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ABSTRACT 

 
Solar fuel production utilizing carbon dioxide through the process of photocatalysis is an 

attractive method to sustainably generate energy carriers. Research into photocatalytic 

CO2 reduction has however been challenged by low conversion. To enable progress, this 

thesis works through the challenges of benchmarking, to address experimental conditions 

and results reporting. Starting with a literature survey to identify parameters affecting 

photoreduction, and assess key terms reported, crucial challenges are isolated. These 

challenges are limited benchmarking, experimental standardization, and the dual term 

challenge. Terms are proposed to address critical limitations in data interpretation, and a 

list is proposed for benchmark-necessary reporting. Two sets of identical experimental 

condition tests were conducted focusing on gas phase experiments conducted with 

titanium dioxide-based photocatalysts, with commercially available catalysts, including 

an anatase TiO2, P25, and Mirkat 211, and modified samples, including doping, structure 

order, and calcination. To investigate metrics comparisons Mirkat 211 and Au doped TiO2 

are explored further for interaction effects and regime identification with the results 

analyzed three ways: through unitary product formation, photonic yield, and an extended 

rate normalization. Benchmarking of the Mirkat 211, through single variable 

experiments, and Au doped TiO2, through a design of experiments, is assessed as 

compared to the existing literature. In conclusion, the importance of greater context of 

regimes is emphasized, identification of the importance of the reaction length, irradiance, 

and catalyst loading experimental variables is ranked, the catalytic versus photonic 

quantification compared, and recommendations for improving the experimental set up 

and necessary experimental reporting for photocatalysis are given. 
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1. CHAPTER 1 – INTRODUCTION 

 

This chapter discusses the challenges of climate change that give impetus to reducing 

carbon dioxide (CO2) emissions and targets for future CO2 atmospheric concentrations 

(section 1.1). Some strategies to reduce CO2 emissions are considered including Carbon 

dioxide Capture and Storage (CCS) and Carbon dioxide Capture and Utilization (CCU). 

Various utilization options are considered with photoreduction having potential for 

energy savings (section 1.2). This chapter introduces and explains the particular concern 

of results comparison for CO2 photoreduction, as it potentially hinders the progress in this 

field by not enabling benchmarking across laboratory analysis (section 1.3). To 

demonstrate how this thesis addresses the challenges of benchmarking the aim and 

objectives are laid out followed by the thesis structure (section 1.4). 

1.1 The challenge of climate change, 2050 Targets and Energy Security 

The greenhouse effect is caused by solar radiation’s absorption by specific gases in 

Earth’s atmosphere. This absorbed radiation is dissipated as heat. Heat, from solar 

radiation, is retained by the atmosphere, as seen in Figure 1.1. The radiation interacts with 

the atmosphere with various wavelengths being reflected, and other wavelengths 

absorbed, and energy being transferred to water, atmosphere, and the earth surface (Figure 

1.1). This heat is natural and necessary to sustain life on earth; however, anthropogenic 

contributions to the concentration of greenhouse gases are causing widespread 

environmental changes. Current human activities that increase CO2 levels center on 

combustion of fossil fuels for transport and industry. Other anthropogenic sources of 

greenhouse gases include agriculture, deforestation, fossil fuel production, industrial 

processes, water treatment and wastewater [1]. As of 2010 the breakdown of global 

greenhouse gas emissions by economic sector suggested transportation at 14% of 

emissions, energy and heat production at 35%, industry 21%, agriculture forestry and 

land use 24%, and buildings contributing 6% of emissions [1].  
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Figure 1.1 The greenhouse gas effect from back radiation, with the larger radiation and energy balance 

including reflection and latent heat, from Trenberth et al. [2].  

 The impacts of climate change that are of greatest concern include changes in 

local temperatures, rainfall patterns, sea water levels and extreme weather patterns 

resulting in floods and droughts [1, 3]. Thus, there is motivation to move towards the 

reduction in the use of fossil fuels and the development of smart technologies to overcome 

traditional fuels utilization drawbacks. A focus is made on CO2 as it is often the largest 

component of greenhouse gases produced, and thus, has the largest climate change 

impact. 

An example of the distribution of greenhouse gas sources is given using the 

greenhouse gas emissions for the UK in 2015. For the UK, the total emissions for 2015 

were 495.7 million metric tons CO2 equivalent (CO2e, which is the global warming impact 

of any gas in terms of amounts of CO2 which would have the same heating potential) [4]. 

Reducing CO2 emissions is the focus of a large amount of legislation, global agreements, 

and research. However, to effectively reduce the threat of climate change legislation 

requires widespread action and the use of operative research. 
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Figure 1.2 The composition of total gas emissions that contribute to climate change, produced in 2015 by 

the UK from [4]. 

  

 The second largest produced gas in Figure 1.2 is methane, which is roughly 26 

times as effective at absorbing infrared (IR) radiation as CO2, however, with shorter 

lifetimes [5]. Methods for methane gas collection for emissions reduction are particularly 

attractive as methane can be utilized as a fuel. Methane utilization includes human and 

animal waste management and landfill gas capture for electricity generation [6-8].  This 

methane has been temporarily diverted from the atmosphere, reducing climate change 

impacts.  The success of such projects coupled with the increasing cost of the 

environmental impacts of fossil fuels may increase the demand for sustainably sourced 

methane. 

 Looking globally at CO2 emissions, it can be seen in Figure 1.3 that global 

emissions from fossil fuel and industry are growing and that the majority of these 

emissions are coming from coal and oil, with the USA having a disproportionately large 
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per person figure for emissions relative to the rest of the world. It is also noteworthy that 

the emissions in China have grown substantially since the early 2000’s. 

 

Figure 1.3 Fossil fuel and industry CO2 emissions viewed in various ways; (a) the emissions global total 

including uncertainty shaded in grey (±5%) with a Gross Domestic Product projection (red dot) to 2016, 

(b) fuel type make up of global emissions, (c) emissions based on the Annex designation of the Kyoto 

Protocol with territorial emissions a solid line, consumption emissions a dashed line and the transfer of 

emissions from non-Annex B to Annex B countries at the bottom, (d) shows the territorial CO2 emissions 

for the European Union and the 28 countries represented as of 2012, and the top three emitters by country: 

the USA, China, and India and plot (e) gives the previous territorial emissions with the Global emissions 

as a per capita figure [9].  

 The rising concerns over the pace and effectiveness of current measures to limit 

climate change are caused by the growing cognizance of the ongoing repercussions of 

current emissions. A temperature rise of 1.5°C was agreed upon as the goal for limiting 
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warming by the Paris Agreement. This is a significant change from the 2°C goal, as 

mentioned in the Copenhagen Accord in 2009 [10]. Only one degree of temperature rise 

is available to stay within agreed limits, as there is roughly a 0.5°C temperature increase 

documented for the early 2000’s, as shown in Figure 1.4 [11]. Considering the 1.5°C 

expected temperature rise in relation to CO2e emissions, stabilization at 450 parts per 

million by volume (ppmv) CO2e greenhouse gas concentrations in the atmosphere has 

been found to offer a 46% chance of not exceeding 2°C rise in global temperature [12-

14]. Hansen and colleagues would argue that a level of 350 ppm CO2 is necessary to 

maintain relative equilibrium in earth’s climate; however, this does not quantify the 

impact of non-CO2 greenhouse gases [15]. The comparison of temperature, and then 

conflation of CO2 and CO2e emissions concentrations, complicates political discussions. 

For a broader approach, Anderson and Bows compare the timing of the emissions peaks 

and intensity of emissions reduction programs and predicted concentration stabilization. 

This gives insight on the timing and ability to stabilize the greenhouse gas concentrations 

in the atmosphere [12]. For example, they discuss a scenario with an emissions peak in 

2020, requiring either stabilization at 550 or 650 ppmv CO2e that would require annual 

reductions of 6% or 3% in overall emissions requiring 9% or 3.5% reductions in energy 

and process emissions, respectively. Both of these scenarios are not predicted to limit 

warming below 2°C. When taking into consideration that the Paris Agreement calls for 

peak emissions to occur as soon as possible and then net-zero emissions necessary in the 

second half of the century, there is a need for approximately 800 gigatons of CO2 avoided 

emissions by 2050 to meet the International Energy Agency’s two-degree scenario [16]. 

 

Figure 1.4 Global average surface temperature with circles being yearly values and smooth curves decadal 

averages, reproduced from Solomon et al. [11]. 
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Rates of annual reduction in emissions in these headlines are not seen in our 

current economic structures unless they coincide with economic recession [17]. A similar 

reduction of 5.2% per year for a decade has only come from economic regression and 

output reduction, as seen in the Soviet Union [17]. These headlines suggest the immediate 

need for a robust response to the predicted future temperature increases.  In the UK there 

are 4 year targets for emissions reductions; however, it is all predicated on net emissions 

being reduced, not eradicated, and the current legislation ends in 2027 [18].  

Attempts to encourage action around CO2 reductions include political targets. In 

the UK, as in other developed countries, legislation aims to reduce the amount of CO2 

released to the atmosphere, for example, the UK’s greenhouse gas emissions target of at 

least an 80% reduction (from the 1990 baseline) in emissions by 2050. The EU targets 

include a goal of 20% emissions cut by 2020 and a similar reduction of 80-95% by 2050 

as compared to 1990 levels [18]. One approach in achieving these emission reduction 

targets is to utilize greater capacity of renewable energy. 

David MacKay, Chief Scientific Advisor to the UK Department of Energy and 

Climate Change 2010-2014, discussed the questions of energy consumption and energy 

supply. He made his comparisons by considering land areas of various countries. Figure 

1.5 shows graphically the issues of sourcing energy with increasing demand and is a 

reminder of the necessity for a multiplicity of solutions to the climate change challenge. 

The premise is that the area available to the population is also the area that energy would 

be sourced from. Therefore, renewable energy options are viable only if they provide the 

energy density required by the population in their available area. This figure also shows 

that countries are increasing demand for energy over time, as population densities 

increase and energy consumption per person increases.  

In Figure 1.5 the point size for a country is proportional to land area (except for 

areas less than 38000 km2 (e.g. Belgium), which are shown by a fixed smallest point size 

to ensure visibility). Line segments to centers of circles show 15 years shift in position 

(from 1990 to 2005) for Australia, Libya, the USA, Sudan, Brazil, Portugal, China, India, 

Bangladesh, the UK and the Republic of Korea. The straight lavender lines with slope -1 

are contours of equal power consumption per unit area, while the green lines show rough 

energy production numbers for different green energy options [19]. The significance of 

this graph is in pointing to challenges in supplying energy to meet demand, including the 

impact of local environment on renewable energy options. Renewables do not always 

produce the amount of energy they are rated to produce, due to shifting conditions, and 

thus, the plot should be a guide. This plot also does not address issues of energy storage. 
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There is a need for many solutions to the questions of energy sourcing and energy storage 

as populations and energy demand are not stagnant.  

 
Figure 1.5 David MacKay’s power consumption per person versus population density plot, in 2005 [19].  

The complexity of balancing energy demand and energy consumption means that 

strategies for addressing climate change need to be robust and diverse. Strategies to 

reduce the emission of CO2 and other greenhouse gases include increasing the energy 

efficiency of current technology and infrastructure, and low carbon technology such as 

renewable energy technology, for example photovoltaic and wind energy. In the energy 

sector, and for electricity production in particular, a shift to greater production from 

nuclear power and renewable energy sources is being pursued along with mitigation 

technology that captures carbon dioxide. Renewable energy from wind and solar are 

intermittent energy supplies and thus requires load shifting through demand side 

adjustments or energy storage for enabling supply side energy provisions. Hydropower is 

site dependent and limited by natural water cycles; however, it can be used by controlled 

deployment. Biomass suffers from a low energy density. Hydrocarbons as energy carriers 

remains preferable due to entrenched infrastructure investments making current energy 

production and industrial developments economically favorable. Therefore, progressing 

options of CO2 storage or utilization becomes pragmatic. 
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1.2 Carbon Dioxide Capture and Utilization 

Carbon dioxide Capture and Storage (CCS) has been a focus of the energy sector and is 

becoming a focus of the industrial sector when emissions cannot be avoided. To enable 

the industrial usage of fossil fuels without the release of CO2, research and development 

have been oriented toward the capture of CO2 and its long term storage. CO2 capture is 

often limited to flue gases from large stationary sources of CO2 such as power generation 

sites and cement manufacturing sites due to the difficulty of gas collection and separation 

from air. CO2 capture has three main options available: pre-combustion, post-combustion 

or oxy combustion (Figure 1.6).  

In pre-combustion processes, CO2 is removed from the fuel through steam 

reforming, producing syngas. Post-combustion processes focus on removing CO2 from 

the flue gas. Oxy combustion is a process where fuel is burned with pure O2 often 

combined with CO2 to moderate the combustion temperature and thus resulting in a higher 

concentration of CO2 in the flue gas. The main focus has been on post-combustion 

processes that capture CO2 through chemical absorption via scrubbers using aqueous 

amines or surface immobilized amines [20-22]. This is because to implement pre-

combustion or pure oxy combustion requires a power plant to be built to accommodate 

the technology, whereas post-combustion can be retrofitted to existing plants.  

 

Figure 1.6 Schematic showing fuel and gas flows occurring in the three carbon capture processes from 

Global CCS Institute [23]. 

CO2 capture introduces added costs to energy production. An increase in 

economic feasibility is pursued within Carbon Dioxide Capture and Utilization (CCU) 
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research.  CCU takes the captured CO2 and instead of this being transported for long term 

storage, the gas is used as a resource. Once purified, CO2 can be used immediately for 

certain applications and in other cases is modified chemically or biologically. 

CO2 has many direct industrial uses for example within the food industry for 

carbonation in soft drinks, horticulture, and as a packaging gas, and within the energy 

industry for enhanced oil recovery, or as a chemical precursor for bulk chemicals, 

particularly in the production of urea, also as a protective gas in fire extinguishers [24]. 

