stress (Maury et al. 1996). According to Tezara et al. 

(2002), field water capacity of about 60% is considered as mild stress and 33% is considered 

as severe stress in sunflower. 
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     3.2.1.1b Field experiment- Ninety-nine RILs and their parents (PAC2 and RHA266) 

were grown in the field under both well-irrigated and non-irrigated (rainfall) treatments. In 

each water treatment, 3 replications were designed and each replication consisted of 2 rows, 

each 4.6 m long, with 50 cm between rows and 25 cm between plants in a row. Thirty-two 

plants were obtained per plot. Plants in the well- irrigated treatment were watered two times, 

at two critical stages: before flowering and during grain filling (determined according to the 

sunflower irrigation programme in the Toulouse region, France). Plants in the water-stress 

(rainfall) treatment were not irrigated at all. Four plants per genotype per water treatment per 

replication were randomly chosen for our studies. 

 

  3.2.1.2 Second year- Iran-Karaj  

Three independent experiments were undertaken at Teheran University campus of Karaj. 

Experimental design was a randomized complete block with three replications. Seeds of 89 

RILs and their two parents (PAC2 and RHA266) were sown in the field under well-, partial-

irrigated and late-sowing conditions. Each genotype per replication consisted of one row, 4m 

long, 50cm between rows and 25cm between plants in rows. The distance between the 

replications of well-irrigated and partial-irrigated treatments was 7m. The so-called ‘well-

irrigated’ condition plots were irrigated once every week, whereas for the second condition 

(partial-irrigated), plots were irrigated once every two weeks. Partial water deficit was 

started 45 day after sowing at the near flower bud formation stage and continued up to 

maturity. The sowing dates were: normal sowing on May and late sowing on July.    

 

   3.2.2 Trait measurements  
 

      3. 2.2.1 Tocopherol measurement  

Pre-measurements for total tocopherol content (TTC) were carried out by both FOSS 

NIRSystems 6500 and reference method (HPLC, ISO 9936, 1997) for core collection. Forty 

grams of sunflower seeds were ground in a Knifetec 1095 Sample Mill (1975, Foss Tecator, 

Höganäs, Sweden) three times for 10 s each. A FOSS NIR Systems 6500 spectrophotometer 

(Foss Analytical, Denmark) was used to collect spectra from the ground sunflower seeds 

using a small round cup with a quartz window. The reflectance (R) of each sample was 

measured as log of 1/R from 400 to 2500 nm at 2nm intervals. Total oil content was 

extracted and TTC was thus determined using the following protocol: 
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     Solvent extraction of lipids 

  The extraction of the total oil content was performed by hexane (n-hexane, Prolabo/Subra, 

Toulouse, France) extraction using an accelerated solvent extractor apparatus (ASE 200, 

Dionex, France) with an isopropanol/hexane mixture (5:95 v/v) during 20 min. Then, the 

solvent was removed from the extracts under low-pressure evaporation (Rotavapor, 

Bioblock Scientific HS 40 HUBER, Heildorph, Germany). Lipid extracts were weighed and 

tocopherol content was analyzed. 

 

     Tocopherol determination  

Total tocopherol was achieved using a high-performance liquid chromatography (HPLC) 

(SpectraPhysics, Thermo Separation Products, USA) with a normal-phase LiChrosorb Si60 

column, 250cm x 4mm x 5µm (CIL, Cluzeau, France) (ISO 9936, 1997). The mobile phase 

was a mixture of hexane/isopropanol (99.7:0.3 v/v) at 1mL/min flow rate. One gram of oil 

sample was diluted in 25 mL of hexane and 20µl was injected into the HPLC. Detection was 

performed with fluorescence detector (excitation wavelength = 298 nm and emission 

wavelength=344nm: Waters 2475 multi λ). Total tocopherol content was calculated as the 

sum of α, β, γ, and δ-tocopherol contents and expressed in mg kg -1 oil.  

 

         3.2.2.2 Phytosterol measurement  

  Pre-measurements for total phytosterol content (TPC) were also carried out by both FOSS 

NIRSystems 6500 and reference method (GC) for core collection. Total phytosterol content 

for core collection was measured by gas chromatography after saponification with KOH 

0.5M during 15 min and a purification on an aluminium oxide basic colum. One µl of 

trimethylsylil (TMS) solutions were injected into fused silica capillary (ZB-5) column 

(Phenomenex, Paris, France) in a Fisons gas chromatography (GC 8000 series MMFC 800 

Multi-function controller, Italy) fitted with a flame ionization detector. Sterols were 

identified by their retention time relative to betulin (Internal standard –Sigma-France). Total 

phytosterol was calculated as campesterol, stigmasterol, β-sitosterol, ∆7-campesterol, ∆5-

avenasterol, ∆7-stigmasterol and ∆7-avenasterol content and expressed in mg 100 g -1 oil.  A 

modified partial least-squares regression (MPLS) model, after 4 outlier elimination passes 

(WINISI 1.02 – Infrasoft   International LLC) was used. The performance of our NIRS 

model, for the estimation of tocopherols and phytosterols was determined by the following 
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parameters: the standard error of calibration (SEC), the coefficient of determination in 

calibration (RSQ), the standard error of cross-validation (SECV), the coefficient of 

determination of cross-validation (1–VR) and the standard error of prediction (SEP). We 

have obtained a high significant correlation between the HPLC analysis and the NIRS 

predictions for TTC (R² = 0.76) and good relatively correlation between the GC analysis and 

the NIRS predictions for TPC. In previous studies in our department, a relatively good 

correlation between NIRS results and GC method for total phytosterol content (R2 = 0.61) 

(Ayerdi Gotor et al. 2008; Calmon et al. 2009) was also observed. Then, TTC and TPC were 

measured for all 1827 samples. 

 

  3. 2.3 Molecular and statistical analysis 
 

    3.2.3.1 DNA Extraction and PCR program 

 

 A set of 123 RILs and their parents (PAC2, RHA266) were used for DNA extraction and 

DNA quantification was performed by picogreen. The PCR program was: 4 min at 94 °C 

followed by 35 cycles; 30 s at 94 °C, 30 s at (55 °C or  58 °C), 1 min at 72 °C and at last, 5 

min at 72 °C. 

 

   3.2.3.2 Candidate Genes (CGs)  

  Some important tocopherol and phytosterol pathway-related genes, enzymatic antioxidant-

related genes, drought-responsive genes and Arabidopsis Sec14 homologue genes were 

selected to introduce in our map (Poormohammad Kiani et al. 2007). Reactions catalyzed by 

proteins of the tocopherol and phytosterol biosynthetic pathway are illustrated in Fig. 3.1 

and 3.2, respectively. Respective sequence data for candidate genes (CGs) coding for these 

proteins were obtained from The Arabidopsis Information Resource (www.arabidopsis.org). 

In order to seek the helianthus homolog sequences to the Arabidopsis genes, we used the 

Compositae EST assembly clusters, available at the Helianthus-devoted bioinformatics 

portal Heliagene (www.heliagene.org). The Helianthus EST clusters presenting the 

reciprocal blast with the highest score and lowest E value with regarding to the original 

Arabidopsis genes were chosen for our studies. All primers were designed by MATLAB. 

Between 2 to 4 various primer combinations per each candidate gene were tested on agarose 

gel. After sequencing; SNP-PHAGE, through the website at http://www.heliagene.org/, was 

applied for analyzing sequence traces from both parents to identify SNPs. Genotyping was 
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done by SNP-based CAPS markers, InDel marker and high resolution melting (HRM) as 

well as directly on agarose gel. Primers used for PCR, HRM, InDel and CAPS makers are 

summarized in Table 3.1.  

 

       3.2.3.3 High-Resolution Melting (HRM)   

  HRM was performed in capillaries of a Light Cycler® 480 Real-Time (Roche Applied 

Science) with the cycling program consisting of 5 min of initial denaturation at 95 °C and 60 

cycles of 15 s at 95 °C, 15 s at 58 °C and 20 s at 72 °C. Melting curves were generated by 

ramping from 70 to 95 °C at 0.02 °C/s. The gene scanning module in the LightCycler® 480 

software was used to normalize raw melting curve data by setting pre-melt and post-melt 

signals of all RILs and parental lines to uniform values and then to modify the normalized 

curves across a temperature axis as well as to plot the melting curve differences between 

them. All RILs and their parents were clustered into groups, based on their melting curves.  

    

      3.2.3.4 Cleaved Amplified Polymorphic Sequence (CAPS) marker  

 SNPs between PAC2 and RHA266 for sterol methyltransferase II (SMT2), delta24-sterol 

reductase (DWF1) and patellin2 (PAT2), Arabidopsis Sec14 homologue gene, were 

identified through multiple sequence alignments using SNP-PHAGE. Then they were 

converted to CAPS marker to allow genotyping of  RILs via 

www.biophp.org/minitools/restriction_digest/demo.php  and http://helix.wustl.edu/dcaps/dcaps.html. 

The following protocol was used for DNA digestion: sterile and deionized water 6.8µl, RE 

10X buffer 1 µl, PCR-product 2 µl and restriction endonuclease (10 u/µl) 0.2 µl. Incubation 

at 37 °C for 2 hours was performed (Promega-usage information). All samples were 

incubated at 65 °C for 10 min to deactivate restriction enzyme.  

 

  3.2.4 Statistical analysis and map construction 
 Data were analyzed using SAS PROC GLM (SAS Institute Inc. 1996) and SPSS. Statistical 

analysis was carried out in order to determine the main effect of RILs for the studied traits. 

The mean of RILs and that of their parents were compared for both traits. Genetic gain 

(GGB) when the best RIL is compared with the best parent and genetic gain (GG10%) when 

the mean of the top 10% selected RILs is compared with the mean of the parents, were 

determined for the studied traits. Some of the studied candidate genes were introduced in our 

map (Poormohammad Kiani et al. 2007) based on SSR markers using CarthaGene 0.999 
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(Schiex and Gaspin 1997). Chi-square-tests were performed for segregation distortion of 

each locus. Loci were assembled into groups using likelihood odds (LOD) ratios, with a 

LOD threshold of 4.0 and a maximum recombination frequency threshold of 0.35. Multiple 

locus order estimates were performed for each linkage group. The likelihoods of different 

locus orders were compared and the locus-order estimate with the highest likelihood was 

selected for each linkage group. The Kosambi mapping function was used to calculate map 

distances (cM) from recombination frequencies. Mapchart 2.1 was used for graphical 

presentation of linkage groups and map position of the studied candidate genes. The 

chromosomal locations of QTLs for the studied traits were resolved by composite interval 

mapping (CIM), using Win QTL Cartographer, version 2.5 (Wang et al. 2005) with the 

mean values of three replications for each RIL in each conditions. The genome was scanned 

at 2-cM intervals; with a window size of 15 cM. Up to 15 background markers were used as 

cofactors in the CIM analysis with the programme module Srmapqtl (model 6). Additive 

effects of the detected QTLs were estimated with the Zmapqtl program. The percentage of 

phenotypic variance (R2) explained by each QTL was estimated by Win QTL Cartographer.  

 

3.3. Results 
 3. 3.1 Phenotypic variation   
    Results of analysis of variance for the two studied traits in France and Iran are presented 

in Table 3.2 and 3.3, respectively. Significant genotypic effect is observed for 

aforementioned traits in all experiments. The effect of water treatment was significant for 

TPC in greenhouse conditions, and TTC was significantly affected in the field (Table 3.2). 

The RIL x Water treatment interaction was highly significant for TTC and TPC in 

greenhouse conditions (Table 3.2). Genetic gain and phenotypic performance of RILs and 

their parents for above-mentioned traits in all environments and conditions are calculated. 

The difference between parents is significant for total tocopherol content (TTC) and total 

phytosterol content (TPC) in all experiments. The differences between the mean of RILs 

(MRILs) and the mean of their parents (MP) for TTC and TPC are not significant. The mean 

of RILs for TTC and TPC is higher under late-sowing and partial-irrigated conditions 

compared to the well-irrigated RILs (Table 3.4). The comparison between the best parent 

(BP) and the best RIL (BRIL), presented as genetic gain (GGB), showed a significant 

difference for both traits in all conditions. A large genetic variation is observed for the two 

studied traits resulting in significant differences between the 10% selected RILs 
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(10%SRILs) and the mean of the parents for all conditions. Frequency distribution of TTC 

and TPC for RILs under several environments and conditions is presented in Fig. 3.3.   

 

3.3.2 Linkage map    
The latest sunflower map of our department (Poormohammad Kiani et al. 2007) based on 

SSR markers was used to introduce some important candidate genes which can be directly or 

indirectly associated with TTC and TPC. The distribution of SSR markers and candidate 

genes (CGs) among the 17 linkage groups is presented in Table 3.5. Dominant markers are 

developed for GST, CAT, HPPD, SFH3, 2,3 oxidosqualene cyclase and sterol 14-

demethylase (CYP51G1) (Fig. 3.4). Glutation s-transferase (GST), enzymatic antioxidant, is 

assigned to linkage group 1 (LG1). The best map position corresponding to GST can be 

considered after ORS803 marker (Fig. 3.4). P-hydroxyphenylpyruvate dioxygenase (HPPD) 

involving in the conversion of p-hydroxyphenylpyruvate to homogentisic acid (Norris et al. 

1998; Valentin et al. 2006) is placed in linkage group 14 (LG14) between ORS1152_1 and 

ORS391 makers (Fig. 3.4). 2,3 oxidosqualene cyclase and sterol 14-demethylase 

(CYP51G1) are not assigned to our map. Co-dominant markers are developed for SEC14-1, 

SEC14-2 and POD genes (Fig. 3.4). Peroxidase, (POD) is mapped at the end of linkage 

group 17 (LG17), at the interval of 13.1 cM of ORS727 (Fig. 3.4). SEC14-2, SFH3 are 

linked to LG15 and LG16, respectively. We identified twelve SNPs for γ-tocopherol methyl-

transferase (VTE4), one of the most important candidate genes involving tocopherol 

biosynthetic pathway, between both parents (PAC2 and RHA266). Dominant and co-

dominant are also developed for VTE4 (Fig. 3.4). Five candidate genes (CGs); catalase 

(CAT), γ-tocopherol methyl-transferase (VTE4), homogenitisate phytyltransferase (VTE2), 

PSI P700 and drought-responsive family gene (DROU1) are anchored to linkage group 8 

(LG8). Mapping of VTE2 and PSI P700 genes is done by using HRM. SNP-based CAPS 

markers are also developed for PAT2, SMT2 and DWF1 (Fig. 3.4).  Four SNPs are identified 

for PAT2, Arabidopsis Sec14 homologue gene, between two parents and identified SNP at 

the 477th position is converted to CAPS marker (Fig. 3.4). Patellin2 (PAT2) is localized to 

linkage group 2 (LG2). We also identified 8 and 2 SNPs for sterol methyltransferase II 

(SMT2) and delta24-sterol reductase (DWF1), respectively (Fig. 3.4). Identified SNPs at the 

402ed and 296th position by sequence alignment analysis were converted to CAPS marker to 

allow genotyping of RILs for SMT2 and DWF1, respectively (Fig. 3.4). In phytosterol 

pathway, 24- methylene–lophenol is converted to 24- ethylidene lophenol by SMT2. 

Campesterol is formed from 24- methylene cholesterol by DWF1.  Sitosterol is also 
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generated from Isofucosterol by DWF1. SMT2 is mapped to linkage group 17 (LG17) 

whereas DWF1 is not assigned to our molecular map. Squalene epoxidase (SQE1) is also 

assigned to LG15 by InDel marker (Fig. 3.4). Nine primer combinations have been tested for 

VTE5 gene but no SNP has been observed between both parents. No polymorphism is also 

observed between two parents for VTE3 gene (Fig. 3.4).  

 

3.3.3 QTL analysis  
   The map position, genetic effect and percentage of variation explained by QTLs associated 

with total tocopherol content (TTC) and total phytosterol content (TPC) under various 

environments and conditions are presented in Table 6. The QTLs are designated by 1, 2, 3, 

4, 5, 6, 7 for well-watered green house, water-stressed green house, well-irrigated field–

France, non-irrigated (rainfall) field–France, well-irrigated field–Iran, partial-irrigated field–

Iran and late-sowing field–Iran conditions, respectively, followed by an abbreviation for the 

trait, the corresponding linkage group, and the number of QTLs in linkage group. One to six 

QTLs are identified depending on trait and growth conditions (Table 3.6). Both parental 

lines contributed to the expression of the different target traits and positive and negative 

additive effects are presented (Table 3.6). Co-localized QTLs were detected for both traits 

on linkage groups 1, 8, 10, 11, 16 and 17 (Fig. 3.4). The major QTL of TTC on linkage 

group 8 (6.TTC.8) accounted for 59.51% of the phenotypic variation, which is overlapped 

with the QTL of TPC (7.TPC.8). This overlapped QTL is linked to candidate gene, 

HuCL02051C001. Common QTL for TTC (5.TTC.15, 6.TTC.15 and 7.TTC.15) is detected 

in linkage group 15. The most important QTL for TPC is `7.TPC.8`, which is positioned on 

linkage group 10 at 53.6 cM. Individual effect of this QTL on the expression of phenotypic 

variation (R2) is 55.1% (Table 3.6). The favorable alleles for this QTL come from RHA266 

(Table 3.6). GST, POD, SEC14-2 and SMT2 genes showed co-localization with QTL for 

phytosterol content. Two candidate genes, HPPD and SFH3, exhibited co-localization with 

QTL for tocopherol content (Fig. 3.4).  

 

3.4. Discussion    

 Significant differences between the parents under all conditions for mentioned traits 

indicate genetic differences between them. This suggests that the parental lines carry 

different genes, which are inherited in some RILs via transgressive segregation. Non 

significant differences between the means of the RILs (MRILs) and the mean of their 

parents (MP) reveal that the RILs used in this research are representative of possible 
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genotypic combinations of the cross ‘PAC2’ x ‘RHA266’. Genetic gain (GGB) when the 

best RIL is compared with the best parent and GG10% Sel. considered as the differences 

between the mean of the top 10% selected RILs and the mean of the parents, are significant 

for total tocopherols content (TTC) and total phytosterols content (TPC), revealing 

transgressive segregation for the mentioned traits. Transgressive segregation was also 

reported for other traits in the same population (Poormohammad Kiani et al. 2007; Ebrahimi 

et al. 2008). Transgressive segregation would be the result of the accumulation of favorable 

alleles coming from different parental lines. The positive and negative signs of additive 

effect at the different loci (Table 3.6) indicate the contribution of both parental lines and 

confirm the transgressive segregation observed at the phenotypic level.  

 In this study QTLs associated with TTC and TPC in sunflower using the gene-based linkage 

map under several environments and conditions are identified by composite interval 

mapping (CIM) method. The influences of genetic background can be eliminated by CIM 

method (Wu  et al. 2007). In this method, the power of QTL detection will be increased by 

considering a set of QTLs outside the interval being tested as cofactors and finally the bias 

in the estimated position and effect(s) of QTL will be reduced (Zeng 1994). As far as we 

know QTLs for these two traits are not reported in the literature. The QTLs detected in our 

research reveal that several putative genomic regions are involved in the expression of the 

mentioned traits under various conditions. QTLs associated with TTC and TPC in our 

research are overlapped with QTLs for some other traits identified in previous studies. The 

overlapped QTLs for TTC and TPC under late-sowing condition (Exp.7) on linkage group1 

(7.TTC.1, 7.TPC.1) in our study are in the same region where Tph1 gene associated with 

increased β-tocopherol content is mapped (Vera-Ruiz et al. 2006). This chromosomic region 

was reported by Poormohammad Kiani et al. (2009) for days from sowing to flowering. A 

common QTL for TTC is identified on linkage group 16 (5.TTC.16, 7.TTC.16). These 

QTLs, controlled by the RHA266 alleles, appear to be important in both well-irrigated 

conditions. This region of linkage group 16 is reported for oil content by Ebrahimi et al. 

(2008) and leaf number by Poormohammad Kiani et al. (2009). Another common QTL for 

TTC was observed on linkage group 16 under well-irrigated conditions in the green house 

and field. These QTLs (1.TTC.16, 3.TTC.16.1) are associated to an SSR marker; ORS333. 

Common QTLs for TPC are identified on linkage group 9 (5.TPC.9, 6.TPC.9). This 

chromosomic region was reported by Ebrahimi et al. (2008) for palmitic acid content and by 

Ebrahimi et al. (2009) for percentage of grain protein. A stable QTL for TPC (4.TPC.10, 

5.TPC.10) is found on linkage group 10 under non-(rainfall) and well-irrigated conditions in 
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the field between two SSR markers; HA928 and HA3847. Another stable QTL for TPC is 

found on linkage group 10 (5.TPC.10.2, 7.TPC.10). These QTLs, controlled by the RHA266 

alleles, appear to be important in both well-irrigated conditions. This region on linkage 

group 10 was detected for leaf area at flowering stage by Poormohammad Kiani et al. 

(2009). The major QTL of TTC on linkage group 8 (6.TTC.8) accounted for 59.51% of the 

phenotypic variation, which is overlapped with the QTL of TPC (7.TPC.8) where two other 

QTLs for TPC were detected under well-irrigated conditions in the green house and field 

(1.TPC.8, 3.TPC.8). Left marker on the LOD peak is a drought-related candidate gene (Fig. 

4). In a previous study the positive and significant correlation between high tocopherol 

content and drought resistance has been recognized (Munné-Bosch 2005). A common QTL 

for TTC is identified on linkage group 14 (6.TTC.14, 7.TTC.14). This chromosomic region 

on linkage group 14, between ORS1152_1 marker and candidate gene (HuCL04260C001), 

appears to have important role for increasing of TTC under partial-irrigated and late-sowing 

conditions. One of the most important candidate genes (HuCL04260C001), that modulates 

the expression of p-hydroxyphenylpyruvate dioxygenase (HPPD), is assigned to LG14 

between ORS1152_1 and ORS391 markers. A major QTL near HPPD gene is reported by 

Gilliland et al. (2006) for α-tocopherol in Arabidopsis which explained 40 % of phenotypic 

variance. In maize, on LG5, the QTL of total tocopherol was linked to HPPD gene and 

explained 7.13% of phenotypic variance (Chander et al. 2008).With a seed-specific over-

expression of HPPD, a 24-28% increase in seed total tocopherol content has been observed 

in Arabidopsis (Shintani and DellaPenna 1998).Trebst et al. (2002) reported the induction of 

HPPD under senescence and stress condition. TTC is increased under partial-irrigated 

conditions. We can mention some reasons for it; under drought stress, tocopherol 

biosynthesis may be stimulated by recognized abscisic acid-specific motif in the promoter 

region of HPPD gene (Munné-Bosch 2005). Under water stress condition, phytol can be 

released as a result of the degradation of chlorophyll a by chlorophyllase. Phytolphosphate 

can be formed from phytol by VTE5 (Valentin et al. 2006). The latter compound is 

converted by phytylphosphate kinase into phytyl pyrophosphate (PDP) (Valentin et al. 

2006). PDP is as a precursor for tocopherol biosynthesis (Norris et al. 2004). Genes involved 

in chlorophyll degradation and tocopherol pathway can be activated by stress-induced 

jasmonic acid accumulation (Munné-Bosch and Falk 2004). It has been demonstrated that 

tocopherol synthesis and stress hormones such as jasmonic acid, abscisic acid and salicylic 

acid might be coupled in plant responses to stress (Munné-Bosch 2005). An increase of 

tocopherol synthesis under moderate stress and a decrease of tocopherol synthesis under 



 46

severe stress have been reported (Munné-Bosch 2005). PSI P700 gene is anchored to LG8. 

The interdependence between PS II/PSI activity and amount of tocopherol has also been 

recognized and photosystem activity decreases when the tocopherol level is low (Trebst et 

al. 2002). Common regulatory mechanisms of photoprotection and photosynthesis refer to 

ATCTA element in both promoter of tocopherol pathway-related genes and photosynthesis-

related genes (Welsch et al. 2003). In the present study some enzymatic antioxidant-related 

genes such as peroxidase (POD), glutation s-transferase (GST) and catalase (CAT) are 

assigned to LG17, LG8 and LG1, respectively. A stable QTL for TPC (3.TPC.1, 4.TPC.1) is 

identified on linkage group 1 under non-(rainfall) and well-irrigated conditions in the field 

(Fig. 4). GST gene showed co-localization with these QTLs. The correlation between 

enzymatic and non enzymatic antioxidant was studied in a previous research (Semchuk et al. 

2009). Through candidate genes, some Arabidopsis Sec14 homologue genes are anchored to 

our new map. It has been reported that SEC14 domains exist in proteins from plants, yeast 

and mammals (Saito et al. 2007). Wide range of lipids, phosphatidylglycerol and 

tocopherols were known as ligands for SEC14 domain-containing proteins (Saito et al. 

2007). One of the most important candidate genes coding for sterol methyltransferase II 

(SMT2) enzyme is anchored to LG17 by CAPS marker. Co-localization between SMT2 gene 

and stable QTL for phytosterol (1.TPC.17, 2.TPC.17) is observed under well-watered and 

water-stressed conditions in green house (Fig. 3.4). γ-tocopherol methyl-transferase (VTE4), 

one of the most important candidate genes involving tocopherol biosynthetic pathway, is 

assigned to linkage group 8. Endrigkeit et al. (2009) reported that in rape seed population, 

VTE4 was anchored to the end of chromosome A02, where also two QTLs for alpha 

tocopherol content had been identified. The increase of tocopherol content is observed by 

over-expressed  VTE4 in Arabidopsis seed (Shintani and DellaPenna 1998). The amount of 

tocopherol was also increased by delay in planting time in chickpea (Gül et al. 2008). As 

conclusion, 15 candidate genes were introduced in the latest linkage map of our department 

(Poormohammad Kiani et al. 2007) based on SSR markers. Regarding to all recognized 

tocopherol and phytosterol pathway–related genes, we have used respective sequences of A. 

thaliana to find homologues in H. annuus via heliagene web site. This strategy led us to find 

sequences of some H. annuus candidate genes, which play directly or indirectly a role in 

tocopherol and phytosterol biosynthesis. GST, POD, SMT2 and SEC14-2 genes showed co-

localization with QTL for phytosterol content. Two candidate genes, HPPD and SFH3, 

exhibited co-localization with QTL for tocopherol content. The candidate genes associated 

with tocopherol and phytosterol, especially HPPD and SMT2, could be precisely used for 
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alternation of the tocopherol and phytosterol content of sunflower seeds by development of 

functional markers. Detection of QTLs influencing various traits could enhance the 

efficiency of marker-assisted selection and increase genetic progress. The relatively low 

number of RILs used in current research may have a negative influence on the accuracy of 

the calculated QTL effects, the ability to detect QTLs with small effects and R2 maybe 

overestimation (Beavis et al. 1994; Bachlava et al. 2008). This was, to some degree, 

compensated by the higher precision of the phenotyping and the use of our map including 

candidate genes. A combination of biotechnological and genomic-based approaches will 

provide many facilities for more precise understanding of the function of tocopherol and 

phytosterol under various environments and conditions.  
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 Target 
gene 

Accession  Sequence of primer (5' to3')  

AGI-
Arabidobsis 

 Homologue with 
Heliagene 

Cluster 

 Forward+ M13F 
(F+CACGACGTTGTAAAACGAC) 

Reverse+ M13R 
(R+ACAGGAAACAGCTATGAC) 

 

T
oc

op
he

ro
l  

pa
th

w
ay

-r
el

at
ed

  g
en

es
 

VTE4 AT1G64970 
 

HuCL02246C001 
 TGAATCTGACGGTTTAGAAC AAACTCCGTTCAGAAAGCG  

  ATCCGTATGATTGAACAAGC ATGTGCTCTCCACTCTCCATTG  
        
HPPD AT1G06570  HuCL04260C001  GCTCTGAGAAGTTCCCTTTC ATGTGTTGTCGGATGAGCAG  
        
VTE1 AT4G32770  HuCL01457C001  AAACCTTGATGCCATAGGG TCCTCTGTTAGGCTCAAAC  
        
VTE2 AT2G18950  HuCL02840C003  TGCCACAAGAGCAAATCGCTTC TTTGGGCACTCTTCATAAG  
        

VTE3 
 

AT3G63410 
 

 HuCL02127C001  TGTCTCGTTTCTTTGCGGAC TAGTAGATTCCAGCCAACGC  

        

VTE5 AT5G04490  
 

HuCL15929C001 
 

 ACAGAATCTAAGCAGAAAGC CACCACTGTTGCCATCATTG  

        

GGPS 
 

AT4G36810 
 

 HuCL07599C001  AGTTTGTTACACCATCTTCC AAGTGGTCAACTCCAACATCCG  

        
MCT AT2G02500  HuCL00002C009  CAAAGTCTTCACCACAAATG ACCTCATCCCATCTTCTTCC  
        
HMBPP AT5G60600  HuCL00358C002  TGTGCTTGGTATGCCATTC CCCTTTGGGAATGTTATGTGG  
        
TAT AT5G53970  HuCL00730C001  GCAGATGAAGTGTATGGTC TATTTGTGGGTAAAGTGCC  

         

E
nz

ym
at

ic
 a

nt
io

xi
da

nt
-

re
la

te
d 

ge
ne

 

POD AT1G14540  HuCL03143C001  TCGTCGGGATAGTCTTTAC CGATAGGTAGAGGACTGTTG  
        
CAT AT1G20620  HuCL00001C054  AAACTACCCTGAGTGGAAG AATGAATCGTTCTTGCCTG  
        
GST AT1G02930  HuCL00790C003  AAAGAGCACAAGAGTCCTG ACTTATTTGAGTGGGCAAC  

        

 PAT2 AT1G22530  HuCL00156C004  CTTGGAACAACTGAAGAGC TGAGTTTACTGCTGTTCCG  
        
PAT3 AT1G72160  HuCL09971C001  TGCTCTTAGTTCTTTGAGTC TTACCCTGAGTTTGTTTCG  
        
PAT6 AT3G51670  HuCL07229C001  GTGTGTTACAATGCTTATGG TGACTGTGAACTCAGAAGC  
        
SEC14-1 AT1G75170  HuCL10527C001  TATGTCCATCTTTCGGCGTC ATGGTGTCTTTAGCGGTTC  
        
SEC14-2 AT3G24840  HuCL09897C001  ATGATAACCGTGTGGATAGC ATGCTAAACTGGAGGAAAGC  
        
SEC14-3 AT4G39170  HuCL01370C001  TTGAGCAATGTCTGGACCTC CGGTATTCCAAAGCAATCG  
        
SFH3 AT2G21540  HuCL00667C001  CAAGGAAGGATTTCACCGTG AAGGCGGTTGATGCTTTACG  

The candidate genes are: tocopherol methyl-transferase (VTE4), p-hydroxyphenylpyruvate dioxygenase (HPPD), tocopherol cyclase (VTE1), homogenitisate phytyltransferase (VTE2), MPBQ/MSBQ methyltransferase (VTE3), Phytol Kinase (VTE5), 

geranylgeranyl pyrophosphate synthetase (GGPS), 2-C-methyl-D-erythritol 4-phosphate cytidyl transferase (MCT), 4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP), tyrosine aminotransferase (TAT), peroxidase (POD), glutation s-transferase (GST), catalase 

(CAT), pattelin 2 (PATL2), patellin3 (PATL3), patellin-6 (PATL6), phosphoglyceride transfer (SEC14-1, SEC14-2, SEC14-3) and phosphatidylinositol transporter (SFH3). 

