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RREESSUUMMEE  
Les mycoplasmes sont des bactéries dépourvues de paroi qui dérivent de bactéries Gram 

plus. Il existe un groupe d’espèces, appelé le «Groupe mycoides» qui rassemble des espèces 

pathogènes pour les ruminants bien qu’il soit phylogénétiquement proche d’espèces 

pathogènes de plante. Leur génome est très réduit, environ un million de paires de bases et 

peu riche en G + C, environ 25 %. Parmi ce groupe, Mycoplasma mycoides subsp. mycoides 

LC (MmmLC) est un agent responsable d’agalaxie contagieuse chez les chèvres. Il est très 

proche de Mycoplasma mycoides subsp. mycoides SC (MmmSC) qui est l’agent responsable 

de la péripneumonie contagieuse bovine et dont le génome de la souche de référence était 

disponible. En raison de cette proximité nous avons décidé de séquencer complètement le 

génome d’une souche de MmmLC afin de pouvoir réaliser des études de génomique 

comparative. Préalablement au séquençage et à l’assemblage, nous avons évalué la taille du 

génome avec la technique d’électrophorèse en champs pulsé. Nous avons pu ensuite 

contrôler l’assemblage obtenu en comparant les données expérimentales «in-silico» avec les 

résultats d’électrophorèse. De plus nous avons réalisé des «Southern blots» afin de vérifier si 

les séquences dupliquées chez MmmSC l’étaient également chez MmmLC. La comparaison 

avec les génomes complets déjà disponibles pour des souches du «Groupe mycoides» a 

permis d’identifier un locus intéressant pour développer des PCR spécifiques. Ce locus 

comprend des gènes ou des fragments de gènes appartenant chez certaines bactéries à un 

opéron de «voie de déimination de l’arginine». Le nombre ainsi que l’agencement et la 

séquence de ces gènes varie d’une espèce à l’autre au sein du «Groupe mycoides». Il a ainsi 

été possible de développer une PCR spécifique pour Mycoplasma capricolum subsp. 

capripneumoniae, l’agent de la pleuropneumonie contagieuse caprine en amplifiant un 

fragment du gène arcD et une PCR spécifique de M. putrefaciens, un agent d’agalaxie 

contagieuse, en amplifiant un fragment du gène arcB. Pour la détection de l’ensemble des 

espèces du «Groupe mycoides» nous avons choisi un gène plus conservé, glk, situé en aval 

de l’opéron. L’annotation du génome de MmmLC a également permis d’identifier des 

séquences d’insertion. L’une d’entre elles, appartenant à la famille IS3, n’avait pas encore 

été décrite et a été appelée ISMmy2. Elle est présente chez certaines espèces du «Groupe 

mycoides» mais pas chez toutes les souches. Un variant de cette IS existe chez des espèces 

proches du «Groupe mycoides» et il en existe une copie non fonctionnelle chez MmmSC. 

Enfin nous avons voulu évaluer les capacités de MmmLC à exprimer des antigènes 

hétérologues dans le but ultime d’en faire un vecteur d’expression vaccinal. C’est pourquoi 
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nous avons choisi un gène d’intérêt vétérinaire majeur, le gène H du virus de la peste des 

petits ruminants. 
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SSUUMMMMAARRYY  
Mycoplasmas are the smallest bacteria without a cell wall derived from Gram positive 

bacteria. A group of mycoplasma known as the “Mycoplasma mycoides cluster” is composed 

of five subspecies and an unassigned group of strains known for their pathogenicity in 

ruminant hosts. Phylogenetically, this cluster is found to be closely related to species of 

mycoplasma plant pathogens. Mycoplasmas have a reduced genome size of about 1 Mbp, 

characterized by a low GC content of about 25 %. Among members of the Mycoplasma 

mycoides cluster, Mycoplasma mycoides subsp. mycoides large colony biotype (MmmLC) is 

one of the agents responsible for contagious agalactia in goats. This organism is closely 

related to Mycoplasma mycoides subsp. mycoides small colony biotype, the causative agent 

of contagious bovine pleuropneumonia (CBPP), for which the whole genome sequence is 

available. Because of the close relationship of these two species we have decided to 

sequence the genome of an MmmLC strain for comparative genomics. Before whole genome 

sequencing and assembly, we have estimated the genome size of MmmLC using pulse field 

gel electrophoresis (PFGE). Data generated from this initial study have permitted us to verify 

the genome assembly by comparing in-silico profiles. In addition the preliminary analysis 

included DNA hybridization tests to verify the presence of duplicated genes in MmmLC as 

that of the genome of MmmSC. Comparative genomics made from the available whole 

genome sequence data of species within the M. mycoides cluster has permitted the 

identification of target genes, which were used for the development of specific PCR tests. 

The target genes chosen included genes of the “arginine deiminase operon”, in most bacteria 

genes of this operon code for enzymes involved in the degradation of arginine to produce 

energy. The number of these genes as well as their organization within the operon found to 

vary between members of the M. mycoides cluster. From this operon arcD has been used to 

develop a specific PCR for the identification of Mycoplasma capricolum subsp. 

capripneumoniae, the causative agent of contagious caprine pleuropneumonia (CCPP), and 

arcB has been used for the development of specific PCR for the identification of 

M. putrefaciens, another causative agent of the contagious agalactia syndrome. The glk gene, 

flanking the operon on the 3’ end, was found to be highly conserved among all members of 

the M. mycoides cluster and was used for the design of specific primers able to detect all 

members of M. mycoides cluster. Furthermore, annotation of the genome sequence of 

MmmLC allowed the discovery of two new insertion sequence elements. One of these two 

insertion sequence elements was found in higher copy in the genome and belongs to the IS3 
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family. This insertion sequence was not described in any other mycoplasma species or 

bacteria, was given a new name: ISMmy2. It was also found in some species of the 

M. mycoides cluster, but not in all the strains under these species. Interestingly, a non-

functional vestige of ISMmy2 was also found in the MmmSC genome. Copies of this 

ISMmy2 were also found in species closely related to the M. mycoides cluster. Finally, we 

have tried to evaluate the capacity of MmmLC to be transformed and to express a 

heterologous gene with the ultimate aim to create a multivalent vaccine. For this aim we 

have chosen the H-gene of peste des petits ruminant virus of veterinary health importance. 
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GGEENNEERRAALL  IINNTTRROODDUUCCTTIIOONN  
Ethiopia, my home land, is located in eastern Africa, and has the largest highland area of 

the African continent. Ethiopia's highland topography is rugged and complex. The central 

part of the country is mostly high plateau, at least 1500 m above sea level with peaks rising 

to more than 4000 m, and is dissected by gorges and broad valleys. This plateau culminates 

in the East in a coastal plain spreading to the Red Sea, and in the West in the White Nile 

Valley plain on the Sudanese border. Agriculture is the mainstay of the economy; it 

provides a livelihood for 90 per cent of the population living by large in the countryside. 

Ethiopia's livestock population is one of the largest in Africa, with more than 40 million 

head of cattle. Livestock contributes the major agricultural outputs supplying the power to 

cultivate virtually all of Ethiopia's crop land because mechanization is not well developed 

and ploughing depends on ox traction. It also provides a source of milk, meat, manure, 

hides and skin and an important source of foreign exchange for the country. 

Despite the importance of animal production for the national economy, livestock diseases 

and poor nutrition remain the major constraints and inflict heavy losses on the sub-sector. 

Apart from high mortality rates, diseases in livestock affect fertility, growth rate and 

traction power output. Rinderpest was previously the most devastating infectious disease in 

cattle but it is now eradicated. However, other diseases remain severely limiting livestock 

production. Among many, some can be highlighted: contagious bovine pleuropneumonia 

(CBPP), contagious caprine pleuropneumonia (CCPP), peste des petits ruminants (PPR), 

sheep and goat pox, blue tongue, fowl pox, pasteurellosis, anthrax, blackleg, haemorrhagic 

septicaemia, bovine tuberculosis, brucellosis, foot and mouth disease (FMD) and internal 

and external parasites. Effective disease control is then a major prerequisite in enhancing 

livestock productivity. 

Disease control programmes in Ethiopia involved the establishment of the National 

veterinary Institute (NVI) in 1964, devoted to disease diagnostics and vaccine production, 

and the foundation of the first faculty of veterinary medicine (FVM) inP

 
P1979, both located 

at Debre Zeit, 50 km south of the capital city, Addis Ababa. Today the main task of the 

NVI is to produce veterinary vaccines to fulfil the national needs but also to export these 

vaccines, mostly in Africa. It produces vaccines for PPR, FMD, sheep and goat pox, fowl 

typhoid, African horse sickness (AHS), anthrax, Newcastle disease, CBPP, CCPP, Bovine 

Pasteurellosis, lumpy skin disease (LSD), etc. This vaccine plant produces over 40 million 
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doses of vaccines every year. Many of these vaccines are independently controlled by the 

PANVAC Institution (Pan African Vaccine Control), also located in Debre Zeit but 

depending directly from the African Union. 

The faculty of veterinary medicine is a more recent Institution and I graduated from this 

Faculty in 2000. I was then employed as assistant lecturerT Tin the Department of 

Microbiology, Faculty of Veterinary Medicine Addis Ababa University. In September 

2002, the staff members of my department and one of my DVM external examiners ProfT. 

TPhilippe DORCHIES (ENVT, Toulouse, France) have accorded me their support to pursue 

my studies. 

The Ethio-French collaboration in the veterinary field had been initiated a long time ago. A 

formal agreement had been signed in 1962 between Haile Selassie, King of Ethiopia and 

President de Gaulle. At first, the agreement included sending French veterinarians in the 

countryside to perform the vaccination campaigns, which later evolved to vaccine 

production at the NVI, Debre Zeit. More recently French collaboration involved in 

teaching at the FVM or sending expert missions on specific areas such as quality assurance 

in the meat sector or development of new veterinary faculties. Ethiopian veterinary 

research institutions and NVI are also part of laboratory network financed by the French 

Ministry of Foreign Affairs (LABOVET), which links 5 veterinary laboratories in Africa 

with CIRAD in Montpellier, France. One of the goals of this project is to reduce the 

technology gap that has a tendency to expand between developed and developing 

countries. It is clear that the most recent biotechnology tools are more and more complex, 

requiring machines which are always more expensive and become obsolete rapidly. Hence 

participating to modern biology research requires establishing networks. 

It is within this global context that I came to CIRAD, Montpellier in September 2002. I 

first had to learn French language at the University Montpellier III, and then I started my 

PhD studies through INP and SEVAB at Toulouse. I was hosted by UPR15 of CIRAD 

(Control of exotic and emerging animal diseases) and more particularly by the mycoplasma 

team which focuses its studies on important mycoplasma diseases of ruminants that are 

limiting factors in developing countries but also may be threats for the European livestock 

sector. 
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This thesis has been divided into five chapters: 

 

Chapter I. General features of mycoplasmas and the M. mycoides cluster in particular, 

and genome sequencing. Included in this first chapter are the objectives of 

this thesis.   

 

Chapter II. Estimation of genome size of strain 95010-C1 MmmLC, and evaluation of 

the presence of repeated genes, which were identified in the previously 

sequenced MmmSC type strain PG1 P

T
P. 

 

Chapter III. Application of MmmLC strain 95010-C1 whole genome sequence 

information for choice of target gene in the design of specific diagnostic 

tools. This chapter includes three published articles. 

 

Chapter IV. Introduction to insertion sequence elements (IS-elements), assessment of 

previously described IS-elements from species of the M. mycoides cluster in 

MmmLC strain 95010-C1. This chapter comprises a submitted article. 

 

Chapter V. Description of steps followed in the construction of foreign gene (H-gene) 

containing plasmid, transformation of MmmLC strain 95010-C1 and 

expression of H-protein from peste des petits ruminants virus (PPRV). 

 

 



 

   

 

CHAPTER I 

Introduction to Mycoplasma, the M. mycoides 
cluster and Genome sequencing 
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1.1 The Mycoplasmas 
1.1.1 General description and habitat 

Mycoplasma is a trivial name for a group of microorganisms that belongs to the class 

Mollicutes (Maniloff, 1992). The name Mollicutes, from Latin words mollis “soft” and 

cutis “skin” refers to their characteristic lack of a cell wall (Razin et al., 1998). The trivial 

terms “mycoplasmas” or “mollicutes” have been interchangeably used to denote any 

species included in Mollicutes. Together with Mycoplasma the class mollicutes consists of 

eight other genera: Ureaplasma, Entomoplasma, Mesoplasma, Spiroplasma, 

Acholeplasma, Anaeroplasma, Asteroleplasma and Phytoplasma. Mycoplasmas are the 

smallest and simplest self-replicating organisms, being built of a plasma membrane, 

ribosomes, and a circular double-stranded DNA molecule (Figure I.1, Razin, 1997). The 

lack of a cell wall has not prevented mycoplasmas from flourishing in a wide range of 

hosts mammals, birds, reptiles, arthropods, plants and fish (Dybvig and Voelker, 1996). 

The primary habitats of human and animal mycoplasmas are the mucous surfaces of the 

respiratory, gastrointestinal and urogenital tracts, the eyes, the mammary glands and the 

joints. The obligatory anaerobic Anaeroplasmas have so far been found in the bovine and 

ovine rumen only. The Spiroplasmas and Phytoplasmas are widespread in plants but can 

be found also in the gut, hemocele, and salivary glands of arthropods (Razin et al., 1998). 

 

 

Figure I. 1 Electron micrograph of thin-sectioned mycoplasma cells. 

Cells are bounded by a plasma-membrane. The cytoplasm contains thin threads representing 

sectioned chromosome and dark granules representing ribosomes (Adapted from Shmuel Razin, 

1996 Courtesy of RM Cole, Bethesda, Maryland). 

 

0.5 µm
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These organisms have long resisted detailed analysis because of complex nutritional 

requirements, poor growth yields and due to paucity of useful genetic tools. So far 

however, about 190 mycoplasma species have been described under the class Mollicutes 

(Rottem, 2003). 

 

1.1.2 Genome characteristics and phylogeny 

The Mycoplasmas have evolved from more conventional progenitors in the Firmicutes 

taxon by a process of massive genome reduction (Glass et al., 2006); their genome size 

ranges from 0.58-2.2 Mbp. They have been shown to be closely related to gram positive 

bacteria with a low G + C content in their genome. The reassignment, in most mollicutes of 

UGA from a stop codon to a tryptophan codon, a feature found in mitochondria, is the 

apparent outcome of codon reassignment under strong A+T pressure. Not all mollicutes do 

share this property; the phylogenetically early Acholeplasma and Phytoplasma use the 

conventional UGG codon for tryptophan retaining UGA as a stop codon (Razin et al., 

1998). Mycoplasma genomes have a limited coding capacity, and as a consequence, they 

lack many enzymatic pathways characteristic of many bacteria. For example, they lack the 

pathways for the biosynthesis of purines, a functional tricarboxylic acid cycle and a 

cytochrome mediated electron transport system (Dybvig and Voelker, 1996; Maniloff, 

1996). Mycoplasmas genome size illustrates extreme biological gene economy, imposing 

complex nutritional requirements for replications and survival. This implies a dependence 

on external supplies for biosynthetic precursors including amino acids, nucleotides, fatty 

acids and sterols. The nature of the selective pressure for repeated genome reduction 

during mycoplasma phylogeny is not known. These features make mycoplasmas suitable 

research objects in the determination of the minimal gene set required for independent life 

and to be used as a model in the creation of artificial cells devoid of all non-essential genes 

(Glass et al., 2006). 

 

Mycoplasma genomes possess only 1-3 rRNA operons. Analysis made by restriction 

enzyme and hybridization with rDNA probes revealed many mycoplasmas of ruminant 

hosts to possess only two rRNA operons (rrnA and rrnB) (Christiansen and Erno, 1990). 

Based on the sequence analysis of the 16S rRNA genes, mycoplasmas have been divided 

into five phylogenetic groups including the Hominis, the Pneumoniae, the Spiroplasma, the 

Anaeroplasma and the Asteroplasma groups (Figure I. 2, Weisburg et al., 1989). These 

groups have been further subdivided in to sixteen clusters (Dybvig and Voelker, 1996; 
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Gasparich et al., 2004; Pettersson et al., 1996; Razin et al., 1998). Some species of 

importance in veterinary medicine are found within the phylogenetic Spiroplasma group in 

the so-called Mycoplasma mycoides cluster, encircled in blue. 

 
Figure I. 2 Phylogenetic tree of the Mollicutes constructed based on the 16S rDNA sequence. 

The six species of the M. mycoides cluster are encircled in blue. Among them, MmmLC (spotted in 

red) is the species of interest for the present study (Adapted from MolliGen Web site 

HTUhttp://cbi.labri.fr/outils/molligen/UTH). 
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1.1.3 Pathogenicity in Mycoplasmas 

In most pathogenic bacteria pathogenicity is determined by toxin production, cytolysis and 

a capacity to invade a host cell. In mycoplasmas however pathogenicity mechanisms 

remain largely elusive. The lesions found in mycoplasma infections in animals and humans 

are more suggestive of damage due to host immune and inflammatory responses rather 

than direct toxic effects by the mycoplasma cell components (Razin et al., 1998). Despite 

the various mycoplasmal virulence factors that have been described, there appears to be no 

clear casual relationship between these factors and mycoplasma pathogenicity. 

 

1.1.3.1 Adhesion to host cells 

Most animal and human mycoplasmas adhere tenaciously to the epithelial linings of the 

respiratory or urogenital tract, rarely invading tissues. Hence, they may be considered 

surface parasites. Adherence to the host tissues is a prerequisite for colonization and 

infection (Razin and Jacobs, 1992). Adherence to host tissue has been extensively studied 

in M. pneumoniae. A virulent M. pneumoniae strain has a structure called tip organelle 

containing densely clustered P1 and P30 proteins. These proteins function both as an 

attachment and as a leading end in gliding motility (Rottem, 2003). The tip-mediated 

adherence is more complex and requires additional accessory proteins such as P40, P90 

and proteins HMW1-HMW3. This has been elucidated by lack of adherence capacity to the 

host cell by mutants possessing only P1 and P30 (Razin and Jacobs, 1992). 

 

1.1.3.2 Invasion 

Mycoplasma species such as M. penetrans and M. gallisepticum were shown to invade 

HeLa cells and chicken embryo fibroblast cells. The exact signals generated by host cells 

to invasive mycoplasmas have yet to be investigated (Rottem, 2003). 

 

1.1.3.3 Antigenic variation 

The other important phenomena in mycoplasmas pathogenicity is the ability to circumvent 

hosts immunity also referred as phenotypic plasticity. The common way to achieve 

phenotypic plasticity in mycoplasmas is by “antigenic variation”. In several species of 

mycoplasmas the rates of antigenic variation have been estimated to be 10P

-2
P to 10 P

-4
P cell per 

generation (Dybvig and Voelker, 1996). Variable surface proteins in mycoplasmas can be 

encoded by multiple gene families or a single gene. Vlp genes in M. hyorhinis, vsa genes in 

M. pulmonis, vsp genes in M. bovis and vpma genes in M. agalactia are some examples of 
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variable surface proteins encoded by multiple gene families. Examples of single gene 

encoded variable surface proteins include the vaa gene in M. hominis and the pvpA gene in 

M. gallisepticum (Citti et al., 2005). 

 

1.2 The Mycoplasma mycoides cluster 
The M. mycoides cluster consists of six pathogenic Mycoplasma subspecies and an 

unassigned group of strains causing mild to severe disease in ruminant hosts. These are 

MmmLC, MmmSC, M. mycoides subsp. capri (Mmc), M. capricolum subsp. capricolum 

(Mcc), M. capricolum subsp. capripneumoniae (Mccp), and Mycoplasma species bovine 

serogroup seven of Leach (Mbg7) (Cottew et al., 1987). By growth inhibition and 

immunofluorescence tests Mmc isolates from goats were found to be serologically distinct 

from M. mycoides subsp. mycoides isolates from cattle. Some mycoplasma isolates from 

goats however, were found to be serologically indistinguishable from the M. mycoides 

subsp. mycoides (Pettersson et al., 1996). Isolates of M. mycoides subsp. mycoides from 

cattle were found to differ in several physiological and biochemical features from 

M. mycoides subsp. mycoides isolates from goats. Some strains of Mycoplasma mycoides 

subsp. mycoides, mostly isolated from goats, grow to greater turbidity in broth and form 

larger colonies on solid medium than does isolates from cattle. These isolates also digest 

casein, liquefy coagulated serum actively and survive longer at 45 °C and are referred to as 

LC (large colony) strains. Therefore these isolates from goats and cattle were designated as 

MmmLC and MmmSC types respectively (Cottew and Yeats, 1978). Figure I. 3 shows 

characteristic colony morphology of mycoplasma on agar plates. 

 

 
Figure I. 3 Morphology of a typical "fried-egg" mycoplasma colony 
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Upon culturing both Mccp and MmmSC tend to produce a filamentous growth. This is 

unlike the other three members of the M. mycoides cluster: MmmLC, Mmc, and Mbg7, 

which grow rapidly producing relatively heavy turbidity and large colonies (DaMassa et 

al., 1992). 

 

Phylogenetically the analysis of the 16S rRNA genes from MmmLC and Mmc have 

considered these two as a single entity (Pettersson et al., 1996), they are also classed as a 

single entity by sequence analysis of a putative membrane protein (Thiaucourt et al., 2000), 

based on the analysis of rpoB gene (Vilei et al., 2006) and when analysing a set of 

concatenated sequences from housekeeping genes fusA, glpQ, gyrB, lepA and rpoB 

(Manso-Silvan et al., 2007). The analysis of the 16S rRNA also categorized Mbg7 with 

Mcc and Mccp (Pettersson et al., 1996). The close relatedness of Mbg7 to Mcc and Mccp 

has also been reinforced by the recent phylogenetic analysis based on a set of concatenated 

sequences from housekeeping genes fusA, glpQ, gyrB, lepA and rpoB (Manso-Silván et al., 

2007). 

 

Phylogenetic classification based on 16S rRNA placed M. putrefaciens with in the same 

phylogenetic group (Spiroplasma) as that of the M. mycoides cluster (Weisburg et al., 

1989). Latter on, sequencing of the 16S rRNA from two saprophytic species M. cottewii 

and M. yeatsii (DaMassa et al., 1994) revealed a close similarity of M. putrefaciens with 

these species, with a similarity of 99.7 % with M. cottewii and 98.9 % with M. yeatsii 

(Heldtander et al., 1998). These species however, should not be regarded as members of 

the M. mycoides cluster on the basis of serological, biochemical features (Pettersson et al., 

1996) and based on the phylogenetic tree derived from distance analysis of five protein 

coding sequences (Figure I. 4, Manso-Silván et al., 2007). 
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Figure I. 4 Phylogenetic tree obtained from distance analysis of five concatenated protein coding 

sequences (fusA, glpQ, gyrB, lepA, rpoB). 

The tree was constructed using the neighbour-joining algorithm. M. cottewii, M. yeatsii and 

M. putrefaciens were clearly separated from the M. mycoides cluster it also shows the division of 

M. mycoides into two subclusters the M. mycoides subcluster containing MmmSC, MmmLC, Mmc 

and the M. capricolum subcluster containing Mcc, Mccp, Mbg7 (Manso-Silván et al., 2007). 
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1.2.1 Diseases associated with the M. mycoides cluster 

1.2.1.1 CBPP and CCPP 

MmmSC and Mccp are the causative agents of contagious bovine pleuropneumonia 

(CBPP) and contagious caprine pleuropneumonia (CCPP), respectively. These two 

diseases are of great concern in Africa and Asia causing important economic losses. They 

are classed by the World Organization of Animal Health (OIE) as notifiable animal 

diseases. Symptoms of CBPP range from hyperacute through acute to chronic forms. The 

causative agent induces lesions of pleuropneumonia in acute cases and the formation of 

pulmonary “sequestra” in chronic cases (Bergonier and Thiaucourt, 2003). Nearly 60 years 

after its description by Nocard and Roux in 1898 the causative agent was identified as a 

mycoplasma and given the present name M. mycoides subsp. mycoides (Edward and 

Freundt, 1956). Strain PG1P

T
P of unknown origin was considered as a type strain of 

Mycoplasma mycoides subsp. mycoides. 

 

Similarly, CCPP is a highly contagious disease of goats characterized by fever, severe 

respiratory distress and high mortality. The causative agent earlier called Mycoplasma 

species type F38 was first isolated from lungs of goat with CCPP in Kenya (MacOwan and 

Minette, 1976). Later on, based on DNA-DNA relatedness, the type strain F38 P

T 
Pand like 

strains were found similar to Mcc (Bonnet et al., 1993). However, the two mycoplasmas 

have markedly different growth, cultural characteristics and biochemical features. Finally, 

F38 P

T
P-like strains were grouped under a new subspecies: Mccp (Leach et al., 1993). The 

highly fastidious nature of Mccp strains has brought confusion regarding the exact 

causative agent of CCPP. Two other members of the M. mycoides cluster, MmmLC and 

Mmc, have been for sometime wrongly implicated in the etiology of the disease because of 

the pleuropneumonia that may be observed in small ruminants resembling CCPP. 

 

1.2.1.2 Contagious agalactia 

From the six members of this cluster, MmmLC, Mmc and Mcc are described as causative 

agents of contagious agalactia syndrome. Contagious agalactia is an infectious disease of 

sheep and goats known for nearly 200 years. The clinical disease was first described by 

Metaxa in Italy in 1816 and was given the name contagious agalactia by Brusasco in 1871 

(Madanat et al., 2001). At present, contagious agalactia occurs in most countries with 

intensive and extensive production of sheep and goats (i.e., in the Mediterranean region 
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and the Balkan peninsula in Europe, in western Asia and in northern, central and eastern 

Africa (Bergonier et al., 1997)). 

 

The major causal agent of the disease, M. agalactiae, was isolated by Bridre and Donatien 

in 1923 as the second known mycoplasma species. M. agalactiae is regarded, particularly 

in sheep, as the “classical” aetiological agent of contagious agalactia (Bergonier 1997). 

However, similar clinical and pathological features can be produced in small ruminants by 

mycoplasma species of the M. mycoides cluster (Bergonier et al., 1997; Nicholas et al., 

1996). In goats, a disease with nearly identical clinical manifestations is also caused by 

M. putrefaciens. The consensus of the working group on contagious agalactia of the EC 

COST Action 826 (European Cooperation in the field of Scientific and Technical 

Research) on ruminant mycoplasmosis (met at Toulouse, France, 1999) was considered 

four mycoplasmas as causal agents of contagious agalactia. This decision has not taken 

into account Mmc, the closest relative of MmmLC. 

 

In the most recent survey for mycoplasma species in contagious agalactia, MmmLC was 

found to be the most frequently isolated aetiological agent in Gran Canaria, Spain (De la 

Fe et al., 2005). MmmLC has the widest geographical distribution among ruminant 

mycoplasma. This organism is present in all the continents, including South America. It is 

reported where small ruminants are kept and wherever contagious agalactia and caprine 

pleuropneumonia are present (Bergonier et al., 1997). MmmLC is probably under-reported 

due to the lack of diagnostic facilities for mycoplasma diseases in many countries. 

MmmLC is mostly confined to goats but has occasionally been isolated from sheep with 

balanoposthitis and vulvovaginitis (Trichard et al., 1993) and from cattle (Perreau and 

Bind, 1981). Clinical cases usually occur sporadically, but the disease may persist and 

spread slowly within a herd (Bergonier et al., 1997). 

 

Although contagious agalactia does not induce high mortality; morbidity in a herd may 

reach 30-60 %. Reduction or complete cessation of milk production and abortions in 

pregnant animals is responsible for economic losses. Severe cases of the disease in herds 

may result in the death of lambs and kids up to 40-70 %. In countries where sheep and goat 

dairy products play important roles as food components and export commodities, 

contagious agalactia is a serious veterinary public health problem (Madanat et al., 2001). 
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Usually the disease is manifested by mastitis, arthritis, pleurisy, pneumonia, 

keratoconjunctivitis and septicaemia. These clinical signs were the basis for the acronym 

MAKePS (Thiaucourt and Bolske, 1996). Septicaemia outbreak has been observed in kids 

exposed to large doses of milk from mastitic does excreting MmmLC organism. The 

disease is usually fatal with necropsy changes characterized by fibrinopurulent 

polyarthritis, embolic pneumonia, renal infarcts and thrombo-embolic lesions in various 

tissues resembling disseminated intravascular coagulation. Animals surviving the 

septicaemia may develop chronic destructive arthritis in one or more joints. Bacteraemia is 

common, particularly for MmmLC and Mcc and could account for the isolation of the 

organism from sites where it is only transiently present (Rosendal, 1993). 

 

1.2.1.3 Other disease conditions 

The sixth member of the M. mycoides cluster, Mbg7 is associated with polyarthritis, 

mastitis and pneumonia in cattle. More recently Hum and colleagues reported a severe 

outbreak of polyarthritis, mastitis and abortion affecting about 120 cattle in large dairy 

operation system in Australia, where by Mbg7 was identified as a causative agent (Hum et 

al., 2000). 

 

1.2.2 Pathogenicity of members of the M. mycoides cluster  

Little is known on the mechanism of pathogenicity with in the species of the M. mycoides 

cluster. MmmSC biotype the causative agent of CBPP has been the most extensively 

studied mycoplasma species of the M. mycoides cluster. Even if some hypotheses have 

been described, as for other mycoplasma species, the mechanism of pathogenicity in this 

cluster remains elusive. 

 

1.2.2.1 Variable surface protein 

A variable surface protein Vmm has been identified and characterized in MmmSC biotype. 

The vmm gene encodes a lipoprotein precursor of 59 aa, where the mature protein was 

predicted to be 36 aa and was anchored to the membrane by only the lipid moiety, as no 

transmembrane region could be identified. The protein was found to undergo reversible 

phase variation at a frequency of 9 x 10P

-4
P to 5 x 10P

-5
P per cell per generation. Vmm-like 

genes were also found in the other three members of the M. mycoides cluster: Mcc, Mccp, 

Mbg7 and in M. putrefaciens (Persson et al., 2002). The vmm gene in MmmSC is an 

example of a single gene encoded variable surface protein (Citti et al., 2005). A recent 
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whole genome sequence of Mcc type strain California kidP

T
P has revealed genes encoding a 

diverse family of variable surface proteins termed the Vmc system. The vmc genes of Mcc 

present not only an alternative surface structure but also a system that permits high-

frequency phase variable expression as well as structural variation (Wise et al., 2006). 

 

1.2.2.2 Metabolic byproduct 
In more recent investigations it has been shown glycerol metabolism in MmmSC strains 

release hydrogen peroxide (HB2 BOB2 B) as a by product, resulting in disruption of host cell 

integrity. The initial hypothesis was based on the fact that virulent MmmSC African strains 

possessed an active ATP-binding cassette (ABC) transport system for the utilization of 

glycerol, which is metabolized to dihydroxyacetone-phosphate (DHAP) releasing HB2 BOB2 B, 

while European strains lacked part of the glycerol uptake genes due to deletion and are less 

virulent (Vilei and Frey, 2001). H B2BOB2 B in MmmSC is proved to be produced by a membrane 

located enzyme L-α-glycerophosphte oxidase (GlpO) that is involved in glycerol 

metabolism (Pilo et al., 2005). 

 

1.2.2.3 Capsular polysaccharide 

An important surface antigen and pathogenicity factor in MmmSC is the capsular 

polysaccharide (CPS), previously known as galactan. Injection of purified CPS to cattle 

produced severe respiratory collapse and even death (Buttery et al., 1976; Cottew, 1979). 

The anti-CPS titre was related to the ability of antisera to inhibit MmmSC growth in vitro; 

conversely, strains producing high levels of CPS were found to be the most resistant to 

growth inhibition tests (Waite and March, 2002). CPS is a high molecular weight polymer 

composed predominantly or exclusively of galactose subunits. It is unclear why a 

polygalactan should exhibit such effects in cattle, but the unusual 1-6 β linked structure of 

polymer may play some role. Studies by (Waite and March, 2001) have suggested the 

presence of small amounts of mannose and fructose in CPS extracts, which might also 

contribute to pathogenicity by binding CPS to host cell receptors. Whether these sugars are 

an integral component of CPS or represent an additional or contaminating polysaccharide, 

is unknown (Waite and March, 2002). 
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1.3 Genome sequencing approach in Mycoplasmas 
Among bacterial species, with their small genome size, mycoplasmas play a central role in 

the history of genome sequencing. Since 1995 mycoplasma genome sequencing has 

advanced to a stage that we have now seventeen completed genome sequences of 

mycoplasmas. These are M. agalactiae, M. capricolum subsp. capricolum, M. mycoides 

subsp. mycoides SC, Mesoplasma florum, Ureaplasma urealyticum/ parvum, M. penetrans, 

M. galisepticum, M. pneumoniae, M. genitalium, M. mobile, M. hyopneumoniae strains 

232, 7448 and J, M. pulmonis, M. synoviae, Onion yellow phytoplasma and Aster yellow 

witches-broom phytoplasma. The genomes of so far sequenced mycoplasmas are 

accessible on line in MolliGen, a database dedicated to the exploration and the comparison 

of mollicutes genome HTUhttp://cbi.labri.fr/outils/molligenUTH (Barre et al., 2004), and a dozen 

more are under sequencing phase (HTUhttp://www.tigr.org/tdb/index.htmlUTH). 

 

Although there are a number of investigations to understand the exact mechanisms of 

pathogenicity in mycoplasmas, their fastidious nature and lack of genetic systems to 

effectively dissect their structure and function hampered progress towards understanding 

their molecular biology. In very closely related species, such as the members of the 

M. mycoides cluster, genome sequencing and comparative genome analysis is imperative 

to identify genes potentially linked to virulence. In this context, the whole genome 

sequence of an MmmLC may contribute to the research on the molecular mechanism of 

pathogenicity in MmmLC and in the M. mycoides cluster at large. To date, there are 

different means’s of achieving bacterial whole genome sequence. 

 
1.3.1 Genome sequencing 

Genome sequencing is changing the landscape of modern biology as being a new approach 

to the study of genes and their functions. The genome of a laboratory strain of 

Haemophilus influenzae was the first bacterium to be sequenced and was followed by an 

isolate of Mycoplasma genitalium (Fleischmann et al., 1995; Fraser et al., 1995). Although 

the lists of completed bacterial genome sequences are dominated by pathogenic species; 

over 400 bacterial genome sequences are currently available in public databases 

representing species as well as multiple strains of the same species 

( HTUhttp://www.tigr.org/tdb/index.htmlUTH). Genome sequencing in bacteria is providing novel 

insights into the intricacies of pathogen-host interactions and co-evolution. These genomes 

are also significant because they mark the beginning of an important trend in the 
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sequencing of closely related genomes, including the sequencing of more than one strain 

from a single pathogenic species. The comparison of the genomes of pathogenic and non-

pathogenic organisms will most probably provide an insight into what makes certain 

bacterial strains and species pathogenic (Field et al., 1999). To date quite a number of 

institutions are involved in large scale projects of whole genome sequence; the goal of 

most projects is a finished contiguous DNA sequence of a bacterium chromosome. Some 

websites are trying to allow access to information regarding complete and ongoing genome 

projects (genome sequence institutions data from Gold Genomes Online Database v.2) 

( HTUhttp://www.genomesonline.orgUTH). 