It can even be used for refrigeration [25]. CO2 can also be utilized through its conversion 

into carbon-based products. Products made from CO2 include bulk and fine chemicals, 

solid inorganic and polymeric materials, hydrocarbons and fuels, as well as carbon-

mineral oxides, such as MgCO3 and CaCO3 formed from reactions with silicates for use 

in building materials and permanent long term storage of CO2 [25].  

Due to the energy penalty of the incorporation of CO2 into industrial processes 

(the replacement energy deriving mainly from fossil fuels) and the short timescales of 

CO2 containment, with the exclusion of mineralization, utilization is not often considered 

to be of a large enough scale to address climate change CO2 mitigation [25]. The 

Intergovernmental Panel on Climate Change (IPCC) roughly estimated the yearly 

turnover in industrial applications of CO2 was 152.6 Mt per year [26], against 35.5 Gt 

CO2 emissions per year [16]. CCS and CCU both reduce emissions, with the potential 

scale of storage and mineralization being large enough to coincide with continued fossil 

fuel usage. CCS has the potential for greater long-term storage and removal of CO2 from 

the carbon cycle. CCU, on the other hand, has the potential for generating income to offset 

the investment necessary to employ capture technology.  

In the case of fuels production, fossil fuels are still relatively abundant and low 

cost, therefore fuel from captured CO2 needs to be converted utilizing an efficient, 

inexpensive process. Importantly, CO2 utilization will also need to avoid net CO2 

emissions in order to be a viable technology of the CO2 capture and CO2 reduction 

processes. This requires the energy input in the reaction to come from renewable sources 

[26].  

Hydrocarbons can also be produced from CO2 through photocatalytic reactions, 

thermal hydrogenation, or electrochemical reduction, although these processes are not 

commercially viable yet [27]. There is also work being undertaken on 

photoelectrocatalytic reduction of CO2 [28]. Each process, however, has its drawbacks: 

Hydrogenation and electrochemical reduction sacrifice energy either in the formation of 

H2, or the use of electric current, which increases the energy consumption of these 
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processes [29, 30]. In particular, hydrogenation is unsustainable because it utilizes H2 that 

is almost entirely (96%) produced from fossil fuel steam reforming, and work on 

bioethanol and bioglycerol steam reforming is not near commercialization [31, 32]. 

Electricity is still generated primarily from fossil fuels. Energy conversion processes are 

additional opportunities for energy loss due to inefficient conversion; therefore, the 

photoreduction process directly utilizing solar radiation is the preferred process to 

optimize for sustainability. This, along with cost competitive demands on solar fuels, 

makes photoreduction an attractive process. Song has estimated that an annual global 

demand for CO2 for the production of chemicals and materials could be as much as 0.36-

3.6 gigametric tons,  and for synthetic liquid fuels 3.6-36 gigametric tones, comparable 

to over 25 gigametric tons of global emissions [24]. 

 

1.3 Artificial Photosynthesis and CO2 Photoreduction  

Photosynthesis is a vital natural process that converts CO2 and water into oxygen and 

glucose [33].  On its own, photosynthesis is an effective and sustainable way to convert 

CO2 into valuable products. However, in 1998 it was only capturing 30% of CO2 

emissions [34]. As fossil fuel energy sources are major causes of greenhouse gas 

emissions and CO2 is the most widely produced greenhouse gas, it is immediately evident 

that increased photosynthesis is beneficial. There is also plenty of room in natural 

photosynthesis for improvement. The performance of chlorophyll is highly efficient in 

absorbing photons; however, the overall performance of photosynthesis is in the area of 

4.6-6%, calculated based on the energy stored in biomass relative to the total initial solar 

energy incident. This can be seen in Figure 1.7, with only 46 and 60 kJ final energy being 

stored in plant mater from an initial 1000 kJ of energy from the sun. These numbers are 

specific to chloroplastic NADP-malic enzyme. As shown below in Figure 1.7, there is a 

variety of energy losses, from the inability of the active enzyme to absorb wavelengths 

outside the absorbance spectrum, to light reflection, and a large portion of energy is lost 

during carbohydrate synthesis. This carbohydrate synthesis process is the area in which 

photocatalysis could ideally improve upon nature. To obtain the numbers shown in Figure 

1.7, Zhu, Long and Ort used a temperature of 30°C and atmospheric concentration of 380 

ppm of CO2 giving a theoretical maximum photosynthetic energy conversion [35]. 
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Figure 1.7 Energy losses in natural photosynthesis, particularly the energy loss in product synthesis 

resulting in the low energy efficiency of creating biomass from Zhu et al. [35]. 

Artificial photosynthesis builds on natural photosynthesis, attempting to produce 

industrially applicable and storable fuels. The complex activities completed in 

photosynthesis to convert CO2 and H2O into molecules of growth have captivated people 

as they attempt to mimic the process, in particular with photocatalysis [36, 37]. The idea 

of artificial photosynthesis has been heavily linked to the production of hydrogen, 

however other fuels such as methanol, methane, alkanes, alcohols and aldehydes can be 

produced [27, 33, 38, 39]. Some success has been found with hybrid systems, for example 

Dan Nocera’s artificial leaf produces various fuels and products including 

polyhydroxybutyrate (a biopolymer), isopropanol and alcohols at an efficiency of 10% 

with a pure CO2 feedstock, and 3 to 4% using air [40]. The artificial leaf utilizes a water-

splitting catalyst and hydrogen-oxidizing bacterium in aerobic conditions. 

Natural photosynthesis and its analysis gives a place for artificial photosynthesis 

to start. In the case of photosynthesis, the tradeoff has been to facilitate a kinetically 

challenging electron build-up to enable a more thermodynamically favorable reaction and 

product formation. In one case, to facilitate this discussion, figures of the photosynthesis 

structure included bond distances and figures of the kinetics included charge transfer 

timings [41]. When this time scale view is considered for the recombination of excitons 

in TiO2, with most charge carriers recombining within a nanosecond [42], it is clear that 

the charge carrier lifetimes need to be matched to the kinetics of the reaction for 



 

12 

photocatalytic CO2 reduction to be successful. And Ohtani reinforces this point when he 

asserts that the reaction rate is governed by an unknown intrinsic rate of recombination 

[43]. 

  Artificial photosynthesis, particularly photocatalytic CO2 reduction, aims to 

improve the products available from the CO2 reduction process. CO2 photoreduction by 

means of photocatalysis consists of heterogeneous reactions under light illumination 

utilizing semiconductive materials. These reactions are conducted in various reactors 

either in gas or liquid phase. These reactions are performed using light driven catalysts 

that transfer energy necessary for CO2 reduction. The current product results of these 

processes are low in the range of µmoles of products, such as 3 µmol/gcatalyst of CH3OH 

[44], or 550 µmol/gcatalyst  CH4 production observed [45]. Because artificial 

photosynthesis builds on natural photosynthesis, energy comparisons between the two 

can gauge improvement. To be able to compare the photocatalytic results to the efficiency 

of the photosynthesis process, the light energy input to the photocatalytic reaction testing 

would need to be known as well as the energy embodied in the products detected. The 

ability to calculate efficiency greatly benefits comparisons, even if it is understood that 

the energy necessary to promote the process is much greater than the energy embodied in 

the product [46]. Work has been conducted to assess the source of low production yields 

and explain the low efficiency observed, examples are discussed in the following 

paragraphs. 

  Ohtani found that the photo(electro)chemical reactions were driven by electrical 

or chemical bias and irreversible charge separation [47]. Low efficiencies may be a result 

of insufficient reaction driving force. Another concern is brought up by Yang and 

colleagues tracking the source of the carbon in the product gases, and thus acknowledging 

that the carbon can come from either the gas used for testing or impurities in the 

photocatalyst [48]. The way to address these concerns is through reporting detailed 

analysis of experimental considerations and results. 

Kondratenko and associates asserted that there is a significant challenge to 

commercialize photocatalysis for CO2 reduction, including the material efficiency and the 

reactor design [27]. Often confusion over results and reporting conversion measurements 

leaves photocatalysis open to unwarranted criticisms that would be avoidable with more 

thorough and thoughtful testing and reporting. As reporting of material efficiency is not 

consistent, comprehensive or normalized for the reactor design, one possibility to address 

the commercialization challenge would be insightful benchmarking. Therefore, a critical 

step to improve the efficiencies of catalyst performance will be through data and results 
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that are comparable. In this way, information can be better understood and utilized for 

improved photocatalyst design. 

There is a wide range of opportunity going forward when the conditions of 

experimental work are understood. This includes the development of evaluation of mass 

transport in the photocatalytic reactor system [49, 50], assessment of capture and 

conversion using a single material [51-53], and eventually, life cycle analysis of the 

process [54, 55], considering purity of CO2 feedstock, and realistic feedstock options 

along with selectivity for combustible gas outputs. Focusing on benchmarking and 

assessing results brings this work closer. In the work of photoreduction of CO2 the 

connections between results and process are still being revealed. 

 

1.3.1 Comparability of CO2 photoreduction tests and limits on benchmarking 

Results of photocatalytic performance for the reduction of CO2 are varied, with a 

multitude of units, as there is no agreed figure of merit. Current work appears to be 

focused on identifying material performance, with the hope that a high performance will 

then be taken up for commercial development. This work is important for screening 

materials, and has proven the CO2 photoreduction process time and again. However, these 

results can limit wider comparison when terms are not standard and various information 

(for example, catalyst concentration and substrate to catalyst ratio) are omitted. To 

represent the concerns over the variation in reporting, two diverse examples are discussed 

below. In one case, the quantum efficiency and relative product yield rate are reported. In 

the other the most common reported result of product yield is reported. In trying to clarify 

and compare these samples crucial concerns are raised that apply to a large body of 

photocatalytic research. 

The first example reviews results presented by Singh and colleagues [33]. They 

have investigated the band-gap energies of TiO2 to yield selective products from tuning 

“the energetic alignment of band-edge states” [33]. Their work in identifying the density 

of states and photocatalytic activity through selectivity for C2H6 gave insight into origins 

of performance improvements. They tested a TiO2 and copper indium sulfide [CIS] 

nanocrystal composite [33]. Their results were reported with a wider context and 

irradiance quantification that is uncommon, as illustrated in Figure 1.8, below. 
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Figure 1.8 Results of photocatalytic reduction of CO2 and water on a TiO2 nanoparticles with copper-indium 

sulfide nanocrystals attached including a) chemical composition of products of photocatalytic process b) 

yields and selectivity of those products and c) the relationship between fuel production and rate of 

photogeneration from Singh et al. [33].  

The second case is work done by Tahir and Amin on montmorillonite (MMT) 

layers dispersed in TiO2 and the impact on photocatalytic performance [56]. They propose 

that the MMT shortens charge transport with adequate absorption and improved TiO2 

surface behavior [56]. Their tests were conducted with 20% MMT loading and reported 

in terms of amount of product detected normalized by amount of catalyst used and 

experiment time with typical units of µmole/gh.  

As shown in Figure 1.8, internal quantum efficiency and selectivity for C2H6 are 

reported along with photocatalytic rate. These represent the light and catalytic 

performance of the material. This can be contrasted with the more common reported 

product formation in Figure 1.9. The largest difference that can be seen is that the 

photocatalytic rate from Singh’s work included the electrons used for the formation of 

the products. This differs greatly from the product amounts themselves being reported by 

Tahir and Amin (Figure 1.9). Secondly, all the results reported by Singh are shown as a 

function of the solar irradiance and not as a function of time or amount of catalyst tested, 
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thus, highlighting the importance of the solar contribution to the photocatalytic process, 

that can be unintentionally omitted elsewhere.  

 

 

Figure 1.9 Results of photocatalytic CO2 and water reduction conducted with a MMT loading of 20% in 

TiO2 from Tahir and Amin [56].  

 

The usage of a per area measurement by Singh is very different from a per amount 

of catalyst measurement that Tahir and Amin use. However, with appropriate catalyst 

dispersion data the units can be converted. This is hindered when incomplete reporting 

makes data conversion impossible. The challenge then becomes deciding what 

information it is necessary to be reported to enable meaningful comparisons across reactor 

systems and reaction conditions. As shown in Table 1.1 there is a wide range of terms 

and units currently in use. This view of the units and all the various related terms given 

in the table can be misleading as not all the terms quantify the same thing. With the 

percentage results the terms used calculate unique attributes of the process. For the mole, 

and mole derived results however, there is less distinction between the terms. Focusing 

on benchmarking is an opportunity to improve how results are presented, and many have 

highlighted the need for work on this challenge.   
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Table 1.1 Metric names and units from CO2 photoreduction literature. 

Metric Term Units 

Selectivity [33, 57-59], relative peak areas 

[60], quantum yield [58, 61], quantum 

efficiency [59], apparent quantum yield 

[62], conversion [57], molar balance [57], 

turn over productivity [58] 

% 

Internal Quantum Yield [33] Unit-less 

Product evolution amount [63], production 

of product [64] 

mole, (nmole as corrected by surface 

area ratios [64]) 

Yield of product [65, 66], production [44, 

61, 67, 68], yield [59, 62, 69], turn over 

number [70], amount evolved [71], 

concentration [72] 

mole/g 

Amount evolved [71] mole/cm2 

Product produced or photocatalytic 

activity [73] 

mole/m2h 

Yield of product [56], specific rate [74], 

yield rate [58, 59, 75], product yield [76], 

product rate [77], yield [78, 79], 

production rate [68, 80], production 

coefficients [72] 

mole/gh 

Photocatalytic rate [33] e- mole/cm2h 

Yield [58, 59] ppm 

 

Benchmarking issues have been discussed in various literature reviews. Indrakanti 

et al. described it this way: “Although it would be more instructive to compare the 

conversion efficiencies and quantum yields of various TiO2 –based catalysts, often such 

data is not readily available” [81]. The lack of data may be due to the complexity of testing 

the process as Dhakshinamoorthy et al. point out that “… the present situation in the field 

is confusing and it is difficult to compare the performances of difference catalysts due to 

the large variability in the type of light, pH of the solution, CO2 pressure and other 

experimental conditions that determine the final productivity of the photocatalyst…” 
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[82]. The challenge may be finding an appropriate results term. Kondratenko et al. 

reiterate the challenge as; “Making a valid quantitative comparison of catalytic 

performance in CO2 reduction is … difficult because of the following issues: 1… [A] 

large variety of illumination sources was used… 2. Another relevant parameter to 

evaluate photocatalytic performance is the effectivity of the catalyst to convert light into 

chemical energy” [27]. And more recently Chen et al. write; “To date, there is no standard 

protocol for evaluating photocatalytic performance, or single parameter that enables 

quantitative benchmarking of CO2 conversion efficiencies to specific carbon-containing 

solar fuels or chemicals” [83].  