Table 3.1: Primers used for PCR, HRM, CAPS and InDel makers    
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 Target 
gene 

Accession  Sequence of primer (5' to3')  
AGI-

Arabidobsis 
 Homologue with 

Heliagene 
Cluster 

 Forward+ M13 
(F+CACGACGTTGTAAAACGAC) 

Reverse+ M13 R 
(R+ACAGGAAACAGCTATGAC) 

 

Ph
yt

os
te

ro
l p

at
hw

ay
-r

el
at

ed
  g

en
es

 SQE1 AT1G58440  HuCL04368C001  AGGCTACAGTCATTCCGC 
 
TTAAGTTAAGAGATTTTGGTCATTGTG 

 
 

        
OC AT1G16600  HuCL20280C001  CCGTCCTCCATCTGTGTTTC TCCTGAGCAACTGTATGATGC  
        
CYP51G1 AT1G11680  HuCL03272C001  CGAGTCAGCAGGAGGTGTATC GCAAACAGGGCGGCAATG  
        
SMT2 AT1G20330  HuCL02933C001  CCTTCTACAACCTCGTAACCG ATCCTTCTCTTTCACCACCTC  
        
STE1 AT3G02580  HuCL00001C314  GCACGGATAAGCGATGTCG ACCGAACATCCAGTCCATC  
        

DWF1 AT3G19820 
 

HuCL01845C001  TGTCGGAGTCTACTACACACC GATAACCTATTCGGGCTGGTC  

 
        

 DROU1 AT5G26990  HuCL02051C001  TTGTTGAGGAGGGAACTAAG GTCATCACCAAGAATCGTCG  
         
 DROU2  AT5G48870  HuCL07710C001  GCTCAATGGAAATAACATAGCC TCCTGTTGCTAAGGCGAAAC  
         
 PSIP700 ATCG00350.1  HuCX944063  CAGCCAAAGGAAGATGATG TAGCCATACCAGTGATTTG  
         
 AQUA AT1G52180.1  HuCL00086C003  GCCTACATTGCTGAGTTCATC TTAGTATTCATTGGTGAGGG  
         

Table 3.1 (continued)    

The candidate genes are: squalene epoxidase (SQE1), 2,3 oxidosqualene cyclase (OC), sterol 14-demethylase (CYP51G1), sterol methyltransferase II 

(SMT2), lathosterol oxidase (STE1), delta 24-sterol reductase (DWF1), drought-responsive family gene (DROU1), supersensitive to drought (DROU2), PSI 

P700, aquaporin (AQUA) and delta 24-sterol reductase (DWF1). 
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 df Total tocopherol content Total phytosterol content 

 Field Green house Field Green house Field Green house 

Water treatment 1 1 34341.67* 450.76 NS 66.03 NS 67957.78**  

Block 2 2 9540.61NS 4666.68 NS 310.11 NS 377.57 NS 

Block x Water treatment 2 2 833.25NS 2679.61 NS 204.63 NS 616.85 NS 

Genotype (RILs) 98 71 49199.44** 23966.04** 3352.11** 2446.31** 

RILs x Water treatment 98 71 4452.04 NS 9976.89**  170.09 NS 858.40**  

Error 392 284 5557.17 4518.52 166.42 314.87 

Source of 
variance 

 Total tocopherol content  Total phytosterol content 

df WI PI LS  WI PI LS 

RILs 88 18102.06** 19124.36** 24528.86**  1526.24** 1282.06** 737.13** 

Blocks 2 13388.78 NS 102794.09**  24902.52**   418.50 NS 138.28 NS 117.37 NS 

Error 176 4510.62 5644.55 4313.31  309.49 410.18 225.15 

Table 3.2: Analysis of variance (mean squares) for total tocopherol and total phytosterol content in a 
population of sunflower recombinant inbred lines (RILs) for first year in France  
 

*, **: significant at 0.05 and 0.01 probability level, respectively. NS: non-significant.  
  

Table 3.3: Analysis of variance (mean squares) for total tocopherol and total phytosterol content in a 
population of sunflower recombinant inbred lines (RILs) for second year in Iran 
 

**,  NS: significant at 0.01 probability level and non-significant, respectively. 
 WI: well-irrigated, PI: partial-irrigated and LS: late-sowing 
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Total tocopherol content 

 (mg/kg of oil)  
Total phytosterol content  

(mg/100 g of oil) 
 WI PI LS  WI PI LS 

PAC-2 (P1) 165.43 194.86 249.02  294.29 308.54 324.17 

RHA-266 (P2) 338.87 353.47 413.96  318.51 345.57 347.98 

/P1-P2/ 173.44**  158.61**  164.94**  24.22* 37.03* 23.81* 

MP: (P1+P2)/2 252.15 274.17 331.49  306.40 327.05 336.08 

Mean of RILs (MRILs) 259.6 287.13 340.15  317.1 327.6 350.26 

/MRILs -MP/ 7.44NS 12.96NS 8.65NS  10.69NS 0.55NS 14 .18 NS 

GGB: (BRIL-BP) 155.17**  196**  235.22**   73.33**  43.09**  44**  

GG10%: (10% SRILs - MP) 185.23**  198.08**  249.09**   60.27**  45.95**  31.96* 

        

Table 3.4: Genetic variability and genetic gain for total tocopherol and total phytosterol content in a 
population of sunflower recombinant inbred lines (RILs) grown under well-irrigated, partial-irrigated and 
late-sowing conditions 
 

PAC2’ (P1) and ‘RHA266’ (P2): parental lines; MP: mean of two parental lines; MRILs: mean of recombinant 
inbred lines; BRIL: the best RIL; BP: the best parent; 10%SRILs: the mean of the top 10% selected RILs; 
GGB: genetic gain when the best RIL is compared with the best parent; GG10%: genetic gain when the mean of 
the top 10% selected RILs is compared with the mean of the parents. *, **: significant at 0.05 and 0.01 
probability level, respectively. NS: non-significant. WI: well-irrigated, PI: partial-irrigated and LS: late-sowing 
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Linkage 
group 

Candidate 
gene SSR marker 

Total 
marker 
Number 

Length 
(cM) 

Average 
distance 

(cM) 
 Heliagene -Cluster SSL SSU ORS HA IUB   

LG1 HuCL0079C003 0 0 5 1 0 7 68.6 9.8 

LG2 
HuCL00156C004 
HuCL10527C001 

0 0 10 2 0 14 102.1 7.29 

LG3  1 2 3 2 0 8 53 6.63 

LG4  0 0 4 3 0 7 32 4.57 

LG5  1 0 6 2 0 9 58.5 6.50 

LG6  1 0 3 1 0 5 53.6 10.72 

LG7  0 0 3 2 0 5 33.9 6.78 

LG8 

HuCL02840C003 

1 0 6 3 0 15 182.9 
12.19 

 

HuCX944063 

HuCL02051C001 

HuCL02246C001 

HuCL00001C054 

LG9  3 0 7 4 0 14 77.3 5.52 

LG10  4 0 6 5 0 15 79.7 5.31 

LG11 HuCL00358C002 1 0 3 1 0 6 66.2 11.03 

LG12  1 3 5 4 0 13 72.2 5.55 

LG13  0 1 3 3 0 7 71.6 10.23 

LG14 HuCL04260C001 4 2 4 3 0 14 89.8 6.41 

LG15 HuCL09897C001 
0 2 6 4 0 14 113.6 8.11 

 HuCL04368C001 

LG16 HuCL00667C001 3 0 16 5 1 26 153.6 5.91 

LG17 

HuCL03143C001 

1 0 7 1 0 11 96.9 8.80 

HuCL02933C001 

Total 13 21 10 97 46 1 190 1405.3 7.65 

Table 3.5: The distribution of SSR markers and candidate genes among the 17 linkage groups in sunflower 
recombinant inbred lines  
 

‘SSL’ and ‘SSU’ SSR are GIE CARTISOL, France markers, ‘ORS’ SSR markers from the SSR database; ‘IUB’ and ‘HA’ are SSR 
markers developed by INTA. All SSR markers are public and can be provided upon request. 
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Trait QTL LG Position 
cM LOD Additive 

effects R2 

1- First year-France-Toulouse 

 1-1 Green house  

      1-1-1 Well-watered  

TTC 
1.TTC.8 8 123.8 4.9 -32.4 9.8 
1.TTC.9 9 6.1 5.0 -70.4 44.0 
1.TTC.16 16 8.4 4.0 26.9 8.0 

       

TPC 

1.TPC.2 2 18.0 6.5 20.2 41.1 
1.TPC.8 8 30.9 5.1 21.0 20.0 
1.TPC.16 16 116.8 4.6 -20.7 20.0 
1.TPC.17 17 79.61 4.5 11.1 10.5 

    
    1-1-2 Water-stressed 
 

TTC 
2.TTC.11 11 10.1 3.5 37.0 11.4 
2.TTC.16 16 15.21 5.0 26.0 7.0 
2.TTC.17 17 30.71 3.5 -25.7 5.2 

       

TPC 2.TPC.17 17 71.61 4.0 14.1 16.7 

  
 1-2Field   
 
      1-2-1 Well-irrigated 

TTC 
3.TTC.16.1 16 4.41 3.2 29.0 7.0 
3.TTC.16.2 16 36.41 3.2 34.0 9.0 

       

TPC 
3.TPC.1 1 18.1 6.0 -8.0 6.8 
3.TPC.8 8 38.6 6.0 -7.0 5.6 
3.TPC.10 10 76.6 5.0 -10.6 10.0 

    
 
     1-2-2 Non-irrigated (rainfall) 
 
TTC 4.TPC.17 17 42.5 5 12.1 10.0 

       
TPC 4.TPC.1 1 18.1 7.0 -5.7 4.5 

 4.TPC.10 10 8.0 4.6 -18.6 27.0 
 4.TPC.13 13 54.5 3.3 -4.4 2.5 

Table 3.6: QTLs detected for total tocopherol and total phytosterol 
content under various environments and conditions.      
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Trait QTL LG Position 
cM LOD Additive 

effects R2 

2-Second year-Iran-Karaj 

  2-1 Well-irrigated  

TTC 

5.TTC.2 2 49.7 5.9 84.7 44.3 
5.TTC.10 10 61.7 5.4 39.6 16.0 
5.TTC.15 15 75.3 6.2 -52.6 12.0 
5.TTC.16 16 64.6 4.5 -36.5 13.9 

  

TPC 

5.TPC.9 9 54.2 3.6 11.4 13.5 
5.TPC.10.1 10 20.1 3.7 13.9 17.0 
5.TPC.10.2 10 47.6 6.7 -10.7 11.6 
5.TPC.11 11 12.0 3.2 -9.4 8.9 
5.TPC.13 13 67.6 4.59 21.1 39.2 

 2-2 Partial-irrigated  

TTC 

6.TTC.8 8 49.6 3.5 24.5 59.5 
6.TTC.14 14 29.6 3.3 -24.3 2.5 
6.TTC.15 15 77.3 3.3 -19.9 7.9 
6.TTC.16 16 136.4 3.6 -27.6 8.3 

       

TPC 6.TPC.9.1 9 49.4 7.2 14.3 33.3 
6.TPC.9.2 9 72.8 3.7 -9.7 12.2 

 2-3 Late-sowing  

TTC 

7.TTC.1 1 10.0 4.0 108.6 51.0 
7.TTC.10 10 13.7 3.5 -30.0 13.0 
7.TTC.11 11 8.0 4.3 106.5 14.5 
7.TTC.14 14 31.6 4.6 -25.1 4.6 
7.TTC.15 15 70.7 4.0 -36.2 9.2 
7.TTC.16 16 64.6 4.5 -27.9 7.0 

       

TPC 

7.TPC.1 1 8.0 5.2 -7.6 12.4 
7.TPC.8 8 53.6 7.9 -18.1 55.1 
7.TPC.10 10 42.0 3.0 -4.8 6.4 
7.TPC.15 15 104.1 6.4 -6.3 8.5 

Table 3.6. (Continued)  
  

QTLs are named as follows: a number indicating the experiments (1, well-watered - 
green house – France-Toulouse; 2, water-stressed - green house – France-Toulouse; 
3, well-irrigated- field – France-Toulouse; 4, non-irrigated (rainfall) - field – 
France-Toulouse; 5, well-irrigated- field– Iran-Karaj; 6, partial-irrigated - field – 
Iran-Karaj; 7, late-sowing - field – Iran-Karaj), followed by an abbreviation for the 
trait, the corresponding linkage group, and the number of QTLs in linkage group. 
The positive additive effect shows that PAC2 alleles increase the trait and negative 
additive effect shows that RHA266 alleles increase it. 
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Fig. 3.1. Tocopherol pathway contains four parts: A-synthesis of homogentisic acid (HGA), the common 

precursor to tocopherol, which contributes to the chromanol head of tocopherol (Norris et al. 2004). B- 

synthesis of phytyl pyrophosphate (PDP), an intermediate in the side chain of tocopherol. C- joining HGA 

and PDP: 2-Methyl-6-phytyl-1,4-benzoquinol (MPBQ) is formed after the condensation of HGA and PDP 

by homogenitisate phytyltransferase (VTE2). MPBQ can be either cyclized by tocopherol cyclase (VTE1) 

to form δ tocopherol or methylated by VTE3 to form 2, 3-Dimethyl-5-phytyl-1, 4- benzoquinol (DMPBQ) 

(Porfirova et al. 2002; Shintani et al. 2002; Collakova et al. 2003). DMPBQ can be cyclized by VTE1 to 

form γ tocopherol (Sattler et al. 2003). D- methylation of an aromatic ring; α-tocopherol can be generated 

by methylation of γ-tocopherol via γ-tocopherol methyl-transferase (VTE4) (D'Harlingue and Camara 

1985). β-tocopherol is formed from δ-tocopherol by methylation of the 5 position by VTE4 (Norris et al. 

2004). The studied candidate genes are highlighted in bold.  
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 Fig 3.2. Simplified phytosterol biosynthetic pathway. The studied candidate genes are highlighted in bold.  
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Fig. 3.4. Molecular genetic linkage map of sunflower based on 175 SSRs and 15 candidate genes (CGs) 
using 123 recombinant inbred lines from the cross of PAC2 X RHA266. The positions of QTLs are 
shown on the right side of the linkage groups. Bars represent intervals associated with the QTLs. The 
polymorphic banding pattern was used for genotyping all RILs. Gelelectrophoretic separation of 
candidate gene-PCR products from both parents, PAC2 (P1), RHA266 (P2) and some RILs are 
presented with the corresponding linkage group. 

GST gene 

SEC14-1 gene 
 

ORS803 0.0

HuCL0079C003 18.1

ORS509 36.8

ORS365 48.1

HA4090 53.7

ORS959 61.5

ORS53 68.6

3.T
P

C
.1

4.T
P

C
.1

7.T
T

C
.1

7.T
P

C
.1

LG1

ORS342 0.0

ORS229 31.7

ORS653 61.6
ORS203 66.3
ORS925 69.3

ORS525_1 71.3
ORS1194 ORS1045 73.9

HA3208 79.4
HA3239 83.4

ORS1035 86.8

ORS423 93.5

HuCL00156C004 99.2
HuCL10527C001 102.1

1.T
P

C
.2

5.T
T

C
.2

LG2

1- Well-watered - Green house – France-Toulouse

2-Water-stressed - Green house – France-Toulouse

3-Well-irrigated- Field – France-Toulouse
4-Non-irrigated (rainfall)- Field – France-Toulouse 

5-Well-irrigated- Field– Iran-Karaj

6-Partial-irrigated - Field – Iran-Karaj

7-Late-sowing - Field – Iran-Karaj

TTC: Total tocopherol content

TPC: Total Phytosterol content



 59

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.4. (Continued)  
  

SSL303 0,0

ORS718 4,6

HA2920 12,3

HA3938 17,3

ORS657 25,3

ORS432 35,5

SSU129 43,3

SSU123_2 53,0

LG3
ORS620 0,0

HA991 8,3

HA432 12,5
HA1258 13,4

ORS1068 17,1
ORS337 17,2

ORS671_1 32,0

LG4

ORS533 0,0
HA3627 1,8

ORS523_1 9,7

ORS31_2 28,4

ORS1024_1 32,5

SSL231 36,6

HA3700 43,6

ORS1159 49,7

ORS1024_2 58,5

LG5

HA4103 0,0

ORS381 7,2

ORS1233 14,2

SSL66_1 38,6

ORS1287_1 53,6

LG6

ORS331_2     0,0

ORS331_1     14,6

HA3103 22,4

ORS1041 32,5
HA1848 33,9

LG7



 60

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

HuCL02840C003 0.0

HuCX944063 18.9

HuCL02051C001 39.0

HA2605 76.2

ORS894_2 87.2
HA3278 90.2

HA3581 97.9

ORS329 107.8
ORS894_1 113.0

ORS624 119.8

ORS418_1 131.2

ORS243 141.1

SSL30 156.3

HuCL02246C001 173.3

HuCL00001C054 182.9

1.T
T

C
.8

1.T
P

C
.8

3.T
P

C
.8 6.T

T
C

.8

7.T
P

C
.8

LG8

Some RILs CAT gene 
 

DROU1 gene 

Fig. 3.4. (Continued)  
  



 61

HMBPP Some RILs 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

ORS805 0.0

ORS1009 17.1

ORS1127 25.3
ORS428_1 27.4

SSL102 30.5

ORS887 39.1

SSL29 42.7
SSL13 45.4

ORS510 50.2

HA2564 63.5

ORS428_2 HA2063 68.6
HA477 70.8

HA2053 77.3

1.T
T

C
.9

6.T
P

C
-P

I.9.1

5.T
P

C
-W

I.9
6.T

P
C

-P
I.9.2

LG9

HA928 0.0

HA3847 18.1

HA3039 24.9
HA2600 27.4

HA2579 33.3

ORS591 41.4
ORS437 ORS78 42.0

SSL39 45.6
ORS380 48.1

SSL49 55.3

SSL3 61.7

SSL66_2 66.0

ORS807 76.6

ORS1144 79.7

3.T
P

C
.10

4.T
P

C
.10 7.T

T
C

.10

5.T
P

C
.10.1

5.T
P

C
.10.2

7.T
P

C
.10

LG10

HuCL00358C002 0.0

SSL27 32.1

ORS5_1 40.1
ORS1146 46.5
ORS354 47.3

HA3448 66.2

2.T
T

C
.11

7.T
T

C
.11

5.T
P

C
.11

LG11

HA3073 0,0

ORS671_2 10,6

HA3059 19,5

HA3555 33,0

HA3396 37,2

SSL268 48,6

ORS1219 57,2
SSU41_2 58,9

ORS123_3 61,3

SSU100 66,0
ORS123_2 67,5

SSU41_1 71,9
ORS1085_1 72,2

LG12
HA2598         0.0

HA3330       5.9

ORS511         21.3

ORS316 37.2

SSU39          54.5
ORS630        57.6

HA4208       71.6

4.T
P

C
.13 5.T

P
C

.13

LG13

Fig. 3.4. (Continued)  
  

SSU217     0.0
SSU195        0.5

ORS1043          5.8

HA3513         12.7

ORS1152_1         22.0

HuCL04260C001 41.6

ORS391          55.7
SSU227      58.6

SSU123_1        59.5
SSL20_1          61.8

SSL33       68.2
ORS1086_1        71.6

HA293        79.7

HA2077     89.8

6.T
T

C
.14

7.T
T

C
.14

LG14

Dominant marker observed for HPPD gene 
 



 62

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

SEC14-2 gene 

HuCL04368C001 0.0

ORS1242        10.8
ORS499         11.5

ORS687      17.0

HA4239        35.9
HA876         38.2

HA1837        49.3

HA3102        65.0

ORS401        73.6

ORS121        83.6
SSU223          85.7

SSU25         89.7

ORS8       94.4

HuCL09897C001 113.6

7.T
T

C
.15

5.T
T

C
.15

6.T
T

C
.15

7.T
P

C
.15

LG15

Fig. 3.4. (Continued)  
  



 63

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.4. (Continued)  
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Abstract   
 

    The purpose of the present study was to map QTLs associated with percentage of seed 

protein, oil and fatty acids content under different conditions in a population of recombinant 

inbred lines (RILs) of sunflower. Three independent field experiments were conducted with 

well-, partial-irrigated and late-sowing conditions in randomized complete block design with 

three replications. High significant variation among genotypes is observed for the studied 

traits in all conditions. Several specific and non specific QTLs for the aforementioned traits 

were detected. Under late-sowing condition, a specific QTL of palmitic acid content on 

linkage group 6 (PAC-LS.6) is located between ORS1233 and SSL66_1 markers. Common 

chromosomic regions are observed for percentage of seed oil and stearic acid content on 

linkage group 10 (PSO-PI.10 and SAC-WI.10) and 15 (PSO-PI.15 and SAC-LS.15). 

Overlapping occurs for QTLs of oleic and linoleic acids content on linkage groups 10, 11 and 

16. Seven QTLs associated with palmitic, stearic, oleic and linoleic acids content are 

identified on linkage group 14. These common QTLs are linked to HPPD homologue, 

HuCL04260C001. Coincidence of the position for some detected QTLs and candidate genes 

involved in enzymatic and nonenzymatic antioxidants would be useful for the function of the 

respective genes in fatty acid stability. 

 

Key words: Sunflower, QTL, SSR, Oil content, Protein content, Fatty acids  
 

Abbreviation: QTL, quantitative trait locus; CIM, composite interval mapping; RIL     
recombinant inbred line; NIRS, near-infrared reflectance spectrometry; SSR, simple sequence 
repeats; PSP, percentage of seed protein; PSO, percentage of seed oil; PAC, palmitic acid 
content; SAC, stearic acid content;  OAC, oleic acid content; LAC, linoleic acid content 

 

4.1 Introduction  
 

   Sunflower (Helianthus annuus L.) is cultivated as a source of vegetable oil and protein. Oil, 

fatty acid composition and protein contents are the main factors determining seed nutritional 

properties. Sunflower seed oil is composed of unsaturated fatty acids (90%); oleic and linoleic 

acids and the rest (10%) containing saturated fatty acids; palmitic and stearic acids (Dorrel 

and Vick, 1997; Pérez-Vich et al., 2002a). The role of unsaturated fatty acids on the quality of 

vegetable oil, the protection of membrane under low temperature and membrane fluidity is 
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more important than the effect of saturated fatty acids because of their lower melting point 

(Neidleman, 1987; Thompson, 1993; Heppard et al., 1996).  

 The classical method, gas chromatography (GC), is widely used to determine the fatty acid 

composition of the oil in sunflower seeds (Pérez-Vich et al., 1998). This technique is reliable 

but also expensive, long and use hazardous chemicals (Pérez-Vich et al., 1998). In plant 

breeding programs, a more rapid, accurate, low-cost, simple and nondestructive method is 

needed for screening of fatty acid composition. Near-infrared reflectance spectrometry 

(NIRS) is a more rapid, simple and nondestructive method that is nowadays used by breeders 

and food industry to determine multiple parameters such as proteins, oil content and fatty acid 

compositions (Pérez-Vich et al., 1998; Velasco and Becker, 1998; Biskupek-Korell and 

Moschner, 2007). 

Sunflower has been considered for construction of molecular map. Various molecular markers, 

such as RFLP (Gentzbittel et al. 1995, Berry et al. 1995) and AFLP (Gedil et al. 2001) have 

been used whereas simple sequence repeats (SSR), as a highly reproducible molecular marker, 

is one of the most efficient marker for molecular linkage map (Tang et al., 2003). Genetic-

linkage map based on 459 SSR, has been also constructed (Tang et al. 2002), which is the first 

reference map of sunflower based on single- or low-copy public SSR markers. The value of 

SSRs is that they usually detect single loci and are specific to a given place in the genome. 

SSRs are also highly variable and scored as co-dominant markers. 

 The genetic studies on sunflower mutant lines; CAS-12 and CAS-5, with high palmitic acid 

content, revealed that high palmitic acid can be controlled by three partially recessive alleles 

(p1, p2 and p3) at 3 loci (Pérez-Vich et al., 2002a). CAS-14, CAS-3, CAS-4 and CAS-8 lines, 

containing respectively 35%, 28%, 15% and 14% stearic acid, have been released as high and 

medium stearic acid sunflower mutants (Garcés and Mancha, 1991; Cantisán et al., 2000). 

The level of stearic acid is controlled by ES1 and ES2 genes in CAS-3 mutant whereas it is 

increased by the ES3 gene in CAS14 mutant (Garcés and Mancha, 1991). ES3 gene is also 

mapped to Linkage group 8 (Garcés and Mancha, 1991). Three genes, designated Ol1, Ol2, 

and Ol3, are reported which are associated with high oleic acid content in sunflower seed 

(Fernández-Martínez, 1989). Among three microsomal oleate desaturase, FAD2-1 is strictly 

correlated with high oleic acid content in sunflower seed oil (Martínez-Rivas et al., 2001). 

EcoRI and HindIII fragments, which are polymorphic in association with low and high oleic 

acid content genotypes, are also identified (Lacombe et al., 2001).   

 The genetic control of stearic and oleic acids in sunflower seed oil is also investigated 

through QTL analysis and cosegregation between stearoyl-ACP desaturase locus (SAD17A) 
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and ES1 gene and between oleoyl-PC desaturase locus (OLD7) and OL gene are reported 

(Pérez-Vich et al., 2002b). In this study two QTLs controlling stearic and oleic acids content 

are also mapped to LG1 (SAD17A) and LG14 (OLD7). Several QTLs for oil and fatty acid 

content are identified by Ebrahimi et al. (2008). Six QTLs are detected for oil content in a 

population of F3 families of sunflower and the most important QTL is located on linkage 

group 13 (pog-13-1) which explained 47% of phenotypic variance (R2) (Mokrani et al., 2002). 

As far as other species are concerned, overlapping chromosomic regions and nine epistatic 

locus pairs are identified for oil and protein content in rapeseed (Zhao et al., 2006). In 

Brassica juncea, 6 and 5 QTLs are detected for oil and protein content, respectively 

(Mahmmod et al., 2006). Protein, oil and fatty acids content are influenced by environmental 

factors. Water stress significantly decreases oil content in sunflower (Muriel and Downes, 

1974; Nel et al., 2002) whereas protein content at maturity is increased in sunflower 

(Ebrahimi et al., 2009), wheat (Ozturk and Aydin, 2004) and peanuts (Dwivedi et al., 1996). 

An increase of oleic acid content in sunflower (Baldini et al., 2002) and peanuts (Dwivedi et 

al., 1996) is also observed under water deficit. The ratio of oleic to linoleic acid can be 

strongly affected by temperature regimes in sunflower (Trémoliéres et al., 1982), whereas it 

can be hardly affected in safflower (Browse and Slack, 1983) and rapeseed (Trémoliéres et 

al., 1982). The effect of sowing time (temperature regimes) on fatty acid content depends on 

species and genotypes. In sunflower, the ratio of oleic to linoleic acid is increased under water 

stress (Talha and Osman, 1974) whereas under early-sowing condition, it is decreased 

(Flagella et al., 2002). Activation of enzymatic and nonenzymatic antioxidant-related genes 

can result in the protection of fatty acids against oxidative stress and finally increasing their 

stability (Munné-Bosch and Alegre, 2002; Collakova and DellaPenna, 2003; Kanwischer et 

al., 2005; Marwede et al., 2005; Semchuk et al., 2009).  

 In this research for the first time we used genetic-linkage map based only on SSR markers and 

some important candidate genes for enzymatic, non-enzymatic antioxidant, drought-responsive 

family and phosphoglyceride transfer in due to  genetic study of  protein, oil and fatty acids 

content in a population of recombinant inbred lines (RILs) of sunflower under well-, partial-

irrigated and late-sowing conditions. Objectives of this investigation are to identify 

chromosomal regions associated with quantitative variation of protein, oil and fatty acid 

compositions under various conditions and validate the extent to which these candidate genes 

affect quantitative phenotypic variability for the studied traits in sunflower grains. 
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4.2 Materials and methods  

 

   4. 2.1 Plant materials and experimental conditions 
 
  The recombinant inbred lines (RILs) used in this research were developed through single 

seed descent from F2 plants, derived from a cross between PAC2 and RHA266 (Flores 

Berrios et al., 2000). Three independent experiments were undertaken at Teheran University 

campus of Karaj. Experimental design was randomized complete block with three replications. 

Seeds of 89 RILs and their two parents were sown in the field under well-, partial-irrigated 

and late-sowing conditions. Each genotype per replication consisted of one row, 4m long, 50 

cm between rows and 25 cm between plants in rows. The distance between replications of 

well-irrigated and partial-irrigated treatments was 7m. The so-called ‘well-irrigated’ condition 

plots were irrigated once every week, whereas for the second condition (partial-irrigated), 

irrigation was controlled and adjusted by the observation of the wilting threshold of the 

leaves. Partial water deficit was started 45 day after sowing at the stage near flower bud 

formation and continued up to maturity. The sowing dates were: normal sowing on May and 

late sowing on July.   

 

 

 4.2.2 Trait measurements  
 

 Percentage of seed protein (PSP), percentage of seed oil (PSO), palmitic acid content (PAC), 

stearic acid content (SAC), oleic acid content (OAC) and linoleic acid content (LAC) were 

measured in RILs and their parental lines in each replication for all conditions by the FOSS 

NIRSystems 6500. Forty grams of sunflower seeds per genotype per condition per replication 

were ground in a Knifetec 1095 Sample Mill (1975, FOSS, Tecato, Hoganas, Sweden) three 

times for 10s each. No sample material adhered to the walls of the mill because the sample 

was mixed at each interval.A FOSS NIRSystems 6500 spectrophotometer (Foss Analytical, 

Denmark) was used to collect spectra from the ground sunflower seeds using a small round 

cup with a quartz window. The reflectance (R) of each sample was measured as log of 1/R 

from 400 to 2500 nm at 2 nm intervals. The absorption maximum around 1700-1800 and 

2300-2400 nm were due to oil and fatty acid content. The area near to 2180 nm was related to 

protein content. In order to validity of NIRS results, some samples used for NIRS were also 

tested by gas chromatography (GC)  and high correlation was observed.   
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  4.2.3 Statistical analysis and map construction 
 

 Data were analyzed using SAS PROC GLM (SAS Institute Inc., 1996) and SPSS. Statistical 

analysis was carried out in order to determine the main effect of RILs for the studied traits. 

