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Résumé 
 
Dans cette thèse nous présentons une analyse d'une expérience de sélection divergente chez le 
lapin Angora français. Les objectifs de l'expérience étaient d'évaluer la réponse à la sélection 
pour le poids total de toison et pour les caractères corrélés et d'analyser une expérience de 
sélection sur une population conduite en générations chevauchantes. Nous présentons une vue 
d'ensemble des facteurs génétiques et non génétiques des caractères quantitatifs et qualitatifs 
influençant la production de fibre. Parmi des effets fixes, le numéro de récolte est le plus 
important. Les paramètres génétiques et les tendances génétiques ont été analysés en utilisant 
un BLUP appliqué à un modèle animal. Pour l'estimation des paramètres génétiques on a 
employé un modèle avec mesures répétées des mesures dans lequel les récoltes successives 
ont été considérées comme un caractère répété. Les résultats ont prouvé que la sélection pour 
le poids total de toison a été efficace et une divergence de trois écarts types génétiques a été 
observée entre les souches haute et basse après huit années de sélection. La sélection pour le 
poids total de toison a augmenté de manière significative la longueur de jarres et le rapport 
entre les nombre de follicules secondaires et primaires (rapport S/P). Dans le même temps, la 
compression, la résilience, le diamètre de duvets, et le diamètre moyen de fibre ont diminué. 
Ces changements s'expliquent par des corrélations génétiques moyennes à élevées entre le 
poids de toison et la longueur des jarres, et entre les dimensions de fibre et le rapport S/P, la 
compression et la résilience. Ainsi, la sélection pour augmenter le poids total de toison a 
induit une augmentation des composantes quantitatives et qualitatives de la production de 
laine du lapin Angora français. La mesure du poids total de toison est simple et facile au 
niveau de l’élevage. 
 
Cette thèse fournit également de nouveaux paramètres génétiques résultant des mesures par 
l'analyseur de diamètre de fibre optique (OFDA). Il s'agit d'une méthode rapide pour mesurer 
les caractéristiques de la fibre Angora. Certaines de ces mesures sont intéressantes en raison 
d'une corrélation génétique élevée avec les caractéristiques du follicule pileux. La 
méthodologie OFDA est une alternative intéressante pour évaluer des caractéristiques 
importantes telles que le diamètre de fibre et le coefficient de variation du diamètre des fibres.  

Nous décrivons les paramètres démographiques et généalogiques de la population étudiée. En 
outre, nous étudions la différentielle de sélection pour le poids total de toison et le poids 
corporel. La caractéristique principale de notre approche est la description de la différentielle 
de sélection en comparant les candidats à la sélection, les parents potentiels et les parents 
théoriques. La description démographique et génétique a prouvé que dans les deux souches 
sélectionnées on a appliqué pendant 8 ans une conduite proche. Notre travail apporte des 
résultats originaux sur les effets de la sélection chez le lapin angora et sur la conduite d'une 
sélection en générations chevauchantes. 

Cette thèse a aussi un intérêt pratique pour les sélectionneurs de lapin Angora. Cette thèse est 
également le dernier projet de recherche de l'INRA après presque 30 ans de recherche sur cet 
animal. 

Mots clés : lapin Angora, sélection divergente, générations chevauchantes, héritabilité, laine. 
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Abstract 

 
 

In this thesis, we present our research to analyze the efficiency of an experiment of divergent selection 
in French Angora rabbit. Objectives of the experiment were a) to assess genetic parameter estimates 
for total fleece weight and correlated trait and b) to get an experience on management of a population 
of angora rabbits under selection with overlapping generations. This thesis is also the last research 
project of INRA after nearly 30 years of research on this animal. We present an overview of the 
genetic and non-genetic factors of quantitative and qualitative traits influencing fibre production. 
Among fixed effects, number of harvest was the most important. The genetic parameters and genetic 
trends were analysed using a BLUP animal model. For estimation of genetics parameters the 
repeatability model was used in which wool harvests from third until 12th have been considered as a 
repeated trait. Results showed that selection for high and low total fleece weight was successfully 
performed and a divergence of three genetic standard deviations was observed between the high and 
low lines after eight years of selection. Selection for total fleece weight significantly increased bristle 
length, secondary to primary follicle ratio and comfort factor and decreased compression, resilience, 
bristle diameter, and average fibre diameter. These changes resulted from moderate to high genetic 
correlations between total fleece weight and bristle length, and between fibre dimensions and 
secondary to primary follicle ratio, comfort factor, compression and resilience. Thus, selection for 
increasing total fleece weight results in an increase of both quantitative and qualitative traits of wool 
production in the French Angora rabbit. Measurement of total fleece weight is simple and easy at the 
farm level. Selection for this trait has positive effects on fleece characteristics such as bristle length, 
follicle population and fibre diameter. 

This thesis also contains new genetic parameters Angora fibres resulting from measurements by 
Optical Fibre Diameter Analyser that we provide a rapid method for measuring the characteristics of 
Angora fibre. Some of these measurements are interesting because of having a high genetic correlation 
with follicle traits of skin. The OFDA methodology is an interesting alternative to evaluate important 
characteristics such as fibre diameter, CV of fibre diameter and bristle content through measuring of 
comfort factor. 

We describe the demography and genealogy of the studied population. In addition, we study 
differential of selection for total fleece weight and body weight. The main characteristic of our 
approach is the use of new method for description of differential of selection in candidates of 
selection, parent and theoretical parents. Description of demography and the genetic structure in this 
study showed that in the two divergent lines, the similar management of reproducers has been done 
successfully during 8 years of selection. Our work contributes to the research in two areas that are 
estimation of genetic parameters with multivariate models of best linear unbiased prediction of 
breeding value and theoretical investigation of selection in populations with overlapping generations. 

This thesis is also of practical interest for Angora rabbit breeders for knowledge of effects of selection 
for total fleece weight and correlated traits. 

Keywords: Angora, divergent, heritability, overlapping generations, rabbit, selection, wool. 
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Abbreviations 
 
 
 
 
TFW 

 
Total fleece weight 

9LW Live weight 9 weeks before wool harvest 
WAJ1 weight of bristly (Jarreux) wool 
WAW1 weight of woolly wool  
HOM Homogeneity 
LW4 Live body weight at age of 4 weeks 
LW8 Live body weight at age of 8 weeks 
LW12 Live body weight at age of 12 weeks 
LW16 Live body weight at age of 16 weeks 
LW20 Live body weight at age of 20 weeks 
BL Bristle length 
DL Down length 
BD Bristle diameter 
AFD Average fibre diameter 
CF Comfort factor 
S/P 
 

Secondary to primary follicle ratio 
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Introduction 

 

Before the beginning of recorded history, the complete fleece of sheep was spun and made 

into clothe by man and there seems little doubt that one of the earliest textile fibres available 

for spinning into yarn and then weaving into cloth was wool from sheep. The art of spinning 

wool into yarn developed about 4000 B.C. and encouraged trade among the nations in the 

region of the Mediterranean Sea. In other world areas, other natural fibres such as cottons or 

silk were used to make desirable clothing. The ancient Egyptians, Babylonians, Greek and 

Hebrews did hand spinning and hand weaving in the home even women of high rank made 

their own clothing. The wool industry developed all over the world along the lines of a 

household craft rather than as a primitive factory system and the Romans probably established 

the first wool factory.  

 
The beginning of the textile industry is traced to the end of the 17th century. Then in the 

1700s, English textile manufacturers developed machines that made it possible to spin thread 

and weave cloth in large amounts quantities. The establishment of more and larger cloth 

factory influences the development of sheep breeding and the improvements in the wool 

supply from the 19th century. In parallel, cashmere produced by goats and other rare or 

luxurious fibres such as mohair from angora goats, angora from Angora rabbit, alpaca from 

South American camelids were progressively used and processed by the textile industry to 

make superb apparel fabrics and luxurious products. From the end of the Second World War, 

due to a large increase in demand of textile products, synthetic fibres such as nylon and 

polyester were developed to complete and substitute natural fibres. Thus, the part of animal 

fibres in total textile fibres use by manufacturers declined progressively to about 3% today. 

World demand for textile fibres was 44 million tons in 2005. Wool is the largest animal fibre 

industry with 1.3 million tons/year while luxurious fibres such as mohair, cashmere angora 

and alpaca represent only 3% of the total animal fibre production.  

 

Angora fibre production is the third largest fibre industry in the world after wool and mohair 

(sheep fine wool 100,000, Angora goat 25,000, rabbit angora 8,500, Cashmere goat 5,200 and 

Alpaca 4,000 tons in 1998). France dominated the world market for Angora fibre prior to the 

1950s. Until 1970, world production was stable at around 1,000 tons per year. There were 
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regular fluctuations in demand, and prices reflected this demand fluctuation. As prices rose 

and Angora fibre in storage was sold, there was a rise in price followed by a collapse in trade 

due to a lack of supply. Farmers were unable to increase production during this period due to 

financial constraints for investment and uncertainty about future prices. However, from 1976 

to 1988, there was a sharp increase in demand and the increase in demand was at a higher 

level than the previous increases in demand. However, supply only increased slowly at first as 

production could not be increase rapidly. From 1988 to the end of 1991, the number of 

Angora rabbits in France fell from 280 000 to 60 000. The main cause of the sharp decline in 

number was low demand for top-quality angora wool and increased production of cheaper 

angora wool in China (Thébault et al., 1992). China dominates the world Angora fibre trade, 

producing more than 90% of the world angora fibre. China has taken over the position in the 

world market traditionally held by France as the main source of angora up to the 90’s. Today 

the Angora rabbit production in France was estimated to be approximately 5000-8000 rabbits 

with an annual production of 2 tonnes of fibre in 2005 (personal communication with Union 

of French Angora Rabbit Breeders). Most of the farms contain 10-200 rabbits. These farms 

are located mainly in the Pays de Loire region. The current raw Angora fibre price for classed 

wool is approximately 40 €/Kg in the domestic markets while price on the world market is 15 

€/kg. Farmers’ association now integrate and organise the marketing of French Angora and 

producers control all the steps from farm to final consumer. In recent years, there has been no 

supply of raw Angora wool originating from European breeders on to the world markets. 

Competition with Chinese suppliers is economically difficult for European procedures. 

German-bred Angora rabbits are of high international repute, and every year German breeders 

export sires for breeding. The Angora wool production in India has been estimated to be 25 to 

30 tonnes per annum (Risam et al., 2005). 

Genetic improvement of fibre-producing animals  

Genetic improvement programmes for fibre production are different due to difference in coat 

composition, fibre growth, fleece and fibre characteristics between fibre-producing animals.  

Wool is not a homogenous product but varies enormously among breeds in its characteristics 

and therefore, its end use. Merino wools are relatively fine, soft and white and are primarily 
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processed through the worsted manufacturing process to produce light- and medium-weight 

apparel fabric. The wool from the majority of British breeds and crosses with finer types are 

coarser, mainly white and processed through both the worsted and the woollen manufacturing 

systems to produce heavyweight apparel fabric and fabric for upholstery and their interior 

textiles. The carpet-type wools from speciality carpet-wool breeds, as well as hairy sheep 

breeds, are generally coarse, medullated and sometimes pigmented. This wool is most 

frequently used in floor covering and other furnishing fabrics and fillers. Merinos and 

crossbred Merino types dominate world wool production and form the vast majority of the 

total value of the traded wool in the world. Genetic improvement of raw wool is aimed at 

increasing the production of fibre from a fixed resource to give a greater economic return per 

hectare; and/or improving the quality of the fibre so that it can be processed into superior end-

product s, than attracting a higher unit value for the wool produced. 

 

The development of efficient breeding programmes relies on the following steps:  

 

• Identifying the appropriate traits that should be improved and attaching a relative 

economic value that will dictate the emphasis to be applied to each within the 

breeding programme. 

 

• A precise knowledge of the genetic parameters (heritability and correlations), so that 

an effective prediction of response to selection can be made and so that animals may 

be appropriately evaluated for their potential contribution to the breeding 

programme. 

 

• Evaluating selection strategies that will lead to the most cost-effective means for 

achieving progress in the breeding objective. 

 

Defining the objectives of improvement is an important initial requirement in establishing 

breeding programmes in sheep, goat and rabbit improvement.  

In “fine apparel wool” of sheep, clean fleece weight, fibre diameter and freedom from 

coloured fibres should be the objectives of fleece improvement in Merino sheep.  
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In “general purpose wools” there is little advantage in selecting for finer fibre diameter since, 

in international trade, there is only a very small price differential for fineness.  

In “speciality carpet wools”, increasing fleece weight again is the highest importance in 

controlling financial return from carpet wool production.  

 

In Angora goat the weight of mohair produced per animal is a major factor in the profitability. 

Fineness, softness, lustre, freedom from kemps and continuously growing medullated fibres 

and from pigmentation is also important in mohair breeding programmes. In French Angora 

goats, an ideal 18-month-old animal with a high clean fleece weight, an average fibre 

diameter lower than 30 µm, free of kemp and medullated fibres are breeding objectives.  

 

In cashmere goats, down weight, length and diameter of cashmere as well as number of kids 

weaned per doe and body weight are the traits that have been considered in Cashmere goat 

improvement programs in China. 

 

In Angora rabbit, improvement programs tend to increase fleece weight but fleece quality 

criteria depend on the strain. The French breed is selected for producing a bristly wool in 

which long guard hair within a well structured staple are desirable fibres for making garments 

and fashion knitwear having a brush appearance. The German breed is selected for a woolly 

and finer fibre to make soft and very fine yarns for fashion knitwear and thermal underwears. 

Heritability for fleece traits has been established for both German and French Angora rabbit 

types.  

 

China has also established a system of State rabbit breeding farms to improve rabbit 

productivity. The breeding farms with more than 10,000 does are Tianyu Rabbit Co. Ltd., 

Zhenghai Rabbit Co. and Jingling Rabbit Breeding Farm located in Zhejiang and Jiangsu 

Provinces of south east China. There are also a number of medium size rabbit breeding farms 

of about 1,000 does in the South Eeastern and Eastern regions of China. Chinese Angora 

rabbit breeding programs with double-coated rabbits showed that it was possible to achieve a 

single coated rabbit with a low level of bristle in the fleece. However, there were serious 

problems with wool felting on the rabbits and the handling of the fibre in the processing 
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systems. This led the Chinese industry to breed for a double-coated Angora over the past two 

decades to reduce the incidence of wool felting on the rabbit.  

 

In Australia, Schlink and Liu (2003) proposed that breeding of Angora rabbits with low 

bristle content or bristle removal during processing may provide an alternative to high value 

fabric based on as Shahtoosh which has a fibre diameter of approximately 11.5 microns, a 

minimum fibre diameter of six and maximum of 17 microns. This fibre diameter range is well 

within the fibre diameter distribution of Angora rabbit down. Australia may have an 

opportunity to specialize in the production of Angora fabrics based on breeds with low bristle 

content and/or develop processing systems to remove any bristles that are present in Angora 

fleeces.  

 

The Chinese and French industries currently produces fibre that are not suitable for the 

production of next to skin fabrics wear due to the high micron bristle fibres in the yarns. 

Chinese textile training institutions were of the opinion that Angora was not suitable for next 

to skin wear due to the bristle content of the yarns produced. However, Germany until the late 

1980s produced extensive lines of next to skin wear as sport underwear and lightweight 

suiting fabric. There are small quantities of these products still on the market as health wear 

products. German processors also produced wash and wear fabric for the men’s suiting 

market. France still maintains a presence in the Angora industry by retaining ownership of the 

fibre until at least the yarn stage of processing.  

 

Questions to be answered 

 

In sheep wool breeding, many estimated genetic parameters are available given us a 

relatively precise prediction for expected responses to selection. Strictly, though, such 

estimates are population-specific and are relevant to one generation of selection, despite their 

frequent use across a wide range of populations and many rounds of selection. Selection 

flocks, where selection has been based on a single trait or a restricted range of traits, have 

been used widely in the Merino. The major aim of such flocks was to check the prediction 

that selection response would be effective, but important secondary aims were to improve the 
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understanding of wool and skin biology and to investigate the physiological consequences of 

selection on production traits.    

 

In contrast to sheep, few genetic studies have been conducted with the Angora rabbit, and 

these studies estimated genetic parameters generally with regression method in non-selected 

populations. The objectives of thesis were to study direct and correlated responses to two-

way (divergent) selection, to throw further light on the relative importance of the components 

of wool weight, and to provide animals differing widely in single character for use in future 

studies. Our work in this thesis consists in the analysis of an experiment of divergent 

selection in French Angora rabbit that was realised from 1994 to 2001. 

 

This manuscript is structured as follows: In Chapter 1 we present literature review on genetic 

and non-genetic factors of quantitative and qualitative traits influencing fibre production in 

rabbits and others fibre-producing animals. In chapter 2, we study non-genetic effects and 

direct response to selection. Finally, we give in this chapter the effect of selection on total 

fleece weight at adult age on this trait at young age.  

 

In chapter 3, new characteristics of Angora fibre using the Optical Fibre Distribution Analyser 

are described. This work was motivated by the fact that there is no study about fibre curvature 

in Angora fibres. In chapter 4, we study correlated responses in wool characteristics. New 

genetic parameters of fibre diameter and hair follicle density in Angora rabbit will be 

described in this chapter. 

 

In Chapter 5, we describe the demography and genealogy of the studied population including 

methods that we developed to compute the generation intervals in French Angora rabbits. 

Also in the same chapter, we study differential of selection for total fleece weight and body 

weight.  

 

In the appendix, I present the new chapter in the thesis that I did with CABINET PROGRESS 

(www.progress-rh.com). It helped me to be aware of all the assets I held from my doctoral 

education and I thought about using them to convince employers. In addition, it leads me to 
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regard my thesis, no longer as a scientific subject only, but as a personal and professional 

experience, a genuine project I have managed in every aspect and which allowed me to 

develop many different skills. 

 
Finally, we give some conclusions and possible tracks that deserve further research. 
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1 Literature review: Genetic and non genetic factors of 
quantitative and qualitative traits influencing fibre production 
in Angora rabbit and other fibre-producing animals 

 
RESUME 
 
Ce chapitre propose une revue bibliographique sur la biologie des pelages, la croissance des 
poils et l’amélioration de la production de toison chez différentes espèces animales produisant 
des fibres à usage textile. L’objectif est de déterminer les relations entre la quantité de poils et 
les caractéristiques de la toison et des fibre produites en vue de définir les critères de sélection 
chez le lapin angora à partir d’une analyse bibliographique des facteurs de variations 
génétiques et non génétiques de la production de poils chez le lapin angora. 
 
Les fibres kératiniques animales représentent 3% de l’ensemble des fibres utilisées par 
l’industrie textile. La laine produite par le mouton représente l’essentiel (97%) de ces fibres 
animales, mais les fibres spéciales telles que le mohair, l’angora et le cachemire sont très 
recherchées pour la fabrication de fils particuliers et la confection de vêtements hauts de 
gamme.  
La laine et le mohair sont produits respectivement par le mouton et la chèvre angora. Ce sont 
des espèces dont le pelage est composé d’un seul type de fibres à croissance permanente. Le 
poids total de toison et la finesse des fibres sont les principaux critères déterminant le revenu 
des éleveurs. La présence de fibres grossières et médullées n’est pas souhaitée. La toison est 
récoltée par tonte une fois par an chez le mouton et tous les 6 mois chez la chèvre angora pour 
une production annuelle de laine propre qui est de 1 à 3 kg chez le mouton et de 2 à 3 kg chez 
la chèvre angora.   
 
Le cashemire correspond au duvet de la toison d’un type de chèvre dont la toison est 
composée de 2 types de fibres: des jarres grossiers indésirables et des duvets fins qui doivent 
être séparés lors de la récolte par peignage puis par éjarrage mécanique. La croissance des 
poils est saisonnière et la récolte doit avoir lieu 1 fois par an avant la mue de printemps. La 
chèvre produit entre 100 et 500g de cashemire propre par an. 
 
L’angora est une fibre médullée produite par le lapin Angora dont la toison composée de 2 
types de poils désirables est récoltée tous les 3 mois. Le lapin angora produit 1 kg de laine 
propre par an.  
 
Il existe 2 types de lapin angora.  
Le type « français » est porteur d’une toison parfaitement structurée avec des jarres de 8-10 
cm et des duvets fins de 6-8cm de longueur. Sa toison est récoltée par dépilation, ce qui 
permet d’induire et de synchroniser la croissance d’un nouveau pelage avec une mèche bien 
structurée. Ce type de toison dit « jarreux » est recherché pour la fabrication de fil « fleuffé » 
et la confection de tricots haut de gamme.  
Le type « allemand » est porteur d’une toison « laineuse » récoltée par tonte avec une 
proportion de poils grossiers moins importante et une mèche non structurée où les 2 types de 
poils ont des longueurs similaires.  

20  



 
Par rapport aux autres espèces produisant des fibres textiles, le lapin angora présente les 
caractéristiques suivantes.  

• Il produit 1 kg de poils par an soit le quart de son poids adulte. Ce ratio est très faible 
(de l’ordre de 1 à 7%) chez les autres espèces. 

• Le développement du pelage et la multiplication des follicules pileux se poursuit après 
la naissance jusqu’à l’age de 8-10 semaines lorsque l’animal atteint 50% de son poids 
adulte. Chez le mouton et la chèvre, la très grande majorité des follicules pileux sont 
présents dès la naissance.  

• La toison du lapin angora est composée de 2 types de poils où les poils longs et 
grossiers sont des fibres désirables pour la fabrication de fils « fleuffés » et la 
confection de tricots haut de gamme ayant un aspect volumineux. 

• Le mâle a une production de poils plus faible que la femelle. Cet effet est contraire 
chez le mouton et la chèvre.  

• La production maximale de poils est observée en hiver chez le lapin et en été chez le 
mouton et la chèvre. 

 
Chez le lapin Angora, les principaux facteurs non génétiques influençant le poids de toison et 
les caractéristiques de la toison et des fibres sont l’age, le sexe, la méthode et la saison de 
récolte, le statut physiologique de reproduction et les conditions d’élevage. La production de 
fibres augmente de façon très importante avec l’age jusqu’à la 4ème ou 5ème récolte. La 
femelle angora produit 5 à 30% plus de poils que le mâle mais la mise à la reproduction de la 
femelle entraîne une diminution de sa production de poils.  
 
Chez le lapin angora, les valeurs d’héritabilité pour le poids total de toison, les 
caractéristiques de la toison et des fibres rapportées dans la littérature sont très variables mais 
les valeurs les plus probables sont de l’ordre de 0.20 à 0.50.  Les corrélations génétiques entre 
les différents caractères de la toison sont peu nombreuses et variables. La méthode utilisée 
pour estimer les paramètres génétiques constitue la principale cause de variation observée 
dans la littérature, l’essentiel des études ayant été réalisées à l’aide de la méthode des 
moindres carrés sur de faibles effectifs.  
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1.1 Introduction  

1.1.1 Animal fibre characteristics 
 
Wool is a protein fibre principally composed of keratin produced by sheep. The fibre is made 

up of overlapping cuticle scales and an inner cortex. Both the cortex and the cuticle influence 

the fibre properties of the wool and the fibre is slightly elliptical, unlike other animal fibres. 

With the wide range of sheep breeds, the fibre properties of the produced wool are equally 

wide ranging. The particular fibre characteristics of specific breeds can be exploited by 

processing the fibre into appropriate end products. In a general sense, wool varies from the 

super fine Merino producing a fibre similar to cashmere, very high lustre English breeds 

producing mohair-like fibre, and coarse hairy wools similar to the guard coat of some goats. 

 

The range of fleece weights produced annually by sheep is from 2-5 kg clean depending on 

the breed and the farming environment of sheep. The fleece is usually shorn annually. In the 

countries where sheep owners’ income from wool is less important, the annual fleece weights 

are lower, i.e. from 1-3 kg clean. The range of fibre diameters between the different sheep 

breeds varies from 15 microns grown by superfine Merinos through to 45 microns produced 

by the carpet wool sheep. The length of wool produced is influenced by breed and fibre 

diameter. Merinos range from 60-110 mm if shorn annually through to the coarse carpet 

wools ranging from 100-200 mm annually. 

 
Angora goats produce mohair. It is a white, smooth and lustrous fibre with a silky, luxurious 

appearance and has a high tensile strength but it is also very hard wearing. The flat, 

overlapping scales covering the fibre cause the smooth lustrous appearance. Although mohair 

- like wool - consists of the protein keratin, it nevertheless differs from wool in certain 

respects. The cross-section of wool is slightly elliptical, whereas the very fine mohair fibre is 

round. The scales are larger than wool and lie flatter, making a smoother fibre surface. The 

resultant greater reflection of light gives mohair its characteristic lustre. 

 

The fleece value determined by fibre diameter, lustre, softness, freedom or near freedom from 

kemps, and clean yield. Kemps are short, heavily medullated and coarse fibres. Kemp fibres 

contain air spaces (medulla) which reduce the effectiveness of dye and in a finished cloth 
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show up as being much lighter in colour than the other fibres. Although in certain end uses 

kemp can be used to create a special effect, in mohair kemp is undesirable - too much kemp 

will cause serious problems in spinning and dyeing. The presence of any foreign material in 

the fleece will affect the quality of the final product and will have to be removed prior to 

processing, adding to the cost of manufacture. Kemp can be controlled or reduced by genetic 

selection. Angora goat provides approximately 2-3 kg of mohair per shearing. This is 

typically done two times a year. The fibre length averages 12 to 15 cm long. Range of fibre 

diameter varies from 25 to 40 microns depending mainly on the age of animal.  

 

Cashmere is a type of goat, not a breed. Cashmere fibre can be clipped from almost any goat 

other than Angora. Cashmere is from the undercoat and is usually combed off the goat. White, 

brown or grey solid coloured goats are preferred over mixed coloured goats. The average 

yield is between 150 to 500g of down per goat per year. The coarse and down hairs are 

separated by a mechanical process called dehairing. The long fibres are used in knitted 

garments. Shorter cashmere fibres go into woven fabrics. The fibre diameter must be less than 

19 microns to be classified as cashmere. The typical range is 16 to 19 microns. China leads 

the world in cashmere production.  

