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RESUME 

Le développement des plantes est le résultat d’une coordination complexe entre 

de multiples signaux endogènes essentiellement hormonaux et exogènes issus 

de l'environnement. En particulier, l'intégration des différentes voies de 

signalisation hormonales est modulée de manière organe-dépendante. Mon 

projet de thèse s’inscrit dans ce cadre et vise à identifier les acteurs moléculaires 

du dialogue  hormonal entre l’éthylène et l’auxine. L’interaction entre l’éthylène et 

l’auxine est l’exemple choisi dans cette étude en raison du rôle prépondérant joué 

par ces deux hormones dans les processus de maturation et de développement 

des fruits. En premier lieu, la caractérisation fonctionnelle du gène Sl-IAA3 codant 

pour un régulateur transcriptionnel apparenté à la famille des Aux/IAA de tomate 

a montré que la sous-expression de ce gène engendre des phénotypes associés 

à la fois à l'auxine (altération de la dominance apicale) et à l'éthylène 

(exagération du crochet apical et réduction de l’epinastie foliaire).  Ces résultats 

révèlent pour la première fois que le gène Sl-IAA3 se trouve au centre du 

dialogue entre les voies de signalisation de l'auxine et de l'éthylène. La formation 

du crochet apical constitue un système bien adapté à l’étude du dialogue 

hormonal en raison du rôle déjà démontré de l’auxine et l’éthylène dans ce 

processus. L'étude réalisée ici montre qu'en plus de l'altération du crochet apical, 

le mutant hls1 présente des phénotypes nouveaux associés à la lumière, au 

glucose et à l’ABA. Deux orthologues  (Sl-HLS1 et Sl-HLS2) du gène At-HLS1 

d'Arabidopsis ont été isolés chez la tomate et leur validation fonctionnelle a été 

réalisée par complémentation du mutant hls1 d’Arabidopsis. L'étude de 

l'expression tissulaire montre que Sl-HLS2 s’exprime au niveau de la face 

convexe du crochet apical à l'opposé de Sl-IAA3 dont l’expression est associée à 

la face concave. Ce résultat suggère que Sl-IAA3 et Sl-HLS2 pourraient avoir des 

fonctions antagonistes sur l’élongation cellulaire aux niveaux interne et externe 

du crochet permettant ainsi la formation de la boucle. Au total, la caractérisation 

de deux gènes intervenant à la croisée des voies de signalisation de l’auxine et 

l’éthylène réalisée ici sur des tissus végétatifs, fournit de nouveaux outils pour 

aborder à l'avenir le rôle du dialogue hormonal dans le développement et la 

maturation des fruits.  

 



ABSTRACT 
 

Plant development and survival depend on the ability of these organisms to 

integrate many signalling which enables them to produce an appropriate 

response. Ethylene and auxin are phytohormones known to regulate agonistly or 

antagonistly many processes of plant development but yet the key integrating 

molecular players remain largely undiscovered. My Ph.D project deals with the 

identification and characterization of molecular actors that take part in this 

dialogue. We report that Sl-IAA3, a member of the tomato auxin/indole-3-acetic 

acid (Aux/IAA) gene family, is an intersection point between auxin and ethylene 

signal transduction pathways. Aux/IAA genes encode short-lived transcriptional 

regulators that mediate auxin responses. Sl-IAA3 expression is controlled by both 

auxin and ethylene and is regulated on a tight tissue-specific basis. Down-

regulation of Sl-IAA3 via an antisense strategy results in auxin and ethylene-

related phenotypes including altered apical dominance, lower auxin sensitivity, 

exaggerated apical hook curvature in the dark and reduced petiole epinasty in the 

light. These ethylene-related phenotypes in the antisense tomato lines (AS-IAA3) 

position Sl-IAA3 firmly at the crossroads between auxin and ethylene signalling in 

tomato. The induction of apical hook offers an excellent system to study auxin-

ethylene interplay. In Arabidopsis, ethylene acts through HOOKLESS (HLS1) to 

control hook formation through modulating differential cell elongation in opposite 

sides of the hook. Loss of function mutation in the HLS1 gene results in the 

absence of hook even in the presence of exogenous ethylene. In the present 

study, we extended the phenotypes of the Arabidopsis hls1 mutant to alteration of 

light sensitivity, glucose and ABA tolerance and gravitropic growth thus 

uncovering the importance of HLS gene in the integration of multiple signalling 

pathways. Two functional tomato hookless genes (Sl-HLS1 and Sl-HLS2) were 

isolated in this study and shown to positively complement the Arabidopsis hls1 

mutant.  Expression of Sl-HLS2 in the hook is restricted to the outer face, 

opposite to Sl-IAA3 whose expression is localized in the inner face of the hook 

curvature. The data suggest that Sl-HLS2 and Sl-IAA3 exert antagonist control of 

cell elongation in the inner and outer part of the apical hook. Overall, the two 

genes characterized in this study open new prospects towards addressing the 

role of ethylene and auxin cross-talk during fruit development and ripening.  
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ABBREVIATIONS 

 
 
2,4-D      2,4-Dichlorophenoxyacetic acid 
 
ABA         Abscisic Acid 
 
ABP         Auxin Binding Protein 
 
AC          Ailsa Craig 
  
ACC       1-Aminocyclopropane-1-acide carboxilique 
 
ACO       ACC oxydase 
 
ACS       ACC synthase 
 
AFB       Auxin signalling F-Box proteins  
 
ARF        Auxin Response Factor  
 
AS          Antisense 
  
AuxRE    Auxin Response Element  
 
BR           Brassinosteroids 
 
CDK        Cyclin-Dependent Kinase  
 
cDNA       Complementary desoxyribonucleic acid 
 
Cnr         Colorless nonripening  
 
COI1       Coronatine Insensitive 1 
 
CTR1      Constitutive triple réponse 1 
 
D              DWARF  
 
DBD         DNA Binding Domain 
 
dgt           Diageotropica 
 
DPA        Days Post Anthesis 
 
DR          Developmently Regulated 
 
GA          Gibberellic Acid 
 



Gr           Green-ripe  
 
GUS       β-Glucoronidase 
 
HLS         Hookless 
 
IAA           Indole-3-Acetic Acid 
 
IBA           Indole-3-Butyric Acid 
 
IPA          Indole-3-Pyruvic Acid  
 
JA           Jasmonate 
 
KUP        Potassium transporter-like 
 
MAPK      Mitogen-Activated Protein Kinase 
 
MDRs     Multi-Drug Resistant-like transporters 
 
MCP       1-Methylciclopropène 
 
NAA        α-Naphtalene Acetic Acid 
 
NPA       N-(napthyl) Phthalamic Acid 
 
Nr           Never-ripe 
 
rin           Ripening-inhibitor  
 
RT          Reverse transcription 
 
SAM       S-adenosine-méthionine 
 
SAUR    Small auxin up-regulated RNA 
 
SP        Self Pruning  
 
Sur        Super-root 
 
TIR1     Transport Inhibitor Response 1 
 
WT         Wild Type 
 
X-Gal     5-bromo-4-cloro-3-indolil- β-D-galactoside 
 
 



 

 

OBJECTIFS ET PRINCIPAUX RESULTATS  

DES TRAVAUX DE THESE 

 
Les hormones jouent un rôle essentiel dans la coordination des processus de 

développement et d'adaptation des plantes à leur environnement. Au regard de la 

diversité de réponses développementales que les plantes sont capables de 

produire, l’hypothèse de la nécessité d’un mécanisme combinatoire basé sur 

l’intégration de différents signaux hormonaux a été depuis longtemps favorisée. 

Au cours des dernières décennies, les exemples de convergence entre voies de 

signalisation hormonales se sont multipliés parmi lesquels l’interaction entre 

l’éthylène et l’auxine est la plus étudiée chez les plantes. Ainsi les effets soit 

synergiques de l'éthylène et de l'auxine dans la régulation de la croissance 

racinaire, soit antagonistes dans le contrôle de l’abscission des fleurs et des fruits 

ont été largement décrits. Cependant, les médiateurs moléculaires de ce dialogue 

hormonal restent à ce jour mal connus. Grâce au déploiement des approches 

modernes de génétique, des avancées considérables ont été réalisées dans 

l'élucidation des modes d’action de chacune de ces deux hormones et les 

éléments clés de leurs voies de biosynthèse, de perception et de transduction ont 

été relativement bien caractérisés. Ceci a ouvert de nouvelles possibilités pour 

l’exploration, au niveau moléculaire, des intermédiaires de l’interaction hormonale 

entre auxine et éthylène. Le projet de ma thèse s’inscrit dans ce cadre et vise à 

mieux comprendre les modalités d’interaction entre l’auxine et l’éthylène à travers 

la caractérisation chez la tomate du gène Sl-IAA3 codant pour un médiateur de la 

réponse à l’auxine apparenté à la famille des Aux/IAA et du gène Sl-HLS 

(hookless) impliqué dans la réponse des plantules étiolées à l’éthylène. 

 

Le développement et la maturation des fruits: un exemple d’interaction 

entre l’auxine et l’éthylène 

 
Dans le cas des fruits climactériques comme la tomate, l’éthylène contrôle le 

déclanchement et le déroulement de la maturation. Cependant, l'acquisition de la 

compétence à murir ne semble pas dépendre de l'éthylène mais plutôt de 



l'intervention conjuguée de plusieurs facteurs hormonaux que les physiologistes 

avaient coutume d'appeler "la balance hormonale". La recherche des signaux 

impliqués dans le développement du fruit et dans l'avènement du processus de 

maturation a été entreprise dans notre laboratoire par un criblage différentiel qui a 

permis d’identifier plusieurs gènes qui s’expriment de manière différentielle au 

cours du développement du fruit et en réponse à l'éthylène chez la tomate 

(Zegzouti et al., 1998, Jones et al., 2002). Ce criblage a conduit entre autres à 

l'isolement de plusieurs gènes codant pour des régulateurs transcriptionnels 

impliqués dans la réponse à l’auxine. En particulier, les gènes qui appartiennent 

soit la famille des Aux/IAA ou à celle des ARF (Auxin Response Factor) 

présentant une double régulation par l'auxine et par l'éthylène. Ces études ont 

révèlé pour la première fois l’existence d’un dialogue entre la voie de signalisation 

de l’auxine et de l’éthylène au cours de la maturation du fruit et fourni des gènes 

cibles codant pour des effecteurs potentiels de cette action croisée des 

hormones.  

 

Sl-IAA3 , un membre de la famille des  Aux/IAA  intervenant dans la régulation 

de la réponse à l’auxine et à l’éthylène 

 

Sl-IAA3 est apparenté aux régulateurs transcriptionnels de type Aux/IAA 

médiateurs de la réponse à l’auxine chez les plantes et codés par une large 

famille multigénique. L'intérêt de gène Sl-IAA3 pour la présente étude vient de 

son profil d'expression endogène ainsi que de l'analyse des lignées 

transgéniques de tomates exprimant une construction fusionnant son promoteur 

au gène GUS (proIAA3:GUS) qui montrent que le gène Sl-IAA3 répond à une 

double régulation par l’auxine et par l’éthylène. Le travail réalisé au cours de la 

présente thèse montre que la sous-expression du gène Sl-IAA3 dans des lignées 

antisens (AS-IAA3) entraîne des phénotypes associés à l'auxine (dominance 

apicale et élongation de l’hypocotyle) et à l'éthylène (exagération du crochet 

apical et réduction de l’épinastie foliaire) suggérant qu'il s'agit d'un point de 

convergence des deux voies de signalisation hormonale. Au niveau moléculaire, 

nous montrons que certains médiateurs de la réponse à l’auxine (ARF, Auxin 

Response Factor) et de l’éthylène (ERF, Ethylene Response Factor) sont 

différentiellement régulés dans les lignées AS-IAA3 et constituent de ce fait des 



cibles potentielles régulées par Sl-IAA3. Ce gène s’exprime uniquement dans la 

face concave du crochet apical des plantules étiolées ce qui suggère que 

l’éthylène pourrait moduler la distribution et/ou la réponse asymétrique à l’auxine 

au niveau du crochet.   

L’ensemble de ces résultats apporte des connaissances nouvelles sur la 

fonction de la famille des Aux/IAA mais surtout révèle pour la première fois que le 

gène Sl-IAA3 se trouve au centre du dialogue auxine/éthylène nécessaire à 

certains processus de développement chez les plantes. Il faut toutefois souligner 

qu'alors que le gène Sl-IAA3 a été isolé sur la base de son expression 

différentielle dans le fruit, aucun phénotype associé au fruit n'a pu être observé 

chez les plantes antisens. L’absence de phénotype visible au niveau du fruit 

pourrait être le résultat de la redondance fonctionnelle au sein de la famille des 

Aux/IAA. Cependant, ces résultats n’excluent pas définitivement l’intervention de 

Sl-IAA3 dans certains aspects discrets de la maturation qui n'ont pas été testés 

au cours de cette étude.  

 

At-HLS1, un gène clé au carrefour de plusieurs voies de signalisations 

 

Dans plusieurs espèces incluant Arabidopsis et la tomate, l’éthylène induit 

chez les plantules étiolées une réponse morphologique caractéristique appelée 

"triple réponse". La triple réponse comprend: (i) une courbure exagérée du 

crochet apical, (ii) un raccourcissement et un grossissement de l’hypocotyle, et 

(iii) une inhibition de l’élongation racinaire. La formation et le maintien de ce 

crochet apical est le résultat de l’intégration de plusieurs signaux hormonaux et 

non hormonaux et représente ainsi un système d'étude privilégié de l’interaction 

auxine-éthylène. Selon un modèle récent, basé sur la caractérisation du mutant 

hookless (hls1) chez Arabidopsis, HLS1 serait la protéine clé où convergeraient 

différents signaux hormonaux ainsi que le signal lumière. Une mutation au niveau 

de ce gène inhibe la formation du crochet même en présence de traitement 

exogène d’éthylène. L'étude réalisée au cours de ce travail de thèse montre 

qu'en plus de l'altération du crochet apical, le mutant hls1 présente des 

phénotypes nouveaux associés à la lumière, au glucose et à l’ABA. A la suite de 

la description de l’ensemble de ces phénotypes, je propose un schéma qui 



présente un modèle permettant d'expliquer le rôle du gène HLS dans l'intégration 

de ces différents signaux hormonaux.  

 

Analyse fonctionnelle des gènes hookless de tomate 

 

La caractérisation de Sl-IAA3 présentée dans cette étude montre que ce gène 

est impliqué dans la formation du crochet apical et qu'il présente un profil 

d’expression en réponse à l’éthylène finement régulé au niveau de la face interne 

du crochet. Il ressort donc que Sl-IAA3 comme Sl-HLS jouent un rôle actif dans la 

formation du crochet apical et que les deux gènes se trouvent à l’intersection de 

la signalisation auxinique et éthylénique. Afin de mieux connaître les modalités 

d’interaction entre ces deux gènes clés, une partie de ma thèse a été dédiée à 

l’isolement de l’orthologue du gène At-HLS chez la tomate. Deux gènes nommés 

Sl-HLS1 et Sl-HLS2 ont été ainsi isolés dont la validation fonctionnelle a été 

réalisée par complémentation du mutant hls1 d’Arabidopsis. L’étude de 

l’expression de Sl-HLS1 et Sl-HLS2 montre que l'accumulation de leurs transcrits 

n'est pas affectée dans la lignée AS-IAA3 favorisant l’hypothèse que Sl-IAA3 agit 

soit en parallèle soit en aval de HLS dans la formation du crochet apical. Les 

études d’expression montrent que seul Sl-HLS2 répond à l’éthylène et à l’auxine 

au niveau du crochet. L’analyse de lignées proHLS2:GUS montre que 

l'expression de ce gène est exclusive à la face convexe du crochet apical, 

exactement à l'opposé de celle du gène Sl-IAA3. Ces résultats suggèrent que la 

formation du crochet fait intervenir un jeu d'expression entre Sl-HLS2 et Sl-IAA3 

qui régule l’élongation cellulaire dans les cotés convexe et concave du crochet. 

J'ai enfin entrepris de déréguler l’expression des gènes Sl-HLS1 et Sl-HLS2 dans 

la tomate par sur- et sous-expression de ces gènes. Ces lignées qui sont en 

cours d'obtention permettront de mieux disséquer les modalités d’interaction 

entre Sl-IAA3 et les gènes hookless de tomate. Des croisements entre les plantes 

AS-IAA3 et les plantes transformées par proHLS2:GUS sont également 

envisagés. 

 

En conclusion , cette thèse a permis l’isolement et la caractérisation de deux 

gènes intervenant à la croisée des voies de signalisation de l’auxine et l’éthylène 

chez la tomate. Tout en étant centrée sur des processus de développement 



touchant essentiellement les tissues végétatifs, cette étude ouvre de nouvelles 

perspectives pour aborder le rôle du dialogue hormonal dans le développement 

et la maturation des fruits.  

 

Organisation du manuscrit de thèse 
 
 

Après une introduction bibliographique (chapitre  I) concernant la signalisation 

de l’auxine, son mode d’action et les modalités d’interactions avec d’autres 

hormones en particulier avec l’éthylène, le chapitre  II de ce manuscrit est 

consacré à la caractérisation  fonctionnelle du gène Sl-IAA3 faisant partie de la 

famille des Aux/IAA codant pour des régulateurs transcriptionnels de l'auxine. Le 

chapitre III  concerne la caractérisation du gène HOOKLESS (HLS1) et décrit de 

nouveaux phénotypes du mutant hls1 d'Arabidopsis. Le chapitre IV  est dédié à 

l’isolement et à la caractérisation fonctionnelle des gènes Sl-HLS1 et Sl-HLS2 de 

tomate. Il est montré en particulier que la formation du crochet apical est 

associée à une répartition fine des territoires d'expression des gènes Sl-IAA3 et 

Sl-HLS2.  
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CHAPITRE I 
 
 

 
Bibliographic review 
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I.Introduction 

 
Auxin 

 
Auxin biology is among the oldest fields of experimental plant research. 

Charles Darwin performed early auxin experiments, observing the effects of a 

hypothetical substance modulating plant shoot elongation to allow tropic growth 

toward light (Darwin, 1880). Darwin’s experiments expanded upon Theophil 

Ciesielski’s research examining roots bending toward gravity (Ciesielski, 1872). 

The term auxin was coined by scientists examining plant growth modulating 

substances in human urine named auxins A and B (Kögl and Haagen Smit., 

1931). A structurally distinct compound with auxin activity isolated from fungi was 

called heteroauxin; auxins A and B were gradually abandoned for the 

reproducibly bioactive heteroauxin, which was later determined to be indole-3-

acetic acid (IAA) (Thimann, 1977). 

 

 
Indole-3-acetic acid (IAA) 

 
 In the plant life cycle, few developmental processes occur without the 

involvement of the phytohormone auxin from embryonic patterning to fruit 

dehiscence including the process of wounding.  

 
II. Synthesis of IAA 

 

The naturally predominant auxin in all plants is IAA. In seeds and seedlings, it 

is synthesized primarily from storage conjugates in the endosperm, but just a few 

days after germination de novo synthesis starts and from then on it seems that 

young leaves close to the shoot apex are the primary, but not the sole source of 

IAA (Ljung et al., 2002). Some plant species synthesize additional active auxin 

molecules such as 4-chloroindole-3-acetic acid (CAA), phenylacetic acid (PA), 
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and indole-3-butyric acid (IBA), but it is likely that IBA is converted to IAA by 

oxidation in peroxisomes (Bartel et al., 2001). 

 

II. 1 Auxin conjugates 

 

In germinating seeds, IAA is produced from the breakdown of stored forms of 

the hormone, conjugates of amino acids, proteins, and sugars (Figure 1). The 

most abundant storage products in dicotyledonous plants are amino acid 

conjugates. Hydrolysis of these conjugates during germination precedes or  

 
 
 
                                                                             (Woodward and Bartel., 2005) 

 
Figure 1. Potential pathways of IAA metabolism . Compounds quantified in Arabidopsis are in 
blue, enzymes for which the arabidopsis genes are cloned are in red, and Arabidopsis mutants 
are in lower-case italics. A family of amidohydrolases can release IAA from IAA conjugates. ILR1 
has specificity for IAA–Leu (Bartel and Fink, 1995), whereas IAR3 prefers IAA–Ala (Davies et al., 
1999). Arabidopsis UGT84B1 esterify IAA to glucose (Jackson et al., 2001). IBA is likely to be 
converted to IAA–CoA in a peroxisomal process that parallels fatty acid b-oxidation to acetyl-CoA 
(Bartel et al., 2001). IAA can be inactivated by oxidation (oxIAA) or by formation of 
nonhydrolysable conjugates (IAA–Asp and IAA–Glu). IAA–amino acid conjugates can be formed 
by members of the GH3/JAR1 family (Staswick et al., 2002, 2005). OxIAA can be conjugated to 
hexose, and IAA–Asp can be further oxidized (Östin et al., 1998). IBA and hydrolysable IAA 
conjugates are presumably derived from IAA; biosynthesis of these compounds may contribute to 
IAA inactivation. Formation and hydrolysis of IBA conjugates may also contribute to IAA 
homeostasis. 
 
coincides with the start of root extension. The storage endosperm of seeds is not 
the only site of IAA conjugate synthesis. Conjugate synthesis is developmentally 
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regulated and can be switched on at any time by exogenous application of 
auxins. Conjugates are likely to be moved into storage compartments such as the 
plant vacuole and, possibly, the endoplasmic reticulum. 
 

II. 2 De novo synthesis 

 

There are parallel biosynthetic pathways referred to as the tryptophan-

dependent and tryptophan-independent pathways. Several Trp-dependent 

pathways, which are generally named after an intermediate, have been proposed: 

the indole-3-pyruvic acid (IPA) pathway, the indole-3- acetamide (IAM) pathway 

and the tryptamine pathway (Figure2). 

An Arabidopsis mutant named yucca accumulates more IAA than the wild type 

and exhibits characteristic auxin-enriched phenotypes such as elongated 

hypocotyls, epinastic leaves, and increased apical dominance (Zhao et al., 2001). 

The YUCCA protein is a cytosolic flavin monooxygenase that has tryptamine as 

substrate (Figure2). There is also evidence for a pathway through indole-3-

pyruvate (Bartel et al., 2001; Ljung et al., 2002). Moreover, in Arabidopsis, an 

interesting pathway using a set of cytochrome P450s and a C-S lyase (Mikkelsen 

et al., 2004) has been identified through the analysis of a set of auxin-enriched 

mutants such as the superroot lines (sur1 and sur2) implicated in the synthesis of  

glucosinolates.  

All parts of young, growing plants appear to participate in IAA synthesis, 

although this synthesis is tightly controlled in order to maintain homeostasis 

(Ljung et al., 2001). Very young leaves produce large amounts of IAA. These 

early high concentrations and high synthetic capacity help drive leaf cell division. 

As the leaf expands towards its final size, synthesis and concentrations fall. In 

fully grown Arabidopsis plants, the highest concentrations of IAA are found in 

expanding fruiting bodies, the siliques (Müller et al., 2002). It is likely that most of 

this is synthesized by seeds during embryo development. The inflorescence stalk 

contains more IAA than most other parts of the plant, but it is not clear if this is 

synthesized in situ or if it is in transit (Figure3). 
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                                                                                                            (Woodward and Bartel.,2005) 
 
Figure 2. Potential pathways of IAA biosynthesis in Arabidopsis . De novo IAA biosynthetic 
pathways initiate from Trp. Compounds quantified in Arabidopsis are in blue, enzymes for which 
the Arabidopsis genes are identified are in red, and Arabidopsis mutants are in lower-case italics. 
Suggested conversions for which genes are not identified are indicated with question marks. 
 

  II. 3 Desactivation 

 

Control of auxin action can be mediated by removing IAA as well as by 

synthesis. Auxins are removed by conjugation into inactive storage compounds 

and by oxidation. The primary oxidation auxins product of IAA in Arabidopsis and 

other plants is likely to be 2-oxo-indoleacetic acid (OxIAA), although quantities of 

oxidized conjugates, OxIAAaspartate, and O-glucoside are also found (Östin et 

al., 1998). Free IAA is metabolized by decarboxylation by a variety of plant 

peroxidases in vitro, but the quantities of such products from intact tissues are 

generally very low suggesting that these are less important catabolic pathways in 

vivo. 
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III. Auxin distribution and transport: the road network 

 

All plant hormones are moved around the plant in the vasculature where, once 

loaded, they move passively as passenger molecules. Auxin is so far unique 

among plant hormones in being actively moved around the plant by a series of 

transmembrane pumps or pump components (Blakeslee et al., 2005). The 

chemiosmotic hypothesis is a long-standing and widely accepted model for the 

basic operation of this system (Goldsmith et al., 1981). Auxin is a weak acid, and 

at the extra-cellular (apoplastic) pH a significant fraction is protonated and hence 

apolar. As such auxin can freely diffuse into the cell, where the pH is higher, 

resulting in ionisation. The auxin ions are then trapped in the cell and can only 

leave through active transport, energised by the electrochemical gradient across 

the plasma membrane. The auxin efflux activity can be localised to a specific part 

of the cell surface. Thus, in a file of cells that are all polarised in the same 

direction, auxin movement will be unidirectional. Polar auxin transport contributes 

to many of the important auxin-dependant response as cell division, cambial 

development, apical dominance and gravitropism but is not correct to suppose 

that all auxin movement is through the polar transport system. Considerable 

quantities of free IAA and auxin conjugates are carried in the vasculature, 

particularly the phloem. (Baker, 2000; Cambridge and Morris, 1996; Else et al., 

2004).  

Many of the auxin-driven responses fail if auxin is absent or in excess, or if 

polar auxin transport is defective. Certainly, hormone delivery is as important as 

the hormone itself. As a result, auxin physiology has benefited from the use of 

drugs that act specifically to inhibit polar auxin transport. Of these, 

naphthylphthalamic acid (NPA) is the most response-specific and has been used 

widely.  

III.1 Update carriers 

 

All Candidate proteins described for both uptake and efflux have been 

identified from screening mutant populations and the application of molecular 

genetics. The influx carrier gene, known as AUX1, was isolated from seedlings 
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insensitive to the auxin 2,4-dichlorophenoxyacetic acid (2,4-D) (Bennett et al., 

1996). The AUX1 is an integral membrane protein, a member of the amino acid-

proton cotransporter superfamily. Arabidopsis and other plant species tend to 

have small gene families of AUX1-like proteins (Schnabel and Frugoli, 2004). In 

addition, a member of the aromatic and neutral amino acid transporter family 

(AtANT1) has been found to carry IAA in heterologous expression studies using 

yeast (Chen et al., 2001) and seems likely to contribute to overall auxin influx. 

 
 
                                                                                           (Perrot-Rechenmann and Napier., 2005) 
 
Figure 3. The dynamics of auxin transport . Auxin is imported into the cell (at the top) through 
influx carriers, notably AUX1 and the less specific ANT1. Influx is cotransport with protons. Inside 
the cell, IAA dissociates to the IAA- anion and is subject to conjugation as well as export through 
an efflux complex. Conjugates (and possibly free IAA) are compartmentalized through carrier 
proteins like MRP5. The most important component of the efflux complex is one or more PIN 
proteins and it seems likely that the kinase PID and phosphatase RCN1 and BIG are all involved 
in the regulation of PIN activity. The PIN proteins are rapidly recycled away from the plasma 
membrane to the plant endosomal system. New PIN proteins are secreted through a GNOM-
regulated ER–Golgi– vesicle pathway. Additionally, MDR1 may regulate the PIN complex and 
transport IAA directly. The twisted protein (TWD1) interacts with a cytosolic domain of MDR1 and 
also with PGP1, which in turn interacts with APM1. 

 

III.2 The efflux complex and the importance of vesicle cycling 

 

There are tree classes of transmenbrane protein that have been involved in 

polar auxin transport. The PINs (a plant-specific transporter family), the 

PGP/MDRs (Multi-Drug Resistant-like transporters) and the KUPs (Potassium 
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transporter-like) (Vicente-Agullo et al., 2004). The relationship between these 

classes is unclear; however, mutants in many of the genes encoding these 

proteins result in auxin transport defects. Both the PINs and the MDRs appear to 

be able to transport auxin directly and at least partially independently of each 

other (Geisler et al., 2005; Petraek, et al., 2006).  

The PINs are the best characterised in planta and show an excellent 

correlation between PIN localisation to a particular cell face, and the direction of 

auxin transport (Winiewska et al., 2006). PIN targeting appears to be a highly 

dynamic process with continuous cycling of the PINs between the cell surface 

and an intracellular compartment, a process dependent on ARF-GEF proteins 

such as GNOM (Figure3).   