The mean of RILs and that of their parents were compared for all the traits. Genetic gain 

when the best RIL is compared with the best parent (GGB) and when the mean of the top 10% 

selected RILs is compared with the mean of the parents (GG10%), were calculated for the 

traits. Simple correlation coefficients (Pearson) among the studied traits were also determined.  

Some important tocopherol pathway-related genes, enzymatic antioxidant-related genes, 

drought-responsive genes and phosphoglyceride transfer-related genes were studied. 

Respective sequence data for candidate genes were obtained from The Arabidopsis 

Information Resource (www.arabidopsis.org). In order to seek the helianthus homolog 

sequences to the Arabidopsis genes, we used the compositae EST assembly clusters, available 

at the Helianthus-devoted bioinformatics portal Heliagene (www.heliagene.org). The 

Helianthus EST clusters presenting the reciprocal blast with the highest score and lowest E 

value with regarding to the original Arabidopsis genes were chosen for our studies. 

Genotyping was done by SNP-based CAPS marker and high resolution melting (HRM) as 

well as directly on agarose gel. The chromosomal locations of QTLs were resolved by 

composite interval mapping (CIM), using Win QTL Cartographer, version 2.5 (Wang et al., 

2005) with the mean values of three replications for each RIL in each conditions. The genome 

was scanned at 2-cM intervals; with a window size of 15 cM. Up to 15 background markers 

were used as cofactors in the CIM analysis with the program module Srmapqtl (model 6). 

Additive effects of the detected QTLs were estimated with the Zmapqtl program (Basten et 

al., 2002). The percentage of phenotypic variance (R2) explained by each QTL was estimated 

by Win QTL Cartographer.  

 

4.3 Results 
 

 4.3.1 Phenotypic variation 
   

  Results of analysis of variance for PSP, PSO, PAC, SAC, OAC and LAC are presented in 

Table 4.1. A normal distribution was observed for studied traits under all conditions and it is 

shown in Fig. 4.1 for well-irrigated condition. Significant genotypic effect is observed for 
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aforementioned traits in well-, partial-irrigated and late-sowing conditions. Genetic gain and 

phenotypic performance of RILs and their parents for above-mentioned traits in all conditions 

are presented in Table 4.2. The differences between the mean of RILs (MRILs) and the mean 

of their parents (MP) for all studied traits are nonsignificant. The comparison between the best 

parent (BP) and the best RIL (BRIL), considered as genetic gain (GGB), showed a significant 

difference for all traits in all conditions. A large genetic variability is observed for all studied 

traits resulting in significant differences between the 10% selected RILs (10%SRILs) and the 

mean of the parents for all conditions. Phenotypic correlations among different traits in 

different conditions are presented in Table 4.3. A significant and positive correlation is 

observed between PSP and SAC, between PSO and LAC, between PAC and SAC and 

between PAC and LAC in all conditions. A significant and negative correlation is also 

observed between PSP and PSO, between PSP and PAC, between PSO and SAC and between 

PAC and OAC under all conditions. There is a high significant and negative correlation 

between OAC and LAC. Under well- and partial-irrigated conditions, the correlation between 

PSP and OAC and between PSO and PAC is significant and positive whereas a significant 

and negative correlation is observed between PSP and LAC and between PSO and OAC.  

 

 4.3.2 QTL analysis  
 
 The map position and characteristics of QTLs associated with the studied traits in the field 

under well-, partial-irrigated and late-sowing conditions are presented in Table 4.4. QTLs are 

designated as the abbreviation of the trait followed by ‘WI’, ‘PI’  and ‘LS’ for well-irrigated, 

partial-irrigated and late-sowing conditions. The corresponding linkage group and the number 

of QTLs in the group are also indicated for each QTL. Two to six QTLs are identified 

depending on the trait and conditions. Both parental lines contribute to the expression of the 

different target traits and positive or negative additive effects are presented (Table 4.4). Co-

localized QTLs are detected for all traits on various linkage groups (Fig. 4.2). Detected QTLs 

for PSP explain from 5.4 % to 28.8% of the phenotypic variance (R2). The most important 

QTL for PSP (PSP-WI.13) is identified on linkage group 13. Favorable alleles for this QTL 

come from RHA266. The percentage of phenotypic variance (R2) explained by QTLs of PSO 

ranged from 5.92 % to 38.18 %. The most important QTL for PSO on linkage group 16 (PSO-

PI.16) under partial-irrigated condition controls 38.18 % of phenotypic variance (R2). On 

linkage group 16, we also identified 2 other QTLs for this trait under well-irrigated and late-

sowing conditions. They are co-located with several QTLs controlling fatty acids content 
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(Fig. 4.2). The percentage of phenotypic variance (R2) explained by QTLs of PAC ranged 

from 4.65 % to 38%. Most of the favorable alleles for these QTLs come from PAC2. Under 

late-sowing condition, identified QTLs for SAC explain from 7.31 % to 54.38% of the 

phenotypic variance. Several QTLs are detected for OAC under all conditions. The 

percentage of phenotypic variance (R2) explained by these QTLs ranged from 5.31 % to 67.35 

%. The most important QTL for OAC (OAC-WI.10) is located on linkage group 10 where 

several QTLs controlling fatty acids are found. Under late-sowing condition, five QTLs for 

LAC are identified which explained from 4.36 % to 53.72% of the phenotypic variance. 

4.4 Discussion 
 

  Significant differences between the parents are observed only for percentage of seed oil 

(PSO) in well- irrigated condition and percentage of seed protein (PSP) under partial-irrigated 

conditions, indicating gene expression differences between them for these two traits under the 

two conditions (Table 4.2). Non significant differences between the mean of the RILs 

(MRILs) and the mean of their parents (MP) reveal that the RILs used in this research are 

representative of all possible genetic combinations between the two parents ‘PAC2’ and 

‘RHA266’. Genetic gain (GGB) when the best RIL is compared with the best parent and 

GG10% Sel, considered as the differences between the mean of the top 10% selected RILs 

and the mean of the parents, are significant for all the studied traits, revealing transgressive 

segregation for all the studied traits. Transgressive segregation is also reported for water 

status traits (Poormohammad Kiani et al., 2007) and yield-related traits (Poormohammad 

Kiani et al., 2009) in the same population. Transgressive segregation would be the result of 

the accumulation of favorable alleles coming from different parental lines. The positive and 

negative signs of additive effect at the different loci (Table 4) indicate the contribution of both 

parental lines and confirm the transgressive segregation observed at the phenotypic level. The 

mean of late-sown RILs for LAC is increased (64.03 %) compared to the well-irrigated RILs 

(50.34 %). Highly significant correlations are observed among most of the studied traits. High 

negative correlation between OAC and LAC in all conditions is similar to the results of 

Lagravère et al. (2004) and Ebrahimi et al. (2008) in sunflower. A significant and positive 

correlation between PSP and OAC and between PSO and PAC is observed under well- and 

partial-irrigated conditions whereas correlation between them is not significant under late-

sowing condition. Non significant correlation between PSP and LAC and between PSO and 

OAC is observed under late-sowing condition whereas correlation between them is significant 
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and negative under well- and partial-irrigated conditions. Correlation between OAC and PAC 

is negative in all conditions, which is similar to the results of Ebrahimi et al. (2008) in 

sunflower and Möllers and Schierholt (2002) in rapeseed.  

  The QTLs detected in current research reveal that several putative genomic regions are 

involved in the expression of the mentioned traits under all conditions. A specific QTL for 

PSP is identified on linkage group 8 (PSP-LS.8). This QTL, controlled by RHA266 alleles, 

appears to be important in late-sowing condition. Overlapping occurs for QTLs of PSP and 

PSO on linkage group 9 (PSP-PI.9 and PSO-PI.9) and 11 (PSP-PI.11 and PSO-PI.11). 

Significant and negative correlation between PSP and PSO (Table 4.3) is justified by opposite 

additive effects of their overlapped QTLs (Table 4.4). Negative correlation between PSP and 

PSO (Table 4.3) and their overlapped QTLs with opposite additive effects (Table 4.4) are also 

reported in the previous studies (Lee et al., 1996; Zhao, 2002; Mohamood et al., 2006; 

Ebrahimi et al., 2008). This phenomenon poses potential challenges to breeders for 

simultaneous improvement of both traits. However, independent segregation of QTLs for PSP 

and PSO provides opportunity for simultaneous improvement of these two traits in sunflower. 

Under partial-irrigated condition, a specific QTL of PSP on linkage group 8 (PSP-PI.8) is 

linked to candidate gene, HuCL02840C003 (Fig. 4.2). This candidate gene, homogenitisate 

phytyltransferase (VTE2), involves in tocopherol pathway (Kanwischer et al. 2005). The most 

important QTL of PSO (PSO-PI.16) is mapped to linkage group 16 between ORS492_2 and 

ORS899 markers. This chromosomic region is important for oil content as it is also reported 

by Tang et al. (2006) and Ebrahimi et al. (2008) for seed oil content. A common QTL for PSO 

is identified on linkage group 2 (PSO-WI.2, PSO-LS.2). These QTLs, controlled by the PAC2 

alleles, appear to be important in both well-irrigated conditions. This region on linkage group 

2, linked to ORS525_1 marker, is also reported for oil content under greenhouse condition 

(Ebrahimi et al., 2008). Under late-sowing condition, a specific QTL of PSO on linkage group 

8 (PSO-LS.8) is assigned to candidate gene, HuCX944063 which involves in photosystem I. 

The oil content is positively associated with leaf area which determines the photosynthetic 

capacity of sunflower (Hervé et al., 2001). Overlapped chromosomic regions for PSO and 

SAC are identified on linkage group 10 (PSO-PI.10 and SAC-WI.10) and 15 (PSO-PI.15 and 

SAC-LS.15). A significant and negative association between PSO and SAC (Table 4.3) is 

strengthened by opposite additive effects of their overlapped QTLs (Table 4.4). There is an 

important overlapped region for PAC, LAC and PSO on linkage group 17 (PAC-LS.17, LAC-

LS.17 and PSO-LS.17). This chromosomic region is located between ORS297 and 

ORS1040 markers. A specific QTL for linoleic acid content (LAC) which was also linked to 
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ORS297 marker was already detected in this region (Ebrahimi et al., 2008). A common QTL 

of PAC on linkage group 16 (PAC-WI.16 and PAC-PI.16) is linked to the SSR marker, 

ORS418_2. Several QTLs of PSO, OAC and LAC are also identified in this region. Seven 

QTLs associated with PAC, SAC, OAC and LAC are identified on linkage group 14. These 

overlapped QTLs are linked to candidate gene, HuCL04260C001 which modulates the 

expression of p-hydroxyphenylpyruvate dioxygenase (HPPD). This candidate gene is located 

between ORS1152_1 and ORS391 markers. Homogentisic acid (HGA), the common 

precursor to tocopherols (Valentin et al., 2006), can originate either via the conversion of 

chorismate to prephenate and then to p-hydroxyphenylpyruvate (HPP) via prephenate 

dehydrogenase in bacteria or via the synthesis and conversion of the intermediates arogenate, 

tyrosine, by the shikimate pathway, and HPP in plants. HPP is then converted to HGA by p-

hydroxyphenylpyruvate dioxygenase (HPPD) (Norris et al., 1998). The interdependence 

between the amount of tocopherol and lipid peroxidation has also been recognized (Munné-

Bosch, 2005). In plants, the protection of photosynthetic apparatus and polyunsaturated fatty 

acids from oxidative damage caused by reactive oxygen species (ROS) are the main function 

of tocopherol (Trebst et al., 2002; Velasco et al., 2004; Cela et al., 2009; Semchuk et al., 

2009). Under late-sowing condition, a specific QTL of PAC on linkage group 6 (PAC-LS.6) is 

located between ORS1233 and SSL66_1 markers (Fig. 2). Overlapping occurs for QTLs of 

PAC and SAC on linkage groups 2, 8, and 14. This can be explained by correlation between 

PAC and SAC as well as by a specific gene for fatty acid synthetase II (FACII), which 

lengthens palmitic acid (16:0) by two carbon atoms to produce stearic acid (18:0) (Cantisán et 

al., 2000; Pleite et al., 2006). In previous studies, several overlapped QTLs of PAC and SAC 

are reported (Burke et al., 2005; Ebrahimi et al., 2008). Overlapping also occurs for QTLs of 

SAC and OAC on linkage groups 1, 2, and 14. This can be explained by the existence of 

specific gene for ∆9-desaturase (stearoyl-ACP desaturase), which catalyses the first 

desaturation of stearic acid (18:0) to oleic acid (18:1) (Heppard et al., 1996; Cantisán et al., 

2000). We detected overlapped QTLs for SAC and OAC under late-sowing condition on 

linkage group1 (SAC-LS.1 and OAC-LS.1). This chromosomic region is reported for days 

from sowing to flowering (Poormohammad Kiani et al., 2009). A significant negative 

correlation between days to flowering and seed-oil content in areas with short growing season 

was reported by Leon et al. (2003). They also detected two overlapped QTLs for seed oil 

content and days to flowering. Common QTLs of SAC on linkage group 10 (SAC-WI.10 and 

SAC-LS.10) and linkage group 14 (SAC-WI.14, SAC-PI.14 and SAC-LS.14) are identified. A 

specific QTL of SAC is detected on linkage group 5 which is linked to HA3627 marker. 
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Common QTLs of OAC are observed on linkage group 2 (OAC-PI.2 and OAC-LS.2) which 

overlap with QTLs controlling PAC and SAC. The high negative correlation (Table 3) 

between OAC and LAC in all conditions is justified by opposite additive effects of their 

linked QTLs (Tables 4.4; Figs. 4.1). Another overlapping for QTLs of OAC and LAC is 

observed on linkage groups 10, 11 and 16. This can be explained by correlation between OA 

and LA as well as by a specific gene for ∆12-desaturase (oleoyl-PC desaturase), which 

catalyses the second desaturation of oleic acid (18:1) to linoleic acid (18:2) (Garcés and 

Mancha, 1991). Regarding to identified QTLs for SAC, OAC and LAC on linkage group 14 

between ORS1152_1 and ORS391 markers, we can consider this overlapping as a 

chromosomic region that controls two pathways, FatA (stearoyl-ACP desaturase) and FatB 

(acyl-ACP thioesterase), in sunflower (Pleite et al., 2006). 

  As conclusion, we have detected several specific and non specific QTLs under well-, partial-

irrigated and late-sowing conditions for PSP, PSO, PAC, SAC, OAC and LAC. Detection of 

QTLs influencing various traits could increase the efficiency of marker-assisted selection and 

increase genetic progress. The relatively low number of RILs used in current research may 

have a negative influence on the accuracy of the calculated QTL effects and the ability to 

detect QTLs with small effects and R2 overestimation (Bachlava et al., 2008; Beavis, 1994). 

This was, to some degree, compensated by the higher precision of the phenotyping and the 

use of our map including candidate genes. The absence of significant difference between the 

mean of RILs and the mean of parents (Table 4.3) shows also that RILs used in our study can 

present all possible genetic combination from two parents for the studied traits. Coincidence 

of the position for some detected QTLs and candidate genes would be useful for the function 

of the respective genes in fatty acid pathway and its stability.             

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 77

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Source of 
variance 

df condition Protein  oil 
 

Palmitic 
Acid 

 

Stearic 
Acid 

 

Oleic 
Acid 

 

Linoleic 
Acid 

 

RILs 88 

WI 31.68**  46.70**  0.86**  1.53**  198.77**  195.86**  

PI 22.10**  41.12**  0.97**  0.95**  177.21**  171.27**  

LS 11.23**  27.36**  0.49**  0.89**  83.82**  82.62**  

 
Blocks 

2 

WI 1.58 NS 13.82 NS 1.22**  3.69**  71.88 NS 26.10 NS 

PI 4.32 NS 47.57* 2.24**  8.47**  94.70* 57.91 NS 

LS 1.15 NS 50.07**  2.57**  6.64**  71.01**  26.91 NS 

Error 176 
WI 3.96 11.89 0.14 0.47 23.76 22.91 

PI 5.50 13.49 0.15 0.54 21.25 20.86 

LS 2.83 10.05 0.09 0.32 11.40 11.07 

Table 4.1: Analysis of variance (mean squares) for percentage of seed protein, percentage of seed oil, 
palmitic, stearic, oleic and linoleic acids content in a population of sunflower recombinant inbred lines 
(RILs) grown under well-irrigated (WI), partial-irrigated (PI) and late-sowing (LS) conditions 

*, **: significant at 0.05 and 0.01 probability level, respectively. NS: non-significant.  
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Protein   

(%) 
Oil 
(%) 

Palmitic 
acid 

Stearic 
acid 

Oleic 
acid 

Llinoleic 
acid 

PAC-2 (P1) 

WI 21.18 40.59 4.80 3.73 41.95 48.81 

PI 21.51 38.13 4.76 3.92 43.22 46.93 

LS 25.37 39.23 5.51 5.25 24.20 64.96 

RHA-266 (P2) 
WI 21.69 45.22 5.58 3.95 38.84 52.50 

PI 24.64 38.81 5.32 5.00 41.37 49.23 

LS 25.27 40.45 6.15 4.96 25.40 64.58 

/P1-P2/ 

WI 0.51NS 4.62**  0.77 NS 0.21 NS 3.11 NS 3.68 NS 
PI 3.12* 0.68 NS 0.56 NS 1.07 NS 1.84 NS 2.29 NS 

LS 0.09 NS 1.21 NS 0.63 NS 0.29 NS 1.19 NS 0.37 NS 

 
MP :(P1+P2)/2 

WI 21.433 42.904 5.187 3.839 40.397 50.657 
PI 23.08 38.47 5.04 4.46 42.30 48.08 

LS 25.32 39.84 5.83 5.10 24.80 64.77 

 
MRILs 

WI 22.26 40.30 5.21 4.31 40.19 50.34 
PI 23.10 39.51 5.17 4.45 41.48 49.22 

LS 25.22 37.29 5.96 5.39 25.11 64.03 

/MRIL -MP/ 
WI 0.83 NS 2.60 NS 0.01 NS 0.47 NS 0.21 NS 0.31 NS 
PI 0.01 NS 1.03 NS 0.13 NS 0.01 NS 0.81 NS 1.13 NS 
LS 0.10 NS 2.55 NS 0.12 NS 0.28 NS 0.31 NS 0.73 NS 

GGB: 
(BRIL-BP) 

WI 11.3**  5.11**  1.11* 1.31**  19.44**  17.65* 
PI 8.22**  11.01**  1.49**  1.9**  17.4**  19.08**  
LS 7.85**  5.9**  1.08**  2.14* 16.52**  15.95**  

GG10%: 
(10% SRILs - MP) 

WI 7.06**  4.78**  1.187**  2.18**  15.15**  15.09**  
PI 5.69**  8.52**  1.33**  1.52**  13.85**  14.99**  
LS 4.39**  3.74**  0.94* 1.59* 10.74**  9.11* 

Table 4.2: Genetic variability and genetic gain for percentage of seed protein, percentage of seed 
oil, palmitic, stearic, oleic and linoleic acids content (in percentage of oil) in a population of 
sunflower recombinant inbred lines (RILs) grown under well-irrigated (WI), partial-irrigated (PI) 
and late-sowing (LS) conditions 

PAC2’ (P1) and ‘RHA266’ (P2): parental lines; MP: mean of two parental lines; MRILs: mean of 
recombinant inbred lines; BRIL: the best RIL; BP: the best parent; 10%SRILs: the mean of the top 
10% selected RILs; GGB: genetic gain when the best RIL is compared with the best parent; 
GG10%: genetic gain when the mean of the top 10% selected RILs is compared with the mean of 
the parents. *, **: significant at 0.05 and 0.01 probability level, respectively. NS: non-significant. 
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Trait QTL LG Position 
cM 

LOD Additive 
effects 

R2 

Well-irrigated  

PSP 
PSP-WI.10.1 10 2.01 4.67 -1.67 14.00 
PSP-WI.10.2 10 35.31 4.32 -1.71 12.00 
PSP-WI.13 13 25.31 3.09 -3.22 28.80 

  

PSO 

PSO-WI.2 2 71.31 3.29 1.17 6.23 
PSO-WI.11 11 47.31 3.94 1.38 9.25 
PSO-WI.13 13 13.91 4.00 3.51 28.31 
PSO-WI.15 15 0.61 5.86 1.82 15.06 
PSO-WI.16 16 19.21 4.88 1.88 15.63 

Partial-irrigated  

PSP 
PSP-PI.8.1 8 0.01 5.36 -0.93 8.00 
PSP-PI.9 9 44.71 6.86 0.94 8.90 
PSP-PI.11 11 2.01 5.02 -1.41 17.20 

       

PSO 

PSO-PI.9 9 47.41 6.15 -1.77 12.07 
PSO-PI.10 10 45.61 5.91 1.92 14.23 
PSO-PI.11 11 24.01 6.11 2.31 20.00 
PSO-PI.15 15 20.21 5.85 2.26 12.58 
PSO-PI.16 16 15.21 6.30 3.58 38.18 

Late-sowing  

PSP 
PSP-LS.8 8 156.31 7.50 -0.75 10.50 
PSP-LS.11 11 40.11 3.91 -0.58 5.40 

       

PSO 

PSO-LS.2 2 71.31 5.58 1.58 18.91 
PSO-LS.8 8 26.91 3.20 1.10 5.92 
PSO-LS.11 11 42.11 3.23 1.22 9.78 
PSO-LS.16 16 144.71 4.88 1.31 11.89 
PSO-LS.17 17 32.71 6.14 -1.48 11.95 

Table 4.4: QTLs detected for percentage of seed protein (PSP), percentage of 
seed oil (PSO), palmitic acid content (PAC), stearic acid content (SAC), oleic 
acid content (OAC) and linoleic acid content (LAC) under well-, partial-irrigated 
and late-sowing conditions    
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Trait QTL LG 
Position 

cM 
LOD 

Additive 
effects 

R2 

Well-irrigated  

PAC 
PAC-WI.10 10 0.01 5.56 0.24 10.64 
PAC-WI.14 14 41.61 3.67 -0.13 4.65 
PAC-WI.16 16 11.21 5.70 0.17 6.40 

  

SAC 

SAC-WI.3 3 0.01 3.40 -0.31 14.70 
SAC-WI.7 7 12.01 3.10 -0.31 11.16 
SAC-WI.10 10 45.61 4.07 -0.34 17.42 
SAC-WI.14 14 38.01 3.00 -0.33 14.07 

Partial-irrigated  

PAC 
PAC-PI.2 2 2.01 4.04 0.47 36.04 
PAC-PI.16 16 11.21 3.47 0.17 5.80 

       

SAC 
SAC-PI.2 2 8.01 4.60 0.70 65.17 
SAC-PI.8 8 53.61 6.63 -0.70 12.00 
SAC-PI.14 14 26.01 3.087 -0.69 15.00 

Late-sowing  

PAC 

PAC-LS.2 2 6.01 4.97 0.27 20.11 
PAC-LS.6 6 28.21 5.29 0.16 7.18 
PAC-LS.8 8 55.61 6.24 0.45 38.00 
PAC-LS.10 10 8.01 5.00 0.24 10.00 
PAC-LS.11 11 10.01 6.50 0.28 11.04 
PAC-LS.17 17 26.71 6.20 -0.21 11.80 

       

SAC 

SAC-LS.1 1 6.01 4.67 0.57 54.38 
SAC-LS.5 5 3.81 3.07 0.23 10.75 
SAC-LS.10 10 52.11 4.38 0.20 8.75 
SAC-LS.14 14 26.01 3.87 -0.21 7.31 
SAC-LS.15 15 10.21 4.85 -0.24 10.52 

Table 4.4: continued 
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Trait QTL LG 
Position 

cM 
LOD 

Additive 
effects 

R2 

Well-irrigated  

OAC 

OAC-WI.4 4 17.11 4.00 -2.78 7.20 
OAC-WI.10 10 6.01 12.98 -9.69 67.35 
OAC-WI.11 11 4.01 3.81 -3.13 8.74 
OAC-WI.14 14 34.01 4.54 3.51 10.11 
OAC-WI.16 16 11.21 3.55 -2.77 6.06 

  

LAC 

LAC-WI.3 3 25.31 5.18 -2.42 5.65 
LAC-WI.4 4 17.11 4.80 1.89 3.70 
LAC-WI.10 10 6.01 11.09 9.48 68.00 
LAC-WI.13 13 56.51 3.15 -2.05 4.50 
LAC-WI.16 16 139.51 6.68 -2.83 7.90 

Partial-irrigated  

OAC 

OAC-PI.2 2 14.01 3.3 -3.57 10.93 
OAC-PI.4 4 17.11 6.44 -3.70 11.20 
OAC-PI.10 10 6.01 11.55 -5.90 36.45 
OAC-PI.11 11 14.01 4.44 -3.68 8.98 
OAC-PI.14 14 34.01 3.79 7.98 30.83 

       

LAC 

LAC-PI.2 2 45.71 3.29 7.35 30.38 
LAC-PI.4 4 17.21 6.10 3.73 12.47 
LAC-PI.10 10 6.01 11.04 5.42 31.01 
LAC-PI.11 11 0.01 6.07 2.16 6.17 
LAC-PI.13 13 61.61 3.69 -2.32 5.88 
LAC-PI.16 16 8.41 4.49 2.52 5.64 

Late-sowing  

OAC 

OAC-LS.1 1 2.01 3.13 1.61 5.31 
OAC-LS.2 2 18.01 3.96 -6.561 58.20 
OAC-LS.10 10 10.01 3.03 -3.031 14.87 
OAC-LS.16 16 11.21 3.70 -2.351 10.76 

       

LAC 

LAC-LS.4 4 17.21 5.12 1.35 4.36 
LAC-LS.10 10 0.01 3.32 2.27 10.29 
LAC-LS.11 11 10.01 4.31 5.19 18.52 
LAC-LS.14 14 53.61 3.87 -2.34 12.19 
LAC-LS.17 17 24.71 7.84 -6.31 53.72 

Table 4.4: continued 

The QTLs are designated as the abbreviation of the trait followed by `WI 
`, `PI ` and L̀S ` for well-irrigated, partial-irrigated and late-sowing. The 
positive additive effect shows that PAC2 alleles increase the trait and 
negative additive effect shows that RHA266 alleles increase it. Fatty 
acids are measured as percentage of oil.   
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Fig. 4.1. Distribution for percentage of seed protein (PSP), percentage of seed oil 
(PSO), palmitic acid content (PAC), stearic acid content (SAC), oleic acid content 
(OAC) and linoleic acid content (LAC) in a population of sunflower recombinant 
inbred lines (RILs) grown under well-irrigated condition. 
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Fig. 4.2. Molecular linkage groups of sunflower map presenting QTLs for percentage of seed 
protein (PSP), percentage of seed oil (PSO), palmitic acid content (PAC), stearic acid content 
(SAC), oleic acid content (OAC) and linoleic acid content (LAC).The positions of QTLs are shown 
on the right side of the linkage groups. Bars represent intervals associated with the QTLs.  
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Abstract: 

 
   The objective of the present research is to map QTLs associated with agronomic traits such 

as days from sowing to flowering, plant height, yield and leaf-related traits in a population of 

recombinant inbred lines (RILs) of sunflower. Two field experiments were conducted with 

well- and partial-irrigated conditions in randomized complete block design with three 

replications. A map with 304 AFLP and 191 SSR markers with a mean density of one marker 

per 3.7 cM was used to identify QTLs related to the studied traits. The difference among RILs 

is significant for all studied traits in both conditions. Three to seven QTLs are found for each 

studied trait in both conditions. The percentage of phenotypic variance (R2) explained by 

QTLs ranged from 4% to 49%. Three to six QTLs are found for each yield-related trait in 

both conditions. The most important QTL for grain yield per plant on linkage group 13 (GYP-

P-13-1) under partial-irrigated condition controls 49% of phenotypic variance (R2). The most 

important QTL for 1000-grain weight (TGW-P-11-1) is identified on linkage group 11. 

Favorable alleles for this QTL come from RHA266. The major QTL for days from sowing to 

flowering (DSF-P-14-1) is observed on linkage group 14 and explained 38% of the 

phenotypic variance. The positive alleles for this QTL come form RHA266. The major QTL 

for HD (HD-P-13-1) is also identified on linkage group 13 and explained 37% of the 

phenotypic variance. Both parents (PAC2 and RHA266) contributed at QTLs controlling leaf-

related traits in both conditions. Common QTL for leaf area at flowering (LAF-P-12-1, LAF-

W-12-1) is detected in linkage group 12. The results do emphasize the importance of the role 

of linkage group 2, 10 and 13 for studied traits. Genomic regions on the linkage group 9 and 

12 are specific for QTLs of leaf-related traits in sunflower.   

 

 

Key Words: sunflower, recombinant inbred lines, QTL, partial-irrigation, agronomic traits  

 

 

Abbreviations: 
QTL      Quantitative trait locus  

CIM      Composite interval mapping 

 



 90

5.1 Introduction  
 

    Sunflower (Helianthus annuus L., 2n =34) has been considered for construction of 

molecular genetic map. A saturated and reference genetic map based on 304 AFLP and 191 

SSR markers with a mean density of one marker per 3.7 cM was recently constructed 

(Poormohammad Kiani et al. 2007a). Drought stress can have major impacts on plant growth 

and development. Drought can result in lower yield and possible crop failure. Upon partial 

water stress, photosynthetic activity decreases mainly due to stomatal closure, which 

constitutes the stomatal limitation of photosynthesis (Hugo et al. 2004). Low heritability of 

yield and large genotype x environment interaction are main obstacles in achieving progress 

in enhancing yield through a direct selection (Tuberosa et al. 2002). Many agricultural 

important traits such as yield, quality and disease resistance are controlled by many genes and 

are known as quantitative traits. The regions within genomes that contain genes associated 

with particular quantitative trait are recognized as quantitative trait loci (QTLs). QTLs 

controlling important traits such as in vitro regeneration parameters (Flores Berrios et al. 

2000a–c), resistance to Sclerotinia sclerotiorum and Phoma macdonaldii (Bert et al. 2004, 

and Micic et al. 2005), physiological parameters (Hervé et al. 2001), resistance to downy 

mildew and black stem (Rachid Al-Chaarani et al. 2002), agronomic traits (Rachid Al-

Chaarani et al. 2004), germination and seedling development (Rachid Al-Chaarani et al. 