 

South American Camelids produce alpaca. There are two types of alpaca; the huacaya, which 

accounts for 80 per cent of the total, and the suri, which makes up the remaining 20 per cent. 

The fibre obtained from the suri is the longest and most highly prized. The fibre of the alpaca 

is medullated, fine and silky, between 20 and 34 microns in diameter and 8-12 cm in length. 

The fleece comes in a wide variety of shades, which is a special characteristic of the alpaca. 

Colours range from pure white and various shades of white - which represent about 80-85 per 

cent of the clip and have the highest value - to warm fawns, reddish browns and a variety of 

greys and black. Animals are shorn once a year. The range of fleece weights is 1-2 kg 

depending on the breed and farming conditions. The quality of the fleece is graded according 

the presence or not of double coat, the presence of naturally curled or crimped staple and the 

presence of crimped or straight fibres combined with differences in external shapes (Frank et 

al., 2006). 
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Angora is a medullated fibre that is produced by the Angora rabbit. There are two types of 

angora. The first, known as the "French type", is a typical double coat with a well structured 

staple made of two main kinds of hair, long coarse bristles of 10-12 cm long which is hollow 

and does not take dye and shorter and finer undercoat of 6-8 cm long. Used in garments, this 

type of hair shows up as contrasting pale fibre and is often used to create a fine, brushed 

appearance. The second type of hair is finer and is produced by an angora rabbit with German 

origins. It is less spiky in character, and can be used to make a softer yarn that is sometimes 

viewed as an alternative to cashmere. It is used in very fine yarns for high fashion knitwear 

and thermal underwear. In the German type, the distinction between bristle and undercoat is 

not so well defined as the length of bristle is shorter and more variable than in the French 

type. This difference is mainly due to the harvest method. The German type is shorn every 70-

80 days while the French type is plucked every 3 months. Fleece weight range at harvest is 

200-350 g for an annual production of about 1 kg. 

1.1.2 Biology of coat development and fibre growth  
 

The coat of mammals affords protection against physical damage and environmental events 

such as temperature variations and precipitations. The mechanical, physical and chemical 

properties of the different types of hairs forming the coat, and the composition and the 

structure of the coat all play a role in this protection. Coat composition and structure are 

modified periodically, so that hairs are replaced and the coat adapts to seasonal climatic 

changes. 

1.1.2.1 Changes in coat composition and structure 
 

In general, there are two main types of hair in the coat, long and coarse guard hairs of the 

outer coat that provide mechanical protection, and short and fine down hairs of the inner coat 

that provides the thermal protection. The guard hair are produced by primary hair follicles 

usually organized in trio groups (Carter, 1943). Secondary follicles appearing within the trio 

groups produce the down hair. 

 

There are two types of secondary follicles. The epidermal follicles originate from the 

primitive foetal epidermis as primaries until the first sign of epidermal keratinization. As the 
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keratinized epidermis is not able to produce more new follicles, the subsequent secondaries 

are formed by branching from existing epidermal follicles (Hardy and Lyne, 1956). These 

derived follicles with their original epidermal follicle constitute a compound hair follicle. The 

hairs of derived follicles pass through the epidermis in the common hair canal developed by 

the generating epidermal follicle. The number of derived follicles varies according to season, 

and provides additional downs in the winter coat (Rougeot et al, 1984). Hair follicle 

development of different species is shown in Table 1.1. 

 
Table 1.1: Hair follicle development in different species of fibre producing animals. 

 

1.1.2.2 Replacement of hair and fibre growth 
 
There are variations in fibre growth between mammals and specially those that have been 

selected for fibre or fur production. Types of fleeces vary from a typical double coat to a 

single coat in which all fibres are essentially similar in their physical characteristics. 

 

In the typical double-type coat, such as in Angora rabbit, Cashmere goat and most of fur-

bearing animals including mink, hairs are replaced periodically. The pattern of growth of 

individual follicles can be divided in 3 main phases, anagen (active fibre growth), catagen 

(follicle regression) and telogen (resting phase) (Chase, 1954). Shedding of the previously 

grown fibre tends to occur about the onset of anagen so that at least one hair is in general 

always present in a follicle. Duration of anagen is constant while duration of telogen can be 

modified by photoperiodic manipulations, hormones, traumatism and plucking. Thus, a hair 

may be unchored in the skin by its club root for several weeks without growing. Pattern of 
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hair growth is different in Angora rabbit, Cashmere goat, mink and moulting sheep, but 

changes in the coat are mainly controlled by seasonal variations in day length. 

 

In mink, two moults, one in spring, one in autumn are observed. Each one progresses over the 

body according to a specific gradient. Spring moult begins on the muzzle in mid-April and 

extends towards the tail to give the summer coat. Autumn moult from late August occurs 

progressing from the tail to the muzzle and gives the winter coat. Summer coat is 

characterized by a low number of derived hair follicles (12-14 per compound follicle) and the 

winter coat by a higher number (17-20) (Rougeot and Thébault, 1983). Spring and autumn 

moults are mainly controlled by increasing and decreasing days (Bissonnette, 1939; Duby and 

Travis, 1972; Martinet et al., 1984) . 

 

In the Angora rabbit, the different types of hair grow during 12 to 20 weeks. Without any 

manipulations, moults can be observed in the spring and the autumn, but in commercial 

farming, Angora wool is harvested at regular intervals by plucking in the French breed or by 

shearing in the German breed. According to the season and whatever the harvest method, 

variations in the fibre population are observed. In spring, a part of derived hair follicles 

regresses to the hair germ stage or disappears without replacing their downs. They are only 

renewed in the autumn, so that hair density is 20 to 30% higher in winter than in summer 

(Rougeot and Thébault, 1983). 

 

In goats and sheep, the pattern of fibre growth ranges from a visible moult in the spring with a 

lesser moult in the autumn in double coat breeds such as Soay sheep and cashmere-producing 

goats, to apparent continuous growth in single coat breeds such as Merino sheep and Angora 

goat. 

 

In double coat breeds, primaries are replaced as they are shedding in spring and summer 

maintaining a covering over the animal, while replacement of secondaries may not occur for 1 

to 3 months after shedding. The seasonal pattern of down production in Soay sheep (Ryder, 

1978) and cashmere goats (McDonald et al., 1987) begins around the summer solstice and 

ceases near the winter solstice albeit some subsidiary cycles have been be observed during 
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spring in cashmere goats (Nixon et al., 1991). At the end of the fiber growth, cycle down 

length is quite similar or longer than guard hair. Thus in double coat breeds, pattern of hair 

growth is controlled by day length (Rougeot, 1961;Rougeot et al, 1984), and hair density as 

measured by secondaries/primaries ratio is low in summer and high in winter (Ryder, 1973; 

McDonald et al., 1987). 

 

In single coat breeds such as Angora goat or modern Merino sheep, fibres grow apparently in 

a continuous pattern. However, most of the breeds exhibit seasonal cycle of fibre growth with 

a maximum rate in summer and a minimum one in winter. The amplitude is less pronounced 

in modern Merino sheep than in Angora goats and most other sheep breeds (Margolena, 1974; 

Ryder, 1978). The seasonal cycle in fibre growth is associated with concomitant changes in 

mean fibre diameter, mean fibre volume and growth rate of fibre length (Woods and Orwin, 

1988). This seasonal cycle of fibre growth, and occasional fleece shedding, in modern single 

coat breeds, therefore appears to be a vestige of the moulting cycle of primitive and double 

coat breeds (Ryder, 1978). Some characteristics of fibre growth of different species are shown 

in Table 1.2. 

 
Table 1.2: Fibre growth in different species of fibre producing animals. 
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1.1.3 The Angora rabbit 
 
 

The Angora rabbit (Oryctolagus cuniculus) is a species of the order Lagomorpha and is 

descended from the European wild rabbit. Angora rabbit fibre is categorised in the luxurious 

speciality fine animal fibre group along with mohair, cashmere and alpaca. The coat of the 

Angora rabbit is made of three main kinds of hair: bristles, awns and down fibres. Composition 

of the fleece in Angora rabbit is similar to the normal rabbit, but its structure is modified by the 

three kinds of hair that are much longer. The angora fibre is about three times longer than the 

normal hair rabbit. Extension of the active phase of hair growth (anagen) from 5 to 7 weeks in 

normal rabbits to 12 to 16 weeks in Angora rabbits is at the origin of the unusual length of the 

coat of Angora rabbit (Rougeot and Thébault, 1983; Rougeot et al., 1984) as it is for mice 

(Pennycuik and Raphael, 1984). The Angora character is due to a pair of autosomal recessive 

genes in mice and rabbit. Evidence was reported that mice deficiency in fibroblast growth 

factor 5 (fgf5), produced by gene targeting are of angora phenotype, and that the natural angora 

mutation corresponds to a large deletion of the fgf5 exon 1, and part of upstream sequences in 

the mouse (Hebert et al., 1994; Sundberg et al., 1997). Recently, (Mulsant et al., 2004) 

suggested that as in mice a defect in the fgf5 gene may be the cause of the rabbit angora 

phenotype.  

 

Angora is almost exclusively used in the carded chain, either in drapery, or in hosiery. These 

two uses led to the selection of two strains of Angora rabbit. One, the German strain, intended 

to produce a woolly fleece, fine, with a minimum of bristles, is bred mainly in China, South 

America and central Europe. The other, the French strain, intended to produce bristly Angora, 

well adapted to the wool clothes industry, is mainly bred in France.  

 

In the French angora rabbit, the hair is collected every 90 to 100 days by depilation when the 

follicles reach the resting stage and before hair starts falling, which would cause felting and 

reduces its value. All the hairs have, at the time of depilation, the same duration of growth, 

but the lengths differences (speed of growth faster of the bristles), that is to say 10 cm and 6,5 

cm for the bristles and the downs after 14 weeks of growth, respectively. The diameter of the 

downs is low, about 15 µm with little variability, contrary to the coarser bristles, nearly 50 µm 
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with variation from 30 to 80 µm. From 1980, French breeders have been using a depilatory 

fodder sold under the name Lagodendron® (Société Proval, 27 rue de la gare de Reuilly, 

75012 Paris). With careful use of this product, rabbits can be plucked more quickly, easily, 

and less stressfully. 

 

In the German Type, the hair is cut with scissors or electric or manual shears. Since the 1980s, 

scissors is the more common technique in China, while shearing is more common in Central 

Europe and South America.  

 

 Hair-weight production has long been the sole focus in Angora rabbit selection. These genetic 

improvement efforts in France and Germany have produced highly similar acceleration of hair 

growth. At the experimental production unit of INRA in France the annual output of does rose 

from 885 g/year in 1980 to 1 086 g/year in 1986, a phenotypic gain of 31 g/year. Animals 

tested at the Neu-Ulrichstein Hesse Centre in Germany gained in productivity from 400 g/year 

in 1945 to 1 350 g/year in 1986: a phenotypic gain of 32 g/year. Production in the French and 

German commercial sectors lagged slightly behind these figures with an estimated annual 

production per doe of 1000 g/year under French and 1200 g/year under German production 

conditions (Lebas et al., 1997).  

 

There are major gaps in China by province and by production systems. For does the figures 

range from 261 g/year (unspecified Chinese strain, 1985) to 815 g/year (Lebas et al., 1997). 

Production conditions, particularly feeding, are highly influential because German rabbits 

under Chinese conditions are, according to the literature, producing from 422 to 820 g/year. 

The fleece of Angora rabbit is grade in approximately five grades during harvest. These 

grades for France are: 

 

• WAJ1 including long > 6 cm for down and bristle 

• WAW1 includes long and woolly wool 

• WAW2  includes short wool < 6 cm for down 

• C.F.W. clean, felted wool 

• 1D.W dirty wool 
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China likewise uses five grading lines but due to coat type differences grade fibre on the basis 

of fibre length and coat structure with less emphasis on the variation within the fleece. There 

are no nationwide classing standards for Angora fleeces in China, with the classing 

requirements being determined by the growers and the markets they are supplying into at the 

time of shearing. An example of Chinese wool lines are: 

 

• First grade 5 cm single coated fleece 

• Second grade 3 to 4 cm single coated fleece 

• Third grade 6 cm or longer double coated fleece 

• Forth grade 4.5 to 5 cm double coated fleece 

• Fifth grade 3 to 4 cm double coated fleece 

 

 

Homogeneity, compression and resilience are some of the quality traits of angora fibres that 

have been defined by Rochambeau et al. (1991). Homogeneity has been calculated as the ratio 

of WAJ1 to TFW and expressed as a percentage. Compression is the resistance of 10 g of 

angora wool (cm) under 1 kg of weight. Resilience is the height of the mentioned wool 

sample after taking of the weight (See appendix II). 
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1.2 Non-genetic factors influencing wool production 

 

In Angora rabbit, the main principal non-genetic factors influencing fibre growth that can be 

altered by farmers’ management decisions are harvest number or age, sex, reproduction, the 

harvest method, and seasonal influences. The most important, judging by weight at each 

harvest is the interval between two harvests. This effect is attenuated when considering annual 

output. Because of the birth season effect, the observed seasonal effect is the result of a birth 

season effect and a harvest season effect when the harvest number is constant. 

1.2.1 Animal factors  
 

Wool production is influenced by the age and sex of animals, and by reproduction in the doe.  

 

1.2.1.1 Age or harvest number 
 
 
The number of harvest is important (at least at the first harvest) for all rabbit strains and for the 

second and third harvests in French strains. In French Angora, the young rabbits still produce 

woolly fur, even after depilation at seconds and third harvests. The total weight of wool 

harvested in the French breed increases rapidly up to the fifth harvest (Rougeot et al., 1984; 

Rochambeau et al., 1991; Allain et al., 1999). Total fleece weight at the first harvest is about 

five times lower than that observed at the fourth or fifth harvest (Thébault and Rochambeau, 

1988). Effect of harvest number on wool production of Angora rabbits are shown in Table 1.3.  
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Table 1.3. Effect of the number of harvest on wool production in Angora rabbits. 

 
 
 

 

If a comparison is made on the elements of the quality of the fleece of the first five harvests, 

the first two ones are different. On the other hand the three following harvests are rather 

similar.  There are harvest number differences on mean diameter of fibres. The highest bristle 

diameter is observed from the third to the fifth harvest, and the lowest from the seventh 

harvest. Bristle diameter observed at the sixth harvest is intermediate. The fineness of 

undercoat and coarse wool of male and female German Angora rabbits rose when age 

increased. The fineness of undercoat and coarse wool of male and female rabbits at 11 months 
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was similar to adult rabbit fineness. Also coarse wool ratio increased when age rose from 5 to 

11 months (Fu-chang et al., 2000).  

 

In sheep and goats, fibre production and fleece characteristics are influenced by age. Fibre 

growth rate increases from birth to a maximum at 3 to 4 years of age after which it declines 

(Summer and Bigham, 1993). The effect is similar for many sheep breeds (Bigham et al., 1978) 

cashmere-producing goats (Gifford et al., 1990) and angora goats (Stapleton, 1997). In 

Merinos, during the declining phase of wool production there is a progressive decline in the 

density of active follicles and a reduction in fibre volume. Although mean fibre diameter 

increases there is a relatively greater reduction in staple length. Colour, handle and washing 

yield also deteriorate, crimp frequency falls and crimp abnormalities increase. Tabbaa et al. 

(2001) studied effect of age on fleece characteristics of yearling (14–20 months) and mature 

(28–84 months) Awassi ewes and showed that greasy fleece weight (corrected for body 

weight) increased with age. Fleeces from F1 ewes from the three wool breeds of Finn sheep, 

Combo-6, and Borolo Merino and the two hair breeds of St. Croix and Barbados were 

evaluated by (Bunge et al., 1996). They estimated effect of age from two to 5-year-old F1 ewes 

by best linear unbiased estimates (BLUE). Age of ewe had a significant effect on fleece weight 

(P<0.05). Fleece weights increased with age, peaked at 3 years of age, and then decreased. 

Actual staple length decreased as age increased to 4 years of age and then increased in 5-year-

old ewes. Two-year-old ewes produced fleeces with a smaller (P<0.05) fibre diameter than 

ewes of the other ages. Age of ewe had no significant effect on proportion of coloured or kemp 

fibres.Sinha and Singh (1997) noted a high and positive correlation between 3-month weight 

and wool yield in Muzaffarnagri lambs.  

 

 

As the goats aged, body weights increased, clean mohair production decreased, and fibre 

diameter and medullated fibre content increased (Lupton et al., 1996). Allain and Roguet 

(2003) showed that age of animal have a significant effect on greasy weight of Angora goats. 

As it rapidly increased (+1.1Kg) from the first shearing at 6 months of age to the third shearing 

at 18 months of age. In their study, mean fibre diameter increased from 18 months to 30 
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months of age and over (+1.7). In cashmere goats, weight of down and fibre length declined 

significantly every year from 2 to 6 years of age (Zhou et al., 2003). 

 

 

1.2.1.2 Sex 
 

In Angora rabbits, the weight of the fleece was greater in females than males by about one 

standard deviation for harvests with a harvest number greater than three. The adult females 

weighed 4100 g and produced 250 g wool every 14 weeks (Rochambeau et al. 1991). The 

mean guard hair diameter as measured from the third to the sixth harvest is significantly 

higher in females than in males, respectively 54.1 and 49.5 microns (Allain et al., 1992). The 

sex factor was very important at the second harvest. It explained 20% of the variation, in 

favour of female animals (Rochambeau et al., 1998). In German Angora rabbit, annual wool 

yield of adult females was 4.22% more than that of adult male rabbits (Fu-chang et al., 2000). 

Production increases when the influence of androgen hormones decreases. Males have less 

homogeneity, shorter bristle and longer down hair. Sex difference in French and German 

strain angora rabbits ranges 5-20%, 0-15% respectively, depending upon the breed. 

 

The males hava shorter bristles and longer downs than females when lengths were measured on 

rabbits whose harvest number was between two and four. In males the length of bristles is 3 to 

4 mm shorter and that of down is 2 to 3 mm longer than in females. Males have different 

fleeces from those of females; they are less homogeneous with longer down hairs and shorter 

bristles (Rochambeau, et al. 1991). A sex difference in bristle diameter has been observed. The 

mean guard hair diameter as measured from the third to the sixth harvest is significantly higher 

in females than in males, respectively 54.1 and 49.5 µm (Allain et al., 1992).  

 
The sex factor is very marked in the French strain: male rabbits produce 20 percent less hair. 

This is not so true for the German strain, where the literature reports a difference from zero to 

15 percent, with most citing a figure of 10 percent less for male rabbits. Live weight is 

irrelevant, except during the growth period, where it is related with the harvest number (first, 

second, etc.). The sex factor is less of distinction and is weaker in the German than in the 

French strain but males do show a more marked tendency towards felting.  
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In contrast, the wool production of the females is reported to be higher than in males in 

German purebred rabbits and German X French crossing. The difference amounted 12,4 % 

(Szendro, 1992). 

 

In sheep, rams tend to produce more wool than wethers and ewes, due mainly to their greater 

size and the better feeding given to rams. Differences between wethers and ewes, once the 

effects of reproduction in ewes are allowed for, are probably small. Fibre diameter was 

slightly greater in rams than in ewes with the difference between the sexes increasing with 

age. 

 

In cashmere goats, sex effect on production traits in the yearling and adult animals varied. 

Male goats produced more down hair (765 vs. 522g) with a little coarser (14.9 vs. 14.5 µ) and 

longer fibres (10.7 vs. 8.9) and were heavier in body weight (55.7 vs. 32.4 Kg) than female 

goats. There were no significant differences in fibre diameter and length between male and 

female yearling, although obvious differences in combed cashmere weight and body weight 

were observed. In adult cashmere goats, year, age of goats and sex had a significant effect on 

cashmere production, fibre diameter, fibre length and body weight (Zhou et al., 2003).Sinha 

and Singh (1997) observed a significant effect of sex of lamb on 3- and 6-month body weight, 

and fleece weight, in favour of males. In Angora goats, Allain and Roguet (2003), reported that 

at each shearing, males produce a heavy greasy fleece weight with a coarser fibre (+1.5µm), a 

higher coefficient of variation of fibre diameter (2.7 %) and better score values than their 

female counterparts. 

 

 

1.2.1.3 Reproduction 
 

Thébault and Rochambeau (1988) studied the effect of physiological condition of female and 

showed that lactating does produce less wool (-36g) than does, which had not been mated. 

The effects of littering and suckling on wool production were estimated by difference 

between females, which had and had not produced litters. An experiment was conducted by 
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Umesh et al. (2004) in Germany Angora rabbits to evaluate the effect of different parities on 

their biological and production performances. Parity had significant (P<0.05) effect on the 

doe weight at kidding, weight of progeny up to 84 days and wool yields at first and second 

shearing. Gestation and especially lactation reduce hair production by one-third in Angora 

rabbits.  

 

In sheep, there can be substantial reductions in wool growth rate during both the latter half of 

pregnancy and early lactation. Overall, reproduction usually reduces annual fleece growth of 

ewes by 10-14 %; the greatest reduction being for ewes rearing twins. Increased feed intake 

can compensate for the effects of pregnancy and lactation on wool growth in low-producing 

sheep, but not in high-producing ones. It is concluded that increased competition for essential 

nutrients, perhaps one or more amino acids, between the wool follicles on the one hand and 

foetal and mammary tissue on the other, was the most likely cause of reduced wool growth. In 

cashmere and Angora goats, it has been shown that kidding and lactation affect live weight 

and fibre production in both types of goats, but the magnitude of the effect depends on 

breeding strategy and time of kidding and lactation. Weight loss during lactation was lowest 

when kidding occurred at the time of high pasture availability in spring. Fibre production 

decreased when the last 2 months of pregnancy and the 1st month of lactation coincided with 

the fibre growth cycle (Robertson et al., 1992).  

 

 

1.2.2 Environmental factors 

1.2.2.1 The harvest method 
 

Angora wool is harvested either by shearing or by plucking. The latter method is used mainly 

in France. In the French rabbit, the wool yield at plucking is higher than with shearing 

(Schlolaut, 1980). The higher mean fibre diameter of downs (14.1 µm) and awns (23.3µm) in 

the plucked French Angora wool compared to the values of the shorn German fleeces (down: 

12.4 µm; awn: 21.7 µm) are related to the harvesting method (Herrmann et al., 1996). The 

harvest procedure is fundamental to distinguish between bristly hair obtained by depilation and 

woolly hair obtained by shearing. 
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French farmers who want to produce a bristly grade of angora wool, used to make luxurious 

clothes, e.g., pullovers and shawls, which have a fluffy appearance, use plucking. Genetic 

selection aims to increase the number and the dimensions of bristles but the harvest process is 

also very important in determining the woolly or bristly quality of the fleece (Thébault and 

Vrillon, 1994). The harvest technique is an important factor, for French strain, shearing 

reduces adult doe productivity by about 30 percent. 

 

 

1.2.2.2 Seasonal effects 
 
As it is shown in the previous sections, the growth of hair or wool is a cyclic process, during 

which the follicles pass through three main phases (i) anagen, the phase of active fibre 

growth, (ii) catagen, during which the follicle regress, fibre growth ceases, and a ‘brush’ or 

‘club’ end forms on the fibre, (iii) telogen, a resting phase. The loss of the previously grown 

hair, termed moulting or shedding is usually delayed until anagen of the next cycle, but some 

fibres may be retained for longer periods. Reproduction and fibre growth traits of different 

species are affected by season. In reproduction traits, primitive breeds of sheep are highly 

seasonal, but seasonality reduced in modern wool breeds. In double coat species such as 

cashmere goats, primitive sheep and Angora rabbit, fibre growth has a high seasonality, but in 

single coat species such as angora goats and Merino sheep, seasonality is much less 

important.  We consider effect of season under two effects, one relative to the season of birth 

and the other, harvest season. 

 

 

1.2.2.2.1 Birth season 
 

Fleece parameters are influenced by the season in which the animals are born. The total yield 

of adult angora rabbits born in winter is significantly greater than that of those born in 

summer. The season of birth have a slight positive (8%) on total fibre weight for animals born 

in winter, and on first harvest fibre weight for animals born in autumn and winter 

(Rochambeau, et al. 1998). This difference is also present in the quality parameters such as 
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structure and bristle diameter, and consequently the tautness (Thébault and Vrillon, 1994). 

The effect of the birth season was significant only for compression (Rochambeau, et al, 

1991). Allain et al. (1992) showed that there is a birth season effect on the diameter of guard 

hair. The highest diameter in their study was observed in does born in winter and the 

difference between the extreme seasons is approximately 0.75 standard deviation.  

In sheep, the performance of Corriedale ewes lambing in June-July (winter) was compared 

with that of ewes lambing in Sep.-Oct. (spring). Season of lambing had no significant effect 

on greasy or clean fleece weights, fibre length, fibre diameter, clean wool yield or lamb body 

weight, but there were significant differences in wool yield between lambs born in winter and 

spring (Oliveira and Figueiro, 1980). In Muzaffarnagri sheep there is no difference between 

wool yield in lambs born in October-November and those born in March-April (Sinha and 

Singh, 1997). 

 

1.2.2.2.2 Harvest season 
 

Fleece weight. Summer fleeces are lighter (-12%) than winter fleeces in female French angora 

rabbits (Thébault and Rochambeau, 1988). Rougeot and Thébault (1983) with survey on 

seasonal variations of wool traits concluded that the weight of the angora wool is minimal in 

summer (20 % of the annual production), maximum in autumn (26.8%) and in winter (27.6 %) 

and intermediate in spring (25.5). Shearing yield is higher in winter than in summer. When 

wool is removed by plucking, there appears to be a greater seasonal influence on the yield than 

in the case with shearing (Schlolaut, 1980). Most of the studies demonstrated a high seasonal 

effect from 35% of the fleece weight in unselected lines to 8 % in the most selected lines. The 

season of maximum fleece growth is always the autumn and winter. The lowest growth rate is 

seen during the summer. However the seasonal effect decreased with the harvest number. The 

relative difference between winter and summer harvests was around 30% for the first and 

second harvest, around 14% for the third and the fourth and only 9 %for subsequent adult 

harvest (Rougeot et al., 1984). The harvest season explained 10% of the variation. Spring 

harvest favoured the total fleece weight and the first harvest fibre weight (Rochambeau, et al. 