 

IV. Auxin perception, receptor and signalling 

 

IV.1 .Perception and receptors: TIR1 the heart of auxin-signalling 

 

Receptor proteins are key components of signalling systems and their 

discovery is fundamental to both the understanding and the exploitation of 

hormonal regulation. In 2005, a receptor of auxin was identified as the F-box 

protein TIR1 (Transport Inhibitor Response 1). The TIR1 gene was first identified 

in a genetic screen for Arabidopsis plants tolerant to auxin transport inhibitors 

(NPA). However, soon after it was shown that TIR1 was involved in auxin action. 

TIR1 is a component of a cellular protein complex known as SCFTIR1 

(Skp1/Cullin/F-box) (Dharmasiri et al., 2005; Kepinski et al., 2005) involved in 

ubiquitin-mediated protein degradation (Ruegger et al., 1998). The substrates for 

TIR1, Aux/IAA repressors, are recruited to the receptor in an auxin-dependent 

manner and, after binding to TIR1, are degraded. Identification of the TIR1 

receptor suggested that auxin perception and the signalling pathway to auxin-

regulated gene expression was direct and simple, but it left various questions. 
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(Woodward and Bartel, 2005) 

 
Figure 4. A Model for auxin response through the TIR1 auxin receptor pathway.  
Transcriptionally activating ARFs (green) are bound to auxin-responsive promoter elements but 
are counteracted (blunt arrows) by heterodimerization with Aux/IAA transcriptional repressors 
(dark red) via two domains (III and IV) conserved between ARF and Aux/IAA proteins. Auxin 
(pink) binds to TIR1 (blue) or a TIR1-Aux/IAA complex to promote or stabilize TIR1-Aux/ IAA 
domain II interaction. TIR1 tethers the Aux/IAA protein to an SCF complex (purple) that is thought 
to catalyze attachment of multiple ubiquitin (Ub) moieties to the Aux/IAA target protein. The 
ubiquitinated Aux/IAA protein is then degraded by the 26S proteasome (orange). Increased 
Aux/IAA degradation in response to auxin frees the activating ARF proteins from repression, 
allowing auxin-responsive transcription. Among the auxin-induced transcripts are those encoding 
the Aux/IAA repressors themselves, creating a negative feedback regulatory system. See text for 
references. 

 
Tan et al. (2007) expressed TIR1 complexed with ASK1 (a SCF TIR1 adaptor) 

and demonstrated that auxin enhanced the binding of an Aux/IAA protein to the 

complex, they obtained crystal structures for the complex alone and for 

complexes bound to IAA and the two synthetic auxins (1-NAA and 2,4-D) along 

with an Aux/IAA peptide. 

 

 

 

 
 

 
Figure 5.  The main molecular players in the work of Tan et al (2007).  The three auxin ligands 
that the authors crystallizedin association with the TIR1 auxin receptor. IAA itself, and the 
synthetic auxins 1-NAA and 2,4-D, bind to a ‘promiscuous’ cavity in the receptor with different 
affinities, but all of them stabilize the interaction between the Aux/IAA repressor and the receptor. 
 

The crystal structures showed that the TIR1–ASK1 complex had a mushroom 

shape, with the leucine-rich-repeat domain of TIR1 forming the cap, and the F-
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box of TIR1 along with ASK1 forming the stem. A pocket on the top of the TIR1 

leucine-rich-repeat domain functions in both auxin binding and substrate 

recruitment. It turns out that auxin binds to the bottom of the pocket that tolerates 

moderately different planar ring structures (that is, natural and synthetic auxins). 

 

  
(Tan et al., 2007) 

 
Figure 6. Schematic diagram of auxin functioning as a ‘molecular glue’ to enhance TIR1–
substrate interactions.  In contrast to an allosteric mechanism, auxin binds to the same TIR1 
pocket that docks the Aux/IAA substrate. Without inducing significant conformational changes in 
its receptor, auxin increases the affinity of two proteins by simultaneously interacting with both in a 
cavity at the protein interface. 
 

The Aux/IAA peptide binds in close proximity to the auxin-binding site in the 

upper part of the pocket (Figure6). The GWPPV motif of Aux/IAA proteins 

(Figure7) is packed directly against auxin and covers the auxin binding site. This 

is thought to trap auxin in the binding pocket until the Aux/IAA peptide is released 

and moved along the degradation pathway.  

 

 
(Tan et al., 2007) 

 
Figure 7. Depiction of the four conserved domains of Aux/IAA repressors. The synthetic 
peptide from domain II is sufficient for targeting Aux/IAA to the TIR1 auxin receptor, the core 
sequence being GWPPV (G, glycine; W, tryptophan; P, proline; V, valine). 

 
 

The authors compared TIR1 structures that had IAA or the two synthetic 

auxins in the ligand binding site. IAA binds to TIR1 with the greatest affinity of the 

three auxins (Figure 5). The synthetic auxins bind to TIR1 in a manner similar to 

IAA, but with affinities determined by how effectively their ring structures fit into 

and interact with the promiscuous cavity of the receptor.  

 

Interestingly, the binding of auxin does not induce significant conformational 

changes in TIR1. Instead, auxin enhances the binding of Aux/IAA substrate to 

TIR1 by occupying a cavity between substrate and receptor, thus forming a 
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continuous hydrophobic core among ligand, substrate and receptor. The authors 

characterize this as a ‘molecular glue’ that effectively strengthens the binding of 

the substrate to the receptor (Figure 6). 

Two others F-box proteins had been identified earlier [now named Auxin 

signalling F-Box proteins (AFB) 1 and 2] but not studied in detail (Ruegger et al., 

1998). One other is named as AFB3 (Dharmasiri et al., 2005). Each AFB protein 

has been shown to bind Aux/IAAs in an auxin-dependent manner (Dharmasiri et 

al., 2005). Seedlings of each single TIR1 and AFB mutant line resemble wild-type 

seedlings in light or dark, but some do display auxin-tolerant phenotypes such as 

a partial tolerance to auxin-induced inhibition of root elongation (Dharmasiri et al., 

2005). Far greater additive effects are found in double, triple and quadruple 

mutants. Triple and quadruple mutant lines show high levels of arrest after 

germination, although some seedlings do develop and a range of phenotypes 

develops in the quadruple mutants (Figure8). Classified into three groups, the 

most severe group fails to develop a root and develops only a single cotyledon. 

The least severe group has seedlings with roots that respond poorly to gravity and lack 

hairs. In more mature plants, the triple and quadruple mutants develop rosettes with 

reduced highly curled leaves and the inflorescences are dwarfed and highly branched 

(Dharmasiri et al., 2005). 

 

 
(Badescu and Napier., 2006) 

 
Figure 8. Seedlings of the quadruple mutant tir1 afb1 afb2 afb3 show three classes of 
phenotype.  Seven-day-old seedlings were grown on vertical plates in the light. The most extreme 
phenotype (right) is rootless, shows no hypocotyl extension and often has only a single cotyledon, 
resembling monopteros plants at the same age. The least extreme (left) shows impaired 
gravitropism and few root hairs. 
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All these observations are consistent with the assertion that the TIR1 family 

acts as a set of auxin receptors with overlapping redundant functionality between 

members. 

 

         IV. 2 Signalling 

                  IV.2.a .Auxin induced transcripts 

 

Auxin rapidly and transiently induced accumulation of at least three families of 

transcripts: SMALL AUXIN-UP RNAs (SAURs), GRETCHENHAGEN (GH3)-

related transcripts and Auxin/INDOLE-3-ACETIC ACID (Aux/IAA) family 

members. 

SAUR transcripts accumulate rapidly after auxin exposure in soybean (Walker 

and Key., 1982) and many other species, including Arabidopsis (Gil et al., 1994). 

Maize ZmSAUR2 is a small nuclear protein that, like the encoding transcript, is 

rapidly degraded (Knauss et al., 2003). The short half-lives of SAUR mRNAs 

appear to be conferred by downstream elements (DSTs) in the 3’ untranslated 

region of the message (Sullivan and Green., 1996). Arabidopsis mutants that 

stabilize DST-containing RNAs, and thus stabilize SAUR transcripts, have no 

reported morphological phenotype (Johnson et al., 2000), and the function of 

these small RNAs remains unknown.  

GH3 transcript accumulation is also induced by auxin (Hagen et al., 1984). At 

least some IAA-induced GH3 genes encode IAA–amino acid conjugating 

enzymes (Staswick et al., 2005) (Figure 1), whereas several GH3-related proteins 

that are not auxin regulated function to adenylate or conjugate amino acids to 

molecules other than IAA, including jasmonic acid (Staswick et al., 2002; 

Staswick and Tiryaki., 2004). Thus, the auxin induction of GH3 genes likely 

serves to dampen the auxin signal by inactivating IAA via conjugation.  

Aux/IAA  family includes 29 proteins in Arabidopsis. Induction of some 

Aux/IAA genes occurs within minutes of auxin application and does not require 

new protein synthesis (Abel et al., 1994; Abel and Theologis., 1996). Aux/IAA 

genes encode proteins that generally have nuclear localization and four 

conserved domains (I–IV). Domain I is a transcriptional repressor (Tiwari et al., 

2004). Domain II is critical for Aux/IAA instability; several mutations in this domain 
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have been isolated as gain-of-function alleles that stabilize the proteins and 

confer auxin-resistant phenotypes. Domains III and IV are involved in 

homodimerization and heterodimerization with other Aux/IAA proteins and with 

Auxin Reponse Factors (ARFs) (Kim et al., 1997; Ulmasov et al., 1999; Hardtke 

et al., 2004) (Figure 7). 

Gain-of-function mutations in several Aux/IAA genes, including axr5/iaa1 

(Yang et al.,2004), shy2/iaa3 (Tian and Reed., 1999), shy1/iaa6 (Kim et al., 1996; 

Reed., 2001), axr2/iaa7 (Timpte et al., 1994; Nagpal et al., 2000), bdl/iaa12 

(Hamann et al., 2002), solitary root slr/iaa14 (Fukaki et al., 2002), axr3/iaa17         

(Rouse et al., 1998), iaa18 (Reed., 2001), msg2/iaa19 (Tatematsu et al., 2004), 

and iaa28 (Rogg et al., 2001), have pleiotropic effects on plant growth. All of 

these primary mutations in Aux/IAA genes were found in highly conserved 

domain II, which is responsible for protein degradation. The mutations stabilize 

the proteins resulting in gain of function phenotype. 

 

              IV.2.b. Auxin-responsive- elemen Aux/RE and isolation of 

Auxin Response Factor (ARF)  

 

Many genes with auxin-induced expression, including most SAUR, GH3 and 

Aux/IAA genes, share a common sequence in their upstream regulatory regions, 

TGTCTC or variants, first identified from the promoter region of the pea Ps-

IAA4/5 gene (Ballas et al., 1993). Regions including this sequence, known as the 

Auxin-Responsive Element, or AuxRE, confer auxin-induced gene expression in 

synthetic constructs (Ulmasov et al., 1995, 1997b). More recently, genome-wide 

profiling experiments have revealed a wealth of auxin-induced genes (Sawa et 

al., 2002; Pufky et al., 2003; Cluis et al., 2004; Himanen et al., 2004), many of 

which contain AuxREs in putative regulatory regions (Pufky et al., 2003; 

Nemhauser et al., 2004). The identification of the AuxRE sequence led to the 

isolation of the Arabidopsis Auxin Response Factor1 (ARF1) gene (Ulmasov., 

1997a) and subsequent genetic, genomic, and molecular studies have identified 

23 ARF genes in Arabidopsis (Liscum and Reed., 2002). In addition to a 

conserved amino-terminal (N-terminal) domain that mediates AuxRE binding 

(Tiwari et al., 2003), most ARF transcription factors also contain carboxyl-terminal 
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(C-terminal) dimerization elements (domains III and IV). In between is a variable 

middle region (MR) that generally is either glutamine (Q)-rich or serine (S)-rich. 

This difference is apparently a major determinant of ARF function, with S-rich 

ARFs acting as transcriptional repressors and Q-rich ARFs as transcriptional 

activators in protoplast transfection assays (Tiwari et al., 2003). 

 

 
 
 

Figure 9. Diagram of Aux/IAA and ARF protein with conserved domains.  Aux/IAA genes 
share four conserved domains including the C-terminal domains III and IV that are found in most 
ARF proteins. These domains mediate Aux/IAA–ARF heterodimerization.   

 
Glutamine-rich ARFs such as ARF5 and ARF7, when mutated, they often give 

remarkable phenotypes; for example, those seen in monopteros (ARF5) 

(rootless) and those seen in non phototropic hypocotyl4 (ARF7) (unable to bend 

towards light) (Hardtke et al., 2004).  There is emerging evidence that ARFs that 

lack a glutamine-rich middle region function act as transcriptional repressors 

(Tiwari et al., 2003). 

 

            IV.2.c.Transcriptional control 

 

The effects of auxin are thought to depend on its concentration, with high and 

low doses eliciting different responses. At basal auxin levels, Aux/IAAs are 

relatively stable, homodimerize and heterodimerize with ARFs that can bind to 

Aux/RE in the promoters of auxin-responsive genes. The ARF-bound Aux/IAA 

proteins block transcription from auxin-responsive promoters by controlling the 

amount of free ARF transcription factors to the promoters (Figure 10a). An 

increase in auxin levels causes the proteasome mediated degradation of 

Aux/IAAs, which in turn allows for a gradually increasing number of functionally 

active ARF proteins and the transcriptional activation of auxin regulated genes. 

The Aux/IAA genes themselves are auxin-inducible. This might represent a 

negative feedback loop that ensures a transient response, with the nascent 

AAuuxxRREE  bbiinnddiinngg  
ddoommaaiinn 

III IV 
I II III  IV Aux/IAA 

ARF 
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Aux/IAA proteins attenuating the signalling pathway as auxin levels fall by 

restoring repression of the ARF transcription factors (Figure 10b).  

 

In conclusion , The SCFTIR1/AFB-mediated proteolysis of Aux/IAA proteins is 

clearly responsible for many of the effects of auxin, but the resulting changes in 

gene expression occur too slowly to account for the most rapid auxin responses, 

including ion fluxes across the plasma membrane (Hager et al., 2003) and mitogen-

activated protein (MAP) kinase activation (Mockaitis et al., 2000) (Figure 11). 

There are two further sets of responses induced by auxin for whish TIR1 is 

unlikely to be the receptor: those for whish the receptor is shown to be 

extracellular and those for which other receptor can be specified. 

 

 

(Quint and Gray, 2006) 

 

Figure 10: Auxin regulation of gene expression . (a) Under basal auxin concentrations 
the Aux/IAA proteins heterodimerize with the ARF transcription factors, thereby 
repressing auxin-inducible gene expression.  (b) Auxin binding to the TIR1/AFB receptors 
promotes the recruitment of Aux/IAA proteins to the SCF complex. Subsequent Aux/IAA 
ubiquitinylation and proteasome-mediated degradation results in a decline in Aux/IAA 
protein levels, thus de-repressing auxin-inducible gene expression. DBD, DNA-binding 
domain; E1, ubiquitin-activating enzyme; E2, ubiquitin-conjugating enzyme; U,ubiquitin; 
R, RUB,AFB1, AFB2, or AFB3. 

 

 

a b
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This receptor might very likely be ABP1 (Auxin Binding Protein1) (Steffens et 

al., 2001) but the mechanism of ABP1 action and the identities of other 

components of this pathway await discovery. Furthermore, several factors, 

including the repressing ARFs, SAUR proteins, MAP kinase pathway 

components, have been implicated in auxin signalling but are presently without a 

home in current models. Clearly, much remains to be learned about the 

mechanics of auxin signalling. 

 

 
 

(Badescu and Napier., 2006) 
 

Figure 11. Early events after an auxin stimulus.  The upper panel shows a trace of the growth 
against time for a coleoptile after addition of exogenous auxin at time 0. There is a characteristic 
lag of 10–15 min after which extension rate increases rapidly before falling off after 30 min. In the 
continuing presence of auxin, a second peak follows after 60 min and an elevated growth rate is 
sustained. The first 30 min of the timeline is expanded below; against this timeline times are 
indicated at which specific responses occur. Some of the transcripts that increase in abundance in 
response to auxin are indicated in the center of the figure; changes in protein activity or cellular 
function are shown at the base. Many responses precede changes in transcript abundance. 

 
 

   V. HOMEOSTASIS  
 

The balance of synthesis, breakdown, conjugation, and transport is regulated 

rigorously to give auxin homeostasis and thus orchestrate the plant development. 

Clearly, changes in auxin concentration are important as plants respond to 
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stimuli, but homeostasis is critical for both optimal development and to keep the 

system primed for stimulatory responses. At present, the feedback mechanisms 

for homeostasis are not well characterized. However, it is clear that auxin 

transport plays a crucial role in both establishing and perturbing homeostasis 

(Figure 12). 

 

VI. Role of auxin 

 

Auxin is an absolute requirement for plant cell division, as well as to many 

other developmental and environmental responses that are mediated through 

auxin movements. Of these, a good number are commercially relevant, such as 

branching, rooting, and fruiting, but the biggest market for synthetic auxins is as 

selective herbicides. 

 

 
                                                    

  (Paciorek and Friml, 2006)  

 
Figure 12. Auxin homestasis. 
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               VI.1 Cell division and tissue culture 

 

One of the most profound actions of auxin on plants is the control of cell 

division. A primary event in the stimulation of cell division is the cytokinin-

mediated initiation of cyclin D transcription (Cockcroft et al., 2000). The newly 

synthesized cyclin D associates with a cyclin-dependent kinase (CDK) to create 

an active complex at the G1 to S transition. The CDK-a/cyclin D complex leads to 

phosphorylation of the retinoblastoma tumor suppressor protein (Rb). Inactivation 

of Rb in late G1 provokes release of the transcription factor E2F, and genes 

controlled by E2F factors are therefore activated, driving cells into DNA 

replication and committing them to the cell cycle. Cells can be arrested either in 

G1 or in G2 phase after auxin deprivation (Planchais et al., 1997). 

 Generally, higher auxin concentrations stimulate cell division, and low auxin 

concentrations drive cell elongation, cell enlargement, and cell differentiation 

(Winicur et al., 1998; Zazimalova et al., 1995).  

Among the most striking examples of this critical control over division is in cell 

and tissue culture where auxin must be included in almost all media. 

Furthermore, auxin and cytokinin concentrations can be manipulated to promote 

proliferative callus growth, regeneration of vegetative tissue, or root induction. 

Elevated auxin/cytokinin in ratio is favorable for rooting, whereas a reduced ratio 

facilitates buds regeneration. Horticultural practices, such as cutting and clonal 

micropropagation, are directly based on these characteristics. 

 

            VI.2 Organ patterning 

                   VI.2.a Phyllotaxis 
 

Phyllotaxis is the regular arrangement of leaves on a stem. Polar auxin 

transport inhibitors and Arabidopsis mutants defective in polar transport like pin1 

have helped us to illustrate that accumulation of IAA in cells at the side of the 

shoot apical meristem initiates organogenesis and determines the position of the 

next leaf primordium. Moreover, microapplications of transport inhibitors or IAA to 
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tomato shoot apex have shown that for leaves and flowers, auxin application 

determines primordium development in the radial dimension (Reinhardt et al., 

2000). The cellular and subcellular distributions of the efflux proteins PIN and 

AUX1 in the surface layers of cells towards the tip of the shoot apical meristem 

were shown to correspond to the subsequent differentiation of leaf primordial 

(Reinhardt et al., 2003). 

 

                    VI.2.b Root initiation and gravitropism 

 

Auxin is transported into distinct tissues of the root drives lateral primordium 

development (Blilou et al., 2005; Casimiro et al., 2001). Specific PIN proteins then 

contribute to root patterning, particularly AtPIN4 (Friml et al., 2002), although the 

AUX1 protein is again an essential contributor. The center of auxin concentration 

in roots is at the root tip, just behind the cap (Bhalerao et al., 2002). From here 

both AUX1 and PIN proteins work to produce defined gradients along the root 

epidermal layers stretching back into the elongation zone (Ottenschlager et al., 

2003). These control not just lateral rooting but also gravitropism (Friml et al., 

2002; Müller et al., 1998).  

 

                VI.3. Apical dominance and branching  

 

In addition to controlling the initiation of leaf primordia at shoot apices it has 

been recognized for many years that auxin transported back from the shoot apex 

controls the outgrowth of side branches from axillary buds (Figure 13). Gardeners 

and horticulturalists make use of this apical dominance to control plant structure 

by pruning. By removal of the stem apex, the source of auxin is removed and its 

inhibitory action on axillary buds is released, leading to side branch outgrowth 

and bushier plants. Consistent with these observations, classic experiments by 

Thimann and Skoog showed that if auxin is applied to the pruned apical stump, 

bud outgrowth is inhibited (Davies, 1995).  

 

Apical dominance is active in roots as well as stems. Root tip-derived auxin 

certainly  inhibits  lateral  root  initiation  close to the apex (Casimiro et al., 2001).  
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                                               (Teale et al., 2006) 

 
Figure 13.  The developmental processes that are controlled by auxin flux.  
a Lateral root. PINs conduct auxin from the centre of the root (stele) to the new root tip (auxin is 
indicated in green and auxin transport is indicated by red arrows), and then away again through 
the epidermis. 
b Embryo. Auxin is taken to the very young embryo by PIN7 (left). At a later stage (right), the 
auxin flux is reversed as PIN1, PIN4 and PIN7 conduct auxin out of the embryo. Transport by 
PIN1, PIN4 and PIN7 is indicated by blue, green and red arrows, in corresponding order.  
c Shoot apical meristem. Auxin is redirected towards the site of new leaf formation (primordial P1 
and P2 and the incipient primordium) in the epidermal layer. The shoot apex is indicated in blue.  
d Leaves. Auxin mediates vascular tissue development and patterning in the developing leaf 
through non-polar PIN1. The arrows indicate sites of auxin production and the redcircles indicate 
auxin accumulation.  
e. Main root. PINs determine the flux of auxin towards the root tip in the centre of the root, and 
back again in the epidermis. This movement forms the basis of the root’s ability to respond quickly 
to gravity.  
 

VI.4.Tropisms 

 

Plants respond to different signals as light and gravity by differential growth. 

Auxin gradients, generated by polar auxin transport, have been implicated. This 

hypothesis is supported by the experiments of Cholodny and Went (Davis., 1995). 

In stems, greater auxin concentrations enhance elongation growth. In roots auxin 

inhibits growth. Auxin measurements have shown that the side of stems 

expanding more rapidly was found to contain a little more IAA (Harrison and 

Pickard., 1989). Recent data on the stimulus-induced redistribution of specific 

members of the PIN family in roots (e.g., PIN3), data from auxin measurements, 
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from auxin response mutants, all support this hypothesis. Other data, such as 

kinetic measurements of gravistimulated roots and experiments in which seedling 

shoots are incubated in excess IAA that are still found to be able to respond by 

differential growth (Edelmann., 2001), argue against the first hypothesis. Either 

way, it is clear that auxin is a requirement for differential and tropic growth, and 

many auxin sensitive mutants like aux1 have agravitropic root phenotypes 

(Bennett et al., 1996). 

 

VI.5. Adventitious rooting  

 

Addition of auxin to cut or damaged stems often induces a strong adventitious 

rooting response, and horticultural industries relying on clonal propagation make 

good use of this response for ornamentals, trees, flowers, and general garden 

plants. The initiation of root primordia in stem tissues requires a redifferentiation 

response, and, although auxin promotes this, the molecular or genetic 

mechanisms are unclear. There are mutants of Arabidopsis that show precocious 

rooting along the seedling hypocotyl, superroot (sur) 1 and 2, for example 

(Boerjanet al., 1995). In both, auxin levels are elevated due to accumulation of 

endogenous aldoxime (IAOx) that is channeled into auxin (Figure 14).   

 

 
                                                                                                                       (Mikkelsen et al., 2004) 
Figure 14. The role of SUR genes in auxin homeostasis. Hight auxin mutant are schown in 
red. 
 
           VI.6. Fruit growth 

 

Auxin plays a vital role in all stages of reproductive growth. Some of the 

highest auxin concentrations have been found in developing fruit (Müller et al., 
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2002).  It has been postulated that auxin is first produced by elongating pollen 

tubes and then by the embryo and endosperm in the developing seeds. 

Subsequent development of the fruit appears to depend on these sources of 

auxin. In the early 1950s, Nitsch showed that achene (seed) removal from 

strawberry receptacles inhibited receptacle enlargement (Pennazio., 2002). 

Replacing the achene with a supply of auxin maintained fruit growth. Cessation of 

auxin supply also led to ripening in this nonclimacteric fruit. Supporting this 

hypothesis, the auxin-resistant tomato mutant, diageotropica, which encodes a 

cyclophilin has reduced fruit set, fruit weight and seed production (Balbi and 

Lomax., 2003; Oh et al., 2006) and the application of either auxin or auxin 

transport inhibitors that cause an increase in auxin in the ovary stimulate fruit set 

and the development of parthenocarpic fruit (Gustafson., 1937; Beyer and 

Quebedeaux., 1974). 

Parthenocarpy has also been induced in tomato and other fruit by ovary-

targeted ectopic expression of Agrobacterium iaaM under the control of carpel- 

specific promoter, which confers higher auxin production and induces seed free 

fruit (Ficcadenti et al., 1999). Some apple and cherry crops are sprayed with 

auxin (mixed with other hormones) at flowering stage to induce fruit set. 

Treatments of orchards to delay fruit abscission is becoming common to facilitate 

automated harvesting, Thus maximizing the yield of ripe fruit collected in the 

minimum number of passes by harvesters. In 2002, Jones demonstrated for the 

first time that down-regulation of DR12, an auxin-response-factor homolog, in 

tomato, results in a pleiotropic fruit phenotype including dark green, blotchy 

ripening fruit and enhanced fruit firmness (Figure 15).  

 

I 
 

 
 
 
 
 
 
 
 

(Jones et al., 2002) 
 
Figure 15. Altered phenotypes of DR12-inhibited plants. (a) Dark-green phenotype of DR12 
antisense fruit (AS) at anthesis +30 days compared to wild-type fruit (WT) at the same stage. (b) 

a

b

a

b
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Blotchy ripening phenotype of DR12 antisense fruit (AS) at breaker +3 days compared to wild-type 
fruit (WT) at the same stage. 
 

In 2005, Wang et al revealed that the antisense of Aux/IAA like gene (IAA9) in 

tomato shows precocious fruit set and marked parthenocarpy. It appears that in 

wild-type plants, the presence of the IAA9 protein prevents ovary development 

prior to pollination, potentially by acting as a negative regulator of auxin response 

pathways. The downregulation of this gene in the antisense lines may release the 

expression of target auxin-responsive genes, thus mimicking a burst of auxin 

produced during pollination leading to fruit set and development independent of 

pollination and fertilization. 

 

 
 

(Wang et al., 2005) 
 

Figure 16. Fruit set and parthenocarpy in AS-IAA9 lines. (A) Flower buds at 1 d before 
anthesis in wild-type and AS-IAA9 lines (AS), showing dramatically enlarged ovary and 
underdeveloped stamen in AS-IAA9 lines. (B) Wild-type Ailsa Craig seeded fruit (WT AC) and AS-
IAA9 parthenocarpic fruit (AS AC).  
 
 

VI.7. Herbicides 

 

The largest commercial exploitation of plant hormone has been the use of 

synthetic auxins as selective herbicides. Around the world, a number of 

populations of auxinic herbicide-tolerant weeds have arisen, an indication of the 

long time over which applications have been made (Hall et al., 1996). Synthetic 

auxins such as 2,4-D acid were developed in the 1940s and use has been 

extensive, particularly because of their selectivity. The mechanisms of herbicidal 

action and the basis of selectivity are unclear. Induction of a massive synthesis of 

ethylene has been suggested to be the mechanism of activity. However, recent 

B 
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work shows that inhibition of either ethylene synthesis or ethylene receptors does 

not prevent herbicidal activity. Therefore, although induction of the ethylene-

synthesizing enzymes is a recognized effect of auxin application (Hansen and 

Grossmann, 2000; Kim et al., 1992), ethylene remains a symptom of herbicidal 

auxin and is not the sole mediator. Auxinic herbicides also induce ABA synthesis 

and this might be a consequence of elevated ethylene synthesis.  

Saturating auxin clearly gives rise to a number of damaging symptoms, but 

genetic data from resistant biotypes suggest that there is a single target site for 

these herbicides and this seems likely to be the auxin receptor. As more becomes 

known about the receptor, the understanding of plant development and auxins as 

agrochemicals will also grow. 

 

VII. Interaction of auxin with other hormones 

 

Interactions with other hormones play major roles in auxin action, which 

necessitates the existence of efficient and sensitive cross talk mechanisms 

among the corresponding signalling pathways (Figure 17). Recently, several 

studies have focused on the molecular machinery behind the interactions 

between auxins and other hormones, uncovering a complex network. 