 

1.3.1.1 Genome sequencing strategies 

Genome-sequencing frequently uses three types of strategies, the ordered-clone approach 

(primer-walking), the random-sequencing approach (shotgun sequencing) and a mixed 

strategy of both approaches (Figure I. 5). 

 

The ordered-clone strategy uses a large-insert library to construct a map of overlapping 

clones covering the whole genome from which selected clones are sequenced by primer-

walking technique to obtain the whole-genome sequence. This strategy uses several 

methods including restriction fingerprinting and hybridization mapping (Frangeul et al., 

1999). Restriction fingerprinting is a procedure for clone comparison based on the 

matching of characteristic restriction fragment sets (Gregory et al., 1997) and 

hybridization, which is a simple and rapid method for identifying stretches of homologous 

DNA. With this technique a large number of clones can be analysed and ordered 

concurrently. Nevertheless, the primer synthesis and purification procedure will take a day 

and consequently slow down the process relative to shotgun strategy. The sequence 

redundancy will normally be 2-3 times the genome size with the primer-walking strategy. 

Consequently the accuracy of the consensus sequence will be lower than the shotgun 

approach and the assembly phase will also take longer time (Westberg, 2003). 

 

Currently however, the most widely used strategy for the sequencing of a microbial 

genome is whole-genome shotgun sequencing; this strategy does not require preliminary 

data (such as a map) before the sequencing phase (Frangeul et al., 1999). 
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Figure I. 5 Strategies used to obtain whole genome sequences. 

1=the ordered-clone approach with the help of a map constructed from a large-insert and 2=the 

direct shotgun approach with the utilization of a small-insert library (Frangeul et al., 1999). 

 

In case of whole genome shotgun sequencing, a large number of clones from libraries 

representative of the whole genome are sequenced and assembled into contigs. The contigs 

are then joined together to obtain the whole genome sequence in a single contig using a 

variety of methods such as specific PCR products, or cloned inserts that span each gap 

(Frangeul et al., 1999). This procedure is mainly suited for large sequencing facilities, 

where large contigs are produced relatively fast. However, most prokaryotic genomes are 

more or less redundant in their sequence and are often containing large repetitive 

sequences with high sequence similarity, which will make the assembly of the shotgun 

Bacterial chromosome 
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sequences impossible. Accordingly, most genome sequencing projects will never be 

completed by using solely shotgun sequencing strategy (Westberg, 2003). 

 

There is not a single sequencing strategy that is optimal for all microbial sequencing 

projects as different genomes have different features of difficulties. For instance, the 

genomes differ in size, G+C content and in the number of repetitive regions, the organisms 

are more or less difficult to cultivate and the size of the sequencing facilities is varying a 

lot. Therefore, a mixed approach of the above two strategies has been a strategy of choice 

in genome sequencing. Typically, there is an initial random sequencing phase, which is 

followed by a direct sequencing approach that completes the genome sequence. In general 

the genome project is entering the directed phase when the random phase is not producing 

unique sequences in a sufficiently high speed, normally at 8-10 fold genome coverage. 

 

1.3.1.2 Sequencing techniques 

The pioneer DNA sequencing technique is the chain termination technique of Sanger 

(Sanger et al., 1977). This method produces a nested set of DNA fragments by extending a 

primer hybridized to a DNA template and interrupting the process with nucleotide 

terminators, chemically altered "dideoxy" bases to terminate newly synthesized DNA 

fragments at specific bases (either A, C, T, or G). These fragments are then size-separated, 

and the DNA sequence can be read. The second most used sequencing method is the 

chemical degradation method most similar to Sanger method. In this technique the nested 

set of fragments are generated by cleavage at specific nucleotides with different chemicals 

(Maxam and Gilbert, 1977) this method however, is no more in use due to the hazardous 

chemicals. The most recently developed sequencing technique is pyrosequencing (Ronaghi 

et al., 1998), the principle of this technique is explained in more detail below. 

 

Pyrosequencing (454 Life Sciences) is a rapid shot-gun genome sequencing that comprises 

two systems: GS20 released in 2005 and GSFLX released in 2007, reading 100 bp at a 

time and up to 300 bp respectively. These systems support simultaneous sequencing of 

samples from a variety of starting materials, including genomic DNA, PCR products, 

BACs and cDNA. In this technique the shotgun fragmentation of the genome is followed 

by preparation of single stranded template DNA (sstDNA) library conjugated with the so 

called “A” and “B” adaptors. The double-stranded DNA fragments are blunt ended and 

phosphorylated. Short adaptors, “A” and “B”, are then ligated onto the ends of the 
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fragments. The “B” adaptor contains a 5' biotin tag that enables immobilization of the 

library onto streptavidin coated beads. The “4 base key” is a short sequence of 4 

nucleotides included in the adaptor used by the system software for base calling and to 

recognize legitimate library reads. Four types of products are generated from the ligation. 

Products containing the biotinylated “B” adaptors are captured by streptavidin coated 

magnetic beads. Products with two “A” adaptors do not bind to the bead and are washed 

away. The double stranded products bound to the bead are denatured. The non biotinylated 

strands containing an “A” and “B” adaptor are recovered. The recovered strands are used 

as a sstDNA library. 

 

The sstDNA library is immobilized onto capture beads by hybridization to complementary 

primers attached to the capture beads. The beads containing a library fragment carry one 

sstDNA molecule. Beads containing sstDNA emulsified with amplification reagents in a 

water-in-oil mixture. Each bead is captured within its own microreactor where PCR 

amplification occurs; resulting in beads immobilized clonally amplified DNA fragments 

called emulsion PCR (emPCR). In order to start the sequencing, sstDNA template is 

hybridized to a sequencing primer and incubated with the enzymes DNA polymerase, ATP 

sulfurylase, luciferase and apyrase, and with the substrates adenosine 5’ phosphosulfate 

(APS) and luciferin. This incubation mix then layered onto PicoTiterPlate and the plates 

centrifuged to deposit the beads into the wells and are fixed in place by packing beads. 

Finally the loaded PicoTiterPlate device is placed into the GS20 or GSFLX instrument. 

Nucleotides are then flowed sequentially in a fixed order, TACG, across the PicoTiterPlate 

device during which hundreds of thousands of beads with millions of copies of DNA are 

sequenced in parallel (HTUwww.roche-applied-science.comUTH). This system can generate 100 

million nucleotide data in a 7 hour run with a single machine. DNA polymerase 

incorporates the correct, complementary dNTPs onto the template. This incorporation 

releases pyrophosphate (PPi) stoichiometrically. ATP sulfurylase quantitatively converts 

PPi to ATP in the presence of adenosine 5´ phosphosulfate. This ATP acts as fuel to the 

luciferase-mediated conversion of luciferin to oxyluciferin that generates visible light in 

amounts that are proportional to the amount of ATP. The light produced in the luciferase-

catalyzed reaction is detected by a charge coupled device (CCD) camera and this can be 

analyzed in a program. Each light signal is proportional to the number of nucleotides 

incorporated. Unincorporated nucleotides and ATP are degraded by the enzyme apyrase 

(Figure I. 6). 
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Figure I. 6 Diagram showing steps taken in Pyrosequencing. 

Preparation of single stranded DNA ligated with A and B adapters, Emulsion based clonal 

amplification of single stranded DNA molecule by emPCR, followed by sequencing by synthesis 

where DNA polymerization produces light corresponding to the incorporated nucleotides (Roche 

applied science). 

 

The limitation of this technique is that the lengths of individual reads of DNA sequence are 

in the neighborhood of 250 nucleotides, shorter than the 800-1000 obtainable with Sanger 

sequencing. This can make the process of genome assembly more difficult, particularly for 

sequences containing a large amount of repetitive DNA. As of 2007, Pyrosequencing is 

commonly used for re-sequencing of closely related strains or sequencing of genomes for 

which the sequence of a close relative is already available. The already available genome 

sequence will be used as a DNA back-bone and allows the detection of SNPs. 

 

1.3.1.3 Genomic sequence analysis 

The increasing numbers of sequenced genomes have led to the development of different 

annotation tools (Glasner et al., 2006; McNeil et al., 2007; Overbeek et al., 2005; 
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Romualdi et al., 2005; Selengut et al., 2007; Tcherepanov et al., 2006; Viswanath et al., 

2007; Zhu et al., 2007). The common procedure is to identify as many genes encoding 

proteins, tRNAs and rRNAs as possible there after assigning them a function. There are a 

number of programs that find protein-coding genes such as GeneMark, Glimmer and 

Orpheus. The normal procedure is to look for an open reading frame (ORF) above a certain 

size. The probability to find a gene in an ORF is lower for shorter ORFs. Another difficulty 

is to find the correct 5’ boundary of the gene when the gene contains multiple start codons. 

Coding regions have a more organized nucleotide pattern frequency than non-coding 

regions (Frangeul et al., 1999). The ribosomal binding site (RBS) is one of those important 

signals for the identification of genes in a DNA sequence, since almost every bacterial 

mRNA (messenger RNA) has an RBS, to the polypeptidical product to be produced. The 

RBS is a region where the ribosome binds to an mRNA to begin the translation of mRNA 

into a protein (Oliveira et al., 2004). 

 

1.4 Genome sequencing of M. mycoides subsp. mycoides LC 
During the course of this research work, whole genome sequencing of MmmLC strain 

95010-C1 was performed using whole genome shotgun strategy at Genoscope (Evry, 

France). MmmLC strain 95010-C1 was isolated at CIRAD in 1995 from a clinical case of 

goat mastitis occurring in France. The genetic material was extracted from a clone culture 

using classical phenol: chloroform extraction. Sequencing was carried out using 3 plasmid 

libraries. 7,000 inserts of 3 Kb were cloned into the multi-copy plasmid pcDNA2.1 

(Invitrogen, USA). 2,500 inserts of 10 Kb fragment sizes were cloned into the small copy 

number plasmid pCNS. Finally, about 800 inserts of 20-25 Kb were cloned into the pBBc 

vector. A total of 24,000 readings were performed to obtain total 12-fold sequence 

coverage. The finishing step was also performed at Genoscope. 

 

1.5 Annotation of M. mycoides subsp. mycoides LC genome 
sequence 

As part of my PhD research activities, I participated in the annotation of the genome 

sequence of strain 95010-C1. Annotation was done in collaboration with INRA Bordeaux, 

using the Contigs-Assembly and Annotation Tool-Box (CAAT-box) platform (Frangeul et 

al., 2004). This software was developed for the computational part of a genome project 

where the sequence is obtained by a shotgun strategy. CAAT-Box allows annotation of 

contigs to start during the finishing phase of sequencing projects. The DNA sequence in 
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CAAT-box is segmented into sequence fragments 500 nucleotides before and 200 

nucleotides after each identified ORF. These segments are also known as individual 

protein files (IPFs). Each IPF is identified by a unique number and is linked to the 

assembly by the identification of the contig on which it is located and is by its position on 

the contig (Frangeul et al., 2004). Certain IPFs which do not seem to contain a coding 

sequence were automatically marked as “FALSEORF”. The CAAT-box platform 

( HTUhttp://cbi.labri.fr/outils/CAAT-Box/MYCOLC/IPFutil.html UTH) incorporates a number of 

features that facilitate the annotation process of each IPF. This platform is used to 

determine CDSs with potential start codons AUG, UUG and GUG and potential stop 

codons UAG and UAA, including the most probable ribosome binding sites, using the 

BLAST and Gene mark programs (Altschul et al., 1990; Isono et al., 1994). Three different 

databases were used in the annotation process: SwissProt 

( HTUhttp://www.ebi.ac.uk/swissprot/index.html UTH), ( HTUhttp://www.ebi.ac.uk/embl/index.htmlUTH) 

TREMBLE and MolliGen (HTUhttp://cbi.labri.fr/outils/molligenUTH). In addition to these three 

databases, the platform includes the tools “InterProScan” and “PrositeScan” for domain 

detection and TMHMM for trans-membrane segment prediction (Sirand-Pugnet et al., 

2007). During the annotation process proteins were considered to be similar when the 

identity exceeded 40 %. Predicted proteins with lower or local similarities to previously 

characterized proteins were annotated as hypothetical proteins. 

 

The objective of this thesis was to use comparative genomics within the M. mycoides 

cluster for the development of specific and robust molecular diagnostic tools for the 

identification of several members of the M. mycoides cluster. The work then advanced to 

the study of functional genomics, primarily to evaluate the capacity of an MmmLC strain 

under whole genome sequencing to be transformed and to express foreign genes. All along 

these studies, genome sequencing and annotation of MmmLC strain 95010-C1 has been a 

baseline study guide. 
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11  IINNTTRROODDUUCCTTIIOONN  
1.1 Genome size estimation 
While the whole genome sequence of MmmLC strain 95010-C1 was underway in 

Genoscope (Evry, France), we have undertaken this part of the study with two main 

objectives: (1) estimation of the genome size of strain 95010-C1 and (2) validation of the 

accuracy of genome sequence assembly using data from size estimation and DNA 

hybridization tests. 

 

Pulse field gel electrophoresis (PFGE) was used for genome size estimation of MmmLC 

strain 95010-C1. PFGE is one of the most important techniques developed for genome size 

estimation and physical genomic mapping of bacterial DNA (Birren et al., 1989b). Gel 

electrophoresis is a method of choice for size fractioning of DNA in analytical 

biochemistry. Depending on the intended application a number of systems have been used 

to facilitate the separation of different fragment sizes. Conventional agarose gel separates 

DNA using steady fields and it is commonly used to separate molecules from a few base 

pairs to about 20 Kbp, while PFGE is used to separate molecules beyond this size range, up 

to 10 Mbp. In PFGE, the electric field is periodically alternated in two directions and DNA 

separation depends on the way the molecules reorient through the gel in response to the 

changing electric field (Gurrieri et al., 1999; Wrestler et al., 1996). 

 

The application of PFGE to genome size estimation has provided a much more accurate 

and labor-saving procedure than the previously used renaturation kinetics method and has 

resulted in a wealth of genome size data (Bové, 1993). Genome size in mollicutes is 

variable not only within the same genus but sometimes among strains of the same species. 

One of the reasons for this variability is the frequent occurrence in these genomes of 

repetitive elements, consisting of segments of protein genes differing in size and number, 

or insertion sequence (IS) elements (Razin et al., 1998). Genome size among mollicutes 

varies from less than 600 Kbp in M. genitalium to over 2.2 Mbp in Spiroplasma, with 

values overlapping between genera (Bové, 1993). 

 

Beside genome size estimation, PFGE has been used for moreP

 
Pthan two decades as a tool 

for molecular typingP

 
Pof strains and it has shown to be discriminatory and reproducible 

(Chen et al., 2005). This technique allows discrimination of strains differing by the 

presence of insertions or deletions. It can also detect recombination events if they include 
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an enzyme recognition site. For example, profiles showing a single band difference were 

observed for all MmmSC strains from Tanzania as compared to PG1P

T
P (Kusiluka et al., 

2001a). PFGE fragments generatedP

 
Pby rare-cutting restriction endonucleases have 

permitted molecular typing of M. bovis (McAuliffe et al., 2004) and MmmLC biotype 

(Tardy et al., 2007). The drawbacks of typing with PFGE technique are that not all isolates 

are typeable using this technique, that it requires culturing, and that the procedure is 

difficult to use routinely (Marois et al., 2001). Beside strain typing, PFGE together with 

DNA hybridization, may be implemented for the localization of certain genes, and in the 

estimation of the copy number of these genes in the genome (Blank and Stemke, 2000; Ye 

et al., 1992). 

 

In the present study, DNA fragments, generated by the PFGE technique, were used to 

estimate the genome size of MmmLC strain 95010-C1. As a control, the fully sequenced 

strain PG1P

T
P was included to compare estimated fragment sizes with real data by comparing 

PFGE results and in-silico data. MmmSC strains included all along the study together with 

type strain PG1P

T
P were 8740-Rita (whole genome sequencing underway) and vaccine strain 

T1/44. Strain Y-goatP

T
P of the MmmLC biotype was also included. Additional strains 

California kidP

T
P of Mcc, strain L of M. bovis and strain PG2P

T
P of M. agalactia have also 

been analyzed. 

 

1.2 DNA Hybridization 
Although certain genome projects do not encounter significant problems during their 

finishing phase, others have been quite difficult to finish. The reason for this may be the 

presence of unclonable genes and repeated regions (Frangeul et al., 1999). For instance, 

during the sequencing of strain PG1P

T
P the presence of high copy numbers of insertion 

sequence elements, the large size of long repeats and high similarities between their copies 

caused problem in genomic assembly (Westberg, 2003). Upon completion, the PG1 P

T
P 

genome revealed the presence of large repeated genomic segments comprising 29 % of the 

total genome size and was found to possess the highest density of insertion sequence 

elements known to bacteria (Westberg et al., 2004). Genome analysis of sequenced strain 

PG1 P

T
P of MmmSC biotype showed four regions containing long repeats of 24 Kbp, 13 Kbp, 

12 Kbp that were duplicated twice and 8 Kbp duplicated three times (Bischof et al., 2006). 
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In order to assess gene duplication in the genome of MmmLC strain 95010-C1 we have 

analyzed the following genes: lppQ, coding for lipoprotein Q and found within the 24 Kbp 

long repeat, mgtA, coding for enzyme magnesium transport ATpase, found within the 

13 Kbp long repeat, phnC, coding for alkylophosphonate ABC transporter, present in the 

12 Kbp long repeat, and finally galE and epsG, coding for UDP-glucose 4-epimerase and 

glycosyltransferase respectively and located within the 8 Kbp long repeat. 

 

One way to fingerprint DNA is by doing a Southern blot. A Southern blot is a method 

routinely used in molecular biology to check for the presence of a specific sequence in a 

DNA sample. Southern blotting combines agarose gel electrophoresis for the size 

separation of DNA with methods to transfer the size separated DNA to a filter membrane 

for probe hybridization. The method is named after its inventor, the British biologist Edwin 

Southern (Southern, 1975). 

 

In this part of the study Southern blot was used to asses the presence of repeated genes in 

MmmLC strain 95010-C1. As it was done for the physical genome mapping, additional 

strains Y-goatP

T
P from MmmLC, strains PG1P

T
P and 8740-Rita from MmmSC were analysed 

simultaneously. DNA probes of the genes listed were used in order to verify if MmmLC 

possessed multiple copies of the selected genes. These data were then used to validate 

whole genome sequence results for strain 95010-C1. 
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22  MMAATTEERRIIAALLSS  AANNDD  MMEETTHHOODDSS  
2.1 Strains 
Mycoplasma strains PG1 P

T
P, 8740-Rita (MmmSC biotype) and 95010-C1, Y-goatP

T 

P(MmmLC biotype) were used for both PFGE and Southern blot techniques. However, for 

the analysis by PFGE additional strains T1/44 (MmmSC), California kidP

T
P (Mcc), PG2 P

T
P 

(M. agalactiae) and LB2 B (M. bovis) were included in the study. 

 

2.2 DNA plug preparation 
Mycoplasmas were cultivated in modified Hayflick media (PPLO broth without crystal 

violet 21 g/l, de-complemented horse serum 20 %, fresh yeast extract 10 %, glucose 0.2 % 

and sodium pyruvate 0.4 %) (Thiaucourt et al., 1992). Cultures at stationary phase (40 ml) 

were harvested by spinning at 13000 g for 30 min at +4°C. This was then followed by 

washing of the mycoplasma cells three times with 1XPBS and twice with 10 % sucrose, 

centrifugation at 12000 g for 25 min at +4°C. Cells were re-suspended in 500 µl of 

250 mM EDTA pH8, 20.6 % sucrose. One millimeter-thick agarose plugs (using Plug 

Molds, Bio-Rad) were made with a 1:1 mixture of 1 % low melting agarose (Bio-Rad) 

prepared in 25 mM EDTA pH 8, 10.3 % sucrose and the cell suspension. The plugs were 

then incubated in digestion buffer (10 mM Tris-HCl, 0.5 M EDTA, 1 % lauroyl sarcosine, 

0.5 mg/ml proteinase K) for 48 hrs at 50°C. 

 

2.3 Restriction Enzyme Analysis 
2.3.1 Choice of restriction enzymes and digestion for PFGE 

In-silico enzymatic digestion of the PG1P

T
P genome ( HTUhttp://www.in-silico.comUTH) and data 

obtained from previous studies (Kusiluka et al., 2001b; Pyle et al., 1990) were used as a 

reference in the selection of restriction enzymes BamHI, BglI, MluI and NcoI (New 

England Bio labs). For digestion, agarose plugs were dialyzed overnight by placing them 

in a 50 ml conical tube containing TE (10 mM Tris, pH 7.4, 1 mM EDTA) and washed 

three times at room temperature with slow agitation. DNA-agarose plugs were equilibrated 

for 1 hr in 160 µl 1X restriction buffer (New England Bio labs), 60 Units of enzyme were 

mixed in the same volume of fresh 1X restriction buffer and digestion reactions proceeded 

for 16 hrs at 37°C. For each enzyme assay a mock digestion was included (i.e. incubation 

of DNA-plugs in buffer mix without addition of restriction enzyme). 
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2.3.2 Choice of restriction enzymes and digestion for Southern blotting 

Restriction enzymes used for the analysis of duplicated genes were chosen with the help of 

Vector NTI software. A large sequence containing a duplicated zone was extracted from 

the PG1P

T
P genome sequence and analyzed for non-cutting enzymes of the genes of interest 

(lppQ, phnC, epsG, mgtA, and galE). Enzymes ApalI, EcoRV, EcoRI, and XbaI (New 

England Biolabs) were chosen for the digestion of genomic DNA from MmmLC strains 

95010-C1 and Y-goatP

T
P and MmmSC strains PG1P

T
P and 8740-Rita. Restriction enzyme 

digests were performed using standard procedures as recommended by the manufacturer 

(New England Biolabs). 

 

2.4 PFGE Electrophoresis conditions 
The digested fragments in plugs were separated on 1.2 % pulse field certified agarose (Bio 

Rad) gels; running conditions were adjusted according to fragment sizes. The CHEF-DR II 

(Bio-Rad, Richmond, CA, USA) that uses two homogenous electric fields fixed at 120° 

reorientation angle was used for migration. Because of the highly uniform field it generates 

this system is supposed to give better gel runs. For digests using BamHI, gels were run at 

6 VcmP

−1
P for 16 hr with the pulse ramp time varied from 0.1 to 28 sec in 0.5XTBE buffer 

(45 mM Tris, 45 mM borate, 1 mM EDTA, pH 8.2) at 14°C. A lambda ladder and low 

range PFG marker (New England Biolabs) were used as molecular weight markers. In the 

case of MluI and NcoI digests, the same parameter was used except for the switching time 

that varied from 1 sec to 42 sec. The gels were stained with 1 μg/ml ethidium bromide for 

15 min, de-stained with water for 15 min and the DNA bands were visualized using a UV 

light. 

 

2.5 DNA probes for Southern blot hybridization test 
Digoxigenin-labeled specific DNA probes were prepared for each of the genes to be tested 

lppQ, phnC, epsG, galE and mgtA. Primer pairs for this purpose were designed from 

corresponding genes of the genome sequence of PG1P

T
P and named accordingly as LppQ-

F/R, phnc-F/R, epsG-F/R, galE-F/R, and mgtA-F/R (Table II. 1). DNA probes of 758, 821, 

716, 601, 747bp-long were prepared for genes epsG, galE, mgtA, phnC and lppQ 

respectively. Digoxigenin (DIG) PCR labelling was performed according to the 

manufacturers instructions (Roche Diagnostics GmbH, Mannheim, Germany). The 

reaction volume was fixed at 100 µl with: 10 µl of 10 X Taq buffer (Roche), a 1:6 ratio of 

dig11dUTP: dTTP i.e. 30 µM dig-11-dUTP, 180 µM dTTP, 200 µM dATP, 200 µM dGTP 
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and 200 µM dCTP (Roche Diagnostics), 0.4 µM of each of the above primers, 5.25 U of 

Taq long expand DNA polymerase (Roche Diagnostics) and 1 μl of a 20 ng/µl DNA 

template (DNA from type strain PG1 P

T
P). For all the DNA probes the PCR conditions were 

consisted of an initial denaturation step at 94°C for 2 min followed by 30 cycles of 94°C 

for 20 sec, 52°C for 20 sec and 68°C for 30 sec. 

 

Table II. 1 Primers designed from the PG1 P

T
P genome sequence for the preparation of specific DNA 

probes 

 
 
2.6 Southern blotting 
Digested genomic DNAs from strains 95010-C1, Y-goatP

T
P, PG1P

T
P and 8740-Rita were 

separated on a 0.7 % agarose gel and migrated overnight at 18V in 1 X TEA buffer. DNA 

fragments on a gel were depurinated for 15 min (0.5 M HCl) and then denatured for 1 hr in 

0.5 M NaOH /1.5 M NaCl. Before transfer to a membrane the gel was kept for 1hr in 

neutralization solution (Tris-HCl 0.5 M / 1.5 M NaCl). The above three steps depurination, 

denaturation and neutralization were conducted under slow agitation, and the gel was 

rinsed in between each step. The DNA from the gel was transferred to a highly positively 

charged Nylon Hybond N + membrane (Amersham Pharmacia Biotech). Passive transfer 

of denatured DNA fragments to the nylon membranes were performed using 20XSSC 

(Annex 3) solution over a period of 16-18 hrs. Following transfer, the membranes were 

placed DNA facing upwards on a 2XSSC soaked Whatman 3 mm paper and fixed for 

3 min under UV light (Amersham UV cross-linker). Immediately after, the membranes 

were rinsed in double distilled water and kept at room temperature to dry. A pre-

Primer 

name Sequence 5’-3’ 

Locus 

Tags 

Fragment 

(bp) 

Tm 

(°C) 

LppQ-F CGATTCTAAAATTATAAAAGGTGAACT 52 

LppQ-R TCATGAGCACCATTAAACATACTATC MSC_1021 747 51 

epsG-F TAATCACGGATGAAGATACATTCG 52 

epsG-R CAAGTATAACTAATGGTGTTGTTGTAAAA MSC_0973 758 53 

galE-F GAGCAATGTCTATATTTAGTTTATAACCTA 50 

galE-R AAGCCATGTAGCTGAAATTATTAATA MSC_0971 821 51 

mgtA-F TGCAAATCCCATAAAGATTAATG 51 

mgtA-R GTGGAAGTTTTGATAGTATTAAAGATAATC MSC_0868 716 51 

phnC-F GACCACCAGAAAGTTCACTTACTT 51 

phnC-R ACACTGGATATAACAAATTTATGCC MSC_0803 601 50 
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hybridization was performed for 2 hr before the hybridization. Membranes were hybridized 

overnight at 50°C with 800 ng digoxigenin marked DNA probe in 1X Blocking reagent 

(Roche Diagnostics). After overnight hybridization the membranes were first washed in 

low stringency solution 2X SSC/ 0.1%SDS for 15 min at room temperature, followed by a 

high stringency solution 0.5X SSC / 0.1%SDS at 65°C for 15 min. Membranes were then 

blocked for 30 min in 1X blocking solution, and placed in a new 1X blocking reagent 

containing a conjugate anti-Digoxigenin-POD (Peroxidase), Fab fragments diluted to a 

1/8000 for another 30 min (Roche Diagnostics). These steps were conducted under slow 

agitation. Then membranes were washed 3 times in 1X PBS solution each time for about 

10 min. The non-radioactive ECL chemiluminescence detection solution was prepared by 

mixing two detection reagents immediately before use (Amersham, Life science). 

Detection reagent 1 contains HB2 BOB2 B, the substrate for peroxidise, and detection reagent 2 

contains luminol, which produces a blue light upon oxidation. This reaction was revealed 

by Hyperfilm-ECL (Amersham, Life science) in dark room with a red light. 
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33  RREESSUULLTTSS  AANNDD  DDIISSCCUUSSSSIIOONN  
3.1 Genome size estimation of strain 95010-C1 
The genome size of MmmLC strain 95010-C1 was estimated using the PFGE technique. 

Rarely cutting enzymes BamHI, BglI, MluI, and NcoI were used to generate large 

fragments of the genome of strain 95010-C1, Y-goat P

T 
P(MmmLC), PG1 P

T
P, vaccine strain 

T1/44 and 8740-Rita (MmmSC strains), California kidP

T
P (Mcc), L (M. bovis) and PG2P

T
P 

(M. agalactiae). 

 

Most of the DNA fragments generated by enzyme BamHI were shorter than 97 Kbp and 

were unsuitable for genome size analysis (data not shown). The digestion of DNA plugs 

using the enzymes MluI (Figure II. 1), BglI (Figure II. 2) and NcoI (Figure II. 3) gave 

different band patterns for all species analyzed and also for different strains of the same 

species: Y-goatP

T
P and 95010-C1 (MmmLC); T1/44, PG1P

T
P and 8740-Rita (MmmSC). 

 

 

 

Figure II. 1 Pulsed-field profiles of MluI digested genomic DNA of mycoplasma strains. 

Lanes LM and M: Lambda DNA molecular size marker in Kb; lane 1: California kid P

T
P (M. 

capricolum subsp. capricolum); lanes 2 and 3: Y-goatP

T
P and 95010-C1 (M. mycoides subsp. 

mycoides LC); lanes 4 and 5: PG2P

T
P and L2 (M. agalactiae and M. bovis respectively) lanes 6-8: 

T1/44, 8740-Rita and PG1 P

T
P (M. mycoides subsp. mycoides SC); lanes 9 and 10: Mock Digestion of 

PG1 P

T
P genomic DNA and undigested PG1P

T
P DNA. 



 

  31 

 

 

Figure II. 2 Pulsed-field profiles of BglI digested genomic DNA of mycoplasma strains. 

Lanes M: Lambda DNA molecular size marker; lanes 1 and 2: Y-goatP

T
P and 95010-C1 (M. mycoides 

subsp. mycoides LC); lane 3: L2 (M. bovis); lanes 4-6: T1/44, 8740-Rita and PG1 P

T
P (M. mycoides 

SC). 

 

 

 

Figure II. 3 Pulsed-field profiles of NcoI digest of genomic DNA of mycoplasma strains. 

Lanes LM and M: Lambda DNA molecular size markers; lanes 1 and 2: Y-goat P

T
P and 95010-C1 

(M. mycoides subsp. mycoides LC); lane 3: L2 (M. bovis); lanes 4-6: T1/44, 8740-Rita and PG1 P

T
P 

(M. mycoides SC). 
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3.1.1 Mycoplasma strains analyzed 

3.1.1 1 Mcc, M. bovis and M. agalactiae 

Strain California kidP

T
P tested with the MluI (Figure II.1) revealed only two fragments. One 

bigger fragment of over 727.5 Kbp that was beyond the margin of the molecular weight 

marker (M) (Biolabs, England), which made fragment size estimation difficult, and one 

smaller fragment below 145 Kbp. In-silico digestion of the sequenced genome of strain 

California kidP

T
P (NC_007633) using enzyme MluI generated two fragments of 874 and 

136 Kbp that corresponded with the bands observed by PFGE. The profiles obtained with 

enzymes BglI (Figure II.2) and NcoI (Figure II.3) for strain L2 (M. bovis) were not 

satisfactory. Apparently, multiple restriction sites for these two enzymes are present in the 

M. bovis genome, resulting in smaller fragments and, consequently, unsuitable profiles for 

PFGE analysis. Strain PG2 P

T
P (M. agalactiae) was only analyzed with MluI (Figure II.1), 

providing a distinct band pattern. 

 

3.1.1.2 MmmSC strains 

MluI yielded six fragments for the PG1P

T
P strain tested (Figure II.1). The number of 

fragments obtained corresponds with the in-silico digest of the published PG1P

T
P genome. 

However, in our PFGE result the genome size was estimated as 1304 Kbp; 92 Kbp greater 

than the published PG1P

T
P sequence (Table II.2). 

 

BglI yielded six fragments similar to what was observed in in-silico digest of strain PG1 P

T
P 

(Figure II.2). The total genome size estimated from this enzyme was 1247 Kbp; 35 Kbp 

higher than the actual genome size (Table II.2). 

 

NcoI yielded seven fragments in strain PG1 P

T
P (Figure II.3). Six restriction fragments were 

determined in-silico for this enzyme. The calculated band of 80 Kbp was double the size of 

the last band observed in-silico (Table II.2). In addition to this, the PFGE profile revealed 

the presence of a 30 Kbp DNA fragment that was absent in the in-silico digest of the PG1P

T
P 

genome. The sum of the total fragment sizes generated by NcoI was 1251 Kbp; 39 Kbp 

higher than the sequenced PG1P

T
P genome. Systematically, we have estimated a higher 

genome size for strain PG1P

T 
Pby PFGE as compared to the published 1211 Kbp. The 

average genome size obtained with the three enzymes was calculated as 1267 Kbp. This 

may be explained by differences in the stock of PG1P

T
P strains analysed (presumably due to 

multiple passages in different labs). 
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Table II. 2 Estimated DNA sizes of mycoplasmas strains. 

Y-goat P

T
P and 95010-C1 (M. mycoides subsp. mycoides LC); PG1 P

T
P, T1/44 (M. mycoides subsp. 

mycoides SC) obtained by PFGE following digestion with MluI, NcoI and BglI. In-silico profiles 

obtained from the sequenced genomes PG1 P

T
P and 95010-C1 are also displayed. 