1998). 
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The S/P (Primary lateral + secondary / primary central) ratio is the most important 

parameter in seasonal variation in fleece weight and is the lowest in summer in the Angora 

rabbit. The peak is in autumn, although there is no significant difference between this value 

and that in winter (Thébault and Vrillon, 1994). 

 

Hair length. The harvest season also modifies the length of the wool. This effect is more 

noticeable for down than for bristles. Consequently, down hairs grow higher in the lock in 

winter than in summer (Rochambeau, et al., 1991). The adverse effect of summer conditions is 

greater on down fibres than on bristles. Bristles are about 10% longer in winter; while down 

hairs are 19 % longer (Thébault et Vrillon, 1994). 

 

Hair diameter. Allain et al. (1992) observed an effect of the harvest season on mean bristle 

diameter in which the lowest diameter was observed in fleece harvested in winter. No large 

variation in hair diameter has been found between the different seasons (Thébault et Vrillon, 

1994). However, this slight variation was statistically significant and hair diameter was always 

largest in spring. 

 

Homogeneity, compression, resilience and structure. Thébault and Vrillon (1994) showed 

that homogeneity is greater in winter and autumn. Compression is lower in summer. No 

seasonal variation has been noted in resilience. Structure is low in summer, though tautness is 

better during the summer months. This is thought to be a mechanical consequence of the 

changes in structure i.e. the bristle ratio and bristle diameter. Rochambeau et al. (1991) showed 

that bristly fleeces compressed more than woolly fleeces and they relaxed less. The same 

difference in behaviour between summer fleeces, and winter fleeces was observed. In addition, 

winter fleeces, as in the case of bristly fleeces, were heavier and more homogeneous than were 

summer fleeces and woolly fleeces. 

 
In sheep and goats, there is a significant seasonal effect on fibre production. In angora goats, 

the highest fleece weight was observed at autumn shearing (+0.12) (Allain and Roguet, 2003). 

Seasonal wool growth patterns are evident in Romney and the specific carpet wool breeds with 

summer wool growth rates two-to-three times greater than winter rates. In some studies, body 

weights and mohair production and quality of angora goats are all affected by season. These 
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differences seem to be direct responses to the amount and quality of available forage. Wool 

and mohair shorn in autumn will be coarser, contain more medullation and have a higher 

tensile strength. Nevertheless, compared to Angora rabbit this effect is reversed as the highest 

fibre production on sheep and goats is always observed during summer. 

 

To summarize about biology of fibre growth and non-genetic factors influencing wool 

production, Angora rabbits have some specific characteristics in comparison with other fibre-

producing animals: 

• Angora rabbits produce nearly 1 kg of wool that is nearly 0.25 of their body weight. 

The ratio of wool production to body weight is much lower than other species. 

• Angora rabbit is a typical double coat species in which long coarse hair are desirable 

for making end uses products having a brushed appearance. 

• In the Angora rabbit, the development of secondary follicles is continuing after birth 

until animals reach 50 % of their adult weight. In sheep and goats, the majority of 

secondary follicles develop before birth. 

• Fibre production is less in male Angora rabbits than in females. The sex effect is 

reverse on sheep and goat. 

• In Angora rabbits, fibre output is maximal in winter and minimal in summer while this 

effect is reverse in sheep and goats. 

 

 

1.3 Genetic parameters of wool production 

 

The maximum rate at which animals produce wool or hair, and the range of possible variation 

in several traits related to quantity and quality of fibre produced, is set by its genotype. There 

are definite differences between species and breeds of fibre producing animals in the capacity 

to grow wool and in various fleece characteristics. In sheep, Merinos, which have a much 

greater follicle density than down and long wool breeds, grow a similar mass of wool to the 

long wool breeds but considerably larger than the Down breeds.  
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Many characteristics of the fibre and follicle are highly heritable and significant changes can 

be made by selection for the desired characteristics. The heritability of wool traits such as 

greasy or clean wool weight, number of follicles per unit area of skin, S/P follicle ratio, fibre 

diameter, staple length and crimp frequency are in the range of 0.3-0.6. Many of these traits 

are correlated and account must be taken of this if it is desired to increase wool weight 

without altering various characteristics of the fleece. 

 

The development of effective genetic evaluation and improvement programmes requires the 

knowledge of the genetic parameters (genetic variance of each trait and covariances among 

traits) for these economically important production traits. Accurate estimation of genetic 

parameters and in particular genetic correlations requires large across-generation data sets for 

each relevant population that are not always available. Pooling estimates from several 

populations may provide more reliable parameter estimates than those obtained from a single 

population if parameters remain stable. Rochambeau and Thebault (1990) reviewed genetic 

parameters for traits of Angora rabbit production and reported estimates of heritability from 

the literature. The traits covered in this section are those associated with wool production 

traits at different harvest numbers and live weight at various ages. 

 

1.3.1 Heritability 
 

Wool traits: Few studies have reported heritability estimates for wool traits in Angora rabbits 

and there was a considerable range in published heritability estimates for fleece weight at the 

various harvests.  

 The majority of studies estimated heritability of fleece weight in first to fifth harvests. The 

heritability values for fleece weight of Angora rabbit reported in literature ranged from 

0.08±0.20 to 0.96±0.29 (Table 1.4). The most probable values estimated under a REML 

animal model ranged from 0.21 to 0.52 which are similar to the weighted mean heritability for 

clean fleece weight (0.36±0.02) in wool breeds of sheep (Safari et al., 2005). 

 

Data on the 10 first shearing of 1119 Angora rabbits were analysed by (Magofke et al., 1994). 

The repeatability of hair production was 0.21 and 0.28 based on the 2nd-9th and the 2nd-10th 
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shearing respectively; both values decreased when the first shearing was included. The 

heritability of hair production was 0.19, 0.27, 0.31, 0.33 and 0.26 respectively for the first, 

second, 3rd, 4th and 5th shearing. The heritability of body weight at 132 and 423 days was 

0.21 and 0.33 respectively.  

 

Estimations of heritability of quality traits in Angora rabbits are rare. Allain et al. (1996b)  

estimated the heritability of fleece traits in French Angora rabbits does that ranged from 0.15 

to 0.25. Safari et al. (2005) reported lower heritability for fibre diameter in wool breeds of 

sheep (0.59±0.02). In addition, heritability for bristle and down length in Angora was lower 

than for staple length (0.46±0.04) reported for wool breeds of sheep (Safari et al., 2005). 

 

In an experiment of crossbreeding, French Angora and New Zealand rabbits with a high 

coarse-wool percentage were crossed with German Angoras with a high wool yield. 

Individuals of the desired type were selected over 3 generations, to create a new strain, 

designated Su. The heritability of percentage of coarse fibres and wool yield were 0.13 and 

0.29 in this strain (Shen et al., 1997). 
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Table 1.4: Estimates of heritability (± S. E.) with breed and reference for live weight and wool production of 
Angora rabbit 
 

Heritability Breed Remarks1 Reference 
Wool traits    
Fleece weight 2    
First harvest    
0.65 - 0.90 G - (Jaitner et al., 1988) 
0.20±0.12 G - (Caro et al., 1984) 
0.40±0.02 F REML (Allain et al., 1999) 
0.19 G ROS (Magofke et al., 1994) 
0.44±0.15 G REML (Singh and Jilani, 2006) 
0.96±0.29 G ROS (Katoch et al., 1999) 
0.17 G - (Risam et al., 2005) 
Second harvest    
0.15 – 0.44 G - (Jaitner et al., 1988) 
0.23±0.12 G - (Caro et al., 1984) 
0.31±0.03 F REML (Allain et al., 1999) 
0.27 G - (Magofke et al., 1994) 
0.40±0.20 G REML (Singh and Jilani, 2006) 
0.25 G - (Risam et al., 2005) 
Third harvest    
0.33 G - (Jaitner et al., 1988) 
0.09±0.12 G - (Caro et al., 1984) 
0.32±0.03 F REML (Allain et al., 1999) 
0.31 G ROS (Magofke et al., 1994) 
0.49±0.11 G REML (Singh and Jilani, 2006) 
0.45 G - (Risam et al., 2005) 
Fourth harvest    
0.60 G - (Jaitner et al., 1988) 
0.08± 0.20 G - (Caro et al., 1984) 
0.30 G - (Lin  et al., 1995) 
0.23 F REML (Allain et al., 1996a) 
0.33    
0.21±0.24 G REML (Singh and Jilani, 2006) 
0.14 G - (Risam et al., 2005) 
Fifth harvest    
0.26 G ROS (Magofke et al., 1994) 
0.26±0.13 G REML (Singh and Jilani, 2006) 
0.11±0.10 G ROS (Katoch et al., 1999) 
Annual wool yield    
0.52±0.10 G REML (Singh and Jilani, 2006) 
Weight of quality J1    
0.23 F REML (Allain et al., 1996a) 
Coarse rate    
0.13 G - (Lin  et al., 1995) 
Homogeneity    
0.18 F REML (Allain et al., 1996a) 
Structure    
0.17 F REML (Allain et al., 1996a) 
Bristle length    
0.25 F REML (Allain et al., 1996a) 
Duvet length    
0.15 F REML (Allain et al., 1996a) 
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Compression    
0.19 F REML (Allain et al., 1996a) 

Continu. 
Resilience 

   

0.12 F REML (Allain et al., 1996a) 
Mean fibre diameter    
0.96±0.19 G ROS (Narayan et al., 1990) 
0.85±0.14 G ROD (Narayan et al., 1990) 
0.42 G ROD (Rawat et al., 1990) 
Live weight traits    
Birth weight    
0.12 G - (Lin  et al., 1995) 
Weaning weight    
0.64±0.18 G - (Caro et al., 1984) 
1st  harvest    
0.47±0.15 G - (Caro et al., 1984) 
0.93 G - (Jaitner et al., 1988) 
0.27±0.02 F REML (Allain et al., 1999) 
2nd harvest    
0.64 - 0.73 G - (Jaitner et al., 1988) 
0.72±0.19 G - (Caro et al., 1984) 
0.34±0.02 F REML (Allain et al., 1999) 
3rd harvest    
0.10 G - (Jaitner et al., 1988) 
0.67±0.20 G - (Caro et al., 1984) 
4th harvest    
0.29±0.22 G - (Caro et al., 1984) 
0.64±0.02 F REML (Allain et al., 1999) 
Adult    
0.42±0.02 F REML (Allain et al., 1999) 
Litter weight at birth    

0.41±0.07 G REML (Anshul et al., 2006) 

0.10±0.10 G REML (Singh and Jilani, 2006) 

0.38±0.17 Russian, British and 
G 

- (Gaur et al., 1991) 

0.81±0.22 Russian, British and 
G 

- (Gaur et al., 1991) 

Litter weight at weaning    
0.30±0.06 G REML (Anshul et al., 2006) 
0.59±0.16 G REML (Singh and Jilani, 2006) 
Mortality    
0.08±0.06 G Preweaning mortality (Anshul et al., 2006) 

0.07±0.02 G - (Samber et al., 1998) 
 
 
1 ROS, regression of offspring on sire ; ROD, regression of offspring on dam; REML, restricted maximum 

likelihood estimation 

 
2 In Angora rabbits, greasy fleece weight and clean fleece weight are nearly the same trait. Therefore, we cannot 

differentiate between clean and greasy fleece weight that the authors mention in sheep wool 

44  



 

 

Some negative value of heritability of fibre diameter in Angora rabbit have been reported 

negative (-0.16) (Rawat et al., 1990). In these cases estimates fall outside the parameter space. 

 

Body weight: The following live weights have been included as defined: birth weight, 

weaning weight, live weight at first, 2nd, 3rd, 4th harvest, adult weight, and litter weight at birth 

and weaning. The reported estimates of heritability for growth traits varied markedly among 

harvest numbers and authors as they ranged from 0.10 to 0.93 (Table 1.4). Here too, most 

estimates have not been obtained under a REML animal model. Moreover, high values are 

probably overestimated due to confusions between direct additive effect and maternal effects. 

Safari et al. (2005) calculated the weighted mean of heritability for growth traits of sheep that 

ranged from 0.15 to 0.41. They showed that the mean heritability for weight at birth and 

weaning are similar, and then the heritability increased with age from weaning to post 

weaning and adult weights.  

 

1.3.2 Phenotypic and genetic correlations 
 
 

Available estimates of correlations between traits of Angora rabbit have been summarised in 

Table 1.5. The genetic correlations between first yield and cumulative yields were positive in 

a study on German Angora rabbits (Katoch et al., 1999). There is a lack of data on genetic 

parameters of quality of Angora fibres. The genetic correlation between percentage of coarse 

fibres and wool yield was 0.13 in the Su strain (Shen et al., 1997). 

 

There is no estimate of the genetic correlation of fibre diameter with fleece weight in Angora 

rabbits. In sheep, the genetic and phenotypic correlations for fibre diameter and greasy fleece 

weight (0.36 and 0.31, respectively) and clean fleece weight (0.28 and 0.25, respectively) are 

moderate and positive (Safari et al., 2005). These mean estimates of the correlations were 

generally similar to those reviewed by Fogarty (1995). 
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Table 1.5: Genetic (± S.D.) correlations between traits of Angora rabbit. 

Trait 1A Trait 2B Genetic correlation Breed B Reference 

Wool traits     

1 2 0.42 G (Jaitner et al., 1988) 

1 3 0.33 G (Jaitner et al., 1988) 

2 3 0.26 G (Jaitner et al., 1988) 

1 2 0.37±0.06 F (Allain et al., 1999) 

1 3 0.32±0.04 F (Allain et al., 1999) 

1 4 0.39±0.04 F (Allain et al., 1999) 

1 5 0.22±0.02 F (Allain et al., 1999) 

2 3 0.68±0.06 F (Allain et al., 1999) 

2 4 0.87±0.04 F (Allain et al., 1999) 

2 5 0.78±0.04 F (Allain et al., 1999) 

3 4 0.83±0.04 F (Allain et al., 1999) 

3 5 0.94±0.03 F (Allain et al., 1999) 

4 5 0.87±0.02 F (Allain et al., 1999) 

Live weights     

6 7 0.66 G (Jaitner et al., 1988) 

6 8 0.66 G (Jaitner et al., 1988) 

7 8 0.70 G (Jaitner et al., 1988) 

Wool and live weight     

1 6 0.59 G (Jaitner et al., 1988) 

1 7 0.43 G (Jaitner et al., 1988) 

1 8 0.30 G (Jaitner et al., 1988) 

1 6 0.63±0.21  (Caro et al., 1984) 

2 6 0.49 G (Jaitner et al., 1988) 

2 6 0.09±0.34 G (Garcia F and Magofke, 1982) 

2 7 0.51 G (Jaitner et al., 1988) 

2 8 0.30 G (Jaitner et al., 1988) 

2 7 0.97±0.10 G (Caro et al., 1984) 

3 6 0.02±0.70 G (Garcia F and Magofke, 1982) 

3 6 0.24 G (Jaitner et al., 1988) 

3 7 0.29 G (Jaitner et al., 1988) 

3 7 0.95±0.49 G (Garcia F and Magofke, 1982) 

3 8 0.40 G (Jaitner et al., 1988) 

3 8 0.70±0.37 G (Caro et al., 1984) 
A Trait codes. Wool traits : total fleece weight at first harvest, 1 ; second harvest, 2; third harvest, 3 ; 

fourth harvest, 4  ; fifth harvest, 5. Live weight : first harvest, 6 ; second harvest, 7; third harvest, 8. 
B Breed : French, F ; German, G.  
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There is a close correlation between live weight and the quantity of wool harvested at the first 

harvest (Rochambeau et al., 1991). Its importance appears to decrease afterwards 

(Rochambeau, 1988).  

 

With the exception of the first harvest, genetic correlations between total fleece weight and live 

weight are low and not significant. The parameters reported by Allain et al. (1999) indicate that 

in the French Angora rabbit breed no improvement of fleece weight production can be obtained 

by selection on live weight. These results are in contradiction to observations made on the 

German breed (Caro et al., 1984).  

Larger animals produce more wool compared to smaller animals, but the relative wool 

production began to decrease if animals are heavier then 4.2 Kg (Nurminen, 1997). At the 

first shearing, the quantity of wool produced was found still to have some dependence on 

body weight. At the second, third, and fourth shearing the influence of live weight decreased 

gradually, wool yield then being determined primarily by genetic background (Eiben, 2000). 

(Rochambeau et al., 1994) in a survey on non genetic factors on fur quality found that heavier 

rabbits at eight and twelve weeks give more mature furs at slaughter, and these furs have 

longer downs and a better compacity. 

 

In sheep, genetic correlations among weaning, post-weaning and adult weights are very high  

ranging from 0.75 to 0.93 (Safari et al., 2005).  

 

The genetic and phenotypic correlations between live weight at various ages and fleece 

weight of Angora rabbit were positive and generally moderate in magnitude (Table 1.5). Our 

results in this aspect  are similar to the estimates of Safari et al. (2005) in sheep. In Columbia 

sheep, (Hanford et al., 2002) calculated positive correlations for fleece weight with birth and 

weaning weight 0.21 and 0.18, respectively.  In Angora rabbit, there were high and positive 

genetic correlations between the weight of long and bristly wool (quality WAJ1), total fleece 

weight and homogeneity (0.89 and 0.65) respectively, as well as between fibre length and 

staple structure measured on the back and haunch (Allain et al., 1996b) . In German Angora 
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rabbit, the genetic correlations of hair production in the 1st, 2nd, 3rd, 4th and 5th shearing 

with total production were 0.16, 0.45, 0.67, 0.52 and 0.71 respectively, and those of body 

weight at 132 days with hair production in the 1st, 2nd and 3rd shearing were 0.33, 0.89 and 

0.63 (Magofke et al., 1994). 

 

1.3.3 Major genes and QTL 
 

There is an intense and increasing interest in the study of genes of major effect on wool 

production and quality traits. Identifying genes of major effect offers the opportunity to 

improve production efficiency, product quality and product diversity, through utilising them 

in breeding programs, developing transgenic lines and by developing therapeutic agents that 

can be used to alter fibre attributes by altering gene expression. The opportunity exists to 

utilise our knowledge of major genes that influence the economically important traits in wool 

sheep. Genes with Mendelian inheritance have been identified for many important traits in 

wool sheep. Of particular importance are genes influencing pigmentation, wool quality and 

the keratin proteins, the latter of which are important for the morphology of the wool fibre. 

Gene mapping studies have identified some chromosomal regions associated with variation in 

wool quality and production traits. Quantitative trait locus affecting fleece weight, staple 

length, fibre diameter and CV of fibre diameter have been identified in sheep (Ponz et al., 

2001; Allain et al., 2006).  More recently, putative QTL for coefficient of variation of fibre 

diameter, kemp and medullated fibre content and staple length were found in the Angora goat 

(Cano et al., 2007).  The challenge now is to build on this knowledge base in a cost-effective 

way to deliver molecular tools that facilitate enhanced genetic improvement programs for 

wool sheep (Purvis and Franklin, 2005). 

 

1.3.4 Conclusion 
 

There is a large variation in the reported genetic parameters of Angora rabbits. One reason for 

this variation is the estimation method. In some studies, estimates of variances are unbiased 

but fall outside the parameter space, e.g. they can be negative. For example, heritability of 

mean kit weight and fibre diameter  in Angora rabbit has been reported -0.11 (Gaur et al., 
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1991) and -0.16 (Rawat et al., 1990), respectively. The estimation of heritability for litter 

weight with mixed animal model are more reasonable, e.g. (Ferraz et al., 1992).  Otherwise, 

some estimations of heritability for fibre traits are very high which were obtained by least 

square methods, for example h2 of 0.96 for fibre diameter of Angora fibre (Narayan et al. 

1990).  

 

In summary, in utilisation of genetic parameters from literature it must be aware of the 

methods that have been implicated. Specially, there is a distinguishable difference between 

reported parameters with least square and REML methods. 
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2 Direct Response 
 
 
RÉSUMÉ 

 
Afin d'explorer la variabilité génétique de la production de laine et d'autres caractères 

quantitatifs, une expérience de sélection divergente  pour le poids total de toison a été 

effectuée chez le lapin Angora français durant 8 cohortes de sélection de 1994 à 2001. Des 

analyses préliminaires ont montré que la production de poils lors des 2 premières récoltes 

étaient très différentes et devaient être analysées séparément. Il en a été de même pour la 

production de poils chez les males. En conséquence les analyses ont été réalisées sur la 

production de poils de 669 femelles nées entre 1994 et 2001 et ayant produit une toison de la 

3ème à la 12ème récolte de poils. Les caractères de production étudiés ont été :  le poids total de  

toison, le poids de chacune des deux qualités de poils jarreux (WAJ1) et laineux (WAW1), 

l’homogénéité de la toison (HOM) ou le rapport de la quantité de poils jarreux sur le poids 

total de la toison, le poids corporel aux âges de 4 (LW4), 8 (LW8), 12 (LW12), 16 (LW16), et 

20 semaines (LW20) et puis de 9 semaines avant chaque épilation (9LW). Une analyse des 

facteurs non génétiques a été réalisée à l’aide d’un modèle d’analyse de variance à effets fixes 

en utilisant la procédure GLM du logiciel SAS. Les effets fixes significatifs ensuite retenus 

pour l’analyse génétique ont été: l’année de naissance (8 niveaux de 1994 à 2001), le numéro 

de récolte (10 niveaux de 3 à 12), la saison de naissance (4 niveaux), la saison de récolte (4 

niveaux) et le stade physiologique des femelles (3 niveaux : femelle ayant mis bas, femelle 

inséminée n’ayant pas mis bas et femelle non mise à la reproduction). Les paramètres 

génétiques et les tendances génétiques ont ensuite été estimées en utilisant un BLUP appliqué 

à un modèle d'animal à l’aide du logiciel AsReml. Les variables relatives à la production de 

poils mesurées à chacune des récoltes de toison de la 3ème à la 12ème ont été analysées selon un 

modèle avec répétabilité et incluant le poids corporel 9 semaines avant la récolte comme 

covariable. Cela n’a pas été le cas pour les variables décrivant le poids corporel entre les ages 

de 4 et 20 semaines.  

 

Les héritabilités estimées des caractères TFW, WAJ1, WAW1, HOM, LW4, LW8, LW12, 

LW16, LW20 et 9LW sont respectivement de 0.38±0.03, 0.30±0.03, 0.10±0.02, 0.06±0.02, 
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0.30±0.04, 0.09±0.08, 0.14±0.09, 0.32±0.10, 0.39±0.10 et 0.45±0.06. De fortes corrélations 

génétiques et phénotypiques entre TFW et WAJ1 (0.98 ± 0.01 et 0.89 ± 0.01, respectivement) 

ont été observées. Par contre la corrélation génétique entre TFW et 9LW était faible (0.26 ± 

0.12). Les résultats ont montré qu’une sélection divergente pour le poids total toison a permis 

d’obtenir une différence de trois écarts types génétiques entre les lignées haute et basse après 

huit cohortes de sélection. La sélection pour le poids total de toison a amélioré de manière 

significative le poids de poils jarreux (WAJ1) qui a résulté d’une forte corrélation génétique 

positive (0.98) entre TFW et WAJ1. Chez le lapin Angora français, une toison de haute 

qualité ayant une bonne aptitude à fabriquer un fil « fleuffé » est caractérisée par un poids 

élevé de qualité WAJ1 et une forte homogénéité de la toison. Il est important de noter qu’une 

sélection pour le simple critère facilement mesurable du poids total de toison a un effet 

bénéfique général sur WAJ1 et HOM. 

 

 L’héritabilité estimée du poids total de toison lors de la première (TFW1) et la deuxième 

(TFW2) est similaire aux valeurs observées lors des épilations de 3 à 12. La corrélation 

génétique entre le poids total de toison lors des épilations 3 à 12 et TFW1 est proche de zéro, 

Par contre une forte corrélation génétique entre TFW2 et TFW (0.76) a été observée. 

L’analyse de la réponse à la sélection a montré qu'aucune réponse n’a été observée sur  le 

poids de toison en 1ère récolte (TFW1). Par contre, une forte réponse équivalente à celle 

observée pour les récoltes 3 à 12 a été observée sur le poids de toison en 2ème récolte.   

D’une part, ces résultats indiquent que la production de poils à la première épilation (TFW1) 

est un caractère différent de celui observée lors des épilations suivantes, ce qui était attendu  

sachant que le développement des follicule pileux n'est pas terminé chez le lapin à l’age de 8 

semaines où a lieu la première épilation.  

 

D’autre part, la corrélation génétique élevée entre le poids total de toison aux épilations de 3 à 

12 et TFW2 ainsi que la réponse à la sélection sur TFW2 offre la possibilité de sélectionner 

les lapins Angora français pour le poids total de toison dès la seconde récolte. 
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Abstract

In order to explore genetic variability of wool production and other quantitative traits, an 8-cohort divergent selection
experiment for total fleece weight (TFW) was carried out in French Angora rabbits. Studies were made on the wool production of
669 female rabbits born between 1994 and 2001 and having produced wool from the third to 12th harvests. The aim of the selection
experiment was to obtain two divergent lines (low and high) on total fleece weight. The studied traits included total fleece weight,
weight of the two qualities of wool (WAJ1 and WAW1), homogeneity (HOM), live body weight at ages of 4 (LW4), 8 (LW8), 12
(LW12), 16 (LW16), and 20 (LW20) weeks and then 9 weeks before each harvest (9LW). A preliminary analysis of non-genetic
factors was done with the GLM procedure. The genetic parameters and genetic trends were analysed using a BLUP animal model.
Heritability estimates for TFW, WAJ1, WAW1, HOM, LW4, LW8, LW12, LW16, LW20 and 9LW were 0.38, 0.30, 0.10, 0.06,
0.30, 0.09, 0.14, 0.32, 0.39 and 0.45, respectively. Genetic and phenotypic correlations between TFW and WAJ1 were high (0.98±
0.01 and 0.89±0.01, respectively). There was a low genetic correlation between TFWand 9LW (0.26±0.12). After eight cohorts of
selection, the divergence between the lines was approximately three genetic standard deviations. Selection for total fleece weight
had a generally beneficial effect on fleece quality.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Angora rabbit; Bristle; Body weight; Divergent selection; Fleece weight; Genetic responses; Wool quality

1. Introduction

The French Angora rabbit breed has a fleece with well-
differentiated guard hair (Rougeot and Thébault, 1983)
and produces long and bristly wool. Such bristly fleeces
are valuable because of their aptitude to produce a fluffy
yarn used for certain luxury knit products(Rougeot and
Thébault, 1984). World Angora production was approx-
imately 8000metric tons in 2000 (Schlink and Liu, 2003).