 

 
                                                                                             (Weiss and Ori., 2007) 
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Figure 17. Auxin interacts positively and negatively with other plant hormones throughout 
the plant’s life cycle . Some of the effects are shown. Aux, Auxin; CK, Cytokinin; ABA, abscissic 
acid; GA, Gibberllin. 
 
 

VII.1 Auxin and gibberellin (GA) 
 

The activities of gibberellin and auxin overlap with respect to the regulation of 

cell expansion and tissue differentiation. Auxin affects GA signalling as well as 

GA biosynthesis (Figure 18). In Arabidopsis, GA stimulation of root elongation 

has been shown to require auxin. GA-induced root elongation was inhibited by 

the removal of the shoot apex that is a major auxin source and this effect was 

reversed by auxin application. Moreover, application of the auxin-transport 

inhibitor NPA or mutation in the auxin efflux regulator AtPIN1 suppressed the 

effect of GA on root elongation. 

In addition to its requirement for GA signaling in the root, auxin also affects 

GA production in the stem by positively regulating the expression of GA 

biosynthetic genes (Nemhauser et al., 2006). Decapitation of pea (Pisum 

sativum) and tobacco (Nicotiana tabacum) shoot apices reduced the level of 

active GAs in the stems and this effect was reversed by auxin application (Ross 

et al., 2000; Wolbang and Ross., 2001). 

As the interactions between auxin and GA involve components from the GA 

biosynthetic and response pathways, we briefly introduce a few relevant players 

in these pathways: The first few steps of the GA synthesis, from trans-

geranylgeranyl diphosphate to GA12-aldehyde, are common to all species. The 

final steps to produce active GAs are species specific but in most cases require 

activity of the GA 20-oxidase (GA20ox) and GA3ox enzymes. In contrast, the 

enzyme GA2ox antagonizes GA activity by deactivating GAs. The level of 

endogenous active GA is governed by feedback regulation, where active GAs 

suppress the expression of the GA20ox and GA3ox genes and promote the 

expression of the GA2ox gene (Figure18) (Lange and Lange., 2006; Razem et 

al., 2006). Auxin was shown to induce the expression of the GA biosynthetic gene 

GA20ox in tobacco and Arabidopsis (O’Neill and Ross, 2002; Frigerio et al., 

2006). This effect of auxin was shown to transducer via the degradation of auxin 

signaling suppressors Aux/IAA proteins (Teale et al., 2006) and the resulting 

activation of the transcription factor AUXIN RESPONSE FACTOR7 (ARF7). 
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                                       (Weiss and Ori., 2007) 
 
Figure 18. Network of interactions between auxin and GA.  Auxin promotes GA responses by 
destabilizing DELLA and by promoting the expression of GA biosynthetic genes. Interactions 
mediated by changes in protein activity or stability are in gray and those mediated by gene 
expression are in black. Numbers in parentheses indicate the respective reference as follows: 1, 
Frigerio et al., 2006; 2, Fu and Harberd., 2003; 3, O’Neill and Ross., 2002; 4, Ross et al., 2000; 5, 
Wolbang and Ross., 2001. 
 
 
Moreover, loss of the auxin receptor TIR1, suppressed auxin regulation of GA 

biosynthetic gene expression (Frigerio et al., 2006). Therefore, auxin positively 

interacts with GA either at the biosynthesis level or by promoting DELLA 

degradation.  

DELLA proteins are the most characterized GA signalling components.  

DELLA proteins belong to the GRAS family of transcriptional regulators and act 

as suppressors of GA signalling. The interaction between DELLA domain of the 

DELLA proteins with GA receptor (GA INSENSITIVE DWARF1 (GID1)) stimulates 

binding of the DELLA proteins to an SCF E3 ubiquitin ligase via specific F-box 

proteins (GID2), leading to polyubiquitination and degradation of the DELLA 

protein by the 26S proteosome (Sasaki et al., 2003; Dill et al., 2004; Griffiths et 

al., 2007). 

In conclusion,  Auxin and GA perception use a unique SCF-based proteolysis 

mechanism that takes advantage of F-box selectivity or target proteins. With 
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(Chow and McCourt., 2007) 

 
Figure 19. SCF-dependent hormone-regulated ubiquitination of proteins . The left panel 
represents a yeast-type SCF proteolysis model in which an ubiquitin is added to the target protein 
via a set of reactions. Ubiquitin is activated by an E1 enzyme and conjugated to the target via the 
E2 and F-box proteins associated with the SCF complex. The F-box protein determines specificity 
of targets. The ubiquitin tail grows and causes the degradation of the target via the 20S 
proteosome. The middle panel depicts auxin-mediated degradation of Aux/IAA repressor targets. 
The TIR1F-box protein binds auxin, and this stimulates its association with the Aux/IAA protein. 
Targeting of Aux/IAA to the proteosome releases auxin response genes from repression. The right 
panel depicts GA-mediated degradation of the DELLA domain repressor targets. The GID1 
protein binds the DELLA protein in a GA-dependent manner and targets it to the SCF GID2 complex 
for ubiquitination. Degradation of the DELLA domain proteins releases GA-dependent genes from 
repression. 

 
 
respect to plant hormone signalling, the auxin and GA receptors are unique in 

that the number of components between the hormone ligand and the 

transcriptional factors they control is very small. The use of SCF based 

proteolysis as a mechanism of signalling creates potential nodes of interactions 

between signalling molecules.  

 

VII.2 Auxin and jasmonic acid (JA) 

 

Jasmonates (JAs), derived from linolenic acid, function in normal 

developmental pathways, but also play a crucial role in allowing plants to mount a 

defence to biotic challenges. JA affects processes such as pollen development 

and fruit ripening, and also promotes resistance to insects and pathogens 

(reviewed in Creelman and Mullet., 1997). The majority of papers that have 
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researched the interactions between jasmonic acid (JA) and auxin have 

concluded that the relationship between the two hormones is antagonistic. Ueda 

et al., 1994 and Irving et al., 1999 have shown that JA inhibits auxin regulated 

elongation in etiolated oat coleoptiles. Tang et al., 2001 have reported that two 

vacuolar glycoprotein acid phosphatases (VspA and VspB) from soybean are 

differentially regulated by JA and auxin during early stages of seedling growth. In 

contrast to these findings, Wang et al (1999) have shown that upon germination, 

auxin and JA act synergistically to up-regulate two soybean vacuolar 

lipoxygenases (LOX4 and LOX5).  

 Our understanding of the integration of auxin and JA signalling pathways has 

been greatly facilitated after the isolation of the JA response gene COI1 

(CORONATINE INSENSITIVE 1) (Xie et al., 1998). COI1 encodes an F-box 

protein which interact with ASK1, ASK2, RBX1 and CUL1 in planta, suggesting 

that COI1 assembles into an SCF-type E3 ubiquitin ligase (Devoto et al., 2002; 

Xu et al., 2002). Despite the demonstrated importance of COI1 and Ubiquitin/ 

Proteasome system-related proteins in JA signalling, no substrates of the SCF-

COI1 E3 ligase have been conclusively identified to date, but specific mutations 

that conferred auxin insensitivity and mapped to a Cullin subunit also altered 

jasmonate sensitivity by attenuating the assembly of the COI1 protein into the 

SCF complex (Ren et al., 2005). So, further research is needed to determine 

whether any integration of auxin and JA-signaling pathways is achieved though 

degradation of common target regulatory proteins.  

 

VII.3 Auxin and cytokinin 

 

Auxins and cytokinins interact in the control of many central developmental 

processes in plants, particularly in apical dominance and root and shoot 

development. The classic experiments of Skoog and Miller in 1957 demonstrated 

that the balance between auxin and cytokinin is a key regulator of in vitro 

organogenesis. Exposing callus cultures to a high auxin-to cytokinin ration results 

in root formation, whereas a low ration of these hormones promotes shoot 

development. Apical dominance is also one of the classical developmental events 

believed to be controlled by the ratio of auxin to cytokinin. This is supported by 

phenotypic observations in many Arabidopsis mutants impaired in different 
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aspects of auxin and/or cytokinin biology (Hobbie & Estelle., 1994; Catterou et al., 

2002) as well as transgenic studies of plants with altered auxin or cytokinin levels 

(Binns et al., 1987; Eklöf., 1997). Moreover, many experiments have 

demonstrated the existence of synergistic, antagonistic and additive interactions 

between these two plant hormones, suggesting a complex web of signal 

interactions (Coenen and Lomax., 1997). It is clearly documented that auxin 

regulates cytokinin levels and vice versa. It has, for example, been observed that 

cytokinin overproducing tobacco had lower levels of indole-3-acetic acid (IAA), 

and that overproduction of IAA in tobacco leads to a reduced pool size of 

cytokinins (Eklöf et al., 2000). 

It has been argued that cytokinins can both up- and downregulate auxin 

levels. The increase in auxin, for example, has been demonstrated after 

application of exogenous cytokinin. Although the basis for these changes is not 

fully understood, cytokinin-induced inhibition of enzymes that conjugate free IAA 

into inactive IAA aspartate has been suggested as a putative mechanism. In 

contrast, (Eklöf et al., 2000) studies demonstrated a decrease in auxin content of 

transgenic plants overproducing cytokinins. These contradictory results show the 

complexity of the interactions between these two hormones.  

 

      VII.4 Auxin and abscisic acid (ABA) 

 

The abscisic acid (ABA) is a prominent regulator of seed germination that also 

enables plants to respond to abiotic stresses such as drought. ABA can directly 

affect ion transport in guard cells to alter stomatal aperture rapidly in response to 

changing water availability (reviewed in Roelfsema et al., 2004). ABA and auxin 

have been observed to interact antagonisticaly to regulate stomatal aperture 

(Eckert and Kaldenhoff., 2000). Auxin serves to open the stomatal pore, whereas, 

ABA helps to closes the stomatal pore and reduces water loss via transpiration. 

The antagonistic nature of this interaction requires the precise co-ordination of ion 

channel activity within guard cells. These channels allow the flow of ions that 

decrease (auxin) or increase (ABA) the cytosolic pH and therefore effect the 

turgor of the guard cells (Grabov and Blatt., 1998). Aside from interactions of 

auxin and ABA at the level of guard cell aperture, genetic evidence from 

Arabidopsis indicates that these two hormones may interact to influence root 
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growth and seed germination. Dominant mutations in the auxin-response gene 

AXR2/IAA7 confer an ABA-insensitive phenotype to roots (Wilson et al., 1990; 

Timpte et al., 1994; Nagpal et al., 2000) and both axr1 and axr2 have weak ABA-

insensitive phenotype as measured by seed germination. Furthermore, abi3 

mutants that were originally identified as highly insensitive to ABA are insensitive 

to NPA, at the level of lateral root growth.  

As observed for other hormones, the ubiquitin/proteasome system is 

implicated in regulation of ABA-responsive transcription. Many evidence of the 

possible involvement of an SCF-complex in ABA-signalling was uncovered 

through characterisation of many proteins: ABI5 (abscisic acid insensitive5), 

ABI3, ABF2 (ABRE Binding Factor2), ATL ( Arabidopsis toxico para Levadura), 

TLP9 (TUBBY-Like Proteins)and finally XERICO (Smalle et al., 2003; Zhang et 

al.,2005; Kim et al.,2004; Serrano et al.,2006; Lai et al.,2004; Ko et al; 2006), but 

further research is needed to determine whether any integration of auxin and ABA 

signalling pathways is achieved though the ubiquitin/proteasome system.  

 

VII.5 Auxin and brassinosteroids (BR) 

 

Auxin response is also connected to brassinosteroids (BRs), which also 

interact with auxin to promote root gravitropic curvature in maize (Kim et al., 

2000). Yi et al., 1999 shown that auxin and BR synergistically and antagonistically 

regulate expression of the ACS family of ethylene biosynthesis genes in mung 

bean (Vigna radiata) hypocotyl tissues. Other molecular link has been described 

between the auxin-response pathway and BR biosynthesis upon characterisation 

of the sax1 mutant (Ephritikhine et al., 1999). The sax1 mutant plant is partially 

restored by treatment with exogenous brassinosteroid. sax1 root growth is 

hypersensitive to both ABA and auxin. 

De Grauwe et al., 2005 described the involvement of (BRs) in auxin- and 

ethylene-controlled processes in the hypocotyls of both light- and dark-grown 

seedlings. They showed that BR biosynthesis is necessary for the formation of an 

exaggerated apical hook and that either application of BRs or disruption of BR 

synthesis alters auxin response, presumably by affecting auxin transport, 

eventually resulting in the disappearance of the apical hook (Figure 20). 
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Moreover, Nemhauser et al. suggested that the activity of some of the auxin 

signalling transcription factors, ARFs, is modulated by the formation of specific 

transcriptional complexes, involving input from both auxin and brassinosteroid 

signalling pathways. Furthermore, Nakamura et al. provided evidence that the 

activity of certain Aux/IAA proteins could be jointly regulated by auxin and 

brassinosteroids (Nakamura et al., 2006). 

 

 
(De Grauwe et al., 2005) 

 
Figure 20.  Model of the interaction between ethylene, auxin and brassinosteroids in the 
hook of etiolated seedlings.   
 
 

VII.6  Auxin and ethylene 

 

Auxin and ethylene have a long history of reported interactions both at the 

physiological and molecular level. The antagonistic effects of these hormones in 

the control of abscission of fruits and flowers (Brown, 1997) as opposed to their 

synergistic effects in the regulation of root elongation, root hair formation, and 

growth in Arabidopsis thaliana (Pitts et al., 1998; Rahman et al., 2002; Swarup et 

al., 2002) illustrate some of the complexity of the auxin–ethylene crosstalk. 

Mutant analysis has uncovered additional levels of complexity in the relationship 

between these two hormones.  
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 Ethylene is synthesized from the amino acid Met by the consecutive action of 

three enzymatic activities: S-adenosyl- L-methionine (SAM) synthase, 1-

aminocyclopropane-1-carboxylic acid (ACC) synthase, and ACC oxidase (Figure 

21). ACC synthase catalyzes the main regulatory step in this biosynthetic 

pathway, the conversion of SAM to ACC (Wang et al., 2002). Auxin is known to 

stimulate ethylene production by activating this particular biosynthetic step (Abel 

et al., 1995). In fact, transcription of eight out of the nine Arabidopsis ACS genes 

is upregulated by auxin, and many auxin response elements have been found in 

the promoters of several of these biosynthetic genes (Tsuchisaka and Theologis., 

2004).  

Once produced, ethylene is sensed by a family of receptors that show 

similarity to the bacterial two-component His kinases. Ethylene binding to the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 21. Ethylene biosynthesis.  The amino acid Methionine is conversed by the consecutive 
action of three enzymatic activities: S-adenosyl- L-methionine (SAM) synthase, 1-
aminocyclopropane-1-carboxylic acid (ACC) synthase, and ACC oxidase. 

 
 
 

ACC synthase 

ACC Oxidase 
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receptors causes inactivation of a Raf-like kinase CTR1 and the consequent 

derepression of EIN2, a protein of unknown biochemical function that is essential 

for the ethylene response. Downstream of EIN2, a family of transcription factors 

composed of EIN3 and EIN3-like proteins triggers a transcriptional cascade that 

results in the activation/repression of hundreds of target genes (Alonso and 

Stepanova., 2004; Guo and Ecker., 2004) (Figure 22). The first step in the 

cascade initiated by EIN3/EILs involves other transcription factors, such as the 

AP2/EREBP family members ERF1 (Solano et al., 1998) and EDF1-4 (Alonso et 

al., 2003). These different EIN3 targets probably represent branching points in the 

ethylene response that can be turned on or off not only by ethylene but also by 

other factors and therefore could be used to provide specificity in response to 

ethylene. In the case of ethylene and auxin, several common target genes have  

 

 
 

(Bishop et al., 2006) 
 

Figure 22. Ethylene signalling: At low concentrations of the ligand, ethylene receptors (ETR1, 
ERS1, ETR2, EIN4, and ERS2) are active and can therefore stimulate the negative regulator 
CTR1, which in turn shuts down ethylene signalling by allowing EIN3 degradation. Ethylene 
binding inactivates the receptors and therefore they are unable to stimulate CTR1-mediated 
inhibition. As a result, EIN2 is active and prevents EIN3 degradation, which leads to EIN3 
accumulation and activation of ethylene responsive gene transcription. 
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also been identified (Zhong and Burns., 2003). However it’s still unclear if whether 

or not they participate in common biological processes and related regulation. 

 

VII.6.a Multilevel interaction between auxin and ethylene in the 

roots 

Despite the accumulated knowledge on each individual hormone signaling 

and response pathway, very little is known about the mechanisms that govern the 

interactions between ethylene and auxin. The ethylene-mediated regulation of 

auxin biosynthesis through the activation of WEI2/ASA1 and WEI7/ASB1, a 

anthranilase synthase subunits that catalyse the fist step in tryptophane 

biosynthesis (Figure 2) (Stepanova et al., 2005) as well as the reciprocal effect of 

auxin on ethylene biosynthesis through the activation of several ACC synthases, 

represent two elegant examples of the molecular mechanisms controlling the 

ethylene–auxin crosstalk.  

Recently, for better understand the molecular mechanisms behind the 

ethylene–auxin interactions in the roots, a comprehensive study relying on 

physiological, cellular, genetic and genomic approaches was performed by 

Stepanova et al., 2007. Quantification of the morphological effects of ethylene 

and auxin in a variety of mutant backgrounds indicates that auxin biosynthesis, 

transport, signalling and response are required for the ethylene-induced growth 

inhibition in roots. This analysis suggests a simple mechanistic model for the 

interaction between these two hormones in roots, according to which ethylene 

and auxin can reciprocally regulate each other’s biosynthesis, influence each 

other’s response pathways and/or act independently on the same target genes. 

This model not only implies existence of several levels of interaction but also 

provides a likely explanation for the strong ethylene response defects observed in 

auxin mutants (Figure 23) 

 

VII.6.b Interaction between auxin and ethylene in the hook 

 

The induction of apical hook formation in Arabidopsis represents one of the 

best  described examples of  auxin-ethylene cross-talk in  plants (Lehman et al., 
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 (Stepanova et al., 2007) 

 
Figure 23. Schematic representation of the mechanistic model of ethylene–auxin crosstalk 
in roots of etiolated Arabidopsis seedlings.  The model assumes existence of at least three 
different types of molecular interactions between ethylene and auxin. A subset of ethylene 
responses (left side of the panel) is dependent on auxin levels. In this case, the role of auxin is 
restricted to promoting (or attenuating) the ethylene effect. By contrast, the auxin-mediated 
responses  correspond to those changes in gene expression that are directly triggered by auxin, 
but in this case, by an ethylene-induced auxin activity. Finally, those ethylene effects that are not 
affected by the levels of auxin are classified as auxin independent, with some of these changes 
being independently stimulated by auxin. Equivalent interactions can be defined among auxin 
responses (right side of the panel). 
 
1996; Raz and Ecker., 1999). Bending (180°) of the embryonic stem (hypocotyl) 

at its apex just below two seed leaves (cotyledons), results in the formation of an 

apical hook. The structure performs an important biological function, as it places 

the cotyledons below the hook region so that the meristematic primordial can be 

protected from damage during penetration of soil (Harpham et al., 1991). The 

apical hook is formed by differential cell elongation on opposite sides of the 

hypocotyl, in which the rates of cell elongation on outside of the hook are 

modulated differently than of cells inside the hook (Silk and Erickson., 1978). In 

the hook region, the growth rate of the outer (convex) side of the hypocotyl 

exceeds that of the inner (concave) side, resulting in hypocotyl bending (Figure 

24). 

 
 
 

(Park et al., 2006) 
 
Figure 24. Apical hook development during early stages of seedling germination.  Wild-type 
seeds were germinated in air and photographs were taken after 24, 26, 28, 30, 32, 34 and 36 
hours.  
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 Ethylene and auxin play a major role in this differential cell elongation process 

(Schwark and Bopp., 1993; Schwark and Schierle., 1992). In dark-grown 

seedlings, ethylene exposure enhances apical hook curvature, causing 

cotyledons to form a 270° bend relative to the hypo cotyls (Ecker., 1995) (Figure 

25). Moreover, mutants that are defective in ethylene perception, e.g., etr1-1, 

ein2, ein3, etc., do not form exaggerated hooks in response to ethylene treatment  

 
 

 
 
 
 

(Park et al.,2006) 
 
Figure 25. Ethylene enhances exagerated hook in etiolated seedlings. Seeds were 
germinated in darkness in air (left panel) or ethylene (lower panel); photographs were taken of 64-
, 66-, 68- and 70-hour-old seedlings. During photography, the ethylene-grown seedlings were 
transferred to AT plates containing 10 mM ACC.  

 
 

(Roman et al., 1995), whereas the constitutive ethylene responsive mutant ctr1 

develops exaggerated hooks even in the absence of ethylene (Guzman and 

Ecker 1990; Kieber et al., 1993). The precursor to ethylene, ACC, is 

asymmetrically localized in cells of the apical hook in bean (Schwark and Bopp., 

1993). Expression of the gene encoding ACO, the terminal enzyme in ethylene 

biosynthesis and its enzyme activity have also been found to be higher on the 

concave side of the apical hook than on the convex side of pea hook (Figure26) 

(Peck et al., 1998). Another ACO gene, AtACO2, is predominantly expressed on 

the convex side of the hook (Raz and Ecker., 1999).  

 

 
(Peck et al., 1998) 

 
Figure 26. Localization of Ps-ACO1 mRNA in the apical hook of etiolated pea seedlings. 
Apical hooks were isolated from air-grown etiolated 5- to 6-day-old seedlings. The apex (a) is 
towards the right side and the stem (s) is on the left. At left are dark-field images, and at right are 
bright-field images.Hybridization was performed with a 35S-labeled antisense strand of Ps-ACO1.  

Inner side 

Outer side 
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On the other hand, auxin, which stimulates cell expansion to promote 

hypocotyl elongation, is also unequally distributed in the apical hook (Schwark 

and Schierle., 1992). Inhibition of auxin transport disrupts formation of the apical 

hook, suggesting that auxin asymmetry or an asymmetry in the perception or 

response of cells to auxin may exist in the hypocotyls (Figure 27). Consistent with 

these observations, auxin mutants such as axr1 (Lincoln et al., 1990), hls3/rooty 

(King et al., 1995) and yucca (Zhao et al., 2001) also lack normal apical hooks. 

 

 
(Park et al., 2006) 

 
Figure 26. Effects of IAA and NPA on apical hook development.  

 
 
In 1996, Echer’s group identified an Arabidpsis mutant that showed no 

differential growth in the apical region of the hypocothy (hookless1).  This gene 

has been proposed to be a key regulator that integrates ethylene and auxin 

signalling pathways during apical hook formation of Arabidopsis seedlings 

(Lehman et al., 1996). Plants that lack HOOKLESS (HLS1) are unable to 

maintain an apical hook despite normal responses to ethylene in other tissues, 

whereas transgenic plants that overexpress HLS1 develop an exaggerated 

differential growth (hook curvature) in the absence of ethylene (Lehman et al., 

1996) (Figure 27). 

 

 
 
 
 
 
 
 
 
 
 

(Lehman et al., 1996) 
 

Figure 27.  Morphology of wild-type and hookless1 dark-grown Arabidopsis  seedlings. 
Seeds were grown either in air or 10 ml ethylene per liter of air in the dark.  

- ethylene + ethylene
Wt         hls1 Wt           hls1

- ethylene + ethylene
Wt         hls1 Wt           hls1
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Thus, HLS1 is required for hook formation and is sufficient to induce 

enhanced hook curvature in the absence of exogenous ethylene. In addition the 

absence of HLS1 leads to abnormal auxin-regulated gene expression in the 

cotyledons and apical region of the hypocotyl. 

In 2004, Li et al showed that the supressors of hls1 were identified as 

mutations in Auxin Reponse Factor 2 (ARF2). Exposure to light decreased HLS1 

protein level and evoked a concomitant increase in ARF2 accumulation. These 

studies demonstrate that both ethylene and light signals affect differential cell 

growth by acting through HLS1 to modulate the auxin response factor, pinpointing 

HLS1 as a key integrator of the signalling pathways that control hypocotyls 

binding (Figure 28).  

 

 
(Li et al., 2004)  

 
Figure 28: Model for integration of ethylene, auxin, and light signalling in differential 
growth of the seedling hypocotyl. An asymmetric auxin distribution in hook tissues is proposed 
to cause differential auxin responses in the region, resulting in asymmetric cell elongation of the 
hypocotyl and formation of the apical hook structure. Ethylene enhances apical hook bending 
through activation of HLS1 transcription. One of the roles for HLS1 is to inhibit the function of the 
auxin response factor ARF2, a negative regulator of the differential auxin response in apical hook, 
leading to enhanced differential growth and exaggerated hook curvature. In contrast to ethylene, 
light disrupts the differential auxin responses in hook tissues by decreasing HLS1 abundance. 
Subsequently, Fine Mapping of hss1 (hookless supressors) Mutations ARF2 protein levels 
increase and the hook opens. 

 
 
 

These findings provide another molecular link that connects ethylene and light 

signalling to auxin-mediated differential cell elongation process.  
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VII.7  Other gene bridge auxin response with other stimulus 

         VII.7.a  Auxin and light-dependant growth 

 

  Darwin originally proposed that light and a transmissible signal (later 

discovered to be auxin) interact to cause phototropic curvature in plants (Darwin, 

1880). The recent adoption of a genetic approach in Arabidopsis has significantly 

advanced our understanding of how phototropic and auxin-signalling pathways 

interact. Phototropic defects have been described for mutations disrupting several 

auxin transport and signal transduction components. For example, reverse 

genetic studies on the auxin efflux carrier gene At-PIN3 have uncovered a 

phototropic defect (Friml and Palme, 2002). Moreover the nph4 mutant was 

originally identified by its reduced phototropic response (Liscum and Briggs., 

1996). The hypocotyl growth of NPH4 mutant is resistant to the auxins IAA, 2,4-D 

and 1-NAA (Ruegger et al., 1997; Watahiki and Yamamoto., 1997; Harper et al., 

2000), suggesting that the NPH4 protein plays a central role in auxin-mediated 

differential growth. The NPH4 gene has been cloned and found to encode the 

auxin response factor, ARF7 (Harper et al., 2000). Recently (Salisbury et al., 

2007) show that phytochrome regulate emergence of lateral roots at least partially 

by manipulating auxin distribution within the seedling. Thus, shoot-localised 

phytochrome is able to act over long distances, through manipulation of auxin to 

regulate root development. These results represent a new link between 

phytochrome and auxin.  

 

      VII.7.b  Auxin and photomorphogenesis 
 

Many genetic and biochemical experiments indicate that auxin is closely 

associated with photomorphogenesis (Jones et al., 1991; Behringer and Davies., 

1992; Boerjan et al., 1995; Kraepiel et al., 1995; Gil et al., 2001). Several 

evidences suggest that members of the GH3 family are involved in phytochrome 

signalling. FIN219, a member of the GH3 family, is involved in phyA signalling 

(Hseih et al., 2000) and WES1, an Arabidopsis GH3 Gene, encoding an auxin-
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conjugating enzyme, mediates phytochrome B-regulated light signals in hypocotyl 

growth (Park et al., 2007b).  

The Aux/IAA proteins provide an example of the proposed link between auxin 

signalling and light. Mutations in Arabidopsis Aux/IAA genes such as AXR2/IAA7, 

AXR3/IAA17 and SHY2/IAA3 induce photomorphogenic characteristics in dark-

grown seedlings (Kim et al.,1996; Reed et al., 1998; Nagpal et al., 2000), 

suggesting that light may normally regulate these genes or proteins to induce 

morphological responses. Furthermore, Aux/IAA proteins from Arabidopsis and 

pea are phosphorylated by phyA in vitro. Together, these results suggest that 

phytochrome-dependent phosphorylation of Aux/IAA proteins may provide a 

molecular mechanism for integrating light and auxin signalling in plant 

development (Colon-Carmona et al., 2000; Tian and Reed, 2001). 

Additional evidence for a link between light and IAA signalling comes from the 

characterisation of the constitutive photomorphogenic Arabidopsis mutant long 

hypocotyls 5 (hy5).  This gene, which encodes a bZIP transcription factor, acts as 

a positive regulator of photomorphogenesis (Osterlund et al., 2000; Oyama et al., 

1997). Loss-of-function hy5 mutants exhibit an auxin-related phenotype and 

overexpressing AXR2/IAA7 in this plants can partially rescued these phenotypes 

(Cluis et al., 2004).  