P

* Represents double fragments 

List of Fragment Size in  Kbp obtained from three Enzymes 

No. Fragments Enzyme 

In- silico 

PG1P

T
P
 PG1P

T
P
 T1/44 Y-goatP

T
P
 95010-C1 

In- silico 

95010-C1 

1 MluI 430.957 514 420 424 509 511.012 

2  272.863 280 280 363 390 385.921 

3  245.026 242 242 338 168 153.062 

4  191.381 194 194  50* 52.136 

5  57.443 60 50   51.868 

6  14.033 14 14    

Size from MluI ∆PG1=92 1211.703 1304 1200 1125 1117 1153.999 

1 BglI 364.71 380 380 380  491.573 

2  332.898 343 343 345  445.782 

3  191.246 194 140 157  115.913 

4  135.789 138 118 97*  100.731 

5  105.105 112 115 60   

6  81.955 80     

Size from BglI ∆PG1=35 1211.703 1247 1096 1039  1153.999 

1 NcoI 402.055 390 445 400 370 373.445 

2  309.031 318 318 238 266 254.081 

3  219.246 210 140 145 145 147.086 

4  122.581 118 118 110 118 116.689 

5  113.922 105 105 102 115 112.882 

6  44.868 80 30 60 97 105.537 

7   30  48 35 33.576 

8     28 - 6.757 

9      - 3.946 

Size from NcoI ∆PG1=39 1211.703 1251 1156 1131 1146 1153.999 
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Based on data generated from all the three enzymes, the genome size of MmmSC strain 

T1/44 was estimated to be smaller than that of the PG1P

T
P strain analysed. This difference 

was observed to be 104 Kbp when estimated from fragments generated by enzyme MluI, 

151 Kbp from fragments generated by enzyme BglI, and 95 Kbp from fragments generated 

by enzyme NcoI. The average genome size estimation from fragments obtained by the 

three enzymes was calculated as 1151 Kbp (Table II. 2). This average size estimation 

however is 60 Kbp lower than the published PG1P

T
P sequence. 

 

Strain 8740-Rita gave a relatively distinct profile with BglI; the weak or non 

distinguishable DNA pattern obtained with enzymes NcoI and MluI resulted in difficulty to 

determine its approximate genome size. 

 

3.1.1.3 MmmLC strains 

MluI gave three fragments in strain Y-goatP

T
P and four fragments in strain 95010-C1 (Figure 

II. 1). The total sum of the molecular weights generated by this enzyme gave genome size 

estimations of 1125 and 1117 Kbp for strains Y-goat and 95010-C1 respectively. The in-

silico digest of the whole genome sequence of strain 95010-C1 using MluI generated five 

fragments corresponding to sizes 511 Kbp, 385 Kbp, 153 Kbp, 52 Kbp and 51 Kbp. In the 

PFGE experiment the corresponding sizes of fragments generated by this enzyme were 

509 Kbp, 390 Kbp, 168 Kbp and 50 Kbp, with the latter fragment being more intense than 

the preceding three fragments. The intensity of the 50 Kbp fragment in PFGE may 

represent the overlapping fragments of 52 Kbp and 51 Kbp predicted in-silico (Table II. 2). 

 

BglI resulted in partial digestion of the 95010-C1 genomic DNA (Figure II. 2). In order to 

avoid bias, fragments obtained with this enzyme were not considered for genome size 

estimation. However, five distinct fragments were obtained by digestion of Y-goatP

T
P with 

this enzyme, providing a genome size estimation of 1039 Kbp, which was lower than that 

obtained with MluI. The higher intensity of the fifth fragment at 97 Kbp (Figure II. 2) may 

reflect the presence of an additional fragment in the Y-goatP

T
P genome, which would then 

bring the genome size to 1136 Kbp. This value is closer to the size estimated with MluI 

(Table II. 2). 

 

NcoI generated eight fragments for strain Y-goatP

T
P and seven for 95010-C1 (Figure II. 3). 

For strain Y-goatP

T
P the sum of the molecular weights of the generated fragments resulted in 
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an average genome size estimation of 1131 Kbp (Table II. 2). This estimation was close to 

that obtained with MluI. For strain 95010-C1, seven fragments were generated by PFGE of 

sizes 370 Kbp, 266 Kbp, 145 Kbp, 118 Kbp, 115 Kbp, 97 Kbp and 35 Kbp (Figure II. 3) 

resulting in a genome size estimation of 1146 Kbp. However, in-silico digestion of this 

same strain with NcoI predicted nine fragments of 373 Kbp, 254 Kbp, 147 Kbp, 116 Kbp, 

112 Kbp, 105 Kbp, 33 Kbp, 7 Kbp and 4 Kbp. In our PFGE result we were not able to 

detect the latter two fragments, as the electrophoretic migration conditions were set to 

separate larger fragments. These smaller fragments must have migrated away in the 

electrophoresis buffer. Surprisingly, the other seven fragments provided similar sizes as 

compared to the in-silico predictions (Table II.2). 

 

 

3.2 Assessment of the presence of repeated gene sequences 
The Southern blot technique was used to evaluate the presence of duplicated genes in the 

genome of MmmLC strain 95010-C1. In type strain PG1P

T
P, genes lppQ, phnC, mgtA, galE 

and epsG are found in multiple copies. Together with strain 95010-C1, type strain Y-goatP

T
P 

of MmmLC and strain 8740-Rita of MmmSC were analyzed simultaneously. 

 

3.2.1 Gene lppQ (ApalI digest) 

The DNA probe prepared for gene lppQ did not hybridized with any band from the 

MmmLC genomes of strains Y-goatP

T
P and 95010-C1 (data not shown). On the contrary, this 

probe hybridized with two bands from the PG1P

T
P DNA and with a single band from 

MmmSC strain 8740-Rita. These results confirmed the previous findings of Bischof et al., 

(2006) that showed PG1 P

T
P to be the only MmmSC strain known to posses a duplicated 

24 Kbp fragment containing the lppQ gene. 

 

3.2.2 Gene mgtA (XbaI digest) 

3.2.2.1 mgtA gene in strain PG1P

T
P
 

The mgtA probe hybridized strongly with two PG1P

T
P XbaI fragments with apparent 

molecular sizes of 13700 bp and 8000 bp (Figure II. 4). In-silico analysis of the PG1 P

T
P 

genome revealed that the observed signals corresponded to XbaI fragments containing 

locus tags MSC_0868 (13302 bp) and MSC_0881 (7827 bp). In the PG1P

T
P genome a third 

locus (MSC_0907) has been annotated as mgtA, though this locus shares an amino acid 

identity of only 30% with the preceding two copies of mgtA. 
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3.2.2.2 mgtA gene in strain 8740-Rita 

The same mgtA DNA probe hybridized to a single band in MmmSC strain 8740-Rita, but 

with a different band size of around 9500 bp. This result revealed that the mgtA gene is not 

duplicated in 8740-Rita. 

 

3.2.2.3 mgtA gene in MmmLC strains 

It was not possible to analyse mgtA in strain 95010-C1 using enzyme XbaI, because this 

enzyme did not cut this strain’s DNA (Figure II. 4). However, BLAST analysis and 

annotation of the whole genome sequence of strain 95010-C1 allowed to identify locus tag 

MLC_7930 containing the mgtA gene. The mgtA DNA probe hybridized strongly with 

only one band of around 5600 bp in strain Y-goatP

T
P, showing that mgtA is neither duplicated 

in this strain. 

 

 

 

Figure II. 4 Southern hybridization of XbaI digested DNA using mgtA specific DNA probe. 

Lanes 1 and 2: MmmSC strains PG1 P

T
P and 8740-Rita; lane 3 and 4: MmmLC strains Y-goat and 

95010-C1. The absence of bands for strain 95010-C1 was attributed to the inability of XbaI to cut 

this strain’s DNA. 
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3.2.2.3.1 XbaI enzyme activity in 95010-C1 

In order to explain the mechanism behind the absence of XbaI enzymatic activity we 

assessed if XbaI belonged to the list of enzymes sensitive to Dam methylase activity. From 

this analysis we have found out that the restriction recognition site of XbaI may partially be 

overlapped by Dam Methylase Site ‘GATC’. This enzyme has a cutting site 

(T↓CTAG↑A), which may be blocked by Dam methylation only if this recognition site is 

preceded by nucleotide sequences GA or followed by TC. In-silico XbaI restriction of the 

95010-C1 genome revealed a number of sites not partially overlapped by Dam methylase. 

Therefore, Dam methylation cannot explain the complete absence of digestion of 95010-

C1 by enzyme XbaI. There must be another mechanism at stake that is not present in 

strains PG1P

T
P, Y-goatP

T
P or 8740-Rita. 

 

3.2.2.3.2 Dam methylase activity between MmmLC and MmmSC 

To verify the presence of Dam methylase activity in the 95010-C1 genome we have chosen 

three enzymes having a ‘GATC’ recognition site: MboI, DpnI and DpnII. Enzymes MboI 

and DpnII do not cut if adenine is methylated in the recognition site; on the contrary, DpnI 

requires the adenine to be methylated for cleavage. MmmLC and MmmSC digests 

revealed that 95010-C1 and Y-goatP

T
P could not digested by either MboI or DpnII. However, 

these enzymes were able to digest the two MmmSC strains tested PG1P

T
P and 8740-Rita 

(Figure II. 5). DpnI, which recognizes a methylated site, was able to digest the genomes of 

both MmmLC strains but not those from MmmSC. In conclusion, there is a Dam 

methylase activity in the two MmmLC strains tested but not in MmmSC. 
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Figure II. 5 Restriction enzyme analysis of MmmLC and MmmSC strains. 

a) XbaI did not digest 95010-C1 DNA b) Dam methylase activity of MmmLC and MmmSC 

genomes evidenced when using enzymes MboI, DpnII and DpnI. Lower visible fragments of DpnII 

digestion from strain 95010-C1 are nick and supercoiled forms of its natural plasmid. 

 

 

The 95010-C1 genome annotation has enabled the identification of seven genes that 

tentatively code for methylases. Identified in locus tags MLC_5410 ( TTetrapyrrole 

methylase family protein) T, MLC_4870 (rRNA methylase), UMLC_1980 (DNA methylase)U, 

UMLC_1620 (DNA UTUmodification methylase)U,T MLC_8270 (tRNA/rRNA methyltransferase), 

UMLC_7790 ( UTUAdenine-specific DNA methylase)UT and UMLC_7290 (Putative C5 UTUmethylase UTU)U. 

BLAST analyses were made for the above four underlined putative DNA methylases. 

CDSs from loci MLC_1980 and MLC_7290 have revealed strong similarity of 83 % and 

97 % of with their homolog in MmmSC, MSC_0219 and MSC_0780 respectively. Locus 

containing the Adenine-specific DNA methylase MLC_7790 was neither identified in 

MmmSC strain PG1 P

T
P nor in other sequenced mycoplasma genomes. However, this gene 

existed with 100 % homology in the recently sequenced MmmLC strain GM12b. The 

closest relative of this gene in other bacterial species has been found in Haemophilus 

haemolyticus, with a CDS similarity of 63.4 %. The fourth locus tag we analysed was 

MLC_1620, containing a CDS for DNA modification methylase. We have found its 

homolog MSC_0186 in MmmSC strain PG1 P

T
P, possessing a longer sequence (i.e.: 662 



 

  39 

amino acids). Amino acid sequence alignment revealed only the N-terminal 390 aa 

sequence being similar to MLC_1620. From other bacterial species, a similarity of 57 % 

was observed in a 396 aa sequence CDS of Streptococcus pneumoniae, encoding an XbaI 

methylase. 

 

3.2.3 Gene phnC (EcoRI digest) 

3.2.3 1 phnC gene in strain PG1 P

T
P
 

The phnC DNA-probe hybridized strongly with two PG1 P

T
P EcoRI fragments with apparent 

molecular sizes of 14200 bp and 5000 bp. A very weak signal appeared with a lower band 

of 3400 bp (Figure II. 6). Through in-silico analysis, the strongest signal corresponded to 

fragments containing MSC_0789 (14277 bp) and MSC_0803 (5102 bp). The weaker signal 

may correspond to fragment containing MSC_0078 that has a similar annotation (phnC) 

but which had a similarity of only 59 % with the other two phnC genes. 

 

3.2.3 2 phnC gene in strain 8740-Rita 

The phnC DNA probe also hybridized with two EcoRI bands of strain 8740-Rita DNA, 

though of different sizes. This shows that phnC is also duplicated in the genome of this 

strain but mutation may have altered the digestion pattern. 

 

3.2.3 3 phnC gene in MmmLC strains 

The phnC probe hybridized strongly with only one band at around 4900 bp showing that 

phnC is not duplicated in strain 95010-C1. BLAST analysis and annotation allowed the 

identification of MLC_7320 as the phnC ortholog. By comparison three bands of weaker 

intensities were observed with strain Y-goatP

T
P, which may suggest either lower sequence 

similarity or presence of a cutting site within the phnC ortholog in Y-goatP

T
P (Figure II. 6). 
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Figure II. 6 Southern hybridization of EcoRI digested DNA using phnC specific DNA probe. 

Lanes 1 and 2: MmmLC strains 95010-C1 and Y-goatP

T
P; lane 3 and 4: MmmSC strains PGP

T
P and 

8740-Rita. This gene appears to exist in two copies in strain 95010-C1, three or 4 copies in Y-goat 

and three copies in both MmmSC strains. 

 

 

3.2.4 Gene galE (EcoRV digest) 

3.2.4.1 galE gene in strain PG1 P

T
P
 

The galE DNA-probe hybridized strongly with three PG1P

T
P EcoRV fragments with apparent 

molecular sizes of 13280 bp, 9600 bp and 8200 bp (Figure II. 7). Through in-silico analysis 

the three strong signals corresponded to EcoRV fragments containing MSC_0985 

(13307 bp), MSC_0978 (9669 bp) and MSC_0971 (7732 bp). 

 

3.2.4.2 galE gene in strain 8740-Rita 

By comparison with 8740-Rita, the same probe hybridized with three bands of the same 

size. This shows that gene galE is also triplicate in this strain (Figure II. 7). 

 

3.2.4.3 galE gene in MmmLC strains 

The galE DNA-probe hybridized strongly with only one band at around 3000 bp showing 

that galE is present in a single copy in strain 95010-C1. BLAST analysis and annotation 

allowed the identification of MLC_8190 as the galE ortholog. By comparison, one band of 
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high intensity at around 3000 bp and a second band of weaker intensity at around 3500 bp 

were observed with strain Y-goatP

T
P. The weak intensity of the higher band in Y-goatP

T
P could 

represent lower sequence similarity of the second copy galE ortholog (Figure II. 7). 

 

 

Figure II. 7 Southern hybridization of EcoRV digested DNA using galE specific DNA probe. 

Lanes 1 and 2: MmmLC strains 95010-C1 and Y-goatP

 T
P; lanes 3 and 4: MmmSC strains PG1 P

T
P and 

Rita, this gene seems to exist in one copy in strain 95010-C1, two copies in Y-goatP

 T
P and in three 

copies in both MmmSC strains. 

 

 

3.2.5 Gene epsG (EcoRV digest) 

3.2.5.1 epsG gene in strain PG1P

T
P
 

The epsG DNA probe hybridized strongly with four PG1 P

T
P EcoRV fragments with apparent 

molecular sizes of 16000 bp, 13500 bp, 9800 bp and 7800 bp. Through in-silico analysis 

the strong signals from the four bands corresponded to fragments containing MSC_0108 

(15984 bp), MSC_0987 and MSC_0993 (13307 bp), MSC_0980 (9669 bp) and a fourth 

fragment of 7732 bp corresponding to MSC_0973. The fragment at 13307 bp was found to 

contain two epsG copies, revealing the presence of five copies of this gene in the PG1P

T
P 

genome (Figure II. 8). 
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Figure II. 8 Southern hybridization of EcoRV digested DNA using epsG specific DNA probe. 

Lanes 1 and 2: MmmLC strains 95010-C1 and Y-goatP

T
P; lanes 3 and 4: MmmSC strains PG1 P

T
P and 

Rita. This gene seems to exist in one copy in strain 95010-C1, two copies in strain Y-goatP

T
P and 

both MmmSC strains revealed four hybridizing bands. 

 

 

3.2.5.2 epsG gene in 8740-Rita 

By comparison, the same DNA probe hybridized with four bands in strain 8740-Rita. 

Three bands observed at the same size as those from PG1P

T
P: 13500 bp, 9800 bp and 

7800 bp. The first band however was located at around 17000 bp, this could refer mutation 

in the restriction site of the genome of strain 8740-Rita resulted in alerted digestion pattern. 

 

3.2.5.3 epsG gene in MmmLC strains 

The epsG DNA probe hybridized strongly with only a single band at 10800 bp in strain 

95010-C1, showing presence of a single epsG gene. BLAST analysis and annotation 

allowed identification of two locus MLC_8180 and MLC_1020 as the epsG orthologs. 

Locus MLC_1020 was localized in an EcoRV fragment of 10636 bp and locus MLC_8180 

was found in a 1062 bp EcoRV fragment. The 5’end of MLC_8180 was also found to be 

truncated by restriction enzyme EcoRV. This may explain the absence of hybridization of 

the epsG DNA probe with the gene copy in locus MLC_8180. By comparison, two bands 
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of weak intensities were observed with strain Y-goat P

T
P, corresponding to 17000 and 

16300 bp. The weaker intensity in this strain could suggest lower sequence similarity 

(Figure II. 8). 
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44  CCOONNCCLLUUSSIIOONNSS  AANNDD  DDIISSCCUUSSSSIIOONN  
The finishing phase of the whole genome sequence of strain 95010-C1 provided a total 

genome size of 1154 Kbp and a natural plasmid of 1800 bp. The genome size has 

corresponded to that obtained by PFGE genome size estimation using enzyme NcoI (i.e. 

1146 Kbp with a variation of 0.69 %). The estimation obtained by PFGE was used in the 

final assembly and validation of the whole genome sequence of strain 95010-C1. Although 

the PFGE profiles obtained with NcoI and MluI have not provided precise genome size 

estimation, both enzymes provided interesting guidelines for the finishing phase. The 

presence of two integrative and conjugative elements (ICEs) of sizes 28 Kbp and 30 Kbp 

brought difficulty to whole genome sequence assembly. In-silico genome analysis of 

95010-C1 has revealed the two ICEs to be located within 254 and 105 Kbp NcoI 

fragments. The corresponding NcoI fragments from the PFGE profiles were 266 Kbp, 

which contained the 28 Kbp ICE, and 97 Kbp, containing the 30 Kbp ICE. 

 

The drawbacks we came across during genome size estimation of 95010-C1 using PFGE 

profiles were, first, when fragments of equal molecular weights were generated that could 

not be distinguished (i.e.: MluI DNA fragments of 52 and 51 Kbp). When the high 

intensity of the 50 Kbp fragment generated by enzyme MluI was considered as overlapping 

of two fragments of approximate sizes, then the genome size estimation (i.e. 1167 Kbp) 

was closer to the in-silico value with a difference of 13 Kbp. The other drawback 

encountered was the failure to detect smaller bands. For instance, the 7 and 3 Kbp 

fragments generated by the enzyme NcoI were not detected on the gel. 

 

The analysis made by Pyle and colleagues (1990) after restriction digestion by enzymes 

BglI, XhoI, SalI and SmaI; and Pyle and Finch (1988) restriction digestion by enzymes 

ApalI, BamHI, BglI, BssHI, SalI, SmaI, XhoI demonstrated the average genome size for 

PG1 P

T
P to be 1280 Kbp. This estimation is very close to the average genome size estimation 

obtained in our study from the three enzymes (i.e. 1267 Kbp). The estimation made by 

Pyle and colleagues and that presented in our study were respectively 68 and 55 Kbp 

greater than the published PG1P

T
P genome size data (Westberg et al., 2004). One reason that 

was previously mentioned may be the difference in the stock of strain PG1P

T
P used in these 

analyses. On the other hand differences may also be due to possible errors during fragment 

size estimation. Precision in measuring the exact size of each DNA fragments had been 

problematic, especially when DNA fragments lied at an intermediate position between two 
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molecular weight markers. To overcome this bias in size estimation, advanced softwares 

for precise molecular weight measuring are required. 

 

Different attempts to prepare MmmSC strain 8740-Rita’s DNA failed to give clear-cut 

PFGE profile in our study. Hollis and colleagues compared PFGE and ribotyping of 

bacterial isolates. After reiterated attempts to prepare DNA they concluded that some 

strains were non-typeable with the PFGE technique (Hollis et al., 1999). In some cases the 

number of non-typeable PFGE strains can be significant, masking the discrimination 

ability of this technique. This phenomenon was noticed when (Marois et al., 2001) found 

non-typeable M. synoviae strains. Non typeable M. bovis strains have also been observed 

by McAuliffe et al. (2004). Contrarily to strain 8740-Rita, T1/44 gave a clear-cut profile 

upon PFGE, which helped in estimating the genome size of this strain. In this study, the 

average genome size difference between T1/44 and sequenced PG1P

T
P genome was found to 

around 60 Kbp. Bischof et al. (2006) analyzed the different repeated zones observed in the 

PG1 P

T
P genome and found absence of the 24 Kbp DNA fragment duplication in strain T1/44. 

The variation obtained from the present implies that the differences between strains T1/44 

and PG1 P

T
P must relate to additional DNA sequences, besides the 24 Kbp DNA fragment. 

 

PG1 P

T
P has a larger genome size both by in-silico and PFGE analysis as compared to the two 

MmmLC strains analyzed. An explanation for the greater genome size of this strain may be 

the presence of large numbers of IS elements as well as repeated zones containing multiple 

gene copies. MmmLC strain Y-goat P

T
P was estimated to have an average genome size of 

1200 Kbp by Pyle and Finch (1990). In our study the same number of fragments were 

obtained by digestion with the commonly used enzyme BglI, although size estimations in 

the present study using the three enzymes BglI, MluI and NcoI were lower than the results 

obtained by Pyle and Finch. In a recent study of the prevalence of MmmLC isolates from 

the ear canal of healthy goats, NcoI was found the most suitable enzyme generating 

interpretable PFGE profiles (Tardy et al., 2007). The six to nine fragments generated by 

this enzyme corresponded to the fragments generated from our MmmLC strains tested. The 

PFGE profiles obtained for these two MmmLC strains using all the three enzymes 

permitted differentiation of the two strains. However, the majority of MmmLC strains 

tested by Tardy and colleagues (2007) gave similar, if not identical PFGE patterns with the 

exception of three isolates. Variation in PFGE pattern may be associated with 

recombination events including enzyme recognition site, point mutations occurring within 



 

  46 

the cleavage sites or, as in the case of strain 95010-C1, could be the presence of ICE 

elements. The NcoI fragment containing the 28 Kbp ICE element in strain 95010-C1 (i.e. 

266 Kbp) corresponded to a 238 Kbp fragment obtained in strain Y-goat P

T
P. Similarly, the 

97 Kbp DNA fragment containing the 30 Kbp ICE element corresponded to a 60 Kbp 

DNA fragment in strain Y-goatP

T
P. These findings imply absence of the ICE elements in the 

corresponding fragments in strain Y-goatP

T
P. 

 

Southern hybridization studies conducted in order to assess the presence of repeated DNA 

sequences in the 95010-C1 genome revealed clear differences between MmmSC and 

MmmLC biotypes. Multiple copies of the genes lppQ, epsG, galE, phnC and mgtA were 

observed in MmmSC strain PG1 P

T
P and 8740-Rita, while these genes were often found in a 

single copy in MmmLC strains Y-goatP

T
P and 95010-C1. These studies also confirmed the 

results obtained by Bischof et al. (2006) showing that the 24 Kbp duplicated DNA 

fragment was characteristic of MmmSC strain PG1P

T
P. As for the 28 MmmSC strains studied 

by Bischof and colleagues, strain 8740-Rita possessed a single copy of the 24 Kbp and 

13 Kbp repeated zones, a duplication of the 12 Kbp fragment and a triplicate of the 8 Kbp 

zone. 

 

Variation in the activity of Dam-methylation was observed between MmmLC and 

MmmSC in our study. This was in agreement with previous findings by Bergemann and 

colleagues. These researchers showed that MmmSC, Mcc, Mbg7 and some strains of Mmc 

did not exhibit adenine methylation activity. However, all the MmmLC and Mccp strains 

tested showed adenine methylation at the ‘GATC’ cleavage site. MmmLC strain Y-goat P

T
P 

DNA was found to be resistant to restriction digestion by MboI and DpnII, enzymes that 

are inhibited by methylation of adenine at their cleavage site ‘GATC’. However, this strain 

was susceptible to digestion by DpnI (Bergemann et al., 1990). Restriction endonucleases 

DpnI and DpnII are produced by two distinct strains of Diplococcus pneumoniae. The two 

enzymes share the same recognition site and show complementary specificity with respect 

to adenine methylation. DpnII cleaves at the unmodified sequence 5'-GATC-3' whereas 

DpnI requires the site to be methylated (Lacks and Greenberg, 1977). In this study, Dam 

methylation activity was also demonstrated in strain 95010-C1. Locus MLC_7790 

containing adenine specific DNA methylase enzyme may play a role in the activity of Dam 

methylation in MmmLC strains tested. 
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The absence of restriction digestion by XbaI in this strain, however, cannot be explained by 

Dam methylation. On the other hand, BLAST analysis revealed that CDS MLC_1620, 

encoding a DNAT modification methylase, exhibit some Tsimilarity Twith an XbaI methylase 

of Streptococcus pneumoniae. This methylase may be responsible for Tthe modification that 

inhibited XbaI enzyme activity in MmmLC strain 95010-C. 

 

The isolation of the naturally occurring plasmid from MmmLC strain 95010-C1, 1800 bp 

corresponds to those previously obtained cryptic plasmids from MmmLC strain GM12 

with a size range of 1.7-1.9 Kbp (Bergemann et al., 1989; King and Dybvig, 1992). Similar 

to the previously discovered plasmids this new plasmid will be of future relevant for the 

development of alternative shuttle vectors. 

 

 

 



 

   

CHAPTER III

Application of whole genome sequence for 
the development of specific diagnostic tools 
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11  IINNTTRROODDUUCCTTIIOONN  
1.1 Identification of members of the M. mycoides cluster 
The six members of the M. mycoides cluster are known to produce various disease of 

economic importance in cattle sheep and goats. Differential diagnostic tests are often 

difficult to develop due to shared common antigens (Howard and Taylor, 1985). When 

using conventional serological methods for mycoplasma identification, cross reactive 

antibodies often hamper the identification of pathogenic agents of the M. mycoides cluster 

thereby complicating interpretation (Cottew and Yeats, 1978; Rurangirwa et al., 2000). 

This phenomenon was observed between Mbg7 and Mccp (Thiaucourt, 2002) and between 

Mbg7 and Mcc (Bolske, 1988). As a result rapid identification of causative agent of CBPP 

and CCPP, MmmSC and Mccp have been achieved only through monoclonal antibodies 

and PCR (Bascunana et al., 1994; Bashiruddin et al., 1994; Brocchi et al., 1993; Thiaucourt 

et al., 1994). However, some reports on variable surface proteins of mycoplasmas indicate 

that ambiguous results may occur when monospecific antibodies are used in diagnostics 

based on antigen detection (Rosengarten et al., 1994; Rosengarten and Yogev, 1996). 

Recently identification of mycoplasmas belonging to the M. mycoides cluster was found to 

be hampered by the occurrence of field strains, antigenically intermediate between some 

serotypes and species. This has been demonstrated by atypical cross reaction schemes upon 

membrane filtration dot immunoblot tests using polyclonal anti-sera from members of the 

M. mycoides cluster (Le Grand et al., 2004). DNA probes have been used to produce more 

specific diagnostic procedures (Dedieu et al., 1992; Taylor et al., 1992a, b) problems with 

these tests could be non-specific binding of probes to non-target sites with poor 

reproducibility and difficult interpretation. 

 

In recent years PCR has replaced traditional diagnostic tests for the identification of 

members of the M. mycoides cluster. DNA amplification techniques offer a promising 

identification system by avoiding variability that hinder serological methods (Le Grand et 

al., 2004). So far a number of PCR tests have been developed for the rapid identification of 

species of the M. mycoides cluster. Most of the PCR systems developed until recently and 

before the flourishing of genomic sequence of mycoplasmas were based on CAP-21 

sequence fragment encoding notably for ribosomal proteins rpsL and rpsG. This fragment 

has been used for the design of specific primers for MmmSC (Bashiruddin et al., 1994), 

M. mycoides cluster and M. putrefaciens (Hotzel et al., 1996; Rodriguez et al., 1997). The 

other most widely used target for specific PCR tests is the 16S rRNA gene, this gene has 
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been used for specific PCR for the identification of Mccp (Bascunana et al., 1994; Bolske 

et al., 1996) and MmmSC (Persson et al., 1999). In addition to these two a gene that codes 

for lipoprotein, p72 gene has been used for the design of specific primers for MmmSC 

(Miserez et al., 1997) and Mbg7 (Frey et al., 1998) detection. Finally gene lppA has been 

used for the detection of Mccp, Mcc, MmmLC and Mmc (Monnerat et al., 1999a; 

Monnerat et al., 1999b). A non coding intergenic sequence between MSC_0390 and 

MSC_0391 from the genome sequence of MmmSC strain PG1P

T
P has also been employed in 

the design of specific PCR primers for MmmSC (Dedieu et al., 1994). A recent evaluation 

of the above mentioned PCR tests have revealed all PCR tests based on lipoprotein genes 

were not strictly specific (Le Grand et al., 2004). With respect to MmmSC identification, 

PCR tests by Dedieu et al. (1994) and Bashiruddin at al. (1994) remain reliable tests as 

these two have been used extensively in our laboratory for the diagnosis of CBPP. 

 

Many mycoplasma species take up arginine from the host and degrade it to produce ATP 

(Schimke and Barile, 1963). The non fermenting mycoplasmas and a small group of 

fermenting mycoplasma, hydrolyse arginine producing ammonia with an increased pH. 

This change in the pH can be detected by a pH indicator (Barile, 1983). In mycoplasma 

besides fermentation of sugars to lactate and oxidation of lactate or pyruvate to acetate plus 

carbon dioxide; the metabolism of L-arginine to L-ornithine is one of the recognized 

mechanisms of energy generation. 

 

Among species of the M. mycoides cluster, Mcc has a definite but delayed ability to 

hydrolyse arginine. An enzyme activity test revealed this species to posses the enzyme 

ornithine transcarbamylase (DaMassa et al., 1992). The closely related species of the 

M. mycoides cluster, M. putrefaciens posses a variable activity towards arginine hydrolysis 

test. Mycoplasma species closely related to M. putrefaciens, M.  yeatsii and M. auris were 

found to hydrolyse arginine (DaMassa et al., 1994). 

 

1.2 The Arginine deiminase pathway 
Multiple pathways for arginine degradation have been described in micro-organisms and, 

occasionally several of them are simultaneously present in the same organism (Zuniga et 

al., 2002). Among these pathways the arginine deiminase pathway (ADI) pathway is the 

most widespread anaerobic route by which arginine is degraded to produce energy (i.e. one 

mol of ATP per mol of arginine consumed). This pathway was first named in 1940 by 
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Hills, who described the conversion of arginine to citrulline in Streptococcus (Schimke et 

al., 1966). It was found that arginine did constitute a major energy source for mycoplasmas 

isolated from the contaminated cell cultures, because of their finding of ornithine as a 

major metabolic product in growing cells. Mycoplasmas from contaminated cell cultures 

demonstrated a high activity of all three enzymes of the arginine deiminase pathway 

(Barile et al., 1966). Three enzymes are involved in this pathway. Enzyme arginine 

deiminase (ADI, EC 3.5.3.6) encoded by gene arcA catalyses the first step of the pathway, 

the deimination of arginine yielding citrulline and ammonia (Figure III. 1). The second 

enzyme (catabolic) ornithine transcarbamylase (cOTCase, EC 2.1.3.3) encoded by gene 

arcB is closely related to anabolic OTCase. Anabolic OTCase is involved in arginine 

biosynthesis and catalyses the reaction opposite to that catalysed by the cOTCase, namely 

the formation of citrulline from ornithine and carbamoyl phosphate. The third enzyme, 

carbamate kinase (CK, EC 2.7.2.2) encoded by gene arcC catalyses the hydrolysis of 

carbamoyl phosphate to COB2 Band NHB3 B. The phosphate group of carbamoylphosphate is 

used to phosphorylate one ADP to ATP (Spano et al., 2004). Gene arcD encodes a 

membrane bound protein that is necessary for the uptake of arginine and the excretion of 

ornithine (D'Hooghe et al., 1997). Apart from these genes encoding the three catalytic 

activities additional genes are involved associated with ADI gene cluster. These genes are 

involved in transcription regulation (Zuniga et al., 2002, Figure III.1). 

 

Regulation of the arginine deiminase pathway has been extensively studied in 

Pseudomonas aeroginosa, where the pathway is encoded by four genes organized in an 

operon: arcDABC and expression of the arc genes is up regulated by the Anr protein 

(Gamper et al., 1991). In some other bacteria such as Bacillus lichenformis this operon is 

organized as arcABDC followed by argR; in the presence of arginine argR is both a 

repressor of the anabolic ornithine carbamoyltransferase and an activator of the arginine 

deiminase pathway (Maghnouj et al., 1998). In M. pneumoniae these genes are organized 

as arcABC, with no such detected regulatory genes (Zuniga et al., 2002). 
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Figure III. 1 Arginine Deiminase Pathway. 

The three important enzymes Arginine deiminase (ADI), ornithine transcarbamylase (OTC) and 

carbamate kinase (CK) are encoded by genes arcA, arcB and arcC respectively. The third 

important membrane protein arginine ornithine anti-porter is encoded by arcD. This pathway 

involves degradation of arginine as a means of energy generation. Adapted from Spano et al. 

(2004). 

 

 

1.3 The “ADI operon” within the M. mycoides cluster 
At the beginning of this study we had identified arginine deiminase operon-like sequence 

from some of the representative strains of species of the M. mycoides cluster. Flanking 

genes were then obtained from the genome sequences of type strain Mcc, California kidP

T
P 

(GenBank/ EMBL Accession No. NC_007633) and MmmSC, PG1P

T
P (Westberg et al., 

2004). The identification of the flanking genes has allowed amplifying the ADI operon-

like sequence from the rest of the representative strains. It was observed that in almost all 

the strains the ADI operon-like sequence was flanked by genes mgtA (magnesium transport 

ATpase) at 5’end and glk (glucokinase) at the 3’ end. In the five type strains studied the 

arginine deiminase like operon was organized in specific fashion between M. mycoides and 

M. capricolum subspecies. It was revealed to be organized as arcBDC in M. mycoides and 

arcABD in M. capricolum subspecies excluding type strain PG50 P

T
P of Mbg7 (Figure III. 2). 



 

  52 

 

 
 

Figure III. 2 Organization of the arginine deiminase “ADI-operon” in the representative strains of 

the M. mycoides cluster. 

The operon was found to be organized as arcBDC in the M. mycoides subspecies and as arcABD in 

the M. capricolum subspecies. In all the type strains this operon is flanked by genes mgtA and glk, 

excluding the type strain PG50 of Mbg7. 

 

 

At first, we considered this variation as a good basis for the design of specific primers that 

could differentiate the M. mycoides cluster into the M. mycoides subspecies and the 

M. capricolum subspecies. This first attempt was designing primers from arcA and arcD 

for all capricolum subspecies and from arcB and arcC for all mycoides subspecies. 