The opportunity for selection on a trait depends on the
amount of additive genetic variation in a trait. Realised
heritability has been traditionally estimated by using
either a directional or divergent selection design (Hill,
1972). Mixed model methodology and computational
resources, however, allow the inclusion of data on all
generations and relationships by using an animal model,
which has become the method of choice to analyse
selection experiments (Sorensen and Kennedy, 1986).

In order to explore the genetic variability of wool pro-
duction and other quantitative traits in the Angora rabbit, a
divergent selection for a trait experiment on total fleece

Livestock Science 106 (2007) 169–175
www.elsevier.com/locate/livsci
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weightwas undertaken. The experiment began in 1994 and,
by 2001, two large cohorts were available from the high
and low lines. There is little information on genetic para-
meters ofwool quality inAngora rabbits. This paper reports
non-genetic factors affecting wool production and live
weights as well as genetic parameters, direct and correlated
responses in the lines, measured in female French Angora
rabbits over 8 years of a divergent selection experiment.

2. Materials and methods

2.1. Animals

Data were obtained from the Angora experimental
rabbit farm of INRA (Institut National Recherche Agro-
nomique) at LeMagneraud, France. The experiment took
place in a naturally lighted semi-open building with no
heating and no forced ventilation. Rabbits were fed a
commercial pelleted diet. Allain et al. (1999) described
the management, reproduction and housing circum-
stances of these animals.

Eight hundred ninety-six rabbits out of a total of 3567
animals born in the herdwith full pedigrees recordedwere
measured. Studies were made of the wool production of
669 female Angora rabbits born between 1994 and 2001
under a divergent selection experiment that was initiated
in 1994. French Angora bucks are known to produce 20%
less wool than does (Rochambeau et al., 1991). Moreover
since the Angora doe's capacity to foster appears to be
limited, French breeders carry out selection at birth accor-
ding to sex, so that only newborn does and a few bucks are
kept (Rougeot and Thébault, 1983). Thus the number of
males available was low and statistically insufficient for
use in the study. Therefore, only data from females were
analysed in the present work.

The aim of the selection experiment was to obtain
two divergent lines on total fleece weight (TFW). A high
line and a low line were made up of 80 females and 20
males each. Rabbits were distributed between the lines
in order to have the same demographic structure and the
same distribution of genetic values. Generations were
overlapping. The renewal after selection was composed
each year of 36 females and 5 males, alive at the second
harvest in each line. The selection criterion was the total
fleece weight of the does measured for the third and later
harvests. During the selection experiment, genetic va-
lues were estimated with a BLUP applied to an animal
model using MODANIM software (Poivey, 1986). The
evaluation of the animals was done each year. Heri-
tability and repeatability were set to 0.31 and 0.51,
respectively. Twenty does and five bucks having the
highest and the lowest genetic values in the high and the

low lines respectively were used for the renewal. The
does were inseminated a few days after harvests
between the third and the seventh harvest, then after
each one. Individual does were limited to six daughters
and one son used as replacements. The males born 1
year were used the following year for reproduction.
Each of the five bucks was replaced by one of its sons.
This pattern of selection was followed for the 8-year
duration of the experiment.

2.2. Traits

The young rabbits were sexed at birth and most of the
males were eliminated. In this way the size of the litters
were reduced to less than six rabbits just after birth.
They were weaned 4 weeks later. They were plucked for
the first and second times at the ages of 8 and 21 weeks,
respectively. Thereafter they were plucked at regular
intervals every 14 weeks.

During each wool harvest, the fleece was sorted and
graded in five different classes, according to quality:
Class 1: clean, unfelted, long and bristly fibre, from the
back, the sides and the rump of the rabbit (WAJ1); Class
2: clean, unfelted, long and woolly fibre, from the breast
and the belly of the animal (WAW1); Class 3: clean,
unfelted and short (b6 cm) fibre, from the legs of the
rabbit, Class 4: clean and felted fibre, from the neck and
the tail of the animal; Class 5: dirty fibre, from the belly
of the rabbit. Homogeneity (HOM) was calculated as the
ratio of WAJ1 to TFW, expressed as a percentage. Live
body weight at ages of 4 (LW4), 8 (LW8), 12 (LW12),
16 (LW16), and 20 (LW20) weeks were collected.
Thereafter animals were weighed at regular intervals
9 weeks before each wool harvest (9LW).

2.3. Statistical analyses

2.3.1. Testing of fixed effects
From preliminary analysis, the dataset was separated

into three subsets according to the harvest number: one
for each of the first two harvests and one for the third to
the 12th harvests. Only fibre data of the third to the 12th
fleece harvests were analysed. The least square means
method with the GLM procedure was utilised to deter-
mine the significance of the fixed effects and covariate.

2.3.2. Estimation of genetic parameters and breeding
values

All analyses for genetic parameters and breeding
values were carried out with ASReml (Gilmour et al.,
2002). In selection experiments with overlapping gene-
rations, a mixed model approach shows considerable
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advantages over the least-squares estimator (Sorensen
and Kennedy, 1986). The method enabled the inclusion
of different fixed effects, covariate and random effects
in the model for each trait. For fibre traits, a series of
bivariate model analyses were first run to estimate co-
variance components, which were subsequently applied
to a multi-trait model to derive genetic and phenotypic
correlations among traits. Finally, a multi-trait model
was included for TFW, WAJ1, WAW1 and HOM. The
following linear mixed model for a multivariate analysis
of TFW, WAJ1, WAW1 and HOM traits was used:

Y i ¼ X ibi þ Z iai þW ipi þ ei

Where

N is the total number of animals,
Ni is the number of animals measured for the ith trait,
Yi (Ni) is a vector of animal records for the ith trait,
βi ( fi ) is a vector of fixed effects for the ith trait
consisting of:

• A covariate effect of 9LW on TFW, WAJ1 and
WAW1 traits,

• Year (8 levels) from 1994 to 2001,
• Harvest number (10 levels) from the third to the
twelfth harvest,

• Birth season effect (4 levels),
• Harvest season effect (4 levels),
• Reproduction (3 levels: females which had
litters and females which had been inseminated
or not) from the third harvest onwards.

ai (N ) is a random vector of direct additive genetic
effects of animals for the ith trait,

pi (Ni) is a random vector of permanent environmen-
tal effects of animals for the ith trait.

A bivariate analysis between 9LW and TFW was
undertaken according to the above linear mixed model
but without an effect of harvest season for 9LW and
covariate for TFW.

For LW4, LW8, LW12, LW16 and LW20, a set of
bivariate analysis between body weight and TFW was
undertaken. The linear mixed model included the same
fixed and random effects as above without covariate for
TFW. The vector of significant fixed effects for LW4,
LW8, LW12, LW16 and LW20 consisted of Year (8
levels) from 1994 to 2001; Birth season (4 levels) except
for LW4; Age of dam effect (6 levels) for the LW4 trait
only; Number of weaned rabbits (6 levels; 1, 2, 3, 4, 5 to
7 and more than 7). A random vector of a common litter
environmental effect of animals for LW4, LW8, LW12,
LW16 and LW20, was included.

Breeding values for all the traits were obtained as
solutions from the best linear unbiased prediction analysis
of the ASReml package. Then the means of the estimated
breeding value (EBV) for all traits were calculated per
cohort of animals born the same year and per selected line.

3. Results and discussion

3.1. Means and standard deviations

Means and standard deviations (S.D.) for total fleece
weight (TFW), weight of bristly wool (WAJ1), weight
of woolly wool (WAW1), homogeneity (HOM) and live
body weights are given in Table 1.

3.2. Non-genetic effects

Significance levels of fixed effects for fibre traits and
9LWare shown in Table 2. In this study the total weight

Table 1
Number of records (N), mean and standard deviation (S.D.) for the
studied traits: total fleece weight (TFW), weight of bristly wool
(WAJ1), weight of woolly wool (WAW1), homogeneity (HOM), live
body weight at 4 (LW4), 8 (LW8), 12 (LW12), 16 (LW16), 20 (LW20)
weeks of age and 9 weeks before harvest (9LW)

Trait Unit N Means S.D.

Fibre traits
TFW g 3351 214.3 57.2
WAJ1 g 3351 149.3 46.8
WAW1 g 3351 30.7 15.3
HOM % 3351 69.1 9.3

Live body traits
LW4 g 792 597.9 122.6
LW8 g 736 1364 232.8
LW12 g 700 2174 294.1
LW16 g 681 2732 334.0
LW20 g 630 3003 313.6
9LW g 2925 3802 474.0

Table 2
Significance levels of fixed effects for total fleece weight (TFW),
weight of bristly wool (WAJ1), weight of woolly wool (WAW1),
homogeneity (HOM) and live body weight 9 weeks before harvest
(9LW)

Traits Fixed effects Covariate

Year Harvest
number

Birth
season

Harvest
season

Reproduction 9LW

TFW ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

WAB ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

WAW ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

HOM ⁎⁎⁎ ⁎⁎⁎ ⁎ ⁎⁎⁎ ⁎⁎⁎ ns
9LW ⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ns ⁎⁎⁎

⁎⁎⁎ Pb0.001; ⁎⁎ Pb0.01; ⁎ Pb0.05; ns: non-significant.
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of harvested wool increased rapidly from the third to the
fourth harvests, remained high from the 4th to the 9th
harvest and decreased thereafter (Fig. 1). The observed
increase of total fleece weight from the third to the
fourth harvest, and then the decrease of total weight of
wool in the last three harvests, were similar to earlier
results (Rochambeau and Thébault, 1990). An important
birth season effect was observed on TFW, WAJ1 and
WAW1. The animals born in the summer produced less
wool than those that were born in other seasons. The
effect of the season of birth, previously demonstrated on
hair production in the vole (Lee and Zucker, 1988) and
on wool production in angora rabbits (Thébault et al.,
1992) was confirmed in the present study.

There was a clear harvest season effect with a higher
wool production in the winter than in the other seasons
for TFW and WAJ1. The quantity of wool produced
varied with the harvest season with a maximum in the
winter in agreement with previous observations indi-
cating that the seasons of maximum fleece growth were
always the autumn and winter (Caro et al., 1984;
Thébault et al., 1992). Rougeot and Thébault (1983) in a
study on seasonal variation of wool traits concluded that
the weight of the angora wool is minimal in the summer,
maximum in the autumn and in the winter and inter-
mediate in the spring.

The values of TFW,WAJ1, WAW1 and HOM in does
that had a litter between two harvests were the smallest
(Pb0.01). Does that had been inseminated artificially
without producing a litter had a smaller TFWand WAJ1
than does that had not been inseminated (Pb0.05). The
depressive effect of reproduction on live weight and
TFW observed in does producing a litter was similar to
that found in a previous study (Rochambeau et al., 1991).
The difference in wool production between females that
had or had not been inseminated can be explained by
pseudo pregnancy induced by the hormonal treatment
used with artificial insemination.

Significance levels of fixed effects on live bodyweight
traits up to 20 weeks of age are reported in Table 3. Year,
birth season and litter size weaned effects were significant
on LW8, LW12, LW16 and LW20 traits. For LW4, the
effects of year, litter size weaned and age of dam were
significant.

3.3. Heritabilities and correlations

Table 4 shows the current estimates of phenotypic
and genetic parameters for fibre traits. Heritability
estimates for TFW were in agreement with other esti-
mates, ranging from 0.31 to 0.42 (Allain et al., 1999; Lin
et al., 1995). Youzhang and Pin (1997) obtained
heritability estimates of 0.30 and 0.13 for total wool

Table 3
Significance levels of fixed effects for live body weight at 4 (LW4),
8 (LW8), 12 (LW12), 16 (LW16) and 20 (LW20) weeks of age

Traits Fixed effects

Year Birth season Number of kits weaned Age of dam

LW4 ⁎⁎⁎ ns ⁎⁎⁎ ⁎⁎⁎

LW8 ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

LW12 ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

LW16 ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

LW20 ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

⁎⁎⁎ Pb0.001; ns: non-significant.

Fig. 1. Effects of harvest number on fleece weight. Dots with unlike letters differ (Pb0.05).

Table 4
Heritability (bold), genetic (above diagonal) and phenotypic (below
diagonal) correlation estimates (±standard deviations) for total fleece
weight (TFW), weight of bristly wool (WAJ1), weight of woolly wool
(WAW1) and homogeneity (HOM)

Traits TFW WAJ1 WAW1 HOM

TFW 0.38±0.03 0.98±0.01 0.94±0.05 0.40±0.12
WAJ1 0.89±0.01 0.30±0.03 0.86±0.07 0.58±0.10
WAW1 0.40±0.02 0.08±0.02 0.10±0.02 0.12±0.19
HOM 0.21±0.02 0.60±0.02 −0.47±0.02 0.06±0.02
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production and percentage of coarse fibres in Angora
rabbits, respectively. Genetic and phenotypic correla-
tions between TFW and WAJ1 were positive and highly
favourable. WAJ1 is an important economical trait in
angora production but its measurement is more difficult
and subjective than TFWand the heritability estimate of
WAJ1 is lower than that of TFW. Heritability estimates
for WAW1 was low and there is no other result in the
literature for comparison of this trait.

Heritability, phenotypic and genetic correlation esti-
mates from bivariate analysis of TFW and live weights
are shown in Table 5. In these analyses, TFW had a little
lower but non-significant heritability estimate than when

estimated from multivariate analysis using 9LW as a
covariate. The heritability estimate for 9LW was high
and in agreement with previous results (Allain et al.,
1996, 1999). In Chinese angora rabbits, Lin et al. (1995)
reported a heritability estimate of 0.43 for live weight.
Caro et al. (1984) reported a high genetic correlation
(0.70) between body weight and wool production at third
shearing in the German breed. Rochambeau (1988)
observed a positive relationship between fleece weight
and live body weight only in the first harvest with a
significant phenotypic correlation. Thébault et al. (1992)
also showed that fleece weight increases with body
weight up to 4 kg. In our study, phenotypic and genetic
correlation estimates between TFW and body weights
were not significantly different from zero, except
between TFWand 9LW, where a low genetic correlation
estimate (0.26) was observed.

3.4. Direct and correlated responses

Direct and correlated responses to selection for TFW
on fibre traits over the 8 years of selection are presented
in Fig. 2. In the low line, mean breeding value of TFW
per cohort of animals born the same year decreased
sharply from 1995 to 1997, was stable between 1997 and
1999 and then decreased again. On the contrary, in the
high line, mean breeding value for TFW increased

Table 5
Estimates of heritability, genetic and phenotypic correlations
(±standard deviations) from bivariate analysis between total fleece
weight (TFW) and live body weight at 4 (LW4), 8 (LW8), 12 (LW12),
16 (LW16), 20 (LW20) weeks of age and 9 weeks before harvest
(9LW) from the third harvest

Trait 2 h2 TFW h2 trait 2 rg rp

LW4 0.35±0.05 0.30±0.04 −0.04±0.17 0.04±0.04
LW8 0.35±0.05 0.09±0.08 −0.12±0.28 0.06±0.04
LW12 0.35±0.05 0.14±0.09 −0.02±0.23 0.07±0.04
LW16 0.35±0.05 0.32±0.10 0.10±0.17 0.06±0.04
LW20 0.35±0.05 0.39±0.10 0.09±0.16 0.07±0.04
9LW 0.35±0.05 0.45±0.06 0.26±0.12 0.34±0.03

rg: genetic correlation; rp: phenotypic correlation.

Fig. 2. Change of mean breeding value estimates (EBV) of total fleece weight (TFW), bristly wool (WAJ1), woolly wool (WAW1) and homogeneity
(HOM), over the 8 years of selection for both the high (▴) and low (▪) lines. Genetic standard deviation (σG) is given for each trait.
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sharply until 1995 and then slightly up to 2001.
Substantial response was achieved through selection
for TFW, with a divergence between the high and low
lines in the mean breeding value of 80.95 g or 3.04
genetic standard deviations after 8 years of selection.
Significant correlated responses to selection on TFW
were also observed on other fibre traits and a divergence
of 2.96, 2.78 and 1.21 genetic standard deviations were
obtained for WAJ1, WAW1 and HOM, respectively.
Thus a selection for TFW, a simple and easy criterion to
measure, is very efficient to improve WAJ1 which is an
important economical trait in French angora wool
production.

Correlated response to selection for TFW on 9LW is
shown in Fig. 3. In the initial cohort, a difference in mean
breeding value estimates of 9LW was observed between
the two lines in favour of the low line. Such a difference
cannot be explained and could be due to a random
sampling effect when the divergent selection experiment
was initiated. After 8 years of selection for TFW, the
difference in the mean breeding value of 9LW between
the two lines decreased over years and was close to null
at the end of the experiment. This result indicates that, as
expected in regard to genetic parameters, an increase in
live body weight was obtained by selection for total
fleece weight.

In the literature, there are no results about selection
experiments for wool traits in the Angora rabbit. In other
species, nearly all of the existing divergent selection
studies in livestock science have been done on sheep.
Bray et al. (2005) with a divergent selection experiment
for wool growth rate, showed that sheep selected for high
estimated breeding value produced more wool per day
than sheep selected for low breeding value (on average
32.5 versus 17.7 g/day clean wool, respectively; Pb
0.05). Responses to selection for yearling fleece weight
and live weight were studied in the Romney sheep on

two selection lines, one selected for fleece weight and the
other for live weight, and a control line (Johnson et al.,
1995). Direct responses to selection, derived from devia-
tions from the control line, were 1.20 kg and 11.9 kg for
fleece weight and live weight respectively, i.e. about 2.5
phenotypic standard deviation for both traits. In sheep, as
in angora rabbits in the present study, important genetic
progress could be made by selecting for wool traits.

4. Conclusion

Selection for high and low total fleece weight was
successfully performed in Angora rabbits and a diver-
gence of three genetic standard deviations was observed
between the high and low lines after 8 years of selection.
Selection for TFW significantly increased WAJ1 which
resulted from the highly positive genetic correlation
between TFW and WAJ1. It is important to note that
selection for easily measurable total fleece weight has a
general beneficial effect on fleece quality. These gene-
tically diverse lines are suitable for subsequent detailed
studies of biological and physiological changes of the
different fleece components brought about by selection on
total fleece weight. A high quality fleece having a good
ability to produce a fluffy yarnwas characterised by a high
weight of quality WAJ1 and high fleece homogeneity. All
these characteristics were observed on the high line
indicating that selection for total fleece weight results in
an improvement of the quality of the fleece.
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2.2 Direct response of selection for total fleece weight at harvest number of 

ntroduction 

rom preliminary analysis, the dataset was separated into three subsets according to the 
th

aterial and methods 

he least square means method with the GLM procedure was utilised to determine the 

he following linear mixed model for a bivariate analysis of TFW at first (TFW1) or second 

Yi = Xi βi + Zi ai + Wi pi + ei 

Where 

 total number of animals, 

red for the ith trait, 
th

ting of: 

 third to the twelfth harvest for TFW3_12, 

) for TFW3_12, 

3-12 on total fleece weight at first and second harvest 

 

I

 

F

harvest number: one for each of the first two harvests and one for the third to the 12  

harvests. Here fibre data of the first and second harvests were analysed seperately. Previous 

studies  have been shown that TFW in first and second harvests is different trait from higher 

harvests (Thébault et al., 1992). 

 

M

 

T

significance of the fixed effects. All analyses for genetic parameters and breeding values were 

carried out with ASReml (Gilmour et al., 2002). 

 

T

harvest (TFW2) and TFW at 3-12 harvests (TFW3_12) was used: 

 

 

 N is the

Ni is the number of animals measu

Yi (Ni) is a vector of animal records for the i  trait,  
thβi (fi) is a vector of fixed effects for the i  trait consis

• Year (8 levels) from 1994 to 2001,  

• Harvest number (10 levels) from the

• Birth season effect (4 levels), 

• Harvest season effect (4 levels
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• Reproduction (3 levels: females which had litters and females which had been    

th trait, 

ased 

esults and discussion 

eans and standard deviations (SD) for TFW1, TFW2 and TFW3_12 are shown in Table 

able 2.2.1 Number of records (N), mean and standard deviation (SD) for the studied traits: total fleece weight 

Unit N Means SD 

inseminated or not) from the third harvest onwards for TFW3_12, 

ai (N) is a random vector of direct additive genetic effects of animals for the i

pi (Ni) is a random vector of permanent environmental effects of animals for the ith trait. 

Breeding values for all the traits were obtained as solutions from the best linear unbi

prediction analysis of the ASReml package. Then the means of the estimated breeding values 

(EBV) for all traits were calculated per cohort of animals born the same year and per selected 

line. 

 

R

 

M

2.2.1.  Significance levels of fixed effects for fibre traits and 9LW are shown in Table 2.2.2. 
 

T

at first harvest (TFW1), total fleece weight at second harvest (TFW2), total fleece weight at 3rd to 12 harvests 

(TFW3_12). 

Trait 
TFW1 7g 62 31.31 8.56 
TFW2 g 669 1  43.80 34.02 
TFW3_12 

 

2.2.2 Significance levels of fixed effects for the studied traits: total fleece weight at first harvest (TFW1), 
total fleece weight at second harvest (TFW2), total fleece weight at 3rd to 12 harvests (TFW3_12). 

  

** 0.001; n -signific

g 3351 214.3 57.20 

 

Table 

 

Traits Fixed effects 
 
   Year 

Harvest Bir est 
Reproduction number 

th 
 

Harv
season season  

TF W1 *** - *** ns - 
TFW2 *** - *** ns - 
TFW3_

 
 

12 *** *** *** *** ***  
* P < s: non ant. 
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Results of analyse bivariate of TFW1, TFW2 and TFW3_12 without covariate are shown in 

Table 2.2.3. Heritability of TFW at first and second harvest was similar to its values observed 

at harvests of 3-12. Genetic correlation between TFW3_12 and TFW1 is close to zero and 

indicates that wool production at first harvest is a different trait from that of following 

harvests. Similar to our results, genetic correlation between birthcoat and clean fleece weight 

in superfine Merino sheep was reported essentially zero and it concluded that birthcoat do not 

increase economic gains when included in the selection criteria (Kemper et al., 2003). In 

French Angora rabbits the high genetic correlation between TFW3_12 and TFW2 proposes 

the possibility of selection at this harvest for TFW. 

 

Response to selection on TFW1 and TFW2 are shown on Figure 2.2.1. There is not response 

to selection at first harvest while response to selection at second harvest was similar to that 

observed for harvests of 3-12. These observations confirms that TFW1 is a different trait 

which was expected as hair follicle development in the rabbit is not complete at 8 weeks of 

age when occurs the first harvest. Rougeot et al. (1984) studying the the development of the 

coat in the growing angora rabbit from birth indicated that the number of derived hair follicle 

increased in the growing animal from 10-12 at birth to 50-70 at the age of 20 weeks when 

occurs the second harvest. They concluded that the multiplication of derived hair follicles was 

independent of age but occurs up to a weight of 2 kg which was reached between 8 and 14 

weeks depending on the growing potential of animals. 
 
 
 

Table 2.2.3: Estimates of heritability, genetic and phenotypic correlations (± standard deviations) from bivariate 
analysis between total fleece weight at harvests of 3-12 (TFW3_12) and of fist (TFW1) and of second (TFW2) 

 
Trait 1 Trait 2 h2 Trait 1 h2 Trait 2 rg 

1 rp 
TFW3_12 TFW1 0.35±0.05 0.36±0.08 0.01±0.11 0.14±0.03 
TFW3_12 TFW2 0.33±0.05 0.38±0.08 0.76±0.10 0.34±0.03 

1 rg : genetic correlation;  rp: phenotypic correlation 
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Figure 2.2.1: Change of mean breeding value estimates (EBV) of total fleece weight at first harvest (a) and at 

second (b) harvests over the eight years of selection for both the high (▲) and low (■) lines. Genetic standard 

deviation (σG) is given. 
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3 CHARACTERISTICS OF ANGORA RABBIT FIBER USING OPTICAL FIBER 
DIAMETER ANALYSER  

 
S. A. Rafat*, H. de Rochambeau*, M. Brims†, R. G. Thébault‡, S. Deretz‡, M. Bonnet‡, and D. Allain 1 

 

*Institut National de la Recherche Agronomique (INRA), Station d’Amélioration Génétique des Animaux,  
31326 Castanet-Tolosan, France; † BSC Electronics Pty Ltd, 6153, Western Australia ; and ‡ INRA, UE 

Génétique Animal Phanères, Le Magneraud, 17700 Surgères, France 
 
Résumé 
 
Pour la laine de mouton et le mohair produit par la chèvre angora, le diamètre moyen des 

fibres est l’une des caractéristiques les plus importantes déterminant la transformation et 

l’utilisation des fibres par l’industrie textile et par conséquent le prix des laines et du mohair 

sur le marché international. Des méthodes récentes, rapides, précises et efficaces de la mesure 

du diamètre des fibres basée sur la méthodologie Optical Fiber Diameter Analyser (OFDA) 

ont été mises au point. Ces méthodes sont largement utilisées pour déterminer les 

caractéristiques de la laine et du mohair, mais à notre connaissance, peu d’études ont été 

réalisées pour évaluer cette méthodologie sur la fibre angora. L'objectif de cette étude a été de 

décrire les caractéristiques de l'Angora à l’aide de la méthodologie OFDA et d’analyser la 

variabilité des caractéristiques des fibres de la toison de 2 lignées divergentes de lapin angora 

français sélectionnées pour le poids total de toison.  