 

Conclusion 

 

Auxin is a critical phytohormone. Complex and redundant regulation of IAA 

abundance, transport and response allow an intricate system of auxin utilization 

that achieves a variety of purposes in plant development. As a result, the study of 

auxin biology is making an impact on our understanding of a variety of processes, 

from regulated protein degradation to signal transduction cascades, from 

organelle biogenesis to plant morphogenesis. Despite prodigious historical and 

ongoing auxin research, many of the most fundamental original questions remain 

incompletely answered. The discovery of TIR1/AFB F-box proteins that function 

as a auxin receptor is a surprising development that fills in a crutial piece of the 

auxin puzzle and might well serve our understanding of the interaction of this key 

hormones with other signalling pathway (Figure 29).  
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                                                                                                  (Nemhauser et al., 2006) 

 
Figure 29. Key role of auxin in hormone network.  Lines with arrowheads represent 
upregulation of hormone biosynthetic genes or downregulation of genes involved in hormone 
inactivation. Blocked arrows represent downregulation of genes involved in hormone biosynthesis 
or upregulation of genes involved in inactivation of a hormone.  

 
VIII. Tomato as model plant 

 

VIII.1 Fruit as an important component in the human fruit diet 

 

Fruit are an important component of the human and animal diet and are 

developmental systems that are unique to plant. As a result, considerable 

scientific study has focused on questions of fruit organogenesis, development 

and maturation. Ripening has an impact on fibre content and composition, lipid 

metabolism, and the levels of vitamins and various antioxidants (Ronen et al., 

1999). Breeding or biotechnologies are the most suitable means to understand 

the regulatory points involved in ripening. Manipulation of the ripening associated 

attributes related to biosynthesis of carotenoids, flavonoids, vitamins, and flavour 

volatiles, will allow the improvement of manipulation of nutrition and quality 

characteristics. Possibly, the most convincing argument for the promotion of plant 

genetic engineering will be the development of modified plants or plant-derived 

products with direct consumer appeal such as increased quality and nutrition. 

Ripening is influenced by internal and external signals, including 

developmental gene regulation, hormones, light and temperature. Two major 

classifications of ripening fruit, climacteric and non-climacteric, have been used to 
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distinguish fruit on the basis of respiration and ethylene biosynthesis rates. 

Climacteric fruit (e.g. tomato, avocado, apple, banana) are distinguished from 

non-climacteric fruits (e.g. strawberry, grape, citrus) by their increased respiration 

and ethylene biosynthesis rates during ripening (Lelievre et al., 1997). While non-

climacteric fruits do not require ethylene for ripening of their fruits, ethylene has 

been shown to be necessary for the co-ordination and completion of ripening in 

climacteric fruit (Yen et al., 1995; Klee et al., 1991; Oeller et al., 1991; Lanahan et 

al., 1994; Wilkinson et al., 1995). 

 

VIII.2 Tomato as a model system for fruit ripening 

 

Tomato (Solanum lycopersicum) the centerpiece of the Solanaceae family, 

has emerged as a model of fleshy fruit development, primarily because of its 

importance as a food crop species and this is the species for which the genetic 

and molecular toolkits are most advanced. Extensive germplasm collections, well-

characterized mutant stocks, high-density genetic maps, immortalized mapping 

populations, efficient transient and stable transformation, deep expressed 

sequence tag (EST) resources, microarrays and an ongoing genome sequencing 

efforts all contribute to the utility of this experimental system 

(www.sgn.cornell.edu and www.tigr.org for links to these resources). Well-

characterized ripening mutations, short generation time, a long history of 

physiological, biochemical and molecular investigations related to fruit 

development and maturation and interest in the species as an important 

commodity crop, have fuelled considerable effort on understanding ripening in 

tomato. 

 

VIII.3 The sequencing of the tomato genome 

 

The tomato genome sequencing project is an international effort involving 12 

different countries. Currently, the 12 tomato chromosomes are split up between 

the countries as follows: Korea (chromosome 2), China (chromosome 3), United 

Kingdom (chromosome 4), India (chromosome 5), the Netherlands (chromosome 
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6), France (chromosome 7), Japan (chromosome 8), Spain (chromosome 9), Italy 

(chromosome 12) and the United States (chromosomes 1, 10 and 11). 

 
 
 
 
 
 
 
 
 

(From Solanaceae Genomic Network (SGN), June 2008) 
 

Figure 30: The International tomato genome sequencing project.  This project aims to 
sequence the gene-rich euchromatic portions of the twelve tomato chromosomes. An international 
consortium of sequencing centers is performing most of the genomic sequencing. Each 
chromosome is assigned to a sequencing center. The genome is split into manageable chunks 
known as BACs (Bacterial Artificial Chromosomes), which are sequenced separately, then 
assembled together. 

 
The total size of the tomato genome is estimated to be approximately 950 Mb of 

DNA, more than 75% of which is heterochromatic, rich in repetitive sequences 

and largely devoid of genes. The French effort devoted to sequencing of the 

gene-rich portion of tomato chromosome 7 is led by our laboratory of Genomics 

and Fruit Biotechnology and involves Genome Express (Meylan, France) as a 

main sequencing partner (Delaland et al., 2007).  

The sequencing of the tomato genome opens exciting new perspectives for 

the understanding of the genetic basis of plant morphological and physiological 

diversity. It is also expected that the comparative sequence information will 

possibly uncover the underlying mechanisms driving plant evolution. 

 

VIII.4  Microtom: characteristics of miniature tomato 

 

The tomato cultivar Micro-Tom was produced for ornamental purposes by 

crossing 3 cultivars and displays a very dwarf phenotype with small and red 

ripened fruits (Scott and Harbaugh., 1989) (Figure 33A). Its small size, rapid 

growth and easy transformation have led to its proposal as a convenient model 

system for research on the regulation of berry fruit development (Meissner et al., 

1997; Eyal and Levy., 2002). Micro-Tom plants have a bushy appearance and 

their leaves are small, with deformed leaflets, and a deep green colour compared 

with diverse wild-type cultivars. Those phenotypic characteristics are similar to 
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those described for BR-deficient mutants (Altmann, 1998). It was shown that 

Micro-Tom has mutations in the SELF PRUNING (SP) and DWARF (D) genes. 

SP belongs to the CETS family of regulatory genes encoding modulator proteins 

that determine the potential for continuous growth of the shoot apical meristem 

(Pnueli et al., 2001). The DWARF (D) gene encodes a P450 protein involved in 

brassinosteroid (BR) biosynthesis (Bishopet al., 1999). The dwarf phenotype of 

Micro-tom is thus a consequence of these mutations in addition to the lower 

reponse to GA, possibly due to the reduced content of BR in this cultivar (Marti et 

al., 2006).  

 

 
 
Figure 33. Plant of micro-Tom (µT), Ailsa Craig (AC). (A) Plants at the time of flowering. (B) 
Compound leaf from tomato.  
 
 

VIII.5 Tomato plant characteristics 
 

The tomato plant has compound leaves. A compound leaf is made up of 

leaflets, which are distributed along the leaf rachis. While the entire leaf is 

connected to the stem by the petiole, the leaflets are connected to the rachis of 

the leaf by the petiolule. Some of the leaflets on this leaf are compound as well 

(Figure 33B). Most leaves are protected by a thin outer cuticle. Just inside the 

cuticle lies the epidermis. Note that the epidermis surrounds the leaf and is 

therefore visible on the abaxial (lower) and adaxial (upper) sides of the leaf in 

cross section (Figure 34). The epidermis contains stomata. The xylem is in the 

center of the vein with the phloem distributed on both the adaxial and abaxial 

sides of the bundle. In the center of the leaf lies the mesophyll. The mesophyll 

Petiolule 
rachis 

Terminal leaflet 

Compound leaflet 

B 

µT AC µt AC 
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consists of two different cell types. Palisade mesophyll is composed of 

parenchyma cells. Spongy mesophyll consists of more irregularly shaped 

parenchyma cells arranged in a loose structure. Most of the plant's 

photosynthesis takes place in the mesophyll of the leaf. 

 

 
Figure 34. Cross section of a tomato leaf.  
 
 

VIII.6 Tomato fruit development 

 

 The tomato fruit, though commonly classified as a vegetable, is really a fruit, a 

berry in fact and is composed of an epidermis, a thick pericarp and placental 

tissues surrounding the seeds. The pericarp is the outer wall of the gynoecium, 

which is composed of at least two carpels (this number can be much higher in 

some varieties) (Figure 31). 

 

 

 
 
Figure 31. Section of tomato fruit.  The fruit can be either bilocular or multilocular. Tomato fruits 
exhibit all of the common characteristics of berries. The fruit develops from the ovary of the flower. 
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The tomato is fleshy due to the pericarp walls and skin. Finally there are several seeds in each 
tomato.  
 

There are essentially four stages of development, which are depicted in Figure 

32. These are (1) a 2- to 3-weeks period between floral initiation and the 

production of a mature flower, during which the identity, number, and shape of all 

floral organs are determined; (2) a period of intensive cell division that begins at 

anthesis and continues for 2 weeks after fertilization; (3) a period of rapid cell 

expansion that begins toward the end of the cell division stage and continues until 

1 week before the onset of ripening; (4) a ripening phase that initiates after 

growth has ceased and involves rapid chemical and structural changes that 

determine fruit aroma, color, texture and biochemical composition (e.g., acids and 

sugars) but not fruit size and shape. 

 

 
 

(Tanksley., 2004) 
Figure 32. Stages of Tomato fruit development. 

 
 

VIII.7 Tomato ripening 

 

Ripe fruit demonstrate a wide range of diversity in form, pigmentation, texture, 

aroma, flavour and nutrient composition. Fruit of many species undergo 

modification of cell wall texture, conversion of starch to sugars, increased 

susceptibility to post-harvest pathogens, alterations in pigment 

biosynthesis/accumulation and increased levels of flavour and aromatic volatiles 

during the maturation and ripening processes (Seymour et al., 1993).  

As previously outlined, ripening physiology has been classically defined as 

either ‘climacteric’ or ‘non-climacteric’. Climacteric fruits show a sudden increase 

in respiration at the onset ripening, usually in concert with increased production of 

ethylene. Whereas ethylene is typically necessary for climacteric ripening, non-

(1) (2) (3) (4) 
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climacteric fruits do not increase respiration at ripening and often have no 

requirement for ethylene to complete maturation.  

 

So, climacteric fruits such as tomato are distinguished from non-climacteric by 

their increased ethylene biosynthesis rates during ripening. This is one of the 

main reasons that the majority of biochemical research has concentrated on this 

hormone. Initial molecular studies focused on the isolation of ethylene-regulated 

genes which include those encoding the ethylene biosynthesis enzymes 

(Sadenosylmethionine, SAM-synthase, 1-aminocyclopropane carboxylic acid, 

ACC-synthase and ACC oxidase) (reviewed by Redgwell and Fischer, 2002 

Giovanini et al., 2001). It was later demonstrated, using the reverse genetic 

approach, that delaying ethylene production constituted a successful strategy to 

extend the shelf-life of fruits (Grierson, 1992). In 2002, Klee group proposed a 

model for ethylene perception and metabolism. As the receptor also acts as a 

negative regulator of downstream responses, in the absence of ethylene, 

receptors actively suppress expression of ethylene responsive genes. Recently, 

several further ethylene inducible genes have been identified in tomato, including 

mitochondrial translation elongation factors (Benichou et al., 2003) and CTR-1 

(Leclercq et al., 2002).  

It seems likely, given the development of micro-array resources for tomato 

that significant advances will be made in our understanding of ethylene signal 

transduction and its role in ripening fruit. Examples of this have already been 

started by using tomato cDNA microarray containing 12000 unique elements 

encoding 9000 genes covering a range of metabolic and developmental 

processes (http://bti.cornell.edu/CGEP/CGEP.html) (Fei et al., 2004; Baxter et al., 

2005). More recently, a joined effort between four countries (France, Spain, Italy 

and USA) led to the construction of an oligo-based new generation of tomato 

chips.  A complete list of 70 mer long oligonucleotides was first derived from 

27000 individual clones composing the unigene collection of tomato ESTs. 

Thereafter, 12000 clones were selected for printing in the first version of oligo 

DNA-chips named EU-TOM1. A Laboratory Information Management Systems 

(LIMS) for microarrays production and traceability including the set up of a 

dedicated tomato microarrays database providing access to the gene ID of the 

EU-TOM1 clones has been installed by the French partner 



ChapitreI:  Bibliographic review 

   47 

(http://bioinfo.genopole-toulouse.prd.fr/eusol/base/). The printing of the second 

set of tomato oligo-based DNA chips (EU-TOM2) has been scheduled within the 

EU-SOL program for 2007 and will include the remaining tomato unigenes 

estimated at 15000 clones.  

 

           VIII.7.a Revealing the secrets of ripening mutant 

 

Tomato has proved to be an excellent model system for the analysis of fruit 

ripening and development, in part due to the availability of well characterized 

ripening mutants. These include pleiotropic ripening mutations, such as Colorless 

nonripening (Cnr), ripening-inhibitor (rin), Never-ripe (Nr) and Green-ripe (Gr) 

(Figure 33).  

 
 
 
 
 
 
 
 

 
(Giovannoni., 2007) 

 
Figure 33. Normal and mutant tomato fruit.  Normal tomato cultivar Ailsa Craig ripe fruit ten 
days post breaker and equivalent age fruit homozygous for the Never-ripe (Nr/Nr), Green-ripe 
(Gr/Gr), Colorless non-ripening (Cnr/Cnr) and ripening-inhibitor (rin/rin) mutations. 
 
Recent cloning of this tomato ripening genes, that were previously known only 

through mutation, have created new inroads into understanding of the primary 

ripening control mechanisms, including transcription factors such as those 

encoded by the RIPENING-INHIBITOR (RIN) MADS-box and COLOURLESS 

NON-RIPENING (CNR) SPB-box genes, which are necessary for the progression 

of virtually all ripening processes. These discoveries have also facilitated the 

elucidation of downstream signal transduction components that impact the 

hormonal and environmental stimuli that coordinate and modulate ripening 

phenotypes (Figure 34). 
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(Giovannoni., 2007) 

 
Figure 34. Summary of ripening control. The ripening-specific transcription factors MADS-RIN 
and CNR-SPB are necessary for the induction of ethylene- and non-ethylene-mediated ripening 
control, as defined by the rin and Cnr mutations, respectively. The ethylene signal is transduced 
although the ethylene receptor (NR) and the GR protein, which might participate in maintaining 
receptor-copper homeostasis. These genes were defined by the cloning of the alleles that are 
responsible for the Nr and Gr mutations, respectively.  

 
 
          VIII.7.b Potential role on auxin in fruit development and ripening  

 

In comparison with ethylene, very little is known about the role of other 

hormones in fruit development. The role of auxin has been extensively 

investigated in other fruits such as strawberry (Manning, 1994) and grape berries 

(Davies et al., 1997). In tomato, the fact that several expansins encoding genes 

are expressed during fruit development and that they are regulated by auxins in 

other plant organs, led to the postulate that auxins are part of the hormonal 

signalling transduction network controlling cell expansion in tomato fruit (Catala et 

al., 2000). This hypothesis is further supported by the fact that the auxin 

concentration in tomato fruits peaks well before the onset of ripening 

(approximately at 10 DPA) coincident with a higher expression of fruit-specific 

expansin genes (Gillaspy et al., 1993). In 2003, Balbi and Lomax, by means of 

characterization of auxin-resistant mutant dgt (diageotropica), have proposed a 

cross-talk model of auxin responsiveness and ethylene biosynthesis at very early 

stages of fruit development. In 2005, Wang et al demonstrate, for the first time in 

our laboratory, that down regulation of auxin transcription factor (IAA9) induce 

parthenocarpy in the tomato fruit. This finding opens a new route that merits 
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further investigation to test whether other members of the Aux/IAA family have 

implications on fruit development and ripening.   
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ABSTRACT 

 

Whereas the interplay of multiple hormones is essential for most plant 

developmental processes, the key integrating molecular players remain largely 

undiscovered or uncharacterized. We report here that Sl-IAA3, a member of the 

tomato auxin/indole-3-acetic acid (Aux/IAA) gene family, is an intersection point 

between the auxin and ethylene signal transduction pathways. Aux/IAA genes 

encode short-lived transcriptional regulators that mediate auxin responses. Their 

functions have mostly been defined by dominant, gain-of-function mutant alleles 

in Arabidopsis. The Sl-IAA3 gene encodes a nuclear-targeted protein that can 

repress transcription from auxin-responsive promoters. Sl-IAA3 expression is 

controlled by both auxin and ethylene and is regulated on a tight tissue-specific 

basis. Sl-IAA3 displays an expression gradient associated with tissues 

undergoing differential growth. In ethylene-treated etiolated seedlings, the 

expression of Sl-IAA3 is restricted to the inner side of the apical hook opposite to 

that of the tomato HOOKLESS gene. Down-regulation of Sl-IAA3 via an antisense 

strategy results in auxin and ethylene-related phenotypes including altered apical 

dominance, lower auxin sensitivity, exaggerated apical hook curvature in the dark 

and reduced petiole epinasty in the light. The ethylene-related phenotypes in the 

antisense tomato lines (AS-IAA3) reveal new roles for Aux/IAAs genes and 

position Sl-IAA3 firmly at the crossroads between auxin and ethylene signalling in 

tomato.  
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INTRODUCTION 

 

Development in multicellular organisms is a highly complex process that requires 

the precise coordination of inter and intracellular signalling and responses. Before 

the molecular era, the regulation of plant developmental processes was most 

often described as modifications in the hormonal balance, rather than as changes 

in the level of a single hormone. Over several decades, genetic screens led to 

tremendous advances in our understanding of the key components of the 

individual hormone metabolism and response pathways. However, as the 

understanding of these mechanisms grew it became more apparent that the 

growth of plant organs is dependent on an intricate orchestration of hormonal and 

non-hormonal signals (Stepanova et al., 2007; Swarup et al., 2007). Identifying 

the central players in the interplay between different signaling pathways is critical 

to unravelling the complex mechanisms underlying the control of plant growth and 

development. Interactions between ethylene and auxin are among the most 

frequently addressed in hormonal cross-talk studies and yet little is known about 

the main actors that take part in this dialogue (Stepanova et al., 2005 and 2007; 

Chae et al., 2000).  

The plant hormone auxin, indole-3-acetic acid (IAA), has long been 

recognised as being a major regulator of plant growth and developmental 

processes. It exerts its effects by modulating the expression of downstream 

genes that in turn regulate a vast array of physiological processes. Recent 

genetic and molecular studies in Arabidopsis have revealed a crucial intracellular 

auxin signalling pathway in which a ubiquitin-dependent proteolytic system plays 

a key role in sensing and transducing the hormone signal to transcriptional 

programs (Dharmasiri and Estelle, 2004). At the center of the signalling cascade 

is the ubiquitin-ligase complex, SCFTIR1, which promotes the ubiquitin-dependent 

proteolysis of a family of transcriptional regulators known as Aux/IAAs in an 

auxin-dependent manner (Gray et al., 2001). Binding of auxin to the Transport 

Inhibitor Response1/TIR1, the F-box protein subunit of SCFTIR1 or its paralogues 

AUXIN RECEPTOR F-BOX/AFB1 and AFB3, leads to the degradation of the 

Aux/IAA class of proteins (Dharmasiri et al., 2005a and 2005b; Kepinski and 

Leyser, 2005). Degradation of the Aux/IAAs activates the DNA-binding Auxin 

Response Factors (ARF), whose activities in regulating auxin-responsive genes 
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are otherwise inhibited by the Aux/IAA proteins (Hagen and Guilfoyle, 2002; 

Reed, 2001; Liscum and Reed, 2002; Zenser et al., 2001; Tiwari et al., 2001). 

Aux/IAAs are therefore central to the regulation of auxin-mediated processes. The 

Arabidopsis genome encodes 29 Aux/IAA proteins (Remington et al., 2004; 

Overvoorde et al., 2005). Biochemical and genetic studies indicate that they 

generally function as transcriptional repressors of auxin-regulated genes 

(Ulmasov et al., 1997; Tiwari et al., 2004; Woodward and Bartel, 2005). Aux/IAA 

genes encode short-lived nuclear proteins characterized by four highly conserved 

domains (domain I, II, III, and IV), each contributing to the functional properties of 

the protein. Domain I is responsible for the repression activity of the proteins 

(Tiwari et al., 2004). Domain II confers the auxin-mediated instability to the 

proteins (Worley et al., 2000; Ouellet et al., 2001) and domains III and IV are 

involved in homo- and heterodimerization with other Aux/IAA proteins and the 

ARFs (Kim et al., 1997; Ouellet et al., 2001; Ulmasov et al., 1997).  

Gain-of-function mutations in several Aux/IAA genes have pleiotropic effects 

on plant growth, including altered root formation, apical dominance, 

stem/hypocotyl elongation, leaf expansion and phototropism/gravitropism. These 

mutants have been identified from a variety of developmental and auxin-specific 

genetic screens. The phenotypes are mostly associated with decreased auxin 

responsiveness. For example, in Arabidopsis the shy2-2/iaa3, axr2-1/iaa7 and 

iaa28-1 mutants show decreased apical dominance (Tian and Reed, 1999; 

Nagpal et al., 2000; Rogg et al., 2001), consistent with a reduced auxin response 

in these mutants. In a few cases, however, gain-of-function mutants are 

associated with an enhanced auxin response phenotype. For example, axr3-

1/iaa17-1 mutant plants have increased apical dominance and increased 

adventitious rooting, indicative of an enhanced auxin response (Leyser et al., 

1996). Each of these Aux/IAA gain-of-function mutants is caused by a single 

mutation in domain II that stabilizes the Aux/IAA proteins. Strikingly, with the 

exception of the Shy2 mutant that displays subtle modifications (Tian and 

Reed,1999), none of the Arabidopsis "null mutants" show obvious visible 

phenotypes, suggesting that highly similar proteins encoded by one or more 

members of the Aux/IAA gene family are capable of performing overlapping 

functions during plant growth and development (Overvoorde et al., 2005). 

However, the wide diversity of auxin responses and the tissue specific expression 
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displayed by members of the gene family suggest that individual Aux/IAAs have 

precise and distinct functions during normal plant growth and development. We 

have previously shown that members of the Aux/IAA gene family can be 

regulated by ethylene in the tomato (Jones et al., 2002) and that down-regulation 

of the tomato Aux/IAA, Sl-IAA9, results in a pleiotropic phenotype, including 

altered leaf architecture and parthenocarpy (Wang et al., 2005). Similarly, 

Kloosterman et al. (2006) have shown that suppression of St-IAA2 in potato 

results in distinctive phenotypes including increased plant height, petiole 

hyponasty and curvature of growing leaf primordia in the shoot apex. In 

Arabidopsis, it has been reported that a mutation in an ARF reverses the 

ethylene-related hookless phenotype in the hls1 mutant (Li et al., 2004). This 

suggests that auxin related transcription factors have evolved as points of 

intersection between ethylene and auxin responses.  

We report here on the isolation and functional characterization of the tomato 

Aux/IAA, Sl-IAA3 that defines one of the mechanisms by which auxin and 

ethylene signaling pathways converge. Both expression data and the analysis of 

transgenic plants down-regulated for Sl-IAA3 support the hypothesis that Sl-IAA3 

is a key molecular link between ethylene and auxin responses in tomato plants. 

 

RESULTS 

 

Isolation and Structure of the Sl -IAA3  Gene 

 

Sl-IAA3 and other partial tomato Aux/IAA clones were initially isolated from 

tomato fruit using gene family-specific degenerate primers designed from 

conserved Aux/IAA sequences (Jones et al., 2002). Sl-IAA3 corresponds to a 

previously isolated, partial tomato clone named IAA3 (Nebenführ et al., 2000). Sl-

IAA3, formerly named DR3, was reported to be ethylene inducible and 

differentially expressed during fruit ripening (Jones et al., 2002). We isolated the 

full length Sl-IAA3 cDNA (U 320812, now available from the Solanaceae Genome 

Network Database, http://www.sgn.cornell.edu) and determined the transcription 

start site by 5’ Race-PCR. An open reading frame of 558 bp encoding a putative 

protein of 185 amino acids was identified. The predicted protein comprises the 
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four conserved domains (I to IV) characteristic of Aux/IAA proteins and falls into 

sub-family I of the four Aux/IAA sub-families (Wang et al., 2005). We also isolated 

a genomic fragment of 2723 bp in order to identify the structure of the tomato Sl-

IAA3 gene. The sequence comprised 1668 bp of promoter and 1055 bp of 

transcribed sequence composed of three exons and two introns (Figure 1) and 

matched that of its closest Arabidopsis homologs, At-IAA3 (AT1G04240) and 

IAA4 (AT5G43700) consistent with the phylogenetic analysis (see Supplemental 

Figure 1 online). The Sl-IAA3 nucleotide coding and predicted amino acid 

sequences display 65.8 % and 56 % identity, respectively with At-IAA3 and 65.4 

% and 56.3 % identity, respectively with At-IAA4.  

 

Features of the Sl -IAA3  Promoter 

 

The 1668 bp promoter fragment was analyzed in silico using PlantCare software 

(Lescot et al., 2002). The program identified several putative cis-acting elements, 

including two degenerate auxin-response elements (TGTCNC) at positions -216 

and      -175, an ethylene-response element ERE (ATTTCAAA) at position -1174, 

three methyl-jasmonate response elements (CGTCA) at positions -434, -969, and 

-1018, a heat-response element HSE (AAAAAATTTC) at position -934 and an  
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Figure 1. Genomic Structure of the Tomato Sl-IAA3 Gene.  The black portion 
represents the promoter region, the gray lines the introns, the gray boxes the exons and 
the white boxes the untranslated regions (UTR). The putative cis-acting elements found 
in the promoter region are indicated by black bars. The black arrow represents the 
antisense construct used to generate the silenced lines.  
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elicitor-responsive element EIRE (TTCGACC) at position -656 and two TC-rich 

repeats (ATTTTCTTCA) at positions –385 and -1406 that have been shown to be 

involved in defence and stress responsiveness (Figure 1).  

 

 

Sl-IAA3  Transcripts Are Ubiquitous in all Plant Tissues but Show Higher 

Accumulation During Fruit Ripening 

 

Quantitative Real-Time RT-PCR (qRT-PCR) performed on different tomato plant 

tissues revealed Sl-IAA3 expression in all tissues tested (Figure 2A). Transcripts 

for the gene were most abundant in red fruit, where they were 6-fold higher than 

in the reference tissue (stem). This preferential expression in ripening fruit 

prompted us to investigate Sl-IAA3 expression throughout the ripening process 

and in different tomato ripening mutants. In normal fruit, Sl-IAA3 transcript levels 

increased during ripening until the orange/red stage and thereafter decreased to 

the red-ripe stage (Figure 2B). In the ripening and ethylene response-impaired 

monogenic tomato mutants rin (ripening inhibitor), nor (non-ripening) and Nr 

(Never-ripe), there were substantially lower levels of Sl-IAA3 transcripts at stages 

equivalent to mature green and red in wild-type (WT) fruit (Figure 2C), suggesting 

that the Sl-IAA3 protein is integral to normal fruit ripening. Tomato fruit are 

climacteric and the majority of processes occurring throughout ripening are 

triggered by ethylene. To further examine whether the ripening associated 

expression of Sl-IAA3 is ethylene-dependent, we assessed the effect of 

exogenous ethylene treatment on mature green fruit and conversely the effect of 

1-MCP (1-methyl cyclopropene), a potent inhibitor of ethylene perception, on 

breaker (onset of ripening) stage fruit. Five hours of ethylene treatment (50 µl L-1) 

resulted in almost 11-fold increase in Sl-IAA3 transcript accumulation in MG fruit 

(Figure 2D). Conversely, in breaker stage fruit, an overnight treatment with 1-

MCP treatment (1 µL L-1) led to a 10-fold reduction in Sl-IAA3 transcripts (Figure 

2E) clearly indicating that ethylene plays an important role in the ripening-

associated expression of Sl-IAA3. Given that Sl-IAA3 is a presumptive auxin 

signal response component, its ethylene regulation indicates that the protein is 

involved in the integration of responses to the two hormones during fruit ripening. 
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Sl-IAA3  Transcript Accumulation Is Positively Regulated by Auxin  

 

In Arabidopsis, most Aux/IAA genes are auxin inducible (Abel et al., 1994). We 

used two independent approaches to determine if Sl-IAA3 is similarly auxin 

responsive. qRT-PCR analysis of RNA extracted from three-week-old light-grown 

tomato 
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Figure 2. Tissue-Specific and Ethylene-Dependent Expression of Sl-IAA3 . The 
expression analyses were carried out by quantitative Real-Time RT-PCR using RNA 
samples extracted from various tomato tissues. A. Analysis of the level of Sl-IAA3 
transcripts in different organs. SI-IAA3 mRNA accumulation was monitored in stem (S), 
leaf (L), flower (F), root (R) and red fruit (Re). ∆∆CT on the y axis refers to the fold 
difference in SI-IAA3 expression relative to the control tissue (stem) taken as a 
reference. B. Expression pattern of SI-IAA3 during the late stages of fruit development. 
Immature green (IMG), mature green (MG), breaker (Br), turning (Tu), orange (Or), red 
(Re) and red-ripe (RR) fruit. ∆∆CT on the y axis refers to the fold difference in SI-IAA3 
expression relative to the MG stage. C. Expression pattern of Sl-IAA3 in WT and rin, nor 
and Nr ripening mutants. RNA samples were extracted from fruit collected 43 and 70 
days after anthesis, corresponding in the WT to MG and Re stages, respectively. ∆∆CT 
on the y axis refers to the fold difference in SI-IAA3 expression relative to the MG stage. 
D. Ethylene responsiveness of the Sl-IAA3 gene. RNA samples were extracted from MG 
fruit treated for 5h with air or with 50 µL L-1 ethylene. ∆∆CT on the y axis refers to the fold 
difference in Sl-IAA3 expression relative to the untreated control fruit. E. Br fruit treated 
with 1 µL L-1 of 1-MCP for 16 h. ∆∆CT on the y axis refers to the fold difference in Sl-
IAA3 expression relative to untreated control fruit. All the expression data presented in 
Figure 2 correspond to values that are means of 3 replicates ± SE. 