However the whole genome sequence data from MmmLC strain 95010-C1 has revealed 

existence of intra species variation on the organization of this operon. Unlike Y-goat P

T
P, in 

strain 95010-C1 arcB is not followed by arcDC. In this species arcB is the only gene 

flanked by genes mgtA and glk. This observation together with the absence of the ADI 

genes from sequenced locus of reference strain PG50P

R
P did not allowed us to proceed with 

this approach (i.e. designing specific diagnostic tools categorizing the two subspecies of 

the M. mycoides cluster). Therefore our initial attempt was shifted to the use of glk gene, 

one of the genes flanking the ADI operon within the M. mycoides cluster as a target gene 

for the design of specific PCR. 
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In the present study the genes of “ADI operon” of the M. mycoides cluster were used for 

the design of specific PCR system used for the detection and identification of members of 

the M. mycoides cluster, and to M. putrefaciens species. 

 

Paper I describes the choice of glk gene, flanking gene of the “ADI operon” in the design 

of specific PCR for the detection of members of the M. mycoides cluster and its application 

in the diagnosis of the contagious agalactia syndrome. 

 

Paper II describes the use of arcB gene, coding for the enzyme ornithine 

transcarbamoylase transferase (OTC), for the design of specific primers used for the 

identification of M. putrefaciens, a species closely related to the M. mycoides cluster and a 

causative agent of the contagious agalactia syndrome. 

 

Paper III describes specific PCR for the identification of Mccp, the causative agent of the 

economically most important disease CCPP. The arginine-ornithine antiporter encoded by 

the gene arcD was used for the design of specific primer pair for the identification of 

Mccp. 
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Abstract  

Contagious agalactia is a mycoplasmal infection caused by Mycoplasma agalactiae, 

Mycoplasma mycoides subsp. mycoides LC, M. mycoides subsp. capri, Mycoplasma 

capricolum subsp. capricolum and Mycoplasma putrefaciens. Identification of the 

causative organisms is usually performed by isolation and classical biochemical and 

serological tests, though this is a lengthy and cumbersome process for mycoplasmas. 

Specific PCR assays have been developed for the identification of Mycoplasma agalactiae 

and M. putrefaciens. For members of the M. mycoides cluster existing PCR tests are based 

on the amplification of highly conserved genes coding for ribosomal proteins, hence a 

possibility of cross-reactions. The gene glk, coding for a glucokinase, that is found in this 

cluster is very distantly related to any other bacterial glucokinase described so far. It was 

therefore chosen as target to design a new PCR test. The validation was performed 

independently in three laboratories in France and India using over 100 mycoplasma strains 

of various geographical origins. All strains belonging to the M. mycoides cluster were 

detected by amplification of the expected PCR product (428 bp) while no amplification 

was obtained from M. agalactiae strains. Our results demonstrate the universality of this 
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PCR in spite of the great heterogeneity found within this cluster. This new tool may be of 

great help for the implementation of control measures directed towards contagious 

agalactia. 

Keywords: Contagious agalactia; Mycoplasma mycoides cluster; Glucokinase; PCR 

 

1. Introduction  

Contagious agalactia is a disease of sheep and goats characterized by prominent lesions of 

mastitis, arthritis, keratitis, pneumonia and septicaemia (MAKePS). Because of its 

economic importance, this disease is listed as a notifiable disease by the OIE (World 

Organization for Animal Health). Losses are mainly caused by mastitis in lactating ewes, 

though mortality may also occur, particularly in goats affected by arthritis and pneumonia 

H[1]H. The disease has a worldwide distribution. Originally, it was associated with 

M. agalactiae, the main causative agent in sheep that is particularly frequent in the 

Mediterranean basin. However, the members of the M. mycoides cluster M. mycoides 

subsp. mycoides large colony biotype (Mmm LC), M. mycoides subsp. capri (Mmc) and 

M. capricolum subsp. capricolum (Mcc) are repeatedly mentioned as causative agents of 

contagious agalactia in goats H[2]H, H[3]H, H[4]H and H[5]H. M. putrefaciens is also considered a 

potential etiologic agent, although ocular lesion have not been described so far H[5]H and H[6]H. 

The M. mycoides cluster comprises six pathogens causing mild to severe disease in 

ruminants: Mmm LC, Mmc, Mcc, M. sp. bovine group 7 of Leach (Mbg7), M. mycoides 

subsp. mycoides small colony biotype (Mmm SC) and M. capricolum subsp. 

capripneumoniae (Mccp). The latter two are the causative agents of contagious bovine and 

caprine pleuropneumonia (CBPP and CCPP, respectively) H[7]H, H[8]H and H[9]H. Organisms 

within this cluster share many antigenic and genotypic features and some are difficult to 

differentiate by conventional techniques H[10]H. The common traits exhibited by these 

mycoplasmas have often confused both diagnosis and taxonomy H[8]H. Mmm LC and Mmc 

were found to be very closely related with 99.9% sequence identity of their 16S rRNA 

genes H[11]H. Similar analyses based on 16S rRNA H[12]H and 16S–23S intergenic spacer 

region H[13]H have shown that M. putrefaciens was closely related to the M. mycoides cluster 

H[12]H. Other mycoplasma species such as Mycoplasma cottewii and Mycoplasma yeatsii 
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H[14]H have been shown to be closely related to M. putrefaciens H[15]H. However, the latter 

three species are still considered not to belong to the M. mycoides cluster. 

Because of the economic importance of contagious agalactia, some countries have 

implemented prophylactic measures to control and, whenever possible, to eradicate the 

disease. This is the case of the Southwest of France, where ewe's milk cheese has great 

economic importance. Up to now, the control of the disease is based on the eradication of 

M. agalactiae infection, with its detection playing a key role in this strategy. The presence 

of this mycoplasma in milk tanks is regularly checked and a rapid identification allows the 

implementation of control measures in the infected herds. Control strategies regarding the 

other mycoplasmas involved in contagious agalactia are hampered by the lack of detection 

tools. 

To date, there are specific PCR tests for the direct identification of M. agalactiae H[16]H and 

H[17]H and M. putrefaciens H[3]H. PCR assay for rapid detection of the mycoplasmas of the 

M. mycoides cluster causing contagious agalactia have already been described H[18]H, H[19] H 

and H[20]H. However, these tests are based on the same sequence, CAP21, originally 

described by Bashiruddin et al. H[18]H. The CAP21 sequence encompasses two highly 

conserved genes coding for ribosomal proteins rpsL and rpsG, hence a very high 

probability of cross-reactions. Therefore, the aim of the present study was to design a PCR 

test for the rapid identification of all members of the M. mycoides cluster based on a more 

suitable target. A locus containing the glucokinase (glk) gene, a flanking gene of the 

arginine deiminase (ADI) operon, was chosen as a target to select a specific primer pair. 

 

2. Materials and methods  

2.1. Strains 

A representative number of strains (N=46) of species belonging to the M. mycoides cluster, 

of the closely related species M. putrefaciens, M. cottewii and M. yeatsii, as well as the 

ruminant pathogens Mycoplasma auris, Mycoplasma bovis and M. agalactiae, were used 

for the initial validation of the assay at CIRAD, France (Table 1). Strains originating from 

various continents were included in order to ensure the universality of the assay. All were 

cultivated in modified Hayflick media containing sodium pyruvate and glucose H[21]H in a 
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high-security LB3 B laboratory. A subsequent validation of the PCR test was performed at two 

other laboratories: representative samples of 68 strains of French origin were used at 

AFSSA, whereas the validation at IVRI (Izatnagar, India) was performed on 12 strains. In 

total, the validation included 130 strains: Mmm LC (31), Mmc (5), Mmm SC (5), Mcc 

(25), Mccp (6), Mbg7 (8), M. putrefaciens (14), M. cottewii (1), M. yeatsii (11), 

M. agalactiae (16), M. bovis (6), M. auris (1) and Mycoplasma gallinarum (1). 

 
 
Table  1 List of mycoplasma strains used for initial validation of the specific PCR at CIRAD 

Strain Origin Supplier institute 

Mycoplasma mycoides subsp. mycoides LC 

 Y-goatP

T
P
 Australia Type strain 

 95010-C1 France CIRAD 

 9298 (CM508) Tanzania NVI-S, Uppsala, Sweden. Dr. Bölske 

 9050-143 Ivory Coast LPA, Bingerville, Ivory Coast. Dr. Domenech 

 9186 (CPR27) Cameroon LANAVET, Garoua, Cameroon. Dr. Martrenchar 

 99055 France AFSSA-N, Niort, France. Dr. Mercier 

 2002-055 (VPNC2) India IVRI, Izatnagar, India. Dr. Srivastava and Dr. Singh 

 WK354 Switzerland Bern U, University of Bern, Switzerland. Prof. Nicolet 

 55507-1 Germany TiHo, Hannover, Germany. Dr. Schmidt 

 Kombolcha Ethiopia NVI-E, Debre Zeit, Ethiopia. Dr. Fikré 

 7730 France CIRAD 

 9096 (C9415) Nigeria U. Nigeria, Nsukka, Nigeria. Dr. Shoyinka 

 8065 France CIRAD 

Mycoplasma mycoides subsp. capri 

 PG3P

T
P
 Turkey Type strain 

 2002-054 (VP9L) India IVRI, Izatnagar, India. Dr. Srivastava and Dr. Singh 

 L France CIRAD 

 9139 (11/91) Turkey NVI-E, Debre Zeit, Ethiopia. Dr. Fikré 

Mycoplasma mycoides subsp. mycoides SC 

 PG1P

T
P
 Unknown Type strain 

 8740-Rita Cameroon LANAVET, Garoua, Cameroon. Dr. Martrenchar 

 T1/44 Tanzania PANVAC, Addis Ababa, Ethiopia. Dr. Litamoi 

Mycoplasma capricolum subsp. capricolum 

 California kid-

CIRAD USA Type strain 

 97058 (O12) Morocco IAV, Rabat, Morocco. Dr. Berrada 

 8086-1 France CIRAD 
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 IPX France CIRAD 

 2002-053 (VP286) India IVRI, Izatnagar, India. Dr. Srivastava and Dr. Singh 

 2002-057 

(RLM23C) India IVRI, Izatnagar, India. Dr. Srivastava and Dr. Singh 

 4146 France AFSSA-L, Lyon, France. Dr. Poumarat 

 Vienne France CIRAD 

 E-570 UK NVI-S, Uppsala, Sweden. Dr. Bölske. 

 8601-2703-C3 Portugal LNIV, Lisbon, Portugal. Dr. Machado 

 8601-50 Portugal LNIV, Lisbon, Portugal. Dr. Machado 

Mycoplasma capricoulum subsp. capripneumoniae 

 F38 Kenya Type strain 

 Gabes Tunisia CIRAD 

 94156 (438P) Chad LRVZ, Farcha, Chad. Dr. Hendrikx 

 9081(487P) Oman CIRAD 

 95043 Niger CIRAD 

 9231 (Abomsa) Ethiopia NVI-E, Debre Zeit, Ethiopia. Dr. Fikré 

Mycoplasma species bovine serogroup 7 

 PG50P

R
P
 Australia Reference strain 

 Calf 1 Nigeria NVI-S 

 9733 India BGVV, Jena, Germany. Dr. Sachse 

Mycoplasma putrefaciens 

 KS1 USA Type strain 

Mycoplasma cottewii 

 VIS Australia Type strain 

Mycoplasma yeatsii 

 GIH Australia Type strain 

Mycoplasma auris 

 UIA Australia Type strain 

Mycoplasma bovis 

 8891 (5/2) Turkey MRI, Edimburgh, UK. Dr. Jones 

 97138 France  

 97027 Germany Hannover. Dr. Martin 

 95035 (C58) Cameroon LANAVET 

Mycoplasma agalactiae  

 2002-052 (VP15L) India IVRI, Izatnagar, India. Dr. Srivastava and Dr. Singh 
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2.2. PCR primer selection  

The glk gene, flanking the ADI operon in the M. mycoides cluster, was chosen as target to 

select a specific primer pair. The glk sequences of the M. mycoides cluster reference strains 

PG1 P

T
P and California kidP

T
P were retrieved from the genomic sequence data published in 

GenBank (HBX293980 H and HCP000123H). In addition, the glk sequence of an Mmm LC strain 

(95010-C1) was obtained from a whole genome sequencing project (Genoscope, France). 

The AlignX software of Vector NTI Suite (InforMax) was used for sequence alignment. 

The degenerate primers glk-myc-2F (5′-TGCACTTGGTGAATATARAAAAGG-3′) and 

glk-myc-2R (5′-GGATCTAAAGCRTGTATTARTAATG-3′) were chosen within the most 

conserved regions of the glk gene. 

2.3. PCR amplification and sequencing  

The PCR conditions were similar to those set by Lorenzon et al. H[22]H. DNA template was 

produced with a slight modification of that described by Miserez et al. H[23]H. Briefly, a 

pellet from 1 ml culture was re-suspended in 50 μl of distilled water, and lysed for 1 h at 

60 °C in 100 μl of lysis buffer (100 mM Tris-HCl, pH 8.5; 0.05% Tween 20; 0.24 mg mlP

−1
P 

proteinase K). After inactivation of proteinase K at 95 °C for 10 min, 1 μl of the lysed 

mycoplasma cells diluted 1/10 in distilled water was added as template to the PCR mix. 

The reaction volume was fixed at 50 μl with: 1×Taq buffer (Qiagen), 1.5 mM MgClB2B, 

0.3 mM dATP and dTTP, 0.15 mM dCTP and dGTP (dNTPs from Roche), 0.4 μM of each 

primer glk-myc-2F and glk-myc-2R, 2.5 U of Taq polymerase (Qiagen) and 1 μl of DNA 

template. The PCR reactions consisted in an initial denaturation step at 94 °C for 2 min, 

followed by 30 cycles of denaturation at 94 °C for 15 s, annealing at 50 °C for 15 s and 

extension at 72 °C for 15 s and a final extension step at 72 °C for 5 min in a Perkin-Elmer 

Gene Amp PCR system 2700 (Applied Biosystems). PCR-amplified fragments from the 

reference strains PG50P

R
P (Mbg7) and PG3 P

T
P (Mmc) and from an Mccp strain (Gabes) were 

sent for sequencing to Genome express, Meylan, France. 

The use of higher proportions of dATP and dTTP in the PCR mix for mycoplasma PCR is 

justified given the low GC % in mycoplasma (25% in the case of the M. mycoides cluster). 

This is particularly important when amplifying large DNA fragments or when decreasing 

the quantity of dNTP in the reaction. In the case of this glk-PCR at the defined dNTP 

concentration, a common dNTP pre-mix will give comparable results. 
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For the secondary validation at AFSSA, the same reagents and procedure were applied 

using a Gene Cycler Thermal Cycler (Bio-Rad). Likewise, at IVRI (India) the same PCR 

conditions were validated using Taq polymerase (Fermentas), dNTP mix (Sigma-Aldrich) 

and a PCR thermocycler Mastercycler personal (Eppendorf, North America). 

2.4. Primary field validation on milk samples  

Twenty-one goat milk samples were collected from milk tanks in the Poitou-Charente 

region in France, where mycoplasma infections are frequent. These samples were sent to 

CIRAD, where 0.5 ml of milk was seeded in 4.5 ml of standard mycoplasma broth and 

incubated for 5 days at 37 °C for an initial enrichment. The presence of mycoplasmas was 

then tested by performing the “glk-PCR” and plating a drop of culture onto mycoplasma 

agar medium. Positive cultures were purity checked and isolated mycoplasma strains 

identified by standard techniques. 

2.5. Evaluation of the sensitivity of glk-PCR 

A 24-h culture of an Mmm LC strain (95010-C1) at the exponential phase of growth was 

used to evaluate the sensitivity of this PCR test. Ten-fold dilutions of this culture in 

mycoplasma medium were used both for the titration of the culture, by seeding 20 μl drops 

onto solid medium, and for the evaluation of PCR sensitivity, treating these dilutions as 

separate samples. 

3. Results 

3.1. Sequence alignment and design of a specific primer pair  

The complete glk sequences available from the sequenced genomes of three mycoplasmas 

belonging to the M. mycoides cluster were aligned: two copies of this gene from strain 

PG1 P

T
P of Mmm SC (786 and 788 bp) and one copy from strains California kidP

T
P of Mcc 

(788 bp) and 95010-C1 of Mmm LC (786 bp). These sequences showed 87.2% overall 

identity (Fig. 1). The 101 polymorphic positions were rather uniformly distributed along 

the sequences, though certain positions were relatively conserved. This allowed the 

selection of adequate primers with a limited number of degenerate bases (one for glk-myc-

2F and two for glk-myc-2R), which allowed the efficient PCR amplification of a 428-bp-

long fragment. 
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Figure 1. Schematic representation of the complete glk gene sequence alignment of three 

mycoplasmas belonging to the M. mycoides cluster. 

The two glk copies of strain PG1 P

T
P (M. mycoides subsp. mycoides small colony) 788 and 786 bp, 

and the single glk sequences of strains California kid P

T
P (M. capricolum subsp. capricolum) 788 bp 

and 95010-C1 (M. mycoides subsp. mycoides LC) 786 bp were retrieved from available genomic 

data and aligned for sequence comparison. Vertical black lines along the shaded region represent 

residual polymorphic positions. The relatively conserved regions in which the forward and reverse 

primers (glk-myc-2F and glk-myc-2R) were designed are indicated by arrows. 

 

Sequences from the other species of the M. mycoides cluster encompassing the genes 

located between mgtA and ptsG or glk obtained in this study were deposited at GenBank: 

Mmm LC strain Y-goatP

T
P (EF529697), Mmm LC strain 95010-C1 (EF529696), Mmc strain 

PG3 P

T
P (EF529698) and Mbg7 strain PG50 P

R
P (EF529699). 

A second alignment (380-bp-long sequences) was performed, also including the sequences 

of strains Gabes (Mccp) PG50P

R
P (Mbg7) and PG3 P

T
P (Mmc) obtained after PCR 

amplification. The alignment allowed the comparison of all species of the M. mycoides 

cluster and construction of a phylogenetic tree using the Neighbor Joining method of 

Saitou and Nei (Vector NTI Suite) on a fragment of the glk gene (Fig. 2). The overall 

identity of the seven sequences analysed (83.2%) fell slightly below the value obtained by 

comparison of the complete glk gene from three strains. The sequences of strains PG50 P

R
P, 

Gabes and California kidP

T
P were 96.8% identical, with PG50P

R
P being more closely related to 

the M. capricolum subspecies. Sequences from PG3 P

T
P and 95010-C1 differed only by eight 
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bases and grouped together with the two glk copies of PG1P

T
P, with an overall identity of 

91.6%. 

 

Figure 2 Distance tree calculated from the alignment of a 380-bp-fragment of the glk gene of six 

strains representing the M. mycoides cluster. Percentages of identity for each group of strains are 

shown at the right of the parenthesis, with the overall identity indicated at the root of the tree.  

Besides, it was found that the glk gene exists in two copies (MSC_0863 and MSC_0875) in 

the Mmm SC-type strain PG1 P

T
P ( HBX293980 H) and this gene was annotated as a pseudogene 

(MCAP0092) in the Mcc-type strain California kidP

T
P ( HCP000123 H). Sequence alignment of 

the pseudogene with sequences from other Mcc strains (California kid-CIRAD, IPX and 

8086-1) revealed a deletion of one A at position 524 that resulted in a frame-shift in the 

sequence of the fully sequenced strain California kidP

T
P. 

3.2. Validation of the PCR test  

The validation of the PCR assay gave consistent results in three independent laboratories. 

A DNA fragment of the expected size (428 bp) was obtained by analysis of 80 strains 

belonging to the M. mycoides cluster. No amplification was obtained with any of the 

heterologous species such as M. agalactiae, M. bovis, M. cottewii, M. yeatsii, M. auris and 

M. gallinarum (N=35) (Fig. 3). On the other hand, 3 out of the 14 M. putrefaciens strains 

tested yielded an amplified product by PCR. The band obtained from strain KS1P

T
P was of 

similar size and equal intensity than those obtained from strains of the M. mycoides cluster. 

Two other M. putrefaciens strains yielded very faint bands of the same size. 
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Figure 3 A 428 bp amplicon was obtained from all strains belonging to the M. mycoides cluster. 

From top to bottom and from left to right M: molecular weight marker VIII (Roche); lanes 1-4: 

Mycoplasma mycoides subsp. mycoides LC strains Kombolcha, 99045, Y-goatP

T
P and 8065; lanes 5-

7: M. mycoides subsp. capri strains PG3 P

T
P, 9139 (11/91) and L; lanes 8 and 9: M. mycoides subsp. 

mycoides SC strains T1/44 and PG1 P

T
P; lanes 10-12: M. capricolum subsp. capricolum strains 2002-

057, California kidP

T
P and IPX; lanes 13 and 14 to M. capricolum subsp. capripneumoniae strains 

9231-Abomsa and 94156 (438P); lanes 15 and 16: M. sp. bovine group 7 of Leach strains PG50P

R
P 

and Calf-1; lanes 17 and 18: M. putrefaciens strains 11174 and Tours 2; lane 19: M. yeatsii strain 

GIHP

T
P; lane 20: M. cottewii strain VIS P

T
P; lane 21: positive control Mmm LC strain 95010-C1; and B: 

blank, deionised HB2 BO. 

3.3. Preliminary validation on milk samples 

Out of the 21 milk samples tested, 8 were found positive by glk-PCR (Table 2). Pure 

mycoplasma cultures were obtained from six of them, while for the other two 

mycoplasmas, cultures could not be isolated because of heavy contamination with other 

bacteria. Six of the isolated mycoplasma strains were identified as M. capricolum subsp. 

capricolum for milk sample 3 and M. mycoides subsp. mycoides LC for the rest of the 

isolates. 
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Table  2.Validation of glk-PCR from field milk samples. 
Milk sample Culture glk-PCR Species identification 

1 B –  

2 B –  

3 M Positive Mycoplasma capricolum subsp. capricolum 

4 B –  

5 M+B Positive Not possible due to contamination 

6 B –  

7 M Positive Mycoplasma mycoides subsp. mycoides LC 

8 B –  

9 B –  

10 B –  

11 B –  

12 B –  

13 M Positive Mycoplasma mycoides subsp. mycoides LC 

14 B –  

15 M Positive Mycoplasma mycoides subsp. mycoides LC 

16 B –  

17 B –  

18 M+B Positive Not possible due to contamination 

19 B –  

20 M Positive Mycoplasma mycoides subsp. mycoides LC 

21 M+B Positive Mycoplasma mycoides subsp. mycoides LC 

M, pure mycoplasmas colonies; B, classical bacterial colonies; and M+B, mixed bacterial 

and mycoplasmal colonies. 

3.4. Estimation of PCR sensitivity 

A positive PCR result was obtained up to dilution 10P

−6
P and the viable cell count at this 

dilution was 30 colonies (CFU) per 20 μl. Hence, the sensitivity of the PCR can be 

estimated at 3.2 log CFU/ml, according to the formula: log CFU/ml=log (colony 

count/20 μl) + 1.7. 
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4. Discussion and conclusion 

For effective control of ruminant mycoplasmoses, rapid and specific detection is of 

primordial importance and PCR is the method of choice to this aim. Specific PCR assays 

have already been designed for the rapid detection of Mmm SC, the agent of CBPP, and 

Mccp, the agent of CCPP. The task was relatively simple for these two diseases, since they 

are both caused by a single pathogen. The main difficulty in these two cases was due to the 

close proximity of the etiologic organisms to many other related mycoplasma species. In 

the case of contagious agalactia, the situation is more complex because this disease may be 

caused by different mycoplasma species: M. agalactiae, Mmm LC, Mmc, Mcc and 

M. putrefaciens. The rapid detection and identification of M. agalactiae can be obtained by 

various PCR assays that have been extensively validated H[16]H and H[17]H. Furthermore, when 

detecting M. agalactiae in small ruminants, the risk of cross-reactions with other 

mycoplasma species causing contagious agalactia is very limited, as this species belongs to 

a very distant phylogenetic group H[24]H and H[25]H. The closest proximity is to the species 

M. bovis, which is very rarely isolated from small ruminants. 

The detection and identification of the other agents causing contagious agalactia is 

complicated by the fact that they all belong to, or are very closely related to, the 

M. mycoides cluster. This cluster was initially characterized by conventional methods H[8] H 

and more recently by 16S rRNA phylogenetic analysis H[11]H. However, whatever the 

technique used, establishing a precise classification and taxonomy for this cluster is 

hampered by a number of difficulties. The different mycoplasmas belonging to this cluster 

share many genetic and phenotypic features. Furthermore, the subspecies M. mycoides and 

M. capricolum are characterized by high intraspecies variability. This may be the reason 

why the subspecies Mccp has been named only recently, in 1993 H[9]H, whereas the group of 

strains referred to as Mbg7 remains unassigned. As a consequence, it is difficult to design 

diagnostic tests that are both universal and specific. An additional complication may 

eventually arise from the detection of intermediary strains of difficult classification. This is 

to be expected, particularly when an exhaustive validation including large numbers of 

strains of diverse geographical origin is performed H[26]H. 

The initial objective of this study was to obtain specific PCR assays for each of the 

mycoplasma species of the M. mycoides cluster causing contagious agalactia. To this aim, 

the ADI operon was identified as a potential target. This operon had already been used to 
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design specific PCR assays for the detection of M. putrefaciens H[3]H and Mccp H[27]H. The 

organization of the ADI operon seemed to be quite species specific, at least when 

comparisons where limited to the reference strains and Mccp strain GL100 (accession 

number HAY529662 H). When the sequences from other strains were included in the analysis 

it was noted that the organization of the operon varied also within each species, which 

precluded its use for the design of specific PCR assays (Fig. 4). The glk gene, flanking the 

ADI operon, was then chosen as an alternative target. This gene codes for the enzyme 

glucokinase (EC 2.7.1.2), a group of enzymes found in invertebrates and microorganisms, 

highly specific for glucose metabolism H[28]H. In spite of the apparent universality of this 

enzyme, it has only been found in some mycoplasma species belonging to the M. mycoides 

cluster, and Mycoplasma mobile, Mycoplasma hyopneumoniae and Mycoplasma pulmonis 

( HUhttp://cbi.labri.fr/outils/molligen/UH). In the Mcc type strain, which has been fully 

sequenced, glk appears as a pseudogene. However, sequences obtained from other Mcc 

strains at CIRAD, including a stock of the type strain California kidP

T
P, showed that the gene 

may be functional in the capricolum species. This emphasizes the fact that different stocks 

of the same strain may differ, a possible consequence of multiple in vitro passages. 

Furthermore, a blast analysis (blastn and blastp performed at the NCBI, 

HUhttp://www.ncbi.nlm.nih.gov/blast/UH on 09/05/2007, BLASTP 2.2.16 [25/03/2007]) against 

all non-redundant nucleotide and protein sequence databases for bacteria showed that the 

glk sequences found in the M. mycoides cluster are quite unique. The closest relative was a 

sequence from Spiroplasma citri, which is a plant pathogen belonging to the same 16S 

rRNA phylogenetic group. Still, the amino-acid similarity was limited to 55%. 

Glucokinase sequences from the M. mycoides cluster seemed to be more closely related to 

the glk sequences of Gram-positive bacteria that possess an amino-acid motif: 

CXCGXXGCXE, which is involved in the enzymatic activity H[28]H. However, this motif is 

not entirely conserved in the M. mycoides cluster, lacking the G at position 7 

(CNCGLNNCIE), which highlights the peculiarity of this group of bacteria. 
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Figure 4 Organization of the arginine deiminase (ADI) operon within the M. mycoides cluster. 

The ADI operon in this cluster is flanked by the glucokinase gene (glk) and the magnesium 

transport ATPase (mgtA). The organization of the operon is arcB-arcD-arcC in the subspecies of 

M. mycoides and arcA-arcB-arcD in the subspecies of M. capricolum. The genome sequence of 

the type strain PG1 P

T
P revealed that this operon and flanking genes are duplicated. Note that in this 

particular locus the ADI operon is absent in the reference strain PG50 P

R
P. 

 

The primer pair designed on the glk gene allowed the amplification of the expected DNA 

fragment from all the M. mycoides cluster strains tested, showing that this gene is well 

conserved within the cluster and proving the universality of the test. The tree inferred from 

the sequence alignment of the amplified products was in agreement with previous results. 

It showed that strain PG50P

R
P (Mbg7) was more closely related to M. capricolum than to the 

M. mycoides subspecies. This had already been shown by analysis of 16S–23S rRNA 

intergenic sequences H[13]H, as well as with a gene of unknown function H[29]H. In addition, it 

also confirmed the very close relationship existing between Mmm LC and Mmc, two 

subspecies that should certainly be grouped into a single entity H[11]H, H[30]H and H[31]H. 

Some cross-reactivity was observed with a few strains belonging to the species 

M. putrefaciens. Cross-reactions have already been observed in the assessment of different 

PCR tests used for routine identification of species of the M. mycoides cluster and 

M. putrefaciens. An “M. putrefaciens specific” PCR yielded positive results with members 

of the M. mycoides cluster H[32]H. This was also observed by Persson et al. H[33]H when 
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lowering the annealing temperature or using substantial amount of template, which 

demonstrated once more the close relationship existing between these species. The 

proximity of these two bacterial entities needs to be assessed more precisely. Based on 16S 

rRNA sequence comparisons M. putrefaciens was considered to be related to the 

M. mycoides cluster, though the number of nucleotide positions specific to M. putrefaciens 

should suffice to consider it as a separate species H[11]H. 16S–23S intergenic sequence 

comparisons also showed that M.  putrefaciens was related, though somewhat distant to the 

M. mycoides cluster. From a practical point of view, however, the few cross-reactions seen 

between these species should not be of consequence, as a specific PCR assay is already 

available for the rapid detection of M. putrefaciens H[2]H. More importantly, this new PCR 

assay does not yield any cross-reactions with any of the M.  agalactiae strains tested.  

The routine procedure to detect mycoplasmas in milk tanks in field diagnostic laboratories 

is to seed the milk in adequate culture medium and wait for 5–6 days before checking for 

mycoplasma growth by streaking this enriched culture onto solid medium to isolate 

mycoplasma colonies and identify them. Applying the glk-PCR before culture allowed us 

to detect eight positive milk samples, while culture and identification was achieved only 

for six of them. This has proved the interest of performing PCR before culture, as the 

“classical” isolation and identification techniques were much slower and were also 

hampered by the presence of bacterial contaminants in two cases. The sensitivity of this 

PCR was evaluated at 3.2 log CFU/ml. In our case, the number of CFU should almost be 

equivalent to the number of mycoplasmas, as we chose an easy growing strain in the 

exponential phase of growth. This ensured that there were no dead bacteria that could have 

biased the estimation by artificially increasing the sensitivity of the PCR. This sensitivity is 

in accordance with other PCR tests. When detecting mycoplasmas in enrichment broth, 

sensitivity is not a real issue, as a visible turbidity corresponds to approximately 

8 log CFU/ml. 

In conclusion, this new PCR can be used for the detection of mycoplasmas of the 

M. mycoides cluster causing contagious agalactia in small ruminants. When used in 

combination with other PCR assays able to detect M. putrefaciens and M. agalactiae H[16] H 

and H[17]H, it should provide a means to detect all the mycoplasma agents involved. The use 

of multiple PCR assays may be cumbersome, but the necessity arises from the number of 

mycoplasma species involved in contagious agalactia. This new assay offers the great 
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advantage of yielding a specific amplification and, therefore, it does not necessitate any 

further manipulations such as restriction enzyme analysis or sequencing, which may not be 

practical for routine veterinary laboratories. The validation performed in three different 

laboratories demonstrated that it is a robust technique that can be applied successfully in 

different environmental conditions. This new tool may be of great help for the 

implementation of control measures directed towards contagious agalactia. 
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Abstract  

Mycoplasma putrefaciens is listed as one of the etiologic agents of the contagious agalactia 

syndrome by the world organisation for animal health. This species has been characterized 

only recently, 1974, and the number of outbreaks caused by this microorganism so far is 

very scarce. It induces mastitis in infected goats although other symptoms such as arthritis 

in adults and septicaemia in kids are also frequently described. Up to now, the 

identification of M. putrefaciens relied on classical isolation and identification techniques 

which present a number of limitations. Specific primers for PCR have been designed based 

on sequence comparisons of the ArcB gene among the ‘Mycoplasma mycoides cluster’ and 

related species such as Mycoplasma cottewii and Mycoplasma yeatsii. Sequence 

alignments confirmed the taxonomic position of M. putrefaciens, which is related to the 

‘M. mycoides cluster’ but also very close to M. yeatsii. The polymorphism observed 

amongst the different ArcB sequences allowed the determination of a primer pair yielding 

a specific amplification of a 316 bp-long DNA fragment by PCR. This PCR was validated 

in two different laboratories with a variety of mycoplasma strains isolated from goats. This 

new PCR technique will be very useful for a quicker determination of M. putrefaciens 

strains as well as a better understanding of the prevalence of M. putrefaciens infections. 

Author Keywords: Mycoplasma putrefaciens; Specific PCR; Contagious agalactia 
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1. Introduction  

Mycoplasma putrefaciens (Mput) is listed as one of the etiologic agents of the contagious 

agalactia syndrome by the world organisation for animal health [H1H] but it has received little 

attention up to now.  

The reference strain for this species, KS1, was first isolated by HE Adler in 1954 from the 

same goat infected with the California goat strain that was deposited in the ATCC under 

the name ‘California kid’, becoming the reference strain for Mycoplasma capricolum 

subsp. capricolum (Mcc) [H2H]. However, subsequent studies showed that the KS1 strain 

differed markedly from the California kid strain. It had a higher G+C%, 28.9% compared 

to 25.5%, it did not hydrolize arginine, did not liquefy coagulated serum and showed little 

serological cross-reactions by the metabolic inhibition test. Therefore, it was classified as a 

new species and was denominated M. putrefaciens, owing to its putrid odour in broth and 

agar cultures [H2H]. 

The taxonomic position of M. putrefaciens was not clearly ‘established in 1987', when 

Cottew defined the so-called ‘M. mycoides cluster' [H3H]. Comparison of 16S rRNA genes 

showed that M. putrefaciens was closely related to the members of the ‘M. mycoides 

cluster’ [H4H], although the closest relationship existed with the newly described species 

Mycoplasma cottewii and Mycoplasma yeatsii [H5H]. The relative proximity of M. 

putrefaciens to the ‘M. mycoides cluster’ was also confirmed by comparing the 16S–23S 

intergenic spacer region [H6H]. In contrast, no serological cross-reaction was observed 

between the LppA lipoprotein found in the members of the ‘M. mycoides cluster’ and that 

of the KS1 strain [H7H]. 