 

 L’expérience a été réalisée sur un total de 349 prélèvements de toison effectués sur 60 lapins 

Angora français issues de 2 lignées divergents pour le poids total de toison. Les échantillons 

de toison ont été prélevés sur 30 animaux femelles de chacune des 2 lignées divergentes lors 

des récoltes de poils effectuées lors des 6 premières récoltes de poils à savoir, respectivement, 

aux ages de 8, 21, 35, 49, 63 et 77 semaines. Les prélèvements ont été analysés selon la 

méthodologie OFDA à l’aide d’un OFDA100. Les mesures suivantes ont été obtenues : le 

diamètre moyen des fibres, le coefficient de variation du diamètre des fibres, le facteur de 

confort ou proportion de fibres dont le diamètre est inférieur à 30µm, la finesse de filature, le 

degré de courbure moyenne des fibres, l’écart-type de ce degré de courbure des fibres, 

l'opacité moyenne des fibres, le pourcentage de fibres médullées, le diamètre moyen le long 
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de la fibre mesuré sur une longueur de 200µm avec un pas de 2µm et l'écart type de ce 

diamètre le long de la fibre. Les caractéristiques ont été analysées selon un modèle mixte avec 

l’animal comme effet aléatoire et les effets fixes suivants : groupe de sélection, saison de 

récolte et numéro ou age de récolte. Des corrélations ont ensuite calculées entre les 

caractéristiques OFDA des fibres de la toison, le poids total de toison et la compression, une 

caractéristique textile de la toison mesurée par la hauteur de 10g de poils soumis à une 

pression de 3kg dans une chambre cylindrique. 

 

Les caractéristiques OFDA de la fibre angora qui ont été observées sont les suivantes : un 

diamètre moyen de 14,6µm avec un CV du diamètre de 42%, un facteur de confort de 98%, 

un degré de courbure moyen de 40,1 °/mm, une opacité moyenne de 46%, un taux de fibres 

médullées de 1,7%, un diamètre moyen le long de la fibre de 15,4 µm et un écart type moyen 

de ce diamètre le long de la fibre de 6,2 µm.   

 

Alors que chez l’angora, toutes les fibres sont médullées, le taux de fibres médullées observé 

à l’OFDA à partir de la mesure de l’opacité des fibres est très faible, entre 0.1 à 7.3 %. Cette 

mesure de l’opacité qui permet d’apprécier la médullation de la laine de mouton et du mohair 

n’est pas adaptée et doit être redéfinie ou faire l’objet d’une calibration spéciale pour évaluer 

le degré de médullation et/ou la taille de la moelle des fibres angora.  

 

Toutes les caractéristiques OFDA de la fibre angora  ont évolué de manière significative avec 

l’age de l’animal. Le diamètre moyen, le CV du diamètre, le diamètre moyen le long de la 

fibre et le degré de courbure des fibres ont augmenté avec l’age de l’animal jusqu’à la 3ème 

récolte à l’age de 35 semaines, puis n’ont plus évolué entre la 3ème et la 6ème récolte. Par 

contre le facteur de confort ou proportion de fibres ayant un diamètre inférieur à 30µm a 

diminué entre la 1ère et la 3ème récolte puis s’est stabilisé.  

 

Un effet significatif de la saison de récolte a été observé sur certaines caractéristiques des 

fibres. En été, nous avons observé un diamètre moyen des fibres et un diamètre moyen le long 

de la fibre plus faible, mais un CV du diamètre des fibres plus élevé. Le degré de courbure des 

fibres le plus faible a été observé en automne.   
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Des corrélations positives ont été observées entre le poids total de toison, le diamètre moyen, 

Le CV du diamètre et le degré de courbure des fibres.  

 

La méthodologie OFDA est une alternative intéressante pour évaluer le diamètre des fibres, le 

coefficient de variation de diamètre de fibre et le taux de jarres par la détermination du facteur 

de confort.  
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ABSTRACT: An experiment was conducted to describe the characteristics of Angora 

rabbit fiber using optical fiber diameter analyser (OFDA). A total of 349 fleece 

samples were collected from 60 French Angora rabbits. Recorded measurements of 

OFDA were: mean fiber diameter, CV of fiber diameter, comfort factor, spinning 

fineness, mean fiber curvature, SD of fiber curvature, mean opacity of fibers, 

percentage of medullated fibers, mean fiber diameter along length, and SD of  fiber 

diameter along length. The main effects included in the mixed model were fixed 

effects of group, harvest season, and age and a random effect of animal. 

Correlations among total fleece weight, compression and OFDA measurements were 

calculated. Mean fiber diameter was lower than the fiber diameter along length. Mean 

percentage of medullated fibers was very low and ranged from 0.1 to 7.3%. The 

mean comfort factor was 97.5% and ranged from 93.3 to 99.8%. The mean fiber 

curvature was 40.1 deg/mm. The major changes in Angora fleece characteristics 

from 8 to 105 wk of age were an increase in fiber diameter, CV of fiber diameter, 

mean fiber diameter along length and curvature, and a decrease in compression and 

comfort factor. The effect of harvest season was significant on some fiber 

characteristics. Mean fiber diameter and the mean fiber diameter along length had a 

positive correlation with total fleece weight. The OFDA methodology is a method to 

evaluate fiber diameter, CV of fiber diameter, and bristle content through measuring 

of comfort factor. However, OFDA is not adapted for measuring opacity or size of 

medulla or both in Angora wool and needs a new definition or a special calibration. 

The spinning fineness should be redefined and adapted for Angora rabbits.  

 

Key words: Angora, fiber characteristics, rabbit, wool 

 

INTRODUCTION 

 
Because average fiber diameter determines processing performance and end-use 

of wool, it is one of the most important characteristics that determine the market price 

of wool. More rapid, accurate, and efficient methods of measuring fiber diameter are 
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therefore of considerable interest for animal fibers (Qi et al., 1994) and are widely 

used to determine the  quality of wool and mohair. Angora rabbits produce fibers 

called Angora which belongs to luxury animal fibers category. The projection 

microscope method for measuring fiber diameter in Angora rabbits has been used in 

some studies (Rougeot and Thébault, 1983; Rougeot and Thébault, 1989; Qi et al., 

1994; Thébault and Vrillon, 1994; Olmez and Dellal, 2002; Risam et al., 2005). 

However, differences among studies were observed due to the influence of fiber 

properties. The Angora rabbit fleece is made of different kinds of medullated fibers 

that have a variable cross section shape between and along the fiber. A rapid 

method for measuring cross section characteristics of the different fiber types of the 

Angora rabbit fleece has been proposed (Allain and Thébault, 1996). However, this 

method is not widely used because it required a skilled operator and was time 

consuming. The optical fiber diameter analyser (OFDA) is capable of providing an 

acceptable estimation of fiber characteristics in mohair (Lupton and Pfeiffer, 1998), 

wool (Baxter et al., 1992; Cottle et al., 1996; Peterson and Gherardhi, 1996; Baxter, 

1998; Allain and Thebault, 2000; Allain and Thébault, 2000), and cashmere 

(Peterson and Gherardhi, 1996; Herrmann and Wortmann, 1997). Allain and 

Thébault (2000) showed that OFDA may also be a promising system for accurate 

and rapid estimation of Angora wool quality. However, to our knowledge, no 

comprehensive profile of fiber properties of Angora using OFDA has been published. 

The objective of this study was to describe the characteristics of Angora wool using 

OFDA. A secondary objective was to investigate the variability of the quality of 

Angora wool according to the age and the harvest season. 

 

MATERIALS AND METHODS 

 
Animals and Fiber Sampling 

 

The population background, production, management, and selection procedure 

were previously described in detail by (Rafat et al., 2007a). Briefly, in order to explore 
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genetic variability of Angora wool production and other quantitative traits, a divergent 

selection experiment for total fleece weight was carried out in French Angora rabbits 

during 8 yr beginning in 1994. The aim of the selection experiment was to obtain 2 

divergent lines (low and high) based on total fleece weight in order to measure direct 

and correlated responses to selection. From the last cohort born in 2001, 360 fleece 

samples were collected from 30 females of each selected line. All animals were white 

and were born from January to November 2001. For each animal, total fleece weight 

was recorded and a fleece sample from the back was taken at 8, 21, 35, 49, 77, and 

105 wk of age. The mean BW of animals at these ages were 1.3, 3.1, 3.4, 3.7, 3.9, 

and 3.9 kg, respectively. 

 

This experiment was licensed under the guidelines of the French Ministry of 

Agriculture and the National Committee of Animal Experimentation for animal 

research. 

 

Fiber Measurements 

 

All samples (n = 349) were tested on OFDA4000 at BSC Electronics Pty. (Ltd., 

Ardross, 6153 Western Australia). For measurements of each Angora wool sample, 

between 50 and 100 mg fiber snippets were obtained at random by cutting fleece 

samples of Angora wool with a guillotine at about 2 to 3 cm from the base of the 

whole staple. Snippets are short pieces of fiber (typically around 0.8 to 2 mm long) 

which have been cut to measure fiber diameter and related properties. Snippets were 

processed according to the procedure outlined in the International Wool Textile 

Organization test method (IWTO-47, 1995). The OFDA was calibrated using 

standard wool tops and set to measure 4,000 snippets. Several measurements of 

OFDA were made (Table 1) : mean fiber diameter, CV of fiber diameter, comfort 

factor, spinning fineness, mean fiber curvature, SD of fiber curvature, mean opacity 

of fibers, percentage of medullated fibers, mean fiber diameter along 200 µm of 

length (diameter along length) and SD of mean diameter along length.  
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Definition of Angora Wool Quality and its Relationship with Fiber Diameter 

 

 Quality parameters considered in French Angora wool (Rochambeau et al., 

1991) includes homogeneity [ratio between the bristly hair weight (a positive 

characteristic) and total fleece weight. Bristly hair is the part of the fleece usually 

harvested from the back and the sides of the Angora rabbits having a high content of 

long and coarse fibers. In wooly hair (usually harvested from the breast and the belly) 

there is a low content of guard hair]; compression and resilience (measured on a 10 

g sample of Angora wool harvested from the rabbit haunch and submitted under a 

pressure of 3 kg inside a smooth walled, graduated cylinder of 43 mm diameter. 

Compression is the height of compressed wool inside the cylinder. Resilience is the 

height of the wool when the pressure is removed; structure (ratio of the down length 

to the bristle length); and tautness or roughness (assessed subjectively by handling 

the smoothness of coat on the sides of the rabbit. This quality is desirable to the 

French processing industry and is estimated by the breeder on a scale of 1 to 5. This 

is a “bristle index” resulting from several characters including bristle diameter, bristle 

ratio, and coat structure. Cloth woven from wool with a high roughness index has a 

desirable fluffy look). 

 

Fiber diameter has close relationship with the quality characteristics of Angora 

wool. Compression was measured on all samples to study the probable correlation 

between compression and OFDA measurements. For definithin of comfort factor see 

Table 1. 
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Table 1. OFDA40001 measurements included in this study 

Measurement  Definition 

Mean fiber diameter, µm Average of all fiber diameter measurements (n = 4000) taken on the 

samples  

CV of fiber diameter, % The CV of all fiber diameter measurements taken from the sample 

Comfort factor, % Comfort factor is the percentage of fibers greater than 30 microns 

subtracted from 100 percent. 

Spinning fineness, µm A measure of the performance of the fiber when spun into yarn by 

combining the measurements of the mean fiber diameter and the CV. The 

formula used by OFDA4000 was proposed by(Butler and Dolling, 1992) 

according to an original theory from (Martindale, 1945)). In practice, the 

spinning fineness is equivalent to the mean fiber diameter when the CV is 

24%. 

Fiber curvature, deg/mm A measure of the angle formed by 200µm fiber long arc and extra polled 

to 1mm long arc. The greater the curvature is, the finer the crimp is. 

Mean fiber opacity Average of all fiber opacity measurements taken on the sample. Opacity 

is the relative capacity of a fiber to obstruct transmission of light when it is 

scanned under both dark and bright field image 

 

Medullated fiber content, 

%  

The percentage of fiber opacity measurements that were above 94%.  

Mean fiber diameter 

along length, µm 

Average of all fiber diameter measurements taken along 200 µm fiber 

length each 2 µm 

SD of mean fiber 

diameter along length 

The S.D. of all fiber diameter measurements taken along 200 µm fiber 

length each 2 µm 
1 OFDA4000: the first instrument to directly measure diameter, length and hauteur of fibres in 

aligned form. Suitable for wool, animal and synthetic fibres. 

 

Statistical Analyses 

 

Traits were tested for normal distribution. An important application of mixed linear 

models is in the analysis of repeated measures data (Littell et al., 1998; Wang and 

Goonewardene, 2004). Therefore, mean fiber diameter, CV of fiber diameter, 

spinning fineness, comfort factor, mean fiber curvature, and diameter along length 

were analyzed with a mixed model that included a random effect of animal. The 

model was: 
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Yijklm=µ+Gi+Sj+Ak+rijkl+eijklm 

Yijklm was the trait, µ was the general mean, Gi was the selected group of the animal 

(low and high), Sj was the season of harvest (j=1, 4), Ak was the age at harvest (k=1, 

6), rijkl was the random effect of animal, and eijklm was the random residual term. The 

MIXED procedure of SAS (SAS Inst., Inc., Cary, NC) was used for these analyses. 

The CORR procedure of SAS was utilized to calculate correlation coefficients 

between selected characteristics. 

 

RESULTS AND DISCUSSION 
 

Descriptions 

 

Basic measures for fiber and fleece characteristics are presented in Table 2. The 

measured mean fiber diameter, CV of fiber diameter, diameter along length, and fiber 

curvature of Angora wool samples had a distribution near to normal (data not shown). 

 

The spinning fineness was greater than mean fiber diameter and diameter along 

length. Allain and Thébault (2000) measured 40 samples of Angora wool from 1 yr 

old rabbits and reported 14.7 ± 1.1 µm and 35.7 ± 5.6 % for fiber diameter and CV of 

fiber diameter, respectively. These data are similar to our results. The difference 

between spinning fineness and mean fiber diameter resulted from a high CV of fiber 

diameter and the presence of desirable coarse bristles in the Angora wool. Thus, it 

was predicated that spinning yield of Angora wool be lower than sheep wool. The 

present definition of spinning fineness for sheep wool may be not useful or should be 

redefined for Angora wool. 
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Table 2. Basic statistics for fiber and fleece characteristic measurements in the French Angora rabbit1 

Trait n Mean SD Minimum Maximum 

Total fleece weight, g  343 177.7 88.4 18.0 378.0

Compression, mm 321 28.1 2.6 20.0 37.0

Mean fiber diameter, µm  349 14.6 1.2 11.6 18.3

CV of fiber diameter, % 349 40.4 7.0 26.0 61.9

Comfort factor, fibers ≤ 30µm, % 349 98.0 1.0 93.3 99.8

Spinning fineness, µm 349 17.5 2.1 13.1 24.7

Mean fiber curvature, deg/mm 349 40.1 10.8 18.0 68.0

SD of fiber curvature, deg/mm 349 30.4 6.9 15.0 49.0

Mean opacity of fibers, % 349 46.0 6.0 31.5 61.0

Percentage of Medullated fibers, % 349 1.7 1.2 0.1 7.3

Mean fiber diameter along 200 µm length, µm 349 15.4 1.3 11.8 19.7

SD of mean fiber diameter along 200 µm 

length, µm 349 6.2 1.4 3.2 10.9
1 See Table 1 for a definition of fiber characteristics. These samples have been collected at 

different ages. Data presented as averages over all 

 

Mean fiber diameter along length was 5% greater than mean fiber diameter (15.4 

and 14.6 µm, respectively). The S.D. of mean fiber diameter along (a measure of the 

uniformity of fiber diameter) indicated a large variability of the mean fiber diameter 

along (6.2 µm or 40.2%). In sheep, along fiber length variation in diameter is lower 

and ranged from 10 to 16% (Notter et al., 2007). In Angora rabbit, the pattern of fiber 

growth is not permanent and a new hair growth produces a “tip-end” fiber after each 

harvest. This could explain the high along fiber length variation in diameter in Angora 

rabbit compared to the sheep. Nevertheless, our results of fiber diameter and 

diameter along length confirm the large variability between and along fibers in 

Angora rabbit. 

 

Mean percentage of medullated fibers was very low and ranged from 0.1 to 7.3%. 

This result was unexpected because when Angora wool characteristics are observed 

using the cross-section methodology (Thébault et al., 1995), all fibers have at least 1 

medulla canal (Figure 1). By considering the measured range of fiber diameter (more 
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than 8 µm), it was expected that all fibers would be distinguished as medullated 

fibers by OFDA (the percentage of medullated fibers would be close to 100). This 

was not the case such that the opacity threshold for medullated fibers may need to 

be redefined for Angora wool compared to the threshold used for sheep wool and 

mohair. Alternatively, the result could be interpreted as only showing the most 

medullated and opaque fibers which are the ones visible to the eye, rather than 

strictly showing 100% of the fibers as medullated which may not be a useful 

measure. 

 
Figure 1. Cross section images of a whole lock in the proximal region of Angora wool. 

 
Medullated fiber content is an important selection criterion for Angora goats 

(Allain and Roguet, 2006) and certain breeds of sheep. Some sheep breeds 

(Drysdale) were specifically developed for high medullated fiber content (Lupton and 

Pfeiffer, 1998). In Angora wool production, the incidence of medullation is not very 

important because, in contrast to other fiber-producing animals, all fibers are 

desirable. However, size and number of medulla canals are an important criteria to 

identify different kinds of fibers constituting the Angora rabbit fleece. Thus, a new 

definition and calibration of OFDA must be developed in order to measure 

medullation in Angora wool.  

 

The mean comfort factor was 97.5% and ranged from 93.3 to 99.8%. Bristles or 

coarse fibers are desirable fibers which play an important role in determining Angora 

wool quality (Rougeot and Thébault, 1989). Thus, measurement of the percentage of 

fibers having a fiber diameter greater than 30 µm is an important criteria determining 
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Angora wool quality. As proposed by Allain and Thébault (2000), comfort factor of 

OFDA, or conversely prickle factor, can be a good indirect estimation of bristle 

content. In fleece testing, prickle factor is an early attempt to characterize the 

tendency for coarser fibers to produce irritations on the skin. Essentially, fibers over 

30 µm in diameter tend to bend less and produce a painful “poking” sensation on the 

skin’s surface. With more than 5% of the total number of fibers, the effect tends to be 

quite noticeable. Hence, the prickle factor is the percentage of fibers above 30 µm 

(SGS, 1996). 

and our results suggest that fibers in rabbits are less crimped than in sheep or goats. 

arvest Season and Age Effects 

 

 

The mean fiber curvature of Angora (40.1 deg/mm) was less than reported results 

for wool. Values of 74.2 ± 4.8 deg/mm and 21.0 µm were observed for top curvature 

and diameter, respectively, for wool (Brims, 2003). In Targhee ewes, fiber curvature 

was reported 97.0 ± 11.3 deg/mm with fiber diameter of 21.9 ± 11.3µm (Notter et al., 

2007). In cashmere goats, the range of 47.5 to 77.6 deg/mm was reported for fiber 

curvature in different ages and nutrition levels (McGregor, 2003). In Alpaca, 33.6 ± 

7.0 deg/mm was reported for fiber curvature in the samples with fiber diameter of 

27.8 ± 5.4 µm (Lupton et al., 2006). In the same species, fiber curvature in samples 

with fiber diameter of 28.1 ± 6.0 µm was reported 27.8 ± 10.6 deg/mm (McGregor, 

2002). The significant role of fiber crimp in determining wool and mohair processing 

performance has been demonstrated (Smuts et al., 2001). A good relationship was 

found to exist between the OFDA curvature and staple crimp/wave frequency for both 

wool and mohair. No published information is available for this trait in Angora rabbits. 

In furred and furless white New Zealand does, fiber curvature has been reported 

(38.5 ± 2.0 and 47.5 ±1.8 deg/mm, respectively; (Rogers et al., 2006). These findings 

 

H

The 2 groups of Angora rabbits were produced from a divergent selection 

experiment on total fleece weight. No effect of selection group was observed on 
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mean fiber diameter, CV of fiber diameter, comfort factor, curvature, and fiber along 

len

 

other studies (Rougeot and Thébault, 1983; Rafat et al., 2007b). This result confirms 

tha l.   

 
Table 3. Least square means for effects of harve n French Angora wool  

 Fiber is

gth.  

 

Effect of harvest season was significant on the fiber diameter, CV of fiber 

diameter, comfort factor, and diameter along length (Table 3). Diameter of down is 

smallest in summer (Thébault and Vrillon, 1994) which is similar to our results of fiber 

diameter and diameter along length (Table 3). Effects of the harvest season on 

comfort factor and diameter along length have not been reported previously. Comfort 

factor has been suggested to be indirect estimation of both traits of bristle content 

(Allain and Thébault, 2000) and secondary to primary follicle ratio (Rafat et al., 

2007b). In the present study, low comfort factor was observed in summer when 

secondary to primary follicle ratio was low and bristle content was high, as shown in

t comfort factor is an important characteristic describing quality of Angora woo

st season and age o

 character tic1 

Item 

ean f er 

diamete

V of  

fibe

omfo t 

fa

iber 

cu e 

iameter 

alon  

M ib

r 

 

C

r diameter 

C r

ctor 

F

rvatur

D

g length

Harves       t season

Winter 14.9a 40.4a 97.9b 40.3 15.7a 

Spring 14.7a 40.8a 97.9b 40.5 15.6a 

Summer 14 b 42.1a 97.9b 40.1 15.1b 

Au n 

Age, wk 
c

45.1a 15.9a 

.3

tum 14.7a 38.9b 98.2a 38.8 15.5a 

     

8 14.0b 32.9d 98.7a 24.9  14.3d 

21 14.0b 37.5c 98.7a 40.5b 14.8c 

35 15.2a 40.9b 97.9b 42.4ab 15.7b 

49 14.8a 43.9a 97.6bc 44.1a 15.6b 

77 15.0a 43.7a 97.6c 42.6ab 16.3a 

105 14.9a 44.3a 97.3c 
1 See Table 1 for a definition of fiber characteristics. a, b, c, d Within an effect class and a 

column, LS means without common superscripts differ (P < 0.05). 
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A significant effect of age was observed on the fiber diameter, CV of fiber 

diameter, comfort factor, fiber curvature and diameter along length. Mean fiber 

diameter, CV of fiber diameter, diameter along length and mean fiber curvature 

increased with age. In contrast, comfort factor decreased with age (Table 3). Mean 

fiber diameter increased after 21 wk of ages but remained unchanged thereafter. 

Mean fiber curvature of Angora wool increased between 8 and 21 wk of age and then 

remained unchanged. Variations of fiber characteristics of Angora rabbit according to 

age

). In contrast to our results in Angora wool, fiber curvature in 

Alpaca at 1 yr of age was about double that recorded at ages of 2 yr and greater 

06). 

 

Co

fleece weight. Similarly there is 

an undesirable additive genetic correlation of 0.51 between fiber diameter and fleece 

we

 have not been previously reported.  

 

In Angora goats, similar observations of age effect on fleece weight and mohair 

fiber characteristics have been described (Allain and Roguet, 2003, 2006). There is a 

slight increase of fiber diameter of Merino sheep from 3 to 12 mo of age (Francis et 

al., 2000). In llamas, both fiber diameter and greasy fleece weight increase with age 

(Frank et al., 2006). In another study, with increasing age of the Alpaca, the fiber 

diameter increased whereas proportion fibers < 30 µm decreased (Wuliji et al., 2000). 

An effect of age on fiber characteristics of sheep was found, but differences in fiber 

diameter, comfort factor, and spinning fineness were low between 2 and 5 yr of age 

(Notter et al., 2007

(McGregor, 20

rrelations 

 

Table 4 contains correlations among total fleece weight, compression, and OFDA 

measurements. Mean fiber diameter had a negative relationship with comfort factor 

and a high positive relationship with diameter along length. Mean fiber diameter and 

diameter along length positively correlated with total 

ight in Targhee sheep (Notter and Hough, 1997).  
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A plot of curvature versus fiber diameter and diameter along length illustrates 

negative relationships between fiber curvature and fiber diameter and diameter along 

length. The magnitude of these correlations were smaller than, but in the same 

direction as, that reported for Angora wool (Rogers et al., 2006). In cashmere goats, 

increasing fiber diameter was associated with decreasing fiber curvature measured 

by OFDA (McGregor, 2003). The curvature measurement is generally positively 

associated with crimp frequency and, through a generally accepted positive 

association between crimp frequency and fineness, is usually negatively associated 

with fiber diameter and total fleece weight (Fish et al., 1999). In our study, a positive 

correlation was observed between total fleece weight and fiber curvature. Before any 

standardization of fiber curvature measurement using OFDA, work is required to 

determine appropriate calibration, sampling, preparation and testing procedures (Fish 

et a

to fine, slightly 

l., 1999). No relationship was detected between fiber curvature and compression 

(P = 0.73), but fiber curvature increased at high CV of fiber diameter. 

 

This study described Angora wool characteristics with OFDA methodology and its 

variations according to age and season in 2 divergently selected groups for total 

fleece weight in French Angora rabbits. The major changes in Angora wool 

characteristics from 8 to 105 wk of age were a decrease in compression and comfort 

factor, an increase in fiber diameter, CV of fiber diameter, diameter along length and 

fiber curvature. The effect of harvest season was significant on some fiber 

characteristics. Previously no widely used method was available for measuring fiber 

diameter on Angora wool. Allain and Thébault (2000) showed that measurements of 

cross section characteristics is the adequate methodology to determine fiber quality 

in the Angora rabbit, but such methods are not widely used as they still are time 

consuming and expensive. The OFDA methodology allows evaluation of important 

Angora wool characteristics such as fiber diameter, CV of fiber diameter, or bristle 

content through measuring of comfort or prickle factor. However, the OFDA 

methodology is not adapted for measuring opacity or size of medulla in Angora wool 

and needs a new definition or a special calibration. Data generated in this study 

could be used to establish the levels of opacity corresponding 
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medullated Angora wool and, coarse, heavily medullated fibers. Another parameter, 

spinning fineness should be redefined and adapted for Angora wool. Similarly, more 

stu

 
1 

cal fiber diameter analyser in Angora rab s 

Item 

Compres

 

Fiber 

 diameter

CV of 

fiber diameter

Com

factor 

Fiber 

curvature 

Diam

-along 

dies are needed using curvature measurements on Angora wool. 