 

seedlings showed that Sl-IAA3 transcript levels increased 4-fold after two hours 

treatment with 20 µM IAA (Figure 3A). Furthermore, in tobacco BY2 protoplasts 

transfection assays, Sl-IAA3 promoter (1668 bp)-driven GFP levels increased 4-
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fold after auxin (50 µM of 2,4-D) treatment (Figure 3B), clearly indicating that Sl-

IAA3 expression is positively regulated by auxin. Since auxin is known to 

stimulate ethylene production (Abel et al, 1995), we sought to determine whether 

the auxin-responsiveness of Sl-IAA3 results from increased ethylene production. 

Light-grown seedlings were thus treated overnight with 1-MCP (1µL L-1) and then 

incubated in presence or absence of auxin. qRT-PCR analysis revealed that 1-

MCP treatment completely abolished the expression of Sl-IAA3 gene in the 

absence of auxin but only partially reduced Sl-IAA3 transcript accumulation in the 

auxin-treated plants (Figure 3A). This indicates that the basal expression of Sl-

IAA3 is ethylene-dependent and that the auxin-responsiveness of this gene is not 

mediated by ethylene. 
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Figure 3. Auxin Responsiveness of the Sl-IAA3 Gene.  A. RT-PCR analysis of Sl-IAA3 
transcript levels in RNA samples extracted from three week-old light-grown control and 
auxin treated (20 µM IAA for two hours) seedlings in presence or absence of 1-MCP, the 
ethylene perception inhibitor (1 µL L-1 1-MCP applied 16h prior to auxin treatment). ∆∆CT 
on the y axis refers to the fold difference in SI-IAA3 transcript levels relative to the non-
treated plantlets. B. Auxin responsiveness of the Sl-IAA3 promoter. Tobacco protoplasts 
were transformed by a chimeric construct consisting of 1668 bp of the Sl-IAA3 promoter 
fused to the GFP reporter gene (ProIAA3:GFP) and incubated in the presence or 
absence of 50 µM of 2,4-D. Transformation was performed in triplicate and in each 
experiment GFP fluorescence was measured by flow cytometry 16 h after transfection. 
Values are expressed in arbitrary units (a.u.) ± SE. 
 

Sl-IAA3  Is Differentially Expressed in Different Plant Organs and Displays 

Tightly Regulated Tissue-Specific Expression 

 

To gain further insights into Sl-IAA3 expression, we fused the Sl-IAA3 promoter to 

the GUS (β–glucuronidase) reporter gene (ProIAA3:GUS) and stably introduced it 
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into tomato plants. GUS activity driven by the Sl-IAA3 promoter was then 

assessed in lines homozygous for the chimeric construct. In untreated vegetative 

tissues, the Sl-IAA3 promoter drove GUS expression exclusively in the leaf 

vasculature and root tips (Figure 4A to 4C). However, a brief auxin treatment (20 

µM for two hours) of light grown seedlings led to a dramatic increase in GUS 

expression throughout the roots and shoots (Figure 4E to 4G). In mature green 

fruit, GUS staining was restricted to a narrow band in the placenta exolayer at the 

junction   between  the  placenta  and  pericarp  tissues (Figure 4D). Once  again,  

 

Pro IAA3:GUS
+ IAA

Pro IAA3:GUS
+ IAA

DR5:GUS

Pro IAA3:GUS
- IAA

Pro IAA3:GUS
- IAA

AA CC

EE FF

I JJ

HH

BB

GG

D

DR5:GUS
+IAA

MM NN O P

LK

 

 

Figure 4. Tissue-Specific Expression of Sl-IAA3 Monitored by GUS Reporter Gene 
Activity Driven by the Sl-IAA3 Promoter (ProIAA3:GUS). The construct was stably 
transformed into tomato and GUS staining was assessed in various tissues of 
homozygous plants. The expression pattern was assessed in 3-week-old seedlings (A), 
leaves (B), roots (C) and MG fruit (D). E, F, G and H correspond to the same tissues 
treated for 2 hours with 20 µM IAA. I, J, K and L correspond to the same tissues 
expressing the DR5 auxin-responsive promoter fused to the GUS reporter gene 
(DR5:GUS) used as sensor for active auxin signalling. M, N, O and  P correspond to 
DR5:GUS treated with 20 µM IAA.  The images displayed are representative of at least 
three independent experiments with n>20 seedlings examined per experiment. 
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exogenous auxin (20 µM for two hours) led to an increase in the range of GUS 

expressing tissues. After hormone treatment, GUS staining was detected 

throughout the pericarp and columella tissues but remained excluded from the 

placental tissues (Figure 4H). As a control for auxin responsiveness, we also 

transformed tomato plants with a construct containing the artificial auxin-

responsive promoter, DR5, fused to the GUS reporter gene (DR5:GUS). 

Interestingly, this synthetic promoter used here as auxin sensor, drove GUS 

expression in the leaf midrib and root tips (Fig 4I to 4K), but not in the fruit (Figure 

4L). Exogenous auxin treatment of DR5:GUS plants resulted in enhanced 

staining in vegetative tissues but in the fruit, expression remained restricted to the 

vascular tissues (Figure 4M to 4P). These data indicate that the transcriptional 

control of Sl-IAA3 is more complex than that of DR5, providing evidence that 

although it is auxin responsive, its tight tissue-specific regulation depends on a 

variety of factors.  

 

Sl-IAA3  Encodes a Nuclear Localized Protein that Acts In Vivo  as a 

Repressor of Auxin-Responsiveness 

 

We investigated the sub-cellular localization of the Sl-IAA3 protein by expressing 

in tobacco cell protoplasts the green fluorescent protein (GFP) fused to Sl-IAA3 

(Sl-IAA3:GFP). As expected, 35S Cauliflower Mosaic Virus (CaMV) promoter-

driven GFP alone was present throughout the cytoplasm (see supplemental 

Figure 2A online) whereas the Sl-IAA3:GFP fusion protein was localized 

exclusively in the nucleus (see supplemental Figure 2B online). This nuclear 

localization is consistent with a transcriptional regulatory function for the native Sl-

IAA3 protein. 

In order to determine the function of the Sl-IAA3 encoded protein and to 

address its ability to regulate in vivo the activity of auxin-responsive promoters, a 

DR5-driven GFP reporter construct was used (Ottenschlager et al., 2003). This 

reporter construct was co-transfected into tobacco protoplasts with an effector 

construct giving constitutive 35S-driven Sl-IAA3 protein expression. Transient 

expression experiments using this dedicated "single cell system" revealed that in 

the absence of the effector construct, DR5-driven GFP expression was enhanced 
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up to 10-fold by the auxin (2,4-D) treatment (see supplemental Figure 3 online). 

The presence of 35S-driven Sl-IAA3 in co-transfection assays, however, strongly 

reduced this auxin induction. A mock effector plasmid containing the 35S 

promoter but lacking the Sl-IAA3 coding sequence did not impact the auxin-

induction of the DR5 promoter activity (see supplemental Figure 3 online). These 

data indicate that Sl-IAA3 acts in vivo as a repressor of auxin-dependent 

transcription and is consistent with Sl-IAA3 being a member of the Aux/IAA 

family. 

 

Sl-IAA3  Down-Regulation Results in Vegetative Growth Phenotypes  

 

We generated Sl-IAA3-suppressed antisense tomato lines (AS-IAA3) in order to 

address the function of the protein in planta. Several homozygous transgenic 

lines corresponding to independent transformation events were obtained and 

analyzed. Two representative lines (1 and 2) showing 6-fold and 10-fold 

reductions in Sl-IAA3 transcript levels, respectively, were selected for further 

study (Figure 5A). In these lines, down-regulation of Sl-IAA3 resulted in multiple 

vegetative growth phenotypes, including a dramatic reduction in apical 

dominance (Figure 5B and 5C). In determinate WT tomato plants (e.g. 

MicroTom), lateral shoots develop only after floral transition and their growth is 

initiated in an apical-basal sequence along the primary shoot axis. The first lateral 

shoot arises from the last leaf node just below the first inflorescence. By contrast, 

outgrowth of the axillary shoots in the AS-IAA3 plants began in the lowest leaf 

node (Figure 5B) and the number of lateral shoots was increased in the 

transgenic lines (Figure 5C). The AS-IAA3 lines also showed a higher frequency 

of ectopic cotyledons than the WT (Figure 5D and 5E). The frequency of 

polycotyledon structure reached 25 and 20% in AS-AA3-1 and AS-IAA3-2 lines, 

respectively, compared to only 5% in the WT (Figure 5E).   

 

Sl-IAA3  Suppression Results in Reduced Auxin Responsiveness 

 

To further investigate the role of the Sl-IAA3 in auxin responses, we assessed the 

elongation of hypocotyl sections after auxin treatment in WT and AS-IAA3 lines. 
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Figure 5. Altered Vegetative Growth Phenotypes in Antisense Sl-IAA3 Plants.  A. 
Down-regulation of Sl-IAA3 in transgenic tomato plants. The level of Sl-IAA3 transcripts 
in transgenic antisense lines (1 and 2) was assessed by qRT-PCR. ∆∆CT refers to the 
fold difference in Sl-IAA3 transcript levels relative to the WT. B. Reduced apical 
dominance in 7-week-old AS-IAA3 transgenic plants compared to WT plants. C. The 
number of lateral shoots branching from the first leaf node in WT and AS-IAA3 plants. 
The data are the mean ± SE of at least 30 plants and are representative of three 
independent experiments. D. Triple cotyledon phenotype occurring at higher frequency in 
AS-IAA3 transgenic lines compared to WT. Plants are light-grown in MS medium for 7 
days. Three cotyledon structures are indicated by yellow arrows. E. Frequency of 
triplicate cotyledons occurring in AS-IAA3 and WT seedlings expressed as a % of the 
total population. Error bars represent mean ± SE of 40 plants. 
 

After two hours auxin treatment (Figure 6A), the WT hypocotyl segments 

elongated more than the AS-IAA3 plants at all auxin concentrations tested, 

indicating that Sl-IAA3 suppression reduces sensitivity to auxin in planta. To 

further investigate this, we examined the effects of the auxin transport inhibitor, N-

1-napthylphthalamic (NPA) on the growth of WT and AS-IAA3 seedlings. NPA 

treatment is known to alter the endogenous auxin gradient, leading to an over-

accumulation of auxin in the root apical meristem which results in an inhibition of 

cell division and root growth. When grown in the presence of 1µM NPA, there 

was a marked reduction of primary root elongation and a complete suppression of 

lateral root formation in the WT seedlings (Figure 6B and 6C). In the absence of 
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NPA, 19-day-old AS-IAA3 seedlings are not morphologically different to the WT 

(Figure 6B). By contrast, NPA only weakly affected primary root growth in AS-

IAA3 plants, although lateral root formation was inhibited similarly to the WT 

(Figure 6Band 6C). Leaf emergence was also strongly inhibited in NPA-treated 

WT seedlings, but not in the AS-IAA3 plants (arrow Figure 6B). Once again, these 

data are consistent with reduced auxin sensitivity in the antisense lines. Other 

auxin-related processes like hypocotyl and root gravitropism were not affected in  

 
Figure 6. Auxin-Associated Phenotypes of Sl-IAA3 Down-Regulated Lines.  A. Auxin 
dose-response in hypocotyl segments. 8 mm hypocotyl fragments cut from 3-week-old 
light grown seedlings were incubated for 2 h in a solution containing the indicated 
concentration of NAA. Elongation is given as percentage increase in final length over the 
initial length. The results are representative of data obtained with two independent AS-
IAA3 lines and with two replicates for each line. Standard errors are indicated (n ≥ 25). B. 
Effect of NPA treatment on the development of light-grown WT and AS-IAA3 seedlings. 
19-day-old WT and AS-IAA3 tomato seedlings were grown in the presence or absence of 
1 µM of NPA. The scale bar indicates 10 mm C. Primary root length upon NPA treatment 
of light-grown WT and AS-IAA3 lines. Primary root length was assessed following NPA 
treatment. Error bars represent mean ± SE (n ≥ 60). D. Expression of early-auxin-
response genes in AS-IAA3 and WT lines. Expression analysis of Sl-IAA4 (SGN-
U316052), Sl-IAA14 (SGN-U318434), Sl-IAA17 (SGN-U323974), SAUR (SGN-U318031) 
and GH3 (SGN-U319351) genes were carried out by qRT-PCR in WT and AS-IAA3 
hypocotyl fragments after auxin treatment (1µM NAA for 2h). The data are expressed in 
fold increase with respect to non treated tissues taken as reference values. 
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IAA3-down-regulated lines (see supplemental Figure 4 online). In addition, no 

alteration in root growth and vascular formation was observed in AS-IAA3 lines. 

We therefore investigated typical molecular responses to auxin by assessing the 

expression of three Aux/IAA genes (Sl-IAA4, Sl-IAA14, Sl-IAA17) and two other 

primary auxin-responsive genes, SAUR and GH3. RNA samples isolated from 

AS-IAA3 and WT hypocotyls incubated 2 h in presence or absence of 1 µM NAA 

were used in qRT-PCR experiments to monitor transcript accumulation for the 

five genes. Neither the basal, nor the auxin responsive transcript levels were 

altered by the down-regulation of Sl-IAA3 (Figure 6D). It is important to point out 

that Sl-IAA4, Sl-IAA14 and Sl-IAA17 were selected among the Aux/IAA genes 

because of their high sequence homology to Sl-IAA3 (See supplemental Table1 

online). Therefore, since their expression remained unchanged in the AS-IAA3 

plants it is most likely that Sl-IAA3 was exclusively directly targeted by the 

antisense strategy.  

 

Sl-IAA3  Suppression Results in Modified Ethylene Sensitivity 

 

The ethylene responsiveness of Sl-AA3 prompted us to examine the role of the 

encoded protein in two classical ethylene response processes, epinastic petiole 

curvature in light-grown plants and the formation of an apical hook in etiolated 

seedlings.  Tomato leaf petioles typically curve downwards in response to 

exogenous ethylene (Kazemi et al., 1974). To investigate the impact of the down-

regulation of Sl-IAA3 on this epinastic response, light-grown WT and AS-IAA3 

tomato plantlets were treated with exogenous ethylene (50 µL L-1) for 16 h. The 

angle of the petioles was then measured in the first and second leaf-nodes as 

indicated in Figure 7B. In WT, ethylene treatment led to a leaf angle of 100°. By 

contrast in AS-IAA3 lines 1 and 2, the leaf angle after treatment was 87° and 75°, 

respectively (Figure 7A and Table 1), indicating an alteration in the ethylene-

induced epinastic response in the AS-IAA3 plants. In the absence of ethylene 

treatment, both WT and AS-IAA3 lines display the same leaf angle (Table 1). One 

of the most striking phenotypes in the AS-IAA3 seedlings is the exaggerated 

apical hook formation in the absence of exogenous ethylene (Figure 7C). 

Exaggeration of the apical hook is one of the hallmarks of the classical ethylene 

triple response (Ecker, 1995). To better characterise this phenotype we first 
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defined different grades of hook formation ranging from stage 0, corresponding to 

total absence of the hook, to stage 7 corresponding to maximal exaggerated hook 

(Figure 8A). Treatment of seedlings with 1-MCP abolished apical hook formation 

 

 

 

Figure 7.  Ethylene Associated Phenotypes of AS-IAA3 Lines. A . Petiole epinasty in 
WT and AS-IAA3 plants in response to ethylene. Five-week-old light-grown plants were 
placed in airtight chambers for 16 h in the presence of 50 µL L-1 ethylene. B. Diagram 
depicting the position of the first and the second leaf node in tomato plants. C. Hook 
curvature in 5-day-old WT (left panel) and AS-IAA3 (right panel) etiolated seedlings. The 
scale bar indicates 5 mm.  
 

in both the antisense and WT lines (Figure 8B). In air-grown seedlings, in the 

absence of exogenous ethylene, most AS-IAA3 seedlings displayed hook 

curvature corresponding to stage 4 (60%) and stage 3 (35%), while of wild type 

plants exhibited mainly stage 1 (60%) and stage 2 (35%) hook curvature (Figure 

8C). Adding exogenous ethylene (0.1 µL L-1) increased hook curvature to stage 3 

and 4 for wild type and to stages 4 and 5 for AS-IAA3 (Figure 8D). Under 1 µL L-1 

exogenous ethylene, 90 % of WT seedlings displayed hook curvature from stage 

5 and 6 and 80% of AS-IAA3 lines exhibited hook curvature from stage 6 and 7 

(Figure 8E). These data indicate that the exaggerated apical hook curvature 
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phenotype of the AS-IAA3 plants requires active ethylene signalling and that 

transgenic lines are more responsive to ethylene.  
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Figure 8. Increased Ethylene Sensitivity of AS-IAA3 Lines.  A. Eight stages of hook 
formation have been defined (stage 0 to 7) in etiolated tomato seedlings treated with 
different concentrations of ethylene (0 to 1 µL L-1). B to E. Proportion of WT (black bars) 
and AS-IAA3 (grey bars) plants corresponding to the eight stages of hook formation upon 
treatment with (B) 1-MCP (1µL L-1 for 16 h), (C) air or (D and E) exogenous ethylene (0.1 
and 1µL L-1).  

 

The Expression of Sl -IAA3  Is Tightly Regulated in Apical Hook and 

Epinastic Petiole upon Ethylene Treatment 

 

To further investigate the role of Sl-IAA3 in apical hook formation and epinastic 

response, we analyzed the expression pattern of this gene in the corresponding 

tissues of transgenic tomato lines expressing the GUS reporter gene driven by 

the Sl-IAA3 promoter (ProIAA3:GUS).  In the absence of exogenous ethylene, 

there was no detectable GUS staining in the apical hook of dark-grown seedlings. 

By contrast, after 48 hours ethylene treatment (10 µL L-1), a strong band of GUS 

staining was observed on the inner surface of the apical hook. We also analysed 

the expression of the GUS reporter gene driven by the DR5 promoter in order to 
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determine whether ethylene treatment alters the expression pattern of this auxin 

sensor chimerical gene. Ethylene treatment did not affect the DR5:GUS staining 

pattern in the hook suggesting that the ethylene induction of Sl-IAA3 was not 

mediated through increased auxin levels in the treated tissue (Figure 9A). In 

epinastic petioles treated with ethylene, the expression of ProIAA3:GUS was 

restricted to the upper side of the leaf nods while no expression was detected in 

untreated non-epinastic petioles (Figure 9B). These data indicate that the 

expression of Sl-IAA3 is associated with tissues undergoing differential growth, 

both in etiolated seedlings and in epinastic petioles.  

 

Table 1.  Altered Petiole Epinastic Response in AS-IAA3 Plants in Response to Ethylene. 
Petiole opening degree of the first and the second leaf node was measured before and 
after ethylene treatment in WT and AS-IAA3 plants. The data are means ± SE of at least 
36 plants and are representative of three independent experiments 
 
 Petiole opening degree  
        Air                       C2H4 
 
WT 
AS-IAA3-1 
AS-IAA3-2 

  
 70.8° ± 2.8                 100° ± 4.46 

70.1° ± 3.5                   87° ± 4.31 
72.2° ± 1.8                   75° ± 2.87  

 
 
 
The Sl- IAA3  and Sl- HOOKLESS  Genes Are Expressed on Opposite Sides of 

the Apical Hook 

 

In Arabidopsis, At-HOOKLESS1 (At-HLS1) is a key regulator of apical hook 

formation that has been proposed by Lehman et al. (1996) to integrate ethylene 

and auxin signalling during hook formation and maintenance in dark-grown 

seedlings. The Arabidopsis hls1 mutant showed no differential growth in the 

apical region of the hypocotyl even after ethylene treatment. We isolated a 

putative tomato ortholog of At-HLS1 and showed that it fully rescues the 

Arabidopsis hls1-1 mutant phenotype (see supplemental Figure 5 online). 

Accumulation of Sl-HLS transcripts is not altered in the AS-IAA3 plants 

(Figure11D) suggesting that the exaggerated hook formation in the transgenic 

lines does not   involve an alteration  in Sl-HLS expression. To further  investigate 
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Figure 9. Expression of ProIAA3:GUS  and ProHLS:GUS Associated with 
Differential Growth during Hook Formation and Epinastic Response.  A. Tissue-
specific expression of ProIAA3:GUS and DR5:GUS in etiolated seedlings. Etiolated 
seedlings expressing the GUS reporter gene driven either by the Sl-IAA3 or DR5 
promoter were dark grown on MS media for five days and then treated with air or 10 µL 
L-1 ethylene for 48 hours. The left panel shows the ethylene-dependent GUS staining in 
the apical hook of transgenic tomato plants expressing the ProIAA3:GUS  construct. The 
right panel shows GUS staining in the DR5:GUS transformed plants used for detection of 
active auxin signalling in the hook. Bars = 5 mm B. Expression pattern of ProIAA3:GUS 
in epinastic and non-epinastic petioles. Six-week-old light-grown plants were placed in 
airtight chambers for 16 h in the absence (upper panel) or presence of 50 µL L-1 ethylene 
(lower panel). The arrows indicate the expression of GUS in the leaf nodes of the petiole. 
C. Comparative expression patterns of ProIAA3:GUS (left panel) and ProHLS:GUS 
(middle panel) in the apical hook. The right panel shows the expression of GUS driven by 
DR5. Bars = 1 mm. Etiolated seedlings expressing the GUS reporter gene driven either 
by the Sl-IAA3, Sl-HLS or DR5 promoter were dark grown on MS media for five days and 
then treated with 10 µL L-1 ethylene for 48 hours. The images displayed are 
representative of at least three independent experiments with n >30 seedlings examined 
per experiment.  
 

potential interactions between Sl-HLS and Sl-IAA3 in controlling hook formation 

we analyzed the spatial expression of the Sl-HLS and Sl-IAA3 in the apical hook 

by native promoter-reporter constructs (Figure 9C). We isolated a 1.3 kb fragment 

of the Sl-HLS promoter and fused it to the GUS reporter gene. Etiolated seedlings 

expressing this construct were treated with ethylene. Remarkably, ProHLS: GUS 

staining was restricted to the outer side of the hook curvature, whereas the Sl-

IAA3 promoter drove GUS staining exclusively on the inner side. These data 

suggest that Sl-IAA3 acts as a repressor of auxin/ethylene-mediated cell 
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elongation on the inner surface of the apical hook and/or conversely that SI-HLS1 

is involved in promoting cell elongation on the outer surface.  
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Figure 10. Characterization of Ethylene Regulation of Sl-IAA3.  Ethylene dose 
response (A) and time course (B) of Sl-IAA3 induction in 5-day-old dark-grown WT 
seedlings. Expression of the ethylene-responsive gene E8 was used as control for 
hormone treatment (C and D).  ∆∆CT on the y axis refers to the fold difference in Sl-IAA3 
expression relative to untreated seedlings. The data presented correspond to mean 
values of 3 replicates ± SE. 
 

To further characterise the ethylene regulation of Sl-IAA3 we determined the 

ethylene dose-response using 5-day-old dark-grown wild type seedlings.  qRT-

PCR analysis revealed that Sl-IAA3 transcript accumulation reached a maximum 

at 0.5 µL L-1 (Figure 10A), the same saturating concentration was found for the 

previously characterised ethylene-responsive gene, E8 (Figure 10C). A study of 

the time-course of ethylene induction (performed with 0.5 µL L-1 ) also indicated 

that Sl-IAA3 transcript accumulation mimicked that of E8 and reaching a 

maximum after 5 hours treatment and then decreasing at 24 hours (Figure 10B 

and 10D).   
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Down-regulation of Sl- IAA3  Specifically impacts the Expression of Selected 

Auxin and Ethylene Transcription Factors 

 

To provide mechanistic insights into how SI-IAA3 functions to bring about the 

observed phenotypes, we attempted to identify putative target genes controlled 

by SI-IAA3. Taking into account that down-regulation of SI-IAA3 mainly resulted 

in auxin and ethylene-related phenotypes, we analysed the expression of 

transcription factors known to mediate auxin and ethylene responses. The 

expression of tomato  Aux/IAA (14), ARF (10) and  ERF (12) genes was 
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Figure 11. Impact of Sl-IAA3 Down-regulation on the Expression of Auxin and 
Ethylene Response Genes.  The expression of members of the ARF (A), Aux/IAA (B), 
and ERF (C) gene families of transcription factors as well as the Sl-HLS gene (D) was 
assessed by qRT-PCR in 5-day-old dark-grown WT and AS-IAA3 seedlings. The gene 
names correspond to the SGN annotation. Primers used are listed in Supplemental Table 
2. ∆∆CT on the y axis refers to the fold difference in expression of each gene relative to 
that in WT seedlings taken as reference tissues. The data presented correspond to mean 
values of 3 replicates ± SE.  
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assessed by qRT-PCR in 5-day-old dark-grown wild type and AS-IAA3 seedlings 

(Figure 11).  

While most of the genes showed similar expression in wild type and transgenic 

lines, there was a clear down-regulation of the putative tomato ortholog of 

Arabidopsis ARF2 (SGN-U314233) and conversely a significant up-regulation of 

the ARF8 (SGN-U327976) transcript (Figure 11A). The down-regulation of ARF2 

observed in the transgenic lines is in keeping with the data reporting that the 

hookless phenotype of hls1 Arabidopsis mutants can be partially reversed by a 

loss-of-function mutation in the ARF2 gene (Li et al., 2004). Notably, the 

expression of IAA29 (SGN-U320261) and Pti4 (SGN-U317071), a tomato ERF 

gene, were also significantly up-regulated in the transgenic lines (Figure 11B and 

11C) indicating that down-regulation of Sl-IAA3 altered the expression of specific 

auxin and ethylene transcriptional mediators.   

 

DISCUSSION 
 

Aux/IAA proteins are critical components of the auxin response. In Arabidopsis, 

dominant gain-of-function mutations in individual Aux/IAAs have provided telling 

insights into the roles played by the various family members in eliciting specific 

auxin responses. We show here that Sl-IAA3, a tomato Aux/IAA, is an integral 

component of both auxin and ethylene response pathways. Indeed, transcripts for 

the gene accumulate in response to both of the hormones and its down-regulation 

results in auxin- and ethylene-related phenotypes. Phenotypic responses to Sl-

IAA3 down-regulation include alterations to the classical auxin regulated 

processes of apical dominance and hypocotyl elongation, and to the typical 

ethylene responses such as apical hook formation in etiolated seedlings and leaf 

epinasty in light-grown plants.  

Sl-IAA3 and a number of other partial tomato Aux/IAA clones were initially 

isolated from fruit tissues (Jones et al., 2002). The Sl-IAA3 gene has strong 

sequence and structural similarities with its putative Arabidopsis orthologs, At-

IAA4 and At-IAA3. An Arabidopsis mutant for At-IAA4 has an insertion in the first 

exon but shows no obvious growth phenotype (Overvoorde et al., 2005). In fact, 

although loss-of-function mutations have been identified in Arabidopsis for 

several Aux/IAA genes, the only phenotypes reported are subtle changes in the 
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shy2 mutant (Tian and Reed, 1999). Interestingly, the expression of At-IAA3, one 

of the putative orthologs of tomato Sl-IAA3, was shown to be altered in Shy2 

mutant. Double or triple mutants of closely related Aux/IAA genes, such as iaa8-

1/iaa9-1 or iaa5-1/iaa6-1/iaa19-1 also exhibit WT phenotypes, indicating 

extensive functional redundancy among Arabidopsis Aux/IAA family members 

(Overvoorde et al., 2005). Arabidopsis gain-of-function Aux/IAA mutants result 

from genetic changes that lead to alterations in amino acids in the highly 

conserved domain II. This stabilizes the proteins and results in a variety of gene-

specific auxin-related phenotypes (Reed, 2001). We have previously shown that 

down-regulation of a tomato Aux/IAA gene, Sl-IAA9, resulted in pleiotropic 

phenotypes including altered leaf architecture and parthenocarpic fruit, consistent 

with a pivotal role for auxin in tomato fruit set and leaf morphogenesis (Wang et 

al., 2005). In the present study we show that the down-regulation of Sl-IAA3 (AS-

IAA3) also leads to well defined phenotypes in transgenic tomato lines. We were 

able to rule out that the observed changes might result from a lack of specificity of 

our antisense strategy by verifying that the expression of closely related Aux/IAA 

genes was not altered in the AS-IAA3 transgenic lines. These data strongly 

support the hypothesis that different members of the Aux/IAA family are involved 

in distinctive developmental processes. 