Clearly the experimental process is complex and terms used to quantify the 

process are not evaluating the conversion of light energy to chemical energy in a clear 

way alongside assessing the rate of the reaction. These criticisms may come from the 

challenge of not being able to collate all relevant experimental conditions, an inability to 

identify and relate experimental causations to product formation, a limitation of current 

terms available to quantify the process, or further issues not yet identified. However, this 

challenge appears not to have been resolved. Value is seen in enabling benchmarking.  

Recently Bligaard et al. published a perspective on benchmarking 

recommendations for four areas of catalytic research [84]. They were not able to focus on 

photocatalysis, however, they recognize a widespread need for agreed standards of 

quantitative comparison, and they encourage discussion and data sharing, and in 

particular assessing benchmarking tools. The benefits of improving benchmarking 

include “accelerating discovery, refining understanding, and promoting the application of 

better catalysts” [84]. Protocol development, reactor refinement, and standardization has 

also been addressed for photoelectrochemical water splitting [85-87]. And 

recommendations for the standardization of photocatalytic air purification have been 

discussed [88]. 

Benchmarking is the use of standard tests to compare performance between 

materials or the use of a standard material to compare performance between experimental 

systems. Currently the limit of benchmarking within CO2 photoreduction has been the use 

of benchmarking materials like P25 or unmodified synthesized materials. However, the 

performance of the benchmarking materials varies, the full interaction of light with 

material and with reactor are not currently quantified, and the assessment of optimal 

reaction conditions is often limited or incomplete. Thus, a CO2 photoreduction 

benchmarking discussion requires a wider scope.  
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1.3.2 Attempts to address benchmarking challenges 

Some contributions have been made to address CO2 photoreduction benchmarking 

challenges in particular; These include a review article [81], International Union of Pure 

and Applied Chemistry (IUPAC) recommendations [89], and an article from editors 

outlining best practices [90]. This review article, [81],  focuses on titanium based 

photocatalysts for CO2 reduction, calls the product amount normalized by amount of 

catalyst used, and the length of the experiment (µmole/gh), specific rate (as opposed to 

product yield), and works towards understanding an economic goal for the material 

performance. However, it fails to bridge the gap between the experimental complexity, 

material intricacy, and reaction dynamics with a recommendation of a figure of merit. 

IUPAC recommendations focus on the influence of light on nomenclature and 

how results should be reported (which is covered in more detail in Chapter 2). They 

propose four separate terms to quantify the light performance for various conditions. This, 

however, does not address issues around experimental setup and process to accompany 

the terminology recommendations, even as it builds on previous work clarifying quantum 

yields [91]. Buriak, Kamat, and Schanze, as editors, recommend good practice, and in 

particular connect terms such as efficient and efficiency to the lack of disclosure of 

experimental conditions and analytical data [90]. There appears to be a problem of 

naming and then integrating the appropriate complexity into reported results and 

experimental standards. These contributions do not address the benchmarking challenge 

because they do not identify the missing data or conditions necessary for benchmarking 

to be successful. 

Other significant contributions to the benchmarking discussion on CO2 

photoreduction come from Herrmann [92] and Ohtani [43]. Both work at clarifying 

aspects of photocatalysis that impact the photoconversion. Herrmann’s contribution to 

analyzing parameters that effect photoreduction is discussed in more detail in Chapter 2, 

section 2.7. And indeed, Ohtani covers a wide range of pertinent information from 

thermodynamics to kinetics to quantum efficiency. Ohtani goes so far as to articulate the 

problem anew, writing in the section on Activity, “Known: Rate of photocatalytic 

reactions under given conditions, i.e. relative photocatalytic activity and general 

empirical tends. Unknown: Intrinsic photocatalytic activity, overall kinetic equation, and 

true correlation between physical or structural properties and photocatalytic reaction 

rate.” To start to tackle the challenge of finding the true correlation between the material 

attributes and photocatalytic reaction rate there needs to be more work understanding the 

photocatalytic experimental test. When it is appreciated that variability in light sources, 
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photocatalytic materials, and reactor designs are conflated in the results reporting, then 

the work of disentangling the influences of each can begin.  

This thesis starts from the premise that the complexity of the problem is large 

enough to warrant serious consideration. Effort will be placed on being specific with 

variables and results in the complex CO2 photoreduction system.  

 

1.4 Aim and Objectives  

The aim of this thesis is to improve CO2 photocatalytic reduction research by addressing 

the issue of benchmarking results. This comparability is limited by unknown reaction 

conditions and hindered by unquantified reactor parameters. To address this challenge, 

this thesis aims to quantify the effectiveness of current benchmarking by comparing the 

variation of results from literature, with the variation of results that can be obtained in 

experimental conditions. In particular this thesis compares results from P25 and Au 

modified TiO2 samples from literature with experimental results from Mirkat 211, a 

commercially available anatase TiO2, and Au doped TiO2, a highly promising 

modification [93]. With these results, this thesis tests the effectiveness of a newly 

proposed extended yield normalization for use as a singular figure of merit. 

The first objective is to assess current understanding of results reporting and the 

context of the photocatalytic process, which generates these results. This objective 

includes in-depth understanding of the efficiency terms reported and results used to 

quantify the process. This allows for challenges to benchmarking to be identified as well 

as a consideration of the limitations of current practice. 

The second objective is to quantify the current benchmarking with the comparison 

of two photocatalytic material performances, each varying experimental parameters. This 

thesis carries out two key pieces of work demonstrating the applicability of two tools: the 

statistical approach represented by the design of experiments; and the parameter based 

approach of testing regimes. This allows for exploration of the dual term challenge posed 

by quantifying the light and catalytic performance separately. And lastly, this thesis 

quantifies the current effectiveness of identical experimental condition bench-marking by 

comparing literature results ranges with results ranges that can be obtained with varying 

experimental conditions in the lab. 

 

The first objective, to assess the current understanding of results reported and their 

context, is covered in Chapters 2 and 3 of this thesis. Chapter 2 focuses on materials 
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modifications research relative to a commercial standard or lab synthesized unmodified 

material in independent labs and the parameters affecting photoreduction. Therefore, 

Chapter 2 gives general background on photocatalysis and starts linking modifications to 

expected performance and results. 

Chapter 3 builds on this work delving much deeper into the specific results reported 

and the specifics of the research conducted. This enables a larger challenge of figure of 

merit and necessary experimental conditions to be developed and considered, that may be 

difficult to recognize when immersed in materials improvement. Therefore, Chapter 3 

goes further, giving specifics relevant to CO2 photoreduction and the current reporting of 

the contexts that limit them. This starts the discussion of results gathering in the second 

objective with Chapter 3 also finalizing recommendations of results terms.  

Then consideration turns to practical, lab-implemented, testing. The current form of 

benchmarking with identical experimental conditions and assessment of the results based 

on materials modifications is discussed, in Chapter 4, relative to the range of performance 

found in literature.   

In Chapter 5, AuTiO2 is investigated with a statistical approach of the design of 

experiments to observe interactions of reaction parameters. Results of Mirkat experiments 

in Chapter 6 follow a discussion and proposal of testing regimes that work through 

parameters as single variable variance experiments. Chapter 7 revisits the dual term 

challenge and benchmarking questions from a perspective of analyzing experimental 

results. The work presented confirms the influence of experimental regimes on results, 

highlights the importance of complete results processing, demonstrates a limited or 

“fuzzy” benchmark of Mirkat with AuTiO2 and compares this to current benchmarking 

practice. Finally, conclusions are presented in Chapter 8, stressing agreeing procedure 

and relative parameter influence, the utility of the extended normalization, and 

conclusions about benchmarking in CO2 photoreduction and photocatalysis.      
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2. CHAPTER 2 – INTRODUCTION TO PHOTOCATALYSIS, 

CARBON DIOXIDE PHOTOREDUCTION, AND THE 

PARAMETERS AFFECTING PHOTOCONVERSION 

 

In this chapter, the basics of photoreduction are laid out starting with the definition of 

photoreduction and thermodynamics of CO2 reduction in section 2.1. The use of 

semiconductors for photocatalysis is discussed in section 2.2 focusing in on TiO2 as a 

promising abundant material. Then materials modifications are reviewed in terms of 

improving TiO2 performance in section 2.3 covering light response, hydrophobicity and 

charge carrier lifetimes. These materials modifications are discussed relative to the 

assessment of the performance improvement. This is followed by section 2.4 discussing 

photoreduction reaction mechanisms of CO2. This chapter concludes with section 2.5 and 

parameters affecting CO2 photoreduction and conversion to solar fuels are discussed, 

including catalyst loading, material properties and dispersion, along with the light 

provided to the reaction, reactor properties, and operating conditions including reactant 

concentrations, temperature and pressure. Section 2.6 concludes with a scope of study 

diagram linking the discussion to the thesis specifics.  

 

2.1 CO2 Photoreduction and Thermodynamics of CO2 reduction 

CO2 photoreduction by means of photocatalysis was noted in literature in 1911, in an 

article discussing the light reaction in uranium salt and oxalic acid mixtures [94]. In 1921, 

an article about the synthesis of formaldehyde and carbohydrates from CO2 and water 

was published also using the term photocatalysis. Interestingly, the article references 

previous research in a quest to understand photosynthesis [95]. Kondratenko and 

Indrakanti put the advent of photocatalysis in the 1970s [81], however Herrmann cites a 

Doerfler and Hauffe article printed in 1964 as the first reference [96] and more review 

into early photocatalysis has been conducted [97, 98].  

Photoreduction is a term used to describe a light driven process for the reduction 

of a molecule or chemical compound, and in particular, CO2 photoreduction refers to CO2 

reduction to C-based compounds, such as C1 compounds (for example methane, 

methanol, methyl amines, formaldehyde, and formate) and C2 compounds (for example 

ethanol, acetate, methylformate and acetaldehyde) [81, 99]. Attempts to improve 

photoreduction include using a photocatalyst.  
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Photocatalysis describes research on a light driven reaction in which a catalyst is 

used. Serpone and colleagues would describe photocatalysis as a process in which a 

material and photons accelerate a reaction without specification of mechanism [100]. This 

can be contrasted with catalysis, which specifies a thermodynamically favored reaction, 

however, kinetically slow, with improved kinetics through use of a catalyst [101]. 

However, in the case of photocatalysis, the reaction does not need to be 

thermodynamically favorable, as the photons provide energy to the reaction.  The 

photoconversion of CO2 is a many step reaction process where the specific mechanism, 

and particularly reaction intermediates, are still being discovered and further consensus 

on the fundamental reaction pathways is necessary. This has led to the use of the term 

“photocatalysis” regardless of specific reaction mechanisms [101].  

To enable the photoreaction of CO2 with water the assistance of a photocatalytic 

material and the input of solar energy radiation is required due to CO2 being a highly 

stable molecule, as shown in Figure 2.1 below. Thermodynamics are seen from the Gibbs 

free energy of the reaction, where a negative Gibbs free energy implies that the reaction 

will proceed, also referred to as a spontaneous reaction [47]. CO2 has a large negative 

Gibbs free energy [ΔGo] as compared to CH4, which means that the former requires a 

larger energy input to be decomposed. If looking at the difference in Gibbs free energy, 

there needs to be a 444.7 kJ/mol input of energy to move from CO2 to CH4 on the chart, 

which is calculated without considering the source and energy necessary to “acquire” four 

H atoms from water splitting. 

 

 

Figure 2.1 CO2 and related chemicals Gibbs free energy of formation from Jiang et al. [102]. 

 



 

23 

This comparison of a catalyst with a photocatalyst, is presented in Figure 2.2 

showing activation energy barriers. Processes b and d reflect traditional catalytic 

expectations where the product is more stable than the reagents. In the case of a and c, 

the activation energy is greater than the Gibbs free energy which means that energy in the 

form of either heat, electricity or photons must be supplied. Catalysis with endothermic 

reactions is done at high temperature, or with an electrocatalyst or photocatalyst. This 

shift in activation energy proves the assistance of a photocatalyst, while also 

acknowledging the energy input necessary to form the products. Relatively high 

activation energy does however prevent reverse reactions. So whereas all scenarios 

represented (a, b, c and d of Figure 2.2) are catalysis, for CO2 photoreduction with the 

use of a photocatalyst the representing figure is figure d. The case for catalysis in general 

is contrasted with the case for photocatalysis, showing that if the activation energy shift 

can be proved, photocatalytic behavior can be proved.  

 

Figure 2.2 Energy of reactions, (a) of a endothermic, thermodynamically unfavorable process with a 

positive ∆G (in grey), (b) of a exothermic, thermodynamically favorable process with a negative ∆G (in 

grey), (c) of a photocatalyzed process that still requiring a net increase in energy of the products showing 

the impact of the photocatalyst (red dashed line), and (d) of a catalyzed process with catalyst A (pink 

dashed) and catalyst B (blue dotted line).  

These thermodynamically specific requirements of photocatalysis mean that the 

measurements of the processes are going to be different. Understanding why they are 
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different and learning from catalysis comparisons of performance would greatly improve 

photocatalysis research. Thus, the implications of catalysis are important to consider 

when analyzing photocatalytic performance in the context of developing rigorous 

standardized procedures and for the catalytic nature of the process to be quantified. 