 

Table 4. Correlation coefficient

surements of opti

s between total fleece weight, compression, fiber 

b

characteristic

and mea it fleece

sion fort eter

Total fleece weight -0.22 0.34 0.37 -0.32 0.47 0.48

P value 0.01

321

-0.13 - -

0.02

321

ter  0.19 -0.62 -0.25 0.94

0.01

349

  

 of fiber 

-0.75

0.01

349

-0.10

0.08

349 

    

  0.04

   349

 0.01 0.01 0.01 0.01 0.01

N  343 343 343 343 343

       

Compression  0.11 0.15 -0.02 0.17

P value  0.04 0.01 0.73 0.01

N  321 321 321 321

       

Fiber diame

P value  0.01 0.01 0.01

N  349 349 349

 

CV
    

diameter  0.47 0.30

P value  0.01 0.01

N  349 349
       

Comfort factor   -0.66

P value   0.01

N  349

   

Fiber curvature   -0.11

P value 

N
 1 See Table 1 for a definition of fiber characteristics. 

The samples have been collected at different ages. Correlations have been calculated on 

averages over all. 
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4 DIVERGENT SELECTION FOR TOTAL FLEECE WEIGHT IN ANGORA 
RABBITS: CORRELATED RESPONSES IN WOOL CHARACTERISTICS  

 
 
RÉSUME 
 
Une expérience de sélection divergente pour le poids total de toison a été réalisée chez le 

lapin Angora en vue d’étudier la réponse directe à la sélection ainsi que les réponses corrélées 

sur les composantes de la toison. Les données de 669 femelles issues de 8 cohortes de 

sélection nées entre 1994-2001 et ayant produit ensemble un total de 2 923 récoltes de toison 

ont été analysées afin de mesurer les réponses corrélées à la sélection. Les composantes de la 

toison étudiées ont été : les dimensions des poils (longueur des duvets et des jarres, diamètre 

moyen des fibres et diamètre des jarres), le facteur de confort ou proportion de fibres dont le 

diamètre est inférieur à 30 µm, la compression, la résilience, et le rapport du nombre de 

follicules pileux secondaires et primaires latéraux par follicule pileux primaire central (S/P). 

Une analyse des facteurs non génétiques a été réalisée à l’aide d’un modèle d’analyse de 

variance à effets fixes en utilisant la procédure GLM du logiciel SAS. Les effets fixes 

significatifs ensuite retenus pour l’analyse génétique ont été: l’année de naissance (8 niveaux 

de 1994 à 2001), le numéro de récolte (10 niveaux de 3 à 12), la saison de naissance (4 

niveaux), la saison de récolte (4 niveaux) et le stade physiologique des femelles (3 niveaux : 

femelle ayant mis bas, femelle inséminée n’ayant pas mis bas et femelle non mise à la 

reproduction). Les paramètres génétiques et les tendances génétiques ont ensuite été analysés 

en utilisant un BLUP modèle animal à l’aide du logiciel VCE. Les 8 caractères décrivant les 

composantes de la toison ont été analysées selon un modèle multi caractères à 9 variables 

incluant TFW la variable sélectionnée.  

 

Les héritabilités estimées des différentes composantes de la toison varient de 0.06 pour la 

longueur des duvets à 0.39 pour le diamètre des jarres. De fortes corrélations génétiques 

(supérieures à 0.70) ont été observées entre les longueurs des jarres et des duvets (0.75), entre 

la compression et la résilience (0.85), entre le diamètre des jarres et la longueur des duvets 

(0.80) et entre le diamètre moyen des fibres, le facteur de confort et le rapport S/P.  

En réponse à la sélection pour le poids total de toison, nous avons observé : 
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- une amélioration de 0.92, 0.21 et 0.55 écart type génétiques 

respectivement pour la longueur des jarres, le facteur de confort et le 

rapport S/P ; 

- aucune réponse corrélée sur la longueur des duvets  

- une diminution de 1.00, 1.31, 0.38 et 0.50 écarts types génétiques pour 

respectivement la compression, la résilience, le diamètre des jarres et le 

diamètre moyen des fibres.,.  

 

En conclusion, la sélection pour augmenter le poids total de toison s’est traduite par une 

amélioration des composantes qualitatives et quantitatives de la production de poils chez le 

lapin Angora français.  
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Abstract
An experiment was carried out to study direct and indirect responses to selection in the Angora rabbit. There were two selection
1 and
re had
le and
enetic
0.92,
elated
were
fleece
traits
lines, one selected for high fleece weight and the other for low fleece weight. Data from 669 female rabbits born in 1994–200
having produced a total of 2923 harvest of wool were analysed to quantify the correlated responses to selection. By 2001, the
been eight cohorts of selection. The correlated responses analysed included compression, resilience, fleece quality traits (brist
down length, average fibre diameter, comfort factor, bristle diameter) and secondary to primary follicle ratio (S/P). G
correlations were obtained by restricted maximum likelihood techniques. In response to selection, a positive difference of
0.21 and 0.55 genetic standard deviation were observed for bristle length, comfort factor and S/P, respectively. No corr
response was observed on down length while negative differences of 1.00, 1.31, 0.38 and 0.50 genetic standard deviations
observed for compression, resilience, bristle diameter and average fibre diameter, respectively. Selection for increasing total
weight results in an increase of qualitative component traits of wool production in the French Angora rabbit. The quantitative
were examined in the first (published) part of the paper.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction
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Selection for total fleeceweight was successful in
(Wuliji et al., 2001; Bray et al., 2005), in goat (Mer
and Riach, 2003; Bai et al., 2006) and in French A
rabbit (Rafat et al., 2007). It is unclear, however, whe
higher fleece weight is associated with an increase in
fleece characteristics (length, diameter, compression
secondary to primary follicle ratio) of Angora rabbi
sheep, Morris et al. (1996) found an unfavou
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correlated response in mean fibre diameter when selecting
for high fleece weight. In a companion paper, Rafat et al.
(2007) presented results of a divergent selection experi-
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On animals born in 2001 and issued from the last
selected cohort, additional biological samples were made
at the fifth and the seventh harvests (Table 1). Two wool
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Trait Unit N Means SD

Total fleece weight a g 2923 213.27 56.60
Bristle length b mm 1171 101.93 9.41
Down length b mm 1170 67.04 8.78
Compression b mm 1165 26.52 2.64
Resilience b mm 1165 60.08 5.33
Bristle diameter c μm 149 46.41 3.45
Average fibre diameter c μm 157 14.91 0.94
Comfort factor c % 157 97.85 0.83
Secondary to primary follicle ratio c – 102 48.18 10.32
Live weight before wool harvest a g 2923 3802.1 473.99

a This trait was measured at all fleece harvests of all cohorts.
b This trait was measured at all harvests of the last cohort, and fifth

and seventh harvests from previous cohorts.
c This trait was measured at the fifth and seventh harvests of the last

cohort.
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ment on total fleece weight in French Angora rabbits
first results indicated that an important direct respon
total fleeceweight was obtained on the two divergent
A divergence of three genetic standard deviations on
total fleece weight and weight of the bristly woo
observed between the high and low lines after 8 ye
selection. An increase in live body weight was
obtained by selection for total fleece weight. The obje
of this paper was to evaluate the correlated respons
selection for fleece characteristics.

2. Materials and methods

2.1. Animals

The animals came from a divergent selection e
iment on total fleece weight described by Rafat
(2007). Studies were made on the wool production o
femaleAngora rabbits born between 1994 and 2001
a divergent selection program to assess direct
correlated responses. There were 3567 animals i
pedigree file. The aim of the selection experiment w
obtain two divergent lines for total fleece weight
selection criterion was the total fleece weight of the
measured for the third and later harvests. The sele
method was based on a BLUP procedure usi
repeatability animal model. The management, repr
tion and housing conditions of these animals have
previously described (Allain et al., 1999; Rafat e
2007).

2.2. Traits

The rabbits were plucked for the first and se
times at the ages of 8 and 21 weeks, respect
Thereafter they were plucked at regular intervals
14 weeks until the 12th harvest. The data of the 3
12th harvests for each cohort were utilised in this s
At each harvest, total fleece weight (TFW) was reco
The live body weight (9LW) was measured 9 w
before each harvest. At the fifth and seventh har
from cohorts of 1994 to 2000, and at the 3rd to
harvests from the last cohort born in 2001, the follo
variables were recorded: compression, resilience
length of bristles (BL) and downs (DL) measure
locks taken from the haunch. The first twomeasurem
were used to judge the quality of the fibre (Allain
1999). Compression and resilience were mea
according to the method of de Rochambeau et al. (1

Please cite this article as: Rafat, S.A. et al. Divergent sel
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samples were taken from the haunch. The first sa
including all kinds of fibre was obtained to deter
average fibre diameter (AFD) and comfort factor
percentage of fibres ≤30 μm) according to the O
Fibre Diameter Analyser (OFDA) methodology (IW
47, 1995). The second sample was obtained by extra
bristles by hand from a total lock in order to deter
bristle diameter (BD) according to the cross se
methodology (Allain and Thébault, 1996). Skin sam
were taken from the back by biopsy 5 weeks afte
fourth and the sixth harvest to determine the prima
secondary hair follicle ratio within the hair follicle g
Details of the methodology of skin histology and S/P
measurement are described by Rougeot and Thé
(1983). Because of the shrinkage of skin speci
during histological procedures, there is a strong ca
using the relative density of primary and seco
follicles expressed by the S/P ratio to overcom
difficulties of making an accurate estimate of
population of wool follicles (Abouheif et al., 1984)

2.3. Statistical analysis

2.3.1. Testing of fixed effects
The least squares method of the GLM proc

(SAS, 2001) was utilised to determine the signific
of the fixed effects and covariate. TFW was ana
with a model that initially included year and seas
birth, harvest season, harvest number and reprodu
as fixed effects and 9LW such as a covariate. BL
compression and resilience were analysed with the

Table 1
Number of records (N), means and standard deviation (SD)
means for the studied traits
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model without the covariate. BD, AFD, CF and S/P
were analysed with a model including the harvest season
effect (Table 2).

ding

eren
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bi (fi) is a vector of fixed environmental effects for
the ith trait consisting of:

• a covariate effect of 9LW on TFW,
) on
e,
rd to
ssion

dDL,

ales
been

trait;
igree,
ment
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trait.

Table 2
Significance levels of fixed effects for the studied traitsa

Traits Fixed effects Covariate

Year Harvest number Birth season Harvest season Reproduction 9LW

TFW ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎

BL ⁎⁎⁎ ⁎ ⁎ ⁎⁎ ns
DL ⁎⁎⁎ ⁎⁎⁎ ⁎⁎ ⁎⁎ ns
Compression ⁎⁎⁎ ⁎⁎ ns ⁎⁎⁎ ns
Resilience ⁎⁎⁎ ⁎⁎ ns ⁎⁎ ns
BD ⁎

AFD ⁎

CF ⁎

S/P ⁎

a TFW: total fleece weight; BL: bristle length; DL: down length; BD: bristle diameter; AFD: average fibre diameter; CF: comfort factor; S/P:
secondary to primary follicle ratio; 9LW: live weight at age of 9 weeks before wool harvest.
⁎⁎⁎ Pb0.001; ⁎⁎ Pb0.01; ⁎ Pb0.05; ns: non-significant.
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2.3.2. Estimation of genetic parameters and bree
values

The estimates of variance components for diff
variables were obtained by using VCE, a multiv
restricted maximum likelihood (REML) variance
ponent estimation program with an animal m
(Groeneveld, 1998). Genetic parameters were estim
according to a multivariate analysis including the
traits studied: TFW, BL, DL, compression, resili
BD, AFD, CF and S/P. The following multivariate l
mixed model was used:

yi ¼ Xibi þ Ziai þWipi þ ei

where

yi (Ki) is a vector of Ki observations collected fo
ith trait,

Table 3
Heritability (bold) and genetic correlations±standard deviation
TFW BL DL Compressio

TFW 0.35±0.03 0.37±0.07 0.20±0.08 0.05±0.0
BL 0.15±0.02 0.75±0.09 −0.15±0.1
DL 0.06±0.02 0.12±0.1
Compression 0.10±0.0
Resilience
BD
AFD
CF
S/P
aTFW: total fleece weight; BL: bristle length; DL: down length; B
secondary to primary follicle ratio.
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• year effect (8 levels; from 1994 to 2001
TFW, BL, DL, compression and resilienc

• harvest number effect (10 levels; from the 3
the 12th harvest) on TFW, BL, DL, compre
and resilience,

• birth season effect (4 levels) on TFW,BL an
• harvest season effect (4 levels),
• reproduction effect (three levels: fem

which had litters and females which had
inseminated or not) on TFW.

ai (N) is a vector of direct genetic effect for the ith
N is the total number of animals in the ped

pi (Ni) is a random vector of permanent environ
to all observations from a given animal fo
ith trait; Ni is the number of animals mea
for the ith trait,

ei (Ki) is a random vector of residual for the ith
Xi, Zi and Wi are known design matrices.

multiple-trait analysis for the studied traitsa
n Resilience BD AFD CF S/P

8 −0.07±0.08 0.16±0.06 0.02±0.07 0.12±0.09 0.04±0.10
0 −0.04±0.12 0.55±0.09 0.04±0.13 0.34±0.14 0.07±0.16
2 0.30±0.14 0.80±0.09 0.39±0.19 −0.12±0.17 −0.46±0.19
2 0.84±0.06 0.39±0.09 −0.10±0.13 0.38±0.14 0.14±0.16

0.08±0.02 0.72±0.09 −0.13±0.15 0.17±0.17 0.05±0.18
0.39±0.05 0.07±0.12 0.01±0.17 −0.18±0.15

0.32±0.08 −0.63±0.12 −0.88±0.11
0.15±0.05 0.86±0.11

0.17±0.06

D: bristle diameter; AFD: average fibre diameter; CF: comfort factor; S/P:

for total fleece weight in Angora rabbits: Correlated responses in wool
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Breeding values for all the traits were obtained as
solutions from the best linear unbiased prediction
analysis of the last covariance matrices at convergence.
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Then the means of the estimated breeding value (E
for all traits were calculated per cohort of animals
the same year and per divergent selected line.

3. Results and discussion

3.1. Genetic parameter estimates

Table 3 shows the heritability estimates of, and ge
correlations between total fleece weight and
characteristics. Heritability estimates for BL, DL,
pression and resilience were smaller than those rep
earlier in Angora rabbits (Allain et al., 1996a). Ge
correlations between the total fleece weight and
bristle and down length were low to moderate
positive. The genetic correlation between bristle
down length was high and positive. Heritability estim
for BL, DL, compression and resilience were lo
moderate, ranging from 0.06 to 0.15. All these r
were in agreement with earlier observations (Allain
1996b). In cashmere goats, Bai et al. (2006) repor
significant positive correlation between fleece weigh
fibre length.

High and positive genetic correlations were obs
between compression and resilience. These two im
tant fleece characteristics are used to determine f
bristlyness. Bristly fleeces from Angora rabbit
Fig. 1. Change of mean breeding value estimates (EBV) of bristle len
both the high (▴) and low (■) lines. Genetic standard deviation (σG
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Rochambeau et al., 1991).
Heritability estimates for BD, AFD, CF and S/P

moderate to high. The heritability of S/P in the pr
study was low compared to estimates by Abouheif
(1984) in sheep and Ma et al. (2005) in cashmere g
but in agreement with the lower value of the estima
Mortimer (1987) in Merino sheep. The high and po
genetic correlation of CF with S/P and the high
negative genetic correlation between AFD and
suggest the possibility of using either AFD o
instead of S/P. Measurement of AFD and CF by O
methodology is rapid, easier and less expensive tha
measurement of the S/P ratio from a skin sample a
histological treatment. Up to now, there are no liter
available describing genetic parameters of fibre d
eter and hair follicle density in Angora rabbits.

3.2. Genetic correlated responses on other fleece

Themeans of breeding value estimates per year of
are plotted in Fig. 1 for BL, DL, compression
resilience. Response on total fleece weight and corre
responses on other fibre traits observed on the
animal cohort. In response to the divergent sele
experiment on total fleece weight, positive differenc
0.92, 0.21 and 0.55 genetic standard deviations
observed for bristle length, comfort factor and
gth, down length, compression and resilience, over the 8 years of selection for
) is given for each trait.
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respectively. There was no effect on down length while
negative differences of 1.00, 1.31, 0.38 and 0.50 genetic
standard deviations were observed for compression,
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resilience, BD and AFD, respectively. No results
correlated responses to selection on total fleece weig
on fleece characteristics in Angora rabbits have
published. It is important to observe that selection for
fleece weight has a general beneficial effect on f
quality. A high quality fleece having a good aptitu
produce a fluffy yarn is characterised by a high weig
first class quality, high fleece homogeneity and
bristles (Thébault and de Rochambeau, 1988). T
characteristics were observed in the high line as desc
previously for weight of first class quality and f
homogeneity (Rafat et al., 2007) and in this stud
length of bristles. Thus, selection for total fleece w
results in an improvement of the quality of the fl
Similarly, Bai et al. (2006) suggested that selectio
cashmere weight is very effective in the cashmere
which has led to the slow genetic progress of fibre l
due to its genetic correlation with cashmere weig
another study, Redden et al. (2005) concluded
selection for increased mean cashmere weight resu
a reduction in fleece quality and value.

Compression and resilience were also affecte
selection and a decrease in both traits was observ
the high line. Similarly, a gradual decline in resistan
compression was noted over 9 years of selection of
quality wool or finer wool in Merino sheep (Ven
1980). Resistance to compression is related to
crimp and fibre diameter (McGregor, 2006). In
study estimates of genetic correlations were po
between BD and both compression and resilience.

4. Conclusion

Selection for total fleece weight significantl
creased bristle length, secondary to primary follicle
and comfort factor and decreased compression,
ience, bristle diameter, and average fibre diam
These changes resulted from moderate to high ge
correlations between total fleece weight and b
length, and between fibre dimensions (BL, DL, A
and BD) and secondary to primary follicle ratio, co
factor, compression and resilience. Thus, selectio
increasing total fleece weight results in an increa
both quantitative and qualitative traits of wool pro
tion in the French Angora rabbit. Measurement of
fleece weight is simple and easy at the farm
Selection for this trait has positive effects on f
characteristics such as bristle length, follicle popul
and fibre diameter.
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5 DEMOGRAPHY AND GENEALOGY: GENETIC DESCRIPTION OF A 
DIVERGENT SELECTION EXPERIMENT IN ANGORA RABBITS WITH 
OVERLAPPING GENERATIONS 

 

Résume 

 
Les objectifs principaux de ce chapitre sont d'une part de décrire la démographie et la 

structure génétique de deux lignées de lapins Angora français conduites en générations 

chevauchantes lors d'une expérience de sélection divergente. Il s'agit d'autre part de décrire les 

effets d'une augmentation de la consanguinité pendant l’expérience de sélection divergente. Il 

s'agit enfin d’analyser la différentielle de sélection sur le poids total de toison, caractère qui 

constituait le critère de sélection. 

 

La longévité productive des femelles a été analysée à l’aide du kit de survie selon un  modèle 

de Weibull incluant les effets fixes suivants: le groupe de sélection (2 niveaux), la 

consanguinité (4 niveaux correspondants aux quartiles de la distribution des coefficients de 

consanguinité au sein de chaque cohorte de sélection) ainsi que 2 effets dépendants du temps : 

la saison de récolte (37 niveaux de l’hiver 1995 à l’hiver 2001), le statut reproductif de la 

femelle à chaque récolte (3 niveaux: pas de reproduction, femelle inséminée ou femelle ayant 

mis bas). 

 

Aucune différence significative entre les lignées basses et haute n’a été observée sur la 

longévité productive de femelles. Des effets significatifs des deux effets dépendants du temps 

(saison de récolte et statut reproductif) et de la consanguinité ont été observés. Les animaux 

les plus consanguins ont un facteur de risque de 30% supérieur à celui des autres classes ayant 

un moindre coefficient de consanguinité.  

 

L’intervalle moyen entre générations a été de 562 et 601 jours respectivement dans les lignées 

basse et haute, soit un nombre de générations de 3.90 et 3.64, respectivement. Des effets 

significatifs de l'année de la naissance et de la lignée de sélection intra année de naissance sur 

l’intervalle entre générations ont été observés. Les intervalles de génération ont diminué de 
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manière significative de 1995 à 2000 et plus rapidement dans la lignée haute que dans la 

lignée basse. 

 

Le nombre de filles dans la lignée haute a été très variable. Le nombre d'animaux par 

génération a été plus élevé en lignée haute que dans la lignée basse. Chaque mâle a laissé en 

moyenne trois filles à la génération suivante (2.52 dans la lignée basse, 3.24 en lignée haute). 

Dans les deux lignées la population de 2001 a été crée à partir de environ 8 ancêtres efficaces 

de la population initiale.  

 

La consanguinité dans la lignée haute a toujours été plus élevée que dans la lignée basse. 

L'effet du consanguinité a été significatif uniquement sur le poids total de toison et le poids 

vif. Les animaux les moins consanguins ont produit un poids total de toison plus élevé que les 

autres. L'augmentation de la consanguinité pendant l'expérience a eu un effet négatif sur le 

poids total de toison. La description démographique et la structure génétique ont montré que 

la gestion des reproducteurs a été très similaire au cours des 8 années dans les deux lignées 

divergentes. Les différentielles de sélection observées ont été inférieures à celles prévues 

initialement en raison des règles de gestion des reproducteurs adoptées afin de limiter 

l'augmentation de consanguinité.  

 

Les différentielles de sélection sur le poids total de toison et la réponse corrélée sur le poids 

corporel ont été analysées à partir de la valeur génétique estimée (EBV) a posteriori des 

candidats à la sélection et des parents théoriques et réels. Les parents théoriques ont été 

définis intra lignée comme étant les 5 mâles et les 20 femelles ayant les valeurs génétiques les 

plus élevées ou les plus faibles respectivement pour la lignée haute et la lignée basse.  Les 

différentielles de sélection réalisées et théoriques ont été calculées comme la différence de 

valeur génétique entre les candidats à la sélection et respectivement celles leurs parents réels 

et celles des parents théoriques. L’analyse de la relation entre les valeurs génétiques estimées 

du poids total de la toison et du poids corporel au cours de l’expérience suggère d’émettre une 

hypothèse sur la mise en œuvre de two mécanismes différents. Dans un premier temps 

jusqu’en 1997, les valeurs génétiques pour le poids corporel ont diminué dans la lignée haute 

lorsque la valeur génétique pour la production de poils augmentait et vice versa dans la lignée 
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basse. Ensuite après 1997, les valeurs génétiques du poids corporel et du poids total de toison 

ont évolué dans le même sens dans les deux lignées. Ainsi dans un premier temps, les 

animaux ont utilisé préférentiellement leurs réserves corporelles pour la production de poils 

alors que lors de la seconde période, l’augmentation du poids du corps et par conséquent de la 

surface de la peau a permis le progrès génétique sur la production de poils 
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Abstract 
The main aim of this chapter were i) to describe the demography and the genetic structure in 

two divergent selected lines of French Angora rabbits with overlapping generations, ii) to 

describe the effects of an increase of inbreeding during an experiment of divergent selection, 

iii) to analyse the differential of selection on selection criterion of total fleece weight. A study 

of longevity with the survival kit showed that there was not significant difference between 

low line (LL) and high line (HL) in a number of live animals. Significant effects of both time 

dependant effects: year-harvest season and reproduction were observed. An significant effect 

of inbreeding (P<0.05)  was also observed with a 30 % higher risk factor in the highest class 

of inbreeding coefficient compared to other classes. The means of generation intervals were 

562 and 601 days in LL and HL, respectively. The number of generations for LL and HL 

were 3.9 and 3.64, respectively. The effects of birth year and line within birth year on 

generation intervals were significant. Generation intervals decreased significantly from 1995 

to 2000 (P<0.05). The number of daughters in HL was very variable. The number of animals 

per generation was higher in HL than in LL.  Each buck has left nearly three daughters to the 

next generation (2.52 in LL, 3.24 in HL). In both lines, the effective number of ancestor 

genomes still present in the genetic pool of the generation was around 8 from the reference 

population of 1995 to that of 2001. Inbreeding in HH was always higher than in LL. The 

effect of inbreeding was significant (P<0.05) only on total fleece weight and live weight. The 

animals with the lowest inbreeding category produced a higher total fleece weight (P<0.05) 

than the others. The description of demography and the genetic structure in this study showed 

that in the two divergent lines, the similar management of reproducers was done during 8 

years of selection.  
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5.1 Introduction 

 
Parameters derived from the probability of gene origin are very useful for describing a 

population structure after a small number of generations and the gene origin approach may be 

used in selection experiments analysis (Rochambeau et al., 1989). 

 

Owing to the fact that selection experiments with rabbits are generally carried out in separated 

generations, it is interesting to achieve a demographic analysis in a population that has been 

selected in overlapping generations. Moreover, most natural and artificial populations have 

overlapping generations. In addition, breeding organisations are interested in utilising 

overlapping generation. 

 

Hill (1974) showed that in a population with discrete generations, the pattern of response can 

be described and predicted adequately by just the mean performance of the group of animals 

born in the current generation; but with overlapping generations it is necessary to describe the 

performance of all age groups present in the population at any time. 

 

In chapter 2, observations from the divergent selection experiment on total fleece weight in 

Angora rabbits were described without explaining the reasons of variations in the genetic 

trends. Here we describe the selection differential in which the posterior estimated breeding 

value (EBV) of selection candidates, theoretical and real parents will be compared. 