 

Sl-IAA3  Mediates Auxin-Dependent Gene Transcription and Auxin-

Associated Phenotypes 

 

Aux/IAA genes were originally identified based on their rapid induction by auxin in 

etiolated soybean (Glycine max) and pea (Pisum sativum) tissues (Walker and 

Key, 1982; Theologis et al., 1985). Many Arabidopsis auxin responsive genes 

contain the canonical auxin response elements (AuxRE), TGTCTC or GAGACA 

in their promoters (Guilfoyle and Hagen, 2007).  Our in silico search led to the 

identification of two degenerate AuxRE elements in the Sl-IAA3 promoter that 

may be responsible for the auxin responsiveness observed in this study (Figure 1 

and Figure 3).  

Sl-IAA3 transcript levels varied dramatically among the different tomato tissues. 

The highest and lowest levels were found in the fruit and roots, respectively. 

Analyses of tomato lines expressing the Sl-IAA3 promoter fused to the GUS 
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reporter gene revealed that basal levels of expression were spatially restricted 

within organs. In the root, Sl-IAA3-driven GUS expression was restricted to the 

root cap and lateral root meristems. In the leaves it was restricted to the 

vasculature, and in the fruit in a narrow band defining the junction between 

placenta and pericarp. Interestingly, the precise tissue-specific expression 

patterns were abolished by exogenous auxin. Auxin treatment led to GUS 

staining throughout the whole pericarp in fruit and to all parts of the leaves and 

roots. These auxin responsive expression patterns are in agreement with 

previous data (Jones et al., 2002) but differed considerably from those seen with 

the artificial auxin-responsive promoter, DR5 (Figure 4). This suggests that a 

combination of promoter elements, including the ethylene-responsive element 

(ERE), contribute to the maintenance of the precise tissue-specific pattern of Sl-

IAA3 expression.  

In most cases in Arabidopsis, Aux/IAA gain-of-function mutations are associated 

with phenotypes reminiscent of reduced auxin responsiveness (Tian et al., 2002; 

Nagpal et al., 2000; Rogg et al., 2001). Arabidopsis Aux/IAAs have been shown 

to repress the DR5-driven transcription (Ulmasov et al., 1997; Tiwari et al., 2001). 

This repression is thought to occur via interactions between the Aux/IAA proteins 

and their DNA-binding ARF partners (Guilfoyle and Hagen, 2007). As we were 

able to show that Sl-IAA3 also has the capacity to repress the activity of DR5 in 

vivo, we hypothesized that the down-regulation of Sl-IAA3 would reduce the level 

of auxin-responsive gene repression and ultimately lead to enhanced auxin 

responses. Unexpectedly, the AS-IAA3 lines have many phenotypes consistent 

with a reduced auxin sensitivity (Figure 8). This suggests that, even though in 

vivo assays showed that Sl-IAA3 has the capacity to repress auxin-responsive 

gene expression, in planta the protein seems to act as a positive regulator of 

auxin responses. One possible explanation for this apparent discrepancy is that in 

planta, Sl-IAA3 may repress the expression of some negative regulators of auxin 

responses. Two ARFs (ARF2 and ARF8) and one Aux/IAA (IAA29) that were 

differentially regulated in the AS-IAA3 lines, may contribute to the reduced auxin-

responsiveness.  

 

Ethylene Related Expression and Phenotypes 
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We have previously shown that the accumulation of Sl-IAA3 transcripts is 

enhanced by ethylene treatment in mature green fruit (Jones et al., 2002). In this 

work, we further characterized the dynamics of the ethylene responsiveness of 

the gene. A time-course analysis of Sl-IAA3 transcript accumulation in response 

to ethylene revealed a similar pattern to that shown by the well-characterized 

ethylene-responsive gene, E8 (Lincoln et al., 1987). The highest levels of Sl-IAA3 

transcripts in tomato plants were found in the fruit at the orange/red stages of 

ripening. In tomato, autocatalytic ethylene production leads to high levels of 

endogenous ethylene during fruit ripening (Lelievre et al., 1997). In breaker stage 

fruit, when autocatalytic ethylene is already actively driving the ripening process, 

the ethylene inhibitor, 1-MCP, sharply reduced Sl-IAA3 transcript levels. There 

was also a dramatic reduction in Sl-IAA3 transcript levels in the tomato mutants 

rin, nor and Nr that lack the capacity to respond to autocatalytic ethylene and to 

undergo normal ethylene-regulated ripening processes (Figure 2). Together, 

these data strongly suggest that this presumptive auxin response element is 

ethylene-responsive and integral to ethylene-regulated fruit ripening. In untreated 

fruit, the Sl-IAA3 promoter drove GUS expression strictly at the boundary 

between the placenta and pericarp tissues. These observations suggested that 

down-regulation of Sl-IAA3 in transgenic lines may have resulted in a fruit 

ripening phenotype. Nevertheless, no changes were observed in the fruit ripening 

of antisense lines including the timing of the onset, levels of climacteric ethylene 

production and pigment accumulation examined in our study. Though we cannot 

exclude the possibility that other ripening aspects may have been altered, our 

data suggest that either there is some functional redundancy or that residual 

levels of Sl-IAA3 were sufficient to drive the fruit processes that rely on the 

protein. The data do, however, indicate that Sl-IAA3 lies at the crossroads of the 

auxin and ethylene responses during tomato fruit ripening. Trainotti et al. (2007) 

have recently demonstrated a network of interactions between auxin and ethylene 

during ripening in peaches. Our data show that modification of the auxin response 

is one of the suite of ethylene driven processes that together constitute 

climacteric fruit ripening. 

Two other phenotypes in the AS-IAA3 lines, the exaggerated apical hook 

formation and reduced epinasty, indicated that Sl-IAA3 is involved in physiological 

responses to ethylene. An exaggerated apical hook is formed in etiolated 
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seedlings in response to exogenous ethylene. This process forms the classical 

ethylene triple response together with reduced hypocotyl and root elongation 

(Bleecker et al., 1988; Ecker, 1995). An apical hook is formed during early 

seedling growth to protect the fragile shoot meristem from damage as the 

seedling grows through the soil (Darwin and Darwin, 1896). A complex pattern of 

coordinated cell elongation is needed to establish and maintain the apical hook 

structure (Silk and Erickson, 1978). The involvement of both ethylene and auxin 

in this differential cell elongation has been demonstrated through the analysis of 

ethylene and auxin signalling mutants that are altered in the process of hook 

formation (Lehman et al., 1996; Li et al., 2004). In Arabidopsis, mutants that are 

defective in ethylene perception and signalling, such as etr1-1, ein2, ein3, do not 

form an exaggerated hook in response to ethylene treatment. By contrast, the 

constitutive ethylene response mutant, ctr1, develops an exaggerated hook in the 

absence of ethylene (Guzman and Ecker, 1990; Kieber et al., 1993). Auxin 

promotes hypocotyl cell elongation and is unequally distributed in the apical hook 

(Schwark and Schierle, 1992). The axr1 mutant, which is altered in auxin 

responses, lacks a normal apical hook and the inhibition of auxin transport 

disrupts formation of the hook (Lincoln et al., 1990). Clearly, the apical hook is 

established and maintained by interplay between ethylene and auxin. The 

exaggerated apical hook phenotype in the AS-IAA3 lines provides direct evidence 

that Sl-IAA3 is important in physiological processes that rely on both auxin and 

ethylene. Active ethylene signalling is essential for the appearance of the 

exaggerated hook phenotype since blocking ethylene perception with 1-MCP 

prevents hook formation in the AS-IAA3 plants. Noteworthy, apart from the 

exaggerated hook, other aspects of the triple response like hypocotyl elongation 

and thickening and root elongation were not altered in AS-IAA3 lines indicating 

that Sl-IAA3 is rather involved in differential growth processes. Ethylene treatment 

of etiolated seedlings increased the ProIAA3:GUS expression in the inner surface 

of the apical hook (Figure 9). Likewise, ProIAA3:GUS staining was also clearly 

delimited in epinastic petioles suggesting that the ethylene-induced gradient of Sl-

IAA3 expression is involved in the differential growth associated with both apical 

hook formation and the petiole epinastic response. Whereas, down-regulation of 

Sl-IAA3 resulted in an exaggerated ethylene-response of etiolated seedlings, it 

conferred reduced ethylene sensitivity in light-grown plants. The ability of 



Chapitre II: Sl-IAA3, a Tomato Aux/IAA at the Crossroads of Auxin and Ethylene Signalling 

75 

ethylene to induce opposite growth responses in the dark and in the light have 

been previously described (Smalle et al., 1997) and could explain the seemingly 

contradictory phenotypes displayed by AS-IAA3 plants in the seedlings and 

petioles. In keeping with this complex regulation of Sl-IAA3, the ethylene-induced 

expression of this gene in light-grown plants was found in the upper side of 

epinastic petioles, opposite to the pattern observed in the hook of etiolated 

seedlings.  

Arabidopsis plants with a loss-of-function mutation in HLS1 are unable to form 

an apical hook even in the presence of ethylene (Lehman et al., 1996). A 

mutation that reverses the hls1 phenotype has been identified and was found to 

encode the auxin response factor, ARF2 (Li et al., 2004). Interestingly, the 

putative tomato ortholog of ARF2 is down-regulated in the AS-IAA3 lines 

suggesting that the process of hook formation may require an interplay between 

HLS1, IAA3 and ARF2. We isolated Sl-HLS, a tomato homolog of the Arabidopsis 

HLS1 gene which was able to rescue the Arabidopsis hls1 mutant, indicating that 

it encodes a functional HOOKLESS protein. In contrast to the ProIAA3:GUS, 

ProHLS:GUS expression was restricted to the outer side side of the hook (Figure 

9). This suggests that Sl-IAA3 and Sl-HLS regulate cell elongation on opposite 

sides of the hook. Sl-IAA3 and Sl-HLS genes provide therefore tissue-specific 

markers for the inner and outer sides of the apical hook, respectively, and the 

corresponding promoters could be useful to target the ectopic expression of 

transgenes to a specific side of the hook. The previous model proposed by Li et 

al. (2004) postulates that ARF2 acts downstream of HLS1. Real-time RT-PCR 

data indicated that the expression of Sl-HLS is not altered in the AS-IAA3 plants 

suggesting that Sl-IAA3 and Sl-HLS may act in parallel pathways both of them 

involving ARF2 as a downstream component. On the other hand, we cannot ruled 

out that Sl-HLS may act upstream of Sl-IAA3 to down-regulate its expression 

which might explain why Sl-IAA3 is not expressed in the upper side of the hook 

where the expression of Sl-HLS is high.  

 The altered apical dominance found in the AS-IAA3 lines was also observed 

in the antisense Sl-IAA9 plants (Wang et al., 2005). Unlike Sl-IAA9, however, Sl-

IAA3 has distinct roles in ethylene-related responses. By revealing that a number 

of  transcription factors from the ARF (Sl-ARF2 and Sl-ARF8), Aux/IAA (Sl-IAA29) 

and ERF (Ethylene Response Factor Pti4) families are regulated by Sl-IAA3, our 
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study provides important clues into how SI-IAA3 functions to bring about some of 

the observed phenotypes. While continued effort is required to gain a more 

complete understanding of the hormonal dialogue mediated by Sl-IAA3, the data 

described here confirm that Aux/IAA proteins have both distinct and overlapping 

roles and reveal that these proteins can be integral auxin as well as ethylene 

response elements.  

 

METHODS 

 

Plant Material and Growth Conditions 

 

Tomato (Solanum lycopersicum cv MicroTom) plants were grown under standard 

greenhouse conditions. The conditions for the culture chamber room are as 

follows: 14-h-day/10-h-night cycle, 25/20°C day/nig ht temperature, 80% 

hygrometry, 250 µmol m-2s-1 intense luminosity. Seeds were first sterilized, rinsed 

in sterile water and then sown in recipient Magenta vessels containing 50 mL of 

50% Murashige and Skoog (MS) culture medium added with R3 vitamin (0.5 mg 

L-1 thiamine, 0.25 mg L-1 nicotinic acid and 0.5 mg L-1pyridoxine), 1.5% (w/v) 

sucrose and 0.8% (w/v) agar, pH 5.9.  

 

Plant Transformation 

 

To generate AS-IAA3 transgenic plants, the forward 5’-AACAA 

GACTCAGCTCCTGCACC-3’ and reverse 5’-CATCACCAACAAGCATCCAATC-

3’ primers were used to amplify a partial Sl-IAA3 clone (Figure 1). This 297 bp 

fragment was then cloned into the pGA643 binary vector in the antisense 

orientation under the transcriptional control of the cauliflower mosaic virus 35S 

(35S CaMV) promoter and the nopaline synthase (Nos) terminator. Transgenic 

plants were generated by Agrobacterium tumefaciens–mediated transformation 

according to Jones et al. (2002) and transformed lines were selected as in Wang 

et al. (2005). All experiments were carried out using homozygous lines from F3 or 

later generations. 
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Isolation of the Sl -IAA3  Genomic Clone 

 

Genomic DNA was extracted from tomato leaf tissue using a DNA extraction Kit 

(Promega, Lyon, France) and was treated with RNase for 10 min at 37°C. PCR 

reactions were performed on genomic DNA using primers designed from the 

cDNA sequence. The amplified fragments were cloned and fully sequenced. 

Comparative analysis between the genomic clone and cDNA sequences allowed 

the delimitation of introns and exons.  

 

Isolation of the Sl -IAA3  Promoter 

 

The Universal Genome Walker Kit (Clontech Laboratories, Inc., Palo Alto, CA, 

USA) was used to isolate the Sl-IAA3 gene promoter region. Each tomato 

genomic DNA aliquot was digested with four restriction enzymes, DraI, EcoRV, 

PvuII and StuI. Adaptor DNA which contained two primer-binding sites for AP1 

and AP2 primers provided by the Genome Walker Kit was linked to both ends of 

the restricted tomato DNA fragment at 16°C. Two pri mers, AP1 (5’-

GTAATACGACTCACTATAGGGC-3’) and AP2 (5’-ACTATAGGGCACG 

CGTGGT-3’) paired with two Sl-IAA3 gene specific antisense primers were used 

for PCR amplification. The tomato genomic DNA fragment with adaptors at both 

ends was used as a template for the amplification of the promoter region. The 

PCR product was cloned into the pGEMT-easy vector (Promega) and fully 

sequenced.  The Sl-IAA3 promoter was then fused to the GUS reporter gene in 

the plp100 binary vector (Szabados et al., 1995) and used for stable tomato 

transformation. DNA sequences were analyzed with BLAST network services at 

the National Center for Biotechnology Information (Altschul et al., 1997) and by 

PlantCARE (Lescot et al., 2002).  

Transient Expression Using a Single Cell System 
 
 For nuclear localization of the Sl-IAA3 fusion protein, the coding sequence of Sl-

IAA3 was cloned as a C-terminal fusion in frame with GFP (Green Fluorescent 

Protein) into the pGreen vector (Hellens et al., 2000) and expressed under the 

control of the 35S CaMV, a Cauliflower Mosaic Virus promoter.  Protoplasts for 
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transfection were obtained from suspension-cultured tobacco (Nicotiana 

tabacum) BY-2 cells according to the method described previously (Leclercq et 

al., 2005). Protoplasts were transfected by a modified polyethylene glycol method 

as described by Abel and Theologis (1994). Typically, 0.2 mL of protoplast 

suspension (0.5 x 106) was transfected with 50 µg of sheared salmon sperm 

carrier DNA and 10 µg of either 35S-IAA3:GFP or 35S:GFP (control) plasmid 

DNA. Transfected protoplasts were incubated 16 h at 25°C and analyzed for GFP 

fluorescence by confocal microscopy. Light micrographs and fluorescence 

images are merged to illustrate the different location of the two proteins. 

       For co-transfection assays, the coding sequence of Sl-IAA3 was cloned into 

the pGreen vector and expressed under the control of the 35S CaMV promoter. 

Aliquots of  protoplasts (0.5 x 106) were transformed either with 10 µg of the 

reporter vector alone containing the DR5 synthetic auxin-response element fused 

to the GFP reporter gene (gift from Prof. K. Palme, Freiburg, Germany) or in 

combination with 10 µg of the effector plasmid, allowing the constitutive 

expression of the Sl-IAA3 protein. Transformation assays were performed in three 

independent replicates. After 16 h incubation in the presence or absence of 2,4-D 

(50 µM), GFP expression was analyzed and quantified by flow cytometry (FACS 

Calibur II instrument, BD Biosciences, San Jose, CA). For each sample, 100 to 

1000 protoplasts were gated on forward light scatter and the GFP fluorescence 

per population of cells corresponds to the average fluorescence intensity of the 

population of cells above the background threshold (set arbitrarily based on a 

zero DNA transformed control, so that all control cells fall below this threshold). 

Data were analyzed using Cell Quest software. All transient expression assays 

were repeated at least three times with similar results. 

Auxin and Ethylene Treatment 

 

For auxin dose–response experiments, 8 mm long hypocotyl segments were cut 

from three-week-old light grown plantlets and were immediately floated in 

sucrose/MES buffer (1% sucrose [w/v] and 5 mM MES/KOH, pH 6.0). After 2 h 

pre-incubation, the hypocotyl segments were randomly distributed to fresh buffer 

solutions with or without NAA (0, 1, 10, 100 µM) and were measured following 2 h 

of incubation. For NPA treatment, the seeds were sown on MS medium 
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containing 1 µM NPA and the phenotypes affecting root and leaf growth were 

observed on young 19-day-old seedlings. For qRT-PCR expression studies, 21-

day-old tomato seedlings were harvested and treated with auxin (20 µM IAA for 

two hours) in presence or absence of 1-MCP (Agrofresh, USA), the ethylene 

perception inhibitor (1 µL L-1) applied 16h prior to auxin treatment. The tissues 

were then immediately frozen in liquid nitrogen and stored at -80°C until RNA 

extraction. For GUS analysis, 21-day-old tomato seedlings and sections of 

mature green fruit (Vibratom, Leica VT 1000 S, Vetzlar, Germany) were incubated 

for 2 h in 50% MS buffer with or without 20 µM IAA. Tissues were then 

immediately incubated on GUS staining buffer. Ethylene treatments were 

performed for 5 h in sealed glass boxes. Tomato fruit at the mature green (MG) 

stage were treated with 50 µL L-1 ethylene and control fruits were exposed to air 

alone.  1-MCP (1 µL L-1) was applied to fruit at breaker stage (Br) for 16 h at room 

temperature. Following treatment, the tissues were immediately frozen in liquid 

nitrogen and stored at -80°C until RNA extraction. Ethylene treatment (10 µL L-1) 

was also performed on 5-day-old etiolated ProIAA3:GUS  transformed seedlings. 

Non-treated seedlings grown under the same conditions as for the control. The 

samples were immediately incubated on GUS buffer. Ethylene treatment of light 

grown plants was performed by sealing the WT and AS-IAA3 plants in airtight 

chambers and injecting ethylene to a final concentration of 50 µL L-1 for 16 h.  

 

Histochemical GUS Analysis 

 

Transgenic lines expressing the GUS reporter gene under the control of either the 

Sl-IAA3 promoter (ProIAA3:GUS ), the Sl-HLS promoter (ProHLS:GUS) or the 

DR5 synthetic promoter (DR5:GUS) were incubated at 37°C for 5 to 15 hours with 

GUS staining solution containing 100 mM sodium phosphate buffer, pH 7.2, 10 

mM EDTA, 0.1% Triton and 1 mM 5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid 

to reveal GUS activity. Following GUS staining, samples were washed several 

times with a graded ethanol series to extract chlorophyll.  

 

Assessment of Apical Hook Curvature  
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Sterilized seeds were placed on MS agar medium plates and left in the dark for 2 

days at 4°C. The vernalized seeds were then placed at 25°C. The level of apical 

curvature was assessed on 5-day-old dark-grown seedlings using a scale ranging 

from stage 0, corresponding to total absence of hook, to stage 7 corresponding to 

maximal exaggerated hook.  

 
RNA Extraction and Quantitative RT-PCR 

 

RNAs were extracted from various tomato tissues according to Zegzouti et al. 

(1999). DNase-treated RNA (2 µg) was then reverse-transcribed in a total volume 

of 20 µl using the Omniscript Reverse Transcription Kit (Qiagen, Valencia, CA, 

USA). Quantitative Real-Time PCR was performed using cDNAs corresponding 

to 2.5 ng of total RNA in a 10 µl reaction volume using the SYBR Green PCR 

Master Mix (PE-Applied Biosystems, Foster City, CA, USA) on an ABI PRISM 

7900HT sequence detection system. PRIMER EXPRESS software (PE-Applied 

Biosystems) was used to design gene-specific primers. The primer sequences 

are listed in supplemental Table 2. Actin was used as a reference gene with 

constitutive expression in various tissues.  Real-Time PCR conditions were as 

follow: 50°C for 2 min, 95°C for 10 min, then 40 cy cles of 95°C for 15 s and 60°C 

for 1 min and finally one cycle at 95°C for 15 s an d 60°C for 15 s. For all Real-

Time RT-PCR experiments, two biological replicates were made and each 

reaction was run in triplicate. For each sample, a Ct (threshold constant) value 

was calculated from the amplification curves by selecting the optimal ∆Rn 

(emission of reporter dye over starting background fluorescence) in the 

exponential portion of the amplification plot. Relative fold differences were 

calculated based on the comparative Ct method using the Sl-Actin-51 as an 

internal standard. To determine relative fold differences for each sample in each 

experiment, the Ct value for Sl-IAA3 gene was normalized to the Ct value for Sl-

Actin-51 and was calculated relative to a calibrator using the formula 2 -∆∆ Ct. 
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Supplemental data 

Supplemental Figure 1.  

 
Supplemental Figure 1. Evolutionary Relationship of Sl-IAA3 and the Most Closely 
Related Tomato and Arabidopsis Aux/IAA Proteins.  The evolutionary history was 
inferred using the Neighbor-Joining method (Saitou and Nei, 1987). The optimal tree with 
the sum of branch length = 1.02850951 is shown. The percentage of replicate trees in 
which the associated taxa clustered together in the bootstrap test (1000 replicates) are 
shown next to the branches (Felsenstein, 1985). The tree is drawn to scale, with branch 
lengths in the same units as those of the evolutionary distances used to infer the 
phylogenetic tree. The evolutionary distances were computed using the Poisson 
correction method (Zuckerkandl and Pauling, 1965) and are in the units of the number of 
amino acid substitutions per site. All positions containing gaps and missing data were 
eliminated from the dataset (Complete deletion option). There were a total of 156 
positions in the final dataset. Phylogenetic analyses were conducted in MEGA4 (Tamura 
et al, 2007). 
 

Supplemental Figure 2.   

 

 

Supplemental Figure 2.  Subcellular Localization of Sl-IAA3 Protein. Sl-IAA3:GFP 
fusion protein was transiently expressed in BY-2 tobacco protoplasts and sub-cellular 
localization was analyzed by confocal laser scanning microscopy. The merged pictures 
of the green fluorescence channel (left panels) and the corresponding bright field (middle 
panels) are shown (right panels). A. Control cells expressing GFP alone. B. Cells 
expressing the Sl-IAA3:GFP fusion protein. The scale bar indicates 10 µm. 
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Supplemental Figure 3.   
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Supplemental Figure 3. Sl-IAA3 Protein Represses the In Vivo Activity of DR5.  
Tobacco protoplasts were transformed either with the reporter construct (DR5:GFP) 
alone or with both the reporter and effector constructs (35S-IAA3) and incubated in the 
presence or absence of 50 µM 2,4-D. GFP fluorescence was measured 16 h after 
transfection.  A mock effector construct lacking Sl-IAA3 was used as a control for the co-
transfection experiments. Transformations were performed in triplicate. Mean 
fluorescence is indicated in arbitrary unit (a.u.) ± SE. 
 

 

Supplemental Figure 4 
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Supplemental Figure 4. Gravitropic response of hypocotyls and roots in wild type 
and antisense plants.  Seedlings grown for 4 days in darkness on vertically held plates 
were turned 90°, and the angle of the hypocotyls ( A) and roots (B) curvature was 
measured at the indicated time. Values shown represent the mean ± SE of two 
independent experiments, in which 20 seedlings was measured.  
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Supplemental Figure 5.    

 

 

Supplemental Figure 5.  Reversion of the Arabidopsis hls1 Mutant Phenotypes by 
Complementation with the Sl-HLS tomato hookless gene.  Ectopic expresssion of Sl-
HLS in hls1 mutant restores the normal hook formation in 3-day-old etiolated seedlings 
treated with 1µL L-1ethylene. Right panel: wild type (WT); middle panel: hookless mutant 
(hls1); left panel: hookless mutant expressing the tomato Sl-HLS gene (hls1/Sl-HLS). 
 

Supplemental tables 
 
Table 1. Percentage Identity of the Antisense Region Relative to the other 

Members of Tomato Aux/IAAs Family.  

Target 
genes 

% of identity  

 Sl-AA3     

SGN-U323670                                      

SGN-U316052 

SGN-U323974 

SGN-U318434 

SGN-U317606 

SGN-U332300 

SGN-U330168 

SGN-U322175 

SGN-U318191 

SGN-U313802 

SGN-U320280 

SGN-U322787 

SGN-U320412 

SGN-U322644 

SGN-U322499 

SGN-U320261                                                   

               100 

79 

74 

67 

65 

65 

64 

64 

64 

63 

63 

62 

59 

56 

56 

54 

54 
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ABSTRACT 
 
Plants need to adjust most of their physiological and developmental processes to 

constantly changing environmental conditions. With only a handful of plant 

hormones known, the large array of responses is probably achieved by a 

combinatorial mechanism of interactions between hormones and other signals. 

The extention of the hypocotyl has proved to be an excellent system for studing 

such signal interplay in the regulation of growth and developmental responses. 

The Arabidopsis hookless (HLS) gene wich is essential for apical hook formation, 

is regulated by a network of interacting factors including light and plant hormones.  

Herein, we report the discovery of new phenotypes associated with hls1 mutation. 

We describe a marked bleaching phenotype in hls1 mutant that had first been 

germinated in the dark before transfer to white light. The hls1 mutation also 

confers an enhanced tolerance to glucose and to elevated ABA concentrations. 

Moreover, hls1 seedlings display agravitropic growth in the dark but not in the 

light. These results indicate that the HLS1 gene is in the cross-road of multiple 

signalling pathways including ethylene, auxin, ABA, light and sugar.  
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Introduction 

 

During germination of dicotyledonous plants, the shoot emerges from the seed 

with a hook-shaped structure that protects the apical meristem and first leaves as 

the seedling pushes through the soil. This apical hook is maintained until the 

seedling reaches the light, at which time, the hypocotyl straightens.  The apical 

hook is formed by differential cell elongation on opposite sides of the hypocotyl. 

The growth rate in the outer (convex) side of the hypocotyls exceeds that of the 

inner (concave) side resulting in hypocotyl bending (Silk and Erikson., 1978). The 

formation and maintenance of apical hook has been studied extensively and it 

was suggested that the apical hook establishment is a developmental process 

driven by multiple hormone cross-talk where ethylene seems to play prominent 

role. Alterations in the response of dark-grown seedlings to ethylene, the so-

called "triple response" were used to isolate a collection of ethylene-related 

mutants in Arabidopsis thaliana (Guzman and Ecker, 1990). Arabidopsis mutants 

that are defective in ethylene perception, e.g., etr1-1, ein2, ein3, etc., are not able 

to form a hook in response to ethylene treatment (Roman et al., 1995), whereas 

the Constitutive Ethylene Response mutant ctr1 develops exaggerated hook even 

in the absence of ethylene (Guzman and Ecker, 1990; Kieber et al., 1993). 

Moreover, exogenous ethylene exaggerates the apical hook (Lehman et al., 

1996), confirming that the process of hook formation is at least partially 

dependent on ethylene. Mutants that failed to display the apical hook in the 

absence of ethylene, HOOKLESS (his1), exhibited reduced ethylene production. 