Methods for photoreduction, as discussed by Wang and colleagues, include 

semiconductors or transition metal oxides, metal organic complexes, biological systems 

typically utilizing algae, and hybrid systems of enzyme activated organic/biological 

hybrids [103]. Semiconductors have been commonly utilized in photoreduction and make 

up the bedrock of CO2 photocatalytic work. 

 

2.2 Photoreduction using Semiconductors 

Semiconductors are attractive as photocatalysts, as they are stable and do not degrade in 

the presence of photons and reactants; thus fulfilling one catalysis requirement. Another 

specification of catalysis is that this catalyst material is not changed by the reaction [101]. 

They promote electrons that would then be available to the reactants adsorbed to the 

semiconductor.  There is a debate over the role of semiconductors as catalysts or as 

assistants to the reaction [100].  The semiconductor behavior is complex, with formation 

and transfer of electrons and holes such that catalytic terminology and performance can 

be difficult to apply or relate to the reaction [104]. As Serpone points out, Childs and 

Ollis in 1980 wanted to term the behavior “semiconductor-assisted photoreactions” [100, 

105].  This debate is due to low catalytic performance where the expectation is for the 

turn over number (the number of molecules that a catalytic site can convert to product) to 

be greater than 1 [100].  

As described elsewhere [106], the assumed mechanism for photocatalysis is 

depicted below in Figure 2.3. The valence band is shown with electrons in ground state 

that when excited by a photon, can jump to the conduction band.  This promotion to an 

excited state occurs only if the energy of the photon is greater than the energy barrier of 

the band gap. The excited electrons that did not recombine with holes would then be 

available to travel to the surface and react with substrates [107]. The position of the 

valence band is sufficiently oxidizing if it is below the redox potential of the reactant or 

substrate to be oxidized (if the substrate is more anodic) and the sufficiently reductive 

conduction band is higher than the redox potential of the reactant or substrate to be 

reduced (if the substrate is more cathodic) [47]. 
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Figure 2.3 Electron energy band diagram for anatase titanium dioxide showing electron energy increasing 

upwards, from Herrmann [92]. 

The free energy of reaction (ΔG) of the reaction is the difference between the 

redox potential of the substrate to be reduced and the redox potential of the substrate to 

be oxidized [47]. In CO2 reduction, a multistep process is simplistically explained by the 

oxidation of H2O and the reduction of CO2. Some of the proposed reactions for the 

conversion of CO2, with varying amounts of necessary electrons, along with their redox 

potentials (in respect to a normal hydrogen electrode at pH of 7) are listed below in 

Equations 2.1 through 2.9 [81, 107]. The relationship of ΔG with the cell potential (E) as 

measured in volts is ΔG =-nFE, with n being the number of moles of electrons from the 

balanced redox reaction and F Faraday’s constant; 96,485 coulomb/mol. Redox tests are 

conducted in liquid phase and the more positive the number the more likely reduction will 

occur, while the more negative the more likely oxidation: 

 

H2O  ½ O2 + 2H+ + 2e-    0.82 V  (Equation 2.1) 

2H+ + 2e-  H2    -0.41 V (Equation 2.2) 

CO2 + e-  CO2
*-    -1.90 V (Equation 2.3) 

CO2 + H+ + 2e-  HCO2   -0.49 V (Equation 2.4) 

CO2 + 2H+ + 2e-  CO + H2O  -0.53 V (Equation 2.5) 

CO2 + 2H+ + 2e-  HCOOH   -0.61 V (Equation 2.6) 

CO2 + 4H+ + 4e-  HCHO + H2O  -0.48 V (Equation 2.7) 

CO2 + 6H+ + 6e-  CH3OH + H2O  -0.38 V (Equation 2.8) 

CO2 + 8H+ + 8e-  CH4 + 2H2O  -0.24 V (Equation 2.9) 
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As can be seen above, the redox potential is smallest for the production of methane 

[CH4]. Single electron excitement [CO2
*-] is widely considered an initiating step to the 

photoreduction processes and would therefore determine the energy barrier to be 

overcome [81]. Thus, while methane production is thermodynamically preferable, the 8 

electron reaction is challenged by kinetics.  

The energy levels necessary for the reactions can then be compared to the 

semiconductor band gap energy. Figure 2.4 can be used to assess the energy levels of the 

band gap edges and their expected abilities for redox and oxidation of reactants. As can 

be seen in Figure 2.4, the conduction band and valence band positions of TiO2 are at 

sufficient energy levels for the formation of CH4. 

 

 

Figure 2.4 Band gap energies for various semiconductor photocatalysts showing conduction band and 

valence band potentials relative to redox potentials of compounds involved in CO2 reduction at pH 7 from 

Habisreutinger et al. [107]. 

Materials such as metal oxides (ZrO2, Ga2O3, and Ta2O5), mixed metal oxide 

semiconductors (CaFe2O4, NaNbO3, ZnGa2O4, and Zn2GeO4), layered double hydroxides 

(LDH, Zn/Al LDH, Zn/Ga LDH, Mg/In LDH, CuZnGa-LDH, and Mg/Al LDH) [108], 

and graphene-based semiconductor photocatalysts have been used for CO2 

photoreduction [109]. Even as there are many alternate materials to TiO2 that are currently 

utilized for photoreduction, for the purposes of results comparison TiO2 provides the 

widest collection of work to analyze. 

2.3 TiO2 as a photocatalyst and modifications of TiO2 performance 

TiO2 is a highly attractive photocatalyst due to its observed UV photocatalytic activity, 

non-toxicity, abundance (making up 0.63 wt% of the earth’s crust it is the ninth most 
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abundant element [110, 111]), low cost, electronic properties and high molecular stability 

[112-114].  This has led to TiO2 receiving a wide breadth of attention making it one of 

the most studied photocatalysts for CO2 reduction [81, 82, 114-117]. Thus, it is the focus 

of this benchmarking study. 

Interestingly, TiO2 based materials are also used as catalysts for CO2 reduction, 

however, this is done in the presence of H2 for direct hydrogenation, and not H2O typically 

used in photocatalysis as otherwise high temperatures would be necessary [118, 119]. 

TiO2 has three crystal phases that naturally occur at atmospheric pressure [120], rutile 

with an approximately 3.0 eV band gap, anatase with an approximate band gap of 3.4 eV, 

and brookite with an approximate band gap of 3.3 eV in bulk [121], and 3.0, 3.19 and 

3.11 eV respectively for nanocrystals [122]. Rutile and anatase have a tetragonal crystal 

system, and brookite is rhombohedral [123]. 

 More work has been done in the liquid phase for reactions and surfaces [124], 

however, these do not directly apply to gas phase because the reactant concentrations are 

significantly different and CO2 forms low concentrations of carbonic acid (H2CO3) in 

water which usually dissociate to bicarbonates and carbonates. These dynamics make 

performance of photocatalysts hard to quantify and difficult to improve. Thus, there is a 

challenge to look more critically at the performance of photocatalysts, utilizing 

understandings from catalysis to engage with photocatalytic research practice.  

 TiO2 was first used in photocatalysis for hydrogen production from water in 1972 

[116]. According to Indrakanti, the first case of photocatalytic CO2 reduction was 

published in 1979 [81].  Photocatalytic production of simple carbon based compounds 

such as formic acid and formaldehyde was conducted by Inoue and associates [125]. The 

results of their study are summarized in Table 2.1.  

Table 2.1 provides the same information that is reported now and could be 

packaged into the results seen in section 1.4.1. For example, the amount of product is 

given relative to reaction time (illumination period) and amount of catalyst used. Thus, 

this table of results holds information identical to the µmol/(gcatalyst h). Perhaps it suggests 

that the information gathered is chosen for historic reasons. 
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Table 2.1 Product yield results in moles from first photocatalytic CO2 reduction [125]. 

Catalyst 

(1.0g/100 ml water) 

Illumination 

period (h) 

Yields of 

Products: 

HCHO 

(x10-3 

M) 

CH3OH 

(x10-4 

M) 

TiO2 7.0  1.1 2.3 

TiO2 14.0  1.8 7.8 

TiO2  30.0  1.8 14.6 

TiO2* 7.0  0.0 0.0 

ZnO 7.0  1.2 3.5 

CdS 7.0  2.0 11.7 

GaP 7.0  1.0 11.0 

SiC 7.0  1.0 53.5 

WO3 7.0  0.0 0.0 

* TiO2 suspension was illuminated with light of wavelengths longer than 500 nm. 

 

 In the decades that have followed this early experiment using TiO2 for 

photocatalytic reduction of CO2 there has been a struggle to improve the photocatalytic 

performance of TiO2. This has coincided with difficulties in understanding how to report 

effectively improvements in photocatalytic performance. In this chapter, particular focus 

is paid to the photocatalytic limitations of TiO2 and the various solutions that have been 

attempted since this study. A major line of study is materials modifications. 

Modifications of TiO2 are made in an attempt to either increase selectivity in 

product production or advance photocatalytic behavior, such as selectivity or product 

yield. Limitations of TiO2 photocatalytic behavior include limited light activity, 

hydrophilic behavior, and rapid electron hole recombination. Each of these challenges 

has been the focus of research, as described here.  

 

2.3.1 Addressing Light Activity 

TiO2 is active as a photocatalyst under UV light irradiation. This is a limited range of the 

solar radiation available, and thus, limits the full potential of the photocatalytic activity. 

Lowering the band-gap energy of TiO2 would allow a greater range of solar radiation to 

promote electrons. There are still uncertainties as to whether modifications to the band-

gap of TiO2 directly improve the overall photocatalytic behavior. This is due to the energy 

of the resulting electrons being lower, and thus, not as capable of providing the energy 
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needed thermodynamically for CO2 reduction. Nguyen, Vu and Do argue for increasing 

the number of photo-generated carriers which overall is significant to initiating the 

conversion [106]. However, there is also the resulting shift in the absolute energy 

positions that could impact the oxidation and reduction potential of excitons. Therefore, 

verification testing of improvement in photocatalytic performance for CO2 reduction, 

with lower band-gap energy catalysts, is still necessary.  

 

2.3.1.1 Defining the limits: Light absorption 

The band gap of TiO2 is 3.2 eV, corresponding to 388 nm wavelength [112]. The 

semiconductor absorbs incoming wavelengths of 388 nm or less, as the shorter 

wavelengths have greater energy (Figure 2.5). Decreasing the band-gap energy enables 

lower energy photons to excite an electron. This lower energy corresponds to an increase 

in the wavelength.  

 

Figure 2.5 Electromagnetic spectrum, reproduced from Pool [126]. 

A decrease in the band gap to incorporate visible light would make approximately 

50% of solar energy available to the photocatalytic process, as opposed to the UV light at 

approximately 4% of available radiated solar energy [127]. The reason for this substantial 

increase in solar energy can be seen in Figure 2.6, which shows the solar irradiation 

intensities along the electromagnetic spectrum. The peak intensity is clearly within the 

visible light spectrum. 
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Figure 2.6 Solar radiation spectrum, from Koning [128] (right), and then the solar radiation spectrum at 

atmospheric mass (AM) of 1.5 (left) wish a zoomed in box of ultraviolet and visible light, from Vinyard et 

al. [43].  

 Therefore, many attempts have been made to lower the band-gap energy of TiO2 

based photocatalysts, as described below. 

 

2.3.1.2 Opportunities: modifications to improve light absorption in the visible range 

The modifications attempted to improve light electron excitation include metal ion doping 

[39], semiconductor composites like CeO2-TiO2 [129], quantum dots [130, 131], 

hybridized structures such as carbon nanotubes grown on Ni doped TiO2 [132], nanotube 

structure of TiO2 [133], dye sensitizing [134], and dye sensitizing including up-

conversion nanoparticles [135]. However, the most studied modification for improved 

visible light absorption is nitrogen doping [136-142]. Accumulating defects in TiO2 [143] 

has been claimed to improve light absorption. 

Surface area and light penetration improvements are often discussed in terms of 

improved light efficiency. Similar reasons were found for the improvement presented of 

a CeO2-TiO2 composite with 2D hexagonal structure. In this case, it was claimed that the 

large surface area increased light harvesting [129]. There are unclear lines of 

differentiation of improvement of the photocatalyst light activity and physical properties 

that are desirable from a reaction kinetics standpoint. An improvement in physical access 

of photons to the surface of the catalyst, may not really lead to an improvement in 

efficiency if the mass of the catalyst had been optimized for the amount of light. Thus, it 

needs to be quantified and clear when there is an improvement in quantum efficiency, or 

material performance, relative to a reaction parameter optimization. This will be 

investigated further within this thesis.  
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2.3.2 Addressing Hydrophobicity 

For photocatalytic reactions to be successful reactants must interact with the photocatalyst 

surface. The behavior of water and CO2 on the surface of TiO2 influences the success of 

photoreduction and catalytic activity.  

2.3.2.1 Defining the limits: Hydrophilic behavior 

H2O and TiO2 interaction is significant to the reduction of CO2 to valuable products. This 

is because the H2O provides the H+ or H- to the reaction. There is a need to allow for the 

H+ or H- generation and for the CO2 dissociation on the photocatalyst surface. UV light 

induced hydrophilicity has been observed for TiO2, where the contact angle of the water 

becomes almost zero under UV light irradiation [114]. Water droplets, with a regular 

contact angle on a dark surface, under UV light exposure, spread to coat the whole 

surface. This is shown in Figure 2.7, where the hydrophilicity impedes the surface 

interaction with CO2 by removing it from the surface [116]. CO2 adsorption on the 

catalyst surface lowers the energy of the reaction, thus this water induced separation from 

the surface becomes a barrier to the reaction. Thus, this behavior can limit CO2 reduction 

especially when water is made abundant to the reaction [115]. 

 

Figure 2.7 Depiction of water interactions with the TiO2 surface. On the right depicts no light and on the 

left the light interaction with the TiO2 and water induces a low contact angle and shows surface "cleaning". 