2005), yield components and percentage of oil in grain (Mestries et al. 1998, Mokrani et al. 

2002, Leon et al. 2003), water status traits and osmotic adjustment under well-watered and 

water-stressed conditions (Poormohammad Kiani et al. 2007a) and seed-quality traits 

(Ebrahimi et al. 2008)  are identified in sunflower.  

Gimenez and Fereres (1986) and Prieto Losada (1992) showed that duration of leaf area is 

related to rainfed sunflower yield. The yield differences were also associated with variation in 

total biomass (Alza and Fernandez-Martinez 1997). 

 According to Flagella et al. (2002), flower bud formation and flowering are critical growth 

stages for water stress in sunflower. Some researchers have imposed water stress at flower 

bud formation stage in order to evaluate the effect of water stress on physiological traits such 

as plant water status and photosynthesis in sunflower (Pankovic et al. 1999, Maury et al. 

2000, Tezara et al. 2002).  Gimenez and Fereres (1986) and Prieto Losada (1992) showed that 

leaf area duration is related to rainfed sunflower yield. The yield differences were also 

associated with variation in total biomass (Alza and Fernandez-Martinez 1997).  
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   The goals of this research are to identify QTLs in recombinant inbred lines (RILs) of   

sunflower for leaf area at flowering (LAF), leaf area duration (LAD), head diameter (HD), 

1000 grain weight (TGW), grain yield per plant (GYP), days from sowing to flowering (DSF) 

and plant height (PH) by using a saturated SSR and AFLP linkage map (Poormohammad 

Kiani et al. 2007a), in the field condition with well- and partial-irrigated treatments.   

 

5.2 Materials and methods  
 

5.2.1 Plant materials and experimental conditions 

   The recombinant inbred lines (RILs) used in this research were developed through single 

seed descent from F2 plants, derived from a cross between PAC2 and RHA266 (Flores 

Berrios et al. 2000a). Both parental lines are sunflower public inbred lines. RHA266 has been 

obtained from a cross between wild H. annuus and Peredovik by USDA and PAC2 is an 

INRA-France inbred line from a cross between H. petiolaris and ‘HA61’(Gentzbittel et al. 

1995). RHA266 is more resistant to downy mildew with higher values for yield,1000-grain 

weight and oil percentage compared with PAC2 (Gentzbittel et al. 1995, Rachid Al-Chaarani 

et al. 2004). Two independent experiments were undertaken at Teheran University campus of 

Karaj. Experimental design was randomized complete block with three replications. Seeds of 

87 RILs and their two parents were sown in the field under well- and partial-irrigated 

conditions. Each genotype per replication consisted of one row, 4m long, 50 cm between rows 

and 25 cm between plants in rows. The distance between replications of well-irrigated and 

partial-irrigated treatments was 7m. The so-called ‘well-irrigated’ condition plots were 

irrigated once every week, whereas for the second condition (partial-irrigated), irrigation was 

controlled and adjusted by the observation of the wilting threshold of the leaves. Partial water 

deficit was started 45 day after sowing at the stage near flower bud formation and continued 

up to maturity.   

 

5.2.2 Investigation of agronomic traits   
  Various traits such as days from sowing to flowering (DSF) and plant height (PH) were 

measured for RILs and their parental lines at the plot scale (on each line, when 50% of the 

plants were at flowering stage). Moreover, leaf length (L) and width (W) of all green leaves 

were measured at flowering stage, and total leaf area at flowering (LAF) was calculated with 

the formula: LAF= 0.7L×W (Alza and  Fernandez-Martinez 1997). Green leaf area of the 
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plants was determined weekly from flowering to harvest in order to evaluate green leaf area 

with respect to time. An integral of weekly leaf area was considered as being an estimate of 

leaf area duration (LAD, m2 days). At harvest, yield components such as head diameter (HD), 

1000 grain weight (TGW) and grain yield per plant (GYP) were measured. Three plants per 

genotype per condition per replication were randomly selected for evaluation of the 

mentioned traits. All traits were measured for RILs and their parental lines in each replication 

for both experiments. 

 

 5.2.3 QTL and statistical analysis  

  Various traits data were analyzed using SAS PROC GLM (SAS Institute Inc. 1996) and 

SPSS. Statistical analysis was carried out in order to determine the main effect of RILs for the 

studied traits. Genetic correlations between the traits were also determined.  

 Sunflower map recently constructed by Poormohammad Kiani et al. (2007a) was used for 

identification of QTLs. The chromosomal locations of QTLs for the studied traits were 

resolved by composite interval mapping (CIM), using Win QTL Cartographer, version 2.5 

using mean values of three replications for each RIL in each conditions (Wang et al. 2005). 

The control marker number and the window size were 15 and 15 cM, respectively. The 

percentage of phenotypic variance (R2) explained by each QTL, the percentage of phenotypic 

variance (TR2) explained by the QTLs given all the covariants, were estimated also by Win 

QTL Cartographer . 
 

 5.3 Results  
 

   Results of analysis of variance for the agronomic traits are presented in Table 5.1. Results 

showed significant genotypic effect among RILs for all the studied traits in both well- and 

partial-irrigated conditions. Correlations among the studied traits are shown in Table 5.2. 

Positive and significant correlations are observed between LAF and LAD as well as between 

yield components in both well- and partial-irrigated conditions. The effect of blocks on GYP 

was significant under both conditions where as it was significant for TGW and DSF under 

well-irrigated condition. Correlations among the studied traits are shown in Table 2. Positive 

and significant correlations are observed between LAF and LAD as well as between yield 

components in both well- and partial-irrigated conditions. Head diameter (HD) is positively 

correlated with TGW, GYP, LAF and LAD in both conditions (Table 5.2). High significant 
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and positive correlation between TGW and GYP is observed in both well- and partial-

irrigated conditions (Table 5.2). Under well-irrigated condition, the correlation between DSP 

and LAF is significant. Grain yield per plant (GYP) is also positively correlated with LAF and 

LAD in both conditions (Table 5.2). 

The characteristic of Linkage map has been explained in detail in previous study 

(Poormohammad Kiani et al. 2007a). This map contains 304 AFLP and 191 SSR markers 

which are placed in 17 groups (Fig. 5.1). The total map length is 1824.6 cM with mean 

density of one marker per 3.7 cM, which has a density close to sunflower reference map (3.1) 

presented by Tang et al. (2002). The map position and characteristics of QTLs associated with 

studied traits in the field condition under well- and partial-irrigated conditions are presented in 

Tables 3 and 4, respectively. The bold QTLs are stable across both well- and partial-irrigated 

conditions for each trait. The QTLs are designated as the abbreviation of the trait followed by 

‘W’ or ‘P’ for well-irrigated or partial-irrigated. The corresponding linkage group and the 

number of QTLs in the group were also indicated for each QTL. QTLs explained from 4% to 

30% and 4% to 49% of the total phenotypic variance of the studied traits (R2) in well- and 

partial-irrigated conditions respectively. A large phenotypic variation was also explained 

when considering cofactors TR2 (Tables 5.3 and 5.4). Both parental lines contributed to the 

expression of the different target traits. The percentage of phenotypic variance explained by 

QTLs of DSF ranged from 5% to 38 %. The most important QTL for DSF (DSF-P-14-1) is 

found on linkage group 14 and explained 38% of the phenotypic variance. The positive alleles 

for this QTL come form RHA266 (Table 5.4). A total of eleven QTLs are found for PH in 

well- and partial-irrigated conditions and the phenotypic variance varies from 4% to 27%. The 

most important QTL for PH is PH-W-16-1, which is located on linkage group 16 at 75.61 cM. 

Individual effect of this QTL on the expression of R2 is 27%. Two common QTLs are 

identified for PH in both conditions on linkage groups 10 and 15 (PH-W-10-1and PH-P-10-1; 

PH-W-15-1 and PH-P-15-1). Three co-localized QTLs for leaf-related traits, (LAF and LAD), 

are detected on linkage groups 2, 5 and 12. Both parents (PAC2 and RHA266), contributed in 

controlling the QTLs of the two mentioned traits in both conditions. Three to six QTLs are 

found for each yield-related trait in well- and partial-irrigated conditions. QTLs explained 

from 4% to 30% and 4% to 49% of the total phenotypic variance of yield-related traits (R2) in 

well- and partial-irrigated conditions respectively. The major QTL for HD (HD-P-13-1) is 

found on linkage group 13 and explained 37% of the phenotypic variance. The positive alleles 

for this QTL come form PAC2 (Table 5.4). A total of nine QTLs are identified for grain yield 
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per plant under both conditions. The most important is GYP-P-13-1, in partial-irrigated 

condition, which is positioned on linkage group 13 at 48.21 cM. The LOD score is 7.7 and 

individual effect of this QTL on the expression of R2 is 49%, whereas the TR2 is 91% (Table 

5.4). The major QTL for 1000-grain weight (TGW-P-11-1) is identified on linkage group 11. 

For yield-related traits, the favorable alleles of identified QTLs come from both parents. 

5.4 Discussion 
  Detection of genomic regions associated with leaf-related traits and yield components under 

well- and partial-irrigated conditions will be useful for marker-based approaches to improve 

aforementioned traits in sunflower. In our experiments, variation was observed for all studied 

traits in both well- and partial-irrigated conditions. Genetic variation for some agronomic 

traits, are also reported by Rachid-Al-Chaarani et al. (2004). The QTLs detected in our 

research revealed that several putative genomic regions are involved in the expression of the 

studied agronomic traits under well- and partial-irrigated conditions. The percentage of 

phenotypic variance explained by the QTLs (R2) ranged from 4% to 49%. The positive and 

negative signs of additive effect at the different loci indicate the contribution of both parental 

lines and confirm the transgressive segregation observed at the phenotypic level (Table 5.3 

and 5.4). Transgressive segregation would be the result of the accumulation of favourable 

alleles coming from different parental lines. Transgressive segregation was also reported for 

other traits in the same population (Poormohammad Kiani et al. 2007a; Ebrahimi et al. 2008). 

 In several cases, one QTL was identified to be associated with more than one trait. Under 

well-irrigated condition, co-localization occurs for QTLs of HD and TGW on linkage group 2 

(HD-W-2-1 and TGW-W-2-1). Significant and positive correlation between HD and TGW 

(Table 5.2), is justified by the effects of their co-localized QTLs (Table 5.3). Co-localized 

QTLs for HD and LAD are identified on linkage group 5 (HD-W-5-1 and LAD-W-5-1). Under 

partial-irrigated condition, co-localized QTLs are also identified on linkage group 2 for TGW 

and GYP (TGW-P-2-1 and GYP-P-2-1), linkage group 4 for LAD and GYP (LAD-P-4-1 and 

GYP-P-4-1), Linkage group 10 for PH and LAD (PH-P-10-1 and LAD-P-10-1) and linkage 

group 13 for HD and GYP (HD-P-13-1 and GYP-P-13-1) (Table 5.4). Identification of co-

localized QTLs, influencing several traits shows that genes controlling the traits are in the 

same genomic region. The correlation among different traits as well as their co-localization 

observed is relevant to effort for manipulating multiple traits simultaneously (Poormohammad 

Kiani 2007b). The locations of QTLs identified in the present research for different traits 

when compared with those controlling some agronomic traits reported by Rachid-Al-Chaarani 
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et al. (2004), revealed 3 co-localized QTLs. The co-localized QTLs are observed on linkage 

group 5 (TGW-P-5-1 and 1000 grain weight), linkage group 7 (PH-P-7-1 and stem diameter; 

LAF-W-7-1 and sowing-to-flowering date). 

Several QTLs for LAF and LAD are detected on different linkage groups (Fig 5.1). The effect 

of leaf area duration (LAD) on grain yield per plant is more important than leaf area at 

flowering (LAF) (Poormohammad Kiani 2007b). This indicates that maintaining green leaf 

area longer after anthesis is important for a high yield production under both water treatments. 

It has been reported that maintaining green leaf area and consequently a longer duration of 

photosynthetic activity has contributed to increased yield in most of major crops (Russel 

1991, Evans 1993). Genetic differences in photosynthetic duration have been also associated 

with a longer grain filling duration and higher yield in maize (Richards 2000).  

The QTL detected for grain yield per plant (GYP-W-3-1) co-localized with a QTL controlling 

stearic acid content (4.SA.3.1) identified by Ebrahimi et al.( 2008). Some QTLs detected in 

our research co-localized also with QTLs controlling germination and seedling development 

identified by AL-chaarani et al. (2005). The co-localized QTLs are identified on linkage 

group 1 (DSF-W-1-2 and shoot dry weight), linkage group 5 (TGW-P-5-1 and percentage or 

normal seedlings), linkage group 6 (LAF-W-6-1 and shoot length) and linkage group 16 (PH-

W-16-1 and root length).  

 Some QTLs detected in our research co-localized with QTLs controlling plant water status 

and osmotic adjustment in RILs of sunflower under two water treatments in greenhouse 

condition reported by Poormohammad Kiani et al. (2007a). The co-localized QTLs are also 

identified on linkage group 7 (LAF-W-7-1 with leaf water potential and relative water content) 

on linkage group10 (LAF-W-10-1 with relative water content and on linkage group11 (LAD-

W-11-1 with osmotic potential).  

Eleven QTLs are in common across two well and partial-irrigated conditions for the studied 

traits. Stable QTLs, contain genes controlling the trait in both conditions. Our results do 

highlight the importance of the role of linkage groups 9 and 12 for controlling leaf-related 

traits. The most important are, on linkage group 9 (LAF-P-9-1 and LAD-W-9-1) and 12 (LAD-

W-12-1, LAF-W-12-1 and LAF-P-12-1). Detailed characterization of these genomic regions 

through the development and evaluation of near-isogenic lines will lead to an improved 

understanding and might set the stage for the positional cloning of genes-related to them. The 

relatively low number of RILs used in current research may have a negative influence on the 

accuracy of the calculated QTL effects, the ability to detect QTLs with small effects and R2 
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may be overestimation (Beavis et al. 1994, Bachlava et al. 2008). This was, to some degree, 

compensated by the higher precision of the phenotyping and the use of our saturated map.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 97

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 

1
7

.9
7 

2
1

.5
8 

1
2

.2
2N

S  

2 6
.0

7N
S  

40
.1

9**
 

65
.7

9**
 

LA
D

 

3
.7

0 

4
.4

0 

5
.3

0
 N

S  

2 .
5

0
 N

S  

8.
3

0**
 

13
.5

9**
 

LA
F

 

1
8

8
.0

1 

1
5

9
.9

2 

1
1

4
2

.3
4

 **
 

7 0
4

.0
2*  

13
4

0
.7

2 *
*
 

19
1

7
.2

5**
 

G
Y

P
 

8
6 

7
7 

1
9

4N
S  

4 2
8**

 

10
6

7
.2

**
 

13
7

7
.1

**
 

T
G

W
 

5
. 

5
0 

3
.7

6 

9
.9

4N
S  

1 .
7

0 N
S  

43
.4

5**
 

54
.4

1**
 

H
D

 

1
4

5
.1

0 

2
1

8
.0

1 

2
2

6
.5

9N
S  

6 4
0

.6
0N

S  

88
5

.4
8**

 

12
1

2
.7

0**
 

P
H

 

8
. 

6
0 

6
.3

2 

2
0

.2
5 N

S  

3 0
.2

7**
 

28
.8

1**
 

34
.5

6**
 

D
S

F
 

P
I 

W
I 

P
I 

W
I 

P
I 

W
I 

C
on

di
tio

ns
 

1
7

2 

2
 

8
6 df
 

 
E

rr
or

 

 
B

lo
ck

s 

 
R

IL
s  

Ta
bl

e 
 5

.1
: 

A
na

ly
si

s 
of

 v
ar

ia
nc

e 
(m

ea
n 

sq
ua

re
s)

 f
or

 d
ay

s 
fr

om
 s

ow
in

g 
to

 f
lo

w
er

in
g 

(D
S

F
),

 p
la

nt
 h

ei
gh

t 
(P

H
),

 h
ea

d 
di

am
et

er
 (

H
D

),
 1

00
0 

gr
ai

n 
w

ei
gh

t 
(T

G
W

),
 g

ra
in

 y
ie

ld
 

pe
r 

pl
an

t 
(G

Y
P

),
 l

ea
f 

ar
ea

 a
t 

flo
w

er
in

g 
(L

A
F

) 
an

d 
le

af
 a

re
a 

du
ra

tio
n 

(L
A

D
) 

in
 a

 p
op

ul
at

io
n 

of
 s

un
flo

w
er

 r
ec

om
bi

na
nt

 i
nb

re
d 

lin
es

 (
R

IL
s)

 g
ro

w
n 

un
de

r 
w

el
l-i

rr
ig

at
ed

 (
W

I)
 a

nd
 

pa
rt

ia
l-i

rr
ig

at
ed

 (
P

I)
 c

on
di

tio
ns

. 

*,
 *

*:
 s

ig
ni

fic
an

t a
t 

0.
05

 a
nd

 0
.0

1 
pr

ob
ab

ili
ty

 le
ve

l, 
re

sp
ec

tiv
el

y.
 

N
S : 

no
n-

si
gn

ifi
ca

nt
.  



 98

Ta
bl

e 
5.

2:
 S

im
pl

e 
co

rr
el

at
io

n 
co

ef
fic

ie
nt

s 
(P

ea
rs

on
) 

da
ys

 f
ro

m
 s

ow
in

g 
to

 f
lo

w
er

in
g 

(D
S

F
),

 p
la

nt
 h

ei
gh

t 
(P

H
),

 h
ea

d 
di

am
et

er
 (

H
D

),
 1

00
0 

gr
ai

n 
w

ei
gh

t 
(T

G
W

),
 g

ra
in

 y
ie

ld
 

pe
r 

pl
an

t 
(G

Y
P

),
 l

ea
f 

ar
ea

 a
t 

flo
w

er
in

g 
(L

A
F

) 
an

d 
le

af
 a

re
a 

du
ra

tio
n 

(L
A

D
) 

in
 a

 p
op

ul
at

io
n 

of
 s

un
flo

w
er

 r
ec

om
bi

na
nt

 i
nb

re
d 

lin
es

 (
R

IL
s)

 g
ro

w
n 

un
de

r 
w

el
l-i

rr
ig

at
ed

 (
W

I)
 a

nd
 

pa
rt

ia
l-i

rr
ig

at
ed

 (
P

I)
 c

on
di

tio
ns

. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

LA
F 

P
I      

0
.5

6**
 

W
I      

0
.6

5**
 

G
Y

P 

P
I     

0
.2

4**
 

0
.3

4**
 

W
I     

0
.2

3**
 

0
.3

0**
 

TG
W

 P
I    

0
.7

7**
 

0
.2

4**
 

0
.3

0**
 

W
I    

0
.7

9**
 

0
.1

9**
 

0
.2

4**
 

H
D

 

P
I   

0
.8

0**
 

0
.8

3**
 

0
.2

5**
 

0
.3

0**
 

W
I   

0
.7

8**
 

0
.8

3**
 

0
.1

9**
 

0
.2

2**
 

PH
 

P
I  

0
.2

1**
 

0
.1

8**
 

0
.2

9**
 

0
.3

6**
 

0
.4

0**
 

W
I  

0
.3

3**
 

0
.2

5**
 

0
.3

1**
 

0
.4

5**
 

0
.4

6**
 

D
SF

 

P
I 

0
.2

9**
 

-0
.2

1**
 

-0
.2

4**
 

-0
.1

6**
 

0
.1

2  N
S  

0
.1

2  N
S  

W
I 

0
.3

3**
 

-0
.0

9N
S  

-0
.2

5**
 

-0
.1

4*  

0
.1

5*  

0
.1

0 N
S  

 

 PH
 

H
D

 

TG
W

 

G
Y

P 

LA
F 

LA
D

 

*,
 *

*:
 s

ig
ni

fic
an

t a
t 

0.
05

 a
nd

 0
.0

1 
pr

ob
ab

ili
ty

 le
ve

l, 
re

sp
ec

tiv
el

y.
 

N
S : 

no
n-

si
gn

ifi
ca

nt
.  



 99

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TR2b R2a Additive 
effect 

LOD Position 
 (cM) 

Marker 
On the left of LOD peak 

Linkage 
group 

QTL Trait 

0.45 0.07 -1.06 3.7 68.21 ORS959 1 DSF-W-1-1 

DSF 0.53 0.08 1.26 3.1 43.01 E32M61_10 1 DSF-W-1-2 
0.54 0.17 1.75 5.5 65.81 E40M62_17 2 DSF-W-2-1 

        
0.63 0.13 -7.72 6.6 45.21 E38M50_2 7 PH-W-7-1 

PH 

0.64 0.06 -5.72 4.3 86.91 ORS329 8 PH-W-8-1 
0.67 0.11 8.38 5 91.41 E40M62_15 10 PH-W-10-1 
0.60 0.07 -7.39 3.7 172.71 HA3039 10 PH-W-10-2 
0.60 0.16 10.60 10.1 54.71 ORS511 13 PH-W-13-1 
0.67 0.06 6.46 4.9 34.81 ORS401 15 PH-W-15-1 
0.84 0.27 -25.33 6.7 75.61 E40M50_1 16 PH-W-16-1 

        
0.63 0.04 -0.88 4.1 100.61 E35M60_4 2 HD-W-2-1 

HD 
 

0.60 0.10 1.41 5.8 25.61 SSL231 5 HD-W-5-1 
0.64 0.04 -1.13 3.8 86.21 ORS894_1 8 HD-W-8-1 
0.63 0.05 -1.43 3.7 101.21 ORS591 10 HD-W-10-1 
0.64 0.04 -1.08 3 46.41 HA1837 15 HD-W-15-1 

        
0.85 0.18 -1.03 11 100.61 E35M60_4 2 TGW-W-2-1 

TGW 0.74 0.07 -0.67 6.5 30.61 E33M48_5 8 TGW-W-8-1 
0.73 0.10 -1.02 6 80.41 E35M48_8 10 TGW-W-10-1 

        
0.46 0.04 6.18 5.6 54.31 ORS657 3 GYP-W-3-1 

GYP 

0.48 0.04 6.12 7.7 84.91 ORS533 5 GYP-W-5-1 
0.46 0.04 3.56 6 30.61 ORS381 6 GYP-W-6-1 
0.49 0.04 -6.90 5.9 57.31 ORS243 8 GYP-W-8-1 
0.53 0.30 -16.62 8.8 24.21 HA928 10 GYP-W-10-1 
0.58 0.14 12.76 6.4 51.91 ORS630 13 GYP-W-13-1 

        
0.45 0.11 -1.84 4 57.91 ORS509 1 LAF-W-1-1 

LAF 

0.52 0.04 -0.39 5 80.11 ORS229 2 LAF-W-2-1 
0.41 0.04 1.60 6.5 27.31 ORS1024_1 5 LAF-W-5-1 
0.39 0.04 -0.55 3.9 62.21 SSL66_1 6 LAF-W-6-1 
0.41 0.11 -0.80 4.8 60.81 E35M60_22 7 LAF-W-7-1 
0.33 0.07 -0.66 3.8 69.61 E37M49_5 10 LAF-W-10-1 
0.61 0.11 0.8 4.5 68.90 E40M59_8 12 LAF-W-12-1 

        
0.58 0.04 -0.33 4.1 94.51 E33M48_4 2 LAD-W-2-1 

LAD 

0.57 0.05 0.64 6.7 25.61 SSL231 5 LAD-W-5-1 
0.60 0.10 -1.04 6.7 43.31 E36M59_13 8 LAD-W-8-1 
0.58 0.10 0.91 6.4 73.51 E36M59_17 9 LAD-W-9-1 
0.57 0.06 -0.70 3.9 72.51 E38M50_24 11 LAD-W-11-1 
0.59 0.09 0.92 4.3 5.01 E35M61_2 12 LAD-W-12-1 

Table 5.3: QTLs detected for days from sowing to flowering (DSF), plant height (PH), head diameter (HD), 
1000 grain weight (TGW), grain yield per plant (GYP), leaf area at flowering (LAF) and leaf area duration 
(LAD) under well -irrigated condition.     

The QTLs are designated as the abbreviation of the trait followed by `W ` for well-irrigated. The positive additive effect 
shows that PAC2 alleles increase the trait and negative additive effect shows that RHA266 alleles increase it. 
a Percentage of individual phenotypic variance explained. Value determined by Win QTL Cart., version 2.5  
b Percentage of phenotypic variance explained by the QTLs given all the covariants 



 100

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

TR2b R2a Additive 
effect 

LOD Position 
(cM) 

Marker 
On the left of LOD peak 

Linkage 
group 

QTL Trait 

0.53 0.05 -1.34 4.5 68.21 ORS959 1 DSF-P-1-1 

DSF 
0.50 0.06 -1.17 4 20.71 ORS1041 7 DSF-P-7-1 
0.67 0.38 -2.60 8.1 101.01 E37M47_24 14 DSF-P-14-1 
0.59 0.08 1.13 4.1 2.01 ORS31_3 17 DSF-P-17-1 

        
0.53 0.10 -6.60 4 77.41 E41M62_24 4 PH-P-4-1 

PH 
0.42 0.04 -4.33 3 56.31 E40M62_1 7 PH-P-7-1 
0.41 0.04 -4.82 4.3 172.71 HA3039 10 PH-P-10-1 
0.43 0.05 4.60 4.6 40.81 ORS401 15 PH-P-15-1 

        
0.50 0.06 1.14 3.6 57.81 ORS432 3 HD-P-3-1 

HD 
0.55 0.04 -1.05 5.2 86.81 ORS894_1 8 HD-P-8-1 
0.52 0.08 -1.59 5.1 101.21 ORS591 10 HD-P-10-1 
0.79 0.37 3.29 5 48.21 ORS630 13 HD-P-13-1 

        
0.74 0.07 -1.03 5.3 100.61 E35M60_4 2 TGW-P-2-1 

TGW 

0.71 0.10 1.00 5.8 70.11 E33M48_15 3 TGW-P-3-1 
0.71 0.06 0.72 3.9 19.51 E41M62_30 5 TGW-P-5-1 
0.72 0.08 -0.93 4.4 6.91 E33M60_1 6 TGW-P-6-1 
0.74 0.09 -0.99 3.6 82.41 E35M48_8 10 TGW-P-10-1 
0.93 0.22 -1.62 6.4 8.01 ORS733 11 TGW-P-11-1 

        
0.54 0.04 -6.31 8.4 98.61 E35M60_4 2 GYP-P-2-1 

GYP 0.54 0.04 -4.07 8 80.61 E41M59_3 4 GYP-P-4-1 
0.91 0.49 18.00 7.7 48.21 ORS630 13 GYP-P-13-1 

        
0.59 0.13 0.70 5 85.31 ORS523_1 5 LAF-P-5-1 

LAF 
0.61 0.10 0.50 5.4 42.81 HA477 9 LAF-P-9-1 
0.54 0.08 -0.58 3.4 19.61 E35M60_21 11 LAF-P-11-1 
0.63 0.16 1.01 5.1 68.91 E40M59_8 12 LAF-P-12-1 

        
0.57 0.04 0.51 3.1 53.01 E35M60_11 1 LAD-P-1-1 

LAD 
0.56 0.04 -0.70 3.5 93.51 E33M48_4 2 LAD-P-2-1 
0.55 0.06 -0.62 4.6 82.61 E41M59_3 4 LAD-P-4-1 
0.54 0.04 0.30 4 27.01 SSL231 5 LAD-P-5-1 
0.55 0.15 -1.20 6.2 170.71 HA3039 10 LAD-P-10-1 

Table 5.4: QTLs detected for days from sowing to flowering (DSF), plant height (PH), head diameter 
(HD), 1000 grain weight (TGW), grain yield per plant (GYP), leaf area at flowering (LAF) and leaf area 
duration (LAD) under partial -irrigated condition.     

 

The QTLs are designated as the abbreviation of the trait followed by `P ` for partial-irrigated. The positive 
additive effect shows that PAC2 alleles increase the trait and negative additive effect shows that RHA266 alleles 
increase it. The bold QTLs are in common, presented as stable QTLs, across both well- and partial-irrigated 
condition for each trait. 
a Percentage of individual phenotypic variance explained. Value determined by Win QTL Cart., version 2.5  
b Percentage of phenotypic variance explained by the QTLs given all the covariants 
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Fig. 5.1 Molecular linkage groups of sunflower map presenting QTLs for days from sowing to 
flowering (DSF), plant height (PH), head diameter (HD), 1000 grain weight (TGW), grain yield per plant 
(GYP), leaf area at flowering (LAF) and leaf area duration (LAD). The positions of QTLs are shown on 
the right side of the linkage groups. Bars represent intervals associated with the QTLs.  
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Fig. 5.1 (Continued)  
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Fig. 5.1 (Continued)  
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Fig. 5.1 (Continued)  
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Fig. 5.1 (Continued)  
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Fig. 5.1 (Continued)  
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Abstract 
 

  The objectives of the current research are to map QTLs controlling different traits such as 

days from sowing to flowering, plant height, yield and leaf-related traits under different 

sowing dates (temperature regimes) in a population of recombinant inbred lines (RILs). Two 

field experiments consisted of a randomized complete block design with three replications 

under normal- and late-sowing conditions. Several QTLs for the studied traits were identified 

on different linkage groups. Three to 8 QTLs were found, depending on trait and growth 

conditions, and the percentage of phenotypic variance explained by the QTLs ranged from 4% 

to 38%. Common chromosomic region on linkage group 8 was linked to an SSR marker 

ORS243 for grain yield per plant and head weight. Co-location of QTLs for mentioned traits 

with QTLs associated with seed-quality, plant water status and osmotic adjustment, 

agronomic, germination and seedling development identified in previous studies was 

observed. 

 

6.1 Introduction    
 

  Sunflower (Helianthus annuus L.) is one of the most important sources of vegetable oil in 

the world (Flores Berrios et al. 2000). Sowing date (temperature regimes), drought and 

salinity constitute some of the most serious limitations to crop growth and productivity 

(Poormohammad Kiani et al. 2007a).   

 It has been demonstrated that the sowing date may have a bigger effect on yield, and quality 

of sunflower seed (Jasso de Rodriguez et al. 2002). Studies have been carried out on sowing 

dates in sunflower revealed that growth, yield and oil is reduced when normal sowing dates 

are delayed (Robinson 1970, Unger 1980, Beard and Geng 1982,  Miller et al. 1984, 

Thompson and Heenan 1994, Jasso de Rodriguez et al. 2002, Vega and Hall 2002, Gupta and 

Rathore 1994). Planting time is a crucial factor for obtaining desirable yield (Qasim et al. 