Few mycoplasma isolates have been characterised as M. putrefaciens worldwide. One of 

the first isolates was obtained in 1972 by Perreau in central France but it was not identified 

until a few years later [H8H], following the description of the new species M. putrefaciens. 

Another isolate was obtained in 1979 in California [H9H]. Two other strains were isolated in 

France in 1985 [H10H], although in different regions than the original French isolate of 1972. 

In 1987 it was isolated again in California [H11H]. More recently, these strains were isolated 

in the Canary Islands from kids with polyarthritis [H12H]. Interestingly, M. putrefaciens has 

also been detected in Australia, although the strain was isolated from the ear canal of 
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healthy goats that harboured other mycoplasma species at the same time in the same 

location [H13H]. 

Early descriptions of M. putrefaciens infections recorded mastitis as the only symptom [H9H], 

a feature that distinguished it from the members of the ‘M. mycoides cluster’ infecting 

goats such as M. capricolum subsp. capricolum (Mcc), M. mycoides subsp. mycoides LC 

(MmmLC) and M. mycoides subsp. capri (Mmc). The latter are the causative agents of 

what has been called the ‘MAKePS’ syndrome, (mastitis, arthritis, keratitis, pneumonia 

and septicaemia), which can be observed in adult goats and kids [H14H]. The experimental 

inoculation of M. putrefaciens into the udder of goats resulted in excretion of the organism 

in high titres, soon followed by reduced lactation or agalactia [H15H]. Neither fever nor 

transmission to the other udder was observed. Subsequent descriptions of M. putrefaciens 

infections differed markedly. Although agalactia was the main symptom observed in 

lactating goats, arthritis was also recorded in kids and young goats. Death of kids resulting 

from septicaemia was also recorded [H10H]. Similar observations were made in California in 

1987, where adults and kids suffered from acute arthritis with fibrinopurulent discharge. 

M. putrefaciens was also isolated from other organs such as brain, kidneys, lymph nodes, 

uterus and from urine samples [H11H and H16H]. Polyarthritis in kids was also the main 

symptom observed in an outbreak occurring in the Canary Islands, also associated with 

general symptoms such as lameness, depression and anorexia, with none of the animals 

being pyrexic [H12H]. Therefore, M. putrefaciens may certainly be considered one of the 

mycoplasma agents causing the MAKePS syndrome, although ocular symptoms have not 

been described so far. The virulence of M. putrefaciens seems to be lower than that of 

other mycoplasma species such as M. capricolum subsp. capripneumoniae (Mccp), Mcc or 

MmmLC [H17H]. Interestingly, M. putrefaciens was isolated in association with these other 

mycoplasma species in a single herd in which enzootic pneumonia had been observed [H18H]. 

In recent years M. putrefaciens strains, as well as other mycoplasmas of the ‘M. mycoides 

cluster', have been regularly isolated from goat herds in the Charente Poitou region in 

Western France. The increased incidence of M. putrefaciens infections, added to the 

scarcity of specific molecular typing tools available for this organism, lead us to look for a 

specific PCR method enabling its rapid detection and identification. 

The arginine deiminase pathway is the most widespread anaerobic route for arginine 

degradation and constitutes a major source of energy for several microorganisms. This 
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pathway comprises three reactions catalysed by arginine deiminase (ADI, EC 3.5.3.6), 

ornithine transcarbamylase (OTC, EC 2.1.3.3) and carbamate kinase (CK, EC 2.7.2.2). Of 

these three enzymes, OTC is absent only in some obligate parasitic bacteria. Its widespread 

presence in bacteria and its apparent polymorphism [H19H] lead to the selection of this gene 

as a target for a specific PCR. 

 

2. Materials and methods  

2.1. Strains used  

An initial search for specific primers was performed using the reference strain for 

M. putrefaciens (KS1) and a limited set of strains belonging to the ‘M. mycoides cluster’, 

as well as closely related species such as M. yeatsii and M. cottewii. Strains able to 

hydrolize arginine, such as Mycoplasma arginini and M. alkalescens, were also included in 

this preliminary step. All strains are listed in Table 1. 

Table. 1 Strains used for the initial validation of the specific PCR for Mycoplasma putrefaciens. 

Strain Species Origin ArcB-PCR² 

F38 Mccp Kenya Pos 

Vienne Mcc France Pos 

L Mmc France Pos 

7302 Mmm LC France Pos 

PG50 M.sp.Gr7 Australia - 

KS1 M.put USA Pos 

GM623 M. auris USA Neg 

GM612 M. cottewii USA Neg 

GM624 M. yeatsii USA Pos 

G23 M. arginini  Neg 

PG51 M. alkalescens  Neg 

Mccp: Mycoplasma capricolum subsp. capripneumoniae; Mcc: Mycoplasma capricolum subsp. 

capricolum; Mmc: Mycoplasma mycoides subsp. capri; MmmLC: Mycoplasma mycoides subsp. 

mycoides LC; M. sp. Gr7: Mycoplasma sp. Group 7 of Leach; M. put: Mycoplasma putrefaciens. 
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2.2. Target for PCR  

The ArcB gene, coding for the ornithine transcarbamylase, was selected as a potential 

target for PCR. It was identified and sequenced in a parallel study concerning 

M. capricolum subsp. capripneumoniae (Mccp). Its complete sequence was obtained from 

an Mccp (F38) genomic DNA library and deposited in Genebank under the Acc Number: 

AY282502. 

Homologous OTC protein sequences from various bacteria were retrieved from the 

SWISS-PROT database and used to search for conserved domains using the AlignX 

program from Vector NTI 8 suite (Informax). The sequences from R. etli (O31018), P. 

aeruginosa (P08308), H. influenzae (P44770), B. licheniformis (O86132), S. pyogenes 

(Q8P052), Halobacterium sp. (Q42296), C. perfringens (Q46169) and M. pneumoniae 

(P75473) were analysed. A first primer pair was then determined from the Mccp ArcB 

sequence so that the primers matched two conserved domains in species closely related to 

Mccp, C. perfringens and M. pneumoniae. Primers were also chosen as to allow a correct 

amplification of the targeted DNA. Their sequence is given in Table 2. 

Table. 2 Oligonucleotide primers used for the search of a specific PCR identification of 

Mycoplasma putrefaciens 

Name Position Sequence 

ArcBMccpF 301-326 on AY282502 5’-ATGTATGATGCTATTGAATTTAGAGG-3’ 

ArcBMccpR 820-845 on AY282502 5’-TCAGTGTTTAAATCATGAAATGATGG-3’ 

Mput1  5’-AAATTGTTGAAAAATTAGCGCGAC-3’ 

Mput2  5’-CATATCATCAACTAGATTAATAGTAGCACC-3’ 

AY282502 is the Genebank accession number for the ArcB sequence of Mycoplasma capricolum 

subsp. capripneumoniae. 

2.3. Amplification with ArcBMccp primers 

The primer pair ArcBMccpF and ArcBMccpR was used to amplify DNA from the strains 

listed in Table 1. The PCR conditions were similar to those described by Lorenzon et al. 

[H20H]. Briefly, the template DNA consisted of mycoplasma cells (1 ml of culture) pelleted 

by centrifugation and lysed in 100 μl of lysis buffer (100 mM Tris–HCl pH 8.5, 0.05% 

Tween 20, 0.24 mg/ml proteinase K) for one hour at 60 °C. After inactivation at 95 °C for 

10 min, the template consisted of 8 μl of the lysed mycoplasmas diluted one in ten in 
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distilled water. The amplification consisted of 30 cycles at 94 °C for 30 s, 40 °C for 30 s 

and 72 °C for 30 s using Taq DNA polymerase (Qiagen, France) according to the 

manufacturer's instructions in a GeneAmp 2400 (Perkin Elmer) DNA thermal cycler. 

2.4. Sequencing 

The PCR amplification products were analysed by gel electrophoresis on 1.5% (w/v) 

agarose gels and visualised after staining with ethidium bromide using a UV 

transilluminator. Amplified products yielding a unique band were then sent to 

Genomexpress (Meylan, France) for DNA sequence analysis. 

2.5. Alignments  

After correction, the DNA sequences were aligned using the AlignX software of the Vector 

NTI 8 program in order to search for possible polymorphisms amongst the ‘M. mycoides 

cluster' and closely related strains. Primers were then designed according to polymorphism 

observed between the sequence obtained with the KS1 strain and all the others, in order to 

allow specific amplification of M. putrefaciens DNA. Primers were denominated Mput1 

and Mput2; sequences are given in Table 2. 

2.6. Validation of the PCR system  

The validation of the new primer pair was carried out in two steps. The first step was 

performed at the CIRAD by testing a wide selection of strains of various origins. Ten 

M. putrefaciens strains of French origin, as well as strains belonging to various 

heterologous species, MmmLC: 5 strains, Mmc: 44 strains, Mcc: 8 strains, Mccp: 5 strains 

were included. The PCR conditions were similar to those described for the primer pair 

ArcBMccp F and R, with the exception that the program consisted of 35 cycles of 94 °C 

for 15 s, 52 °C for 15 s and 72 °C for 15 s. The second step of the validation was 

performed at the University of Las Palmas, using a different subset of strains originating 

from the Canary Islands: M. putrefaciens (2 strains), MmmLC (12 strains), M. agalactiae 

(8 strains), Mmc (3 strains), Mcc (1 strain from Canary Islands and one from Murcia, 

mainland Spain) and M. arginini (5 strains). The only difference in the second validation 

was that Taq polymerase was obtained from Bio Line, using a Mastercycler Gradient 

(Eppendorf). 
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3. Results  

3.1. PCR with primer pair ArcBMccp F and R 

Most strains belonging to the ‘M. mycoides cluster’ tested yielded a unique DNA fragment 

of the expected size after amplification with this primer pair. Among the ‘M. mycoides 

cluster’, strains Pg1 (MmmSC) and Pg50 (M sp Gr7) did not. Other strains such as KS1 

and GM624, belonging to M. putrefaciens and M. yeatsii, respectively, also yielded a PCR 

amplicon of similar size, whereas no amplification was obtained with the remaining strains 

(Fig. 1). The absence of amplification from the other strains was not due to a technical 

problem, since a control PCR performed with universal primers amplifying the 16S rRNA 

gene [H21H] yielded a positive result with all the samples tested (data not shown). 

 

 

 
Fig 1. PCR results obtained with primer pair ArcBMccpF and ArcBMccpR with strains listed in 
Table 1. 

 

Lane 1: MW, 2: Mccp, 3: Mcc, 4: Mmc, 5: MmmLC, 6: MmmSC, 7: M. sp. Gr7, 8: Mput, 9: M. 

auris, 10: M. cottewii, 11: M. yeatsii, 12: M. arginini, 13: M. alkalescens, 14: Negative control, 15: 

MW (Mccp: Mycoplasma capricolum subsp. capripneumoniae; Mcc: M. capricolum subsp. 

capricolum; Mmc: Mycoplasma mycoides subsp. capri; MmmLC: M. mycoides subsp. mycoides 

LC; M. sp. Gr7: Mycoplasma sp. Group 7 of Leach; M. put: Mycoplasma putrefaciens). 
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3.2. Alignment of ArcB partial sequences 

Alignment of the six 523 bp-long partial ArcB sequences revealed an identity limited to 

74.2%. The relative proximity of the different sequences is shown in Fig. 2. The closest 

relative of the Mccp sequence was its homologous from the subspecies capricolum, 

varying only in six bases (98.9% identity between the two). Sequences from MmmLC and 

Mmc were also very closely related, varying only in nine bases (98.3% identity). The 

M. putrefaciens sequence was the most distant, sharing an identity of only 86.2% with its 

closest relative, the sequence of M. yeatsii. 

 

Fig 2. Multiple alignment of a 523 bp-long partial sequence from the ArcB gene (AlignX of 

VectorNTI 8). The percentage given for each fork indicates the identity shared by the sequences at 

the right of the forks.  

3.3. Selection of specific primers for M. putrefaciens  

The regions showing greatest polymorphism were selected for the design of specific 

primers. Primer Mput1 conferred the specificity to the PCR, bearing six sites strictly 

specific to the M. putrefaciens sequence. It is noteworthy that four of these sites were 

found at the 3′ end of the primer, allowing specific amplification (Fig. 3(a)). 
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Fig 3. Alignment of the sequences homologous to primers Mput1 (a) and Mput2 (b). Specific 

nucleotides to M. putrefaciens are underlined. Sequences specific to M. putrefaciens and M. yeatsii 

are highlighted. 

The sequence from primer Mput2 was partially shared by M. putrefaciens and M. yeatsii, 

but two bases at the 3′ end formed a CC clamp that differed from the sequences of the 

other species of the ‘M. mycoides cluster’ (Fig. 3(b)). 

3.4. Validation of the M. putrefaciens specific PCR 

All M. putrefaciens strains tested were identified by this PCR producing products of the 

expected size, 316 bp (Fig. 4). In contrast, no amplification was obtained from any of the 

heterologous strains tested. 
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Fig 4. PCR results obtained with primer pair Mput1 and Mput2 with strains listed in Table 1 

Lane 1: MW, 2: Mccp, 3: Mcc, 4: Mmc, 5: MmmLC, 6: MmmSC, 7: M sp. Gr 7, 8: Mput, 9: M. 

auris, 10: M. cottewii, 11: M. yeatsii, 12: MW (Mccp: Mycoplasma capricolum subsp. 

capripneumoniae; Mcc: M. capricolum subsp. capricolum; Mmc: Mycoplasma mycoides subsp. 

capri; MmmLC: M. mycoides subsp. mycoides LC; M. sp. Gr7: Mycoplasma sp. Group 7 of Leach; 

M. put: Mycoplasma putrefaciens). 

 

4. Discussion and conclusion 

The arginine deiminase pathway exists in many bacteria, including mycoplasmas, and 

analogous genes have already been identified in the M. pneumoniae genome [H22H]. This 

pathway may also be active in various other mycoplasma species, since many of them are 

able to hydrolize arginine, which constitutes the basis for one of the few biochemical tests 

available for the differentiation of mycoplasma species. Amongst the ‘M. mycoides 

cluster’, only M. capricolum seems to possess an effective ADI pathway [H3H], although the 

reaction takes a long time (2–3 weeks), compared to some other species that yield a 

positive result within one day. Eventually, the anaerobic nature of this pathway in Mcc is 

evidenced by the change of colour, which appears first at the bottom of the tube. The ArcB 

sequences, coding for OTC, may also be present in mycoplasmas that are not positive by 

the arginine hydrolysis test, as it was found when studying the genome of Mccp, the agent 

of contagious caprine pleuropneumonia. ArcB is also present in other members of the 

‘M. mycoides cluster’ as shown by the PCR results with the non-specific primer pair 

ArcBMccp F and R. This gene may also be present in those species yielding a negative 

result by this PCR, given that negative results may be due to DNA polymorphism rather 
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than absence of the gene. Testing this hypothesis was outside the scope of this study. 

Comparative studies of the ADI operon within the ‘M. mycoides cluster’ may eventually 

lead to potentially interesting results for designing new specific diagnostic tests or for 

evaluating phylogenetic relationships.  

Alignment of the partial ArcB sequences obtained from six different strains of the 

‘M. mycoides cluster’ and related species showed the relatively high polymorphism 

existing within these sequences, which shared an identity of only 74.2 %. This contrasted 

markedly with comparisons made between the 16S rRNA sequences, for which the 

polymorphism was very limited, and between the 16S–23S rRNA intergenic spacer regions 

[H6H], where polymorphism was also less important. Nevertheless, the comparison of these 

three regions gave consistent results, showing that M. putrefaciens is related to the 

‘M. mycoides cluster’, although obviously distinct from it. The results obtained from the 

ArcB sequence comparisons also confirmed that M. yeatsii is a very close relative of 

M. putrefaciens [H4H]. Interestingly, M. yeatsii has rarely been isolated and so far only from 

the external ear canal of goats [H23H and H24H]. Its pathogenicity for goats and especially its 

ability to induce mastitis may be worth investigating in view of its genetic proximity to 

M. putrefaciens.  

Up to now the identification of M. putrefaciens required the isolation of the agent, its 

purification and identification by conventional methods, such as biochemical analysis or 

growth inhibition test. The only PCR technique available for the identification of 

M. putrefaciens was derived from the CAP-21 probe [H25H]. However, this technique was 

based on a non-specific amplification, followed by enzymatic digestion of the amplified 

product, a technique that may pose difficulties for diagnostic laboratories. Furthermore, 

this technique should be re-evaluated in view of the close relationship existing between 

M. putrefaciens, M. cottewii and M. yeatsii. 

The new PCR technique described here, using primers Mput1 and Mput2, offers the 

advantage of being strictly specific for M. putrefaciens and, if needed, the identity of the 

amplified product may be confirmed by enzymatic digestion or by sequencing. All 

heterologous mycoplasma strains tested yielded only negative results, although they were 

chosen mostly amongst the closely related ‘M. mycoides cluster’ cluster. This PCR was 

also universal, since it was able to yield a positive result from all the M. putrefaciens 

strains tested, in spite of their various origins: California, France, Canary Islands. This test 
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offers new opportunities for epidemiological studies of the ‘contagious agalactia 

syndrome’, which may be caused by various mycoplasma species including 

M. putrefaciens [H1H]. 
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Abstract  

Contagious caprine pleuropneumonia is a severe infectious disease of goats in Africa and 

the Middle East. It is caused by a fastidious mycoplasma, Mycoplasma capricolum subsp. 

capripneumoniae, a member of the “M. mycoides cluster”. Members of this cluster share 

genomic and antigenic features, which result in common biochemical and serological 

properties, complicating species identification. Two species of this cluster, M. mycoides 

subsp. capri and M. mycoides subsp. mycoides large colony biotype, are very often isolated 

from clinical cases resembling contagious caprine pleuropneumonia. Furthermore, in the 

laboratory, M. capricolum subsp. capripneumoniae can be easily confused with the closely 

related capricolum subspecies. Considering these constraints and the scarcity of available 

methods for identification, a specific polymerase chain reaction was developed. A DNA 

fragment of 7109 bp containing genes coding for the arginine deiminase pathway (ADI) 

was chosen as target sequence for the selection of a specific primer pair. The full ADI 

operon from M. capricolum subsp. capripneumoniae strain GL100 was sequenced. 

Polymorphism within this locus was analyzed by comparison with the sequence from the 

closely related IPX strain (M. capricolum subsp. capricolum). It varied from 0.6 % to 

3.5 %. The highest divergence was found in a region coding for arcD. Therefore, this gene 
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was chosen as target for the specific amplification of a 316 bp-long DNA fragment. The 

specificity of this PCR was validated on 14 M. capricolum subsp. capripneumoniae strains 

and 27 heterologous strains belonging to the “M. mycoides cluster” and M. putrefaciens. 

This new PCR will be a valuable tool for the surveillance of contagious caprine 

pleuropneumonia.  

Keywords: Contagious caprine pleuropneumonia; Specific PCR; Mycoplasma capricolum 

subsp. capripneumoniae; ADI pathway 

 

1. Introduction  

Contagious caprine pleuropneumonia (CCPP) is a severe infectious disease of goats caused 

by Mycoplasma capricolum subsp. capripneumoniae (Mccp), which occurs in many 

countries of Africa and Asia where the total goat population is over 500 million 

(Rurangirwa and Kinyili, 2000). It is a disease of major economic relevance characterized 

by high morbidity and mortality. It represents a potential threat to many disease-free 

countries. As a result, it is classified as a List B disease by the OIE. 

The exact distribution of CCPP is not known and there are very few official confirmations 

of outbreaks. The first reason is that, from a clinical point of view, CCPP can be confused 

with a number of diseases inducing similar respiratory signs in goats, such as Peste des 

Petits Ruminants or pasteurellosis. Also, amongst mycoplasma species that induce various 

syndromes: Mastitis, Arthritis, Keratitis, Pneumonia and Septicaemia (MAKePS) 

(Thiaucourt and Bolske, 1996), some peculiar strains may have a specific tropism for the 

lung. The second reason is that Mccp is one of the most fastidious mycoplasmas to be 

grown in vitro. As a result, isolation trials are often unsuccessful, especially if the 

conservation of the clinical sample has not been adequate. In addition, other mycoplasma 

species, such as M. ovipneumoniae, may be isolated from CCPP cases, although they are in 

small number in the sample, simply because they grow faster and more easily. Once 

isolated, Mccp strains may also be difficult to identify as this subspecies belongs to the so-

called “M. mycoides cluster”, which includes six species, subspecies or groups of strains: 

M. mycoides subsp. mycoides LC (MmmLC), M. mycoides subsp. capri (Mmc), 

M. mycoides subsp. mycoides SC (MmmSC), M. capricolum subsp. capricolum (Mcc) 
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M. capricolum subsp. capripneumoniae (Mccp) and Mycoplasma sp. bovine group 7 

(Mbg7), sharing many genomic as well as antigenic properties (Cottew et al., 1987). For 

example, cross-reactions may occur in many serological typing methods, such as the 

growth inhibition test, with strains belonging to Mbg7 (ter Laak, 1991). Cross reactions are 

also very often observed between these two species when looking for specific monoclonal 

antibodies (Thiaucourt et al., 1994 and Rurangirwa et al., 1997). Because of these 

difficulties, the direct detection of Mccp in clinical material may be a very useful 

alternative for the confirmation of CCPP outbreaks. This detection can be achieved by 

immunoperoxydase techniques from pleural fluid blotted on nitrocellulose using 

hyperimmune sera (Thiaucourt et al., 1992) or monoclonal antibodies. However, these 

techniques have the disadvantage of a relatively low sensitivity. A higher sensitivity can be 

achieved with PCR and, up to now, there are only two PCR-based detection techniques 

described for the identification of Mccp. Both assays are based on an initial “M. mycoides 

cluster”-specific PCR amplification of a fragment of the 16S rRNA (HBascuñana et al., 

1994H) or the CAP21 locus (HHotzel et al., 1996H). The specificity for Mccp identification is 

then obtained by PstI cleavage, detecting a point mutation in one of the two rRNA operons 

for Mccp (HBascuñana et al., 1994H), or by a nested PCR using a second set of primers 

( HHotzel et al., 1996H). The first PCR assay has been extensively used and validated, 

although it has some possible drawbacks. Firstly, it may not be able to detect Mccp when it 

is mixed with other members of the “M. mycoides cluster” as the first PCR is not Mccp 

specific. Secondly, the use of restriction endonuclease analysis requires additional time and 

may lead to false positive results in the case of a partial digestion of the product, as the 

presence of an undigested rRNA fragment is theoretically typical for Mccp. Thirdly; the 

existence of Mccp strains that do not possess the specific single nucleotide mutation is 

always to be feared. As for the second PCR assay, it has not really been validated for Mccp 

identification, as the original paper dealt mainly with the distinction between MmmSC and 

its close relatives. The aim of this work was, therefore, to develop a new PCR assay that 

would not have the aforementioned drawbacks and would allow a one-step specific 

detection of Mccp strains. 
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2. Materials and methods 

Representative strains from each member of the “M. mycoides cluster” were selected 

according to their geographical distribution. All the strains used in this study, with 

reference to their origin, are listed in Table 1. These strains were cultivated in modified 

Hayflick medium (PPLO broth without crystal violet (21 g/l), 20 % de-complemented 

horse serum, 10 % fresh yeast extract, 0.2 % glucose, 0.4 % sodium pyruvate) in a high 

security (LB3 B) laboratory. 

Table 1 List of mycoplasma strains used in the study. 

CIRAD ref. no. (original ID)  Origin  Species  Received from  

8789 Chad Mccp  
8891 (7/2) Oman Mccp Dr. Jones, MRI, Edinburgh, GB 
9081 (487) Oman Mccp CVRL, Rumais 

91106 (C550-1) Dubaï Mccp  
92138 (CLP) Ethiopia Mccp Dr. Laikemariam, NVI, Debre Zeit 
9231 (Abomsa) Ethiopia Mccp Dr. Laikemariam, NVI, Debre Zeit 
94156 (438p) Chad Mccp Dr. Angaya, N’Djamena 
95043 Niger Mccp Dr. Maikano LABOCEL, Niamey 
98113 (M 74/93) Uganda Mccp Dr. Bölske NVI Uppsala, Sweden 
99108 (P1) Eritrea Mccp Dr. Tesfaalem T, Asmara 

F38 Kenya Mccp  

Gabes 5p Tunisia Mccp  

Gabes 96p Tunisia Mccp  

GL100 Tunisia Mccp  

 

7714 France Mcc  

7759 (585) France Mcc  

8069 France Mcc  

8086 France Mcc  

8086-1 France Mcc  

8110 France Mcc  
8601-2-03 Portugal Mcc Dr. Regalla, Lisbon 
8601-50 Portugal Mcc Dr. Regalla, Lisbon 
9125 (E-570) UK Mcc Dr. Bölske NVI Uppsala, Sweden 
970058 Ethiopia Mcc Dr. Laikemariam, NVI, Debre Zeit 
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C-Kid USA Mcc  

Courtenay France Mcc  

G189 France Mcc  

IPX France Mcc  

 

7730 France MmmLC  

8065 France MmmLC  

9298-CN508 Tanzania MmmLC  

99055 France MmmLC  

YG Australia MmmLC  

 

9139 Turkey Mmc  

PG-3 Turkey Mmc  

 

C11 Chad MmmSC  

PG-1 Not Known MmmSC  

 

KS1 USA M. putrefaciens  

Tours 2 France M. putrefaciens  

 

PG-50 Australia Mbg7  

 
97012 (Eldoret) Kenya M. ovipneumoniae Dr. Wesonga, KARI, Muguga 

Abbreviations: M. capricolum subsp. capripneumoniae (Mccp), M. capricolum subsp. capricolum 

(Mcc), Mycoplasma mycoides subsp. mycoides LC (MmmLC), M. mycoides subsp. mycoides SC 

(MmmSC), M. mycoides subsp. capri (Mmc), Mycoplasma sp. bovine group 7 (Mbg7). 

Samples for PCR were prepared as described by Miserez et al. (1997): 3 ml culture were 

centrifuged at 12,000 × g for 20 min at 4 °C. The pellets were then washed once in PBS 

and re-suspended in 300 μl of lysis buffer (100 mM Tris/HCl pH 8.5, 0.05% Tween 20, 

and 0.24 mg/ml proteinase K). Following incubation for 1 h at 60 °C, proteinase K was 

inactivated at 95 °C for 10 °min. The heat treatment ensured that no live mycoplasmas 

remained in the samples, which could then be examined in a conventional LB2 B laboratory. 

For PCR reactions, these samples were diluted 1/10 in sterile distilled water. 
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For the selection of target genes, genomic libraries were created in pBluescript (Stratagene, 

CA, USA), using Mccp DNA (strain GL100) cleaved with ClaI, EcoRI, HindIII and PstI, 

respectively. The inserts were amplified and dig-labelled by PCR, and then probed by 

hybridization with mycoplasma DNA from various strains belonging to the “M. mycoides 

cluster”. Inserts that yielded a positive signal limited to the capricolum species were 

retained and sequenced (GENOME express, Meylan, France). Two of these sequences 

were assembled (Vector NTI “Contig Express”, Informax, USA) and formed a 3915 bp 

long contig. This sequence was analysed by pBLAST ( HUhttp://www.ncbi.nlm.nih.govUH) and 

also compared with the whole genome sequence of strain California Kid (C. kid), the Mcc 

reference strain (courtesy of Mike Calcutt, University of Missouri, USA). This allowed the 

identification of the flanking genes of the initial contig and the subsequent sequencing of a 

7109 bp long DNA fragment for comparison between Mccp (strain GL100) and Mcc: 

strain C. kid for the totality of the fragment and strain IPX for partial sequences.  

PCR was carried out in a Perkin-Elmer GeneAmp 2400 PCR system. The specific 

amplification was performed in a 50 μl-final volume obtained by mixing 34 μl of distilled 

water, 0.5 μl of dNTP (150 μM for dCTP and dGTP, 300 μM for dATP and dTTP), 3 μl of 

MgCl B2B (1.5 mM), 5 μl of 10× Taq Buffer (Qiagen), 1 μl of each primer (0.4 μM of Mccp-

spe-F: 5′-ATCATTTTTAATCCCTTCAAG-3′ and Mccp-spe-R, 5’-

TACTATGAGTAATTATAATATATGCAA-3′), 0.5 μl of Taq polymerase (1 unit, 

Qiagen) and 5 μl of the sample. PCR conditions consisted of an initial denaturation step of 

2 min at 94 °C, followed by 35 cycles of 30 s at 94 °C, 15 s at 47 °C and 15 s at 72 °C and 

a final extension step of 5 min at 72 °C. 

This PCR was validated by testing all strains listed in Table 1. Specific Mccp PCR 

products were analyzed without further purification using ClaI according to the 

manufacturer's instructions (Promega). In addition, all mycoplasma samples were further 

analysed by a non-specific PCR assay that amplifies a DNA fragment from all 

mycoplasma cultures using primers chosen on the 16S rRNA genes (Hvan Kuppeveld et al., 

1994H).
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3. Results  

The 7109 bp-long sequence, obtained from strain GL100, was deposited at GenBank 

(accession number HUAY529462 UH). 

The pBLAST analysis on all the ORFs identified along this sequence allowed the 

identification of a putative arginine deiminase (ADI) pathway in the capricolum species. It 

is composed of the putative arcA, arcB and arcD genes that share maximum homologies 

with genes of Clostridium perfringens, Vibrio cholerae and Haemophilus influenzae 

respectively. This ADI pathway is flanked upstream by a putative MgP

2+
P transport ATPase 

and downstream by a putative glucokinase. Interestingly, arcA and arcD are apparently 

disrupted by frameshift mutations in the GL100 sequence but neither in the C. kid nor in 

the IPX sequences (Fig. 1). 

 

Fig. 1 Diagram showing the organization of the ADI operon in M. capricolum subsp. 

capripneumoniae strain GL100. 

The operon is flanked by genes coding for MgP

2+
P transport ATPase and Glucokinase. Genes arcA 

and arcD present frameshift mutations leading to two ORFs for each of them. The vertical broken 

line indicates the target site used for the selection of the specific primer pair Mccp-spec-F/R. 

 

Alignments of the DNA sequences from GL100 and C. kid strains allowed the detection of 

some polymorphisms consisting in a deletion in the C. kid sequence upstream arcA, as well 

as a 9 bp-long deletion in the GL100 sequence at the 3′ end of the arcD putative gene. In 
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addition, scattered mutations occurred along the whole sequence, with frequencies varying 

from 0.6% in arcB to 3.4% in arcD. 

The partial sequences obtained with strain IPX suggested that the 9 bp deletion was 

possibly specific to Mccp strains and, accordingly, a primer pair was chosen on the GL100 

sequence so that the 3′ end of the primers matched polymorphic sites. In particular, primer 

Mccp-spe-R was chosen so that hybridization to template DNA from strain C. kid yielded 

a 4 bp-long mismatch at its 3′ end because of the deletion existing in the GL100 sequence. 

All tested samples yielded a positive amplification with the non-specific PCR (Hvan 

Kuppeveld et al., 1994H) (data not shown), whereas only Mccp strains yielded a positive 

specific amplification by PCR using the Mccp-spe-F/R primer pair (Fig. 2). The amplified 

product was of the expected size (316 bp) and digestion by ClaI also yielded the two 

expected bands (190 and 126 bp long, respectively (Fig. 3). This digestion results 

confirmed the identity of the amplified product. Among the other strains tested, only strain 

YG (MmmLC) yielded a faint amplification of a smaller fragment (Fig. 2). 

 

 
Fig. 2 PCR results obtained with the primer pair Mccp-spec-F/R. 

A specific 316 bp-long band was only obtained with M. capricolum subsp. capripneumoniae 

(Mccp) strains. Lane L: molecular weight marker; Mccp strains in lane 1: 95043, lane 2: 8789, lane 

3: 8891, lane 4: 98113, lane 5: F38, lane 6: 92138, lane 7: 94156-438p, lane 8: 91106-C550-1, 

lanes 9 and 10: M. capricolum subsp. capricolum strains IPX and C. kid, respectively, lane 11: 
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GL100, lanes 12 and 13: M. mycoides subsp. mycoides LC type YG and 8065 CN 508, lanes 14 

and 15: M. mycoides subsp. capri strains PG-3 and 9139, lane 16: M. mycoides subsp. mycoides sc 

type PG-1, lanes 17 and 18: M. putrefaciens strains KS1 and Tours, lane 19: Mbg 7 strain PG-50 

and lane 20: HB2 BO. 

 

 

Fig. 3 Agarose gel electrophoresis of ClaI-cleaved specific PCR products from M. capricolum 

subsp. capripneumoniae strains. 

From left to right lane L: molecular weight marker, lane 1: 95043, lane 2: 8789, lane 3: 8891, lane 

4: 98113 and lane 5: F38. 

 

4. Discussion and conclusions 

The ADI pathway is a route for the anaerobic catabolism of arginine (HD’hooghe et al., 

1997 H) that is found in many bacteria (HBarcelona-Andrés et al., 2002H). The genes for the 

three pathway enzymes arcA, arcB and arcC, code for arginine deiminase (ADI), ornithine 

transcarbamylase (OTC) and carbamate kinase (CK), respectively. These genes are usually 

clustered in an operon that may also include, arcD, which codes for a membrane-bound 

protein and arcR, which codes for a repressor (HD’hooghe et al., 1997H). However, the 

organization of the operon and the number of genes present vary widely from one species 

to another (HZúñiga et al., 2002H). In the case of Mccp, both arcR and arcC are missing in the 

DNA fragment sequenced in this study. However, other mycoplasma species do not 

display the same organization for this operon. ArcD is not found in any of the six 

completely sequenced mycoplasma genomes: M. genitalium, M. pneumoniae, M. pulmonis, 
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M. penetrans and M. gallisepticum (HUhttp://cbi.labri.fr/outils/molligenUH). In M. penetrans the 

ADI operon is organized as arcA–arcB–arcC–AApermease and in M. pneumoniae, the 

sequence of genes is arcA–argI–arcC. Furthermore, only arcA is found in the 

M. gallisepticum genome. 

In Mccp, two genes of the ADI pathway showed frame-shift mutations, a deletion of a T at 

position 1940 bp (arcA) and an insertion of an A at position 4963 bp (arcD), which should 

prevent the correct translation of these genes. This may account for the absence of arginine 

catabolism in Mccp strains, observed by arginine hydrolysis testing (HBonnet et al., 1993 H). 