Figure made based on figure by Dr. Yolanda Fernandez Diez. 

2.3.2.2 Opportunities: modifications to improve hydrophobicity 

A MgO-TiO2 composite was used for its good CO2 adsorption and was found to improve 

CO formation and catalyst life time. The comparison to similar shaped materials with 
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lower CO2 adsorption enabled the conclusion that a source of the improvement was the 

CO2 adsorption [144]. 

A review of the published literature has not provided straightforward methods to 

improve hydrophobicity. Reactant gas ratios of CO2 and water were varied by Tahir and 

Amin; however, the findings suggested that higher CO2 partial pressure limited CO2 

reduction [145]. A change in partial pressure of CO2 from 0.04 bar up to 0.06 bar reduced 

CH4 production by 50 µmole/gcatalyst  and reduced production of CO by roughly 500 

µmole/gcatalyst  [145].  This result is contrary to expected H2O and CO2 interactions, where 

the water would adhere to the catalyst surface more actively and limit CO2 reduction. This 

is most likely due to the reaction being in the gas phase. Studies that utilize gas phase 

reactors with either gas bubblers, or standing water at the base of the reactor, to maintain 

water vapor levels, limit the cleaning effect of water by inhibiting water droplet 

formation. In this way, perhaps, the competition for reaction sites is limited. This may be 

the reason some studies have moved away from liquid phase reactions and instead use 

gas phase reactants. In this thesis gas phase testing will be used. 

 

2.3.3 Addressing Charge carrier lifetimes (electron hole recombination) 

Photocatalysis depends on electrons providing energy to the CO2 molecules for reduction. 

The lifetimes of these electrons and the available pathways for energy dissipation greatly 

influence the success of reduction, and therefore, longer lifetimes are desired. 

 

2.3.3.1 Defining the limits: Charge separation 

A critical challenge in using TiO2 is the charge dynamics. As photocatalysis relies on the 

energy of excited electrons to enable reactions the lifetime of the electrons greatly 

influences the reaction. Rapid electron-hole recombination on the order of two to three 

times faster than other electron transfer processes makes interaction with reactants 

difficult [81]. 

This same issue can be seen biologically. In nature, electron tunneling is used to 

separate charge carriers. In the case of photosynthesis, the distance that the electron 

travels for transfer from chlorophyll to the reaction center or within and between reaction 

centers is critical. The length has to be less than 14 angstroms (Å) to be faster than 

enzymatic transfers, and is found to be less than 6 Å in the case of redox chlorins in the 

core of reaction centers [146]. At this distance, tunneling times of electrons are 10 

picoseconds or less. This spacing and multiple chains for the electron to tunnel across, 
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allow the electron to travel to specific sites for reaction purposes. In this way, 

photosynthetic enzymes create charge carrier separation. 

 In comparison, the size of atoms is on the order of a few Å. Thus, TiO2 particles 

need to have effective paths for electron transport to reactants, or significant assistance 

from effective charge carrier traps. In these ways, the electrons would be available to 

provide energy to the reaction. 

 

2.3.3.2 Opportunities: charge carrier dynamics 

CeO2-TiO2 composite with 2D hexagonal structure increases efficiency by increasing 

charge separation [129]. The resulting improvement in performance was attributed to the 

electronic conductivity of the graphitic carbon. The use of bicrystalline TiO2 as a mix of 

anatase and brookite [147], montmorillonite TiO2 nanocomposites [56], trinary 

nancomposites such as MgO/Pt-TiO2 [148], Ag loaded TiO2 [149], and Cu loading [150] 

are all photocatalyst modification attempts at more effective charge separation. 

Arguments supporting increased charge separation revolve around electronic pathways 

enabling charges to last longer. These longer life charge carriers are then available to be 

effective in photoreduction. The charge transfer to reactants is also an area to improve 

with attempts including exposing the {100} facet of TiO2 [151]. Methanol has also been 

used as a hole scavenger in reactions with Ag doped bicrystalline TiO2 [152]. The hole 

scavenging limits recombination. Work has been done using magnets to lengthen the life 

of electron-hole pairs [153 Li, Zou, Au].  

For this thesis, charge carrier dynamics will not be investigated further. Instead, 

focus will remain on attempts to quantify overall performance resulting from the whole 

photocatalytic process, including this dynamic charge carrier behavior. 

 

2.3.4 Materials matrix and the assessment of the effect of materials modifications 

Since specific improvements to the photocatalytic process are intended from 

modifications, results analysis would benefit from clear links of improvement based on 

goal. To structure this thinking Table 2.2 is given below correlating material and 

experimental modifications to the expected improvement. Light and catalytic behavior 

can then be quantified separately, it becomes necessary to be specific about what results 

should improve.  
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Table 2.2 Modification of TiO2 materials organized by type of modification and the goal or expected 

influence of the modification. 

 Light Absorption 

(modifying 

bandgap) 

Charge Carrier 

Lifetimes 

Hydrophilic 

Behavior 

Defects  Oxygen vacancies, 

multiple crystal 

phases [154], 

particle size 

Crystal facet [154] 

Lattice Substitution Nitrogen doping 

[136-142], anion 

doping, (including 

iodine, carbon) 

Cu doping [150], 

metal doping [155] 

 

Multiple Materials / 

Composite 

Dye sensitization, 

depositing Au 

particles [154], 

dual semiconductor 

materials [155] 

Montmorillonite 

TiO2, Pt on the 

surface [154] 

MgO-TiO2 

Morphology Quantum dots 

[154] 

Nano rods  

 

Table 2.2 allows for materials to be understood both in terms of the material 

complexity and what outcome is expected. For improvement of light absorption there 

would be expected a corresponding improvement in quantum efficiency.  With improved 

charge carrier lifetimes, it would be expected to improve both quantum efficiency and 

reaction rate. The improvement of hydrophilic behavior would improve reaction rate. 

With the identification of tests that measure the material for reaction rate and quantum 

efficiency it becomes possible to see if modifications improve performance in the ways 

expected. 
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2.4 Mechanisms of CO2 Photoreduction 

“Because reaction mechanisms are at the heart                            

of our fundamental understanding of catalysis, it is a grand         

challenge to examine all the elementary steps of a reaction                   

and to determine how the rate of each correlates with the               

structure of the catalyst.” 

- Thomas Bligaard et al., 2016, [84] 

Reaction mechanisms have been studied using theoretical calculations, microscopic and 

spectroscopicly with scanning tunneling microscopes (STM), diffuse reflectance infrared 

Fourier transform spectroscopy (DRIFTS) and electron paramagnetic resonance (EPR) 

[156]. Liu and Li break down the reaction mechanisms into three sections covering the 

CO2 behavior, charge transfer, and pathways to product formation [156]. For 

photoreduction, Liu and Li state that CO2 behavior includes the processes of adsorption, 

activation with an electron and dissociation of C—O bond, while also acknowledging 

 CO2
− formation and spontaneous dissociation. Charge transfer focuses on charge 

separation and then transfer, with this behavior being dependent on crystal phase and 

defect disorder. Then the discussion of pathways to product formation focuses on the rate 

limiting step, intermediates and product selectivity. Debate over the rate limiting step 

have culminated in two views, one being the rate limiting step is activation of reactants 

through charge transfer, and the other being reactant dynamics of adsorption on the 

surface of the catalyst [156] . The rate limiting step may not be the correct model, and 

this could be revisited in relation to steady state approximations instead [157, 158]. 

Importantly, Yuan et al. point out the crucial impact the surface reactions have on the 

overall efficiency of the process, trying to link the cause to outcome and instigating an 

important shift in focus away from the specifics of the material, but instead 

acknowledging an impact on conversion process [159].  

Figure 2.8 shows a proposed mechanism of CO2 adsorption and reduction on TiO2 

[160]. On the left of Figure 2.8 are the three routes of CO2 adsorption through reaction 

with a surface free OH group and converting to bicarbonate (1), attaching to an oxygen 

vacancy becoming carbonate (2), and then chemisorption to the surface and the resulting 

equilibrium (3). The right side of Figure 2.8 shows the reduction of CO2 by surface 

adsorbed hydrogen. The proposed mechanisms, such as shown in Figure 2.8, include 
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oxygen vacancies. It should be noted that modeling of anatase TiO2 has found that 

electron transfer to reactants is much more likely to occur at an oxygen vacancy at the 

surface than from the conduction band of TiO2 [161]. Liu et.al. found that oxygen 

vacancies increased photoreduction activity [162]. This implies that surface defects are 

photocatalytically active sites and that the energy transfer of the electron is more 

complicated than the simplistic band gap model implies. Modeling also suggests that 

oxygen vacancies are difficult to produce and require more energy than one excited 

electron to generate [163]. This means that as a catalytic active site the performance of 

oxygen vacancies is expected to be low. The search for CO in product gases, such as 

found in Table 2.3, may be in reference to non-catalytic behavior and instead interactions 

with carbon based surface contaminants [156]. Within the photoreduction process and 

related reaction phenomena many reaction mechanisms are possible with a variety of 

products developed which can participate in further photoreduction. 

 

  

Figure 2.8 The mechanism of CO2 adsorption left and CO2 reduction right boxed as proposed by Wu and 

Huang, indicating more than one Ti site is necessary for CO2 photoreduction from [160]. Empty boxes 

within figure indicate vacant site. 

An example of mechanisms that provides a larger mechanism process for 

interpreting intermediates and products is Shkrob et al. argument that the formation of 

methane follows a “Glyoxal cycle” (Figure 2.9) [99]. This figure shows a cycle of CO2 

fixation, which includes even two processes they refer to as short cuts that don’t include 

radical or redox chemistry. In this case, the mechanism shown in Figure 2.9 was proved 

half way through the use of Electron paramagnetic resonance (EPR) limiting which 

species could be observed, however they argue that the transformations would be readily 

completed. This introduces many interesting questions, such as the impact of the reaction 

shortcuts, particularly in terms of the energy economy of the formation route, and light 
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interactions that are not photocatalytic. Do various routes to CO limit the impact of 

focusing on CO detection to represent photoreduction? Is it enough as Liu and Li suggest 

for photoillumination to enhance the desired reaction [156]?  

 

Figure 2.9 The Glyoxal cycle that is proposed for the formation of methane. RH refers to the generic donor 

of H atoms often water, from Shkrob et al. [99].  

The mechanism discussion is complex. There is work suggesting that accessibility 

of the surface may be a source of deactivation, with the competition of H2O molecules 

limiting the adsorption of CO2 [147]. Depending on the desired product, gas phase or 

liquid phase may be better suited based on reaction mechanism [164]. In CO2 

photoreduction there are disparate goals and concerns and findings. Knowing reaction 

mechanisms enable all possible products to be identified; this assists comparisons of 

catalysts across modifications. As modifications directly impact reaction mechanisms, it 

becomes necessary for comparability purposes to be able to report results to investigate 

the effect of reaction mechanism. This is only possible if the effect of external 
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experimental parameters are understood and controlled, and is more wholly encompassed 

if both the photonic and catalytic performance are reported. 

The review done by Liu and Li, is able to provide proposed or possible reaction 

pathways for the formation of carbon monoxide and methane, and points out these vary 

depending on crystal phase, prevalence and types of defects, and electronic structure of 

the catalyst [156]. This wide diversity can be seen in Table 2.3 through the various 

intermediates and products being found in the literature.  Table 2.3 covers a range of TiO2 

modifications and measured products with the usual focus on CH4 visible due to product 

frequency, and CH3OH (methanol) the second most prevalent term followed by CO 

(carbon monoxide). It is important to notice what is being chosen to be quantified as part 

of the product formation results. The tracking of hydrogen and oxygen lower in the table 

indicates attempts at assessing the contribution of water to the formation of products.  

 

Table 2.3 Tabulated review of literature reaction intermediates (absorbed species on the surface of the 

photocatalyst) and products for the reduction of CO2 by photocatalysis, reproduced from [156]. 

Catalysts Reaction 
intermediates 

Products Reaction 
Media 

References 

TiO2-anatase H•, CH3•, OH• CH4, CH3OH NaOH 

solution 

[165] 

TiO2-brookite CO2•, HCOOH CO, CH4 H2O vapor [162] 

TiO2-P25 HCOO–, CO3
2- CH4 H2O solution [166] 

Ti-MCM-41 O–, OH• CO H2O vapor [167] 

Ti-SBA-15 CO, HCOH CH4, C2H4, C2H6 H2O vapor [168] 

CuTi/SiO2 - CO, CH4 H2O vapor [169] 

CuTi/5A CO2•, COOH•, 

CH3OH 

CH4, CH3OH, CH3COOH, 

COOH-COOH 

Alkaline 

solution 

[170] 

Pt/TiO2 HCO3
- CH4 H2O vapor [171] 

Au/TiO2 - CH4, C2H6, HCHO, CH3OH H2O vapor [172] 

Pd/TiO2 CO3
2−, CO2(aq), 

H2CO3 

CH4, C2H6, C3H8 Na2CO3 

solution 

[173] 

N-TiO2 H•, CH3• 

HCO2•, CH3O2• 

HCOOH, HCHO, CH3OH, 

CH4 

KHCO3 

solution 

[174] 

FeTiO3/TiO2 H2CO3, HCO2•, 

HCOOH 

CH3OH NaHCO3 

solution 

[175] 

CuO/TiO2 C residue CH4 H2O vapor [48] 

CuO-TiO2 HCOOH, 

HCHO 

HCOOCH3 CH3OH 

solution 

[176] 

CuOx/TiO2 CO2•, HCO3
- CO, CH4 H2O vapor [177] 

AgBr/TiO2 CO2•, C•, CH3• CH4, CH3OH, CO, 

CH3CH2OH 

KHCO3 

solution 

[178] 

Pt-Cu/TiO2 CO, OH• CO, H2, CH4, olefin, 

branched paraffin, alkanes 

H2O vapor [179] 
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Catalysts Reaction 
intermediates 

Products Reaction 
Media 

References 

Ag/ALa4Ti4O17 (A: 
Ca, Sr, Ba) 

- CO, HCOOH, H2, O2 H2O vapor [180] 

Cu-I/TiO2 H•, CO•, C• CO, CH4, CH3Cl H2O vapor [181] 

Ni-N/TiO2 - CH3OH NaOH, 

Na2SO3 

solution 

[182] 

M-N/TiO2 (M: Pt, 
Au, Ag) 

C residues CH4 H2O vapor [137] 

 

 

The level of understanding of photocatalytic mechanisms may have implications 

for products reporting. The current range of intermediates, indicating a diversity of 

reaction mechanisms, and diversity of products found challenge results reporting; 

examples of greater variety in products show that lab practices may be limited, and 

product totals will not encompass the whole of results of the photocatalytic process. To 

address this complexity some articles focus on specific products, such as CO [61, 71] and 

CH4 [68, 183-187] while others display the wide range of products [69]. One of the widest 

being the reporting of CO, CH4, CH3OH, C2H6, C2H4, C3H6 and C3H8 [58]. This bounds 

the capacity of the analysis, fewer products tracked limiting the scope to selectivity for 

specific products, while a wider range of products is more inclined to analyze overall CO2 

conversion. 