 

The main aim of this chapter were i) to describe the demography and genetic structure in two 

divergent selected lines of French Angora rabbits with overlapping generations, ii) to describe 

the effects of an increase in inbreeding during an experiment of divergent selection and iii) to 

analyse the selection differential for the selection criterion total fleece weight (TFW) and for 

the correlated response of live body weight (LW). 
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5.2 Materials and methods 

 

5.2.1 Longevity 
 

The total number of live animals in the first wool harvest was 1114 and decreased to 942 (236 

male, 675 female) in the second wool harvest. In French Angora rabbit production, bucks are 

maintained in the herd only for the purpose of reproduction and they do not have any role in 

the production of wool. Therefore, longevity was studied only for female animals and the 

variable analysed was the total number of harvest during the life. The numbers of live females 

according to birth year and harvest number are shown in Table 5.1. If a female was still living 

after the twelfth harvest, its record was censored. For females born in 1999 and 2000, their 

records were also censored if the animals were still living after the eighth and the fifth harvest 

respectively, due to limited number of cages in the experimental unit. Longevity data were 

analysed using the ‘Survival kit’, a set of FORTRAN programmes(Ducrocq, 1994). The fixed 

effects included in the model were the selection group (2 levels: low and high lines), 

inbreeding class (4 levels: quartiles of the inbreeding coefficient distribution within each 

cohort), the year-season of harvest (37 levels from winter 1995 to winter 2001), the 

reproduction status (3 levels: no reproduction, females inseminated and females with 

litters).The two latter effects were assumed to be time dependant with changes at each 

harvest. The Weibull programme (Ducrocq et al., 1988) was used to fit the data. Likelihood 

ratio tests of fixed effects were obtained by comparing the full model with reduced models 

explaining one effect at a time.  
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Table 5.1: Number of female animals used for estimation of longevity. 
 

Birth Year Group Harvest Number 
    1 2 3 4 5 6 7 8 9 10 11 12

1995 Low 52 51 48 45 40 38 32 31 26 21 15 13
 High 52 49 47 40 32 29 26 22 19 17 15 11
              

1996 Low 42 42 41 39 32 29 27 23 24 19 16 11
 High 38 37 36 31 30 22 18 11 11 8 6 6
              

1997 Low 41 22 21 21 20 20 17 14 12 12 11 7
 High 50 40 33 30 27 25 21 19 14 11 8 8
              

1998 Low 51 42 41 34 29 26 21 16 15 8 4 1
 High 49 46 42 38 32 29 29 26 12 9 6 5
              

1999 Low 64 45 42 34 29 26 22 12    
 High 64 54 51 44 42 40 29 18    
              

2000 Low 38 29 26 23 15    
 High 49 38 31 29 22    
              

2001 Low 89 83 76 69 62 55 44 33 22 18 14 7
  High 101 97 89 82 73 62 50 39 34 29 25 13

 

5.2.2 Pedigree information 
 

To characterise the structure of the population, the following parameters were analysed: 

(1) Generation interval: This is the average age of parents at the birth of their useful offspring. 

We computed this for the four pathways (buck-son, buck-daughter, doe-son and doe-

daughter) using birth dates of animals together with those of their bucks and does. The effects 

of the year of birth and the selected line within year were studied with GLM procedure of 

SAS (2001). This parameter has been calculated for parents of 942 animals (male and female) 

alive in the second harvest. 

 

(2) The probability of gene origin was calculated from pedigree information using ENDOG 

v3.2 (Gutierrez and Goyache, 2005) and PEDIG (Boichard, 2002) softwares. The following 

statistics were computed: number of ancestors, effective number of ancestors and number of 

ancestors explaining 50 percent of the genetic variability. Size of population, base population 
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(one or more unknown parents) and the number of animals in the reference population were 

1250, 55 and 1195, respectively.  

 

The expected marginal contribution of the ancestors contributing the most in the whole 

population was computed with ENDOG software according to (Boichard et al., 1997) and 

using the whole known pedigree dataset as the reference population. However, to compute the 

effective number of ancestors (fa) we used as the reference population the animals born in 

each year.  

 

(3) Effective population size (Ne) is defined according to Wright (Wright, 1931) as the 

number of individuals that would give rise to the calculated rate of inbreeding if they bred in 

the manner of the idealised population. Ne of a population was estimated in two ways. As a 

first estimation, Nef  was calculated from the evolution of the inbreeding coefficient (Nei and 

Tajima, 1981): 

 

ˆ
ˆ2f

gNe
F

=
Δ

 

 

 

Where g is the number of cohorts (8) divided by generation intervals –therefore g is the 

number of generation-, and  is the relative rate of increase of inbreeding from initial 

population to the last cohort. 

F̂Δ

 

For a second estimation, Neh was calculated through the parameters of familial structure 

according to (Hill, 1972) as follows: 
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Where M and F are, respectively, the numbers of adult males and females with offspring and 

L the average (in year) of the generation intervals calculated for the four pathways. The 

parameter Vmm (Vmf) is the variance of the number of male progeny from a male (female) 

parent, and Vmf (Vff) is the same variance for female progeny. Let the covariance of the 

number of male and female progeny from each male parent be Cmmfm and from each female be 

Cfmff.  

 

5.2.3 Inbreeding 
 
The individual inbreeding coefficient (F) defined as the probability that an individual has two 

identical alleles by descent was computed for each animal using the FORTRAN program 

vanrad from PEDIG software (Boichard, 2002). Previous experimental work has shown that 

inbreeding depression tends to be linear with respect to the level of inbreeding (Falconer, 

1981). To confirm this applied generalisation, inbreeding of the animal was categorised into 4 

discrete categories (Table 5.2). Category assignments were based on the quartiles of the 

distribution of inbreeding within each cohort. Total fleece weight, LW, bristle length (BL), 

down length (DL), bristle diameter (BD), mean fibre diameter (FD) and secondary to primary 

follicle ratio (SP) were analysed by least squares procedures (SAS, 2001) using the effects of 

inbreeding category and fixed effects. Live weight was considered as a covariate for TFW 

analysis. Live weight analysed by the same model without covariate. Fixed effects of above 

traits were the same as described previously (Rafat et al., 2007a; Rafat et al., 2007b). 

 
Table 5.2: Four discrete categories of inbreeding (I) for each year of birth. 

 
 Categories 

Year of birth 1 2 3 4 
1994 I <= 0.01680 0.01680 < I <= 0.02513 0.02513 < I <= 0.03045 0.03045 < I       
1995 I <= 0.02711 0.02711 < I <= 0.04785 0.04785 < I <= 0.07454  0.07454 < I        
1996 I <= 0.03194 0.03194 < I <= 0.05661 0.05661 < I <= 0.09105 0.09105 < I         
1997 I <= 0.05183 0.05183 < I <= 0.07425 0.07425 < I <= 0.08269 0.08269 < I         
1998 I <= 0.07483 0.07483 <  I <= 0.08339 0.08339 <  I <= 0.10181 0.10181 <  I        
1999 I <= 0.09005 0.09005 <  I <= 0.10181 0.10181 <  I <= 0.12638 0.12638 <  I        
2000 I <= 0.12134 0.12134 < I <= 0.13262 0.13262 < I <= 0.14676 0.14676 < I         
2001 I <= 0.12621 0.12621 < I <= 0.14545 0.14545 < I <= 0.15186 0.15186 < I         
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5.2.4 Differential of selection 
 

We described EBV for candidates of selection, theoretical parents and parents. In each year 

all live animals during the 6 months-period from first April of the current year backward to 

first October of the previous year were considered as candidates of selection. Theoretical 

parents were defined as the 5 males and 20 females that had the best and the worst EBV for 

TFW in the HL and LL, respectively. The parents were animals that were utilised as breeding 

animals during the experiment. The realised differential was calculated as EBV of the parent 

minus those of candidates of selection. The theoretical differential was calculated as the EBV 

of the theoretical parent minus those of candidates of selection. Numbers of animals for each 

of the mentioned animals are shown in Table 5.3. 

 
Table 5.3: Number of candidates of selection and parents. Number of theoretical parents was 25 including 5 
male and 20 female in each year. 

 
  Year 
  1994 1995 1996 1997 1998 1999 2000 2001
Candidates          
     Low    

Male 16 14 13 22 10 17 23 19
Female 106 106 63 83 68 69 77 68

Σ 122 120 76 105 78 86 100 87
     High         

Male 16 16 9 14 21 22 26 24
Female 107 99 40 66 64 49 98 91

Σ 123 115 49 80 85 71 124 115
Parents     
     Low    

Male 5 5 5 2 8 10 9 11
Female 9 15 13 6 18 22 19 27

Σ 14 20 18 8 26 32 28 38
     High         

Male 4 6 5 3 8 11 7 10 
Female 5 16 15 5 16 25 18 26 

Σ 9 22 20 8 24 36 25 36 
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5.3 Results and discussions 

5.3.1 Longevity 
 
There was no significant difference between LL and HL in number of live animals. 

Significant effects of both time dependant effects: year-harvest season and reproduction were 

observed. An significant effect of inbreeding (P<0.05) was also observed with a 30 % higher 

risk factor in the highest class of inbreeding coefficient than in the other classes.  

5.3.2 Generation intervals 
 

The distribution of year of birth of reproducers in 4 ways of sire-buck, sire-daughter, dam-

buck and dam-daughter are shown in Figure 5.1. Reproducers of each cohort have the parents 

which have been born during nearly last three years. In the last cohorts, reproducers become 

younger. Generation intervals for the four pathways are shown in Figure 2.2. In LL, the 

decrease was not uniform through pathways and during the two last years, parents of females 

remained relatively more aged. In contrast, in HL the decrease was uniform. The means of 

generation intervals were 562 and 601 days in LL and HL, respectively. There were 8 cohorts 

(1994-2001), and then the number of generations for LL and HL were 3.90 and 3.64, 

respectively.  
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Low group  High group 
 Sire-buck way 

9      99  9       
8      99  8   96   99 
7     98 99  7   96   99 
6    97 98 99  6 94  96  98 99 
5   96 97 98 99  5 93  96 97 98 99 
4 94  96 97 98 99  4 93  95 97 98 99 
3 94 95 96 96 98 99  3 92 95 95 97 98 99 
2 93 92 96 96 98 99  2 92 95 95 97 98 98 
1 92 92 95 95 98 98  1 92 95 95 97 97 98 
 1995 1996 1997 1998 1999 2000   1995 1996 1997 1998 1999 2000 
 Sire-daughter way 

20        20     98  
19      99  19     98  
18      99  18     98  
17      99  17   96  98  
16      99  16   96 97 98  
15      99  15   96 97 98  
14    97  99  14  95 96 97 98  
13    97  99  13 93 95 96 97 98 99 
12   96 97  99  12 93 95 95 97 97 99 
11  95 96 97  99  11 93 95 95 97 97 99 
10 94 95 96 97 98 99  10 93 95 95 97 97 99 
9 94 95 96 97 98 99  9 93 95 95 97 97 99 
8 94 95 96 97 98 99  8 93 95 95 97 97 99 
7 92 95 96 97 98 99  7 93 95 95 97 97 99 
6 92 95 96 97 98 99  6 93 95 95 97 97 99 
5 92 95 96 97 98 99  5 93 95 95 97 97 99 
4 92 95 96 97 98 99  4 93 95 95 97 97 99 
3 92 95 96 96 98 98  3 93 95 95 97 96 99 
2 92 92 94 96 97 98  2 92 95 95 97 96 98 
1 92 92 94 96 97 98  1 92 93 95 96 96 98 
 1995 1996 1997 1998 1999 2000   1995 1996 1997 1998 1999 2000 
 Dam-buck way 

9      99  9       
8      99  8   95   99 
7     98 99  7   95   99 
6    97 98 98  6 93  95  98 99 
5   96 97 97 98  5 93  95 97 98 99 
4 93  96 97 97 97  4 93  95 97 98 98 
3 93 94 96 96 97 97  3 93 95 95 97 97 98 
2 92 94 95 96 96 97  2 92 95 94 96 97 98 
1 92 93 95 96 96 97  1 91 93 94 96 97 98 
 1995 1996 1997 1998 1999 2000   1995 1996 1997 1998 1999 2000 
 Dam-daughter way 

20        20     98  
19      99  19     98  
18      99  18     98  
17      99  17   96  98  
16      99  16   96 97 98  
15      99  15   96 97 98  
14    97  99  14  95 96 97 98  
13    97  99  13 94 95 96 97 98 99 
12   96 97  99  12 93 95 96 97 97 99 
11  94 96 97  99  11 93 95 96 97 97 99 
10 94 94 96 97 98 98  10 92 95 96 97 97 99 
9 94 94 96 97 98 98  9 92 95 96 97 97 99 
8 94 94 95 97 97 98  8 92 95 96 97 97 99 
7 94 94 95 97 97 98  7 92 95 96 97 97 99 
6 94 94 95 97 97 98  6 92 95 96 97 97 99 
5 94 94 95 97 97 98  5 92 93 95 97 97 98 
4 94 93 95 97 97 97  4 91 93 95 96 97 98 
3 93 93 95 96 97 97  3 91 93 95 96 96 98 
2 93 93 95 96 97 97  2 91 93 95 96 96 98 
1 93 93 95 96 96 97  1 91 93 94 96 95 98 
 1995 1996 1997 1998 1999 2000   1995 1996 1997 1998 1999 2000 

 
Figure 5.1: The distribution of year of birth of reproducers in 4 ways of sire-buck, 
sire-daughter, dam-buck and dam-daughter. The reproducers of each cohort that has 
been born in the same year are shown with different colour. 
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Figure 5.2: Generation intervals for the four pathways in the pedigree of the two lines of Angora rabbits. 
 
 
 
The effects of birth year and line within birth year were significant (Figure. 2.3.). Generation 

intervals decreased significantly from 1995 to 2000 (P<0.05). The difference between LL and 

HL was not significant except for animals born in 1995 where HL animals were more aged 

than LL ones (P<0.05).  
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a, b, c significant difference (P<0.05) 
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Figure 5.3: Effect of year of birth and line intra year of birth on generation intervals. 

 
 

Due to selection, offspring of young parents had an above-average breeding value. Long-term 

genetic contribution of the youngest age classes were therefore higher than expected from the 

age class distribution of parents, and generation interval was shorter than the average age of 

parents at birth of their offspring. Bijma and Woolliams (1999) showed that due to an 

increased selective advantage of offspring of young parents, the generation interval decreased 
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with increasing heritability and selection intensity. There are not any references on generation 

intervals in the Angora rabbit. Data described for meat rabbits in the literature, show a 

generation interval value much smaller than in the present study. Ramon et al. (1992) 

analysing a synthetic meat strain and Rochambeau et al. (1992), analysing a Rex rabbit strain, 

obtained an average generation interval of 0.88 and 1.04 years respectively.  

 

5.3.3  Effective population size  
 

Table 5.4 shows the family size of both lines. The number of daughters in the high line was 

very variable. The number of animals per generation was higher in HL than in LL.  Each buck 

has left nearly three daughters to the next generation (2.52 in LL, 3.24 in HL). Each doe has 

left about two daughters (1.54 in LL, 1.72 in HL). The variance of family size was higher in 

HL than in LL.  

 
 

Table 5.4: Family size in the low and high lines. 
 

 Means Variance 
 Low High Low High 
Number of sons per buck  1.10 1.28 0.71 0.99 
                  daughters per buck 2.52 3.24 5.51 10.19 
Covariance daughters/sons per buck - - 0.73 0.54 
Number of sons per doe 0.67 0.69 0.53 0.56 
                  daughters per doe 1.54 1.72 1.35 1.64 
Covariance daughters/sons per doe - - -0.21 -0.18 

 
 

The observed inbreeding effective population size Nef and the observed familial structure 

effective population size Neh do not converge to the same measure of effective population size 

(Nef=47 and Neh=31 for LL; Nef=29 and Neh=33 for HL). Genetic variability seems to be 

better maintained in LL than in HL. The effective population size of LL (Nef) is larger. 
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5.3.4 Probability of gene origin  
 

Tables 5.5 and 5.6 summarise the expected contribution of the ancestors explaining 50% of 

genetic variability in both lines. In both lines, the total number of major ancestors remains 

steady and the effective number of ancestors still present in the genetic pool was around 8 

from the reference population of 1995 to that of 2001. In LL, one male (92243) contributed 

the most in all reference populations except in 1996 and 1997. In HL, four different males 

contributed the most for all reference populations but one male was the main ancestor in 

1994, 1997, 1999 and 2000 cohorts.  

 

5.3.5 Inbreeding  
 
Figure 2.4 shows the increase of inbreeding (F) in 942 live animals at second harvest per year 

of birth. Inbreeding in HH was always higher than in LL. Least square means of studied traits 

are shown in Table 5.7. The effect of inbreeding level was significant (P<0.05) only on TFW 

and LW. The animals with the lowest inbreeding coefficients produced a higher TFW 

(P<0.05) than the others. On LW, the significant effect of inbreeding was variable and no 

tendency with an increase of inbreeding was observed. There was a decrease in BL, DL, BD, 

FD and SP with an increase of F during 4 categories, but these differences were not 

significant. 

 
In sheep, a decline in fleece weight for an increase of inbreeding has been observed 

(Ercanbrack and Knight, 1991) and thus is in agreement with our result. Wiener et al. (1994) 

showed that inbreeding of the individual significantly and linearly reduced fleece weight in 

sheep.  
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Table 5.5: Parameters characterising the genetic variability of low and high reference populations (animals born from 1994 to 2001 and with both parents known) based on pedigree 
information. 

 
 Reference population a 

 Low High 
 1994 1995 1996 1997 1998 1999 2000 2001 1994 1995 1996 1997 1998 1999 2000 2001 
 
Number of 
animals 28 65 53 32 60 63 48 106 11 63 47 59 56 77 57 124 
    in the 
reference po    p.                  
 
Number of 
ancestors 14 15 13 12 14 14 13 12 6 18 14 12 15 17 13 15 
 
Effective 
number 7 9 7 6 8 9 8 8 4 7 7 7 7 8 8 8 
    of ancestors ( 
fa)                 
 
Number of 
ancestors 3 4 3 3 3 4 3 3 2 3 3 3 3 3 3 3 
    explaining 
50%                 
 
Expected 
contribution 
  of the ancestor  

30,4%
(92243) 

20,0% 
(92243) 

23,6%
(95110)

28,1%
(96024)

21,5%
(92243)

22,5%
(92243)

23,1%
(92243)

22,7%
(92243)

36,4%
(92203)

27,8%
(93015)

22,3%
(95077)

21,1%
(92203)

25,9%
(97033)

19,1%
(92203)

18,9%
(92203)

20,5% 
(93015) 

  contributing the 
most,                  
  (ancestor)                                  
 
 a Each time a particular population have been chosen such as the reference population, i.e., low group, cohort 1994; low group, 1995 et …
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Table 5.6: Expected contributions (%) of the ancestors explaining 50 % genetic variability in the each reference 
population 
 
        Reference population 
    Low 

N Animal Sex Birth 1994 1995 1996 1997 1998 1999 2000 2001 
1 89047 male 1989 _ 11,6 _ _ _ _ _ _ 
2 89076 female 1989 _ 13,5 _ _ _ _ _ _ 
3 91105 male 1991 9,8 _ _ _ _ _ _ _ 
4 92153 male 1992 10,7 _ _ _ _ _ _ _ 
5 92211 male 1992 _ _ _ _ _ 9,4 _ _ 
6 92221 male 1993 _ 11,5 17,0 _ 15,0 _ _ _ 
7 92243 male 1992 30,4 20,0 16,3 20,3 21,5 22,5 23,1 22,7 
8 93147 female 1993 _ _ _ 11,7 _ _ _ _ 
9 95110 male 1995 _ _ 23,6 _ _ _ _ _ 

10 96024 male 1996 _ _ _ 28,1 16,1 13,0 15,6 15,0 
11 96084 male 1996 _ _ _ _ _ 14,4 16,0 16,5 

 Σ   50,9 56,6 56,9 60,1 52,6 59,3 54,7 54,2 
        High 

1 92077 male 1992 _ _ _ 16,5 _ _ _ _ 
2 92203 male 1992 36,4 15,6 _ 21,1 _ 19,1 18,9 18,2 
3 92420 male 1992 _ _ _ _ _ _ _ 13,4 
4 93015 male 1993 _ 27,8 21,8 _ _ 18,7 18,3 20,5 
5 93034 female 1993 22,7 _ _ _ _ _ _ _ 
6 93057 female 1993 _ 9,5 _ 16,5 _ _ _ _ 
7 95017 male 1995 _ _ _ _ 15 13,9 13,9 _ 
8 95021 male 1995 _ _ 13,8 _ _ _ _ _ 
9 95077 male 1995 _ _ 22,3 _ 13,4 _ _ _ 

10 97033 male 1997 _ _ _ _ 25,9 _ _ _ 
  Σ     59,1 52,9 57,9 54,1 54,3 51,7 51,1 52,1 
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Figure 5.4: Increase of inbreeding (F) in 942 live animals at second harvest by year of birth. 
 



Table 5.7: Least square means for effect of inbreeding level on total fleece weight (TFW), live weight (LW), 
bristle length (BL), down length (DL), bristle diameter (BD), mean fibre diameter (FD) and secondary to 
primary follicle ratio (S/P) 

  TFW  LW BL DL BD FD S/P       

  1994-2001 2001 1994-2001 2001 1994-2001 1994-2001 2001 2001 2001 
Quartiles           

1 195,0a 227,5a 3940a 3810ab 97,3 62,51 46,63 14,86 49,83 
2 187,9b 208,7b 3862b 3836ab 96,8 62,38 45,22 15,15 48,53 
3 187,6b 191,4c 3932a 3809b 96,1 62,44 45,96 15,18 45,12 
4 184,0b 202,1bc 3969a 3949a 96,5 61,42 46,04 15,47 42,87 

a, b, c Within each column, least square means without common superscripts differ (P < 0.05). 
 

5.3.6 Differential of selection 
 

We studied the differential of selection by comparing the posterior EBV of the candidates, 

theoretical parents and parents. Figure 5.5 shows EBV of TFW in the candidates of selection, 

parents and theoretical parents and Figure 5.6 shows the realised and theoretical differential of 

EBV for TFW within each line. In HL, we observed a maximum differential of selection in 

year 1995; then it decreased until 1999 and peaked in 2000. The evolution of the genetic level 

of the candidates of HL is explained by that of the differential. In HL little or no deviation 

existed between the theoretical and realized differential. In LL, the theoretical differentials 

was stronger and especially more constant. On the contrary, the realised differential did not 

follow theoretical differential except in 1997 and 1998. Evolution of the genetic level of the 

candidates was again explained by that of the differential.  

 

Figure 5.7 shows EBV of LW in the candidates of selection, parents and theoretical parents 

and figure 5.8 shows the differential of EBV for LW within each line. In HL, the candidates 

were always lighter. The realised differential was positive at the beginning and at the end of 

experiment. At the beginning the theoretical differential went to the same direction and at the 

end there was no more theoretical differential. A realised differential of LL was nearly zero 

while theoretical differential was negative at the beginning and in the end of experiment. 

 

Selection for animals with high EBV for TFW caused to select animals with low EBV for 

LW. In HL, animals with high EBV of TFW had low EBV of LW. In LL, when animals with 

low EBV of TFW have been selected, they had higher EBV of LW than HH. It seems that 

there were two different mechanisms explaining the relations between wool and body weights 

over the experiment. 
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Figure 5.5: Estimated breeding value (EBV) of TFW in the candidates of selection, parents and theoretical 
parents. Year: for candidates, year is the date from first day of October until first day of April of the next year; 

for parents, year is the year of birth 
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Figure 5.6: Theoretical and realised differential1 of estimated breeding value for total fleece weight within 
each year2.1 Realised differential (R) = Parents-andidates; Theoretical differential (T) =Theoretical parents-
candidates.2 Year: year for candidates is the date from first day of October until first day of April of the next; 
year for parents is the year of birth. 
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Figure 5.7: Estimated breeding value (EBV) of live weight in the candidates of selection, parents and theoretical 
parents. Year: for candidates, year is the date from first day of October until first day of April of the next year ; 

for parents, year is the year of birth 
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Figure 5.8: Theoretical and realised differential1 of estimated breeding value for body weight within each year2. 1 

Realised differential (R) = Parents-candidates; Theoretical differential (T) =Theoretical parents-candidates.2 

Year: year for candidates is the date from first day of October until first day of April of the next; year for parents 
is the year of birth. 
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An hypothesis supported by the observation of variations in EBV of TFW and LW from a 

period of time from 1994 until 1997 and thereafter. In the first period, EBV of LW decreases 

in HH with increasing of EBV of TFW, while EBV of LW increases in LL. After the year of 

1997, in the second period, EBV of LW increased in HL and decreased in LL. During the 

second period, the effect of body surface is important while in the first one, rabbits with high 

EBV for TFW utilised their body reserves efficiently to produce wool. The similar 

phenomenon has been reported in sheep by Li et al. (2006). Adams et al. (2006) showed that 

there is a negative genetic correlation between fleece weight and subcutaneous fat depth in 

Merinos and animals with high EBV of clean fleece weight had 20 % less fat in their body. In 

sheep, there is evidence that selection for an even rate of wool growth throughout the year 

may also affect muscle and fat metabolism (Adams et al., 2006). Negative genetic correlation 

between -0.20 and -0.44 have been observed between follicle density and live weight (Adams 

and Cronje, 2003). Increased fibre growth rate requires an increase in protein synthesis rate in 

the skin, which in turn may affect whole body protein turnover rate and the sensivity of 

tissues to insulin (Adams and Cronje, 2003). Lee et al. (2002) found a genetic correlation of 

0.40 between fibre diameter and digestible organic matter intake under field condition, and 

suggested that selection for reduced fibre diameter could decrease feed intake. In our study we 

had not the data of feed intake and we did not measured fibre diameter in all of animals. 

Therefore it is not possible to compare the results that have been found in wool sheep with 

results of Angora rabbit. In the second period, after the year of 1997, EBV of LW increases in 

HL and decreases in LL indicating that effect of body surface is important. It seems there is 

an interaction between two physiological mechanisms. After the year of 1997, relationship 

between TFW and LW has been changed. 

 

5.3.7 Conclusion 
 
During the 8 years of selection, they were only slight differences in the management of the 

two divergent lines. Generation intervals and inbreeding increase were lower in LL than in 

HL The increase of inbreeding during the experiment had a negative effect on total fleece 

weight.  