In the presence of exogenous ethylene, hypocotyl and root of etiolated his1-1 

seedlings were inhibited in elongation but no apical hook was observed. HLS1 

has been proposed to integrate ethylene and auxin signalling during apical hook 

formation of the Arabidopsis seedlings (Lehman et al., 1996). In addition, hls1 

mutation alters the spatial expression pattern of two primary auxin response 

genes (SAUR and Aux2-11/IAA4). In 2004, Li et al. pinpoint definitely HLS1 as a 

key integrator of auxin and ethylene pathway by identifying hookless suppressors 

as an Auxin Response Factor (ARF2). 

 On the other hand, auxin treatment or inhibition of auxin transport disrupts 

apical hook formation (Lehman et al., 1996). Consistent with this results, some 
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auxin mutants such as axr1 (Lincoln et al., 1990) hls3 (king et al., 1995) and 

yucca (Zhao et al., 2001) lack normal apical hook. 

 An additional level of complexity to the role of HLS1 was added when the 

requirement for gibberellins in hook maintenance and hook exaggeration upon 

ethylene treatment was demonstrated (Achard et al., 2003, Vriezen et al., 2004). 

The role of brassinosteroids (BRs) in hook development is longstanding, as BR 

mutants such as cbb1, det2 and cpd, which are defective in the synthesis of BRs, 

are constitutively photomorphogenic and thus lack the characteristic hook (Chory 

et al., 1991, Kauschmann et al., 1996, Szekeres et al., 1996). More recently, it 

was shown that HLS1 acts on the auxin-ethylene interaction rather than at the 

level of BRs (De Grauwe et al., 2005). 

In addition to ethylene and auxin, light is another critical regulator of apical 

hook development. Opposite from apical hook formation and maintenance, light 

of various wavelengths causes rapid apical hook opening (Liscum and Hangarter, 

1993; Rubenstein, 1971), which is part of the photomorphogenesis process. All 

constitutive photomorphogenic mutants (cop/det/fus) completely lack apical hooks 

(Chory and Peto, 1990; Hou et al., 1993; Kwok et al., 1996). Ethylene and light 

were shown to affect differential cell growth by modulating the auxin-response 

factor (ARF2) in a HLS1-dependent manner (Li et al., 2004).  

Recently, Ohto et al. (2006) showed that hls1 mutant is hypersensitive to 

sucrose in terms of the expression of sugar responsive genes in mature leaves. 

Furthemore, IAA repression of some sugar-induced gene expression was less 

pronounced in hls1 than in the wild type, thus suggesting that the negative effect 

of auxin on sugar signalling may be mediated by HLS1.  

We report here the discovery of new phenotypes associated with hls1 

mutation indicating that the HLS1 gene is in the cross-road of multiple signalling 

pathways including ethylene, auxin, ABA, light and sugar.  

 

RESULTS 

 

hls1  Mutant Shows De-etiolated Phenotype 

 

During the course of examination of hls1 mutant, we found that it commonly 

shows an interesting phenotype related to greening upon light exposure of 
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etiolated seedlings (Figure 1). We then examined this phenotype more 

extensively and found that 100% of 4-day–old etiolated hls1 seedlings fail to 

green even after being exposed 48 hours to white light which lead to the death of 

the plants and not a single individual can be rescued following this treatment 

(Figure 1A). In comparison, following the same treatment (4 days in the dark) 

72% of WT seedlings open green cotyledons and survive (Figure 1B). Extending 

the etiolating period to 5 and 6 days reduces the proportion of plant survival to 

50% and 26%, respectively. Hence, we conclude that beside its role in hook 

formation and maintenance, HLS1 gene product is essential for cotyledon 

greening and subsequent leaf emergence upon white light treatment.  
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Figure 1: hls1 mutant displays de-etiolated phenotype. Wild type and hls1 
seeds were sown on plates containing MS medium and kept at 4°C for 48h. The 
germinating seeds were kept in the dark at 25°C for  a varying number of days, 
then exposed to white light with a fluence rate (250   µmol.m-2.s-2) for 48 h. A. 
Wild-type and hookless1 mutant seedlings subjected to the greening experiment 
following 4 days in the dark. B. the result in panel A were quantitatively expressed 
by examinating a large number of seedlings (n>30). Each seedling was assessed 
as to whether it was green or still yellow. 
 

The hls1  Mutation Confers Enhanced Tolerance to Glucose 

 

Glucose has recently been shown to act as a regulatory molecule in higher 

plants. During the last years, the characterisation of glucose insensitive (gin) and 

glucose oversensitive (glo) mutants revealed extensive and ultimate connections 
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between glucose and plant hormone signalling pathway. Because ethylene has 

been shown to interfere with glucose sensitivity, we tested the glucose sensitivity 

of the hls1 mutant. When grown in the presence of 6.5% of glucose, WT 

seedlings undergo complete arrest of their development leading to death, in 

contrast to hls1 mutant which develop green and expanded cotyledons (Figure 2). 

Subsequently, the hls1 mutant, but not the WT seedlings, develop true leaves 

and continue to grow in the presence of 6.5% of glucose. Insensitivity to glucose 

repression of cotyledon and shoot development in WT could be induced by 

exogenous ethylene treatment and likewise constitutive ethylene overproducers 

or constitutive ethylene response mutants display lower sensitivity to glucose 

(Zhou et al., 1998). Ethylene treatment prevents glucose toxicity in WT but also 

enhance tolerance to glucose of hls1 mutant (Figure 2). In presence of 6.5 % 

glucose, ethylene-treated WT seedlings have small, curved dark green 

cotyledons (Figure 2E), while hls1 seedlings grown in the same condition display 

shorter hypocotyls (3 times, data not shown), longer petioles (data not shown), 

more expanded and light green cotyledons (Figure 2I-F).These data suggest that  
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Figure 2. hls1 Mutation Enhances Tolerance to Glucose. I. WT (A, C, E) and 
hls1 (B, D, F) seedlings were grown in the absence (A, B) or presence (C, D, E, 
F) of 6.5% glucose. Seedlings were then grown in air (A, B, C and D) or in the 
presence of 30 µL L-1 ethylene (E and F). II. The Number of green and expanded 
leaves was assessed in seedlings described in panel I. A large number of 
seedlings (n>50) were used and the data presented are representative of four 
replicates.  
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hls1 mutation and ethylene have additive effect to overcome the glucose-induced 

developmental arrest. 

 

hls1  Mutant is Tolerant to Elevated ABA Concentrations 

 

The characterization of Arabidopsis gin5 and gin 6 mutants uncovered that an 

increase in ABA levels is involved in the glucose signalling pathway leading to a 

decrease in gene expression and developmental arrest (Arenas-Huertero et al., 

2006). We therefore tested whether ABA response is altered in hls1 mutant using 

seed germination as ABA sensitivity test. When grown in presence of ABA (100 

nM), germination of WT seeds is strongly inhibited while hls1 mutant germinate 

successfully (Figure 3). However, at higher concentrations seed germination was 

inhibited in both WT and hls1 etiolated seedlings indicating that hls1 mutation 

enhances tolerance to ABA glucose whithout conferring resistance to this 

hormone. This result suggests that ABA may act trough HLS1 in the glucose 

signalling pathway. 
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Figure 3. Arabidopsis hls1 Mutant Displays Higher Tolerance to ABA-
Mediated Inhibition of Seed Germination. A.  Wild type and hls1 mutant seeds 
were kept 48h at 4°C and then germinated in the dar k 5 days in darkness in the 
absence or presence of 100 nM ABA. B. The Number of germinated seed giving 
rise to seedlings was assessed. In each experiment a large number of seeds 
(n>50) was used and the data presented are representative of four independent 
replicates.  
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hls1 Etiolated Seedlings Display Agravitropic Growth 

 

Arabidopsis plants display typical gravitropism, with roots grown toward and 

shoots growing away from the gravity center. (Bullen et al., 1990; Evens, 1991; 

Okada and Shimura, 1992). Noteworthy, this gravitropic growth pattern is altered 

in etiolated hls1 seedlings where both the roots and the shoots grew in all 

directions on agar plates (Figure 4). Interestingly, light grown hls1 mutants display 

normal gravitropic growth indicating that hls1 mutation alters gravitropism only in 

the absence of light.  

 

hls1 WT

 
Figure 4. The Arabidopsis hls1 mutant shows altered gravitropic growth.  3-
day-old seedlings of wild type (right side) and hls1 (left side) grown on MS media 
in the dark. 
 

 

DISCUSSION 

 

The HOOKLESS1 gene has been shown to be essential for cell elongation and 

differential growth in hypocotyl of dark grown Arabidopsis seedlings. Here, we 

describe new phenotypes associated with the hls1 mutation that position the 

HLS1 gene at the crossroads of multiple signalling controlling a multitude of 

devlopmental growth processes including light, gravitropic, glucose and hormone 

resposnes. The role of HLS1 gene in integrating ethylene, auxin and light 

signalling has been first shown upon the identification of an auxin response 

factor, ARF2, as HLS1 repressor that reverses many of the developmental 

phenotypes observed in hls1 plants.  

Upon reaching the soil surface, the seedlings undergo a marked 

developmental transition termed de-etiolation trigged by light, involving coordinate 
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inhibition of the hypocotyl elongation, unfolding of the hook, stimulation of cell 

expansion, activation of chloroplast development and chlorophyll accumulation. In 

preparation of this transition, seedlings accumulate a precursor of chlorophyll 

(protochlorophyllde) to permit rapid assembly of photosynthetic machinery. 

Accumulation of this intermediate in excess can result in photooxidative damage 

because light absorbed by these free molecules can be dissipated as reactive 

oxygen or free radicals (Reinbothe et al., 1996; Op den Camp et al., 2003). 

Therefore, coordinate regulation of the chlorophyll biosynthetic pathway and the 

capacity of enzymatic conversion of protochlorophyllde to chlorophyll is 

particularly critical during the deetiolation process. In this work, we described for 

the first time a marked bleaching phenotype in hls1 mutant that had first been 

germinated and grown in the dark for several days before been transferred to 

white light. Uncontrolled over-accumulation of protochlorophyllde in etiolated 

seedlings was proposed as major cause of the failure to green in many pif 

(photochrome interacting factor 1) mutants (huq et al., 2004). This phenomenon 

may also operate in the case of hls1 mutant where de-etiolation leads to 

seedlings death.  We  suggest that HLS1 gene may contribute to the regulation of  

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Proposed view of hypothetical linkage between regulation of 
chlorophyll synthesis and HLS1 involvement during early 
photomorphogenesis. The process of chlorophyll synthesis is depicted 
schematicaly and the hypothetical implication of HLS1 gene in promoting 
greening or preventing cell death is shown. 
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chlorophyll biosynthesis or chloroplast development and hence prevent the 

accumulation of excess protochlorophyllde in prolonged darkness. Further 

experiments will be needed to test this hypothesis. This hypothesis is supported 

by the fact that COP3, an allelic mutant of hls1 was shown to be involved in light-

regulated seedling development mediated trough the phytochrome system (hou 

et al., 1993). 

Interestingly, light signal regulation plant morphogenesis can be over ridden 

by metabolic signals such as the availability of glucose released from 

photosynthesis. For example, in Arabidopsis the availability of abundant glucose 

can be sensed during germination and can exert a profound influence resulting in 

seedlings developmental arrest (Jang and Shenn, 1997).  Although the underlying 

mechanisms of this glucose-inducible developmental arrest are mostly unknown, 

a previous analysis of the gin1 mutant has revealed an antagonistic role of 

ethylene on sugar signalling pathway (Zhou et al., 1998). Based on the 

physiological characterization of hls1 mutants, we show in the present study that 

loss-of-function mutation of the HLS1 gene prevents glucose repression of 

germination, cotyledon greening and expansion and true leaf development. These 

data suggest that HLS1 gene may act as positive regulator of glucose-induced 

repression of seedling growth in light conditions.  

 A central role of ABA in plant sugar signalling emerged from the analysis of  

Arabidopsis gin5 and gin6 mutants. It has been proposed  that exogenous 

glucose increases the expression of ABA biosynthesis and signalling genes and 

that this glucose-specific accumulation of ABA appears to be essential for 

glucose signalling (Arenas-Huertero., et al., in 2000). Surprisingly, the addition of 

ABA in the medium of dark grown seedlings inhibit germination of wild type seeds 

but has not effect on hls1. This result suggests that HLS1 gene participates 

glucose signalling downstream of the induction of ABA (Figure 6).  

A molecular link between ethylene and glucose signalling has been 

established trough the analysis of EIN3 proteins (Yanagisawa et al in 2003).  
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Figure 6. A model for the role of HLS1 in enhancing glucose sensitivity 
compatible with ethylene being a repressor of glucose sensitivity 
 

Glucose enhances the the proteasome-mediated degradation of the nuclear EIN3 

protein, while ethylene enhances its stability. Considering that HLS1 is 

homologue to diverse class of N-acetyltransferase, it is possible that HLS1 could 

be implicated in the regulation of protein stability of EIN3 (Ohto et al., 2006).  

Strikingly, expression analysis performed in this study indicate that HLS1 gene is 

not regulated by glucose at the transcriptional level and that gin1, ctr1, etr1 

mutations do not affect the accumulation of HLS1 transcript in presence or 

absence of glucose (data not shown). We conclude that HLS1 implication in the 

glucose signalling pathway may be at the post transcriptional level.  

Taken together, these data clearly indicate that HLS1 gene is an integrator of 

many signalling pathways including ethylene, light, glucose, as well as  gravitropic 

response. Efforts are currently being directed towards uncovering the molecular 

mechanisms by which HLS1 impacts all these singling pathways.  
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METHODS 

 

Plant Material 

hls1-1 in the Columbia ecotype was obtained from the Nottingham Arabidopsis 

Stock Center.  Arabidopsis (Columbia) was always used as control. Plants were 

grown under standard green house condition.  

Greening Test 

Sterilized seeds were put on Murashige and Skoog agar medium plates and 

placed at 4°C for 2 days. After the seeds were kept  at 25°C in the dark for a 

number of days. They were then exposed to white light with a fluence rate 

(µmol.m-2.s-2) for 48 h. Each seedling was then assessed visually as to whether it 

was green or still yellow. The experiments were done independently more than 2 

times.   

Glucose Sensitivity 

The glucose-resistant phenotype was scored by growing sterilized seeds on 

Murashige and Skoog agar medium containing 6.5 % (w/v) filter-sterilized Glc. 

After 2 days at 4°C, plates were placed in light in  a sealed box containing either 

air or 10 µL L-1 ethylene.  Evry 2 days, the boxes were opened to allow a renewal 

of the atmosphere and put back either with air or 10 µL L-1 ethylene. The 

experiment was stopped after 10 days of culture. 

ABA Treatment 

ABA (Lomon, bio) was prepared as a 10 mM stock in NAOH and diluted into 

appropriate concentrations (100 nM). ABA sensitivity tests were done in darkness 

using agar medium supplemented with 100 nM of ABA and scored after 5 days 

after sowing.  
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ABSTARCT  
 

The apical hook of dark-grown dicotyledonous plants results from asymmetric 

growth of its inner and outer side of the upper part of the hypocotyl. This 

protective structure prevents damage of the shoot apical meristem and the young 

leaves as the seedlings pushes through the soil. HOOKLESS (HLS1) of 

Arabidopsis was recognised as an ethylene response gene whose product is 

required for hook formation. Tow hormones, ethylene and auxin are through to be 

involved in regulating apical hook formation. We cloned two cDNA from tomato, 

Sl-HLS1 and Sl-HLS2, and showed that the encoded proteins are functional 

homologs to At-HLS1. Both Sl-HLS1 and Sl-HLS2 complement the hls1 mutation. 

Ectopic ewpression of both tomato genes were able to restaure wild type 

phenotypes such as de-etiolation, enhanced tolerance to glucose and to elevated 

ABA concentrations and agravitropic growth. The genomic clones of Sl-HLS1 and 

Sl-HLS2 showed similar structure with two introns and three exons. While these 

data indicate complete functional redundancy between the two tomato HLs 

genes, only the expression of Sl-HLS2 is enhanced by ethylene and auxin. The 

expression of Sl-HLS2 gene, assessed by Sl-HLS2 promoter-driven GUS 

revealed its up-regulation by ethylene restricted to the outer side of the apical 

hook. These data is in agreement with the important role of HLS gene in the 

integration of multiple signalling pathways. 
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INTRODUCTION 

 

Nearly all processes of plant growth and development are regulated by more than 

one single phytohormone. The apical hook of dark-grown Arabidopsis seedlings 

has been studied extensively as a developmental process driven by multiple 

hormone cross talk. In Arabidopsis, the apical hook is formed 24h after 

germination and is maintained for about 4 days by a process of differential growth 

(Ecker, 1995; Raz and Ecker, 1999). It was suggested that in nature, the apical 

hook protects the shoot meristem when the germinating seedling protrudes 

trough the soil (Goeschl et al., 1967).  Once the seedling emerges into the light, 

the apical hook opens, the leaves expand, and the photosynthetic apparatus 

differentiates. Physiological and genetic evidence shows that ethylene is involved 

in regulating closure and maintenance of the apical hook (kang and Ray, 1969b; 

Guzman and Ecker, 1990). Mutations in ethylene perception or signalling alter the 

normal hook formation or maintain. For example, the constitutive ethylene 

responsive mutant ctr1 develops exaggerated hooks even in the absence of 

ethylene (Guzman and Ecker, 1990; Kieber et al., 1993).  

Lehman et al., 1996 characterized hookless mutants in Arabidopsis and 

suggest a requirement for an asymmetric distribution of the auxin signal in the 

hook formation. Li et al., 2004 identified suppressor mutations of hls1 that was 

allelic with loss-of-function mutations of the auxin response transcription gene, 

ARF2. These results showed that ethylene- and light-regulated differential cell 

elongation in the hypocotyls of dark-grown seedlings was maintained by 

regulation of ARF2 in a HLS1-dependant manner.  Recently, we showed also that 

At-HLS1 is an integrator of many cross-road including light, glucose and ABA 

signalling pathway (Ohto et al., 2006; chapitre III).  

Here we report the cloning of two functional homologs of Arabidopsis HLS1 

from the tomato (Sl-HLS1 and Sl-HLS2). We show their ability to complement all 

the phenotypes associated with the hls1 mutation, and investigate the regulation 

of this two tomato hookless gene by auxin and ethylene in different tomato 

tissues.  
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RESULTS 

 

Isolation and Structural Analysis of the tomato Sl- HLS1 and Sl- HLS 2 

Genomic Clone 

Two tomato EST (BE 434512; BG 734949), available in the database 

(www.tigr.org) showed significant homology to Arabidopsis HLS1 gene. Extention 

by 5’ and 3’ RACE allowed the isoaltion of the full coding sequence indicating that 

the two EST correspond to the same gene. Further screening led to the isolation 

of another tomto homolog of the hookless gene that was not represented in the 

databases. Therefore, in contrast to Arabidopsis where hookless is encoded by a 

single gene, two different cDNA clones were isolated, amplified and sequenced 

from tomato leaves. These two genes, named Sl-HLS1 and Sl-HLS2, contain an 

open reading frame of 1242 bp and 1254 bp, respectively, encoding putative 

proteins of 413 and 417 amino acids, respectively. The predicted Sl-HLS1 and Sl-

HLS2 proteins share significant homology with HLS1 of Arabidopsis (66.7% and 

67.6%, respectively) and similarly comprise a putative N-acetyltransferase 

domain. The Sl-HLS1 and Sl-HLS2 genomic clones have been subsequently 

obtained by PCR amplification using tomato genomic DNA as template.  

 

Sl-HLS1

At-HLS1

Sl-HLS2

 

 

Figure 1. Genomic Structure of the Tomato Sl-HLS1 and Sl-HLS2 Genes . 
Black portions represent the exons, white portions represent the introns and gray 
portions represent the untranslated region of the Arabidopsis At-HLS1genes and 
the tomato Sl-HLS1 and Sl-HLS2 genes. 
 

Comparison of genomic and cDNA sequences allowed the delineation of intron 

and exon positions. Both At-HLS1 and Sl-HLS1 and Sl-HLS2 have 3 exons and 2 

introns (Figure1) indicating a conserved structural organisation between the two 
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plant species. Moreover, the size of exons was perfectly conserved between the 

two species. The size of Sl-HLS1 and Sl-HLS2 introns are quite different from 

those of At-HLS1 but the overall size of the tomato coding sequences is very 

close to that of At-HLS1 (1212 bp). Such high conservation of genomic structure 

is indicative of conserved function.  
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Figure 2. Recovery of Hook Formation via Complementation of Arabidopdis 
hls1 Mutant with Sl-HLS1 and Sl-HLS2. Complemented lines display wild type 
apical hook in air-grown (A) and ethylene treated seedlings (C). Hypocotyl length 
of dark grown seedlings were measured at 4 days post-germination on air (B). 
The experiments were performed with homozygous transfomed lines and the data 
are mean ± SE of two independent replicates.  
 
 

Reversion of the Arabidopsis hls1  Mutant Phenotypes by Complementation 

with Sl-HLS1 and Sl-HLS2 

 

Expresssion of Sl-HLS1 and Sl-HLS2 in hls1 Mutant Restores Normal Hook Formation 

 

To assess the functional significance of both tomato hookless genes, the 

arabidopsis hls1 mutant was transformed with Sl-HLS1 and Sl-HLS2 in sens 
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orientation under the control of 35S cauliflower mosaic virus promoter. Among 

over twenty independent transgenic lines that display complemented phenotypes, 

three lines for each gene were used for further physiological analysis. In order not 

to increase the size of the figures the results corresponding to only one line are 

shown being representative of the two other lines. While no differential growth in 

the apical hook was observed in hls1 mutant, 3-day-old dark-grown seedlings 

transformed with either Sl-HLS1 or Sl-HLS2 develop an apical hook similar to that 

of wild type Arabidopsis plants both in absence or in presence of exogenous 

ethylene (Figure 2A, C). Since hls1 seedlings showed a reduced elongation of the 

hypocotyls in darkness, hypocotyl length was assessed in WT and complemented 

etiolated seedlings. The data presented in  Figure 2B indicate that the reduced 

hypocotyl elongation in hls1 mutant is fully restored by ectopic expression of Sl-

HLS1 and Sl-HLS2 tomato genes. 

 

Recovery of Normal Greening Phenotype of hls1 Mutant Complemented with Sl-HLS1 

and Sl-HLS2 

 

We showed previously that hls1 Arabidopsis seedlings that first and grown in the 

dark for several days and then transferred to white light undergo a marked 

bleaching  leading  to  the  plant  death (Chapitre III).  Complementation  of  hls1  

 

WT hls1 hls1/ Sl-HLS2

 

Figure3. Recovery of the Greening  Phenotype in Sl-HLS1 and Sl-HLS2 
Complemented Lines.  4-day-old etiolated seedlings of wild type (WT), hls1 
mutant (hls1) and Sl-HLS2 complemented (hls1/Sl-HLS2) lines were kept 48 
hours on white light with a fluence rate (250 µmol.m-2.s-2) on culture room. 
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mutants with tomato Sl-HLS1 and Sl-HLS2 resulted in complete recovery of the 

greening phenotype and rescued the complemented lines from death (Figure 3). 

These indicated that beside their role in hook formation, and like At-HLS1 gene, 

both tomato hookless genes are required in the greening upon white light 

treatment.  

 

Sl-HLS1 and Sl-HLS2 Expression Restores Glucose Sensitivity to the hls1 Mutant 

 

Wild-type seedlings of Arabidopsis undergo growth arrest when cultivated in light 

in the presence of 6% (w/v) glucose whereas hls1 mutant is capable  to grow  in 

the presence of up to 6.5 % (w/v) glucose (Figure 4 A). Complementation of hls1 

with  Sl-HLS1  and  Sl-HLS2  resulted  in  recovery  of  glucose-induced  growth  
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Figure 4. Glucose sensitivity of hls1 Mutant Complemented with Sl-HLS1 
and Sl-HLS2 . A. Wild type, hls1 mutant and complemented lines were light-
grown on MS medium containing 6.5% (w/v) glucose during 12 days in the 
presence of air or 10 µM of ethylene. For each line, 50 seedlings were grown and 
the data presented are representative of more than tree replicates. B. Leaf 
differenciation was assessed by counting the number of leaves emerging in each 
seedling lines.  
 

inhibition similar to that shown by the wild type (Figure 4 A). It is known that 

exogenous ethylene allows seedlings to overcome glucose-induced inhibition of 

growth. Accordingly, when seedlings were supplemented with 10 µL.L-1  ethylene, 
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all lines including wild-type control, escape glucose-induced growth inhibition 

(Figure 4A). Upon ethylene treatment, the complemented seedlings show long 

hypocotyls, small and curved dark green cotyledons similar to wild type seedlings. 

This is in contrast with hookless mutant that show short hypocothyls, expanded 

and light green cotyledons and longer petioles (Figure 4A). Assseesing leaf 

differenciation in 12-day-old plantlets indicated that in absence of glucose, hls1 

mutant bears higher number of developing leaves than wild type whereas in  

complemented lines there were twice less leaves than wild type (Figure 4B). 

Glucose treatment completely prevents leaf developemnt in wild type and 

complemented lines while it significantly reduced the number of leaves in hls1 

mutant (Figure 4B). In the presence of glucose, ethylene treatment enhanced leaf 

development in all three types of lines.  These data indicate that hookless genes 

are required for glucose-induced developmental arrest but their overexpression 

does not seem to enable overcaming the antagonistic effect of ethylene on 

seedling growth development. 
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Figure 5. Effect of ABA on seed germination of Sl-HLS1 and Sl-HLS2 
Complemented Lines. A.  Etiolated seedlings of WT, hls1, and tomato-
complemented hls1 mutant were grown in presence of 100mM of ABA. B. The 
result in panel A were quantitatively expressed by examinating a large number of 
seedlings (n>50).  
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Sl-HLS1 and Sl-HLS2 Expression Restores Normal ABA Response 

 

Taking into account that hls1 mutantant is altered in ABA response, we tested the 

complemented lines for ABA-dependent developmental response. In the 

presence of 100 nM of ABA, 100% of hls1 mutant seeds underwent normal  

germination and subsequent growth while germination of WT seeds (18 % of 

germinated seeds) was strongly inhibited (Figure 5). Transgenic hls1 lines 

complemented with Sl-HLS1 and Sl-HLS2 genes, display even stronger inhibition 

of seed germination (10% of germinated seeds) than WT in the presence of ABA. 

These data confirm the implication of hookless genes in ABA signalling. 

 

Recovery of Normal Gravitropic Response of the hls1 Mutant Complemented with Sl-

HLS1 and Sl-HLS2 

 

We reported previously that both the root and the shoot of etiolated hls1 

seedlings have agravitropic growth (Chaabouni et al. 2008, ChapitreIII). 

Expression of Sl-HLS1 and Sl-HLS2 in hls1 mutant was capable of restoring 

normal seedling gravitropism (Figure 6). 

 

Figure 6. Arabidopsis hls1 Mutant Complemented with Sl-HLS1 and Sl-HLS2 
recover Normal Gravitropic Response. 3-day-old seedlings of wild type (WT), 
hls1 mutant (hls1) and hls1 complemented lines (hls1/Sl-HLS2) grown on MS 
media in the dark. 
 

Phenotypes Associated with Overexpression of Sl- HLS1 and Sl- HLS2 in 

wild type Arabidopsis  

 

To examine the effects of over-expression of the hookless gene on various 

developmental growth processes, wild type Arabidopsis plants were transformed 
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with a tomato Sl-HLS1 and Sl-HLS2 genes under the control of 35S promoter. 

More than thirty independent transformed lines were identified for each gene that 

were cheked for their high level of Sl-HLS1 and Sl-HLS2 mRNA accululation 

(data not shown). Figure 7A shows that in the absence of ethylene, 

complemented etiolated seedling lines did not display exagerated apical hook 

curvature compared to wild type. We then established a dose response curve of  
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Figure 7. Over-expression of Tomato Sl-HLS1 and Sl-HLS2 Genes in Wild 
type Arabidopsis Confers Hypersensitivity to Ethylene. A. The effect of 
ethylene on the apical hook curvature of overexpressed lines comaped to the wild 
type was estimated visually and a tree scale range were used: begining of hook 
formation, full hook, and exagerated hook. The data are mean of two independent 
experiments. B. A greening phenotype of seedlings overexpressing tomato 
hookless gene in Arabidopsis. Etiolated seedlings of WT and overexpressed 
tomato hookless plants were kept 48 hours on white light after being in the 
darkness for a number of days.  Seedlings (n>50) were assessed as to whether 
they were green or still yellow.  
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hook curvature in response to exogenous ethylene treatment. After 5 days of 

dark-growth and 24h of ethylene treatment (0.1 µL.L-1), more than 80% of the 

overexpressing seedlings displayed a full hook whereas only 48% of wild type did 

(Figure 7A). This indicates that overexpression of tomato hookless genes in wild 

type Arabidopsis confers hypersensitivity to ethylene.  