It can be seen in Figure 2.9 that intermediates and final products for the production 

of methane are a larger body of chemicals than found in Table 2.3. Meaning that even 

though molecules such as CH3OH are measured as products, they have potential for 

further reactions and these products may not be easily detected. Some intermediates are 

short lived. In fact, the photocatalytic process can be accompanied by many phenomena 

that challenge detection or widen the range of products including photoreforming, product 

condensation on the photocatalyst surface (or within the rig), and competitive reactions. 

Therefore, investigations into the specifics of the surface interactions during 

photocatalysis and the proposed chemical processes are vitally important and will over 

time greatly improve the CO2 reduction research. What this means to current experimental 

work is that researchers need to be more discerning about and descriptive of the rig 

specifications and analysis measures taken to address the challenges of having a wide and 

overlapping product range and getting products to detection.  
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2.5 Parameters affecting CO2 Photoreduction and Conversion 

This discussion focuses on the effect of operational parameters on CO2 photoconversion. 

There can be a lack of normalization of the reactor and light in reported terms, and even 

a lack of reporting these parameters in a consistent way. Therefore, parameters that 

influence testing and conversion results are reviewed here to assess current practice. 

These factors include catalyst specifics, light source utilized, reactor design, and the 

operating conditions which include temperature and pressure. Rate is the obvious way to 

measure the impact in varying the operational parameters and is utilized throughout this 

discussion. It becomes clear for further discussion and experimental work that the use of 

specific rate is crucial to exploring the reaction conditions and implementing 

benchmarking. 

 

2.5.1 Catalyst 

The amount of catalyst used has direct impact on the ability to benchmark product 

formation results. The challenge here is to quantify catalytic sites for the photocatalytic 

process and utilize terms such as turn over frequency (TOF) to measure conversion. This 

review is not focusing on all catalyst properties that improve performance, but instead, 

on the catalyst properties that need to be understood to quantify photocatalyst 

performance. Therefore, the following sections discuss how mass of catalyst used, the 

morphology, and the specific surface area of the catalyst are important to consider 

because they influence the light accessibility to the catalytic active sites. It will be shown 

that the testing results are fundamentally impacted when light and catalytic activity are 

not acknowledged in the rig design and experimental set up.  

 

2.5.1.1 Mass of catalyst /catalyst loading  

The mass of the catalyst in the reactor can be optimized for the incident photons, as shown 

in Figure 2.10 [96]. This means that the rate and quantum yield results could be optimized 

for the amount of catalyst. Optimization is preferable if mass of photocatalyst is to be 

used to normalize conversion. Colina-Márquez et al. optimized catalyst loading from 

modeling and calculations for heterogeneous liquid reactors of tubular or compound 

parabolic collector shape by using the local volumetric rate of photon absorption (VRPA) 

as representative of solar radiation absorption and finding the maximum when varying 

concentration [188]. This optimization varies as a function of scattering albedo, which is 

defined as the ratio scattering to total extinction. Then, to normalize for the reactor radius 
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they used optical thickness and apparent optical thickness, a term they coined for 

normalizing scattering and light interactions of photocatalysts to the reactor radius [188]. 

Ollis reported that for gas phase reactors there is a limitation on light accessibility and 

when the optical density of the catalyst particle is greater than 1-2 (unit-less number) only 

illuminated mass or surface area should be compared [157]. This optimum mass can be 

found experimentally. As suggested in Figure 2.10, the optimum mass (mopt) for the 

reactor configuration and light provided can be found by varying mass. Zhao et al. 

discussed the mass of catalyst used in their gas phase reactor and found that there is a 

point at which additional catalyst no longer increases production rate. They found that the 

performance of 100mg of catalyst is equal to the performance of 200mg of catalyst, both 

producing roughly 0.22 µmol/h of CO [147]. 

 

Figure 2.10. Expected plot for the reaction rate (r) as a function of mass (m), modified 

from Herrmann [96].   

Acknowledgement of the mass of the catalyst is done through reporting 

µmol/gcatalysth, i.e. the amount of product per the amount of catalyst and time of testing. 

And the mass can be discussed in terms of an intrinsic metric such as catalyst 

concentration or catalyst to substrate ratio. In this case, it is discussed in terms of reporting 

mass thereby enabling the use of intrinsic metrics. Results such as quantum efficiency 

might benefit from being gathered from the initial linear range of the plot (Figure 2.10). 

Moreover, kinetic law of the material performance would benefit from being gathered in 

the saturated mass range of testing, particularly if not normalized for amount of catalyst 

used. Therefore, the mass would not limit or modify the reaction rate, and would also not 

act as a penalty in the rate calculation. Mass of photocatalyst loading is explored with 

both AuTiO2 and Mirkat experimental work in chapters 5 and 6. 
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2.5.1.2 Morphology and Surface Area of Catalyst 

Morphology can relate to a catalytic material’s shape, size, volume, surface, structure and 

crystallinity. Historically, Brunauer-Emmett-Teller (BET) specific surface area has been 

reported on the assumption that the number of active sites is proportional to the surface 

area [189]. This specific surface area, however, is not used in current practices to 

normalize product formation results. As discussed in section 3.1.1 on product yield, the 

CO2 photoreduction results are often reported per mass of catalyst. The implications of 

reporting considering specific surface area need to be understood. 

The identification of active sites allows for catalytic behavior to be quantified. 

The morphology of the catalyst affects the availability of atoms to the surface and the 

electronic properties at the surface, and therefore, impacts the number of active sites. 

Most photocatalytic testing is conducted with nanoparticles, which are usually 

polycrystalline and already challenging to identify active sites with; however, some 

research has been conducted with nanorods and other particle morphologies [132, 133]. 

Modifications affecting porosity or structure including nanorods add complexity to 

quantifying catalytic behavior because of changes to active sites and added complexities 

to light interactions. The challenge for catalyst measurements has been the photon 

dependency of active sites. For example, active sites may be generated when activated by 

photons, however they cannot be defined as such because catalytic performance becomes 

unquantifiable using TOF due to the extremely short life of the charge separation. Serpone 

et al. discussed the generation and extinction of active sites and the challenges in 

identifying the number of active sites [100]. They also made the point that the active sites 

need to be identified irrespective of whether they have been excited or activated by a 

photon [100].   

Even as the BET surface area of TiO2 is often reported, suggesting that it is 

catalytically active on the entire surface, when doping and modifications are done to 

improve performance, these modified sites may become active sites for the reaction if co-

catalysts are added. In general, promoters are not active themselves, but instead increase 

TiO2 activity. Therefore, too high promoter loading will lead to lower activity from 

covering a high fraction of the surface. Results reporting µmol/gcatalysth take into account 

the whole mass of the catalyst irrespective of doping metals or active sites.  

Attempts have been made to quantify active sites through approximating the 

number of surface atoms by multiplying the number of crystal lattice atoms per area by 

the surface area of the solid photocatalyst [104]. This enables the turnover number to be 

determined; however, reactions occurring at a steady state of charge (exciton or hole 
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formation) at the photocatalyst surface [104], require continuous systems not yet widely 

available or understood in this context. Thus, the procedures for TOF measurements are 

not necessarily practical and accessible. 

Effectively active sites should be a function of illuminated surface area. 

Illuminated surface area would also quantify the area of the reactor devoted to catalyst 

loading and provide a way to normalize results for the size of the reactor. Illuminated 

surface area is discussed and used when analyzing results in this thesis. 

 

2.5.2 Light Source 

Light source quantification is crucial to determining quantum efficiency measurements. 

The light source is also the input of energy for the reaction to proceed, and thus, is the 

input by which to assess the energy conversion to products of the process. Understanding 

the light sources used for testing and the information reported are crucial to quantifying 

the effectiveness of photocatalysis. Discussion of the characteristics of light used for 

testing is presented here.  

 Light flux, or really photon flux, is used to quantify the incoming light unit 

(Equation 2.10). Efficiency can then be measured from how many photons are successful 

in the photocatalytic reaction. 

 

𝑝ℎ𝑜𝑡𝑜𝑛 𝑓𝑙𝑢𝑥 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠

𝑡𝑖𝑚𝑒 (𝑠)  ×  𝑎𝑟𝑒𝑎 (𝑚2)
 Equation 2.10 

 

Light intensity is irradiance or the power per area (W/m2 Equation 2.11). 

Measurements of irradiance of light sources are taken to understand the intensity of the 

light which activates the photocatalytic reaction. Light entering a reactor however, loses 

intensity the further it travels in the reactor. This occurs due to emitted light from a source 

spreading such that the intensity becomes less as a function of the distance it travels as 

sown in Equation 2.11. 

 

𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦

=  
𝑠𝑜𝑢𝑟𝑐𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑝𝑜𝑤𝑒𝑟

𝐴 𝑜𝑓 𝑠𝑝ℎ𝑒𝑟𝑒, (𝑟𝑎𝑑𝑖𝑢𝑠 𝑙𝑒𝑛𝑔𝑡ℎ 𝑔𝑜𝑖𝑛𝑔 𝑓𝑟𝑜𝑚 𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑜 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡)

=  
𝑆

4𝜋𝑟2
 

Equation 

2.11 
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A represents the surface area in Equation 2.11. There is also a consideration that 

the catalyst will reflect light, and some of that light will be again reflected back to the 

catalyst and some will be dissipated. The distance that light travels in reactor designs 

should be kept constant for testing and should be reported with results. As it is difficult 

to identify the intensity of the light that is available at the photocatalytic material, it is 

appropriate to report incident or external quantum efficiency. 

The IUPAC Glossary of terms defines measurements that address some of the 

information about the light supplied in the definition of terms [89]. In the case of 

measurements calculated using incident light, the term “photonic” is used, absorbed light 

then utilizes “quantum”. In the case of measurements using a monochromatic light source 

the term “yield” is used, and a wavelength spectra source is assigned the term 

“efficiency”. In summary, the related measurements are quantum yield (absorbed and 

monochromatic), quantum efficiency (absorbed and wavelength range), photonic yield 

(incident and monochromatic), and photonic efficiency (incident and wavelength range) 

[89]. This addresses some of the variability in testing and reporting procedure. 

To be specific, Quantum yield [Φ] (relative to flux of absorbed photons, qa
n,p,λ, – 

superscript a - in monochromatic radiation – subscript n, for molar amount, p, photon, λ, 

wavelength, A is the absorbance of the wavelength, and x is the chosen quantity for 

tracking reaction progress) is defined in Equation 2.12 [89]: 

 

Φ (𝜆) =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑
=  

𝑑𝑥
𝑑𝑡⁄

𝑞𝑛,𝑝,𝜆
0 [1 − 10−𝐴]

 
Equation 2.12 

 

It can be calculated as an average [89]: 

 

Φ𝑃ℎ→𝑐𝑎𝑡(𝜆) =  
𝑑𝑛

𝑑𝑡⁄

〈𝐿𝑝,𝜆
𝑎 (𝑡)〉𝑉

 
Equation 2.13 

The term n refers to a measure of concentration of product formation or reactant 

consumed (i.e. number of events). Where 〈𝐿𝑝,𝜆
𝑎 (𝑡)〉𝑉 is the absorbed (spectral) photon flux 

density defined by the equation (in this case the x is a designation of position, so the 

absorbed flux is a function of position and time x) [89]: 
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〈𝐿𝑝,𝜆
𝑎 (𝑡)〉𝑉 =  

1

𝑉
∫ 𝐿𝜆

𝑎(𝑥, 𝑡)𝑑𝑉
𝑉

0

 Equation 2.14 

The absorbed photon flux density is an integral per time interval of the whole volume of 

monochromatic light entering the system averaged per volume.  

 Returning to the term x, within quantum yield, as a measure of concentration of 

product formation or reactant consumed (i.e. number of events). Otherwise, quantum 

yield can be defined as an integral; Quantum efficiency [Φ (Δ𝜆)] (relative to absorbed 

photons in a range of wavelengths) [89]: 

Φ (Δ𝜆) =  
∫

𝑑𝑛(𝜆)
𝑑𝑡

𝜆2

𝜆1
𝑑𝜆

∫ 𝑞𝑛,𝑝,𝜆
0𝜆2

𝜆1
[1 − 10−𝐴(𝜆)]𝑑𝜆

 Equation 2. 15 

However, this is for a homogeneous system (as opposed to the heterogeneous 

system in this study), where A is the absorbance depending on the wavelength [𝜆]; A 

takes into account the fraction of absorbed photons. The term x (representing disappearing 

reagent or formed products) is a measure of the reaction process and is wavelength-

dependent. Photocatalytic activity can be used as a synonym for both quantum yield and 

quantum efficiency. 