The ArcB gene has been used previously to design a specific PCR for the identification of 

M. putrefaciens (HPeyraud et al., 2003H), taking advantage of the high polymorphism 

observed in this sequence between “M. mycoides cluster” and related species. The DNA 

polymorphism observed on this gene between Mccp and the closest relative Mcc was very 

limited (0.6%) and did not allow the selection of specific PCR primers. This result also 

confirmed the very close similarity between these two subspecies. A greater polymorphism 

was evidenced on the arcD gene and the deletion observed on this gene in Mccp strain 

GL100 allowed the selection of a specific primer pair.  

Great care has been taken for the choice of strains included in the validation. For 

universality, 14 Mccp strains of various geographical origins were included. This ensured 

that strains belonging to all clusters, defined in a previous molecular epidemiology study 

( HLorenzon et al., 2002H), were included. In this previous study, one strain was found to be 

very peculiar (91106-C550-1) as one pseudo-gene was completely deleted. This strain was 

correctly identified with the new PCR technique. 

The reliability of the validation of PCR specificity was ensured by the inclusion of a 

representative number (27) of strains from the “M. mycoides cluster”, with a greater 

emphasis on Mcc strains, the closest relatives to Mccp. 

This new PCR will allow a more reliable identification of Mccp strains and, hopefully, a 

better assessment of the distribution and economical impact of CCPP, as the isolation of 

Mccp is very cumbersome. Up to now, a single validated PCR system was available 

( HBascuñana et al., 1994H). It has already been very useful, notably because PCR can be 

performed on dried samples. This is a major advantage for developing countries that lack 
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proper infrastructures to send samples rapidly and under a cold chain. However, a single 

PCR technique might not be sufficient, as it does not allow any confirmation based on 

different genes. Such a confirmation is necessary as PCR may yield false positive results 

due to contaminations and also because 16S rRNA sequences in Mccp strains have been 

shown to be quite polymorphic. The major advantage of the new PCR technique is that it 

gives a specific amplification that should allow the detection of Mccp strains even in 

mixed cultures or in samples containing multiple mycoplasma species. In goat lung 

samples, the presence of multiple mycoplasma species is a common feature and, 

sometimes, multiple species of the “M. mycoides cluster” can be isolated. After the first in 

vitro passage, any contaminant may become the major population in the culture and only a 

sensitive technique such as PCR may be able to detect it. In addition, the advantage of a 

specific amplification is that the identity of the amplified product can then be verified by 

ClaI digestion or by sequencing. Getting PCR positive results in some samples will also 

stimulate new trials to isolate Mccp strains, especially in countries that have not yet 

confirmed the presence of CCPP. This could be done by harvesting new samples, such as 

fresh pleural fluid from an acute case, or by cloning mycoplasma cultures that may contain 

multiple species. Detecting CCPP by PCR might be the only way to get a better 

distribution map for this disease, which remains largely unrecognized in Africa and Asia, 

in spite of many suspicious clinical cases. In disease-free countries the detection of Mccp 

by a direct specific amplification method will be of great help in case of an emergency. At 

present, it is unlikely that CCPP would be easily recognized if imported in disease-free 

countries. Goats may receive antibiotic treatments that will hamper bacteriological 

isolations and the growth of Mccp is so fastidious that it is unlikely that a laboratory will 

succeed in isolating it using routine procedures. Hence, this new PCR should play a major 

role in the surveillance of CCPP as a complementary tool to clinical and post-mortem 

inspections and to mycoplasma isolation trials. The PCR from Bascuñana based on 16S 

rRNA gene amplification can be used in parallel in order to get a confirmation of 

identification. 
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22  CCOONNCCLLUUSSIIOONN  
In the present study specific PCR approaches were developed for the detection of 

mycoplasmas of the M. mycoides cluster (Woubit et al., 2007). Identification of Mccp, the 

aetiological agent of contagious caprine pleuropneumonia (CCPP) (Woubit et al., 2004) 

and M. putrefaciens, one of the causative agent of contagious agalactia syndrome (Peyraud 

et al., 2003). 

 

These PCR diagnostic tools have several advantages over a number of other assays 

previously available: 1) As PCR-based assays, they do not require cultivation of the 

respective causative agents, allowing for direct detection of the causative agent from 

clinical cases albeit the presence of multiple mycoplasmas; 2) These PCR assays will play 

an important role in reporting the right mycoplasma in disease outbreaks. Consequently, 

this should permit to understand the exact geographical distribution of causative agents 

involved. For instance, CCPP outbreaks have been under-reported due to the frequent 

isolation of Mmc / MmmLC or M. ovipneumoniae, which is a common contaminant found 

in small ruminant samples. 

 

The importance of these diagnostic PCR tests has been illustrated in a recent epidemic of 

contagious agalactia in a disease endemic area. In contagious agalactiae surveys conducted 

in Gran Canaria (De la Fe et al., 2005) and in Lanzarote (De la Fe et al., 2007), 

M. putrefaciens PCR (Peyraud et al., 2003) was an invaluable tool towards identification of 

the causative agents, ruling out the presence of M. putrefaciens. These researchers showed 

the endemic nature of agalactia syndrome in these regions to be basically due to MmmLC / 

Mmc and M. agalactia. Although M. putrefaciens was not isolated in this studies, this 

species had been observed in the past in Gran Canary and Lanzarote (Gil et al., 1999), 

suggesting a sporadic distribution of this agent. These observations emphasize the 

importance of the present specific PCRs (Woubit et al, 2007; Peyraud et al., 2003) in the 

surveillance of this syndrome. 

 

CCPP is one of the most important mycoplasmal diseases causing persistent ravaging of 

animal population in Africa and Asia. It is found in the list of OIE diseases subjected to 

international control measures. In the case of a recent outbreak of CCPP in captive wild 

ungulates at Al-Wabara wildlife preservation state of Qatar (Arif et al., 2007), Mccp 

specific PCR (Woubit et al., 2004) was used in the confirmation of the disease outbreak. 
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The specific PCR for the identification of Mccp has also been used in the confirmation of 

CCPP outbreak in the Thrace region of Turkey (Ozdemir et al., 2006). 

 

Furthermore, the identification of specific sequences may be used for the development of 

highly specific, sensitive and rapid techniques such as real time PCR and Loop-mediated 

isothermal amplification (LAMP), for the specific identification of all members of the 

M. mycoides cluster. The specific primers for Mccp have already been applied in real time 

PCR assays and found to be more sensitive than the conventional PCR assay used. 

 

In any case, these diagnostic tools will play a great role in the advancement of animal 

disease diagnosis and effective control measures. 
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1 Insertion sequence elements 
Insertion sequence (IS) elements are loosely defined as small (<2.5 Kbp) cryptic DNA 

segments with a simple genetic organization encoding only proteins for their transposition 

and capable of inserting at multiple sites in a target molecule (Mahillon and Chandler, 

1998). IS-elements are thought to be one of the major players in the plasticity of 

prokaryote genomes. More than 600 IS have been identified to date of which 385 are 

unique to 171 bacterial and archaeal species, falling to about 20 distinct groups. This 

number represents only a few of the many predicted from the ongoing microbial genome 

projects (Mahillon et al., 1999). IS-elements like all mobile genetic elements move or 

rearrange neighbouring DNA sequences of the host genome. Genetic phenomena 

associated with transposition of IS elements are spontaneous, associated with deletion or 

inversion of adjacent DNA segments, as well as activation of the transcription of flanking 

genes (Galas and Chandler, 1981). These activities can lead to assembly of gene clusters 

with specialized functions such as multiple antibacterial activities; virulence or symbiotic 

functions, or new catabolic pathways (Mahillon et al., 1999), mobile elements that carry 

antibiotic resistance genes are the major factors underlying the widespread dissemination 

of antibiotic resistance in bacterial population (Bruce et al., 2002). 

 

1.1 Structure of IS-elements 
Insertions sequences are genetically compact DNA fragments encoding functions involved 

in their mobility. They encode functions required in cis, which are recombinationally 

active DNA sequences defining the ends of the element. They also encode for the enzyme 

transposase (Tpase), which recognizes and process these ends. ISs are classified into about 

20 families on the bases of various shared features. An IS family is defined as a group of 

ISs with related transposase, strong similarities of the catalytic site and conservation of 

organization such as disposition of their open reading frames (ORFs), length and similarity 

of the terminal inverted repeats (IRs) (Siguier et al., 2006) and the characteristic number of 

base pairs in the target DNA, which they duplicate upon insertion (Mahillon et al., 1999). 

The catalytic site of the transposase is also known as the DDE motif named for the three 

amino acids Asp, Asp and Glu that play a role in co-ordinating divalent metal ions 

involved in the chemical reactions required for transposition (Mahillon and Chandler, 

1998). The Tpase is generally encoded by single or two open reading frames, and stretches 

nearly the entire length of the element (Figure IV. 1, Mahillon and Chandler, 1998). An IS 

element therefore displays a characteristic structure in which its ends are identified by the 
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inverted terminal repeats (IR) while the adjacent ends of the flanking host DNA are 

identified by the short repeats also known as direct repeats (DR) (Lewin, 2000). 

 

 

Figure IV. 1 Structure of a typical IS-element 

Characterized by the presence of a single or double ORF (yellow), direct repeats of target sequence 

(black) and inverted repeats left and right of the sequence marking the ends of insertion sequence 

element IRL and IRR (red). Usually in IS3 family member insertion sequence elements have two 

consecutive overlapping open reading frames indicated as orfA and orfB, and are arranged in 

reading phase 0 and -1. ORFAB is produced by a programmed translational frameshifting. This 

involves a group of "slippery" codons (in this case A6G) on which the ribosome slides back for a 

single nucleotide. The DDE catalytic domains are shown by blue stippled lines (Adapted from IS-

Finder Information). 

 

1.1.2 Transposition of IS-elements 

Most IS-elements move only very rarely (once in 10P

5
P cell generations for many elements in 

bacteria), and for this reason it is often difficult to distinguish them from non-mobile parts 

of the chromosome. In most cases, it is not known what suddenly triggers their movement 

(Bruce et al., 2002). Experiments show that IRs, which can be as short as 20 nucleotides, 

plays an important role for the DNA between them to be transposed by the particular 

transposase enzyme associated with the element. 

 

The two types of ways an IS-element transposes in the genome are, cut-and-paste and 

copy-and-paste replication systems described in Figure IV.3 and Figure IV. 4. The cut-and-

paste movement or non-replicative transposition of IS-element from one chromosomal site 

to another begins when the transposase brings the two inverted DNA sequences together, 

forming a DNA loop as shown in Figure IV. 2. 
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Figure IV. 2 The structure of the central intermediate formed by a cut-and-paste transposase 

(A) Schematic view of the overall structure. (B) The detailed structure of a transposase holding the 

two DNA ends, whose 3′-OH groups are poised to attack a target chromosome. (B, from. D.R. 

Davies et al., Science 289:77–85, 2000. © AAAS, Bruce et al., 2002) 

 

 

Insertion into the target chromosome, catalyzed by the transposase, occurs at a random site 

through the creation of staggered breaks in the target chromosome (red arrowheads) 

(Figure IV.3). As a result, the insertion site is marked by a short direct repeat of the target 

DNA sequence, as shown. Although the break in the donor chromosome (green) is 

resealed, the breakage-and-repair process often alters the DNA sequence, causing a 

mutation at the original site of the excised transposable element (Galas and Chandler, 

1981; Lewin, 2002; Turlan and Chandler, 1995). 
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Figure IV. 3 Cut-and-paste movement of IS transposition. 

This begins when the transposase brings the two inverted DNA sequences together, forming a 

DNA loop. Insertion into the target chromosome, catalyzed by the transposase, occurs at a random 

site through the creation of staggered breaks in the target chromosome (red arrowheads). As a 

result, the insertion site is marked by a short direct repeat of the target DNA sequence, as shown. 

Although the break in the donor chromosome (green) is resealed, the breakage-and-repair process 

often alters the DNA sequence, causing a mutation at the original site of the excised transposable 

element (not shown) (Bruce et al., 2002). 
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Figure IV. 4 Copy and paste transposition. 

Here the DNA sequence of insertion sequence element is 

copied by DNA replication. The end products are an insertion 

sequence element that is identical to the original donor in to the 

target DNA molecule. 

 

 

 

 

 

 

 

 

 

 

1.1.2 Distribution of IS-elements 

IS-elements found in the genomes of many different bacteria and mycoplasma at a 

multiplicity of between a few and several hundred per genome. In bacteria they are very 

frequently found as part of natural plasmids. Insertion sequences provide a valuable source 

of experimental material for the study of gene expression, recombination and repair events, 

population dynamics, and horizontal transmission of genes (Frey, 2003). The distribution 

of many insertion sequences within and between various bacterial species has often been 

investigated as part of the initial characterisation of a new element, usually by simple 

Southern hybridization. Although useful in "typing" strains, much of the data remains 
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purely descriptive. However, few systematic attempts have been made to determine the 

dynamics of insertion sequences within bacterial populations in a controlled manner 

(Mahillon and Chandler, 1998). 

 

In mycoplasma species it is common to observe repetitive elements with features similar to 

the IS3 family of insertion sequences. The most recent data from IS-finder database 

( HTUhttp://www-is.biotoul.fr/is.html UTH) of IS elements presents the discovery of more than 20 

different IS elements in mycoplasmas including mycoplasmas of the M.  mycoides cluster 

(Bhugra and Dybvig, 1993; Calcutt et al., 1999; Frey et al., 1995; Peterson et al., 1995; 

Vilei et al., 1999; Westberg et al., 2002; Zheng and McIntosh, 1995), most of these 

elements have not been shown to transpose within the chromosome (Dybvig and Volker, 

1996). The exception is IS1138 from Mycoplasma pulmonis, which is observed to 

transpose actively (Bhugra and Dybvig, 1993). 

 

 

1.1.2.1 IS-elements in the M. mycoides cluster 

The first known IS element to be discovered from the members of the M. mycoides cluster 

was IS1296 a member of the IS3 family. The insertion sequence IS1296 was identified 

from MmmSC in 18-19 copies, the agent of contagious bovine pleuropneumonia (Frey et 

al., 1995). In this same study Frey and colleagues found that this IS-element also existed in 

other members of the M. mycoides cluster, MmmLC and Mbg7, so far there is no evidence 

of its presence in other species than the M. mycoides cluster. In spite of its high A+T 

content and use of mycoplasma specific codon UGA, it shows high structural similarities 

to the IS150 of E. coli. In IS1296 the 1483 bp sequence length is characterized by two 

partially overlapping ORFs, ORFA and ORFB and a terminal 30 bp IRs (Frey et al., 1995). 

Owing to the low copy number of RNA genes (rrn), ribotyping is not applicable to 

mycoplasma, IS-elements however found to offer practical application in strain typing. For 

the first time IS1296 have been used in the differentiation of MmmSC isolates from 

European to those from Africa and Australia, southern hybridization pattern of African and 

Australian strains showed four closely related patterns which belong to a separate cluster 

(Cheng et al., 1995). 

 

The other insertion sequence named IS1634 was initially discovered while studying the 

DNA segments proximal to copies of IS1296 in MmmSC species; up on southern blot 
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hybridization Vilei and colleagues found 30 copies of this IS-element within the genome of 

MmmSC. The amino acid sequence of the putative transposase is more closely related to 

IS1549 of Mycobacterium smegmatis. So far this insertion sequence is not found in any 

other members of the M. mycoides cluster. But ISMbov3 from M. bovis was discovered to 

be very closely related to IS1634 (Thomas et al., 2005). IS1634 belongs to the IS4 family 

member of insertion sequences with a total size of 1872 bp containing a single ORF and 

characterized by 13 bp IRs (Vilei et al., 1999). Like IS1296, IS1634 have been used for 

MmmSC strain characterization and differentiation of strains geographical origin (March et 

al., 2000; Vilei et al., 1999). 

 

An additional IS-element has been discovered while genome sequencing of MmmSC strain 

PG1 P

T
P (Westberg et al., 2004), this new insertion sequence, ISMmy1 existed in eight copies 

with one copy being truncated (Westberg et al., 2002). It has a total length of 1670 bp, 

contains a single ORF and posses a 30 bp terminal IR. Like IS1634, the putative 

transposase of ISMmy1 contains the DDE motif that resembles the IS4 family. It was 

suggested that MmmSC probably acquired this IS element by horizontal gene transfer from 

that of M. bovis. Though different MmmSC strains gave similar hybridization pattern for 

this IS, it was found to be a useful tool in the identification of vaccinal strain T1Sr49 due 

to its unique hybridization pattern (Westberg et al., 2002). 

 

Analysis of whole genome sequence of MmmSC type strain PG1 P

T
P revealed presence of 60 

copies of IS1634 where two copies are split by IS element and one is truncated. Twenty 

eight copies of IS1296 where four copies are interrupted by IS-elements and seven 

truncated copies (Westberg, 2003). Specific DNA probes from IS-elements ISMmy1 and 

IS1634 have recently been used to profile M. bovis field isolates in UK. These two 

insertion sequences, IS1634 and ISMmy1 show similarities of 96 % and 98 % with their 

homologue from M. bovis, identified as ISMbov3 and ISMbov2 respectively (Miles et al., 

2005). This shows Insertion sequence elements have evolved divergently in to different 

species of mycoplasmas. The high relatedness of these two IS elements between M. bovis 

and MmmSC, could be the result of horizontal transfer of these elements during co-

infection of same bovine host (Thomas et al., 2005). 

 

The other fully sequenced genome of type strain California kidP

T
P possesed locus 

MCAP_0848, which has been identified IS1296EH and two other loci MCAP_0187, 
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MCAP_0315 as putative transposase of IS3 families (GenBank/ EMBL Accession No. 

NC_007633). Although it is not characterized, IS1296EH from California kidP

T
P should be a 

new insertion sequence element as it has presented homology of only 58 % with IS1296 

ORFA. 

 

Besides the known presence of insertion sequence IS1296 in MmmLC type strain Y-goatP

T
P, 

whole genome sequence of MmmLC strain 95010-C1 has revealed the presence of new 

insertion sequence elements. 

 

1.1.2.2 IS-elements of M. mycoides subsp. mycoides LC strain 95010-C1 

Prior to whole genome sequencing of strain 95010-C1, presence of formerly discovered 

insertion sequence elements were analysed using the southern hybridization. DNA-probes 

from IS1296, IS1634 and ISMmy1 hybridized to the HindIII digested total DNA of 95010-

C1 and Y-goatP

T
P and strains PG1P

T
P and 8740-Rita of MmmSC. The result revealed the 

presence 7 copies of IS1296 in 95010-C1; with bands at around 4 Kbp and 6.5 Kbp being 

more intense than the rest of the five bands (Figure IV. 5). The differences in band 

intensity perhaps reveal the presence of additional copies of this insertion sequence 

element. Strain Y-goatP

T
P has revealed the presence of 5 copies of IS1296. The southern 

hybridization has also revealed difference in IS1296 copies between the two MmmSC 

strains, strain PG1 P

T
P seems to possess one more copy than strain 8740-Rita, shown by an 

arrow head in Figure IV. 5. 
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Figure IV. 5 Southern hybridization of IS1296 DNA probe to HindIII digested genomic DNA. 

Lanes 1 & 2 corresponding to PG1 P

T
P & 8740-Rita from MmmSC strains, lanes 3 & 4 corresponding 

to Y-goatP

T
P & 95010-C1 of MmmLC strains. 

 

 

Insertion sequence ISMmy1 was observed in 6 copies in strain 95010-C1 (data not shown) 

and no signal was detected for IS1634 (Data not shown). 

 

Upon annotation of the genome sequence of strain 95010-C1, the exact copy numbers of 

IS1296 and ISMmy1 were found to be 9 and 6 copies respectively. The result of the 

southern blot correlates with what was obtained with genome sequence result. From the 

whole genome sequence data HindIII digested IS1296 containing fragments were obtained 

at 11887 bp, 6403 bp, 6400 bp, 5115 bp, 4619 bp, 3888 bp, and 3250 bp. The bands of 

higher intensity in our result at 6.5 Kbp and 3.9 Kbp can be explained by overlapping of 

DNA fragment at 6.5 Kbp (6403 bp and 6400 bp) and presence of two copies of IS1296 

within the 3.9 Kbp fragment (3888 bp). This observation revealed that IS1296 is the most 

abundant insertion sequence element in MmmLC strains studied. In addition to this, in the 

course of whole genome annotation of strain 95010-C1 MmmLC, we discovered the 

presence of two novels insertion sequence elements of the IS3 family. These two insertion 

sequences were named ISMmy2 and ISMmy3 as suggested by the curators of the IS 
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database (HTUhttp://www-is.biotoul.fr/UTH). The description of ISMmy3 is out of the scope of this 

thesis. 

 

The objective of this part of the study is characterization of new IS-element, ISMmy2 and 

determination of its distribution, which may be of additional tool of future relevant in 

typing of species of the M. mycoides cluster. Therefore, the fourth article of this thesis 

characterizes ISMmy2 one of the novel insertion sequence element and tries to explore its 

presence in other mycoplasmas of the M. mycoides cluster including closely related 

mycoplasma species. 
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Abstract 

A new insertion sequence, ISMmy2, has been identified in the caprine pathogen 

Mycoplasma mycoides subsp. mycoides LC (MmmLC). It shows structural and functional 

similarities to IS1138 of Mycoplasma pulmonis, although their sequences differ 

significantly. ISMmy2 consists of 1373 bp with two 24 bp terminal inverted repeats. It 

contains a single open reading frame encoding a product of 426 amino acids including a 

transposase domain and displaying a DDE motif. ISMmy2 is present in 6 copies in the 

completely sequenced genome of MmmLC strain 95010-C1, where it has apparently 

generated trinucleotide direct repeats at the target sites. However, this insertion sequence is 

neither present in all MmmLC strains nor exclusive to this biotype. ISMmy2 has been 

found in other members of the Mycoplasma mycoides cluster such as M. capricolum (96 % 

amino acid similarity) and in the related species M. cottewii and M. yeatsii (86 % amino 

acid similarity). A remnant of ISMmy2 has also been found in Mycoplasma mycoides 

subsp. mycoides SC (MmmSC), where it is present as a single copy devoid of transposase 

activity. 

 

 

Keywords: Insertion sequence; ISMmy2; Mycoplasma mycoides;  
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1 Introduction 

The class Mollicutes groups bacteria that lack a cell wall. Within this class, the genus 

Mycoplasma contains more than 120 species that are found in animals and humans as 

commensals or parasites. They are notably characterized by a small genome size (0.5-

1.3Mb) with a low G+C content, constituting the smallest self-replicating organisms [16]. 

Phylogenetic studies based on 16S rRNA sequences showed that these bacteria evolved 

from Gram positive bacteria such as Bacillus, Lactobacillus and Clostridium by reductive 

evolution. Genome size diminution in Mollicutes was a result of gene loss rather than gene 

size reduction [2] and was accompanied by specific adaptation to an ecological niche, such 

as the respiratory or urogenital tract, joints, etc, serving as a supply for the nutrients that 

they were no longer able to synthesize. As a consequence, these are extremely fastidious 

organisms requiring rich, complex media for in vitro growth, whereas some of them 

remain uncultivable. 

 

Within the Mycoplasma genus there is a group called the Mycoplasma mycoides cluster 

gathering six species that are all pathogenic for animals [4]. This group is particularly 

important for veterinarians, as it includes two pathogens responsible for notifiable animal 

diseases of great economic importance that threat international trade. These diseases are 

known as Contagious Bovine Pleuropneumonia (CBPP) [15], caused by M. mycoides 

subsp. mycoides SC (MmmSC), and Contagious caprine pleuropneumonia (CCPP) [19], 

caused by Mycoplasma capricolum susbp. capripneumoniae (Mccp). Surprisingly 

however, from a phylogenetic point of view, the M. mycoides cluster belongs to the 

Spiroplasma group, which comprises species that parasite insects and plants. This 

relatedness was demonstrated by 16S rDNA sequence similarity [23] and, more recently, 

by comparison of whole genome information and inference from multiple sets of 

concatenated core housekeeping genes [11]. Concatenated housekeeping gene sequence 

comparisons have also allowed the construction of a robust phylogenetic tree, assigning a 

phylogenetic position to all the members of this cluster, including the yet unassigned 

“group 7 of Leach” strains [10]. Within the M. mycoides cluster, MmmSC was the first for 

which a complete genome sequence was made available [24]. The unravelling of the 1,211 

Kb-long sequence of the type strain PG1P

T
P was in some way disappointing, as it did not 

allow the identification of clear virulence factors such as toxins or adhesins. On the other 

hand, it revealed that more than 13 % of the genome consisted of three kinds of Insertion 

Sequence (IS) elements: IS1296 [6], IS1634 [22] and ISMmy1 [25], which were present in 
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28, 60 and 9 copies respectively. IS elements are mobile DNA segments of less than 2.5 kb 

that share the same structure [9]. They contain usually one or two open reading frames 

coding for a transposase and are terminated by short inverted repeats that serve as 

recognition and cleavage sites for the transposase [8]. The MmmSC sequence was found to 

be the most IS-dense genome known in spite of its reduced size. Complete genome 

sequencing of the Large Colony biotype of M. mycoides subsp. mycoides (MmmLC) was 

undertaken in our laboratory aiming to unravel the relationship existing between the two 

organisms and to understand why such phylogenetically close relatives differ in 

pathogenicity and physiology. Comparison of MmmLC and MmmSC coding sequences 

allowed the identification MmmLC-specific sequences. 

 

Upon annotation of the MmmLC genome sequence, one of these specific coding sequences 

was identified as an IS element by similarity with IS1138 of M. pulmonis [1]. The present 

study aims to characterize this IS and its distribution within the M. mycoides cluster and 

related species. 

 

2. Materials and Methods 

2.1. Mycoplasma strains and culture conditions 

The mycoplasma strains used in this study (Table 1) were selected to represent a wide 

geographical distribution. The MmmLC sequenced strain 95010-C1 was isolated from a 

clinical case of mastitis in a French goat, where it was obtained as a pure culture. Strains 

were cultured in modified Hayflick broth (PPLO broth without crystal violet 21 g lP

-1
P, 20 % 

horse serum de-complemented for 1 hr at 56°C, 5 % fresh yeast extract, 0.2 % glucose, 0.4 

% sodium pyruvate) [14, 20] at 37 °C, 5 % COB2B in a containment level 3 laboratory and 

were harvested at the late exponential phase of growth. DNAs were extracted from 

stationary phase using phenol: chlorophorm: isoamyl alcohol (Sigma Aldrich). 

 

2.2. Identification of ISMmy2 

ISMmy2 was discovered while annotating the genome of MmmLC strain 95010-C1 

(Unpublished data). The MmmLC genome was sequenced by Genoscope (Evry, France). 

Once supercontigs were available, sequences were included in a web-based annotation tool 

(CAAT-Box platform) that allowed determination of the most probable start codons and 

comparison of coding sequences with those present in other mycoplasma genomes 
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(Molligen: http://cbi.labri.fr/outils/molligen/) or protein databases (Swiss-Prot: 

http://expasy.org/sprot/). 

 

2.3. PCR labelling of the DNA probe  

A 971 bp long DNA probe was prepared using primers ISMmy2-probe-F/R, which were 

selected based on the alignment of ISMmy2 insertion sequence copies found in the 95010-

C1 sequence. Digoxigenin (DIG) PCR labelling was performed according to the 

manufacturer’s instructions (Roche Diagnostics GmbH, Mannheim, Germany). The 

reaction volume was fixed to 100 µl including: 10 µl of 10 X Taq buffer (Roche 

Diagnostics), 30 µM dig11dUTP, 180 µM dTTP, 200 µM dATP, 200 µM dGTP, 200 µM 

dCTP (for a 1:6 ratio of dig11dUTP:dTTP, Roche Diagnostics), 0.4 µM of each primer 

ISMmy2-probe-F and ISMmy2-probe-R, 5.25 U of Taq long expand DNA polymerase 

(Roche Diagnostics) and 1 µl of a 20 ng/µl DNA template (DNA extracted from strain 

95010-C1). The PCR conditions consisted of an initial denaturation step at 94°C for 2 min, 

followed by 30 cycles of 94 °C for 30 sec, 52 °C for 30 sec and 68 °C for 1 min. 

 

2.4. Restriction enzyme analysis and Southern blot 

HindIII was used for initial ISMmy2 screening: 2.5 µg genomic DNA from 32 

mycoplasma strains was digested with HindIII and 15 µl of digested product from each 

sample was loaded on a 0.7% agarose gel. Electrophoresis was conducted overnight at 18 

V. Gels were then depurinated (0.25 M HCl, 15 min), denatured (0.5 M NaOH/ 1.5 M 

NaCl, 30 min) and neutralized (Tris-HCl 0.5M/ 1.5 M NaCl, 30 min). DNA was then 

transferred to a nylon membrane overnight at room temperature by a capillary transfer 

method using 20X SSC buffer. Wet membranes were placed, DNA face up, over a 2X SSC 

soaked Whatman (3 mm) paper and transfixed under a UV light for 3 min. The membranes 

were then rinsed in double distilled water and air dried. 

 

Membranes were pre-hybridized for 2 hrs at 55°C and hybridized overnight in blocking 

solution 5X SSC, 1 % (v/v) blocking reagent (Roche), 0.1 % (w/v) N-lauroylsarcosine, and 

0.02 % (w/v) SDS. Membranes were then incubated in hybridization buffer containing the 

diluted probe overnight at 50°C. Upon completion of hybridization, membranes were 

washed 15 min each in low (2X SSC, 0.1% SDS at room temperature) and high stringency 

solutions (0.5X SSC, 0.1% SDS at 65°C). After blocking, the membranes were incubated 

in anti-DIG antibodies, 1/8000 Fab conjugate for 30 min (Roche Diagnostics). Subsequent 
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to multiple washing in 1X PBS, the hybridized probe was detected using Hyper film-ECL 

and chemiluminescent detection reagent following standard procedures (Amersham, 

Biosciences, UK). Only for those species which gave a positive hybridization band on 

preliminary Southern blot, additional enzymes such as EcoRI, EcoRV, and HindII were 

used for the verification of ISMmy2 copy numbers. 

 

2.5. PCR and sequencing 

To confirm the results obtained by Southern blotting a PCR was conducted on the 32 

strains with a single primer, IR-ISMmy2, the sequence of which was based on the 17 bp 

perfect inverted repeat at both extremities of the ISs. All amplified products were 

sequenced by Cogenics (Meylan France). The full sequence of the transposase from the 

positive strains was then obtained using sequencing primers listed on Table 2. 

Alignment of the different ISMmy2 copies present in MmmLC strain 95010-C1 as well as 

IS sequences found in the M. mycoides cluster and closely related species were performed 

using Vector-NTI, AlignX software program (Invitrogen). 

 

3. Results and Discussion 

3.1. Characterization of ISMmy2 

During the annotation step of the genome of MmmLC strain 95010-C1, a coding sequence 

was found to have high localized similarities with two MmmSC PG1P

T
P coding sequences: 

MSC_0698 (length=112 amino-acids (aa)), similarity= 81 %) and MSC_0699 

(length=215aa, similarity= 93 %). It also showed some similarities with the full length of a 

coding sequence of M. pulmonis (length=416aa, similarity= 56 %). This sequence, 

MYPU_0180, was annotated as a transposase for insertion sequence element IS1138. 

Furthermore, inverted repeats were identified upstream and downstream this coding 

sequence. 

 

The full sequence was considered as a prototype for a new insertion sequence and 

submitted to GeneBank (Acc. N°: DQ887910) and to the “IS-finder” web server for 

Insertion sequences [17] (http://www-is.biotoul.fr/). It was characterized by a total length 

of 1374 bp, the presence of 24 bp-long inverted repeats and the generation of 3 bp-long 

direct repeats at the insertion sites. It presented a putative ribosome binding site (position 

66-71) preceding by 5 bp the ATG start of a 1278 bp-long ORF (426aa) (Fig 1a). This 

ORF possessed a classical DDE catalytic site motif [7] (Fig 2). 
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Accordingly, this IS was identified as belonging to the IS3 family and the IS150 group. As 

it differed significantly from all known IS, it was given a new name: ISMmy2. 

 

3.2. Distribution of ISMmy2 in MmmLC 

A BLAST analysis on the 95010-C1 sequence revealed that there were 6 copies inserted 

within this genome (Fig 3). The copies were named by adding a unique letter after 

ISMmy2, the first, (ISMmy2-A) being the closest to the replication origin. Compared to 

the first copy, the five additional copies were one base shorter. As the deletion occurred 

upstream of the ORF, this did not modify the actual length of the putative transposase that 

remained 426aa-long in all copies. Compared to ISMmy2-A, the lowest percentage of 

identity was observed in the ISMmy2-B copy with 97.7 % identity in the protein sequence, 

showing the high conservation of ISMmy2 sequences within this genome. 

 

Four IS copies displayed a classical trinucleotide direct repeat (DR) at their extremities 

(Table 3). The most frequent trinucleotide DR was “taa” (C and D) but two copies 

displayed different DR: “att” (A) and “ggt” (B). Interestingly, two copies (E and F) seemed 

to have exchanged their DR “att” and “cat”. This may have resulted from homologous 

inter- or intra-molecular recombination between two IS copies with a different DR 

sequence, resulting in a hybrid element carrying one DR of each parent. It must be noted 

that ISMmy2-E and F are quite close to one another (9kb) and that they present two 

ISMmy1 copies in between, which may have caused the recombination. 

 

3.3. Presence of ISMmy2 in related mycoplasma species  

The presence of ISMmy2 in related mycoplasma species was evaluated by two techniques: 

Southern blotting with a DIG-labelled probe and PCR using a single primer corresponding 

to the conserved part of the inverted repeat found at the extremities of the IS element. Both 

techniques yielded identical results in terms of detection. Elements related to ISMmy2 

were detected in 6 out of 10 strains belonging to the subspecies MmmLC and Mycoplasma 

mycoides subsp. capri (Mmc), which are now considered a single entity [21], and in 1 out 

of 5 Mycoplasma capricolum subsp. capricolum (Mcc) strains (Table 1, Fig 4). 

 

On the other hand, this IS was not detected by any of the two techniques either in MmmSC 

or in Mccp strains (Table 1). The absence of detectable ISMmy2 in the SC biotype was 

quite surprising, given that this IS was found to share strong homologies with two 
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MmmSC CDS. In fact, a single DNA sequence homologous to ISMmy2 was found 

between positions 801579 and 802903 of the PG1P

T
P sequence (NC_005364.2). This 

homologous sequence seems to represent the remnant of an ISMmy2 deprived of 

transposase activity by a mutation disrupting the transposase (Fig 1b). The sequence 

presently found in PG1P

T
P may be the result of ensuing genetic drift by accumulation of base 

insertions, deletions and mutations, as well as deletion of the 49 terminal bases of the 

original IS. Our inability to detect this sequence by Southern hybridization may be 

explained by the presence of HindIII cutting sites within the PG1P

T
P ISMmy2-remnant 

sequence (that do not exist in MmmLC ISMmy2 copies) resulting in much smaller 

fragments. Our inability to detect these sequences by PCR was easily explained by the 

absence of the Right Inverted Repeat that is essential for PCR amplification with a single 

primer. 