2008). Both sowing date and genotype x sowing date interaction effect on yield mostly 

involved the variation of attributes and processes expressed postanthesis. Biomass differences 

between planting dates were the dominant determinant of the sowing effect on yield (Vega 

and Hall 2002). Genotype and sowing date (temperature regime) can modify the oleic/linoleic 

ratio (Harris et al., 1978, Champolivier and Merrien 1996, Lagravère et al., 2000). 

 Yield in sunflower, as in all other crops, depends on many characters, especially yield 

components which are controlled by several genes, their effects being modified with 
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environment (Fick and Miller 1997). Heritability for yield is relatively low compared to other 

agronomic traits (Fick 1978). Polygenic inheritance patterns are reported for sowing to 

flowering date in sunflower (Machacek 1979). Identification of QTLs for leaf, yield-related 

and various traits using a molecular marker map, not only allows genetic dissection of 

mentioned traits, but also expedites transfer of QTLs through a process known as marker-

assisted selection (Foolad et al. 2oo3). The availability of locus-specific molecular markers 

for yield-related and leaf- related traits would be of great benefit, providing the potential for 

more rapid screening of beneficial combinations of alleles in breeding programmes. 

Sunflower has been considered for construction of molecular genetic maps and several 

genetic maps are available (Gentzbittel et al. 1995, Berry et al. 1995, Jan et al. 1998, 

Gentzbittel et al. 1999, Gedil et al. 2001). Molecular genetic-linkage map based on 459 SSR, 

has been constructed by Tang et al. (2002), which is the first reference map of sunflower 

based on single- or low-copy public SSR markers. Genetic map of our department 

(Poormohammad Kiani et al. 2007a) contains 304 AFLP and 191 SSR markers with the total 

length of 1824.6 cM and a mean density of one locus every 3.7 cM. QTLs controlling 

important traits such as physiological parameters (Hervé et al. 2001), agronomic traits 

(Rachid Al-Chaarani et al. 2004), grain weight per plant (GWP), 1,000-grain weight (TGW), 

percentage of oil in grain (POG) and STF date (Mestries et al. 1998, Mokrani et al. 2002, 

Leon et al. 2003), water status traits and osmotic adjustment under well-watered and water-

stressed conditions (Poormohammad Kiani et al. 2007a) and seed-quality traits (Ebrahimi et 

al. 2008) are detected in sunflower. 

  The objective of current research is to map QTLs for leaf-related traits such as dried leaf 

number (DLN), leaf number (LN), leaf area at flowering (LAF) and leaf area duration (LAD), 

yield-related traits such as  head number (HN), head diameter (HD), head weight (HW), 1000 

grain weight (TGW), grain yield per plant (GYP), biomass (BIO) and other traits such as days 

from sowing to flowering (DSF) and plant height (PH)  in recombinant inbred lines in normal- 

and late-sowing dates by using recently saturated SSR and AFLP linkage map Poormohammad 

Kiani et al. (2007a). The formulation of breeding strategies to improve yield at late-sowing 

dates would be facilitated by identification of QTLs involved in processes underlying the 

observed yield reduction. 
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6.2 Materials and methods  
 

           6.2.1 Plant materials and experimental conditions 

   The recombinant inbred lines (RILs) used in this research were developed through single 

seed descent from F2 plants, derived from a cross between PAC2 and RHA266 (Flores 

Berrios et al. 2000). Two independent experiments were undertaken at Teheran University 

campus of Karaj. Experimental design was randomized complete block with three replications. 

Seeds of 87 RILs and their two parents were sown on May and July, as a normal- and late-

sowing, respectively. Each genotype per replication consisted of one row, 4m long, 50 cm 

between rows and 25 cm between plants in rows.  

 

        6.2.2 Traits measurement  

  DSF (days from sowing to flowering) and PH (plant height) were measured for RILs and 

their parental lines at the plot scale (on the line, when 50% of the plants were at the flowering 

stage). Leaf-related traits such as LN (leaf number), DLN (dried leaf number), were recorded 

at anthesis, and leaf length (L) and width (W) of all green leaves were measured at flowering 

stage, and total leaf area at flowering (LAF) was calculated with the formula: LAF= 0.7L×W 

(Alza and  Fernandez-Martinez 1997). Green leaf area of the plants was determined weekly 

from flowering to harvest in order to evaluate green leaf area with respect to time. An integral 

of weekly leaf area was considered as being an estimate of leaf area duration (LAD, m2 days). 

At harvest, yield components such as HD (head diameter), HW (head weight), HGW (100 

grain weight), GYP (grain yield per plant) and BIO (biomass) were measured. By the way, 

HN (head number) was measured when 50% of the plants were at the anthesis. Three plants 

per genotype per condition per replication were randomly chosen for evaluation of the 

mentioned traits. All traits measured for RILs and their parental lines in each replication for 

both experiments.  

 

     6.2.3 QTL and statistical analysis  

  Various traits data were analyzed using SAS PROC GLM (SAS Institute Inc. 1996) and 

SPSS. Statistical analysis was carried out in order to determine the main effect of RILs for the 

studied traits. Genetic correlations between the traits were also determined.  

 Sunflower map recently constructed by in our department Poormohammad Kiani et al. 

(2007a) was used for identification of QTLs. The chromosomal locations of QTLs for the 
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studied traits were resolved by composite interval mapping (CIM), using Win QTL 

Cartographer, version 2.5 (Wang et al. 2005) using mean values of three replications for each 

RIL in each conditions. The control marker number and the window size were 15 and 15 cM, 

respectively. The percentage of phenotypic variance (R2) explained by each QTL, the 

percentage of phenotypic variance (TR2) explained by the QTLs given all the covariants, were 

estimated by Win QTL Cartographer (Wang et al., 2005).  

 

6.3 Results 
 

 6.3.1 Analysis of variance and phenotypic variation 

   Results of analysis of variance for the agronomic traits are presented in Table 6.1. Results 

showed significant genotypic effect among RILs for all the studied traits in both well- and 

partial-irrigated conditions. Phenotypic correlations among different traits in two conditions 

are presented in Table 6.2. Positive and significant correlations were observed between grain 

yield per plant and other components of yield such as HD, HW, TGW and BIO in both 

conditions. Positive and significant correlations were observed among leaf-related traits 

whereas LAF and LAD were not correlated with DLN in both normal and late-sowing 

conditions (Table 2). 

 

 6.3.2 Linkage map and QTL mapping  

  The characteristic of Linkage map has been explained in detail in previous study 

(Poormohammad Kiani et al. 2007a). This map contains 304 AFLP and 191 SSR markers 

which are placed in 17 groups (Fig. 6.1). The total map length is 1824.6 cM with mean 

density of one marker per 3.7 cM, which has a density close to sunflower reference map (3.1) 

presented by Tang et al. (2002). The map position and characteristics of the QTLs associated 

with various traits such as DSF, PH and MBN, leaf-related traits and yield-related traits are 

summarized in Tables 6.3, 6.4, and 6.5 in normal- and late-sowing conditions. The bold QTLs 

are stable across both well- and partial-irrigated conditions for each trait. The QTLs are 

designated as the abbreviation of the trait followed by ‘N’ or ‘L’ for normal-sowing or late-

sowing. The percentage of phenotypic variance explained by QTLs (R2) ranged from 4% to 

38%, but a large phenotypic variation was also explained when considering cofactors ‘TR2’. 

For an easier overview of overlapping QTLs between traits and growth conditions, an image 

of all QTL regions is presented in Fig. 6.1. Both parental lines contributed to the expression of 
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the different target traits and positive or negative additive effects are explained. Overlapping 

QTLs were detected for different traits on different linkage groups (Fig. 6.1).  

 

       6.3.2.1 QTLs for DSF and PH  

  The most important QTL for DSF (DSF-L-14-1) was found on linkage group 14 and 

explained 18% of the phenotypic variance. The positive alleles for this QTL come form 

RHA266 (Table 6.3). Two common QTLs were identified for PH in both conditions on 

linkage groups 10 and 13 (PH-N-10-1and PH-L-10-2; PH-N-13-1 and PH-L-13-1).  

  

      6.3.2.2 QTLs controlling leaf-related traits  

Several QTLs were found for leaf-related traits, among which 6 were common across both 

conditions (Table 6.4). The largest amount of phenotypic variance explained by a QTL of 

DLN was 20% (DLN-L-4-1). Among 9 detected QTLs for LN under normal- and late-sowing 

conditions, two QTLs were in common (LN-N-4-1 and LN-L-4-1; LN-N-10-1and LN-L-10-1). 

The most important QTL for For LN was LN-L-10-1, which is located on linkage group 10 at 

24.21 cM. The LOD score was 3.9 and individual effect of this QTL on the expression of R2 

was 13%. Six QTLs controlling leaf-related traits were identified on the different regions of 

linkage group 9. Among 10 QTLs for LAF, the positive alleles for 8 QTLs come from 

RHA266 and for 2 QTLs they come from PAC2 in normal- and late-sowing conditions. Six 

and 4 QTLs were found for LAD in normal- and late-sowing condition, respectively (Table 

6.4). PAC2 and RHA266 contributed at QTLs controlling leaf-related traits in both conditions.   

   

       6.3.2.2 QTLs controlling yield-related traits 

  The percentage of phenotypic variance explained by QTLs controlling yield-related traits 

ranged from 4% to 38% (Table 6.5). A total of 8 QTLs were identified for HN under both 

conditions the phenotypic variance explained from 4% to 27%. The most important was HN-

L-10-1, in late sowing condition, which is situated on linkage group 10 at 32.21 cM. The LOD 

score was 9.2 and individual effect of this QTL on the expression of R2 was 27%, whereas the 

TR2 was 67%. PAC2 alleles increased head number. The largest amount of phenotypic 

variance explained by a QTL of HW was 38%, whereas the TR2 was 92% (HW-N-13-1), 

which is linked to SSR marker ORS630. Seven QTLs were identified for TGW and the 

percentage of phenotypic variance explained by these QTLs ranged from 4% to 18%. Six and 

3 QTLs were detected for BIO in late- and normal-sowing conditions, respectively. For GYP, 
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the positive alleles for 3 QTLs come from RHA266 and for 7 QTLs they come from PAC2. 

The most important was GYP-N-10-1 with 30% R2 and LOD 8.8. 

 

6.4 Discussion 
 

  6.4.1 Phenotypic variation among genotypes  

  Detection of genomic regions associated with leaf-related traits and yield components under 

normal- and late-sowing conditions will be useful for marker-based approaches to improve 

aforementioned traits in sunflower. In our experiments, variation was observed for all studied 

traits in both conditions. Genetic variation for some agronomic traits, are also reported by 

Rachid Al-Chaarani et al. (2004). The QTLs detected in our research revealed that several 

putative genomic regions are involved in the expression of the studied agronomic traits under 

both conditions. The percentage of phenotypic variance explained by the QTLs (R2) ranged 

from 4% to 38%. The positive and negative signs of additive effect at the different loci 

indicate the contribution of both parental lines and confirm the transgressive segregation 

observed at the phenotypic level (Table 6.3, 6.4 and 6.5). Transgressive segregation would be 

the result of the accumulation of favourable alleles coming from different parental lines. 

Transgressive segregation was also reported for other traits in the same population 

(Poormohammad Kiani et al. 2007a; Ebrahimi et al. 2008). 

 

 6.4.2  QTLs controlling DSF and PH 

  QTLs controlling DSF and PH in normal- and late-sowing conditions in the current research 

which are overlapped with QTLs for some traits identified in previous studies are summarized 

in Table 6.6. In our research most of the QTLs for DSF and PH were co-located with the 

seed-quality (Tang et al. 2006, Ebrahimi et al. 2008), plant water status and osmotic 

adjustment (Poormohammad Kiani et al. 2007a), agronomic (Rachid Al-Chaarani et al. 2004, 

Poormohammad Kiani 2007b) and  germination and seedling development (Rachid Al-

Chaarani et al. 2005) QTLs. The QTL for DSF (DSF-N-1-1; associated with marker ORS959) 

overlapped with oil and oleic acid content. Therefore, change in days from sowing to 

flowering, due to sowing date, will affect the levels of oil content in sunflower. Rachid Al-

Chaarani et al. (2004) observed a non-significant correlation between sowing to flowering 

time and oil content. In contrast, Leon et al. (2003) reported a significant negative correlation 

between days to flowering and seed-oil concentration in areas with short growing seasons 
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(Fargo), and they also detected two QTLs that were associated with both seed oil 

concentration and days to flowering. Duration of growth from sowing to physiological 

maturity was reduced by 15 days when sowing time was delayed (Thompson and Heenan 

1994). In several cases, one QTL was identified to be associated with more than one trait (Fig 

6.1). Overlapped QTLs were located on: linkage group 13 (linked to ORS511) for PH, HD 

and GYP (PH-L-13-1, PH-N-13-1, HD-L-13-1 and GYP-L-13-1), linkage group 14 (linked to 

ORS301) for DSF and BIO (DSF-L-14-1 and BIO-L-14-1). Genetic correlations between the 

studied traits confirm also these relations (Table 6.2). Significant and positive correlation 

between DSF and BIO and between PH and GYP (Table 2) is justified by the effects of their 

overlapped QTLs (Table 6.3 and 6.5). 

 

  6.4.3 QTLs controlling leaf-related traits  

  QTLs associated with leaf-related traits in normal- and late-sowing conditions in our 

research which are overlapped with QTLs for some traits identified in previous studied are 

presented in Table 7. Some QTLs detected for LAF in our research overlapped with QTLs 

controlling plant water status and osmotic adjustment in RILs of sunflower under two water 

treatments in greenhouse condition reported by Poormohammad Kiani et al. (2007a). The 

overlapping QTLs are located on linkage group 7 (LAF-N-7-1 with leaf water potential and 

relative water content; linked to E35M60_22) and 10 (LAF-N10-1 with relative water content; 

linked to E37M49_5) (Table 6.7). Overlapped QTLs are identified on: linkage group5 (linked 

to marker SSL231) for leaf area duration (LAD) and oleic acid content (LAD-N-5-1 and 

1.OA.5.1), linkage group6 (linked to marker E32M49_19) for LAD and oil content (LAD-L-6-

1 and 2.OC.6.1) and linkage group12 (linked to marker E35M61_2) for LAD and stearic acid 

content (LAD-N-12-1 and 2.SA.12.1) were detected (Table 6.7). Canopy stay green (defined 

as green leaf area duration) proved to be associated with adaptation to late-sowing dates. This 

indirect selection index appears to be a more reliable aspect for use in breeding for adaptation 

to late sowings than some other genotype characteristics associated to yield (Vega and Hall 

2002). Variations in BIO and harvest index were strongly linked to the amount of intercepted 

radiation during grain filling which, in turn, was associated to LAD (Vega and Hall 2002). 

The effect of leaf area duration (LAD) on grain yield per plant is more important than leaf 

area at flowering (LAF) (Poormohammad Kiani 2007b). This indicates that maintaining green 

leaf area longer after anthesis is important for a high yield production under both water 

treatments. It has been reported that maintaining green leaf area and consequently a longer 
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duration of photosynthetic activity has contributed to increased yield in most of major crops 

(Russel 1991, Evans 1993). Genetic differences in photosynthetic duration have been also 

associated with a longer grain filling duration and higher yield in maize (Richards 2000). 

Several QTLs associated with leaf-related traits were identified on the different regions of 

linkage group 9; indicating genomic regions on the linkage group 9 were important for 

marker-based breeding programme for leaf-related traits in sunflower. In both normal- and 

late-sowing conditions, the co-location of QTLs for LAF and BIO (LAF-L-2-1, LAF-N-2-1 

and BIO-L-2-1; associated with marker ORS1024_1), LN, HN and DLN (LN-L-4-1, LN-N-4-

1, HN-L-4-1 and DLN-L-4-1; associated with marker ORS671_1), LN and HN (LN-N-4-1 and 

HN-L-4-1; associated with marker ORS671_1), LAD, HD and GYP (LAD-N-5-1, HD-N-5-1 

and GYP-L-5-1; associated with marker SSL231), LN and GYP (LN-N-10-1, LN-L-10-1 and 

GYP-N-10-1; associated with marker HA1108), LAF, GYP  and HW (LAF-L-10-1, GYP-L-

10-1 and HW-L-10-1; associated with marker SSL39) and LAD and BIO (LAD-L-11-1, LAD-

N-11-1 and BIO-L-11-1; associated with marker E38M50_24) was determined. Identification 

of overlapped QTLs, influencing several traits shows that genes controlling the traits are in 

the same genomic region. The correlation among different traits as well as their co-

localization observed is relevant to effort for manipulating multiple traits simultaneously. 

 

  6.4.4 QTLs controlling yield-related traits  

  It can be concluded that grain yield and its components were affected considerably by 

sowing date. Progress in increasing yield and its stability through a direct selection has been 

hampered by the low heritability of yield. The observed lower yields associated with late 

sowings have been variously hypothesized as due to warmer temperatures during the early 

growth period, which promotes excessive early stem growth (Beard and Geng, 1982) and 

reduce time to flowering (Andrade, 1995), and to cooler temperatures and reduced incident 

radiation postanthesis, which affects the dynamics of grain filling (Andrade, 1995; Bange et 

al., 1997). In both condition normal- and late-sowing condition, stable QTLs for head weight 

(HW-L-2-1, HW-N-2-1), head diameter (HD-L-2-1, HD-N-2-1) and 1000 grain weight (HGW-

L-2-1, HGW-N-2-1) were identified on linkage group 2. It can be explained by positive 

correlation among yield components. We also detected another co-located region for HW and 

GYP in linkage group 8 and 6 that were linked to marker ORS243 and ORS381 in both 

conditions, respectively (Fig. 6.1). Total biomass produced will depend on incident radiation, 

canopy fractional interception, and the efficiency with which intercepted radiation is 
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converted into biomass (radiation use efficiency, RUE). Biomass accumulation was mostly 

influenced by the amount of intercepted radiation rather than by radiation use efficiency. On 

linkage group 7, 8, 9, 11 and 14, five regions were detected where Biomass, stearic acid 

content, oil content, head diameter, 1000 grain weight and leaf number (linked to E33M50_2), 

Biomass, linoleic acid content, oleic acid content and stearic acid content (linked to SSU217), 

Biomass and osmotic potential (linked to E38M50_24) and Biomass and sowing to flowering 

(linked to ORS301) were co-located (Table 6.8).  

Nineteen QTLs were in common across two normal- and late-sowing conditions for the 

studied traits. The effect of sowing date on number of seed was significant (Uslu 1998). Dry 

matter production at flowering and harvest index were lowered under late sowing condition 

(Thompson and Heenan 1994). In our research, SSR marker ORS243 was associated with 

QTLs controlling HW in both normal- and late-sowing condition (HW-L-8-1, HW-N-8-1) and 

GYP (GYP-N-8-1). It is possible that overlapping regions are loci with pleiotropic effects. The 

current research enabled us to investigate the genetic basis of trait association by looking for 

co-location of corresponding QTLs for leaf-related traits, yield-related traits and other traits 

on the genetic map under different sowing date (temperature regimes). Detailed 

characterization of these genomic regions through the development and evaluation of near-

isogenic lines will lead to an improved understanding and might set the stage for the 

positional cloning of genes-related to them. The relatively low number of RILs used in current 

research may have a negative influence on the accuracy of the calculated QTL effects, the 

ability to detect QTLs with small effects and R2 may be overestimation (Beavis et al. 1994, 

Bachlava et al. 2008). This was, to some degree, compensated by the higher precision of the 

phenotyping and the use of our saturated map.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 117

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

PH
 L 1571.43** 1571.43** 203.46 

N
 

1212.70** 640.6 218.01 

D
SF

 L 18.22* 15.22* 3.87 

N
 

34.56** 30.27** 6.32 

Y
ie

ld
-r

el
at

ed
 tr

ai
ts

 

TG
W

 

L 907.00** 31.00 52.00 

N
 

1377.10** 428.00** 77.00 

BI
O

 L 20603.95* 5334.97* 2075.65 

N
 

26343.59** 16957.97* 6265.76 
G

Y
P L 1261.08**    1236.91** 113.30 

N
 

1917.25** 704.02* 159.92 

H
D

 L 41.48** 27.25** 2.82 

N
 

54.41** 1.70 3.76 

H
W

 L 4644.34** 1915.29** 205.41 

N
 

7785.17** 466.33 304.76 

H
N

 L 345.38** 55.20 30.38 

N
 

391.72** 264.78 139.18 

Le
af

-r
el

at
ed

 tr
ai

ts
 

LA
D

 L 35.03** 26.93 12.68 

N
 

65.79** 26.07 21.58 

LA
F L 7.44** 5.06* 2.60 

N
 

13.59** 2.50 4.40 

D
LN

 L 8.75** 30.26** 4.85 

N
 

29.60** 6.01 11.78 

LN
 L 4227.68** 159.60 909.46 

N
 

4658.76** 1026.00 708.17 

 dF
  8

6 2
 

1
7

2 

  

C
on

di
tio

n 

R
IL

s 

Bl
oc

ks
 

Er
ro

r 

Ta
bl

e 
 6

.1
: A

na
ly

si
s 

of
 v

ar
ia

nc
e 

(m
ea

n 
sq

ua
re

s)
 f

or
 le

af
-,

 y
ie

ld
-r

el
at

ed
 t

ra
its

, D
S

F
 a

nd
 P

H
 in

 s
un

flo
w

er
 (

R
IL

s)
  i

n 
a 

po
pu

la
tio

n 
of

 
su

nf
lo

w
er

 r
ec

om
bi

na
nt

 in
br

ed
 li

ne
s 

(R
IL

s)
 g

ro
w

n 
un

de
r 

no
rm

al
-s

ow
in

g 
(N

) 
an

d 
la

te
-s

ow
in

g 
(L

) 
co

nd
iti

on
s,

   
 

* 
S

ig
n

ifi
ca

n
t a

t 0
.0

5
 p

ro
b

ab
ili

ty
 le

ve
l, 

**
 S

ig
n

ifi
ca

n
t a

t 0
.0

1
 p

ro
b

ab
ili

ty
 le

ve
l. 

 

  



 118

Ta
bl

e 
 6

.2
: S

im
pl

e 
co

rr
el

at
io

n 
co

ef
fic

ie
nt

s 
(P

ea
rs

on
) 

am
on

g 
le

af
-r

el
at

ed
 t

ra
its

, 
yi

el
d-

re
la

te
d 

tr
ai

ts
, 

D
S

F
 a

nd
 P

H
 in

 s
un

flo
w

er
 

(R
IL

s)
 u

nd
er

 n
or

m
al

-s
ow

in
g 

(N
) 

an
d 

la
te

-s
ow

in
g 

(L
) 

co
nd

iti
on

s.
   

 
 
 

 
 
 
 
 
 
 
 
 

LA
F 

L
           

 
0.67** 

 
N

 
          0.65**  

G
Y

P 

L
          0.29**  0.29**  

N
 

         0.23**  0.30**  

TG
W

 L
         0.75**  0.34**  0.41**  

N
 

        0.79**  0.19**  0.24**  

H
W

 L
        0.86**  0.90**  0.33**  0.33**  

N
 

       0.85**  0.91**  0.23**  0.30**  

H
D

 L
       0.92**  0.76**  0.83**  0.30**  0.30**  

N
 

      0.89**  0.78**  0.83**  0.19**  0.25**  

BI
O

 L
      0.23**  0.22**  0.33**  0.22**  0.65**  0.67**  

N
 

     0.24**  0.27**  0.25**  0.29**  0.78**  0.63**  

H
N

 L
     0.20**  -0.69**  -0.72**  -0.70**  -0.63**  0.08  0.10  

N
 

    0.31**  -0.45**  -0.45**  -0.45**  -0.43**  0.40**  0.38**  

PH
 L

    -0.27**  0.27**  0.38**  0.43**  0.46**  0.39**  0.35**  0.37**  

N
 

   0.09  0.47**  0.33**  0.34**  0.25**  0.31**  0.45**  0.46**  

LN
 L

   -0.17**  0.85**  0.19**  -0.55**  -0.57**  -0.55**  -0.49**  0.31**  0.31**  

N
 

  0.11  0.75**  0.38**  -0.54**  -0.54**  -0.51**  -0.48**  0.49**  0.45**  

D
LN

 L
  0.21**  0.20**  -0.05  0.05  -0.0 9 0.02  0.04  0.01  0.06  0.06 

N
 

 0.29**  0.24**  0.08 0.05  -0.11  -0.09  -0.11  -0.01  0.09  0.11  

D
SF

 L
 0.24**  0.15* 0.10 0.23**  0.07  -0.29**  -0.22**  -0.14**  -0.26**  0.02  0.06  

N
 

0.44**  0.31**  0.33**  0.26**  0.16**  -0.09 -0.13* -0.25**  -0.14* 0.15* 0.10  

 
 DLN LN PH HN BIO HD HW TGW GYP LAF LAD * 

S
ig

n
ifi

ca
n

t a
t 0

.0
5

 p
ro

b
ab

ili
ty

 le
ve

l, 
**

 S
ig

n
ifi

ca
n

t a
t 0

.0
1

 p
ro

b
ab

ili
ty

 le
ve

l. 
 

  



 119

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

TR2b R2a Additive 
effect 

LOD Position 
(cM) 

Marker 
On the left of 

LOD peak   

Linkage 
group 

QTL Trait 

Normal-sowing  
0.45 0.07 -1.06 3.7 68.21 ORS959 1 DSF-N-1-1 

DSF 0.53 0.08 1.26 3.1 43.01 E32M61_10 1 DSF-N-1-2 
0.54 0.17 1.75 5.5 65.81 E40M62_17 2 DSF-N-2-1 

        
0.63 0.13 -7.72 6.6 45.21 E38M50_2 7 PH-N-7-1 

PH 

0.64 0.06 -5.72 4.3 86.91 ORS329 8 PH-N-8-1 
0.67 0.11 8.38 5 91.41 E40M62_15 10 PH-N-10-1 
0.60 0.07 -7.39 3.7 172.71 HA3039 10 PH-N-10-2 
0.60 0.16 10.60 10.1 54.71 ORS511 13 PH-N-13-1 
0.67 0.06 6.46 4.9 34.81 ORS401 15 PH-N-15-1 
0.84 0.27 -25.33 3.6 75.61 E40M50_1 16 PH-N-16-1 

        

Late-sowing  
0.60 0.05 0.67 3.8 26.91 E35M60_23 2 DSF-L-2-1 

DSF 

0.58 0.04 0.98 3.3 63.81 E40M62_17 2 DSFL-2-2 
0.56 0.08 0.80 3.8 127.81 E40M47_13 9 DSF-L-9-1 
0.59 0.09 1.12 5.5 134.11 E35M61_6 10 DSF-L-10-1 
0.52 0.04 -0.72 3.5 57.21 E32M61_7 10 DSF-L-10-2 
0.50 0.18 -1.27 6.8 105.01 ORS301 14 DSF-L-14-1 
0.55 0.06 0.99 3.1 86.81 E37M47_5 16 DSF-L-16-1 
0.59 0.07 1.00 5.3 110.21 E35M62_8 17 DSF-L-17-1 

        
0.64 0.09 -6.51 5.4 62.81 E35M60_22 7 PH-L-7-1 

PH 

0.65 0.11 -9.14 5.6 46.21 E32M49_17 10 PH-L-10-1 
0.70 0.10 9.38 4.5 91.41 E40M62_15 10 PH-L-10-2 
0.67 0.15 9.27 6.5 54.71 ORS511 13 PH-L-13-1 
0.58 0.06 6.08 4.4 39.41 HA3330 13 PH-L-13-2 
0.69 0.04 4.66 3.1 20.41 HA3886 14 PH-L-14-1 

        

Table 6.3: Map position and effect of QTLs detected in RILs for DSF and PH   
 

The QTLs are designated as the abbreviation of the trait followed by ‘N’ or ‘L’ for normal-sowing or late-
sowing. The positive additive effect shows that PAC2 alleles increase the trait and negative additive effect 
shows that RHA266 alleles increase it. The bold QTLs are in common, presented as stable QTLs, across both 
well- and partial-irrigated condition for each trait. 
a Percentage of individual phenotypic variance explained. Value determined by Win QTL Cart., version 2.5  
b Percentage of phenotypic variance explained by the QTLs given all the covariants 
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TR2b R2a Additive 
effect 

LOD Position 
(cM) 

Marker 
On the left of 
LOD peak  a 

Linkage 
group 

QTL Trait 

Normal-sowing  
0.58 0.08 1.14 3 2.01 E32M47_13 3 DLN-N-3-1 

DLN 
0.50 0.05 -1.00 4.4 18.01 E37M61_7 8 DLN-N-8-1 
0.43 0.07 1.01 7.2 56.31 SSL27 11 DLN-N-11-1 
0.45 0.09 1.05 7.3 59.01 E41M62_4 11 DLN-N-11-2 

        
0.62 0.05 6.34 3.3 85.91 ORS671_1 4 LN-N-4-1 

LN 
0.64 0.09 -14.89 4.1 20.51 ORS887 9 LN-N-9-1 
0.64 0.09 14.19 4.7 100.01 E37M47_18 9 LN-N-9-2 
0.62 0.11 18.23 5 21.31 HA1108 10 LN-N-10-1 
0.73 0.09 -22.61 3.2 59.21 E32M61_7 10 LN-N-10-2 

        
0.45 0.11 -1.84 4 57.91 ORS509 1 LAF-N-1-1 

LAF 

0.52 0.04 -0.39 5 80.11 ORS229 2 LAF-N-2-1 
0.41 0.04 1.60 6.5 27.31 ORS1024_1 5 LAF-N-5-1 
0.39 0.04 -0.55 3.9 62.21 SSL66_1 6 LAF-N-6-1 
0.41 0.11 -0.80 4.8 60.81 E35M60_22 7 LAF-N-7-1 
0.33 0.07 -0.66 3.8 69.61 E37M49_5 10 LAF-N-10-1 
0.61 0.11 0.8 4.5 68.90 E40M59_8 12 LAF-N-12-1 

        
0.58 0.04 -0.33 4.1 94.51 E33M48_4 2 LAD-N-2-1 

LAD 

0.57 0.05 0.64 6.7 25.61 SSL231 5 LAD-N-5-1 
0.60 0.10 -1.04 6.7 43.31 E36M59_13 8 LAD-N-8-1 
0.58 0.09 0.91 6.4 73.51 E36M59_17 9 LAD-N-9-1 
0.57 0.06 -0.70 3.9 72.51 E38M50_24 11 LAD-N-11-1 
0.59 0.09 0.92 4.3 5.01 E35M61_2 12 LAD-N-12-1 