Photonic yield (relative to incident photons in monochromatic radiation) has been 

given no symbol and is found in terms of q0
n,p,λ [89]: 

𝑝ℎ𝑜𝑡𝑜𝑛𝑖𝑐 𝑦𝑖𝑒𝑙𝑑 =  
𝑑𝑛

𝑑𝑡⁄

𝑞𝑛,𝑝,𝜆
0  Equation 2.16 

Photonic efficiency [𝜉] (relative to incident photons in a range of wavelengths) is 

defined as [89]: 

 

𝜉 =  
𝑑𝑛

𝑑𝑡⁄

∫ 𝑞𝑛,𝑝,𝜆
0 𝑑𝜆

𝜆2

𝜆1

 

 

Equation 2.17 

This is in terms of chemical amounts such as moles, with the term 𝑞𝑛,𝑝,𝜆
0   being 

the spectral photon flux (units being mol/sec). These two terms have also been referred 

to as photocatalytic efficiency. 
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Effective radiation catalytic activity, or radiation chemical yield (G), is less 

commonly used and represents the number of reacted molecules, or formed products, by 

a 100 eV energy radiation. 

Herrmann has proposed a relationship between the reaction rate in photocatalysis 

and the radiant flux demonstrating increased recombination at high flux (Figure 2.11) 

[96]. Lab tested reaction rate (R) shows the behavior of catalytic conversion as 

proportionally dependent on radiant flux in either a linear or square root manner.   

 

 

Figure 2.11 Reaction rate (r) shown as a proportional function of radiant flux (Ф), 

modified from Herrmann [96].  

Light sources used for photocatalytic reduction of CO2 include UV light lamps 

[149, 190] such as high pressure mercury lamps [191, 192], other mercury lamps [56, 

145, 193], and UV-visible spectrum lamps [132, 152] including Xenon arc lamps [129, 

133, 147, 148, 151, 194, 195].  

The usage of a monolith was stated to have higher yield rates due to “higher 

illuminated surface area and efficient light utilization” [193]. This brings to the fore the 

necessity to use optimal amounts of catalyst relative to light provided. This improvement 

would not be as significant if optimization of the mass of the catalyst had already been 

accounted for, particularly relative to the illuminated surface area.  

For the purposes of testing, using the optimum wavelength is appropriate if the 

reaction is for indoor use, i.e. artificially illuminated reactors [196].  CO2 photoreduction, 

for the production of solar fuels, would ideally be commercially conducted using solar 

radiation, and therefore, the band gap energy of the catalyst would not impact the choice 

of light source. This is because the light source is fixed as solar. Moreover, the light used 

for testing needs to be normalized and understood in the context of solar irradiation.  In 

the case of solar photovoltaic panels, the ideal band-gap energy for a single 
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semiconductor was identified as 1.34 eV based on the solar spectrum and is known as the 

Shockley-Queisser limit [197]. This is another way of expressing the desire to utilize a 

larger portion of the solar spectrum, as discussed in section 2.5.1.1. This value is much 

lower than that of TiO2, 3.2 eV, demonstrating the desire to lower the band gap energy of 

the catalyst for the purpose of solar fuels [107]. However, it should be kept in mind that 

this has been surpassed by including multiple energy level pathways such as utilizing 

multiple semiconductors together [198]. In this thesis, irradiation is reported, however, 

experiments with a solar standard are not conducted. 

 

2.5.3 Reactor 

CO2 photoreduction is relatively unstandardized, in part because photoreactors can vary 

greatly in size, shape and volume. These photoreactor differences can lead to a large 

variety of flow patterns in the reactors. Common materials used in CO2 photoreduction 

include quartz [118, 119] and stainless steel [56, 191, 192], while Pyrex glass is suitable 

for near-UV, and quartz glass is needed for UV [189]. 

Reactors can be designed for batch reactions, or as a continuous process with 

constant flow of reactants and products. To optimize contact in large scale reactors, stirred 

tank photoreactors and fluidized bed photoreactors can be utilized for liquid and gas phase 

reactants, respectively [189]. In photoreator design, lamp and reactant configurations are 

important due to radiation emission and absorption and fluid dynamics interaction. There 

are many reactor configurations in relation to light geometries available. These can be 

seen in relation to reactor design below in Table 2.4. Light geometries available include: 

immersion well, where the light source is immersed in the suspension;  annular, where 

the light source is encased within a central cylinder with the suspension in a coaxial 

cylinder around it; multilamp options with many lights surrounding the reactor cylinder;  

elliptical, where both the light source and reactants are encased in elliptical reflecting 

chamber; film type, where reactants form a thin liquid on reactor walls; and flat wall 

photoreactor, where light from a single direction or parallel beam radiation field is used 

to illuminate reactants under a flat transparent wall of the reactor [189]. 

Reactors can also facilitate different catalyst supports as suggested by variants of 

fixed bed designs in Table 2.4 [199]. Within reactors used for CO2 photoreduction, 

catalysts can be supported on the bottom of the reactor, quartz plates, glass fibers or glass 

fiber filters [147, 152], Teflon holders [148], and ceramic monoliths [112, 193].  Other 

expansions of the photoreactor design have included dye-sensitized film [134], twin 
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reactors [194], and a hydrogel-embedded microfluidic network [190]. 

 

Table 2.4 Reactor designs and light geometries that are available [199]. 

Reactor Design Light and Reactor Geometry 

 

Fluidized and slurry reactor (multiphase) 

 

Immersion well, annular, multilamp, 

elliptical  

 

Fixed bed reactor  

 

Film type, flat wall 

 

Variants of fixed bed designs 

 

Monolith reactor, optical fiber reactor 

 

 

2.5.4 Operating Conditions 

The operating conditions under which CO2 photoreduction tests are run will certainly 

impact on the results, and particularly the comparability of the results. This section 

discusses the effect of reactant concentrations, temperature and pressure of the reaction. 

Considerations for photocatalysis may also include length of reaction and whether 

sacrificial agents or dyes are used. Unfortunately, these conditions are generally not 

sufficiently monitored or reported, as discussed below. In this thesis, reactant 

concentrations, temperature, and pressure are monitored and reported, however not varied 

for further analysis. The length of reaction, particularly for batch reactions conduced 

herein are varied.  

 

2.5.4.1 Reactant Concentrations 

As discussed above regarding the mass of catalysis (section 3.3.1.1), semiconductor 

activation by a photon provides active sites that can be generated and then extinguished, 

and therefore, the number of active sites can change. To use a reaction rate model, a 

constant number of active sites are assumed during illumination. The reaction rate as a 

function of reactant concentrations can be found experimentally (as long as light intensity 

is kept constant) by varying concentration of reactant; with expected results as shown in 

Figure 2.12. This information could be used to optimize the amount of CO2 necessary to 

maintain the reaction rate and may have implications for the purity of the CO2 feedstock.  
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Figure 2.12. Expected plot showing the rate of reaction (r) as a function of initial concentration of reactant 

(Co), with resultant rate equation as a function of adsorption constant (K), apparent first order rate constant 

(k) and reactant concentration (C), modified from Herrmann [96]. 

Currently, reactions are carried out in excess of CO2, with CO2 and H2O (reactant) 

concentrations having an unknown impact on reaction rate [107]. However, some work 

has been done to identify reaction rate dependencies. Reaction rate as a function of initial 

concentration of reactants is model dependent. With the Langmuir-Hinshelwood model, 

the rate of a catalytic reaction is dependent on the rate constant 𝑘, the apparent binding 

constant 𝐾, and the reactant concentration  C, as seen in Equation 2.18 [200]: 

 

𝑟𝑎𝑡𝑒 =  
𝑘𝐾𝐶

(1 + 𝐾𝐶)
 Equation 2.18 

 

Ollis used this model for photocatalytic kinetics for homogenous reactors and 

warned that the approximations that make this model applicable can be misunderstood. 

Ollis found that the intensity dependence of k and K were applicable to the pseudo-steady 

state approximation and not the slow-step approximation in the case of photocatalysis 

[157]. The pseudo-steady state can be due to numerous things including mass transfer, 

light transfer, and limiting intermediates. Therefore, even though the Langmuir 

adsorption model only applies to heterogeneous catalysis, the equation can appear to 

match the observed behavior. This means that a rate-determining step may not be an 

applicable model in this case. This is in agreement with Murzin’s work that the steady 

state approach should be applied in cases of heterogeneous photocatalysis [158]. This 

means that without thorough investigation of rate dependence, or experimental 

investigation and modification to ensure adequate light and mass transfer, that the 

mechanism cannot be easily inferred from the rate relationship. 
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Questions of carbon residues on the catalyst and their impact on the photocatalytic 

process have been raised in the literature [48]. Yang and colleagues performed tests using 

isotopically labelled 13CO2 allowing them insight into the source of the carbon.  They 

concluded that CO observed in photocatalytic reactions could be formed from a reaction 

of the CO2 with the surface carbon residues [48]. Performance of mass balance 

calculations on photocatalytic reactions would be an option to provide necessary 

information to support production rates. Thus, it is also important to consider mass 

balance of the reactants and products, as this would provide information about the source 

of carbon. Tests where amounts of reactants and products could be measured accurately 

would allow for confirmation that the source of carbon in the products was from CO2 and 

not from any residual carbon on the surface of the photocatalyst [201]. Blank tests run 

without catalyst, light, and CO2 respectively verify carbon residues are not the source for 

products as well. In this thesis, blank experiments were conducted without catalyst, light, 

CO2, and without water. 

Reactors being batch or continuous makes a difference in results processing as the 

batch reaction would have an initial maximum reaction rate, whilst the continuous would 

have a steady reaction rate. It is typical to use batch mode reactors as product yield is low 

and makes detection difficult. 

 

 

2.5.4.2 Temperature and Pressure of Reaction 

In photocatalysis the temperature of the reaction, particularly in the extremes to room 

temperature (less than 263.15 K and greater than 353.15 K), has an effect on the reaction 

rate as can be seen in Figure 2.13. As photocatalysis is a catalytic reaction affected by 

any energy input, it is expected that reaction rate varies with temperature. As low 

temperatures (below 353.15 K) are approached, reactants and products will be adsorbed 

more strongly, and as temperatures increase adsorption decreases, inhibiting reactions as 

they require surface contact [92].  

Temperature effects can be challenging to test experimentally as rigs are often not 

constructed in temperature controlled environments. Particularly in gas phase reactors, 

temperature may be difficult to measure, as it may be higher at the surface of the catalyst 

than in the surrounding gas. It is noteworthy that the drawing in Figure 2.13 shows the 

highest reaction rate coincides with a temperature closer to 253.15 K for alcohol 

dehydrogenation and alcane-deuterium isotopic exchange [202]. Experimental work to 

optimize reaction temperature for CO2 reduction found that 423 K was best for CO2 
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photoreduction because of improved balance between CO2 adsorption and product 

desorption [144]. 

 

 

Figure 2.13 plots the changes in reaction rate with time and is dependent on Figure 2.12. The logarithm of 

reaction rate (r) was found to be a function of inverse temperature (1/T) with three regimes of behavior 

considering the apparent activation energy (Ea) as a function of true activation energy (Et) and the heat of 

adsorption (Qa) and desorption (Qp) multiplied by constant (α), modified from Herrmann [96, 202]. 

Photocatalytic reactions can gain thermal energy from light. When the energy of 

incoming photons is higher than the band gap energy of the semiconductor releasing the 

excess energy as heat, or the energy of the incoming photon is lower than the band gap 

energy such that the energy is all converted to heat, unless reflected. The Shockley-

Queisser limit of 1.34 eV in this case is also the band-gap energy that produces the least 

heat [197]. As the energy intake is optimized, the heat output is minimized. This 

acknowledges that using solar light will heat the catalyst to some extent. Therefore, due 

to this thermal gain, temperature should be monitored throughout photocatalytic testing 

or a cooling system used to modulate heat.  

Pressure has an impact on the reaction rate in the case of liquid phase reactions, or 

liquid phase products. In chemical engineering, pressure changes in reactors can be 

indicative of reaction rate as products form in gas phase [200]. Pressure changes may give 

information on the nature of products by indicating phase of products. Pressure impacts 

the rate of the reaction through concentration as the higher the pressure, the higher the 

CO2 dissolved in liquid phase. Rossetti and colleagues were able to use a high pressure 

(up to 20 bar) liquid phase photoreactor to improve the production yield with methane 

production as high as 1.73 mmol per hour and per kgcat at 358.15 K and 20 bar [203]. 

They attributed this performance improvement to an increase in the amount of dissolved 
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CO2. Thus, the more CO2 dissolved, the higher the concentration and yield. More 

specifically, studying the effect of pressure on reaction rates for liquid phase reactions 

allows for the measure of change in volume going from reactant state to the activated 

state [204]. 

 

2.6 Broadening the photocatalytic materials discussion 

This chapter covers a wide swath of known, often accepted and agreed CO2 

photoreduction ground. The only real possible exception is the proposal of linking 

modifications more directly to improvement in experimental results. From this common 

ground, a wider discussion of benchmarking will be built. This wider discussion comes 

from the disagreement within the field of CO2 photoreduction. It will require revisiting 

experimental goals and procedure, reporting, and a wide range of published literature. 

The intent is to be generous with the confusion, to over clarify, and to make many entry 

points into the discussion. Therefore, it will not have the same materials focus that so 

much of the literature has. The focus on materials improvements is critical for CO2 

photoreduction research, however this thesis departs from that discussion to assist in a 

more experimentally in-depth way. The end goal of CO2 photoreduction research has 

many avenues, from fine chemical synthesis, to solar fuels, to CO2 utilization, and all the 

same challenge. As Nahar et al. puts it, “The present situation in this area of research is 

quite confusing, and comparing the efficiency of the different photocatalysts is also 

difficult due to the high variability of influencing factors and reaction conditions” [205]. 

Therefore, this thesis clarifies the distinctions between product formation and efficiency, 

discussed phenomena, and then goes from there to widen the benchmarking discussion 

and evaluate an extended normalization result as a possible solution to the dual term 

problem of quantifying both the photon performance and catalytic performance of the 

photocatalyst (presented in more detail chapter 3).  