The relationship between estimated breeding values of total fleece weight and body weight 

was studied and a hypothesis for the observed results proposed. The observed selection 

differentials were lower than expected due to the breeding animal management rules in order 

to control inbreeding increase. There was more genetic potential for exploitation during the 
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experiment of divergent selection, but the inbreeding management caused that we can not 

benefit of this potential. 
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6 Conclusion 
 
RÉSUMÉ 
 
Cette thèse analyse une expérience de sélection divergente sur le poids de la toison chez le 

lapin Angora. Cette expérience clos trente années de recherches conduites par l’INRA sur 

l'amélioration génétique de cet animal. L'analyse a porté sur les récoltes de poils d'ordre 

supérieur à deux, chez les femelles. Un modèle à répétabilité a été utilisé pour analyser les 

récoltes successives d'un animal. Les analyses démographiques et génétiques ont montré que 

les souches hautes et basses ont été conduites de la même manière pendant 8 ans. La sélection 

sur le poids de la toison a été efficace et la différence entre les souches atteignait 3 écarts 

types génétiques pour la dernière cohorte. Cette sélection s'est accompagnée d'une 

amélioration du poids de la première qualité de poil (WAJ1) et de l'homogénéité (HOM). Il 

semble que les femelles qui produisent le plus de poils aient un poids corporel inférieur aux 

femelles qui produisent peu de poils. Par ailleurs, la sélection pour le poids de la toison s'est 

accompagnée d'une augmentation de la longueur des jarres, du rapport S/P et du facteur de 

confort. Dans le même temps, la compression, la résilience, le diamètre des jarres et le 

diamètre moyen des fibres ont diminué. L'utilisation d'un OFDA a permis de décrire de 

nouvelles caractéristiques de la toison du lapin Angora, comme le diamètre des fibres et son 

coefficient de variation. Ces souches constituent un matériel de choix pour étudier les 

conséquences biologiques d'une telle sélection. 

 

Notre thèse apporte des résultats originaux avec tout d'abord l'estimation des progrès 

génétiques réalisés après une experience de sélection divergente sur le poids de la toison chez 

le lapin Angora. La réponse sur les composantes quantitatives et qualitatives de la toison a 

aussi été étudiée. Ensuite, nous avons utilisé une méthode originale (OFDA) de mesures des 

diamètres des poils. Cette méthode permet notamment d'estimer beaucoup plus rapidement le 

rapport S/P. Le lapin Angora est un exemple intéressant d'animal à double pelage chez lequel 

on cherche à augmenter à la fois les jarres et les duvets. 

 

Cette thèse ouvre plusieurs perspectives qui nécessitent de nouveaux travaux de recherche. Le 

modèle à répétabilité est simple à utiliser mais un modèle à régression aléatoire permettrait de 

mieux modéliser les récoltes de poils successives. Par ailleurs, l'estimation des paramètres 

génétiques, puis celle du progrès génétique n'est pas optimale. L'incertitude qui pèsent sur les 

premières estimations n'est pas prise en compte dans la seconde étape. Les méthodes MCMC 
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couplées à une approche bayésienne permettent d'inférer la distribution a posteriori de la 

réponse à la sélection. Ensuite les liaisons complexes entre le poids de toison et le poids 

corporel nécessitent d'être approfondies ; nous faisons l'hypothèse que le fonctionnement 

métabolique des animaux de la souche haute est différent de celui de la souche basse. Enfin 

cette thèse montre aux producteurs comment accroître la poids de la toison dans une 

population de lapin Angora conduite en générations chevauchantes. 
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The Angora rabbit is exploited to produce a fleece, which is then valued by the textile 

industry. The genetic improvement and the breeding of this animal have been studied by 

INRA for more than thirty years and this thesis was the last research work of INRA on 

Angora rabbit. To analyze the efficiency of selection on the total fleece weight and the 

correlated response on the other characters, an experiment of divergent selection began on this 

trait on 1994. After 8 years of divergent selection, a herd of females of the high line and a 

herd of females of the low line has been created in 2001. These animals entered production 

and they produced more than 12 wool harvests. Objectives of the experiment of selection 

divergent were to assess genetic parameter estimates for TFW and correlated traits; and to get 

an experience on management of a population of angora rabbits under selection with 

overlapping generations.  

 

The thesis was begun with construction of necessary data files. After adjustments of incorrect 

data, for finding a model for genetic analyse, factors of variation were studied. Among fixed 

effects, number of harvest was the most important. The main question in that first phase of the 

study was: which harvest number can be considered such as an adult fleece?  Results showed 

that i) wool production in the first and second harvests must be considered separately from 

higher harvest numbers; ii) production data of male and female belongs to two different 

populations and only data from females were analysed in the present work. In the description 

phase, levels of each variable were distinguished. Some of them needed to be gathered for 

following steps of analysis. For example, the number of weaned rabbits regrouped to fewer 

levels because to avoid classes with a too weak effective to be statistically significant 

Normality of traits has been studied for possibility the use of ANOVA.  

 

After definition of fixed effects, the genetic analysis was made. There were two types of 

variables: repeated and unrepeated variables. For estimation of genetics parameters, in this 

study the repeatability model was used in which wool harvests from 3rd until 12th have been 

considered as a repeated trait. The repeatability model has been employed for the analysis of 

data when multiple measurements on the same trait are recorded on an individual (Interbull, 

2000). In this model, the phenotypic variance comprises the genetic (additive and non-

additive) variance, permanent environmental variance and temporary environmental variance. 

For an animal, the repeatability model usually assumes a genetic correlation of unity between 

all pairs of records, equal variance for all records and equal environmental correlation 

between all pairs of record. In practice, some of these assumptions do not hold in the analysis 

117 



of real data (Mrode, 2005). For using of the repeatability model, firstly, wool harvest numbers 

from 3 to 12 were considered as separated traits and genetic correlations between them were 

estimated. All of them being higher than 0.70 (data not shown), the repeatability model was 

considered as acceptable. As there were 12 different traits describing the quantity and the 

quality of wool production at each harvest reaching convergence when estimating genetic 

parameters was not possible. Furthermore, as no traits were measured at each wool harvest on 

all animals, traits were analysed in three datasets. The first one includes 4 traits: TFW, WAJ1, 

WAW and HOM; the second one a group of bivariate analyses with TFW and one of each of 

the body weights measured in the young age before the second wool harvest, and the third one 

included nine traits: TFW, BL, DL, COM, RES, FD, BD, CF and SP (with 9LW such as 

covariate for TFW) always measured on the fifth and the seventh wool harvest.. 

 

Demography analysis and genetic description helped us for a better understanding of selection 

process during time and over generations. Description of demography and the genetic 

structure in this study showed that in the two divergent lines, the similar management of 

reproducers has been done successfully during 8 years of selection. The increase of 

inbreeding during experiment had negative effect on total fleece weight.  

 

Selection for high and low total fleece weight was successfully performed in Angora rabbits 

and a divergence of three genetic standard deviations was observed between the high and low 

lines after 8 years of selection. There was more genetic potential for exploitation during the 

experiment of divergent selection, but the inbreeding management caused that we can not 

benefit of this potential. Selection for TFW significantly increased WAJ1 that resulted from 

the highly positive genetic correlation between TFW and WAJ1. It is important to note that 

selection for easily measurable total fleece weight has a general beneficial effect on fleece 

quality as the WAJ1 quality is the highest valuable part of the fleece of the French angora 

rabbit. These genetically diverse lines are suitable for subsequent detailed studies of 

biological and physiological changes of the different fleece components brought about by 

selection on total fleece weight. In French Angora rabbit, the traits of WAJ1 and HOM are 

among the most important quality traits. A high quality fleece having a good ability to 

produce a fluffy yarn was characterised by a high weight of quality WAJ1 and high fleece 

homogeneity. Our results showed that with selection for TFW, there is a positive and large 

response on WAJ1 and HOM, because of their genetic correlations with TFW. This positive 

effect indicates that selection for TFW do not have a deleterious effect on quality traits. All 
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these characteristics were observed on the high line indicating that selection for total fleece 

weight results in an improvement of the quality of the fleece. 

 

When traits are genetically correlated (i.e., breeding values for those traits are correlated), 

selection solely on one will result in a correlated change in the second. Such a change in the 

unselected character is called a correlated response. The relationship between estimated 

breeding values of total fleece weight and body weight was studied and a hypothesis for the 

observed results was proposed. When we select the animals with maximum EBV of TFW in 

HL, they have a lower EBV of LW in comparison to LL in which animals have been selected 

for minimum of EBV of TFW.  

 

Selection for total fleece weight significantly increased bristle length, secondary to primary 

follicle ratio and comfort factor and decreased compression, resilience, bristle diameter, and 

average fibre diameter. These changes resulted from moderate to high genetic correlations 

between total fleece weight and bristle length, and between fibre dimensions (BL, DL, AFD, 

and BD) and secondary to primary follicle ratio, comfort factor, compression and resilience. 

Thus, selection for increasing total fleece weight results in an increase of both quantitative 

and qualitative traits of wool production in the French Angora rabbit. Measurement of total 

fleece weight is simple and easy at the farm level. Selection for this trait has positive effects 

on fleece characteristics such as bristle length, follicle population and fibre diameter. 

 
By using the OFDA (Optical Fibre Diameter Analyser) methodology, some new 

characteristics of Angora fibres were described which are interesting to use in description of 

Angora wool. This part of the study described precisely Angora fibre characteristics 

measurements with OFDA methodology and its variations according to age and season in two 

divergent selected groups for total fleece weight in the French Angora rabbit. The major 

changes in Angora wool characteristics from 8 to 105 weeks of age were a decrease in 

compression and CF, and an increase in FD, CVFD, FDA and CURV. Effect of harvest 

season was significant on some fibre characteristics. The OFDA methodology is an interesting 

alternative to evaluate important Angora fibres characteristics such as fibre diameter, CV of 

fibre diameter or bristle content through measuring of comfort or prickle factor. However, 

OFDA is not adapted for measuring opacity and/or size of medulla in Angora fibre and needs 

a new definition or a special calibration for doing this. Another parameter, spinning fineness 
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needs to be redefined and adapted for Angora. Similarly, more studies must be done for using 

curvature measurements on Angora fibre. 

 
Our work contributes to the research in two areas, which are estimation of genetic parameters 

with multivariate models of best linear unbiased prediction of breeding value and theoretical 

investigation of selection in populations with overlapping generations.  

 
These genetically diverse lines are suitable for subsequent detailed studies of biological and 

physiological changes of the different fleece components brought about by selection on total 

fleece weight. This positive effect indicates that selection for TFW do not have a deleterious 

effect on quality traits. All these characteristics were observed on the high line indicating that 

selection for total fleece weight results in an improvement of the quality of the fleece.  

Our results showed that with selection for TFW, there is a positive response on WAJ1 and 

HOM, because of their genetic correlation with TFW.  

 

6.1 How do we improve the state of art? 

Estimated genetic parameters have given us a relatively precise prediction for expected 

responses to selection. Such estimates are population-specific and are often relevant to one 

generation of selection, despite their frequent use across a wide range of populations and for 

many rounds of selection. Selection experiments, where selection has been based on a single 

trait, have been used rarely in Angora rabbit. The major aim of this thesis was to check the 

prediction that selection response be effective. Much of studies that estimated genetic 

parameters in angora rabbits were not from selection experiments. Moreover, Utilisation of 

BLUP animal model in this thesis gives more results that are reliable.  

 

In Merino sheep, genetic parameters for most traits associated with wool production and 

quality have been precisely estimated from a large number of studies. However, realised 

responses to selection in wool-quality traits have been less extensively studied in Merinos. 

This thesis gives knowledge of these subjects in Angora rabbits. 

 

An IWTO method (IWTO-8-89) is defined for determining fibre diameter and percentage of 

medullated fibre in wool and other animal fibres, by using a projection microscope. 

Nevertheless, this method is time consuming, not widely used for measuring fleece 

composition or fibre diameter in angora and not very precise, as most angora fibres are 
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medullated and the fibre cross section shape is not circular. Allain 

(http://www.macaulay.ac.uk/europeanfibre/effnnew1da.htm) has proposed that OFDA 

apparatus might to be tested for angora. Number of samples, number of measured fibres per 

each sample and number of measured traits in our OFDA part of study is more complete than 

rarely similar studies. Moreover, our measurements with OFDA may be help to find an 

objective instrumental measurement of angora in practice.  

 

Also, the measurement of S/P ratio is long, expensive and time consuming and it requires 

histological treatment and analysis of skin samples. Our results have shown that an indirect 

measurements of S/P ratio derived from OFDA parameters such as AFD and/or CF could be 

achieved and thus providing an easy and rapid criteria for improving wool traits in Angora 

rabbits and other fibre-producing animals by extension. 

 

Most estimates of genetic parameters for wool production were concentrated on Merinos. 

These breeds are owning a single coat without any medullated fibres. Among double-coat 

animals such as cashmere goats, only inner-coat or downs are economically important. In the 

Angora rabbit, all types of fibres within the fleece have economic value and from this 

viewpoint, this animal has an exclusive situation among double-coat animals. In fibre-

producing animals, we are interesting to obtain genetic parameters of fibres that are produced 

by secondary follicles. Exceptionally in Angora rabbit, traits of bristles, such as diameter and 

length, are important in genetic studies. 

 

Limitations in multiple trait mixed model: During our genetic analysis, we utilised a set of 

analysis to cover all of the recorded traits. These analyses included a 4 and 9 multi trait 

analyses between wool traits and several set of bi-variable analyses between TFW and one of 

the body weights. Arriving to a convergence with all of the traits in the same time was not 

possible. Also, it is necessary to say that all of the traits were not recorded for all of the 

animals. 

 

6.2 Perspectives 

Subsequent to this thesis there are some research directions that deserve to be investigated. 
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Repeatability model. The basic assumption of the repeatability model utilised in this thesis 

was that repeated measurements were regarded as expression of the same trait over time. For 

an animal, the repeatability model usually assumes a genetic correlation of unity between all 

pairs of records, equal variance for all records and equal environmental correlation between 

all pairs of record. In practice, some of these assumptions do not hold in the analysis of real 

data (Mrode, 2005). For using of the repeatability model here, firstly we estimated genetic 

correlations between different harvest numbers of 3-12 and all of them were more than 0.70 

(data not shown). The main advantages of this model are its simplicity, fewer computation 

requirements and fewer parameters compared to a multivariate model.  

 

A next step would be the use of the random regression models in the comparison to the 

repeatability model in order to evaluated the bias between the two models. Random regression 

models can typically be used when a trait is expressed repeatedly, e.g. over time such as our 

study that each animal have 1-12 record of TFW. If the random effects are modeled as a 

function of time, then both the variance as the covariance between expressions at different 

times are modelled as a continuous function.  

 

MCMC: A natural application of animal models has been predictions of the genetic means of 

cohorts, for example, groups of individuals born in a given time internal such as a year or a 

generation. These predicted genetic means are typically computed as the average of the BLUP 

of the genetic value of the appropriate individuals. From these, genetic change can be 

expressed as, for example, the regression of the mean predicted additive genetic value on time 

or on appropriate cumulative selection differentials. In common with selection index, it is 

assumed in BLUP that the variances of the random effects or ratios thereof are known, so the 

predictions of breeding values and genetic means depend on such ratios. This, in turn, causes 

a dependency of the estimators of genetic change derived from ‘ animal’ models on the ratios 

of the variances of the random effects used as ‘priors’ for solving the mixed-model equations. 

This point was first noted by Thompson (1986) who showed that an estimator of realized 

heritability given by the ratio between the BLUP of total response and the total selection 

differential leads to estimates that are highly dependent on the value of heritability used as 

‘prior’ in the BLUP analysis. In view of this, it is reasonable to expect that the statistical 

properties of the BLUP estimator of response will depend on the method with which the 

‘prior’ heritability is estimated. The problem of exact inference about genetic change when 

variances are unknown has not been solved via classical statistical methods (Sorensen et al., 
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1994). However, this problem has a conceptually simple solution when framed in a Bayesian 

setting, as suggested by Sorensen and Johansson (1992). Application of the Bayesian 

approach to the analysis of selection experiments yields the marginal posterior distribution of 

response to selection, from which inferences about it can be made, irrespective of whether 

variances are unknown. In summary, the utilised methodology supposes that the genetic 

parameters (heritability and genetic correlations of the characters) are known. To appreciate 

the influence of the uncertainty, which presses on the genetic parameters on the answer to the 

selection, future work could consist in studying a methodology MCMC (Monte Carlo Markov 

Chain) to estimate simultaneously the genetic parameters and the response to selection. This 

methodology supplies besides a distribution a posterior with studied parameters.  
 
OFDA: For decision about of genetic improvement of Angora rabbit, we need to get more 

information about requirements of the textile industry about angora fibre characteristics, 

specially the traits that can be easily distinguished by OFDA.  

 

Relationship between total fleece weight and body weight : The consequence of selection 

for TFW on BW in Angora rabbit under various nutrition rations needs to be cleared in future 

researches. Hypothesis is that the animals with high potential of wool production have 

different requirements of nutrients in comparison of low potential animals. In other words, the 

intake of rabbits selected for increased fleece weight may be greater than of those selected for 

reduced fleece weight. Efficiency of production of wool to food in these two genotypes also 

might be studied. 

 

Applications for rabbit wool producers: This thesis provides the available data on genetic 

and phenotypic relationships between fleece weight, WAJ1, WAW1, HOM and live weight, 

and on genetic relationships between fleece weight, fibre diameter, BL, DL, BD, and SP, that 

could be applied practically by rabbit wool producers. Selection for increased TFW does not 

result in a reduction of WAJ1 or length of bristle.  Also, the demographic analysis in a 

population that has been selected in overlapping generations may be interesting for breeding 

organisations which utilise overlapping generation in practice. Knowledge of the demographic 

structure of Angora population under selection is useful for the subject elaboration of a 

genetic programme.  
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Le contexte : 
 
La laine Angora est une fibre textile « kératinisée » (issue de protéine fibreuse), produit à 

partir de poils longs de lapin Angora. Cette fibre est une "des fibres spéciales dites de luxe", 

incluant notamment le mohair, le cachemire et l'alpaga. Ces laines spéciales représentent 

seulement 3 % de la production brute de laine dans le monde, mais leur prix peut être 10 à 30 

fois supérieur à celui de la laine de mouton. 

 

Le lapin angora est exploité pour produire une toison, valorisée ensuite par l’industrie textile. 

L’INRA (Institut National de la Recherche Agronomique) étudie l’amélioration génétique du 

lapin Angora depuis plus de trente ans. 

 

La recherche scientifique étudie la possibilité d’augmenter la production de laine de lapin 

Angora par la génétique. Il est intéressant, pour les éleveurs de lapin Angora de savoir quels 

sont les caractères héréditaires. Pour analyser l’efficacité d’une sélection sur le poids total de 

la toison et la réponse corrélée sur les autres caractères (longueur, diamètre, résistance etc …), 

nous avons effectué une expérience de sélection divergente (2 lignées différentes, haute et 

basse) sur ce caractère. Les résultats de cette sélection ont été analysés pendant ma thèse. 

 
Ma thèse dans ce contexte : 
 
Mon sujet de thèse est inclus dans le projet global de « Variabilité génétique des caractères et 

gestion des populations » de notre équipe. La production de fibre angora est la troisième plus 

grande industrie de fibre animale dans le monde après la laine et le mohair.  

Au regard de la concurrence publique et internationale, les résultats pourront être utiles pour 

des éleveurs de lapins Angora en France (peu) et surtout en Chine, en Inde et en Turquie. 

 
Compétences scientifiques et techniques: 
 
L’équipe phanères de la SAGA est la seule équipe de recherche en France qui travaille sur la 

biologie de la production de fibres et de fourrures chez les animaux. Cette unité a réalisé 

quelques découvertes sur les fibres de lapin Angora.  

Des outils modernes en informatique, statistiques et génétique quantitative ont étés mis à la 

disposition du projet. 
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Moi dans ce contexte : 
 
J’ai travaillé  10 années comme chercheur/enseignant sur les fibres des animaux à l’université 

et obtenu un diplôme de DEA. J’ai donc souhaité poursuivre mes études et mes travaux sur ce 

sujet en réalisant une thèse. Travailler sur ce sujet au sein d’une équipe de chercheurs m’a 

beaucoup intéressé, et je voulais rejoindre l’équipe de Daniel Allain et H. De Rochambeau, 

que je connaissais depuis quelques années, à travers leurs publications scientifiques. J’ai tout 

d’abord émis quelques propositions sur la manière de traiter ce sujet de thèse, puis j’ai 

contacté Monsieur Mark Brims (BSC Electronics) en Australie pour solliciter sa participation 

à notre projet. Il a accepté de mesurer gracieusement un ensemble de 480 échantillons de 

mèche d’angora. 

 
Déroulement, gestion et coût de projet : 
 
Conduite du projet 
 

Principales étapes : Mon sujet de thèse comportait 3 phases successives de difficulté 

croissante : 

• J’ai réalisé une bibliographie sur les facteurs de variation de la production de poils 

chez le lapin angora en comparaison avec d’autres espèces, le mouton et la chèvre 

principalement. 

 

 

• Dans le même temps je me suis formé sur le logiciel SAS (Statistical Analysis 

System), puis j’ai réalisé des mesures complémentaires sur les échantillons 

biologiques, recueillis au cours de l’expérience. Ils étaient essentiellement constitués 

de mèches de poils (2/animal en récolte 5 et 7) et de coupes histologiques de peaux (2/ 

animal de la cohorte 2001 en récolte 5 et 7). 

• Ensuite j’ai constitué les fichiers nécessaires à l’analyse. 

• La troisième phase a consisté à analyser la réponse de la sélection sur le caractère 

d’intérêt et sur les autres caractères mesurés. Cette méthodologie supposait que les 

paramètres génétiques (héritabilité et corrélations génétiques des caractères) soient 

connus. 
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Des Réunions avec le directeur et le responsable scientifique avaient lieu régulièrement deux 

fois par mois. Nous avons également eu des réunions du comité de thèse avec la participation 

de E. Manfredi, A. Ducos, C. Robert et J. Bouix. 

 
Evaluation et prise en charge du coût du projet : 

 

Tableau 1. Coût de projet 

Ressources 

Humaines 

 Prise en charge 

Thésard 750  * 12mois *  3 ans =27 000 € 

+ 45% charge=39 150 € 
Directeur 6  heures/mois *11mois * 3 an ~ 1,5 mois 

1,5 mois * 4.000 + 45% = 8 700 € 
Responsable scientifique 8 heures/ mois * 11 mois * 3ans ~ 2 mois 

2 * 3.500 + 45 % = 10 150 € 
Techniciens (INRA Le 
Magneraud) 

 

1 tech. * 2(h/j) * 30 J  *12 mois * 10 ans ~ 52 
mois 

52 mois * 1.500 € + 45 %= 113100 € 

 

Technicien (INRA 
Toulouse 

1 tech. * 1 mois * 1500 €+ 45 %= 2 175 € 

Les animaux 670*50€=33 500 
Alimentation et 
vétérinaire 

130 g de pellets par jour * 670 animaux*365 
jours * 3 ans= 95 375 Kg 

*0.20 €/Kg=19 075 € 
Histologie 1.000€ 

Matériels 

Mesurer diamètre des 
fibres (OFDA) 

245*4€=980 € 

 Total 227 830 € 
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Compétences : 
 
Les compétences scientifiques acquises : 
 
 Génétique quantitative, application du modèle linéaire, estimation des composantes de 
variance valeur génétique, sélection. Métrologie des fibres et histologie quantitative de la 
peau  
 
Les compétences techniques :  
 
Les logiciels SAS, VCE, ASReml, PEDIG, ENDOG, Survival kit.  

Techniques de mesures caractéristiques des fibres d’animaux 

Langages informatiques : Fortran, Perl 

 

Compétences personnelles : 

Gestion de projet : 

 Oral :  Analyse D'une Expérience De Sélection Divergente Pour Le Poids Total 

De La Toison Chez Le Lapin Angora, 7ème Séminaire des Thésards, station 

d'amélioration génétique des animaux, INRA centre de Toulouse, 2005 

 

 Ecrit : Rafat, S.A., H. de Rochambeau, R.G. Thébault, I. David, S. Deretz, M. 

Bonnet, B. Pena-Arnaud and D. Allain, Divergent selection for total fleece weight 

in Angora rabbits: Correlated responses in wool characteristics, Livestock 

Science, In Press, Corrected Proof, Available online 30 March 2007,  

 

 Rafat, S.A., D. Allain, R.G. Thébault and H. de Rochambeau, Divergent selection 

for fleece weight in French Angora rabbits: Non-genetic effects, genetic 

parameters and response to selection , Livestock Science, Volume 106, Issues 2-

3, February 2007, Pages 169-175 

 

 S. A. Rafat, H. de Rochambeau, M. Brims, R. G. Thébault, S. Deretz, M. Bonnet, 

and D. Allain (2007) Characteristics of Angora fibre using optical fibre diameter 

analyser. Submitted to Journal of Animal Science 
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Langues (Reading, Writing, Speaking) : 
 

Farsi : (fluent, fluent, fluent) 

Turc : (fluent, fluent, fluent) 

Français : (functional, functional, functional) 

Anglais : (fluent, functional, functional) 

 

Résultats: 
 

Pour le laboratoire: 

 

 Ce projet constitue le dernier projet d’analyse sur le lapin angora en France. L’INRA 

avait pour objectif de connaître, après trente ans de recherche sur le lapin angora, 

quelle était la progression des résultats obtenus par voie génétique. 

 Ce projet a constitué une recherche originale sur ce sujet. En termes de bibliographie, 

il n’existait aucun résultat publié sur les paramètres génétiques de qualité de la laine 

Angora.  

 Le laboratoire SAGA s’est intéressé à l’utilisation de nouvelles méthodes de 

génétique quantitative pour l’analyse des données disponibles. Cela permettra le 

développement et l’application  des méthodes plus performantes de statistique dans 

les domaines de la génétique des animaux. 

 

Pour l’économie : 

 

 Quelques  résultats utiles et pratiques sont issus de ces travaux et feront l’objet de 

conseils utiles aux éleveurs de lapin angora en France, en Turquie, en Inde et en 

Chine 

 

Pour moi-même : 

 Le lapin Angora a constitué pour moi un modèle d’animal utile pour développer un 

travail de recherche et expérimenter des procédés scientifiques sur des fibres 

animales. À l’avenir je pourrai utiliser ces outils et méthodes dans ma carrière de 

chercheur sur d’autres espèces : le mouton et la chèvre, producteurs de laine, de 

cachemire et de mohair. 
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Orumie, 2001 
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Tabriz, 10(2), 2000 
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Appendix II 
 

 
Measurement of compression and resilience 
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