        

Late-sowing  
0.56 0.08 0.97 3 2.01 E32M47_13 3 DLN-L-3-1 

DLN 
0.64 0.20 -1.02 7.6 85.91 ORS671_1 4 DLN-L-4-1 
0.58 0.11 0.66 7.8 28.81 E38M60_5 9 DLN-L-9-1 
0.54 0.04 -0.94 6.3 138.01 E33M60_2 10 DLN-L-10-1 
0.58 0.17 -0.79 10.6 96.11 E35M48_7 17 DLN-L-17-1 

        
0.51 0.05 9.64 3 85.91 ORS671_1 4 LN-L-4-1 

LN 
0.50 0.04 -8.17 3 74.61 E38M48_12 8 LN-L-8-1 
0.51 0.06 11.01 3.1 98.51 E38M48_5 9 LN-L-9-1 
0.51 0.13 20.34 3.9 24.21 HA1108 10 LN-L-10-1 

        
0.57 0.04 -0.35 6.7 80.11 ORS229 2 LAF-L-2-1 

LAF 0.59 0.06 -0.59 6.7 14.91 ORS1127 9 LAF-L-9-1 
0.56 0.08 -0.55 7.6 99.91 SSL39 10 LAF-L-10-1 

        
0.62 0.05 -0.45 5.6 93.51 E33M48_4 2 LAD-L-2-1 

LAD 0.59 0.09 -0.55 5 40.81 E32M49_19 6 LAD-L-6-1 
0.57 0.04 -0.33 4.3 74.51 E38M50_24 11 LAD-L-11-1 
0.59 0.04 0.61 9.1 16.51 SSU25 15 LAD-L-15-1 

Table 6.4: Map position and effect of QTLs detected in RILs for leaf-related traits  
 

The QTLs are designated as the abbreviation of the trait followed by ‘N’ or ‘L’ for normal-sowing or late-
sowing. The positive additive effect shows that PAC2 alleles increase the trait and negative additive effect 
shows that RHA266 alleles increase it. The bold QTLs are in common, presented as stable QTLs, across both 
well- and partial-irrigated condition for each trait. 
a Percentage of individual phenotypic variance explained. Value determined by Win QTL Cart., version 2.5  
b Percentage of phenotypic variance explained by the QTLs given all the covariants 



 121

TR2b R2a Additive 
effect 

LOD Position 
(cM) 

Marker 
On the 
left of 

LOD peak  

Linkage 
group 

QTL Trait 

Normal-sowing 
0.65 0.11 -5.47 5.9 56.31 E38M50_16 4 HN-N-4-1 

HN 0.64 0.06 -3.15 6 28.91 E33M48_20 13 HN-N-13-1 
0.67 0.09 -3.86 4.9 92.31 E36M59_3 14 HN-N-14-1 

        
0.63 0.04 -0.88 4.1 100.61 E35M60_4 2 HD-N-2-1 

HD 
0.60 0.10 1.41 5.8 25.61 SSL231 5 HD-N-5-1 
0.64 0.04 -1.13 3.8 86.21 ORS894_1 8 HD-N-8-1 
0.63 0.05 -1.43 3.7 101.21 ORS591 10 HD-N-10-1 
0.64 0.04 -1.08 3 46.41 HA1837 15 HD-N-15-1 

        
0.76 0.09 -18.02 8.5 98.61 E35M60_4 2 HW-N-2-1 

HW 
0.73 0.11 -18.60 9.8 80.61 E41M59_3 4 HW-N-4-1 
0.45 0.05 -11.23 5 57.55 ORS243 8 HW-N-8-1 
0.92 0.38 22.12 10.7 48.21 ORS630 13 HW-N-13-1 

        
0.85 0.18 -1.03 11 100.61 E35M60_4 2 TGW-N-2-1 

TGW 0.74 0.07 -0.67 6.5 30.61 E33M48_5 8 TGW-N-8-1 
0.73 0.10 -1.02 6 80.41 E35M48_8 10 TGW-N-10-1 

        
0.38 0.04 -6.68 4.1 29.91 E33M50_2 7 BIO-N-7-1 

BIO 0.59 0.06 18.43 5 70.31 SSL268 12 BIO-N-12-1 
0.53 0.05 6 10.8 14.51 SSU25 15 BIO-N-15-1 

        
0.46 0.04 6.18 5.6 54.31 ORS657 3 GYP-N-3-1 

GYP 

0.48 0.04 6.12 7.7 84.91 ORS533 5 GYP-N-5-1 
0.46 0.04 3.56 6 30.61 ORS381 6 GYP-N-6-1 
0.49 0.04 -6.90 5.9 57.31 ORS243 8 GYP-N-8-1 
0.53 0.30 -16.62 8.8 24.21 HA1108 10 GYP-N-10-1 
0.58 0.14 12.76 6.4 51.91 ORS630 13 GYP-N-13-1 

        
Late -sowing  

0.60 0.09 4.29 4.4 87.91 ORS671_1 4 HN-L-4-1 

HN 
0.60 0.04 -2.71 3.7 56.31 E38M50_16 4 HN-L-4-2 
0.67 0.27 7.22 9.2 32.21 E41M59_11 10 HN-L-10-1 
0.59 0.08 -3.89 4 23.71 E40M50_12 13 HN-L-13-1 
0.57 0.05 -2.10 3.6 90.31 E36M59_3 14 HN-L-14-1 

        
0.58 0.10 -1.17 5.7 96.61 E35M60_4 2 HD-L-2-1 

HD 
0.51 0.07 1.12 3 8.01 E41M62_6 4 HD-L-4-1 
0.52 0.05 -1.07 3.8 102.01 ORS591 10 HD-L-10-1 
0.58 0.07 1.40 3.1 54.71 ORS511 13 HD-L-13-1 

        
0.45 0.06 -12.57 5.4 42.31 ORS525_1 2 HW-L-2-1 

HW 

0.53 0.07 -13.63 4.8 96.61 E35M60_4 2 HW-L-2-2 
0.47 0.05 -12.57 3.9 77.41 E41M62_24 4 HW-L-4-1 
0.43 0.05 -10.23 5.7 57.31 ORS243 8 HW-L-8-1 
0.51 0.10 -21.91 6.6 98.01 SSL39 10 HW-L-10-1 
0.45 0.06 12.32 3.7 52.21 ORS630 13 HW-L-13-1 

        
0.76 0.04 -1.08 9.4 98.61 E35M60_4 2 TGW-L-2-1 

TGW 
0.71 0.10 -0.67 10.7 79.41 E41M62_24 4 TGW-L-4-1 
0.73 0.11 1.00 5.9 74.41 HA3700 5 TGW-L-5-1 
0.73 0.07 -0.91 7.4 32.21 E41M59_11 10 TGW-L-10-1 

        
0.42 0.08 -14.58 4.1 57.91 ORS509 1 BIO-L-1-1 

BIO 

0.51 0.10 -16.18 5.2 80.11 ORS229 2 BIO-L-2-1 
0.41 0.04 -11.04 4.8 13.21 SSU217 8 BIO-L-8-1 
0.37 0.10 17.16 8.3 76.51 E38M50_24 11 BIO-L-11-1 
0.43 0.06 -12.79 5.1 107.01 ORS301 14 BIO-L-14-1 
0.41 0.04 -13.23 4.5 55.71 ORS656 16 BIO-L-16-1 

        
0.41 0.05 5.33 9.5 25.61 SSL231 5 GYP-L-5-1 

GYP 0.40 0.04 4.83 6.8 30.61 ORS381 6 GYP-L-6-1 
0.44 0.07 -8.74 7.6 98.01 SSL39 10 GYP-L-10-1 
0.50 0.11 9.15 5.5 54.71 ORS511 13 GYP-L-13-1 

Table  6.5: Map position and effect of QTLs detected in RILs for yield-related traits  
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Days from sowing to flowering and  plant 
height (in our present study) 

Previuose  study 
 

Overlapped 
      QTLs 

marker linked 
to Overlapped 
        QTL       Normal -sowing 

          condition 
      Late -sowing  
        condition 

Seed-quality traits (Tang et al. 2006 [A], Ebrahimi et al. 2008[B])  

Days from sowing to 
flowering 

 Oil content [B] 
Oleic acid content [B] 
Oil content [A] 

DSF-N-1-1; 
1.OC.1.1 
1.OA.1.1 
 

ORS959 

Plant height  Linoleic acid content 
[B] 

PH-N-7-1; 
4.LA.7.1 
 

E38M50_2 

Plant height  Palmitic acid content 
[B] 

PH-N-8-1; 
2.PA.8.2 
 

ORS329 

Plant height  Stearic acid content 
[B] 

PH-N-15-1; 
3.SA.15.1 
 

ORS401 

 
Plant height Stearic acid content 

[B] 
PH-L-14-1; 
1.SA.14.1 
 

HA3886 

 
Days from sowing to 
flowering 

Palmitic acid content 
[B] 

DSF-L-16-1; 
2.PA.16.1 
 

E37M47_5 

                                            
Plant water status and osmotic adjustment traits ( Poormohammad Kiani et al. 2007a) [C]    
 Plant height Leaf water potential 

[C] 
Relative water content 
[C] 

PH-L-7-1; 
LWP.WS.7.1 
RWC.WS.7.1 

E35M60_2 

Germination and seedling development traits (Rachid Al-Chaarani et al. 2005) [D]            

Days from sowing to 
flowering 

 Shoot dry weight [D] DSF-N-1-2; 
sdw-3-1 
 

E32M61_10 

 Days from sowing to 
flowering 

Shoot length  [D] DSF-L-1-2; 
sl-15 
 

E35M62_8 

Plant height  Root length [D] PH-N-16-1; 
rl-8 

E40M50_1 

Agronomic traits (Rachid Al-Chaarani et al. 2004 [E], Poormohammad Kiani 2007b[F])  

Days from sowing to 
flowering 

 Sowing-to-flowering 
date [F] 
 

DSF-N-1-1; 
DSFI.1.1 
 

ORS959 

Plant height  Total dry matter [F] 
Head weight [F] 
Head weight [F] 

PH-N-10-2; 
HWD.10.1 
HWN.10.2 
 

HA3039 

 Plant height  Sowing-to-flowering 
date [E]    
 Leaf number [F] 

PH-L-7-1; 
stf-4-1 
LNN.7.1 
 

E35M62_22 

 Days from sowing to 
flowering 

Leaf area [F] DSF-L-9-1; 
LAFW.9.1 
 

E40M47_13 

 Days from sowing to 
flowering 

Total dry matter [F] 
 

DSF-L-10-1; 
BIOI.10.1 
 

E35M61_6 

 Days from sowing to 
flowering 

Sowing-to-flowering 
date [F] 
 

DSF-L-16-1; 
DSFD.16.1 

E37M47_5 

Table 6.6: QTLs controlling DSF and PH in normal- and late-sowing conditions in the 
present study, which are overlapped with QTLs for some traits identified in previous 
studies  
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leaf-related traits  
(in our present study) 

Previuose  study 
 

Overlapped 
      QTLs 

marker linked 
to Overlapped 
        QTL       Normal -sowing 

          condition 
      Late -sowing  
        condition 

Seed-quality traits (Ebrahimi et al. 2008) [B]  

Leaf area duration  Oleic acid content [B] LAD-N-5-1; 
1.OA.5.1 
 

SSL231 

Leaf number at flowering  Palmitic acid content [B] LN-N-9-1; 
3.PA.9.1 
 

ORS887 

Leaf area duration  Stearic acid content [B] LAD-N-12-1; 
2.SA.12.1 
 

E35M61_2 

 Leaf area duration Oil content [B] LAD-L-6-1; 
2.OC.6.1 
 

E32M49_19 

 
Dried leaf number at flowering Palmitic acid content [B] DLN-L-10-1; 

1.PA.10.2 
 

E33M60_2 

 
Leaf number at flowering Oleic acid content [B] LN-L-9-1; 

1.OA.9.1 
 

E38M48_5 

 
Dried leaf number at flowering Linoleic acid content [B] DLN-L-17-1; 

3.LA.17.2 
E35M48_7 

 Plant water status and osmotic adjustment traits ( Poormohammad Kiani et al. 2007a) [C]    
Leaf area at flowering  Leaf water potential [C] 

Relative water content [C] 
LAF-N-7-1;  
LWP.WS.7.1 
RWC.WS.7.1 
 

E35M60_22 

Leaf area at flowering  Relative water content [C] LAF-N-10-1; 
RWC.WW.10.1 
 

E37M49_5 

Leaf area duration Leaf area duration Osmotic potential [C] LAD-N-11-1, 
LADL-11-1; 
OP.WS.11.1 

E38M50_24 

   Germination and seedling development traits (Rachid Al-Chaarani et al. 2005) [D]            
Leaf area duration  Shoot length [D] LAF-N-6-1; 

sl-5 
SSL66_1 

  Agronomic traits (Rachid Al-Chaarani et al. 2004 [E], Poormohammad Kiani 2007b [F])      
Leaf area duration  Leaf number [F] LAD-N-5-1; 

LNN.5.1 
 

SSL231 

Leaf number at flowering  Leaf number [F] LAF-N-5-1; 
LND.5.1 

ORS1024_1 

 
Leaf number at flowering 

  
Sowing-to-flowering date[E] 
 

 
LAF-N-7-1; 
stf-4-1 

 
E35M60_22 

Leaf number at flowering  Duration of photosynthetic 
[F] 

LN-N-9-1; 
LADD.9.1 
 

E37M47_18 

Leaf area duration  Total dry matter [F] LAD-N-12-1; 
BIOW.12.1 
 

E35M61_2 

Dried leaf number at 
flowering 

Dried leaf number at flowering Total dry matter [F] DLN-L-3-1, 
DLN-N-3-1; 
BIOI.3.1 

E32M47_13 

Table 6.7: QTLs associated with leaf-related traits in normal and late-sowing conditions in our research, which are 
overlapped with QTLs for some traits identified in previous studies 
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Yield-related traits  
in our present study 

Previuose  study 
 

Overlapped 
      QTLs 

marker linked 
to Overlapped 
        QTL       Normal-sowing 

          condition 
      Late -sowing  
        condition 

  Seed-quality traits (Ebrahimi et al. 2008 [B] and Pérez-Vich et al., 2006[G])  
Head diameter  
1000-grain weight  
Head weight  

Head diameter  
1000-grain weight  
Head weight 

Palmitic acid content [B] HD-N-2-1, 
TGW-N-2-1, 
HW-N-2-1, 
HD-L-2-1, 
TGW-L-2-1, 
HW-N-2-2; 
2.PA.2.1 
 

E35M60_4 

Grain yield per plant    Oil content [B] 
Stearic acid content [B] 

GYP-N-3-1; 
2.OC.3.1  
4.SA.3.1 
 

ORS657 

Head diameter  
 

Grain yield per plant   Oleic acid content [B] HD-N-5-1, 
GYP-L-5-1; 
1.OA.5.1 

SSL231 

Biomass   Oil content [B] 
Stearic acid content [B] 

BIO-N-7-1; 
1.OC.7.2 
2.SA.7.1 
 

E33M50_2 

1000-grain weight  
 

 Oil content [B 
Stearic acid content [B] 
 

TGW-N-10-1; 
4.OC.10.1 
3.SA.10.1 
 

E35M48_8 
 

Head number   Linoleic acid content [B] HN-N-13-1; 
2.LA.13.2 

E33M48_20 
 

 Biomass Linoleic acid content [B] 
Oleic acid content [B] 
Stearic acid content [B] 

BIO-L-8-1; 
1.LA.8.1 
1.OA.8.1 
2.SA.8.1 
 

SSU217 

 Head weight Oil content [B] 
 

HW-L-2-1; 
1.OC.2.1 
 

ORS525_1 

Grain yield per plant   
Head weight 

Head weight Es3 gene (associated with stearic 
acid level) [G]  
 
Palmitic acid content [B] 

HW-N-8-1, 
HW-L-8-1, 
GYP-L-8-1; 
4. PA.8.2 

ORS243 

Plant water status and osmotic adjustment traits ( Poormohammad Kiani et al. 2007a) [C] 
 Head diameter  

 
Turgor potential [C] HD-L-4-1; 

TP.WW.4.1 
E41M62_6 

 Biomass Osmotic potential [C] BIO-L-11-1; 
OP.WS.11.1 

E38M50_24 

 
Germination and seedling development traits (Rachid Al-Chaarani et al. 2005) [D]            

           
Head number  Shoot fresh  weight [D] 

Shoot dry weight [D] 
 

HN-N-13-1; 
sfw-12 
sdw-12 
 

E33M48_20 
 

 Head number Shoot fresh weight [D] 
Root fresh weight [D] 
Shoot dry weight [D] 
 

HN-L-13-1; 
sfw-12 
rfw-12 
sdw-12 
 

E40M50_12 

 Head number 
1000-grain weight 

Shoot length [D] HN-L-10-1, 
TGW-L-10-1; 

E41M59_11 

Table 6.8: QTLs controlling yield-related traits in normal- and late-sowing conditions in the present study, which are 
overlapped with QTLs for some traits identified in previous studies 
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 sl-9 

Agronomic traits (Rachid Al-Chaarani et al. 2004 [E], Poormohammad Kiani 2007b[F]) 
Head diameter  
1000-grain weight  
Head weight  

Head diameter  
1000-grain weight  
Head weight 

Head weight [F] 
Grain yield [F] 
 

HD-N-2-1, 
TGWN-2-1, 
HW-N-2-1, 
HD-L-2-1, 
TGW-L-2-1, 
HW-N-2-2; 
HWN.2.1 
GYPN.2.1 
 

E35M60_4 

Head weight  Grain yield [F] HW-N-4-1; 
GYPI.4.2 
 

E41M59_3 

Grain yield per plant    Leaf area [F] GYP-N-5-1; 
LAFN.5.1 
 

ORS533 

Biomass  Head diameter [E] 
1000 grain weight [E] 
Leaf number [F] 
 

BIO-N-7-1; 
hd-4-1 
tgw-4-1 
LNI.7.2 
 

E33M50_2 

Head diameter  
 

Head diameter  
 

Leaf area [30] HD-N-10-1; 
HD-L-10-1 
LAFD.10.1 
 

ORS591 

Head number Head number Plant height [E] HN-N-14-1, 
HN-L-14-1 
ph-11-1; 
 

E36M59_3 

 Head number 
1000-grain weight 
 

Sowing to flowering [E] HN-L-10-1, 
TGW-L-10-1; 
stf-9-1 
 

E41M59_11 

 Head number Head weight [F] 
 

HN-L-4-1; 
HWW.5.1 

ORS671_1 

 Head weight 
100-grain weight 
 

Grain yield [F] 
 

HW-L-4-1, 
TGW-L-4-1; 
GYPD.4.1 
 

E41M62_24 

 Grain yield per plant   Leaf number [F] 
 

GYP-L-5-1; 
LNN.5.1 

SSL231 

 Biomass Sowing to flowering [F] BIO-L-14-1; 
DSFD.14.1 

ORS301 
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Fig. 6.1 Molecular linkage groups of sunflower map presenting QTLs for leaf-related traits, yield-
related traits, DSF and PH The positions of QTLs are shown on the right side of the linkage groups. 
Bars represent intervals associated with the QTLs.  
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Fig. 6.1 (Continued)  
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Fig. 6.1. (Continued)  
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Fig. 6.1 (Continued)  
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Abstract 
   
 Sunflower is one of the major annual world crops grown for edible oil and its meal is a 

potential source of protein for human consumption. It contains tocopherol can result in 

decreased risk for chronic diseases in human. The objectives of the current research are to 

assess the genetic variability and to identify AFLP markers and polymorphic candidate 

genes associated with seed-quality traits under well-irrigated and water-stressed conditions 

in gamma-induced mutants of sunflower. Two mutant lines, M8-826-2-1 and M8-39-2-1, 

with significant increased level of oleic acid can be used in breeding programs because of 

their high oxidative stability and heart-healthy properties. The significant increased level of 

tocopherol in mutant lines, M8-862-1N1 and M8-641-2-1, is justified by observed 

polymorphism for tocopherol pathway-related gene; MCT. The most important marker for 

total tocopherol content is E33M50_16 which explains 33.9% of phenotypic variance. One 

of the most important candidate genes involving fatty acid biosynthesis, FAD2 (FAD2-1), is 

linked to oleic and linoleic acids content and explained more than 53% of phenotypic 

variance. Common markers associated with different seed-quality traits in well-irrigated and 

water-stressed conditions could be used for marker-assisted selection (MAS) in both 

conditions. Other markers, which are specific for one condition whereas linked to different 

traits or specific for a trait, could be useful for a given water treatment.                

 
 

Key words: Seed-quality traits, Gamma-induced mutants, AFLP markers, Candidate genes, 

Sunflower  

 

7.1Introduction 
 

   Sunflower seed oil contains saturated and unsaturated fatty acids, as the lipid part of the 

oil, as well as tocopherol conferring antioxidant properties to the non-lipid part of oil. Fatty 

acids with 18 carbons are either saturated (C18:0; stearic acid) or unsaturated (C18:1; oleic 

acid and C18:2; linoleic acid) (Dorrell and Vick 1997; Pérez-Vich et al. 2002). Among C18 

fatty acids, oleic acid is more important because of higher oxidative stability, more 

resistance to heating and heart-healthy properties (Smith et al. 2007).  
Tocopherol belongs to the Vitamin E class of lipid soluble antioxidants that are essential for 

human nutrition. The function of tocopherol in human and animal systems is generally 
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related to the level of α-tocopherol activity. Alpha-tocopherol has a maximum vitamin E 

activity (Kamal-Eldin and Appelqvist 1996). Among oil seed crops sunflower grains mainly 

contain α tocopherol, which accounts for more than 95% of the total tocopherols (Marwede 

et al. 2005). In sunflower seed oil, total tocopherol content represents the sum of α, β, γ, and 

δ tocopherol (Ayerdi Gotor et al. 2007).    

In sunflower, gamma-irradiation has been used for inducing genetic variability for different 

characters such as osmotic-related traits (Poormohammad kiyani 2007), resistance to Phoma 

macdonaldii (Abu AL Fadi et al. 2004), germination traits (Alejo-James et al. 2004), 

morphological traits (Nabipour et al. 2004) and organogenesis (AL-Chaarani et al. 2004). 

Mutagenesis has been successfully used for developing variation in the fatty acid profile of 

sunflower and some mutants with altered fatty acid content have been developed.  

High palmitic acid mutants; 275HP, CAS-5 and CAS-12 (Fernandez-Martinez et al. 1997), 

and the high stearic acid line, CAS-3, as well as two lines with midstearic acid content, 

CAS-4 and CAS-8, were obtained (Osorio et al. 1995). Developing midstearic acid 

sunflower lines (CAS-19, es1es1Es2Es2, and CAS-20, Es1Es1es2es2,) from a high stearic 

acid mutant is also reported (Pérez-Vich et al. 2004). The genetic studies of CAS-3, CAS-4 

and CAS-8 revealed that total stearic acid increased as a result of reduced conversion rate of 

stearic to oleic acid while conversion rate of palmitic to stearic was not changed (Cantisán et 

al. 2000). Enzymatic actives for stearoyl-ACP desaturase and acyl-ACP thioesterase in 

above-mentioned high stearic acid mutant showed that stearoyl-ACP desaturase activity was 

reduced whereas acyl-ACP thioesterase activity was increased (Cantisán et al. 2000). 

Prevenets, high oleic acid mutants, have been so far developed by chemical mutagenesis 

(dimethyl-sulfate) (Soldatov 1976). In previous studies EcoRI and HindIII fragments, that 

are polymorphic in association with normal and high oleic acid mutants, were identified by 

Lacombe et al. (2001). In genotypes with high oleic acid content, in addition to 5.7 kb an 

extra 7.9 kb EcoRI fragment (EcoRI-∆12HOS) was observed in comparison with genotypes 

with normal oleic acid content. A novel HindIII fragment of more than 15 kb (HindIII -

∆12HOS) instead of 8 kb was also reported (Lacombe et al. 2001). Co-segregation of FAD2-

1 with Ol in high-oleic sunflower mutant was also reported (Schuppert et al. 2006). Three 

loci; Tph1 (m), Tph2 (g) and d, can control the level of α tocopherol in sunflower seed (Hass 

et al. 2006; Tang et al. 2006; Vera-Ruiz et al. 2006). The amount of β tocopherol is 

increased by d locus in mutant inbred lines (m m) where as the level of γ tocopherol is 

enhanced by g locus in mutant inbred lines (g g) as a result of knockout of γ tocopherol 

methyl transferase (Hass et al. 2006). 2-methyl-6-phytyl-1,4-benzoquinone/2-methyl-6-solanyl-
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1,4-benzoquinone methyltransferase (MPBQ/MSBQ-MT) paralogs from sunflower (MT1 and 

MT2) are isolated and sequenced (Tang et al. 2006). INDEL markers are developed for MT1 

and MT2 and the MT1 Locus is mapped to linkage group 1 (Tang et al. 2006). In this 

research the genetic variation of seed-quality traits such as total tocopherol, protein, oil and 

fatty acids contents, as well as polymorphism for AFLP markers and some candidate genes 

(CGs) in gamma-induced mutants of sunflower under well-irrigated and water-stressed 

conditions are studied.   

7.2 Materials and methods 
 

    7.2.1Plant materials and experimental conditions 

  The sunflower restorer inbred line ‘AS613’ has been produced in our laboratory from a 

cross between two genotypes (‘ENSAT-125’ and ‘ENSAT-704’) through a single-seed 

descent (SSD) programme (Sarrafi et al. 2000). The seeds of ‘AS613’ were exposed to 

gamma rays at the Atomic Energy Center (Cadarache, France) with a dose of 75 Grays. 

Mutants population have been developed through modified SSD method (Sarrafi et al. 

2000). Regarding to morpho-physiological studies, among a population of about 2000 

gamma-induced mutants of sunflower, 23 M8 mutants were selected for quantitative 

analysis. Two independent experiments were undertaken in randomized complete block 

design with three replications at Tehran University-Iran-2007. Seeds of mutants and original 

line (AS613) were sown in the field under well-irrigated and water-stressed conditions. Each 

genotype per replication consisted of one row, 4m long, 50 cm between rows and 25 cm 

between plants in rows. The distance between replications of well-irrigated and water-

stressed treatments was 7m. The so-called ‘well-irrigated’ condition plots were irrigated 

once every week, whereas for the second condition (water-stressed), water deficit was 

started 45 days after sowing at the stage near flower bud formation and continued up to 

maturity.    

 

 7.2.2 Trait measurements  

    Morpho-physiological traits 

  Various traits such as days from sowing to flowering (DSF) and plant height (PH) were 

measured for mutants and original line (AS613) at the plot scale (on each line, when 50% of 

the plants were at flowering stage). Moreover, leaf length (L) and width (W) of all green 

leaves were measured at flowering stage, and total leaf area at flowering (LAF) was 
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calculated with the formula: LAF= 0.7L×W (Alza and Fernandez-Martinez 1997). Green 

leaf area of the plants was determined weekly from flowering to harvest in order to evaluate 

green leaf area with respect to time. An integral of weekly leaf area was considered as being 

an estimate of leaf area duration (LAD, m2 days). At harvest, yield components such as head 

diameter (HD), head weight (HW), 1000 grain weight (TGW), grain yield per plant (GYP) 

and biomass (Bio) were measured. Three plants per genotype per condition per replication 

were randomly selected for evaluation of the mentioned traits. All traits were measured for 

mutants and original line in each replication for both experiments.  

 

    Seed-quality traits 
  Near infrared reflectance (NIR) spectroscopy, has been successfully used as an alternative 

technique to classical methods in due to determine multiple parameters of seed quality traits 

in sunflower, such as proteins, oil content, fatty acid compositions (Pérez-Vich et al. 1998; 

Velasco and Becker, 1998; Biskupek-Korell and Moschner, 2007; Ebrahimi et al. 2008; 

Ebrahimi et al. 2009). Seed protein content (SPC), seed oil content (SOC), palmitic acid 

content (PAC), stearic acid content (SAC), oleic acid content (OAC) and linoleic acid 

content (LAC) were measured in mutants and original line (AS613) in each replication for 

both conditions by the FOSS NIRSystems 6500. Twenty grams of sunflower seeds per 

genotype per condition per replication were ground in a Knifetec 1095 Sample Mill (1975, 

Foss Tecator, Höganäs, Sweden) three times for 10 s each. A FOSS NIR Systems 6500 

spectrophotometer (Foss Analytical, Denmark) was used to collect spectra from the ground 

sunflower seeds using a small round cup with a quartz window. The reflectance (R) of each 

sample was measured as log of 1/R from 400 to 2500 nm at 2nm intervals.   

Pre-measurements for total tocopherol content (TTC) were carried out by both FOSS 

NIRSystems 6500 and reference method (HPLC, ISO 9936, 1997) for core collection (forty 

four samples). Total oil content was extracted and TTC was thus determined using the 

following protocol: 

 

   Solvent extraction of lipids 

  The extraction of the total oil content was performed by hexane (n-hexane, Prolabo/Subra, 

Toulouse, France) extraction using an accelerated solvent extractor apparatus (ASE 200, 

Dionex, France) with an isopropanol/hexane mixture (5:95 v/v) during 20 min. Then, the 

solvent was removed from the extracts under low-pressure evaporation (Rotavapor, 
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Bioblock Scientific HS 40 HUBER, Heildorph, Germany). Lipid extracts were weighed and 

tocopherol content was analyzed. 

 

    Tocopherol determination 
 
 Total tocopherol was achieved using a high-performance liquid chromatography (HPLC) 

(SpectraPhysics, Thermo Separation Products, USA) with a normal-phase LiChrosorb Si60 

column, 250cm x 4mm x 5µm (CIL, Cluzeau, France) (ISO 9936, 1997). The mobile phase 

was a mixture of hexane/isopropanol (99.7:0.3 v/v) at 1mL/min flow rate. One gram of oil 

sample was diluted in 25 mL of hexane and 20µl was injected into the HPLC. Detection was 

performed with fluorescence detector (excitation wavelength = 298 nm and emission 

wavelength=344nm: Waters 2475 multi λ). Total tocopherol content was calculated as the 

sum of α, β, γ, and δ-tocopherol contents and expressed in mg kg -1 oil. A modified partial 

least-squares regression (MPLS) model, after 4 outlier elimination passes (WINISI 1.02 - 

Infrasoft International LLC) was used. The performance of our NIRS model, for the 

estimation of tocopherols was determined by the following parameters: the standard error of 

calibration (SEC), the coefficient of determination in calibration (RSQ), the standard error of 

cross-validation (SECV), the coefficient of determination of cross-validation (1–VR) and the 

standard error of prediction (SEP). We have obtained a high significant correlation between 

the HPLC analysis and the NIRS predictions for TTC (R² = 0.76) indicating the NIRS 

method can be used to determine total tocopherol content. Then, TTC was measured in 

mutants and original line (AS613) in each replication for both conditions by the FOSS 

NIRSystems 6500. In previous studies in our department, a relatively good correlation 

between NIRS results and HPLC and GC method for total tocopherol (R2 = 0.64) (Ayerdi 

Gotor et al. 2007) and total phytosterol content (R2 = 0.61) (Ayerdi Gotor et al. 2008; 

Calmon et al. 2009) were also observed.  