 

Sl-HLS1 and Sl-HLS2 overexpressing lines displayed a clear greening 

phenotype. After 6 days growth in the dark 100% of the overexpressing lines 

opened green cotyledons while under the same conditions 85 % wild type control 

seedlings failed to green (Figure 7B). 

In glucose assay, we showed previously that complementation of hls1 with Sl-

HLS1 and Sl-HLS2 resulted in recovery of glucose–induced growth inhibition 

similar to that shown by wild type. We carried out a comparison between the 

hookless overexpressing lines and wild type plants at different concentrations of 

glucose. No overt difference in cotyledon development was found  in the absence  

 

 
Figure 8. Over-expression of Tomato Sl-HLS1 and Sl-HLS2 Genes in Arabidopsis 
Confers Hypersensitivity to Glucose. A. seeds of WT and overexpressed hooklees 
lines   were germinated and grown on MS medium containing 0%, 5.5%, 6 or 6.5% 
glucose for 10 days. B. The Numbers of green seedlings in panel A were quantitatively 
expressed by examinating a large number of seedlings (n>30).  
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of exogenous glucose (Figure 8A). However, in the presence of 5.5% glucose, 

55% of Sl-HLS2 overexpressing lines displayed developmental arrest while 100% 

of wild type seedlings underwent normal growth. At 6% glucose, up to 91.3% of 

Sl-HLS2 overexpressing lines displayed growth inhibition compared to only 55 % 

in wild type (Figure 8B). Similar data were obtained with Sl-HLS1 overexpressing 

lines indicating that both tomato genes play important role in germination and 

suncsequent cotyledon and true leaves development.  

 

Expression Pattern and Regulation of Sl- HLS1 and Sl- HLS2 in Tomato  

 

Sl-HLS2 Gene Expression Is Regulated by Ethylene and Auxin in Tomato 

RNA samples extracted from various tissues of tomato plants were analyzed for 

assessing the level of Sl-HLS1 and Sl-HLS2 mRNA accumulation using real-time 

quantitative PCR. Sl-HLS1 and Sl-HLS2 transcripts were detected in all tissues 

examined but showed the highest levels in ripening fruit tissue (Figure 9A and B). 

Sl-HLS1 and Sl-HLS2 transcript levels increased from immature green throughout 

breaker stage. In vegetative tissues, the highest levels of Sl-HLS1 and Sl-HLS2 

transcript accumulation were found in leaves.  
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Figure 9. Tissue-specific Expression of Sl-HLS1 and Sl-HLS2 in Tomato.   
The levels of transcripts were addressed by real-time quantitative PCR. Sl-HLS1 
and Sl-HLS2 mRNA accumulation was monitored in reproductive tissues 
including immature green (IMG), mature green  (MG), breaker fruit (Br), Orange 
(Or), Red (R), Flower (F), and in vegetative tissue including Stem (S), leaf (L), 
and Roots (R). ∆∆CT on the y axis refers to the fold difference in the Sl-HLS1 (A) 
and Sl-HLS2 (B) expression relative to the immature green fruit. 
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In Arabidopsis and pea, ethylene enhanced the expression level of At-HLS1 

and Ps-HLS1 respectiely in the apical hook (Lehmanet al., 1996; Du et al., 2001). 

To study the expression of tomato HLS in 5-day-old etiolated seedlings, different 

tissues were isolated from the seedlings as indicated in Figure 10A. Sl-HLS 

mRNA was detected in all tissues harvested (data not shown). Ethylene-induced 

expression of Sl-HLS2 was observed only in the hook of etiolated seedlings after 

5 hours of treatment (Figure 10C). Auxin has also been implicated in regulating 

apical hook closure through the HLS1 gene in Arabidopsis (Li et al., 2004). Sl-

HLS2 transcript is highly accumulated upon auxin treatment in the cotyledons and 

in the hook of dark-grown seedlings, however, auxin had no effect on the level of 

Sl-HLS2 expression in other tissues tested (Figure11E).  
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Figure10. Ethylene and auxin regulation of Sl-HLS1 and Sl-HLS2 genes in 
different tissues of etiolated tomato seedlings. A. Four days etiolated 
seedlings of tomato.Cotyledons, hook, hypocotyls and roots were harvest for 
RNA extraction and analyzed for level of Sl-HLS1 (B,D) and Sl-HLS2 (C,E) using 
real time quantitative PCR. X ppm of ethylene was applied on seedlings during 5 
hours (B,C). Auxin treatment (100µM of IAA) was applied by spraying seedlings 
during X hours (D,E). B. ∆∆CT on the y axis refers to the fold difference in the Sl-
HLS1 (A), and Sl-HLS2 (B) expression relative to air-treated cotyledons, hook, 
hypocotyl and root, respectively.  
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The level of Sl-HLS1 transcripts accumulation was hunderds of times lower than 

that of Sl-HLS2 in all tissues tested (data not shown). Moreover, no significant 

differential regulation of this gene after ethylene and auxin treatment could be 

observed in any tissues (Figure10 B-D). This prompted us to further focus our 

interest on the characterization of Sl-HLS2  promoter.  

To better characterize the dynamics of ethylene responsiveness of Sl-HLS2 

and particularly at the onset of ripening, we examined the Sl-HLS2 transcript 

accumulation on mature green fruit upon ethylene treatment, and breaker fruit 

upon MCP treatment. In tomaot fruit,  Sl-HLS2 gene did not display ethylene 

regulation as revealed by treatment of mature green fruit by ethylene or by 1-

MCP, the inhibitor of ethylene perception (data not shown). This result suggests 

that Sl-HLS2 is ethylene inductible only in the hook of etiolated seedlings and not 

in tomato fruit tissues.  

 

The Expression of Sl-HLS2 Is Tightly Regulated in Tomato Plant Tissues 

The tomato Sl-HLS2 genomic clone contains a 1.298 bp fragment upstream of 

the transcription site corresponding to the promoter region that is likely to harbor  

 

 

Figure12: Expression pattern of HLS2 revealed by the expression of the 
GUS reporter gene driven by the pHLS2 promoter. The GUS staining is 
analysed in leaves (A), flowers (B), mature green fruit (C) and etiolated seedlings 
(D).  
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most regulatory elements necessary for driving the regulated transcription of the 

gene. To address the tissue-specific expression of the Sl-HLS2 gene in planta, 

the corresponding promoter was fused to the GUS reporter gene and stably 

transformed into tomato plants (ProHLS2:GUS). GUS expression, assessed in 

homozygous tomato lines, was mainly associated with leaf vascular tissues, 

flowers (specially anthers and sepals), seeds and placenta of mature green fruit 

(Figure 12 A-C).  Since real time PCR revealed that Sl-HLS2 gene is regulated by 

ethylene only on the hook (Figure 10C), we further explored its ethylene 

responsiveness by analysing in ProHLS2:GUS-expressing etiolated seedlings. 

Figure 13 revealed that upon 5 hour of ethylene treatment (10 µLL-1), GUS 

activity in the seedlings is tightly restricted to the outer side of the apical hook. 

 

 

DISCUSSION 

 

Lehman et al (1996) identified the Arabidopsis hls1 mutant on the basis of its 

failure to form an apical hook. The corresponding gene was cloned and its 

derived amino acid sequences were found to have similarity to N-

acethyltransferases. Li et al (2004) identified that auxin reponse factor (ARF2) is 

a repressor of hls1 mutation, and showed that light and ethylene control the 

differential cell elongation in hypocotyls of dark-grown seedlings by regulating the 

expression of ARF2 in a hookless dependant manner.   

We have cloned two cDNA from tomato with high similarity to the Arabidopsis 

HLS1 genes. These two cDNAs Sl-HLS1 and Sl-HLS2 encode proteins that 

possess the same putative N-acetyktransferase domain than Arabidopsis HLS1. 

The functional equivalence of the Arabidopsis HLS1 and the two tomato hookless 

proteins in causing hook formation was confirmed by complementation of the 

Arabidopsis hls1 mutant with both Sl-HLS1 and Sl-HLS2. We reported previously 

(Chaabouni et la 2008, Chapter III) the discovery of new phenotypes in hls1 

mutatant indicating that the HLS1 gene is in the cross-roads of multiple signalling 

including light, sugar, abscisic acid and gravitropism. These phenotypes have 

also been restored by the overexpression of Sl-HLS1 and Sl-HLS2 in hls 1 

mutant. 
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The isolation of the Sl-HLS1 and Sl-HLS2 genomic clones showed that their 

structural organization was very well conserved when compared with the 

Arabidopsis HLS1 gene. Both are composed of tree exons and two small introns. 

The availability of a well-characterized Arabidopsis hls1 mutant offered a unique 

opportunity to investigate the predicted function of tomato hookless proteins 

through heterologous expression. By reversing the absence of hook formation in 

etiolated Arabidopsis hls1 seedlings to a largely normal ethylene-responsive 

phenotype, we demonstrated that Sl-HLS1 and Sl-HLS2 genes encode a 

functional protein. These data strongly support the hypothesis that components of 

the hookless signaling pathways are conserved between tomato and Arabidopsis.  

Lehman et al. (1996) have shown that At-HLS1 is ethylene inducible. In 

accordance, Sl-HLS2 mRNA accumulation was up regulated in the hook of 

etiolated tomato seedlings especially in the outer side of the hook (Figure 10 and 

13). No significant ripening-related expression or ethylene-regulation has been 

detected in tomato fruit tissues. However, In Arabidopsis, sequence analysis of 

the HLS1 promoter revealed the presence of an ethylene response element, a 

GCC box. This DNA sequence element confers ethylene responsiveness to a 

minimal promoter in transgenic plants (Ohme-takagi and Shinshi, 1995). In silico 

analysis of Sl-HLS2 promoter identified an ATTTCAAA ethylene-response 

element but not a canonical GCC box.  

Auxin has also been implicated in regulating apical hook closure (Kang and 

Ray, 1996a; Lehman et al., 1996; Li et al., 2004). The precise relationship 

between auxin and ethylene in hook formation started to be elucidated, and the 

model supported by Li et al. (2004) suppose that one of the role for At-HLS1 is to 

inhibit the Auxin Response Factor, ARF2, leading to enhanced differential growth 

and exaggerated hook curvature. In addition to its ethylene regulation, Sl-HLS2 

gene shows auxin-incuced-expression in the cotyledons and in the hook of dark-

grown seedlings. This result favours the hypothesis that Sl-HLS2 regulation by 

ethylene and auxin is an important step in the process of hook formation. 

Interestingly, the software failed to identify any of the canonical auxin-response 

elements (TGTCTC) in the Sl-HLS2 promoter sequence.  

Based on the physiological characterization of hls1 mutants, it was discovered 

that HLS1 gene may act to prevent the bleaching phenotype in prolonged 

darkness. Arabidopsis hls1 mutant lines complemented by Sl-HLS1 and Sl-HLS2 



Chapitre IV: Functional Characterization of Tomato Hookless Genes 

116 

genes show normal de-etioleted phenotype (Figure 3). Moreover, 

overexppression of tomato hookless genes promote normal opening of green 

cotyledons even after prolonged time in the dark, under which conditions the wild 

type control seedlings failed to green (Figure 7B). These data strongly support the 

implication of hookless gene in normal greening process. 

It has been shown previously that At-HLS1 is a positive regulator of the 

glucose repression of germination, cotyledon greening and expansion and true 

leaf development. Complemented Sl-HLS1 and Sl-HLS2 plants, like wild type 

seedlings, undergo growth arrest when cultivated in the presence of 6.5% of 

glucose. Tomato overexpressed plants show hypersensitivity to glucose. This 

result further supports the evidence that HLS gene plays an important role in 

germination and development of cotyledons and true leaves. 

Although a number of hookless like sequences from Arabidopsis and other 

plant spicies are available in the gene database, there is no experimental 

evidence regarding their putative N-acetyl transferase activity. We have identified 

two cDNA, Sl-HLS1 and Sl-HLS2 that show high similarity to Arabidopsis HLS1. 

Sl-HLS2 is much more abundant than Sl-HLS1 and display a differential 

expression pattern in etiolated seedlings upon hormones treatments. Although 

the protein products of both cDNAs complement the hls1 mutant of Arabidopsis in 

all phenotype tested, it’s not clear whether Sl-HLS1 and Sl-HLS2 exert the same 

function in tomato seedlings. 

 

In conclusion, the identification of two HLS genes from tomato and the 

demonstration that their encoded proteins are functional homologs of the 

Arabidopsis HLS protein confirm the importance of HLS in the regulation in the 

hook closure, greening, glucose and ABA signalling pathway. Elucidating the 

mode of action of HLS will, therefore, help to explain the mechanism controlling 

formation of the apical hook and managing different signalling pathway. 
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METHODS 

 

Plant Material  

Arabidopsis transformation 

hls1-1 in the Columbia ecotype were obtained from the Nottingham Arabidopsis 

Stock Center.  Wild type (Columbia ecotype) was used as control. Plants were 

grown under standard green house condition. Agrobacterium tumefaciens-

mediated transformation was carried out using the pGreen 2935SOMCaMVT (Dr 

julie cullimore, INRA toulouse) binary vector according to Bird et al. (1988). The 

sense construct was generated by cloning the full Sl-HLS1 and Sl-HLS2 open 

reading frame under the transcriptional control of the cauliflower mosaic virus 35S 

promoter and the nopaline synthase terminator (Sl-HLS1 F 5’ ATGATGGCGGT 

TAATGAACAAGTGAG3’; Sl-HLS1 R 5’ TTAAAATTCTCTGGGATCAACAAAGAT 

AG; Sl-HLS2 F 5’ ATGGTGGAGAATGGTGATTTGGTTGTGTCG 3’;  Sl-HLS2 

R 5’ T TAGACTTCTCTAG GATCAACAAATATAGAAAG3’). The transformation 

protocol of hls1 Arabidopsis mutant was as described by Leclerc et al. (2002). 

The selection of putative transformants was done on a 70 mg L_1 kanamycin-

containing agar medium.  

 

Tomato transformation 

Tomato (Solanum lycopersicum cv MicroTom) plants were grown under standard 

greenhouse conditions. For growth in chamber rooms, the conditions are as 

follow: 14 h day/10 h night cycle, 25/208C day/night temperature, 80% 

hygrometry, 250 µmolm_2 s_1 intense luminosity. 

 

To generate an antisense Sl-HLS1 (AS-HLS1) and antisense Sl-HLS2 (AS-HLS2) 

transgenic plants, forward and reverse primers were used to amplify a specific 

partial clone of each gene (AS-HLS1 F 5’CCGGGTCAAAATCTCAAAATCCG 3’; 

AS-HLS1 R 5’GCGGATTCGTTAAGAACTCGTTG3’; AS-HLS2 F 5’ 

TCGGGTCCGGGTATCTA GTCG 3’; AS-HLS2 R 

CGGATGAACCAAGAAATCTTCTAC. Moreover, a highly conserved sequence 

between HLS1 and HLS2 was used to downregulate both of these genes. We 

called this construction AS-HLS1+2.  The primers used were AS-HLS1+2 (F 5’ 

ATGGTGGAGAATGGTGATTTGGTTG and R 5’GCGGCTTAGCTG 
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AATCAGAGCTG3’). For overexpressing lines, the same sense construct (S-

HLS1) (from ATG to the Stop codon) generated for Arabidopsis hls1 

complementation was introduced into tomato plants. Agrobacterium tumefaciens-

mediated transformation of tomato plants was carried out according to Jones et 

al. (2002) and transformed lines were selected as in Wang et al. (2005).  

 

Cloning of Sl- HLS1 and Sl- HLS2 

Two tomatos EST, homologue to Arabidopsis hookless 1 gene, were found in tigr 

database. The lacked parts of each EST were filled in by 5’ and 3’ rapid 

amplification of cDNA ends (RACE) according to the manufacturer’s instructions 

(Clontech, BD SMART RACE cDNA Amplification Kit). Two cDNA was then 

isolated, amplified, and sequenced. We refer them as Sl-HLS1 and Sl-HLS2.  

 

Isolation of the Genomic Clones  

Genomic DNA was extracted from 1 g of ground tomato (Lycopersicon 

esculentum) leaves using DNA extraction Kit (Promega). An RNase treatment 

was done at 37°C for 10 min. A pair of primers was chosen based on the cDNA 

sequence, and PCRs were performed on the genomic DNA. The amplified 

fragments were cloned and fully sequenced. Comparative analysis between the 

genomic clone and cDNA sequences allowed the delimitation of introns and 

exons. 

 

Isolation of Sl- HLS2 Promoter 

The Universal Genome Walker Kit (Clontech Laboratories, Inc., Palo Alto, CA, 

USA) was used to isolate the Sl-HLS2 gene promoter region.The tomato genomic 

DNA fragment with adaptors at the ends was used as a template for the 

amplification of the promoter region. We used AP1 (5’ 

GTAATACGACTCACTATAGGGC 3’) and AP2 (5’ ACTATAGGGCACGCGTGGT 

3’) primers provided by the Genome Walker kit, and two specific antisens primers 

for our gene SP1 (5’AAGATAGGAAGCGGCTTAGCTGAATC3’) and SP2 (5’ 

CTGTTTTT GAC ACCACTCCTCGAGAG3’). The generated PCR product was 

cloned, fully sequenced and analyzed by PlantCARE, (Lescot et al., 2002). This 
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promoter is then fused to Gus reporter gene in binary vector (plp100) and stably 

transformed in tomato lines as indicated before.  

 

Hormones Treatments 

Ethylene treatments were performed for 5 h in 25 L sealed glass boxes. 5-days 

etiolated seedlings were treated with 10 ppm of ethylene. Tomato fruits at the 

Immature green (IMG), mature green (MG) and breaker (Br) stage were treated 

with 50 µl.l.1 ethylene. Control seedlings and fruits were exposed to air alone. 

Auxin treatment was applied during 2 hours on dark-grown seedlings at 25°C. 

Auxin (IAA) solutions (100µM) were made up in 0.05% ethanol and were adjusted 

to ph 6 with dilluate NaOH. To disturb seedlings as little as possible, IAA solutions 

were sprayed onto intact plants as a fine mist.  After treatments, different tissues 

were immediately frozen in liquid nitrogen and stored at -80°C until RNA 

extraction. For etiolated seedlings, different tissues corresponding to cotyledons, 

hook, hypocotyls and root were harvest as indicated in figure 11.  

 

Greening, Glucose and ABA Test 

These tests were applied as indicated in ChapitreIII.  

 

RNA Extraction and Quantitative RT-PCR 

RNA from etiolated seedlings was isolated using the Qiagen kit (RNaeasy Plant 

Mini kit) according to the manufacturer’s instructions. For all the other tissues, 

RNA was extracted by the phenol–chloroform method according to Zegzouti et al. 

(1999). DNase-treated RNA (2 mg) was then reverse-transcribed in a total 

volume of 20 µl using the Omniscript Reverse Transcription Kit (Qiagen, Valencia, 

CA, USA). Real-time quantitative PCR was performed using cDNAs 

corresponding to 2.5 ng of total RNA in a 10 µl reaction volume using the SYBR 

Green PCR Master Mix (PE-Applied Biosystems, Foster City, CA, USA) on an 

ABI PRISM 7900HT sequence detection system. PRIMER EXPRESS software 

(PE-Applied Biosystems) was used to design gene-specific primers. The following 

hookless-specific primers were used: 

Sl-HLS1 F (5’AAGAGGCTGTGGAGGAACAATC3’) 

Sl-HLS1 R (5’GGAAAGTTTAGTGAAAACA GGAAGGT3’) 

Sl-HLS2 F (5’CCTATACCGCCGCCGATACT3’)  
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Sl-HLS2 R (5’ACC GAGATTGAGAGGGTTGTTG3’) 

Sl-Actin F (5’TGTCCCTATTTA CGAGGGTTATG C3’) 

Sl-Actin R (5’CAGTTAAATCACGACCAGCAAGAT3’). 

Actin was used as a reference gene with constitutive expression in various 

tissues. 

For Sl-HLS1 and Sl-HLS2, the optimal primer concentration was 900nM and 

50 nM respectively. For Actin the primers were used at 50nM concentration. Real-

time PCR conditions were as follow: 50°C for 2 min,  95°C for 10 min, then 40 

cycles of 95°C for 15 s and 60°C for1 min, and fina lly one cycle at 95°C for 15 s 

and 60°C for 15 s. For all real-time PCR experiment s, two biological replicates 

were made and each reaction was run in triplicate. For each sample, a Ct 

(threshold constant) value was calculated from the amplification curves by 

selecting the optimal ∆Rn (emission of reporter dye over starting background 

fluorescence) in the exponential portion of the amplification plot. Relative fold 

differences were calculated based on the comparative Ct method using the Sl-

Actin-51 (accessionNo.Q96483) as an internal standard. To determine relative 

fold differences for each sample in each experiment, the Ct value for Sl-HLS1 and 

Sl-HLS2 gene was normalized to the Ct value for Sl-Actin-51 and was calculated 

relative to a calibrator using the formula 2 -∆∆ Ct. 

 
REFERENCES 
 
 
Ecker, J.R. (1995).  The ethylene signal transduction pathway in plants. Science 268: 667–675 
 
Goeschl, J.D., Pratt, H.K. and Bonner, B.A.  (1967). An effect of light on the production of 
ethylene and the growth of the plumular portion of etiolated pea seedlings. Plant Physiol 42: 
1077–1080. 
 
Guzman, P., and Ecker, J.R. (1990). Exploiting the triple response of Arabidopsis to identify 
ethylene-related mutants.  Plant Cell 2, 513–523 
 
Jung-Eun Park, Youn-Sung Kim, Hae-Kyung Yoon, Chung-Mo Park  (2007). Functional 
characterization of a small auxin-up RNA gene in apical hook development in Arabidopsis. Plant 
Science 172: 150–157 
 
Kieber, J.J., Rothenberg, M., Roman, G., Feldmann, K.A., and Ecker, J.R. (1993).  CTR1, a 
negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf 
family of protein kinases. Cell 72, 427–441. 
 
Lehman, A., Black, R., and Ecker, J.R. (1996) . HOOKLESS1, an ethylene response gene, is 
required for differential cell elongation in the Arabidopsis hypocotyl. Cell 85, 183–194. 
 



Chapitre IV: Functional Characterization of Tomato Hookless Genes 

121 

Li, H., Johnson, P., Stepanova, A., Alonso, J.M. and Ecker, J.R. (2004).  Convergence of 
signaling pathways in the control of differential cell growth in Arabidopsis. Dev. Cell 7: 193–204. 
 
Ohto, M., Hayashi, S., Sawa, S., Hashimoto-Ohta, A ., and Nakamura, K. (2006). Involvement 
of HLS1 in Sugar and Auxin Signaling in Arabidopsis LeavesPlant Cell Physiol. 47(12): 1603–
1611  
 
Ohme-Takagi, M., and Shinshi, H. (1995).  Ethylene inducible DNA binding proteins that interact 
with an ethylene-responsive element. Plant Cell 7, 173–182. 

 
Raz, V., and Ecker, J.R. (1999).  Regulation of differential growth in the apical hook of 
Arabidopsis. Development 126: 3661–3668 
 
Zhou, L., Jank J-C, Jones, T.L., Sheen, J .(1998).  Glucose and ethylene signal transduction 
cross talk revealed by an Arabidopsis glucose-insensitivemutant. Proc Natl Acad Sci USA 95: 
10294–1029 
 



Conclusions et perspectives 

122 

 

 

 

CONCLUSIONS GENERALES ET PERSPECTIVES 

 

 
Le projet de recherche réalisé dans le cadre de cette thèse a permis de 

caractériser deux gènes, Sl-IAA3 et SL-HLS, qui sont à la croisée de plusieurs 

voies de signalisation. En participant à l'intégration nécessaire de plusieurs 

signaux endogènes et exogènes, il a été montré que ces gènes permettent la 

régulation fine et dirigée de nombreux processus de développement. De ce point 

de vue, ces gènes contribuent, parmi d'autres, à l'adaptation des plantes à leur 

milieu en activant les réponses appropriées au contexte environnemental.  

 

Le gène Sl-IAA3 qui code pour un régulateur transcriptionnel permet 

l'intégration des voies de signalisation de l'auxine et de l'éthylène. L'étude menée 

a montré son rôle dans les processus de croissance différentielle (differential 

growth) et apporté un premier éclairage sur son mode d'action lors de la 

formation du crochet apical. En effet, la croissance différentielle des tissus du 

crochet semble être le résultat d'un jeu d'expression décalée entre les gènes Sl-

IAA3 et Sl-HLS qui s'attribuent des territoires opposés et exercent une régulation 

inverse de l'élongation cellulaire dans les faces interne et externe du crochet. 

L'expression exclusive du gène Sl-IAA3 dans une partie déterminée du pétiole 

semble également intervenir dans la réponse épinastique, un autre exemple de 

croissance différentielle. Leurs profils d'expression localisés et contrastés font de 

Sl-IAA3 et Sl-HLS deux gènes marqueurs pouvant être utilisés pour visualiser les 

tissus en état d’élongation. Une analyse à grande échelle par une approche 

transcriptomique de l'expression génique dans les lignées sous-exprimant Sl-AA3 

permettra d'identifier les réseaux de gènes dont la régulation dépend de Sl-IAA3. 

Ces données permettront de repérer les acteurs potentiels agissant de concert 

avec Sl-IAA3 au cours de la formation du crochet mais également dans d'autres 

processus comme la dominance apicale ou le développement du fruit. En effet, le 

profil d'expression finement régulé du gène Sl-IAA3 dans le fruit et sa faible 



Conclusions et perspectives 

123 

expression dans les mutants de maturation rin nor et Nr, suggèrent fortement un 

rôle potentiel de ce gène dans l'intégration de signaux éthylène et auxine dans le 

fruit. Il en est de même du gène Sl-HLS qui présente un profil d'expression qui 

permet d'envisager sa participation au contrôle de l'avènement de la maturation. 

L'analyse des lignées transgéniques ou mutants EMS altérées dans l'expression 

des gènes Sl-IAA3 et Sl-HLS permettra d'évaluer leur impact réel sur la 

maturation des fruits. Par ailleurs, sachant que la régulation prépondérante des 

protéines Aux/IAA au niveau post-traductionnel, l'analyse de l'expression du gène 

Sl-IAA3 au niveau protéique devient nécessaire car susceptible d'apporter un 

éclairage nouveau sur son mode d'action. La production d'anticorps dirigés contre 

la protéine  Sl-IAA3 est maintenant envisagée qui permettront de suivre son 

accumulation tissulaire.  Aussi, la connaissance des partenaires directs de la 

protéine Sl-IAA3 pourrait fournir des clés importantes quant au mécanisme 

d'action de ce gène. Il s'agit en particulier d'identifier parmi les facteurs de 

transcription de type ARF, les partenaires naturels des Aux/IAA, ceux qui 

dimérisent avec la protéine Sl-IAA3. Une approche double hybride ou une 

stratégie de co-immunoprécipitation seraient envisagées dans ce cas.   

 

En ce qui concerne le gène hookless, en dépit des nombreux travaux réalisés 

par différents groupes et ceux réalisées au cours de la présente thèse, la fonction 

de la protéine codée par le gène HOOKLESS demeure à ce jour inconnue.  Les 

tentatives menées ici pour explorer la fonction enzymatique de la protéine HLS se 

basant son homologie avec la famille des N-acétyl-transférases, sont restées 

infructueuses. Cet effort se poursuit actuellement par la caractérisation des profils 

métaboliques comparés des mutants hookless de sur et sous-expression qui vise 

à fournir des indications sur les voies métaboliques et les substrats potentiels 

utilisés par cette protéine. Cette analyse métabolique cherche également à 

vérifier si la mutation hookless affecte les niveaux de certaines hormones telle 

que l'auxine. Enfin, la disponibilité croissante de ressources nouvelles de 

génétique inverse telles que les populations de TILLING permettra d'isoler des 

variants alléliques des protéines Sl-IAA3 et Sl-HLS qui fourniront des outils 

originaux pour explorer leurs différents rôles. 
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Les avancées acquises au cours de ce travail de thèse ajoutées aux 

connaissances disponibles dans la littérature permettent de proposer un modèle 

précisant le niveau d'intervention du gène Sl-IAA3 et son positionnement par 

rapport au gène Sl-HLS lors du contôle de la mise en place du crochet apical.    

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Modèle d’intégration des signaux éthylène, auxine et lumière dans la 
croissance différentielle au niveau  des plantules étiolées. Le processus de 
formation du crochet apical nécessite une interaction entre les gènes HLS1, IAA3 
et ARF2. Sl-IAA3 et Sl-HLS agissent probablement à travers des voies parallèles 
qui de croisent au niveau de ARF2. 
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