 

Interestingly, elements related to ISMmy2 were detected in the related species M. cottewii 

and M. yeatsii. Southern blotting allowed evaluation of the number of IS copies found in 

PCR positive strains, which varied from 2 to 7 (Table 1). The consensus sequence of the 

transposase gene of these two species was obtained by sequencing of the PCR product 

obtained with primer IR-ISMmy2 allowed us to get. The total length of the coding 

sequence (426aa) was identical to ISMmy2 and the percentage of identical amino-acid to 

ISMmy2-A was 86 % (Table 3). This would suggest the presence of a “variant” of 

ISMmy2 in these two species. The lower percentage of amino acid-identity, 86 %, 

(compared to 96 % identity found within the M. mycoides cluster) was well correlated to 

the phylogenetic distance between M. cottewii and M. yeatsii and the M. mycoides cluster 

[10]. On the other hand, the variant ISMmy2 transposase sequence was found to show 

identical sequences in these two species, reflecting their phylogenetic proximity or their 

common ecological niche that could have favoured horizontal gene transfer. 

 

No ISMmy2 homologues were found by BLAST analysis on the non redundant databases 

(NCBI/BLASTp, non redundant databases 04th October 2007) and notably in the M. 

agalactiae PG2 genome (NC_007633) nor in the M. bovis PG45 available sequences (The 

Institute of Genomic Research). 
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4. Conclusion 

ISMmy2 is the fourth Insertion Sequence described in the Mycoplasma mycoides cluster. 

The first three, IS1296, IS1634 and ISMmy1, were described in MmmSC. Phylogenetic 

studies have already shown that MmmSC and MmmLC are very closely related and it is no 

surprise that some of these IS elements are shared by the two biotypes (IS1296, ISMmy1). 

ISMmy2 is also found in MmmSC but as a “remnant” that has lost its ability to transpose. 

There is no doubt that the more mycoplasma strains are sequenced, the more IS-elements 

will be found. Already there seem to be additional IS elements that have been spotted in 

the M. capricolum California kidP

T
P genome (MCAP_0187 and MCAP_0315 in 

NC_007633.1) but are not fully characterized yet. 

 

ISMmy2 has also been found in one M. capricolum strain. This may be explained by 

horizontal gene transfer between species sharing the same habitat in small ruminants. The 

presence of ISMmy2-like sequences in M. cottewii and M. yeatsii may also be explained by 

lateral gene transfer. Although the latter two species are mostly found in the external ear 

canal of goats [5] it is not uncommon to find MmmLC strains in the same habitat [18]. 

However, given that the transposase sequence of M. cottewii and M. yeatsii differs 

significantly from that of ISMmy2, the acquisition of this IS element in these two species 

must have been an ancient event. 

 

These IS elements are not necessarily present in all the strains of one species. When 

present, their copy number may vary as well as their insertion site. This may therefore 

make them good targets for rapid molecular typing methods based on PCR or Southern 

Blotting [3] [12]. Some of these IS elements may have the capacity to alter the expression 

of adjacent genes when they transpose to a new genome location [13]. Their study may 

therefore provide clues to understanding the molecular basis for the virulence of some 

mycoplasma strains or species. 
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Figures and Tables captions 

Table 1. Mycoplasma strains used to study the distribution of the insertion sequence 

element ISMmy2. 

Strain Year Origin PCR Southern blots 

   EcoRV EcoRI HindIII HindII 

M. mycoides subsp. mycoides LC  Apparent copy numbers  

55507-1 1998 Germany + 2 2 2 2 

95010-C1 1995 France + 6 6 6 6 

Y-goatP

R
P
 1956 Australia + 6 ? 6 6 ? 6 

2002-054 (VP9L) <2002 India -   -  

8756-C13 <1987 USA -   -  

Kombolcha 1975 Ethiopia -   -  

M. mycoides subsp capri 

WK354 1980 Switzerland + 7 7 7 7 

N108 1977 Nigeria + 6 7  7 

L 1975 France + 5 5 5 5 

PG3P

T
P
 1950 Turkey -   -  

M. capricolum subsp capricolum 

8086-1 1980 France + 5 6 6 6 

2002-053 (VP28L) <2002 India -   -  

California kidP

T
P
 1955 USA -   -  

96038 <1996 Greece -   -  

90122 (C1547) 1990 Ivory Coast -   -  

M. mycoides subsp. mycoides SC 

T1/44 1954 Tanzania -   -  

94111  Rwanda -   -  

8740-Rita 1987 Cameroon -   -  

PG1P

T
P
 Unknown Unknown -   -  

M. capricolum subsp capripneumoniae 

F38P

T
P
 1976 Kenya -   -  

GL102 (Gabes, 102 passage) 1981 Tunisia -   -  

Gabes 1981 Tunisia -   -  

95043 1995 Niger -   -  

M. bovine group 7 of Leach 

PG50P

R
P
  Australia -   -  

D424 <1990 Germany -   -  

9733 1993 India -   -  

M. putrefaciens 

KS1P

T
P
 1954 USA -   -  
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Table 2 Primers used for ISMmy2 amplification and sequencing 

Name PositionP

a
P
 5’-3’ sequence  

ISMmy2-probe-F 78-100 GAAAAGAGGAAAACAGCTAAGTG PCR-probe 

ISMmy2-probe-R 1024-1048 CTGTATGAATAATAAAGTCTTTAGG PCR-probe 

IR-ISMmy2 8-24 & 1351-1367 GGACAAAATTATTAGAC PCR 

ISMmy2-F1 942-971 AACAAARAAARTTGTTAGYTATAATTTATC Sequencing 

ISMmy2-R1 174-202 CAGAATTTCTAATTTTGCTATAAATATAA Sequencing 

ISMmy2-F 22-44 GACTCCCTAGGATAGACCCCCTA Sequencing 

ISMmy2-R 1322-1347 AAAGTTATGTTTATTATACACACCTC Sequencing 

P

a 
PNucleotide positions within the ISMmy2 sequence (Acc. N°: DQ887910) 

 

 

Tours 2 1972 France -   -  

M. yeatsii 

GIHP

T
P
 1981 Australia + 4 4 4  

M. cottewii 

VISP

T
P
 1981 Australia + 7 7 6 6 

M. auris 

UIAP

T
P
 1981 Australia -   -  
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Table 3 Homologies between copy ISMmy2-A, other copies within MmmLC strain 95010 genome and with ISMmy2 or its variant in closely related 

mycoplasma species. Asterisks indicate junctions between the insertion sequence and target site sequence 

 

 

IS element Coding region  

MmmLC strain 

95010-C1 Length 

%bp 

identity

Nb 

ORF 

 

Length 

% 

identity Insertion sites 

ISMmy2-A 1374 100 1 426 100 aacattaatt * gagagtagga...tcctggtttc * attacttgct 

ISMmy2-B 1373 98 1 426 97.7 tccggggggt * aagagtagga...tcccggtttc * ggtctccgga 

ISMmy2-C 1373 98.6 1 426 99.1 gaacatataa * gagagtagga...tcccggtttc * taatgcctaa 

ISMmy2-D 1373 98.6   99.1 gagtgcataa * aagagtagga...tcccggtttc * taagcactct 

ISMmy2-E 1373 98.8   99.1 aggaaaataa * gagagtagga...tcccggtttc * cattggatct 

ISMmy2-F 1373 98.6   99.1 atataatcat * gagagtagga...tcccggtttc * taatgctgtt 

           

M. mycoides cluster    426 96-99      

M. cottewii    426 85.9      

M. yeatsii    426 86.2      

MYPU_KD735-IS1138B 1288 58.5 1 402 38.3      
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Fig. 1 Schematic representation of ISMmy2 structure and organization. 

In MmmLC, ISMmy2 is 1373 bp long (Fig 1a). There is a single open reading frame coding for a 

426aa long putative transposase with an upstream ribosome binding site (RBS). The IS is 

flanked by two 24 bp inverted repeats (IRL and IRR) and it generated trinucleotide direct 

repeats upon insertion, here “taa” in the case of ISMmy2 C and D copies. In the PG1 P

T
P 

sequence (Fig 1b) a single remnant of an ISMmy2 copy has been identified. It lacks the 5’ 

end with the IRR and the former transposase CDS has been splitted in three because of 

frameshift mutations. 

Fig 1a IRL IRR Transposase, 426 aa

…taa taa

RBS 

DR 
1 1373 

MSC 0698, 112aa
MSC_0699, 215aa 

1324 

63aa

1 

Fig 1b 
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Fig.2 Alignment of the putative transposase region containing the DDE-K motif of ISMmy2 and 

consensus sequence of the IS3 family. 

For the IS3 family, amino acids forming part of the conserved motif are shown as large bold letters. 

Capital letters indicate conservation within a family, and lowercase letters indicate that the 

particular amino acid is predominant. The numbers in parentheses show the distance in amino acids 

between the amino acids of the conserved motif. (HTUhttp://www-is.biotoul.fr/UTH). For ISMmy2, amino 

acids that are identical to predominant or conserved amino acids of the IS3 family are shown in 

capital. 

 
 

LqnDIya ISmmy2 iHTDhGaaYsS SriGnslDNreaEyFfsiLK

IS3 family w--DiTy 
l  l  
v  v  

(64)

-HsDrGs-y-s 
  t q    

s--G---dN---Esf---lK 

(35)

(58-60) (35)

D1 D2 E-K 
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Fig.3 Genomic map of MmmLC strain 95010-C1 showing the positions of insertion sequences ISMmy2-A to -F (a), and diagram showing each target region, 

comprising three genes upstream and downstream from the ISMmy2 copy (b). 

Gene abbreviation: ribC/ribF (Riboflavin kinase / FAD synthetase, CHP (conserved hypothetical protein), epsG (Glycosyltransferase (EC 2.4.1.- ),  cps 

(Glycosyltransferase), galU (UTP-glucose-1-phosphate uridylyltransferase (EC 2.7.7.9)), secF (Conserved hypothetical protein, predicted transmembrane 

protein, probable protein-export membrane protein SecF), apt (Adenine phosphoribosyltransferase (EC 2.4.2.7)), relA (GTP pyrophosphokinase (EC 2.7.6.5), 

smc (Chromosome segregation ATPase), HP-lpp (Hypothetical protein predicted lipoprotein), HP (hypothetical protein), marMP (Putative C5 methylase), lgt 

(Prolipoprotein diacylglyceryl transferase (EC 2.4.99.-), AAA family Atpase licA (Pts system, lichenan-specific IIa component), oxaA (Membrane protein 

oxaA) Atpase licA (Pts system, lichenan-specific IIa component), oxaA (Membrane protein oxaA) 

 

95010-C1-200807
1153999 bp

ISMmy2-A

ISMmy2-FISMmy2-E
ISMmy2-D

ISMmy2-C

ISMmy2-B

ISMmy2-A cps galU CHPepsG CHPribC/ribF 

ISMmy2-B smc CHP CHPrelA apt secF

ISMmy2-C HP CHP HP CHP marMP ISMmy1 HP-lpp 

ISMmy2-D HP HP-lpp HP-lpp HP HP lgt 

ISMmy2-E ISMmy2-F HP-lpp HP-lpp HP-lpp HP-lpp HP-lpp CHPCHP ISMmy1 ISMmy1 

AAA 
family 
Atpase licA oxaA 

a b 
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Fig. 4 Identification of multiple copies of ISMmy2 in different mycoplasma strains. 

Southern blot hybridization profiles of genomic DNA digested with HindIII, HindII and EcoRV, as 

indicated. Lanes 1-3: Mycoplasma mycoides subsp. mycoides LC strains 95010-C1, Y-goatR and 

55507-1; lanes 4-6: Mycoplasma mycoides subsp. capri strains WK354, L and N108; lanes 8 & 9: 

strains GIHT and VIST of M. yeatsii and M. cottewii respectively. 

 

 

HindIII HindII EcoRV
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11  IINNTTRROODDUUCCTTIIOONN  
Mycoplasmas have already been shown to be able to express heterologous genes (Duret et 

al., 2003; Dybvig et al., 2000; Knudtson and Minion, 1994). This was notably the case of 

Mcc, a member of the M. mycoides cluster (Janis et al., 2005). The main objective of this 

study was to assess the suitability of using mycoplasmas as vectors for the expression of 

genes of veterinary interest, with the final aim of developing multivalent recombinant 

vaccines. 

 

Among ruminants, Morbilliviruses and mycoplasmas are key pathogens that are often 

associated and for which combined vaccination campaigns are often implemented. In 

bovines, vaccination campaigns against Rinderpest and CBPP have allowed the near 

eradication of the first and a control of the latter. This is also the case for small ruminants, 

where Peste des Petits Ruminants (PPR) and CCPP are considered among the major 

infectious diseases, although CCPP is often under-diagnosed in the field. However, goats 

can also be infected by a number of pathogenic mycoplasma species including 

MmmLC / Mmc. Many countries, especially in Asia, have tried to develop mycoplasma 

vaccines for MmmLC and related species. 

 

Efficient homologous vaccines have already been developed for PPR (Diallo et al., 1989). 

However, the actual trend in vaccinology for PPR is to construct recombinant pox viruses 

bearing PPR virus (PPRV) antigens (Berhe et al., 2003; Diallo et al., 2002). The rationale 

for this approach is that it allows the production of multivalent vaccines (pox viruses can 

harbour more than one heterologous gene) that would be marked and thermo-tolerant. This 

approach may not be suitable for the development of mycoplasma vaccines as long as the 

protective immunogens have not been elucidated. So far, it is difficult to imagine that a 

single mycoplasma antigen, presented by a viral vector, may elicit a satisfactory protection. 

On the other hand, it is well known that whole mycoplasma cells may be used to elicit a 

good protection for the homologous disease through the use of either attenuated strains 

(i.e.: T1/44 strain for CBPP control) or inactivated cultures that are adjuvated (i.e.: CCPP 

vaccines). We hypothesized that MmmLC may be used as a vector for the expression of a 

PPRV antigen with the ultimate goal to obtain a multivalent vaccine.  
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1.1 Peste des petits ruminants (PPR) 
PPR was first described in 1942 in Ivory Coast by Gargadennec and Lalanne, who 

identified a disease in goats and sheep that was similar to Rinderpest but which was not 

transmitted to in-contact cattle. This observation led to the name “peste des petits 

ruminants” (small ruminant plague) (Pastoret, 2006). In 1956, Mornet and collaborators 

showed that Rinderpest and PPR viruses were antigenically closely related and PPR virus 

was then classified as the fourth member of the Morbilliviruses together with Rinderpest, 

measles and distemper viruses (Bourdin and Laurent-Vautier, 1967). 

 

PPR is known to be present in a broad belt of Sub-Saharan Africa, Arabia, the Middle East 

and southern Asia. In recent years major outbreaks in Turkey and India (Ozkul et al., 2002) 

and Tajikistan (Kwiatek et al., 2007) have indicated a marked rise in the global incidence 

of PPR. 

 

PPR is an acute to sub acute viral disease of goats and sheep caused by PPR-virus. Goats 

are reported to be more susceptible than sheep but outbreaks have occurred with both 

species being equally affected and even with sheep being more affected than goats (Nanda 

et al., 1996). The mortality rate in susceptible goats ranges from 10 to 90 % and varies with 

the degree of innate resistance, body condition, age, virulence of the virus involved and 

occurrence of complications resulting from secondary bacterial and parasitic infections. 

 

Depending on the clinical outcome, per acute, acute, sub acute and subclinical forms can 

be distinguished. The per acute form of the disease starts often after a short incubation 

period of 2 days with a sudden high rise in body temperature up to 40-42°C accompanied 

by serious oculo-nasal discharges, depression, dyspnoea, anorexia and constipation. The 

oral mucous membrane becomes congested and occasionally eroded. Affected animals 

develop profuse watery diarrhoea and die within 4-6 days after the onset of fever. The 

acute form represents the most common course of the disease. It is characterised by an 

incubation period of 3-4 days followed by a sudden rise in temperature, serous ocular and 

nasal discharges. Diarrhoea starts 2-3 days after the onset of pyrexia and is accompanied 

by sever dehydration, emaciation and prostration. The epithelium of the oral and nasal 

mucous membranes displays numerous, partially coalescing pin-point greyish necrotic 

foci, which leave partially demarcated hyperaemic, but non-haemorrhagic erosions after 

sloughing off the necrotic debris. The oral lesions are may be accompanied by profuse 
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salivation. Most goats die within 10-12 days after the onset of pyrexia. In sub acute forms 

less severe illness is observed after an incubation period of 6 days and low-grade fever. 

The clinical disease of PPR may be complex due to the involvement of many different 

secondary pathogens, frequently bacterial complications such as Pasturella spp. or 

Mycoplasma spp. For clinical differential diagnosis, the following diseases have to be 

considered: CCPP, bluetongue, contagious ecthyma, caprine and ovine poxvirus infections, 

foot and mouth disease and Nairobi sheep disease (Wholsein and Saliki, 2006). 

 

1.2 Morbilliviruses 
Members of the genus Morbilliviruses are classified under the family Paramyxoviridae, 

and are responsible for some of the most devastating diseases of humans and animals. 

These include measles virus (MV) affecting human beings, Rinderpest virus (RPV), PPRV, 

canine distemper virus (CDV) and phocine distemper virus (PDV) the latter affecting 

aquatic mammals. CDV infects many carnivore species including domestic dogs, mink and 

ferrets and can have serious consequences when endangered wildlife species are threatened 

(Banyard et al., 2006). 

 

1.2.1 Structure of Morbilliviruses 

Members of the Paramyxoviridae are indistinguishable by electron microscopy, where the 

virions are seen as pleomorphic particles with a lipid envelop enclosing a 

ribonucleoprotein (RNP) core. This RNP core contains the genome, a single strand of 

negative polarity RNA, encapsulated by a nucleocapsid protein. All Morbilliviruses share 

the same genome organization although their RNA length differ slightly, each being just 

under 16 Kbp. Their genomes are organized into six contiguous, non-overlapping, 

transcriptional units which encode six structural proteins, namely the nucleocapsid (N), the 

phosphoprotein (P), the matrix (M), the fusion (F), the haemagglutinin (H), and the large 

polymerase (L) protein, the latter being the viral RNA dependent RNA polymerase 

(RdRp). The three viral structural proteins N, P and L are internal polypeptides complexed 

with viral genome to form the nucleocapsid, while M, F and H forms the virus envelop 

(Figure V. 1a, Sibylle and Volker ter, 2002). The morbilliviruses produce two 

glycoproteins which are embedded in the viral envelop and protrude as spikes, the F and 

H-protein spikes. The F protein enables the virus to penetrate the cell by mediating the 

fusion of the viral and cellular membranes at the cell surface (Moll et al., 2002). The H 
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protein enables the virus to bind to the cell receptor, the first step in the process of 

infection (Plemper et al., 2000). 

 

Figure V. 1 Schematic representation of the structure of Morbillivirus. 

This illustration represents the two surface proteins, haemagglutinin (H) and fusion protein (F), 

together with the nucleocapsid protein (NP), phosphoprotein (P), matrix protein (M), and 

polymerase protein (L); This schematic representation was designed to show measles virus particle 

and mechanism of membrane fusion; adapted from expert review in Molecular medicine©2002 

Cambridge University Press. 
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Interaction of the H-protein with cellular receptor (CD150) triggers a conformational 

change with F-protein leading to insertion of its N-terminus into the target cell membrane 

arrowheads in Figure V. 1b (Sibylle and Volker ter, 2002). Both H and F glycoproteins are 

the major protective immunogens and are responsible for the induction of neutralizing 

antibodies (Yilma et al., 1988). Because of the immunogenic nature of both F and H 

proteins, they have been used as effective recombinant vaccines using attenuated Capripox 

virus as expression vector (Romero et al., 1994a; Romero et al., 1994b). The H and F 

proteins of several morbilliviruses have been expressed in various vector systems and have 

been used as effective sub-unit vaccines (Diallo et al., 2007). 

 

 

1.2.2 H-protein 

The H-protein from PPRV has 609 amino acid residues and uses a terminal UGA (W) as a 

stop codon (Barrett et al., 2006). Structurally H protein has only one 23 aa-long 

hydrophobic domain near the N-terminus (position 35-58), which acts as a signal peptide 

and is used to anchor the protein to the target cell membrane. The 23 aa-long 

transmembrane helix of the H protein is remarkably similar to the 22 aa-long 

transmembrane helix membrane proteins found in MmmLC, as evidenced during genome 

sequence annotation of MmmLC strain 95010-C1. The N-terminal 34 aa remain in the 

cytoplasmic side of the membrane, while the C-terminus is extruded to the outside. This 

arrangement, with an N-terminal anchoring and with an external C-terminal domain 

classifies H as a type II glycoprotein (Plemper et al., 2000). More recent studies have 

shown that PPRV-H have haemagglutinin-neuraminidase (HN) activity (Seth and Shaila, 

2001), constituting the only morbillivirus H-protein that resembles the HN protein of other 

paramyxovirus genera (Barrett et al., 2006). 

 

The ultimate aim of this study was to provide a model for the production of a recombinant 

vaccine to protect animals from both MmmLC infections and PPR. The first objective was 

to evaluate the ability of MmmLC strain 95010-C1 to be transformed and express a 

heterologous gene. For this aim, the H-gene from PPRV vaccine strain Nig75/1 was 

chosen as a heterologous gene. This study required the choice of a plasmid vector and of 

appropriate promoter sequences for mycoplasma transformation and heterologous gene 

transcription respectively. 
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22  MMAATTEERRIIAALLSS  AANNDD  MMEETTHHOODDSS  
2.1 Heterologous gene 
A haemagglutinin gene (H-gene) from peste des petits ruminants virus (PPRV) was used as 

a heterologous gene of interest for this study. 

 

2.1.1 Codon usage analysis 

Graphical codon usage analyser a web based software (gcua v.1) HTUhttp://gcua.schoedl.de/UTH 

HTUhttp://www.kazusa.or.jp/codon/UTH (Fuhrmann et al., 2004) was used for the analysis of codon 

usage in H-gene. Codon usage of H-gene was then compared with the available 

mycoplasma data, the genome sequence of M. genitallium. Sequences from previously 

expressed heterologous genes such as tetM and lacZ were also analysed simultaneously. 

 

2.2 Promoter sequence signal analysis 
Promoter sequences of CDSs of IPF140, IPF221, IPF453, IPF989 and IPF1004 from the 

genome sequence annotation of strain 95010-C1 and promoter sequence of spiralin gene 

(Acc no. AF012877), were analysed for promoter signals using bacterial promoter 

prediction program (BPROM) (HTUhttp://www.softberry.comUTH). Based on the result of the 

analysis primers were designed for the amplification of promoter sequence from the 

genome sequence of 95010-C1. 

 

2.3 Plasmids 
Plasmid pCJ6 (Annex 2), containig the spiraline promoter (Janis et al., 2005), was used for 

amplification of the spiralin promoter, awaiting pMYCO1 availability. The oriC plasmid 

pMYCO1, containing the oriC of MmmLC strain Y-goatP

T
P (Lartigue et al., 2003), was used 

as a cloning vector. Plasmid pH78-2 (Annex 1, pBacPAK9 containing PPRV-H of 

Nig75/1) (Diallo et al., 2002) was used for H-gene amplification. This vector’s sequence 

was used for the design of sequencing primers. Additionally, plasmid pCRP

®
P2.1-TOPO P

®
P 

(Invitrogen, USA) was used as an intermediate cloning vector. Table V.1 provides the lists 

of primers used in this study. 

 

2.4 Choice of restriction enzymes for cloning 
The choice of restriction enzymes for cloning purposes was made using Vector-NTI Suite 

software (Invitrogen, USA). 
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Table V. 1 List of primers used for amplification, cloning and sequencing of promoters and foreign 
gene 

Primer 

Name Sequence (5’-3’) Origin 

REA 

site 

prom-CHP-F TACTGGTTCAA UGACGTC UTTGGAAATCCAAGTAAT 95010-C1 Aat II 

prom-CHP-R CAATAGGTATTTUACGCGT UTTATAAATTCTCC  Mlu I 

    

prom-SRm-F TAAAACAAT UGACGTC UTAAAGCTTTAGTG pCJ6 Aat II 

prom-SRm-R GTGATTTTUACGCGT UTTCAAAGG  Mlu I 

    

HF AATACGGAT UACGCGT UATGTCCGCACAAAGG pH78-2 Mlu I 

m2-HR AATGGTTGCAUGGCCGGC UTTAGACTGGUATTUACATG  NgoMIV 

    

HP73R TTGACCACAGAGATCAGAGG pH78-2  

Pg7848F CGTGTCCTCAGTGTTTACCGTAGTCGAAG pH78-2  

HP112R GGTGATGAAGTCGGCATCAG pH78-2  

    

insert-pmyco-F ATGTTGAATACTCATACTCTTCC pMYCO1  

Insert-pmyco-R GAGCAAGAATGGCTAGGATCCCC   

    

Mut-F GGAGAATTTATAA UACGCGT UATGTCCGCACAAAGGGAAAGGATC  Mlu I 

Mut-R GATCCTTTCCCTTTGTGCGGACATACGCGTTTATAAATTCTCC   

    

Seq-H-R1 AGTCTCAGATGGGGTGCATAGGG pH78-2  

Seq-H-R2 GACTGGGTAGAAGTAAGATGATGAG pH78-2  

Seq-H-R3 GTTGAGGAACTTAATCTTATCGGAG pH78-2  

 

 

2.5 PCR conditions 
Pfu DNA polymerase (Stratagene) that has a proof reading activitiy was used for the PCR 

amplifications of H-gene and promoter sequences. The reaction volume was fixed at 50 μl 

with: 5 µl of 10Xpfu buffer, 1.5 mM MgClB2B, 0.3 mM dATP and dTTP, 0.15 mM dCTP and 

dGTP (dNTPs from Roche), 100 ng/µl DNA template, 100 ng/µl of each primer and 

2.5 U/µl of pfu DNA polymerase. The PCR conditions for both promoter amplifications 

were consisted of 40 cycles of 94°C for 45 sec, 55°C for 45 sec and 72°C for 1:50 min. For 

the amplification of H-gene the same PCR conditions were used excepting the elongation 

time which was 3 min. 
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2.6 Cloning procedure 
The summary of steps followed for the cloning strategy is shown in Figure V. 4. The 

mutagenesis reaction in the cloning step was performed by Quick Change II XL 

(Stratagene), the reaction mix consisted of 5 µl of 10X pfu buffer, 1 µl of 10 ng plasmid 

template, and 125 ng of each primers (Mut-F / R), 1 µl dNTP (Stratagene), 3 µl of Q-

solution (Stratagene), 2.5 U of pfu DNA polymerase (Stratagene) and HB2 BO to a final 

volume of 50 µl. The PCR condition consisted in an initial denaturation step of 95 °C for 

1 min followed by a total 18 cycles of 95°C for 50 sec, 60°C for 50 sec and 68 °C for 

9 min. PCR product was DpnI digested and used to transform competent cells. 

 

2.7 Plasmid propagation and amplification 
For plasmid propagation and amplification two chemically competent E. coli strains Top10 

and Stbl3 were used. In parenthesis is the genotype of each competent cells; Top10 (F- 

mcrA ∆ (mrr-hsdRMS-mcrBC) φ80lacZ∆M15 ∆lacX74 recA1 araD139 ∆ (araleu) 7697 

galU galK rpsL (StrR) endA1 nupG) and Stbl3 (F- mcrB mrr hsdS20 (rBB PB

-
P, mBB PB

-
P) recA13 

supE44 ara-14 galK2 lacY1 proA2 rpsL20 (StrP

r
P) xyl-5 P

-
P leu mtl-1. All E. coli strains were 

grown in Luria-Bertani medium. Antibiotics kanamycine 50 µg mlP

-1
P was added for the 

selection of plasmid pCR P

®
P2.1-TOPOP

®
P (Sambrook et al., 1989). 

 

2.7.1 Plasmid Mini-preps and Maxi-preps 

QIAprep Spin Miniprep Kit and QIAGEN Plasmid Maxi Kit (QIAGEN) were used for 

mini-prep and for maxi-prep of plasmids. The same procedures were followed as described 

by the manufacturers’ instruction booklet. 

 

2.8 Mycoplasma transformation 
Mycoplasma cells from strain 95010-C1 were cultivated in modified Hayflick media 

containing sodium pyruvate and glucose in a high security LB3 B laboratory. Transformation 

of strain 95010-C1 was made by the polyethylen glycol (PEG) mediated procedure similar 

to that used for the transformation of gram positive bacterial protoplasts as recommended 

by (King and Dybvig, 1991). Exponential phase 5 ml cultures of MmmLC strain 95010-C1 

were centrifuged at 10000 g for 10 min at 4 °C. The pellets were then resuspended in 

250 µl of 0.1 M CaCl B2 B, and held on ice for 30 min. During the incubation time, 10 µg of 

yeast tRNA (Invitrogen) and 10 µg of plasmid were mixed and transferred to the cell 

suspension. Immediately after 2 ml of 70 % PEG solution (70 gm PEG 8000, 10 ml of 
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0.01 M trisHCl, pH 6.5 heated to 70-80°C and adjusted to 100 ml with double distilled 

water) was added to the cells and incubated for 2 min at room temperature. After 2 min of 

incubations 10 ml of S/T buffer (85.56 g Sucrose mixed with 5 ml of 1 M TrisHCl to a 

final volume of 500 ml double distilled water, pH 6.5) was added and the contents were 

mixed gently. This solution then centrifuged for 12 min at 12,000 g and 20 °C, this step 

was repeated to completely eliminate PEG from the cellular mix. Mycoplasma pellets free 

of PEG were then resuspended in 300 µl of modified Hayflick medium and were incubated 

for 2 hrs at 37°C. After 2 hrs of incubation cultures were diluted from 10P

-1
P - 10 P

-4
P, and 

200 µl of these dilutions and the non diluted culture were plated on modified Hayflick 

medium containing 2 µg/ml tetracycline. For the calculation of viable mycoplasma cells, 

20 µl of these dilutions were plated on modified Hayflick media without tetracycline. 

 

2.9 Immunoblotting 
In order to screen the presence or absence of H-protein (immunodominant), 1 µl aliquot of 

concentrated culture dropped on a nitrocellulose membrane. Membrane then dried for a 

few minutes then blocked for 1 hr in 1X blocking solution (10X Blocking Solution, 

Sigma). Membrane incubated for additional 1 hr at room temperature in a goat hyper-

immune anti-H-protein diluted 1: 50 in 1X blocking solution. Washed three times for 10 

min, it was then incubated for 30 min in 1: 200 ant-goats IgG conjugated to horse radish 

peroxidase. Membrane washed three times for 5 min in washing buffer 1 (0.1 M Tris-HCl 

pH 7.4, 0.15 M NaCl, 0.3 % Tween 20) and two times in washing buffer 2 (0.1 M Tris-HCl 

pH 9.5, 0.1 M NaCl). Membrane revealed using DAB (3-3’ diamino-benzidine, Sigma) 

colorimetric detection for 2 min and rinsed in double distilled water. 

 



 

  139 

33  RREESSUULLTTSS  AANNDD  DDIISSCCUUSSSSIIOONN  
The PPR-H gene was chosen as heterologous gene to be expressed in the sequenced 

MmmLC strain 95010-C1. This choice was not only based on the immunogenic properties 

of the encoded H-protein but, it was also supported by its codon usage. The replicative 

plasmid pMYCO1 (Lartigue et al., 2003), which has already been used successfully for 

heterologous gene expression in mycoplasmas (Janis et al., 2005), was chosen as a cloning 

vector. In the latter studies, transcription was controlled by the spiralin promoter, which 

was used as a control for this work. Another promoter candidate was chosen based on 

promoter signalling scores obtained using dedicated software for bacterial promoter signal 

analysis. 

 

3.1 Codon usage in the PPR-H gene 
The codon usage of a 1830 bp-long nucleotide sequence of the H-gene was compared with 

the codon usage of M. genitalium genome using the graphical codon usage analysis (gcua 

v.1) software. The analysis resulted in a mean difference of 17.05 %. However, the H gene 

had 47 % GC content, which is higher than the average found on mycoplasma sequences. 

Codon usage analysis of the 1932 bp gene tetM (GC % = 36 %) and lacZ (GC % = 56 %), 

which have already been expressed in mycoplasma showed a mean difference of 14.95 % 

and 36.56 % respectively as compared to the M. genitalium genome. The mean codon 

usage difference of H-gene was lower than that of other previously expressed genes (i.e.: 

lacZ expression in Mcc, Janis et al., 2005). 

 

3.2 Choice of promoter sequences 
From the genome sequence annotation of MmmLC strain 95010-C1 five promoter 

sequences of CDSs from IPF140, IPF221, IPF453, IPF989, IPF1004 were analysed (Table 

V. 2). These CDSs encode: conserved hypothetical protein (CHP), nitrogen fixation 

protein, oligopeptide ABC transporter-permease component, 30S ribosomal protein S13 

and leucyl-tRNA synthetase, respectively. Upstream intergenic sequences including the 

putative ribosomal binding site (RBS, Shine-Dalgarno sequence) were analysed for 

promoter sequence signal using bacterial promoter prediction program (BPROM) 

HTUhttp://www.softberry.com/berry UTH. Based on score results, TCHPT promoter sequence from 

locus MLC_3560T of TMmmLC strain 95010-C1 was chosen for our expression vector 

construct. The CHP of locus MLC_3560 is a protein of unknown function that is also 

found with 100 % homology in the genome sequence of MmmLC strain TGM12b T. A 
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simultaneous analysis was done for promoter spiralin which was destined to be used as a 

second promoter for H-gene. The mycoplasmal -10 region (Pribnow box) and, to a lesser 

extent, the -35 region resembled eubacterial promoter consensus sequence recognized by 

the RNA polymerase (Razin et al., 1998). 