 

    7.2.3 Molecular analysis   

  The genomic DNA of original and mutant lines were isolated according to the method of 

extraction and purification presented by Porebski et al. (1997) and DNA quantification was 

performed by picogreen. The AFLP procedure is previously described by Darvishzadeh et 

al. (2008). Polymorphism of some important candidate genes; tocopherol pathway-related, 

phosphoglyceride transfer-related, enzymatic antioxidant-related, drought-responsive and 

fatty acid biosynthesis-related genes were studied. Reactions catalyzed by proteins of the 
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tocopherol and fatty acid pathways are illustrated in Figure 1 and Figure 2, respectively. 

Respective sequence data for candidate genes coding for these proteins were obtained from 

The Arabidopsis Information Resource, TAIR, (www.arabidopsis.org). In order to seek the 

helianthus homolog sequences to the Arabidopsis genes, we used the Compositae EST 

assembly clusters, available at the Helianthus-devoted bioinformatics portal Heliagene 

(www.heliagene.org). The Helianthus EST clusters presenting the reciprocal blast with the 

highest score and lowest E value with regarding to the original Arabidopsis genes were 

chosen for our studies. All Primers were designed by MATLAB. Four various primer 

combinations per each candidate gene were tested on agarose gel. Primers used for PCR are 

summarized in Table 7.1. The PCR program was: 4 min at 94 °C followed by 35 cycles; 30 s 

at 94 °C, 30 s at 55 °C, 1 min at 72 °C and at last, 5 min at 72 °C.   

   

 7.2.3  Statistical analysis  

   The data were analyzed using SPSS. The association between AFLP markers and 

candidate genes with the quantitative traits was estimated through stepwise multiple 

regression analysis, where each quantitative trait was considered as a dependent variable 

while AFLP markers and candidate genes were treated as an independent variable. To select 

independent variables for the regression equation, F-values with 0.045 and 0.099 

probabilities were used to enter and remove, respectively. Multiple regression analysis has 

been used to identify molecular markers associated with morphological and yield traits in 

some crops (Virk et al. 1996; Vijayan et al. 2006).  

7.3 Results  
 

7.3.1Phenotypic variation   

 Results of analysis of variance show significant genotypic effect (Mutants) for morpho-

physiological (Table 7.2) and seed-quality (Table 7.3) traits under well-irrigated and water-

stressed conditions. Characteristics of sunflower M8 mutant lines in both conditions for 

morpho-physiological and seed-quality traits are also summarized in Table 3 and 4, 

respectively. Regarding the range of mutant lines, variation for all studied traits was 

observed and some mutants presented significant higher values compared with the original 

line.  
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7.3.2  Molecular analysis 

  Seventeen AFLP primer combinations and their polymorphic markers used for genotyping 

mutants and their original line (AS613). The number of polymorphic markers varied from 8 

to 27 for different primer combinations (Darvishzadeh et al. 2008). Polymorphisms are also 

observed for the studied candidate genes for original line (AS 613) and some mutants (Fig. 

3). The results of marker identification for different traits under well-irrigated and water-

stressed conditions are summarized in Table 7.4. Results revealed that the number of AFLP 

marker and candidate gene (CG) associated with seed-quality traits ranged from 4 to 6 

depending on trait and conditions. The percentage of phenotypic variance (R2) explained by 

each marker or candidate gene associated with the traits ranged from 4.4% to 53.3%. The 

most important marker for TTC is E33M50_16 and explained 33.9% of phenotypic 

variance. One of the most important candidate genes involving tocopherol pathway (Fig. 1), 

homogenitisate phytyltransferase (VTE2), is linked to TTC (Table 7.4). The E31M50_12 

marker correlated with SPC is identified in well-irrigated condition and explained 35% of 

phenotypic variance. The largest amount of phenotypic variance (R2) explained by 

E37M50_10 for SOC is 35.3 %. Under water-stressed condition, association between SEC14 

and SOC is observed. Among 11 identified markers for PAC in both conditions, 

E37M50_20 is most important with R2=28.6%. Under well-irrigated condition, the 

correlation between POD and PAC is also observed. Two common markers; E33M59_6 and 

E31M50_5, are detected for SAC. One of the most important candidate genes involving 

fatty acid biosynthesis (Fig. 7.2), FAD2 (FAD2-1), is linked to OAC and LAC and explains 

more than 53% of phenotypic variance (Table 7.4).   

7.4 Discussion    
  The large genetic variability observed among mutant lines for the studied traits revealed 

that the efficiency of gamma-irradiation for inducing genetic variation in sunflower for seed-

quality traits. Some mutants have advantages over the original line ‘AS613’ for different 

traits. Mutant line, M8-862-1N1, presents significant increased level of tocopherol (403.78 

mg kg -1oil compared with 314.3 mg kg -1oil in original line AS-613; Table 7.3). Mutant 

lines, M8-826-2-1 and M8-39-2-1, with significant increased level of oleic acid (70.3 mg 

100mg -1oil in M8-826-2-1 mutant compared with 29.2 mg 100mg-1oil in original line AS-

613; Table 7.3) are developed by gamma rays with a dose of 75 Grays in our research. These 

mutants can be used in breeding programs because of high oxidative stability and heart-

healthy properties.  
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Molecular genetic studies have been carried out in the aforementioned population through 

AFLP markers and candidate genes (CGs). The results of marker identification show that 

some AFLP markers and candidate genes are associated with several traits and some others 

are specific for only one trait (Table 7.4). Among all studied candidate genes involving 

tocopherol biosynthetic pathway, polymorphisms were observed for VTE4, VTE2 and MCT 

genes among some mutants and original line (Fig. 1). Endrigkeit et al. (2009) reported that 

in rape seed genotypes, VTE4 was anchored to the end of chromosome A02, where also two 

QTLs for α-tocopherol content had been identified. Primer combination corresponding to 

MCT gene (PC 4; Table 7.1) led to PCR fragment of about 1.2 kb in M8-862-1N1 and M8-

641-2-1 Lines and 1.6 kb in AS613 (Fig. 7.1). High level of tocopherol in mutant lines, M8-

862-1N1 and M8-641-2-1, is justified by observed polymorphism for MCT gene (Fig. 7.1). 

The polymorphisms for some Phosphoglyceride transfer-related genes are also observed 

among mutants and original line (Fig. 7.3).  

The level of TTC, SOC, PAC and LAC are significantly increased in M8-186-1 line (Table 

7.3) and polymorphism for phosphatidylinositol transporter (SEC14) is also observed 

compared with AS613 (Fig. 7.3). The level of SOC is significantly increased in M8-52-1-1 

line (40.2 g 100g -1 dry matter in M8-52-1-1 mutant compared with 32.6 g 100g -1 dry matter 

in original line AS-613) and polymorphism for stearoyl ACP  desaturase, 

phosphatidylinositol transporter (SEC14), CAT, POD and PGT genes is also observed 

compared with AS613 (Fig. 7.2 and 7.3). It has been reported that SEC14 domains exist in 

proteins from plants, yeast and mammals (Saito et al. 2007). Wide range of lipids, 

phosphatidylglycerol and tocopherols were known as ligands for SEC14 domain-containing 

proteins (Saito et al. 2007). 

Some enzymatic antioxidant-related genes such as peroxidase (POD) and catalase (CAT) 

present  polymorphisms in some mutant lines compared with the original line; AS613 (Fig. 

7.3). The association between POD gene, enzymatic antioxidant, and PAC is observed 

(Table 7.4). The interdependence between antioxidant and lipid peroxidation has also been 

recognized (Semchuk et al. 2009). In plants, the protection of photosynthetic apparatus and 

polyunsaturated fatty acids from oxidative damage caused by reactive oxygen species (ROS) 

are the main function of antioxidant (Trebst et al. 2002; Velasco et al. 2004; Cela et al. 2009; 

Semchuk et al. 2009). Primer combination corresponding to Dehydrin gene (PC 13; Table 

7.1) led to specific PCR fragment of about 1 kb in M8-417-1, M8-826-2-1, M8-39-2-1 and 

M8-186-1 Lines (Fig. 7.3). Dehydrin is a gene of the D-11 subgroup of late-embryogenesis-

abundant (LEA) proteins (Dure et al. 1989; Close et al. 1993), associated with drought 
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tolerance in sunflower (Ouvard et al. 1996; Cellier et al. 1998). In sunflower three FAD2 

genes have been isolated whereas from both cotton and soybean two and from Arabidopsis 

only a single FAD2 genes have been identified (Heppard et al. 1996; Liu et al. 1997; 

Martinez-Rivas et al. 2001). In the present study, sequences of FAD2 used for primer design 

were obtained from GenBank, closet homologue in Helianthus is indicated as reference. 

Primer combinations corresponding to FAD2_1 gene (PC 18; Table 7.1) led to high oleic 

acid specific amplification fragments of about 1.5 kb in M8-826-2-1 and M8-39-2-1 Lines. 

In contrast, primer combinations corresponding to FAD2_2 and FAD2_3 genes just led to 

nonspecific bands in mutants and original line (Fig. 7.2). These results suggest that the high 

oleic mutation in gamma-induced sunflower population interferes with the mutation in 

FAD2_1 gene. FAD2-1 is seed specific and strongly expressed in developing seeds 

(Martinez-Rivas et al. 2001). Co-segregation of FAD2-1 with Ol gene has been shown and it 

has been also assigned to linkage group 14 in sunflower (Schuppert et al. 2006). The high 

association between FAD2-1 gene and E33M60_8 with OAC and LAC can be explained by 

correlation between OA and LA as well as by a specific gene for ∆12-desaturase (oleoyl-PC 

desaturase), which catalyses the second desaturation of oleic acid (18:1) to linoleic acid 

(18:2) (Garcés and Mancha, 1991). High oleic acid mutants can be developed either by the 

upstream desaturation of stearic acid into oleic acid by ∆9 desaturase or by the downstream 

desaturation of oleic acid by ∆12 desaturase. High significant and negative correlation 

between OA and LA (Ebrahimi et al. 2008) is justified by opposite coefficient of their 

common markers (Table 7.4). This phenomenon poses potential challenges to breeders for 

simultaneous improvement of both traits. However, independent markers for OA and LA 

identified in our research (Table 7.4) provide opportunity for simultaneous improvement of 

these two traits in sunflower.  

Two stable markers, E40M59_5 and E37M50_7, for TTC are identified in both conditions 

(Table 7.4). The changes in TTC during plant responses to drought stress can be 

characterized by two phases. In the first phase, increased TTC contribute to avoid oxidative 

damage by quenching reactive oxygen species (ROS). The second phase occurs when the 

stress is severe. TTC decreases during the second phase and consequently, lipid peroxidation 

increases and cell death happens if tocopherol deficiency cannot be compensated by other 

mechanisms of protection (Munné-Bosch 2005). An increase of tocopherol synthesis under 

moderate stress and a decrease of tocopherol synthesis under severe stress have been 

reported (Munné-Bosch 2005). Under water-stressed condition, common marker; 

E37M50_20, for PAC and SAC is detected (Table 7.4). This can be explained by a specific 
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gene for fatty acid synthetase II (FACII), which lengthens palmitic acid (16:0) by two 

carbon atoms to produce stearic acid (18:0) (Pleite et al. 2006). Common markers associated 

with different seed-quality traits in well-irrigated and water-stressed conditions could be 

used for marker-assisted selection (MAS) in both conditions. Other markers, which are 

specific for one condition whereas linked to different traits or specific for a trait, could be 

useful for a given water treatment.              
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Target gene 

Accession 

Pr
im

er
 p

ai
r 

co
m

bi
na

tio
n 

 

Sequence of primer (5' to3') 

AGI-
Arabidob

sis 

 Homologue 
with 

Heliagene 
Cluster 

Forward Reverse 

Tocopherol pathway-related genes 

VTE4 AT1G64970.1 
 

HuCL02246C001 
1 ATCCGTATGATTGAACAAGC ATGTGCTCTCCACTCTCCATTG 

 2 GTTTGGTCAATGGAGAGTG ATCCTTCAATCATTAGTGGC 

       

VTE2 AT2G18950.1  HuCL02840C003 3 TGCCACAAGAGCAAATCGCTTC TTTGGGCACTCTTCATAAG 

       

MCT AT2G02500.1  HuCL00002C009 4 CAAAGTCTTCACCACAAATG ACCTCATCCCATCTTCTTCC 

Phosphoglyceride transfer-related  genes 

PGT AT1G75170.1  HuCL10527C001 5 TATGTCCATCTTTCGGCGTC ATGGTGTCTTTAGCGGTTC 

       

Cytosolic AT3G24840.1  HuCL09897C001 6 ATGATAACCGTGTGGATAGC ATGCTAAACTGGAGGAAAGC 

       

SEC14 AT2G21540.2  HuCL00667C001 7 CAAGGAAGGATTTCACCGTG AAGGCGGTTGATGCTTTACG 

Enzymatic antioxidant-related genes 

POD AT1G14540.1  HuCL03143C001 8 GACTTGGAAGAAGAGATTCAC ATTGTCAGCATACTCGGTC 

       

CAT AT1G20620.1  HuCL00001C054 9 AAACTACCCTGAGTGGAAG AATGAATCGTTCTTGCCTG 

       

GST AT1G02930.1  HuCL00790C003 10 AAAGAGCACAAGAGTCCTG ACTTATTTGAGTGGGCAAC 

Drought-responsive genes 

Drou  AT5G26990.1  HuCL02051C001 11 TTGTTGAGGAGGGAACTAAG GTCATCACCAAGAATCGTCG 

       

SPL2 AT5G43270.1  HuCL10252C001 12 ATTTGATGGGAAGAAGCGG CATTGTGGTCAGAAAGCCTC 

       

Dehydrin AT3G50980.1  HuCL00053C009 13 AAGTTCTCCAAACCGACGAG ACAACCACAGTGAAACCAC 

Table 7.1: Primers used for PCR    

The candidate genes are: tocopherol methyl-transferase (VTE4), homogenitisate 

phytyltransferase (VTE2), 2-C-methyl-D-erythritol 4-phosphate cytidyl transferase 

(MCT), phosphoglyceride transfer (PGT), Cytosolic, phosphatidylinositol 

transporter (SEC14), peroxidase (POD), glutation s-transferase (GST), catalase 

(CAT), drought-responsive (Drou, SPL2), Dehydrin,  
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Target 
gene 

Accession 

Pr
im

er
 p

ai
r 

co
m

bi
na

tio
n 

 

Sequence of primer (5' to3') 

 AGI-
Arabidobs

is 

 Homologue 
with 

Heliagene 
Cluster 

Forward Reverse 

Fatty acid biosynthesis -related genes 

F
A

D
2*1

 

FAD2-3 _ 
AY802998.1 14 GCCTTATTCTACATTCTGCTC ATCCCATAGTCTCGGTCTAC 

HuCL07925C001 15 GCCTTATTCTACATTCTGCTC AATCGCCTTTGTTGCTTCC 

       

FAD2-2 _ 
AY802993.1 16 GGTCTGTCATCCGTTCATTC GCGAATCGGTCATAATACC 

HuCL00141C001 17 GGTCTGTCATCCGTTCATTC AGTCCCGTCAAACTGATAG 

       

FAD2-1 _ DQ075691.1 18 GAGAAGAGGGAGGTGTGAAG GCCATAGCAACACGATAAAG 

 
  

 

HuCL00406C001 
 

19
*2

 GAGAAGAGGGAGGTGTGAAG ACAAAGCCCACAGTGTCGTC 

       
stearoyl 

ACP 
 desaturase 

AT2G43710.1 
  

HuCL00103C001 
 

20 GACGTTTCAATCAGACCTGT GCATTGTTTGGTAAGTAGGC 

 21 GCCTACTTACCAAACAATGC TATTTTTGTGTAGGCGGTTT 

       

FatB 
 

AT1G08510.1 
 

 

HuCL03123C002 

22 TTACACATTCGGCTTATCG TGGTTGATAAAGGTTCTCGGG 

 23 TTACACATTCGGCTTATCG GCACATTTCTGGTGTTGAACCG 

 24 ACTGAGGTGAATGGGAGTAG GCACATTTCTGGTGTTGAACCG 

       

FatA AT3G25110.1  HuCL04107C001 25 AATAAGACGGCGACTGTTG TCTCAATTTCAACCACATCA 

FAD2 (FAD2-1, FAD2-2, FAD2-3), stearoyl ACP desaturase and acylACP 

thioesterase (FatA, FatB). 
*1: Sequences of FAD2 used for primer design were obtained from GenBank, closet 

homologue in Helianthus is indicated as reference.  
*2: Specific primer for high OAC (Berville et. Al. 2009)  

Table 7.1(Continued)  
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Trait  

Well-irrigated condition Water-stressed condition Effect 

Original 
line 

( AS613) 

Mutants Original 
line 

( AS613) 

Mutants       Ma 

Mean Range Mean Range WI W
S 

Sowing to 
flowering date 52 54.91 52-58 51 53.21 51-57 ** ** 

Plant height  
(cm) 150.5 170.04 144.3-218 147.5 165.04 144.3-209 ** ** 

Leaf number 32 43.29 32-59 32 41.29 32-59 ** ** 

Leaf area at 
flowering stage (m2) 0.715 0.716 0.417-1.353 0.715 0.716 0.407-1.303 ** ** 

Leaf area duration 
(m2 days) 14.293 14.329 8.339-27.069 12.985 13.019 7.328-25.122 ** ** 

Head weight 
 (g) 114.78 115 42.5-169.1 77.62 90.82 40.32-138.54 ** * 

Head diameter  
(cm) 21 21.13 13.5-24.5 19.25 20.07 11.5-25 ** ** 

1000 grain weight 
(g) 71.8 71.6 36.9-102.1 53.9 67.2 32.8-96.7 ** ** 

Grain yield per 
plant  
(g) 

66.69 58.43 18.15-94.29 55.64 47.92 16.43-96.7 ** * 

Biomass 
 (g) 118.65 173.09 74.55-297 99.85 154.93 70.7-259.6 ** * 

Table 7.2: Characteristics of sunflower M8 mutant lines for morpho-physiological traits in well-irrigated (WI) and Water-
stressed (WS) conditions 

a M: mutants effect    
*, **: significant at 0.05 and 0.01 probability level, respectively.  
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Traits  Well-irrigated condition Water-stressed condition 

Marker 
R2        
% 

T- 
Value 

P- 
Value 

Standardized 
coefficient 

Marker 
R2        
% 

T- 
Value 

P- 
Value 

Standardized 
Coefficient 

TTC 

E37M50_9 32.7 6.8 <0.0001 -0.6     E40M59_5 30.7 6.7 <0.0001 -0.7 
E33M50_16 33.9 10.1 <0.0001 0.7     E37M50_7 15.7 5.1 <0.0001 -0.6 
E40M59_5 10.5 5.5 <0.0001 -0.6     E33M59_7 11.2 3.5 0.003 0.4 

E40M50_7 7.0 5.1 <0.0001 0.4     E33M59_2 10.7 3.5 0.002 0.4 

E37M50_7 5.0 3.0 0.007 -0.3     VTE2 7.0 2.6 0.01 0.3 

          

SPC 

E31M50_12 35.0 8.4 <0.0001 -0.6   E37M50_12 23.0 7.7 <0.0001 0.7 
E37M50_10 19.0 5.8 <0.0001 -0.5   E40M59_7 19.2 4.8 <0.0001 0.4 
E31M48_1 11.2 5.2 <0.0001 -0.4   E33M61_6 13.8 6.2 <0.0001 -0.6 
E37M62_7 12.1 5.2 <0.0001 0.4   E33M49_7 16.0 7.2 <0.0001 0.8 
E40M59_7 6.1 3.8 <0.0001 0.3   E33M47_2 11.3 3.5 0.003 -0.3 

          

SOC 

E37M50_10 35.3 7.1 <0.0001 0.5   E33M59_4 21.3 6.4 <0.0001 -0.5 
E31M50_6 22 6.3 <0.0001 -0.4   E33M47_6 32.0 7.7 <0.0001 -0.5 
E38M62_7 12.9 7.3 <0.0001 0.6   E37M50_6 14.3 7.4 <0.0001 -0.6 
E38M62_8 10.5 4.4 <0.0001 -0.2   E33M47_1 10.4 4.9 <0.0001 0.4 
       E37M50_10 9.1 4.1 0.001 0.3 
       SEC14 4.9 3.2 0.005 -0.2 
          

PAC 

E33M60_8 26.8 6.3 <0.0001 -0.6   E37M50_20 28.6 10.1 <0.0001 -0.9 
FAD2-1 25.1 6.8 <0.0001 0.7   E33M61_5 22.9 7.9 <0.0001 -0.6 
E40M59_6 13.6 3.6 0.002 0.3   E40M50_8 17.0 6.0 <0.0001 -0.5 
E33M50_13 6.9 3.5 0.003 -0.3   E37M50_3 8.5 6.1 <0.0001 0.5 
E33M59_11 6.0 3.2 0.005 -0.3   E33M50_8 8.7 3.9 0.001 0.3 
POD 6.7 2.7 0.01 -0.2      

          

SAC 

E33M50_13 28.9 9.6 <0.0001 -0.8 E33M61_3 37.4 5.5 <0.0001 0.4 
E33M59_6 27.3 8.8 <0.0001 0.8 E33M59_6 21.7 6.0 <0.0001 0.5 
E31M50_5 14.1 5.2 <0.0001 -0.4 E31M50_5 14.1 6.0 <0.0001 0.5 
Drou 12.1 5.3 <0.0001 0.4 E37M50_20 10.2 4.0 0.001 0.3 
E33M61_6 7.5 3.7 0.002 -0.3 E33M60_4 6.3 3.3 0.004 0.2 
          

Table 7.4: AFLP markers and candidate genes correlated with seed-quality traits in a population of sunflower 
mutants and original line (AS613) under well-irrigated and water-stressed conditions  
 

TTC, total tocopherol content; SPC, seed protein content; SOC, seed oil content; PAC, palmitic acid content; SAC, 

stearic acid content. The candidate genes are: homogenitisate phytyltransferase (VTE2), phosphatidylinositol transporter 

(SEC14), peroxidase (POD), drought-responsive (Drou). Common markers are also shown as bold-face.  
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Traits  Well-irrigated condition Water-stressed condition 

Marker 
R2        
% 

T- 
Value 

P- 
Value 

Standardized 
coefficient 

Marker 
R2        
% 

T- 
Value 

P- 
Value 

Standardized 
Coefficient 

OAC 

FAD2-1 44.3 11.7 <0.0001 -0.9 FAD2-1 52.8 7.5 <0.0001 -0.7 
E33M60_8 19.4 3.6 0.002 0.3 E33M60_8 16.4 3.9 0.001 0.3 
E33M59_10 8.0 5.4 <0.0001 -0.5 E33M61_1 7.5 2.8 0.012 -0.3 
E33M59_8 9.0 4.3 <0.0001 0.3 E37M50_9 6.2 2.6 0.017 0.2 
E33M59_11 4.4 3 0.009 0.2      

          

LAC 

FAD2-1 43.7 9.5 <0.0001 0.7 FAD2-1 53.3 9.7 <0.0001 0.8 
E33M60_8 19.3 6.1 <0.0001 -0.5 E33M60_8 18.2 5.7 <0.0001 -0.5 
E40M59_6 8.6 3.3 0.004 0.2 E38M62_6 6.8 4.4 <0.0001 -0.4 
E33M49_13 6.6 4.2 0.001 0.3 E33M47_10 7.1 3.9 0.001 0.3 
          

Table 7.4: Continued   

OAC, oleic acid content; LAC, linoleic acid content and common markers are shown as bold-face.  
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2-C-methyl-D-erythritol 4-phosphate  

2-C-methyl-D-erythritol 4 (Cytidine 5’-phospho)  

MCT 

Isoprenoid 

Arogenic acid 

Tyrosine  

p-hydroxyphenylpyruvate  

Homogentisic acid 
Phytyl pyrophospate 

2-Methyl-6-phytyl-1,4-benzoquinol (MPBQ) 

Shikimate pathway 

Homogenitisate phytyltransferase 
(VTE2) 

δ-tocopherol 2, 3-Dimethyl-5-phytyl-1, 4- benzoquinol 

β -tocopherol γ -tocopherol 

α -tocopherol 

γ-tocopherol methyl-transferase 
(VTE4) 

VTE4 

Fig. 7.1 Tocopherol biosynthetic pathway; ‘2-C-methyl-D-erythritol 4-phosphate’ is converted into ‘2-C-methyl-D-

erythritol 4 (Cytidine 5’-phospho)’ by 2-C-methyl-D-erythritol 4-phosphate cytidyl transferase (MCT).‘2-Methyl-6-

phytyl-1,4-benzoquinol’ (MPBQ) is formed after the condensation of homogentisic acid (HGA) and phytyl 

pyrophosphate (PDP) by homogenitisate phytyltransferase (VTE2). α-tocopherol can be generated by methylation of 

γ-tocopherol via γ-tocopherol methyl-transferase (VTE4) (D'Harlingue and Camara 1985). β-tocopherol is formed 

from δ-tocopherol by methylation of the 5 position by VTE4 (Norris et al. 2004).The studied candidate genes are 

also highlighted in bold. Gelelectrophoretic separation of candidate gene-PCR products from original line (AS613) 

and some mutants are presented with the corresponding metabolic pathway.  
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Palmitic acid (16:0) 

Stearic acid (18:0) 

Oleic acid (18:1) 

linoleic acid (18:2) 

Fig. 7.2 Simplified fatty acid biosynthetic pathway, Stearic acid is formed from palmitic acid by 

FACII, which lengthens palmitic acid (16:0) by two carbon atoms to produce stearic acid (18:0) 

(Pleite et al., 2006). Stearic acid can be either desaturated by ∆9-desaturase (stearoyl-ACP 

desaturase) which catalyses the first desaturation of stearic acid (18:0) to oleic acid (18:1) or 

hydrolyzed by acyl-ACP thioesterase (Heppard et al., 1996; Lacombe et al., 2001; Vega et al., 

2004).Finally, linoleic acid is formed from oleic acid by ∆12-desaturase (oleoyl-PC desaturase; 

FAD2), which catalyses the second desaturation of oleic acid (18:1) to linoleic acid (18:2) (Garcés 

and Mancha, 1991).The studied candidate genes are also highlighted in bold. Gelelectrophoretic 

separation of candidate gene-PCR products from original line and mutants are presented with the 

corresponding metabolic pathway. PC: primer combination  
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Fig. 7.3 Polymorphisms for candidate gene-PCR products among original line 
(AS613) and mutants. a) phosphatidylinositol transporter (SEC14)-PC7, b) catalase 
(CAT)-PC9, c) dehydrin-PC13, d) peroxidase (POD)-PC8 and e) phosphoglyceride 
transfer (PGT)-PC5  
PC: Primer combination 
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L’objectif principal de ce travail était d’identifier les régions génomiques contrôlant 

des caractères morphophysiologiques du tournesol ainsi que ceux associés à la qualité 

de l’huile (teneur en tocophérol, phytostérol, acides palmitique, stéarique, oléique et 

linoléique) et à la composition de la graine (pourcentage de protéines et d’huile), ainsi 

que leur stabilité au travers de différents environnements (conditions de sécheresse, 

irrigation et semis tardif). Une population de lignées recombinantes issues du 

croisement entre ‘PAC2’ et ‘RHA266’ a été étudiée sous différents traitements. En 

effet, l’amélioration de la tolérance à la sécheresse nécessite l'identification des QTL 

contrôlant ces caractères de qualité en conditions sèches et le transfert des allèles 

d’intérêt aux cultivars productifs. Dans ce cadre, le développement des outils de 

marquage moléculaire permet de rechercher des relations entre la présence de 

marqueurs et les caractères de qualité. Les cartes génétiques facilitent ainsi 

l'identification des zones génomiques contrôlant les caractères de qualité. Nous avons 

cartographié des gènes candidats ; (1) impliqués dans la voie métabolique de 

tocophérol et phytostérol, (2) des gènes codant des antioxydants enzymatiques, (3) des 

gènes liés à la sécheresse et (4) des gènes homologues à Sec14 chez Arabidopsis dans 

une carte génétique du tournesol construite dans notre laboratoire basée sur des SSRs 

(Poormohammad kiyani et al. 2007). Un autre objectif était d’identifier des marqueurs 

AFLP et quelques gènes candidats liés aux caractères impliqués dans la qualité de 

l’huile et la qualité des graines en conditions de stress hydrique et irriguée dans une 

population de mutants (M8).   

 

 Développement de la carte génétique 

  En utilisant une population de lignées recombinantes issues du croisement entre 

‘PAC2’ et ‘RHA266’, une carte génétique du tournesol a été construite dans notre 

laboratoire (Poormohammad kiyani et al. 2007). Nous avons amélioré cette carte et 

établi une nouvelle carte génétique basée sur 190 SSRs et gènes candidats. Cette 

nouvelle carte a une longueur de 1405.3 cM et une densité d’un marqueur pour 7.6 

cM. Les groupes de liaisons ont été nommés en comparant les positions des SSRs 

communs entre notre carte et la carte génétique référence du tournesol construit par 

Tang et al. (2002). L'incorporation des gènes candidats dans notre carte a permis 
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d’augmenter la précision de détection de QTL pour les différents caractères analysés 

dans cette étude. Les gènes homologues à SFH3, HPPD, CAT et CYP51G1 ont été 

cartographiés grâce à la mise au point de marqueurs dominants, tandis que des 

marqueurs co-dominants ont permis la cartographie des gènes homologues à  SEC14-

1, VTE4, DROU1, POD, SEC14-2 et AQUA. Trois gènes candidats importants (VTE4, 

VTE2 et HPPD), qui codent pour des enzymes impliquées dans la biosynthèse du 

tocophérol, ont été cartographiés sur les groupes de liaison LG8 et LG14. Nous avons 

identifié douze SNPs pour VTE4 entre les deux parents (PAC2 et RHA266). Quatre 

SNPs sont identifiés pour PAT2, le gène homologue chez Arabidopsis de SEC14, entre 

les deux parents et un SNP, identifié par alignement de séquences est converti en 

marqueur CAPS pour permettre l'analyse génotypique des RIL. Les gènes POD, CAT 

et GST, codant pour des antioxydants enzymatiques, ont également été cartographiés 

sur les groupes de  liaison 17, 8 et 1, respectivement. SMT2 produit le phytosterol 24-

 Ethylidene lophenol à partir de 24-Methylene–lophenol. Huit SNPs sont identifiés 

pour SMT2 entre les deux parents et le SNP identifié par alignement de séquences est 

converti en marqueur CAPS pour le génotypage des RIL. La nouvelle carte génétique 

ainsi produite fournit un outil de base important pour l'analyse des caractères 

quantitatifs et qualitatifs chez Helianthus annuus. 

 

Variabilité génétique des caractères associés à la qualité de l’huile, à 
la qualité des graines et des caractères morpho-physiologiques chez 
le tournesol 
 

 Les résultats montrent qu’il existe une variabilité génotypique pour les paramètres 

associés à la qualité de l’huile (teneur en tocophérol, phytostérol, acides palmitique, 

stéarique, oléique et linoléique), à la qualité des grains (le pourcentage de protéines et 

huiles) ainsi que les paramètres morpho-physiologiques en condition de sécheresse et 

de semis tardif au sein de la population de lignées recombinantes issues du croisement 

entre ‘PAC2’ et ‘RHA266’. Une différence significative a été notée entre les deux 

parents PAC2 et RHA266 pour les teneurs en tocophérol et phytostérol en condition de 

sécheresse et semi tardif, et pour le pourcentage de protéines sous contrainte hydrique. 

La lignée parentale RHA266 a montré certains avantages significatifs concernant les 
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teneurs en tocophérol et phytostérol en condition de sécheresse et de semis tardif par 

rapport au parent PAC2.  

Le génotype RHA266 présente des valeurs plus élevées pour le pourcentage d’huiles, 

teneur en acide palmitique et  linoléique par comparaison avec le parent PAC2.  

Un gain génétique significatif a été observé pour tous les caractères étudiés sous 

contrainte hydrique, semis tardif et témoin. Ce phénomène pourrait être dû à 

l’accumulation des allèles favorables venant des deux lignées parentales chez les 

lignées recombinantes sélectionnées. Il a été observé une forte corrélation négative  

entre teneur en acide oléique et linoléique. De tels résultats ont également été observés 

par Lagravère et al. (2004) et Ebrahimi et al. (2008). La contrainte hydrique et le semis 

tardif  augmente la teneur en tocophérol et phytostérol, ce qui confirme les resultats 

rapportés par Munné-Bosch (2005). D’une manière générale, nous  remarquons  dans 

notre étude que le pourcentage de protéines des graines augmente en réponse au déficit 

hydrique chez les RILs confirmant ainsi les résultats de Ozturk et Aydin (2004) 

obtenus chez le blé. Une forte ségrégation transgressive a été observée pour les 

paramètres associés à la qualité de l’huile (teneur en tocophérol, phytostérol, 

palmitique, stéarique, oléique et linoléique), à la qualité des grains (le pourcentage de 

protéines et huiles) et morpho-physiologique en condition de sécheresse et semis 

tardif.  La ségrégation transgressive serait le résultat de l'accumulation d’allèles 

positifs venant des deux lignées parentales. 

 La population de mutants présente également une variabilité génétique significative 

pour tous les caractères étudiés. Le gain génétique significatif pour tous les caractères 

étudiés chez les mutants montre l'efficacité de l'irradiation aux rayons gamma pour 

induire une variation génétique au niveau des caractères de qualité de l’huile (teneur 

en tocophérol, phytostérol, acides palmitique, stéarique, oléique et linoléique), de 

qualité des grains (le pourcentage de protéines et huiles) et de caractères morpho-

physiologiques chez le tournesol. Les lignées mutantes, M8-862-1N1 et M8-641-2-1, 

ont montré les meilleures valeurs pour le teneur en tocophérol. Deux lignées mutantes, 

M8-826-2-1 et M8-39-2-1, produisent un niveau significativement élevé d'acide 

oléique peuvent être utilisées dans les programmes de sélection en raison de la haute 

stabilité à l'oxydation et des propriétés cardiovasculaires apportées par l’acide oléique. 



 154

Dissection génétique de  la qualité de l’huile, des graines et de 
caractères morpho-physiologiques par analyse QTL et colocalisation 
de gènes candidats chez le tournesol 
 
 Nous avons identifié plusieurs QTL communs à nos différentes études. Nous avons 

également identifié plusieurs QTL co-localisés avec des QTL déjà identifiés pour 

d’autres caractères dans la littérature. Ces QTL, utiles au développement de 

programmes de sélection pour les caractères de qualité et quantité chez le tournesol, 

sont présentés ci-après. Les co-localisations de QTLs aident à mieux comprendre les 

bases génétiques des caractères étudiés et éventuellement à développer plus 

rapidement des génotypes d’intérêt. Un QTL majeur pour la teneur en tocophérol a été 

identifié sur le groupe de liaison 8, qui explique 59,5% de la variation phénotypique 

(6.TTC.8). Il est co-localisé également avec le QTL identifié pour la teneur en 

phytostérol (7.TPC.8). Sous condition de semis tardif, un QTL spécifique de la teneur 

en acide palmitique a été identifié sur le groupe de liaison 6 (PAC-LS.6). Il est situé 

entre les marqueurs ORS1233 et SSL66_1. Nous avons détecté deux régions 

chromosomiques sur les groupes de liaison 10 et 15, où les QTL contrôlant le 

pourcentage d’huiles ont été co-localisés avec des QTL de teneur en acide stéarique 

(PSO-PI.10, SAC-WI.10 et PSO-PI.15, SAC-LS.15). Sept QTL associés à teneur en 

acides palmitique, stéarique, oléique et linoléique sont identifiés sur le groupe de 

liaison 14. Ils sont co-localisés à l’homologue du gène HPPD. Les quatre QTL 

contrôlant la teneur en tocophérol (7.TTC.1), en phytostérol  (7.TPC.1), en acide 

stéarique (SAC-LS.1) et en acide oléique (OAC-LS.1) sont situés dans la même 

position, sur le groupe de liaison 1 où Le gène GST, a été cartographié. Le gène, Tph1, 

associé à la teneur en β-tocophérol a été également cartographié dans la même région 

chromosomique (Vera -Ruiz et al. 2006). Cette région chromosomique a été rapportée 

par Poormohammad Kiani et al. (2009) pour la précocité de floraison. L’activité 

antioxydante des tocophérols protège les acides gras en éliminant les radicaux libres, il 

a d’ailleurs été montré chez le tournesol une corrélation positive entre l’acide gras 18:2 

et tocophérol (Kamal-Eldin et Andersson, 1997).  

Nous avons détecté trois  régions chromosomiques sur les groupes de liaison 2, 8, 14 

où les QTL contrôlant la teneur en acide palmitique ont été co-localisés avec des QTL 
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de teneur en acide stéarique. Ceci peut être expliqué par la corrélation entre l'acide 

palmitique et l'acide stéarique, ainsi que par un gène spécifique de l'acide gras 

synthétase II (FACII), qui allonge l'acide palmitique (16:0) par deux atomes de 

carbone pour produire l'acide stéarique (18:0) (Cantisán et al., 2000; Pleite et al., 

2006). Trois co-localisations de QTL contrôlant les teneurs en acides stéarique et 

oléique sur les groupes de liaison 1, 2, 14 ont été identifiés. Ceci peut être expliqué par 

la corrélation entre l'acide stéarique et l'acide oléique, ainsi que par un gène spécifique 

de la ∆9-desaturase (stearoyl-ACP desaturase), responsable de la conversion de l'acide 

stéarique en acide oléique dans les graines chez le tournesol (Heppard et al., 1996; 

Cantisán et al., 2000). Trois QTL contrôlant la teneur en acide oléique sont co-

localisés avec ceux contrôlant la teneur en acide linoléique sur les groupes de liaison 

10, 11, 16. Ceci peut être expliqué par un gène spécifique de la ∆12-desaturase 

(oleoyl-PC desaturase), responsable de la conversion de l'acide oléique (18:1) en acide 

linoléique (18:2) dans les graines chez le tournesol (Garcés and Mancha, 1991). La 

corrélation négative entre le pourcentage de protéines et huiles est justifiée par des 

effets additifs contraires de leurs QTL co-localisés (PSP-PI.9, PSO-PI.9, PSP-PI.11 et 

PSO-PI.11). L'identification de QTL influençant plusieurs caractères simultanément 

pourrait augmenter l'efficacité de la sélection assistée par marqueurs (SAM) et ainsi 

augmenter le progrès génétique (Upadyayula et al. 2006). Un QTL commun pour la 

teneur en tocophérol est identifié sur le groupe de liaison 16 (TTC-WI.16, TTC-LS.16). 

Les allèles favorables pour les deux QTL viennent du parent RHA266. Cette région 

apparaît importante dans les deux conditions bien irriguées. Cette région du groupe de 

liaison 16 a été rapportée pour la teneur en huile par Ebrahimi et al. (2008) et le 

nombre de feuilles par Poormohammad Kiani et al. (2009). Un autre commune QTL 

pour la teneur en phytostérol est identifiés sur le groupe de liaison 9 (TPC-WI.9, TPC-

PI.9.1). Cette région chromosomique a été rapportée par Ebrahimi et al. (2009) pour le 

pourcentage de protéines du grain. Un QTL commun pour la teneur en tocophérol est 

également identifié sur le groupe de liaison 14 (6.TTCI.14, 7.TTC.14). Cette région 

chromosomique, entre le marquer SSR ‘ORS1152_1’ et le gène candidat 

‘HuCL04260C001’ semble avoir un rôle important pour le contrôle de tocophérol en 

condition de sécheresse et semis tardif. Le gène candidat, HPPD, qui code pour l’ 
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enzyme impliqué dans la biosynthèse du tocophérol, a été cartographié sur le groupe 

de liaison LG14 entre les deux marqueurs ‘ORS1152_1’ et ‘ORS391’ . L’induction de 

HPPD a été rapporté par Trebst et al. (2002) en condition de stress. Une augmentation 

de la synthèse de tocophérol en condition de stress modéré et une diminution de la 

synthèse de tocophérol en condition contrainte sévère ont été rapportés par Munné-

Bosch (2005). PSI P700 à été cartographié sur le groupe de liaison 8 par la technique 

HRM . L'interdépendance entre l’activité ‘PS II et PSI’  et le montant de tocophérol a 

également été démontré (Trebst et al. 2002). Un QTL majeur pour le pourcentage 

d’huiles (PSO. PI.16) a été identifié sur le groupe de liaison 16 entre les marqueurs 

‘ORS492_2’ et ‘ORS899’. Cette région chromosomique est importante pour la teneur 

en huile chez le tournesol. Il est également rapporté par Tang et al. (2006) et  Ebrahimi 

et al. (2008) pour la teneur en huile de graines. Une association significative et 

négative entre le pourcentage d’huiles et le teneur en acide stéarique (chapitre 3) est 

justifiée par des effets additifs contraires de leurs QTL co-localisés . Nous avons 

également détecté une région chromosomique sure le groupe de liaison 17, où les QTL 

contrôlant le pourcentage d’huiles et la teneur en acide palmitique ont été co-localisés 

avec un QTL de teneur en acide linoléique (PAC-LS.17, LAC-LS.17 et PSO-LS.17). 

Cette région chromosomique est situé entre les marqueurs SSR ‘ORS297’ et 

‘ORS1040’.  

Des analyses association génétique ont permis d’identifier des QTL d’intérêt sur les 

groupes de liaison 2, 10 et 13 pour les caractères morphologiques et agronomiques, 

d’autres QTL identifiés sur les groupes de liaison 9 et 12 mettent en avant l'importance 

de ces régions génomiques pour les caractères de  morphologie foliaire. En condition 

de stress partiel, plusieurs co-localisations de QTL contrôlant les caractères 

morphologique et agronomique ont été détectés, par exemple sur le groupe de liaison 2 

pour le poids de 1000 graines et  le rendement en poids de graines par plante (TGW-P-

2-1 et GYP-P-2-1), le groupe de liaison 4 pour la durée de surface foliaire post 

floraison et le rendement en poids de graines par plante (LAD-P-4-1 et GYP-P-4-1), le 

groupe de liaison 10 pour la hauteur de la plante et la durée de surface foliaire post 

floraison (PH-P-10-1 et LAD-P-10-1) et le groupe de liaison 13 pour le diamètre du 

capitule et le rendement en poids de graines par plante (HD-P-13-1 and GYP-P-13-1). 
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Nous avons détecté une région chromosomique sur le groupe de liaison 2, où le QTL 

contrôlent la teneur en acide linoléique a été co-localisés avec des QTL de surface 

foliaire à la floraison et teneur en tocophérol (5.TTC.2, LAC-PI.2 et LAF-W.2.1). Cette 

région est liée à un marquer SSR « ORS229». Nous avons  également  détecté une 

région chromosomique sur le groupe de liaison 5, où le QTL contrôlent la teneur en 

acide stéarique a été co-localisés avec des QTL de surface foliaire à la floraison et 

rendement en poids de graines (GYP-WI.5.1, LAF-PI.5.1 et SAC-LS.5). Cette région 

est liée au marquer SSR, ‘ORS533’.Co-localisasions entre les QTL contrôlant la 

teneur en acide palmitique et le rendement en poids de graines par plante à été observé 

sur le groupe de liaison 6. Cette région est liée au marquer SSR, ‘ORS1233’. Nous 

remarquons deux co-localisations de QTL contrôlant des caractères de qualité d’huile, 

qualité de la graine et morphophysiologiques du tournesol sur le groupe de liaison 10. 

Un tel résultat pourrait s’expliquer par des effets pléiotropiques des gènes (QTL) ou 

par des loci étroitement liés. Les trois QTL  contrôlent le pourcentage de protéines, la 

biomasse totale par plante et la durée de surface foliaire post floraison sont  situés dans 

la même position  sur le groupe de liaison 11.  Cette région est liée à un marquer SSR 

« HA3446». Plusieurs QTL contrôlent la qualité de l’huile (teneur en tocophérol et 

acide linoléique) et les caractères morphophysiologiques (le rendement en poids de 

graines par plante, le pois du capitule et le diamètre du capitule) sont  situés dans la 

même position  sur le groupe de liaison 13.  Cette région est liée à un marquer SSR « 

ORS630». 

 L'augmentation du niveau de tocophérol dans les lignées mutantes, M8-862-1N1 et 

M8-641-2-1, est justifiée par le polymorphisme observé pour le gène, MCT, impliqué 

dans la voie métabolique du tocophérol. Le marqueur le plus important pour le contenu 

en tocophérol total est E33M50_16 qui explique 33,9% de la variation phénotypique. 

Un des gènes candidats les plus important concernant la biosynthèse des acides gras, 

FAD2 (FAD2-1), est lié à la teneur en acides oléique et linoléique. Il explique plus de 

52% de la variation phénotypique. Trois gènes de FAD2 (FAD2-1, FAD2-2 et FAD2-

3) ont été isolés chez le tournesol, alors que deux ont été identifié chez le coton et soja 

et un seul chez Arabidopsis (Heppard et al. 1996, Liu et al. 1997, Martinez-Rivas et al. 

2001). Pour le gène FAD2_1, une combinaison d'amorces (chapitre 7 ) a montré une 
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bande spécifique d'environ 1,5 kb pour les deux lignées mutantes M8-826-2-1 et M8-

39-2-1. En revanche, les combinaisons d'amorces correspondant aux gènes; FAD2_2 et 

FAD2_3 ont montré des bandes non spécifiques chez les mutants et la lignée d'origine. 

Ces résultats suggèrent que la mutation du gène FAD2_1 par irradiation aux rayons 

gamma entraine une haute teneur en acide oléique. Chez la lignée mutante M8-52-1-1, 

le niveau d’huile est significativement augmenté par rapport à la lignée d’origine, 

AS613, ainsi que le nombre de polymorphismes observé pour les gènes stearoyl ACP  

desaturase, SEC14, CAT, POD et PGT. Pour le gène Dehydrin, une combinaison 

d'amorces (chapitre 7) a montré une bande spécifique d'environ 1kb pour les quarte 

lignées mutantes M8-417-1, M8-826-2-1, M8-39-2-1 et M8-186-1. 

 
Perspectives 
 

Ce travail pourrait être développé par :  

1) la réalisation d’expérimentations complémentaires dans différents environnements 

pédoclimatiques et dans d’autres fonds génétiques, ce qui permettrait de valider les 

QTL constitutifs et les QTL spécifiques aux environnements 

2) l’identification de nouveaux polymorphismes moléculaires associés aux caractères 

de la qualité de l’huile, des graines et des caractères morpho-physiologiques.  

3) la réalisation de croisements entre les RILs présentant un polymorphisme dans 

l’intervalle de la zone étudiée. Après recombinaison génétique, il devrait être possible 

d’identifier des génotypes présentant des recombinaisons dans cette zone et d’évaluer 

ces génotypes pour identifier les marqueurs étroitement liés au caractère étudié.  

4) la cartographie fine et la réalisation de contig de BAC au voisinage des QTL, ce qui 

permettrait d’envisager le clonage positionnel. 

5) l’analyse de  l’expression d’un grand nombre de gènes à l’aide de la technique 

microarray qui peut aider à mieux comprendre les mécanismes impliqués dans le 

contrôle de la qualité de l’huile et de la qualité de la graine du tournesol. Cette 

technique peut être déployée pour deux objectifs : 

a- Analyser  l’expression de gènes en utilisant les génotypes contrastés et corréler le niveau 

d’expression des gènes aux différences phénotypiques relatives aux caractères de qualité de la 

graine. 
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b- Analyser l’expression des gènes sur toutes les lignées recombinantes (RILs) issues du 

croisement 'PAC 2' × 'RHA266' pour identifier les QTL contrôlant l’expression de gène 

(eQTL). Cette dernière approche permettrait de localiser les QTL impliqués dans l’expression 

différentielle globale des gènes et, par conséquent, d’associer la variation phénotypique avec 

la variation transcriptomique. L’analyse du transcripotome par puce à ADN peut fournir des 

informations quantitatives sur plusieurs dizaines de milliers de gènes simultanément. 

6)  TILLING sur les gènes candidats pour leur validation fonctionnelle. 
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Midi préparation d’ADN génomique de tournesol ( N.Pouilly-2008) 
 

 
 
Objectif : Extraire l’ADN de plantes en vue de tests PCR, de digestion par des enzymes de 
restriction.   
 
Matériel :    distributeur sur bouteilles et/ou combi-tips 
                    cônes 10-100µl & 100-1000µl autoclavés 

        transfert pipettes stériles 7mL 
                    Pour chaque échantillon, prévoir 3 séries de tubes 15mL type Falcon PP.  
 
 
Matériel végétal : 
Le matériel végétal est conservé à -80°C jusqu’à lyophilisation. 
 
 
Réactifs : 
 

V pour n=1 V pour n=32 

Tampon CTAB 5mL 160mL cf. protocole « Sol_Tampon_CTAB_V1 » 

1,4-Dithiothreitol (DTT) 1M 50µl 1,6mL Ajouter le DTT extemporanément. 

Chloroforme/IAA 24/1 (v/v) 10mL 320mL 
Pour un mélange préparé à l’avance, 

 conserver dans une bouteille hermétiquement close,  
sous sorbonne. 

Isopropanol 8mL 256mL Placer à -20°C avant utilisation. 

Ethanol 70% 2,5mL 80mL  

Chlorure de sodium NaCl 5M 1,5mL 48mL Autoclavé. 

Tampon TE 10-1 stérile 3mL 96mL Autoclavé. 

RNase 10 mg/ml 1.5µl 48µl  

Tampon TE 10-0.1 stérile 200µl 6,4mL Autoclavé. 

 
Noter le n° de lot pour l’ensemble des produits utilisés. 
 
Timing : 
Vérifier la disponibilité des réactifs et de l’équipement (centrifugeuse, bain-marie). 
Une extraction de 32 tubes peut être réalisée (2 séries de 16 tubes en décalé) 
 
 
Prévention :  
- Travailler sous la sorbonne pour les étapes utilisant les réactifs suivants : tampon CTAB, 
DTT, chloroforme/IAA, isopropanol.  
-  Prévoir l’élimination des déchets (bidon de 20L) 
 
 
Méthodologie  
 
En arrivant:  Mettre en route le bain-marie à 65°C.  

                               Régler la centrifugeuse sur 10°C. 
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Préparation des feuilles 
Récolter environ 0.5g de feuilles, de préférence jeunes et de bon aspect, dans des tubes de 
15mL type Falcon PP correctement identifiés. 
Après lyophilisation, ajouter 2 mL de billes de verre par tube et réaliser le broyage avec le 
mélangeur à peinture. 
 
 
Extraction 
 
� Sorbonne + gants 
 
1. Pour chaque échantillon, prévoir 5 mL de tampon CTAB + 50µl DTT 1M dans une bouteille.  
Faire chauffer le mélange dans le bain-marie pendant une dizaine de minutes (le CTAB froid 
précipite et peut ainsi faire précipiter l’ADN). 
 
2. Ajouter 5 mL de tampon CTAB/DTT dans chaque tube et bien agiter.  
Placer une série de 32 tubes 2 heures à 65°C (détruit les membranes et libère l’ADN). Agiter 
régulièrement pour décoller la poudre et la laisser s’imbiber. 
 

3. Compléter avec 7mL de chloroforme/IAA 24/1. 
Bien homogénéiser en agitant jusqu’à formation d’une soupe (élimination des débris 
cellulaires, précipitation les protéines restantes).  

Mélanger à nouveau en inversant les tubes une vingtaine de fois. 

 
4. Centrifuger à 4200g à 10°C pendant 30 min. Pendant la centrifugation, préparer une nouvelle 
série de tubes de 15 mL identifiés contenant 5 mL d’isopropanol 100% froid. 
 
5. Récupérer la phase aqueuse (environ 5 mL) à l’aide d’une transfert pipette stérile.  
Transférer dans le tube correspondant identifié.  

Mélanger avec l’isopropanol en inversant les tubes : l’ADN précipite.  

Laisser décanter l’ADN durant 1 heure minimum à 4°C (dans la glace ou au réfrigérateur). 

 
6. Centrifuger 4200g à 4°C pendant 15 min. Eliminer le surnageant et laisser sécher le tube à 
l’envers sur du papier absorbant pendant ¼ heure.  
Attention : vérifier que les culots ne se décrochent pas !  

Mettre en route le bain-marie à 37°C. 

 
7. Dissoudre le culot dans 3 mL de TE 10-1 stérile contenant 0.5 µg/mL de RNAse (soit 0.5µl 
de solution stock à 10 mg/mL par mL de TE).  
Placer les tubes à 37°C durant 1 heure, en agitant de temps en temps. 

 

Remarque : la manipulation peut être stoppée à ce stade en conservant les tubes à 4°C 
jusqu’au lendemain. 
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8. Ajouter 3 mL de chloroforme-IAA 24 :1, agiter et centrifuger 4200g à 4°C  pendant 15 min. 
Récupérer le surnageant dans un tube neuf (environ 3mL). 
 
9. Ajouter 1.5 mL de NaCl 5M, agiter, puis 3 mL d'isopropanol 100% froid. Mélanger par 
inversion: l’ADN précipite. Laisser précipiter au minimum ½ heure à 4°C (dans la glace ou au 
réfrigérateur). 
 
10. Centrifuger 4200g à 4°C  pendant 5 min. Eliminer le surnageant. Ajouter 2.5 mL d’Ethanol 
70%. Bien rincer le culot.  
 
� Fin de manipulation sous sorbonne 
 
11. Centrifuger 4200g à 4°C  pendant 5 min. Eliminer le surnageant et laisser sécher le tube à 
l’envers sur du papier absorbant pendant ¼ heure. Coucher le tube sur le côté et laisser sécher 
quelques heures (en fonction de la taille du culot). 
 
12. Reprendre le culot dans 200µl de TE10-0.1, en laissant une nuit à 4°C.  
 
Vérification 
 
13. Vérifier la qualité des ADN extraits par spectrométrie (Nanodrop), fluorimétrie et/ou 
électrophorèse.  
Résultat attendu : un ADN de haut poids moléculaire non dégradé doit être obtenu, dans une 
quantité comprise entre 1 à 50 µg d’ADN. 
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Dosage de l’ADN au Picogreen®    
sur le fluorimètre BioTEk FL600 

( N.Pouilly-2008) 
 
 
 
Objectif :  

Ce mode opératoire a pour but de définir le protocole d’utilisation du fluorimètre Biotek 
FL600 pour le dosage d’ADN au Picogreen® sur microplaque 96. Ce protocole permet le 
dosage d'ADN de faible concentration, entre 50 à 300ng/µl. 

Le Picogreen® utilisé vient s'intercaler dans l'hélice de l'ADN double brin. Après 
excitation à 485 nm, le picogreen®  intercalé dans l'ADN émet une fluorescence à 530 nm dont 
l'intensité est proportionnelle à la quantité d'ADN présent. 

Cette quantité est calculée par rapport à une courbe étalon de 8 points correspondants à 
8 concentrations différentes en ADN (de 0 à 2 ng/µl).  
 
 
Matériel : 

- Fluorimètre Biotek FL600 
- Micropipettes mono & multicanaux  
- Microplaque noire demi puits fond plat (réf. xxx) 

 
Réactifs : 

- Kit Quanti-iT™ Picogreen® (Invitrogen) 
- H2O ultra pure 

 
Prévention :  
 
 Le Picogreen® est un intercalant de l’ADN. A ce titre, il est à considérer comme un produit 
mutagène potentiel.  
 Prévoir une poubelle déchet spécifique (ex : sac plastique résistant) identifiée pour les 
consommables plastiques contaminé par le Picogreen®. (tube, cônes, réservoir, plaques, gants). 
Ce sac identifié Picogreen® sera à éliminer dans un contenant déchets chimiques en salle BET 
en fin de manipulation. 
 
Méthodologie :  
 

1. Préparation des ADN 
 
Préalable : faire un dosage préalable par spectrophotométrie (nanodrop), afin d’ajuster si 

besoin le coefficient de dilution des ADN. 
 
Le dosage s’effectue sur des ADN dilués au 1/300ème dans du TE 10/1. 
Le TE 10/1 est obtenu en diluant au 1/20ème le tampon fourni dans le kit (TE 20X). 

 
2. Préparation du Picogreen® 
 
Décongeler un aliquot de Picogreen® à l’abri de la lumière. 

     Lorsqu’il est totalement décongelé, faire une dilution au 1/200ème dans du TE 0/1.  
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La quantité minimale de Picogreen® dilué au 1/200ème est la suivante :  
 (N échantillons + 8 points de gamme) X 100 µµµµl.  
 soit pour une plaque 96 complète:  50µl Picogreen® stock + 9.95mL TE 10/1. 
Vortexer et stocker à l’abri de la lumière avant utilisation.  
Le Picogreen® dilué n’est pas stable, il se dégrade très vite, ne pas le conserver plus 
d’une demi-journée. 
 
3. Préparation de la gamme étalon 
 
• Dilution ADN λ standard à 2ng/µL 
 
Diluer l’ADN λ stock (100µg/mL) au 1/50ème : 40µl ADN λ 100µg/mL + 1960µl 
TE10/1. 
 
• Préparation de la gamme haute 0-2ng/µl 
 
 

 
 
 
 
 
 
 
 
 
 

Les 8 points de gammes sont stockés à 4°C, dans la boite contenant les différentes 
gammes d’ADN. 
 Si la quantité restante est inférieure à 50 µµµµl, la gamme est à refaire. 
 
4. Préparation de la plaque de dosage 
 
Déposer 100µl d’ADN (gammes étalons, ADN à doser dilués au 300ème), en 
commençant par les 8 points de la gamme sur les puits A1 à H1. 
 
Ajouter 100µl de Picogreen® dilué au 1/200 à la pipette multicanaux (mélanger par 
un aller/retour). 
Stocker la plaque à température ambiante avant le dosage, en la couvrant avec du 
papier alu. Le dosage doit être effectué après 5 minutes d’incubation. 
 
Lors du dosage, la plaque est agité par l’appareil pendant 2 min. avant la lecture de la 
fluorescence. Cela permet l’homogénéisation des réactifs et une bonne intégration du 
Picogreen® dans l’ADN. 
 
5. Utilisation du fluorimètre Biotek FL600 
 
Allumer le fluorimètre et l’ordinateur de pilotage. 
Ouvrir le logiciel KC4 
Lancer le protocole DNA_FLUO3.PRT sous D :/Nicolas_P 

[ADN] finale 
ADN λ 
 2ng/µl 

V(µl) 

TE10/1 
V(µl) 

0 0 1000 
2pg/µl 1 999 

0,02ng/µl 10 990 
0,1ng/µl 50 950 
0,2ng/µl 100 900 
0,4ng/µl 200 800 

1ng/µl 500 500 
2ng/µl 1000 0 
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Vérifier les paramètres « Settings » comme ci-après (en précisant notamment les 
puits si la plaque est incomplète). 
Créer et enregistrer la plaque à doser. 
Compléter le plan de plaque (« Layout »), en précisant : la gamme étalon utilisée, 
les puits contenant les échantillons à doser et leur dilution (300 d’après ce 
protocole). 
 

 

 
 

6. Résultats 
 

Après lecture de la plaque, le logiciel réalise la courbe étalon à partir des points 
de gamme.  

Cette courbe est une droite qui doit passer par zéro et dont le coefficient de 
corrélation (R^2) doit être le plus proche de 1. Cette droite étalon permet le 
calcul des concentrations en ADN des échantillons.  

 

Imprimer le rapport de dosage, avec la courbe étalon. 
Le rapport de dosage (fichier txt) est enregistré sous le répertoire D:// et 
transférable par disquette. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Paramètres protocole : ShakingIntensity=2 
ShakingTime=120 
Pre-Heating=No 
Incubation=No 
Temperature=0 
LagTime=00:00:00 
PlateSize=8,12 
PlateType=96 WELL PLATE 
Wells= à définir 
ReadBlankPlate=No 
MonitorWell=No 
EjectPlateBetweenMeasurement=No 
Method=Fluorescence 
Reading Direction=VERTICAL 

 

Filter1=485/20 
Filter2=530/25 
Gain=80  
OpticsPos=Bottom 
Mode=Static 
SamplesNb=100 
DelayBeforeSampling=350 
DelayBetweenSamples=10 
GainAdjust_MinValue=100 
GainAdjust_MaxValue=90000 

SkipReferenceWell=No 

CheckLampBeforeMeasurement=Yes 

SetLampOffDuringMeasurement=No 
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