 

Table V. 2 BPROM promoter sequence analysis of genes from the genome sequence of MmmLC 

IPF & 
Locus Tag CDS 

Upstream 
sequence 

length 
analyzed 

No. of 
predicted 
Promoters

promoters 
(position 

from ORF) 

Promoter 
Sequence - score 

-10 box (42) tggtataat 94 140 
MLC_3560 

TConserved 
hypothetical 

proteinT 

293 bp 1 
-35 box (63) ttgtat 42 

-10 box (113) atttaaaat 74 
-35 box (137) atacca 8 
-10 box (437) taataaaat 61 

221 
MLC_4800 

TNitrogen 
fixation 

protein NifST 

515 bp 2 

-35 box (464) ttgtaa 47 
-10 box (169) tataaaaat 36 
-35 box (329) tttaaa 41 
-10 box (468) ttcaattat 31 

453 
MLC_1560 

TOligopeptide 
ABC 

transporter, 
permease 

component T 

527 bp 2 

-35 box (490) ttaaaa 37 
-10 box (36) aaggataat 39 
-35 box (63) ttactc 8 

-10 box (446) gtgcattat 44 
989 

MLC_6730 

T30S 
ribosomal 

protein S13T 

500 bp 2 

-35 box (471) ctgaca 31 
-10 box (92) ttttatact 76 
-35box (116) ttgaca 66 
-10 box (458) atgaaaaat 39 

1004 
MLC_6610 

TLeucyl-
tRNA 

synthetase TTT 

524 bp 2 

-35 box (481) tttaga 24 
 

For promoter sequence CHP (locus MLC_3560) the BPROM software predicted a single 

promoter of -10 box at position 42 (TGGTATAAT) and -35 box at position 63 (TTGTAT) 

from the ORF start with scores corresponding to 94 and 42 respectively (Figure V. 2). The 

245 bp sequence upstream from the spiralin gene (Acc no. AF012877) was also analysed. 

A single promoter sequence was predicted with -10 box at positions 168 (ATGTACAAT) 

and the -35 box at position 190 (TTGTTT) from the ORF with scores corresponding to 66 

and 40 respectively (Figure V. 3). Both -10 and -35 boxes from the CHP promoter gave 

higher scores than the promoter sequence of the spiralin gene. 
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Figure V. 2 Promoter sequence of CHP of locus tag MLC_3560 from the genome sequence of MmmLC strain 95010-C1 

Sequence region highlighted in yellow is the region analysed for promoter sequence signal using bacterial promoter prediction program (BPROM). The 

putative start codon is highlighted in blue down stream highlighted in grey is the sequence of CHP gene. 8 nucleotides upstream of the start codon is 

putative ribosomal binding site (RBS). The -10 and -35 boxes are located at position 42 and 63 respectively from the ORF. 
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Figure V. 3 Promoter sequence of spiralin gene Acc no. AF012877. 

Sequence region highlighted in yellow is the region analysed for promoter sequence signal using bacterial promoter prediction program (BPROM). The 

putative start codon is highlighted in blue down stream highlighted in grey is the sequence of spiralin gene. 10 nucleotides upstream of the start codon is 

the putative ribosomal binding site (RBS). The -10 and -35 boxes are located at positions 168 and 190 respectively. 
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3.3 Choice of restriction enzymes for cloning purposes 
Sequences from promoters, H-gene and plasmid pMYCO1 were analysed for restriction 

enzyme sites using Vector NTI-Suite software. Three enzymes (AatII, MluI and NgoMIV) 

were considered for cloning purposes. Each of these three enzymes generates protruding 

termini, which allow directional cloning (Sambrook et al., 1989). Sequences from 

promoters, H-gene and pMYCO1 were primarily analyzed for common non-cutting 

enzymes. Enzyme MluI was chosen among the few non-cutting enzymes. Enzymes AatII 

and NgoMIV, which linearized plasmid pMYCO1 (have a single restriction recognition 

sites) and did not display a restriction recognition site in either the promoter sequences or 

the H-gene, were also selected for the cloning strategy (Figure V. 4). In-silico double 

enzyme digestion of pMYCO1 by AatII and NgoMIV removes a truncated portion of the 

F1 origin of replication, present in pMYCO1, without any detrimental effect on this 

plasmid. The origin of DNA replication of bacteriophage, F1 origin is used to produce 

single-stranded DNA (Dotto et al., 1982), which was not a feature required in this study. 

 

Primers containing enzyme recognition sites at their extrimities for AatII, MluI and 

NgoMIV were therefore designed inorder to amplify promoters and H gene (Table V. 1). 

For both promoters, forward primers were designed containing an AatII restriction site, 

whereas reverse primers were designed containing an MluI restriction site. The promoter 

sequence amplicon was meant to possess the putative Shine-Dalgarno sequences for 

efficent H-gene translation. For H-gene amplification, the forward primer was designed 

with an MluI restriction site and included 12 bp downstream from the ATG start codon, 

whereas the reverse primer contained the restriction site NgoMIV and a site mutagenesis 

reverting the stop codon TGA to TAA (Table V. 1). In mycoplasma, the universal stop 

codon TGA codes for tryptophan, a feature shared by mitochondria (Razin et al., 1998). 

 

These primers were then used to amplify the spiralin (prom-SRm F/ R) and CHP (prom-

CHP F/ R) promoters and the H-gene (HF/ m2-HR) (Figure V. 5). 
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Figure V. 4 Flow diagram 

representing the cloning 

strategy used for final plasmid 

pWS1 construction. 
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Figure V. 5 PCR amplifications of H-gene and promoter sequences. 

H-gene from plasmid pBacPAK9 (a); promoter CHP of locus tag MLC_3560 from the genome of 

MmmLC strain 95010-C1 (b); and promoter spiralin from plasmid pCJ6 adapted from Janis et al. 

(2005) (c). 

 

 

3.4 Promoter and H-gene ligations in an intermediate vector 
Amplicons obtained from the H-gene and the two promoters were digested using 

restriction enzyme MluI. The digestion products of the promoter sequences were T4 DNA 

ligated separately with the digestion product obtained from H-gene. The two ligation 

products then re-amplified using the forward primer either of the two promoters and the 

reverse primer from the H-gene (PCR-2 in Figure V. 4). The PCR products giving the right 
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fragment size of about 2.2 Kbp were gel purified and used for cloning (Invitrogen gel 

purification Kit) (Figure V. 6). 

 

Figure V. 6 PCR amplification of ligation product of promoter sequences with H-gene. 

Fragment PR-CHP-H-gene (amplified by prom-CHP-F/ m2HR) and PR-spiralin-H-gene (amplified 

by prom-SRmF/ m2HR) at 2.2 Kbp, were gel extracted for further cloning. 

 

 

Gel purified fragments PR-CHP-H-gene and PR-spiralin-H-gene were cloned in pCRP

®
P2.1-

TOPOP

®
P vector (Invitrogen, USA). Ligation products were then used to transform E. coli 

Top10 competent cells with blue and white screening (Annex 4). White colonies were PCR 

tested using universal primers M13 and M13R for the right insert size. Out of 15 colonies 

analysed for both PR-CHP-H-gene and PR-spiralin-H-gene inserts, only two colonies from 

PR-CHP-H-gene were found to contain the right fragment size (Figure V. 7). None of the 

colonies tested for insert PR-spiralin-H-gene gave the right fragment size. Following two 

failed attempts the plasmid construct containing the spiralin promoter sequence was 

abandoned. 

 

A plasmid miniprep (Qiagen, kit) was performed from the two positive colonies containing 

PR-CHP-H-gene. The PR-CHP-H-gene fragment was then excised from the pCRP

®
P2.1-

TOPOP

®
P vector via triple enzymatic digestion of the plasmid using enzymes ApalI, AatII 

and NgoMIV. Enzymes AatII and NgoMIV were used to separate PR-CHP-H-gene 

fragment. The third enzyme ApalI was used to avoid the generation of DNA fragment of 

the vector having the same size as that of PR-CHP-H-gene. Finally, fragment PR-CHP-H-

gene of around 2.2 Kbp was gel purified and used for plasmid construction (Figure V. 7). 
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Figure V. 7 pCR®2.1-TOPO® vector containing inserts PR-CHP-H-gene and PR-spiralin-H-gene. 

PCR tests of white colonies revealed only colonies 2 and 3 from PR-CHP-H-gene inserts above 

gave the right fragment size, none of the PR-spiralin-H-gene gave the right fragment size (a); 

structure of ∆pCR-TOPO-TA2.1 containing PR-CHP-H-gene from the two positive colonies (b); 

triple enzymatic digestion of ∆pCR-TOPO-TA2.1 freeing the 2.2 Kbp PR-CHP-H-gene fragment 

(c). 
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3.5 Preparation of pMYCO1 for cloning 
The 7451 bp plasmid pMYCO1, which contains the tetracycline resistance gene tetM as 

selective marker and the oriC of MmmLC strain Y-goatP

T
P, has been described previously as 

one of the recent artifical oriC vectors for use in the M. mycoides cluster (Lartigue et al., 

2003). Before inserting the PR-CHP-H-gene fragment, pMYCO1 plasmid was double 

digested by restriction enzymes AatII and NgoMIV. The double digest gave two fragments 

of 6824 and 627 bp (Figure V. 8). The smaller DNA fragment contains a truncated portion 

of the F1origin and was excluded from final plasmid construction. The 6824 bp DNA 

fragment named ∆pMYCO1 was gel-purified and used as a vector for insertion of the PR-

CHP-H-gene. 

 

 

 

Figure V. 8 Double digest of pMYCO1 by enzymes AatII and NgoMIV. 

This has removed a 627 bp fragment containing a truncated portion of F1 origin, modified plasmid 

∆pMYCO1 was then used for further cloning. 
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3.6 PR-CHP-H-gene construct in ∆pMYCO1 
Plasmid pWS was obtained by inserting the ~2219 bp PR-CHP-H-gene fragment by 

directional cloning using the AatII and NgoMIV restriction sites of plasmid ∆pMYCO1. 

Ligation produts of vector ∆pMYCO1 and insert PR-CHP-H-gene were used to transform 

Stbl3 competent cells (Invitrogen) under tetracyclin selective pressure. 

 

PCR was used to verify the presence of the PR-CHP-H-gene insert. Two couples of 

primers were used for this analysis (Table V. 1): 1) primers designed on vector sequences 

flanking the insert (insert-pmycoF and m-insert-pmyco-R) and 2) a forward primer from 

the H-gene (Pg7848F) and the same reverse primer from the vector (m-insert-pmyco-R). 

Positive PCR results were obtained with both primer pairs. PCR using the first primer pair 

resulted in amplification a 2700 bp product and a 1827 bp fragment was obtained using the 

second primer pair (1 & 2 in Figure V. 9). 

 

 

 

Figure V. 9 PCR amplification of pWS from E. coli transformed colonies. 

1 & 2 in yellow using insert-pmycoF/m-insert-pmyco-R and 1 & 2 in white using a forward primer 

from the H-gene (Pg7848F) and the reverse primer (m-insert-pmyco-R); Bands of ~2700 bp and 

1827 bp were obtained respectively. 
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3.7 Validation of the PR-CHP-H-gene insertion sequence in pWS 
The 2700 bp PCR fragment containing the PR-CHP-H-gene insert was sent to Cogenics 

(Meylan, France) for DNA sequencing. Primers insert-pmycoF, Pg7848F, HP73R, 

HP112R, Seq-H-R2, Seq-H-R1, Seq-H-R3 and m-insert-pmyco-R (Table V.1) were used 

to obtain the entire 2700 bp sequence. 

 

Awaiting sequencing results, a cloning simulation was conducted using Vector NTI-Suite 

software. A simulation was obtained by inserting in-silico the PR-CHP-H-gene sequence 

fragment into the AatII and NgoMIV sites of plasmid ∆pMYCO1 (Figure V. 10). 

 

 

Figure V. 10 In-silico pWS construct containing PR-CHP-H-gene sequence. 
 

 

Once the entire sequence was obtained, the in-silico construct was used for sequence 

alignment and verification of the insert PR-CHP-H-gene sequence, as actually present in 

plasmid pWS. 
 

Sequence alignment (AlignX Vector NTI Suite, Invitrogen) of 2700 bp from pWS with the 

in-silico construct revealed four sites presenting mutations in pWS (Figure V. 11). 

Mutation site 1 was localized at the junction between the PR-CHP sequence and the H-

gene sequence, presenting the insertion of three consecutive bases before the initiation 

codon and one base right after the H-gene start codon (Figure V. 11). Mutaion sites 2, 3 & 
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4 present single nucleotide substitutions within the H-gene sequence (Figure V. 11). The 

‘TCG’insertion at mutation site 1 resulted in disappearance of the MluI restriction 

recognition site. In this same site, the insertion of a ‘G’ after the H-gene start codon 

resulted in a frameshift mutation and, therefore, truncation of the H-gene sequence. This 

explained the inability to re-linearize plasmid pWS by MluI restriction digestion that had 

been observed in vitro. On the other hand, both AatII and NgoMIV were able to linearize 

pWS (data not shown). 

 

 



 

  152 

 

 

 

 

 

Figure V. 11 Sequence alignment of the actual and the in-silico generated pWS sequences. 

Four mutated areas were observed on pWS: mutation site 1 contained an additional ‘TCG’ sequence before and an additional ‘G’ after the H-gene start 

codon (highlighted in green). Mutations at regions 2, 3 and 4 consisted in single nucleotide substitutions of ‘C’ to ‘T’, ‘A’ to ‘T’ and ‘A’ to ‘G’ 

respectively. 
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3.8 Obtention of the final construct, pWS1 
Plasmid pWS1 was obtained after site directed mutagenesis of the additional ‘TCG’and 

‘G’ nucleotides observed in the mutation region 1 of plasmid pWS. Complementary 

primers correcting these mutations Mut-F and Mut-R (Table V.1) were use for the 

mutagenesis strategy. The resulting plasmid, pWS1, was used to transform Stbl3 competent 

cells under tetracycline selection pressure. 

 

Plasmid mini-preps from ten colonies were subjected to linearization by MluI digestion, as 

well as double digestion with AatII and NgoMIV, which results in separated insert and 

vector sequences. The plasmids from the ten colonies analyzed were linearized upon MluI 

digestion (Figure V.12). A PCR amplification of PR-CHP-H-gene insert from plasmid 

pWS1 was sequenced for verification. 

 

 

Figure V. 12 Site directed mutagenesis of pWS yielding plasmid pWS1. 

Lane (a) intact plasmid revealing circular and supercoiled forms, lane (b) pWS1 linearized by MluI 

restriction digestion, lane (c) double restriction digestion of pWS1 with AatII and NgoMIV 

separating insert from vector. 

 

 

3.9 Verification of the H-gene sequence in plasmid pWS1 
Exactly as it was performed for validation of the previous construct pWS, the pWS1 insert 

sequence was aligned with the in-silico construct sequence. Alignment analysis revealed 

that the two mutations observed in mutation site 1 had been successfully corrected. The 

single nucleotide mutations observed in sites 2, 3 and 4 were not corrected. 
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The final H-gene sequence in plasmid pWS1 was translated to amino acid sequence for 

alignment with the PPRV-H gene sequence. Sequence alignment revealed that the 

nucleotide substitution present on site 3 was actually a silent mutation, as it did not change 

the amino acid residue. Nucleotide substitutions on the sites 2 and 4, however, brought 

codon modifications resulting in a change of the amino acid residues (Figure V.13). In the 

amino acid sequence these modified residues corresponded to position 73, where arginine 

(R, a basic amino acid) was changed to tryptophan (W, a hydrophobic amino acid), and to 

position 562, asparagine (N) was changed to serine (S), both being polar amino acids. 

 

These two amino acid mutations are not located at any of the critical H-protein residues 

interacting with the signalling lymphocyte activation molecule (SLAM). Regions for 

SLAM interaction are conserved among morbilliviruses, with conserved residues located at 

positions 505, 507, 521-523, 525-527, 529-533, 536-537, 547-548 and 552-554 (Tatsuo 

and Yanagi, 2002). The conservation of T-cell specific epitopes in H-gene subunit vaccines 

has been shown to be very important in order to generate a protective immune response 

(Cosby et al., 2006). 

 

Plasmid pWS1 was further propagated in Stbl3 and a maxi-prep (Maxi-prep-kit, Qiagen) 

was done for mycoplasma transformation. 
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Figure V. 13 Amino acid 

sequence alignment of H-gene 

from PPRV and H-gene from 

plasmid pWS1. 

Amino acid sequences at 

positions 73 and 562 were 

mutated to ‘W’ and ‘S’ 

respectively in H-gene from 

plasmid pWS1. 
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3.10 Mycoplasma transformation using pWS1 
MmmLC strain 95010-C1 has been successfully transformed using pWS1. Unlike the fast 

growth nature of MmmLC, transformed MmmLC mycoplasmas cells grew very slowly on 

tetracycline (2µg/ml) selective media. Colonies of small size were observed after 7 days of 

incubation; the apparition of small, slow growing colonies continued until 30 days of 

incubation (Figure V. 14). 

 

 

Figure V. 14 pWS1-transformed mycoplasma colonies after 14 days of incubation. 

Growth of transformants colonies on modified Hayflick media supplemented with 2 µg/ml 

tetracycline 

 

 

PEG mediated transformation has been described for several mollicutes, including 

A. laidlawii, M. pulmonis, M. mycoides, M. capricolum, M. gallisepticum, M. arthritidis, 

and S. citri (Cordova et al., 2002; Jarhede et al., 1995; King and Dybvig, 1994b; Renaudin 

et al., 1995). Although mycoplasmas are not easy targets for transformation and genetic 

manipulation, a combination of chemical treatments with CaCl B2 B and PEG has even allowed 

effective genome transfer between two species of the M. mycoides cluster (Lartigue et al., 

2007), which had never been achieved for any other species. 
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3.10.1 Transformation efficiency 

The number of transformants colony forming units was calculated using the following 

formula: 

 

No. transformants cfu = cfu x dil. ratio x transformant vol/plated vol 

 

The total number of transformants obtained in a transformation experiment is calculated by 

multiplying the number of bacterial colonies growing on selective media by the dilution 

ratio and by the ratio between the original and the plated volumes. 

 

In our experiment, twelve colonies were counted on plates inoculated with the 10P

-3
P 

dilution, with the original transformation volume being 300 µl and the plated 

transformation volume being 200 µl. The number of transformants cfu was estimated as 

1.8 x 10P

4
P transformant cfu. 

 

For the calculation of transformation efficiency the µg of plasmid DNA used for the 

transformation were not taken into consideration since the plasmid concentration had not 

been optimized in this study. The total mycoplasma cell count was performed on non-

selective media, resulting in 75 colonies at 10P

-5
P dilution. The transformation efficiency was 

then calculated as the ratio between the number of transformed mycoplasma cells and the 

total mycoplasma cell count. The transformation efficiency was estimated as 1.6 x 10 P

-4
P 

transformant cfu/total cfu; corresponding approximately 18 transformants in 112,500 

mycoplasma cells. 

 

This transformation efficiency is comparable to previous transformation efficiencies 

obtained for MmmLC strains. When transforming MmmLC strain GM12 the highest 

efficiency was of 8x10P

-4
P transformant cfu/total cfu, which was obtained by using plasmid 

pIK∆ (5.9 Kbp, King and Dybvig, 1994a). These authors did neither consider the µg of 

plasmid used for the transformation in their calculation. When considering in the 

calculations the 10 µg of plasmid pMYCO1 (7.4 Kbp) used for transformation of MmmLC 

strain Y-goatP

T
P, transformation efficiency was of 6x10 P

-5
P transformant cfu/total cfu/µg of 

plasmid DNA (Lartigue et al., 2003). Similarly, the transformation efficiencies of strain Y-

goatP

T
P were 4.5 x 10 P

-6
P and 5.8 x 10 P

-7
P, respectively using plasmids pMYCO1/IS1296 and 

pMYCO1/lppB of both 8.7 Kbp (Lorenzon, personal communication). Discrepancies in 
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transformation efficiencies may be attributed to variable transformation abilities between 

strains, as well as to differences in the methodology used. Here, MmmLC strain 95010-C1 

exhibited an increased transformation capacity. 

 

3.10.2 Stability of pWS1 in MmmLC cells 

After two and three passage on 4 µg/ml tetracycline selective media, mycoplasma colonies 

were tested for plasmid presence. A PCR was conducted on randomly selected colonies 

using primers flanking the insert PR-CHP-H-gene (insert-pmyco-F and m-insert-pmyco-R, 

Table V.1). Control PCRs using pWS1 plasmid and non-transformed MmmLC strain 

95010-C1, were conducted simultaneously. PCR results revealed the presence of this 

plasmid in all the clones analyzed, which showed the expected fragment size of 2700 bp 

(Figure V. 15). This implied that pWS1 was stably maintained and replicate in MmmLC 

strain 95010-C1. 

 

 

Figure V. 15 Amplification of plasmid pWS1 from transformed mycoplasma cells. 

Primers insert-pmyco-F and m-insert-pmyco-R primers amplified 2700 bp expected fragment 

 

 

3.11 Sequencing of the PR-CHP-H-gene fragment from 
transformed mycoplasma 

The PCR product obtained from pWS1 transformed mycoplasma cells using insert-pmyco-

F and m-insert-pmyco-R primers was sequenced as previously described. Sequence 

alignment revealed no further sequence modifications. In order to elicit protective 

immunity, the critical amino acids for SLAM interaction in the H-gene should remain 
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conserved. Apparently, the nucleotide sequences have not experienced any modification at 

least after three passages in mycoplasma culture. 

 

3.12 H-protein expression analysis 
Transformed mycoplasma colonies and those colonies which gave positive results on PCR 

were analyzed by dot-immunoblotting. As negative and positive controls, non-transformed 

MmmLC strain 95010-C1 and PPRV were included. Although variable intensities were 

observed from 13 transformant clones, a background similar to some of the transformed 

colonies was observed on the non-transformed MmmLC strain 95010-C1. It was therefore 

difficult to conclude from this test (Figure V. 16). 

 

 

Figure V. 16 Dot-immunoblotting test of transformed mycoplasma cells C1-C13. 

NT-non-transformed MmmLC strain 95010-C1 and PPRV (whole protein from peste des petits 

ruminant virus). 

 

 

Although sequencing of the H-gene from transformed mycoplasma cells has showed that 

the gene is not truncated, H protein expression has not been demonstrated. Validation of 

protein expression constitutes a crucial step in the development of a subunit vaccine. This 

may be performed by using the western blot technique. This study should then be followed 

by an assessment of the localization of the H-protein in the transformed mycoplasma cells, 

which may be achieved by electron microscopy using gold-labelled anti-H specific 

antibodies. 
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44  CCOONNCCLLUUSSIIOONN  AANNDD  PPEERRSSPPEECCTTIIVVEESS  
This study was one preliminary step in a wider study that would then involve various 

points. MmmLC strain 95010-C1 has been successfully transformed using plasmid pWS1. 

The result of immunoblotting test is not conclusive to say whether H-gene is expressed or 

not. After verification of H-protein expression in MmmLC, the following perspectives 

should be contemplated: 

 

 To obtain an expression vector devoid of antibiotic marker. 

 To control that goats are immunized with the vector, as a live vaccine or as 

inactivated antigen develop some immunity. 

 To check if it confers protective immunity towards both PPR and MmmLC / Mmc 

infections. 

 

Possible problems in foreign gene expression in mycoplasma could be difference in 

promoter sequence, codon usage, mRNA instability, inefficient translation, protein folding 

problems and rapid degradation. Most importantly however, problems with expression of 

foreign genes are thought to reside at the level of transcription and translation initiations 

(Jarhede and Wieslander, 2003). Initially, we attempted to use both promoters from 

spiralin and CHP genes for expression of H-gene. However, due to time limitations we 

were not able to repeat the experiment using the spiralin promoter as an alternative 

promoter. The spiralin promoter has already been successfully used for the expression of 

foreign genes such as tetM, ß-galactosidase (Janis et al., 2005; Lartigue et al., 2003) and 

green fluorescent protein (GFP) (Duret et al., 2003). In mycoplasma, the promoter 

sequence of the vsa gene has been effectively used in the expression of the 

chloramphenicol resistance gene cat from E. coli in M. pulmonis and M. arthritidis 

(Dybvig et al., 2000). We assume the promoter sequence of the CHP gene to be a strong 

promoter able to transcribe the H-gene in mycoplasma. Although the function of the CHP 

protein is not understood as yet, this protein is highly conserved in the genome of both 

MmmLC strains sequenced 95010-C1 and GM2b. We have observed that the promoter 

from CHP gave a higher score for both -10 and -35 boxes and possessed the consensus 

sequence ‘AGGAG’, known for ribosomal binding site. Inclusion of an extended region of 

a promoter sequence including Shine-Dalgarno sequence has been shown to promote 

foreign gene expression (Halbedel et al., 2007). 
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It is observed that the speed of growth of transformed MmmLC colonies has been 

extremely reduced. This may be due esteric interference of cell duplication as a result of 

incorporation of H-protein onto the mycoplasma cell surface. However, this hypothesis has 

yet to be investigated. Alternatively, this may be due to the load ensuing from addition of a 

9 Kbp extra chromosomal element, particularly considering that MmmLC strain 95010-C1 

already contains a natural plasmid of 1.8 Kbp (Chapter II, annotation data of whole 

genome sequence). 

 

Previously H gene of PPRV was inserted in to the genome of attenuated Capri pox virus, 

the recombinant Capri pox-PPR haemagglutinin have protected goats against the virulent 

PPRV. The inclusion of H gene in the genome have not reverted attenuated Capri pox virus 

to a pathogen form, H-gene by itself as a subunit entity have not shown to induce activities 

related to cellular attachment. 



 

   

General Conclusion
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GGEENNEERRAALL  CCOONNCCLLUUSSIIOONN  
High throughput sequencing technologies and new bioinformatic tools have literally 

revolutionized modern microbiology. Phenotypic characterization of bacteria may now 

seem as nineteenth century tools. A technique such as iso-enzyme profiling has long ago 

been replaced by multilocus sequencing of all genes coding for the enzymes. Coding 

sequences can then be compared and the detection of synonymous mutations has further 

increased the resolving power of the technique. 

 

Many mycoplasma genomes have been sequenced so far and many more are underway. 

This can be explained by the medical interest of these micro-organisms but also because 

their small genome makes them good examples for the application of new technologies or 

new tools. The recent “chromosomal transplant” of the genome of MmmLC into Mcc cells 

has even been reported in French newspaper like “Le Monde” (Lartigue et al., 2007). 

Mycoplasmas may also be used in the near future as a model for the development of the 

first synthetic cell containing minimal set of genes, M. laboratorium (Riech, 2000). This 

may pave the way for the development of new industrial applications. 

 

In our case we have used a whole genome sequence of MmmLC for the development of 

new diagnostic tools through comparative genomics with already published mycoplasma 

sequences. In fact the delivery of a complete circularized genome of MmmLC has been 

delayed because of the presence of duplicated DNA fragments. Difficulty encountered by 

the Genoscope was linked to presence of a 30 Kbp and 28 Kbp long integrative and 

conjugative elements (ICEs). Unfortunately the resolving power of the PFGE we had 

performed was certainly not sufficient to guarantee precise chromosome size estimation. 

The accurate assembly therefore relied more on the ability of the bioinformaticians that 

analyzed the sequences generated by the various genome banks. 

 

MmmLC makes no exception to the apparent rule and its genome sequence revealed that it 

contains insertion sequences of various kinds. A total of twenty three copies of IS elements 

were identified. The most frequent were IS1296, ISMmy1 and ISMmy2 while two others, 

ISMmy3 and an uncharacterized one, were in smaller copy numbers. These Insertion 

Sequences are posing some interesting questions on genome plasticity linked to horizontal 

gene transfer. It must be noted, for example, that IS1634 is the most frequent IS in 

MmmSC although it does not seem to be present in MmmLC, its closest neighbour from a 
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phylogenetic point of view. By contrast IS1634 variant is present in M. bovis that shares 

the same habitat as MmmSC, the bovine lungs. Similarly we have shown here that there 

was an identical ISMmy2 variant in M. cottewii and M. yeatsii that colonize the ear canals 

of goats. What remains to be examined is if IS-elements or other mobile genetic elements 

such as ICE may have any impact on mycoplasma pathogenicity. In theory this could be 

the case if these elements are favouring horizontal gene transfer of virulence associated 

genes or if they alter the expression of endogenous virulence associated genes. From a 

practical point of view IS elements have been used to develop molecular epidemiology 

tools for mycoplasmas by Southern blotting techniques. The new IS that we have 

characterized in MmmLC may be useful for such purpose as it varies in copy numbers 

from one strain to the other. However we did not develop such a tool as another one was 

developed in our laboratory at the same time. This tool is based on the Multi Locus 

Sequence Typing (MLST) technique, which is again relying on sequencing, and is much 

more precise and user-friendly than Southern blotting. In any case the unravelling of copy 

numbers and target insertion sites of IS-elements are prerequisites for the correct 

determination of chromosome full sequence. 

 

Comparative genomics was the basis for the development of new diagnostic tools for some 

members of the “M. mycoides cluster”. Our initial target was the remnant of the “ADI 

pathway” operon that was identified in all members of the M. mycoides cluster. It seemed 

that the arrangement of the various genes was differing from one species to the other and 

therefore we had concluded that we could design specific PCR primers for each of the 

species. This strategy was successful at first as we were able to develop specific PCR for 

M. capricolum subsp. capripneumoniae and for M. putrefaciens. These PCR were 

developed on the basis of much localized sequence polymorphism within the arcB and 

arcD genes. However we failed to develop specific PCR tools for the diagnosis of Mcc and 

MmmLC with the same strategy. The disclosure of the strain 95010-C1 MmmLC sequence 

data helped us to understand why. When we compared the ADI operon sequence in that 

strain with that of the type strainY-goatP

T
P, obtained previously, we have observed that an 

important polymorphism existed not only in terms of gene sequences but also on “operon” 

structure. One of the reasons for this polymorphism could be that this operon is no more 

functional and therefore prone to the accumulation of any genetic event, from deletion or 

rearrangement of large DNA fragments to single nucleotide mutations. Alternatively, we 

developed a PCR for the M. mycoides cluster based on the amplification of the glk gene 



 

  164 

which is well conserved within this group of species but also seems quite specific 

compared to other bacteria glk sequences. 

 

In the near future, comparative genomics made on full genomes for more than one strain 

for each member of the M. mycoides cluster may reveal the extent of polymorphism that 

exist within mycoplasma chromosomes. This will encompass gene repertoires, 

chromosomal re-arrangements, lateral gene transfer or sequence variations. It will then be 

easier to find adequate DNA targets for any particular need. Quantitative PCR (QPCR) is 

on the verge of replacing classical PCR as a rapid diagnostic tool for many infectious 

diseases. Already the PCR primers that we had designed for the specific detection of Mccp 

have been successfully used for the development of a QPCR. QPCR has three main 

advantages compared to classical PCR: an improved sensitivity (about 2 logs), the 

detection of the amplified product without opening the tubes (hence reducing 

contamination risks) and the ability to quantify the amount of specific target in the sample. 

There is no doubt that this technique will soon replace classical PCR even in developing 

countries.  

 

Using mycoplasmas as expression vectors is a relatively new concept. This possibility has 

arisen following the development of oriC vectors that can be used for functional genomic 

studies. These oriC vectors were developed primarily for the targeted disruption of genes 

to infer their functionality but it was also used for the expression of heterologous genes a 

promoterless lacZ gene and a gene encoding for spiralin, in Mcc. In the latter case, 

however the heterologous gene was originating from a close relative of the recipient cell as 

Spiroplasma. citri belongs to the same phylogenetic group. However the above finding has 

revealed more distant genes with despite evident codon usage differences can also be 

transcribed and translated. More recently promoterless lacZ gene encoding β-galactosidase 

from E. coli has also been used as a tool to analyse the activity of promoter fragments from 

M. pneumoniae (Halbedel and Stulke, 2006). In our case we wished to express genes of 

veterinary interest and we chose the H gene of “peste des petits ruminants” virus with the 

ultimate goal to develop multivalent vaccines. Again this is a new concept as the actual 

trend in veterinary vaccine is to use other expression vectors such as pox viruses. These 

pox viruses may offer multiple advantages as they are thermo stable and have a large 

genome that may accommodate more than one heterologous gene including genes coding 

for immunomodulators. However, in the case of mycoplasmas such pox vectors may not be 



 

  165 

suitable firstly because the immune mechanisms at stake for the protection against 

mycoplasmas is still not well understood, secondly because it is not known if pox vectors 

can elicit the proper type of immune response and thirdly because it is not known which, 

and if, a single mycoplasma antigen would be able to trigger a protective response. For 

those reasons we wished to use an alternative approach and express viral antigens in 

mycoplasmas. Lack of time did not allow us to prove if this H protein was really expressed 

in MmmLC; further work is in progress to check this by western blotting experiment. 

However we were lacking the appropriate monoclonal antibodies or hyper-immune sera to 

do so. If this expression is evidenced there will be a number of points that will have to be 

checked. The first will be the quantification of the expression as well as assessment of the 

position of the expressed H protein. It will be notably interesting to check if this protein is 

located at the surface of the mycoplasma. This is theoretically possible. Again if the H 

protein is expressed by MmmLC it will be interesting to check if the virulence of that 

organism has been modified. On the one hand it could be diminished as the growth rate of 

the transformed MmmLC has been dramatically reduced. However the H protein may have 

conferred additional properties to the transformed mycoplasma that could have acquired 

the ability to bind to specific cells. Although previous works on subunit vaccines of H-

protein have shown H-protein by itself do not induce these features unless accompanied by 

F-protein the other structural protein. The most important point in the subunit H vaccine is 

the conservation of T-cell recognition epitopes, which is the apparent situation in this 

study. Finally it will be interesting to check if animals have been able to develop an 

immune response both against MmmLC but also to the H protein and check if this 

response may elicit some protection against the homologous disease but also against PPR. 
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AANNNNEEXXEESS  
Annex-1. Plasmid H78-2 containing PPR-H 

 
Annex-2. Plasmid pCJ6 

 
Annex-3. 20X SSC solution (3 M NaCl, 0.3 M sodium citrate, Adjusted pH to 7.0 (20°C) 

and autoclaved. 
 
Annex-4. Blue and white screening 
The molecular mechanism for blue white screening is based on the HLac operonH. The vector 

(e.g. HpBluescriptH) contains the lacZ gene with an internal Hmultiple cloning siteH (MCS). The 

MCS can be cleaved by different restriction enzymes so that the foreign DNA can be 

inserted within LacZ gene, thus disrupting the activity of the Hβ-galactosidaseH when the 

protein is expressed. The chemical required for this screen is HX-galH, a colorless modified 

galactose sugar that is metabolized by β-galactosidase the products are a bright blue, and 

thus functions as an indicator, and HIsopropyl β-D-1-thiogalactopyranosideH(IPTG), which 

functions as the inducer of the Lac operon in the absence of lactose. The hydrolysis of 

colourless HX-galH by the β-galactosidase causes the characteristic blue color in the colonies; 

it shows that the colonies contain unligated vector. White colonies indicate insertion of 

foreign DNA and loss of the cells' ability to hydrolyse the marker. 
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