Multiple avenues of investigative experimental work are undertaken in this pursuit. 

As shown in the scope of the thesis work, Figure 2.14, this thesis gives three main 

packages of experimental work alongside the analysis of current results and parameter 

influences in CO2 photoreduction experimental work. Initial experiments compare six 

catalysts based on identical experimental conditions, with the results presented in chapter 

4. These results cannot be used to analyze the dual term problem as they do not vary 

parameters that would enable a distinction between the performance based on the 

effectiveness of the light, reactor, or catalytic process. Stated another way, the results 
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being processed into different terms reveals no further information. To enable a 

comparison of various results analysis the experimental parameters need to be varied.  

This is done with a design of experiments (DoE) presented in chapter 5, and with a single 

variable being varied as is common in research presented in chapter 6. 

 

 

Figure 2.14 Scope of study undertaken in this thesis. The Literature Results are covered in chapter 3 

enabling terminology recommendations, all samples compared by typical CO2 photoreduction 

benchmarking in chapter 4, AuTiO2 DOE experiments in chapter 5, Mirkat experiments varying single 

parameters in chapter 6 accompanied by regime recommendations to guide experimental work, and then 

the Mirkat and AuTiO2 results can be analyzed in terms of the dual term problem and the benchmarking 

problem as covered in chapter 7. 

DoE’s enable influence of various experimental variables, or factors, to be directly 

compared as to the effect on an output, or response, and their interactions with each other 

on that response [206]. They can also be used in model development and for obtaining 

optimal reaction conditions, however these two purposes require very different 

experiments [207]. DoE for CO2 photoreduction has been done previously [208]. Delavari 

and Amin chose a response surface methodology, and varied the reactor geometries of 

the mesh for catalyst support, the reaction parameters of photocatalyst loading and UV 

light power and reactant concentrations through feed ratios, along with the material 

property factor of calcination temperature. The reactant mixture included CO2, CH4, and 

N2 as a carrier gas, and because of the CH4 the results are challenging to compare to other 

studies.  

In this case, the DoE was chosen because it is another process by which to optimize 

reaction rate that can enable a wider range of knowledge about factor influence to be 

investigated with fewer experiments. An optimized response could arguably be used for 
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benchmarking, either through comparison of conditions to enable a standard rate or 

through finding a singular performance value. However, in this case, as the experimental 

rig is limited to the influence of the factors of light intensity, catalyst loading, and reactor 

time, those are the bounds for which the response can be optimized. For the DoE 

experimental work the AuTiO2 photocatalyst was used. 

This work continues with a set of experiments done with the commercial sample 

Mirkat 211. These experiments vary light intensity, catalyst loading, and reactor time 

independently. Taken together, these two sets of data enable a discussion of 

benchmarking and the dual term problem. As shown in Figure 2.14, these results are all 

analyzed in terms of unitary product formation or specific rate (the catalytic term), 

photonic yield (the appropriate photonic performance term), and then the extended 

normalization that attempts to bridge between these two terms. This is discussed in 

chapter 7. Therefore, the work elucidates the current challenges to benchmarking and 

attempts to clarify what is necessary for benchmarking photocatalysts, quantify the effect 

of limitations to current CO2 photoreduction, and resolve some of the challenges with the 

proposal of a new result term. 
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3. CHAPTER 3 – ANALYSIS AND COMPARISON OF CARBON 

DIOXIDE PHOTOREDUCTION ON TITANIUM DIOXIDE 

BASED PHOTOCATALYSTS 

 

Chapter 3 presents results from literature with a review of terms used in reporting results 

in section 3.1. These terms that are utilized most often include product yield (section 

3.1.1), product selectivity (section 3.1.2), quantum efficiency (section 3.1.3) and turnover 

frequency (section 3.1.4), with key advantages and disadvantages of these terms and how 

they are used summarized (section 3.1.5). This is followed by section 3.2, which is a 

collection of terminology recommendations to clarify how best terms can be utilized to 

communicate within photocatalysis and externally with other disciplines. 

Acknowledgement of light and mass transport is incorporated into a process inclusive 

photocatalytic diagram (section 3.3). Within photocatalytic work there is a dual term 

problem (section 3.4.1), where the catalytic performance and photonic (light) 

performance are reported separately. When utilizing the key quantifications of specific 

rate and photonic performance for photocatalysts it is important to understand the 

experimental context of the terms (section 3.4.2-4). This chapter concludes with a list of 

experimental conditions that are recommended to be reported based on the literature 

review in Section 3.5.  

3.1 Review of nomenclature in photocatalytic CO2 reduction process and issues for 

benchmarking 

When reviewing the current literature of CO2 photocatalytic reduction, multiple terms are 

used to report conversion. The most common results given for the photocatalytic process 

are product formation based, such as yield [45, 62], evolved products and rate [209], or 

production [44]. Results include a variety of units implicating a lack of standardization in 

results processing. This is problematic for benchmarking due to the lack of contextual 

information given, such as information about the light and reactor, which would allow 

these results to be normalized [90]. These product formation results are then used to 

calculate other terms such as quantum efficiency, for which these data may not be 

utilitarian depending on the experimental conditions.  

To delve deeper into how to quantify photocatalysts performance for CO2 

photoreduction, two aspects have been critically reviewed in detail here; firstly, the 

conversion measurements reported for photocatalytic reduction of CO2 with TiO2 based 
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materials; secondly, how the photon and catalytic reporting terms relate to the physical 

phenomena (what is included in the measurement and what is not). This is followed by 

recommendations on results terms and a proposal of the minimum information to be 

reported about the CO2 photoreduction experimental work. 

A body of articles, using TiO2 based catalysts for the reduction of CO2, has been 

reviewed to identify commonly used conversion measurements including chemical 

conversion and energy yield [56, 118, 119, 129, 132-134, 144, 145, 147-149, 151, 152, 

190-195, 210]. Most of the articles describe photocatalysis, except two which are 

catalysis [118, 119] which are included to assist the discussion of rate based terms. Within 

photoreduction some studies test photocatalytic behavior or activity, through dye 

degradation tests [141, 142, 190, 211]. These studies are used to prove photocatalytic 

activity with the assumption materials will then be applied to processes such as water 

splitting or CO2 reduction. 

Within this review, a variety of definitions are explored to understand the diversity 

of reporting currently being implemented and point to confusion and identify limitations.  

 

3.1.1 Product Yield 

Product yield is commonly reported in results for CO2 photoreduction [129, 145, 149, 

150, 193, 195, 212]. Product yield as used in photocatalysis is utilized in an inconsistent 

way, as described here. Product formation or product yield is reported irrespective of CO2 

reactant concentration. The units used vary greatly with product formation most 

commonly reported in micromole of product per gram of catalyst (μmoles/g) [129, 145, 

149, 150, 193, 195, 212]. It has also been reported as only moles [194, 213]. The product 

yield can be refined and reported in units of micromole per gram of catalyst per hour of 

testing, i.e. μmole g-1 h-1 [112, 132, 137, 144, 150, 152, 214]. However, results can also 

be reported as amount of product/experiment length, without considering the amount of 

catalyst used [147].  

 Product yield values are measured most often for methane (CH4) and carbon 

monoxide (CO), but can include various carbon, hydrogen and oxygen containing 

molecules, such as methanol (CH3OH) or formaldehyde (CH2O) [156]. Where a 

commercially available catalyst is used to benchmark, such as Degussa P25, the results 

provide a measurement that assists in comparing across research [154]. This catalyst 

benchmark is helpful; however, the effectiveness of such benchmarking has not been 

assessed. Further action in terms of experimental exploration and further data in terms of 
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results reporting are recommended to fully understand the photon uptake and then 

reaction efficiency. The concern is that applications of product yield data are limited when 

the variation in testing procedures are not reported. 

The yield of a product in catalytic tests can be the amount of a product formed per 

amount of reactant fed into the reactor (Equation 3.1). This is different from conversion, 

which is the amount of reactant that has been converted per the amount of reactant fed 

into the reactor (Equation 3.2). 

 

𝑦𝑖𝑒𝑙𝑑 =  
𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑓𝑜𝑟𝑚𝑒𝑑

𝑚𝑜𝑙𝑒𝑠 𝑜𝑓𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 𝑎𝑡 𝑠𝑡𝑎𝑟𝑡 
 

Equation 3.1 

 

 

𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛

=  
𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 𝑎𝑡 𝑠𝑡𝑎𝑟𝑡 − 𝑓𝑖𝑛𝑎𝑙 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡

𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 𝑎𝑡 𝑠𝑡𝑎𝑟𝑡
 

Equation 3.2 

 

These yield and conversion values allow for the comparison of the catalyst 

performance to be based on the catalyst’s ability to convert quantifiable amounts of 

reactants. Product formation or product yield that is reported in CO2 photoreduction is 

more varied, as the amount of reactants is not routinely measured. In many cases, CO2 

reduction tests are performed in excess of CO2 (the reactant), pure CO2 is used with no 

carrier gas and concentration is not monitored. Therefore, it is common for there to be no 

measurements of CO2 amounts, and thus, conversion, as defined in Equation 3.2, is not 

calculated. 

 To inspect the product yield results another way, many examples of results are 

tabulated with two “levels” of normalization applied to assess comparability (Table 3.1). 

In Table 3.1 the specific rate (μmole/gcath) are calculated and then an extended 

normalization (μmole/gcathmLmW). This new calculation of μmole/gcathmLmW is based 

on normalizing for the volume of the reactor, the illuminated area of the catalyst (as 

distinct from specific surface area; with illuminated area specifying the boundary of the 

catalyst and light interface), and the incident irradiance. Normalization, thus, is being 

used to focus on the catalyst performance and remove the reactor and light sizing effects 

from the reported results. This enables wider comparison of results. It is already common 

to normalize for the catalyst mass [71]. In this way, and extended normalization enables 

some complexity of the results to be incorporated into the comparison.  
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The amount of catalyst used and length of experiment are the context reported 

within the articles included in Table 3.1. For a wider understanding of the context given 

in the articles contained in Table 3.1, reactor type, light source and product analysis is 

tabulated in appendix A. As seen in Table 3.1 the experimental context is often lacking 

making the calculation of the rate normalized by irradiance, volume of the reactor and 

illuminated area, impossible in seven out of the nine articles surveyed. Even more 

importantly, it is a combination of materials modification and experimental conditions 

that leads to the wide variation in results. Consider hydrogen production with a range of 

0.42-6250 μmole/gcath and carbon monoxide ranging from 0.67-24000 μmole/gcath, also 

methane ranges from 0.1-2700 μmole/gcath. These ranges include an order of magnitude 

of 106. While it is clear that articles are able to make comparisons internally, addressing 

that one material is performing better than another for the given experimental conditions, 

there is a loss if the context of the experiment is not taken into account. And 106 gains 

become something that is not attributable to specific variables including material 

attributes, therefore, benchmarking has either not occurred, or current benchmarking 

could be considered “fuzzy”. 

 

Table 3.1 Normalized results from articles on CO2 photoreduction covering a wider range of the literature. 

Reference Reported Result μmole/gcath (rate 

normalized by 

catalyst loading) 

μmole / gcat h mL mW (rate 

normalized by catalyst loading, 

volume of reactor, irradiance, and 

surface area of illuminated 

catalyst) 

[149] 98µmole/g of hydrogen, 10-

40 µmole/g carbon 

monoxide, 10-20 µmole/g of 

all hydrocarbons tracking 

methane, ethane, ethene, 

propane, propene, butane, 

butene, and methanol 

6.5 of hydrogen, 

0.67-2.67 of carbon 

monoxide, 0.67-

1.33 of 

hydrocarbons 

Cannot calculate due to no 

irradiance, or illuminated surface 

area 

[194] 1-2.5 µmole/g of hydrogen 

and 17-22 µmole/g of 

methanol plotted against 

time in hours 

0.5-0.42 of 

hydrogen, 8.5-5.5 of 

methanol 

No illuminated surface area 
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Reference Reported Result μmole/gcath (rate 

normalized by 

catalyst loading) 

μmole / gcat h mL mW (rate 

normalized by catalyst loading, 

volume of reactor, irradiance, and 

surface area of illuminated 

catalyst) 

[152] 1500 µmole/(g*h) of 

hydrogen, 110-140  

µmole/(g*h) of carbon 

monoxide, and 5-10  

µmole/(g*h) of methane 

 

1500 of hydrogen, 

110-140 of carbon 

monoxide, 5-10 of 

methane 

No reactor volume or illuminated 

surface area 

[132] 0.1-0.145  µmole/(g*h) of 

methane plotted against time 

in hours 

0.1-0.145 of 

methane 

Complicated by lumens, no 

volume or illuminated area 

[145] 100-1150  µmole/g of 

carbon monoxide and 150-

325 µmole/g of methane 

962 of CO, but for 

an unknown doping 

of In TiO2 

0.00151 for CO for the In/TiO2 

(taken from abstract as length of 

experiments were unclear) 

[129] 40-70 mmole/g of carbon 

monoxide and 9-11 mmole/g 

of methane 

 

24000-13000 of 

carbon monoxide, 

2700-2000 of 

methane 

No irradiance or illuminated area 

[148] 0.25-0.4 µmole of carbon 

monoxide and 1.0-2.2 µmole 

of methane 

1.25-2 of carbon 

monoxide, and 5-11 

of methane 

No irradiance or illuminated area 

[151] 2250 µmole of hydrogen and 

35 ppm/g of methane 

6250 of hydrogen 

(methane ppm not 

able to convert) 

.00824 for hydrogen 

[147] 0.075-0.22 µmole/h of 

carbon monoxide 

0.75-2.2 of carbon 

monoxide 

No volume of reactor 

 

 Considering the higher expectations of more complete reporting from more recent 

articles this exercise can be completed again as seen in Table 3.2, where the ability to 

calculate the reactor volume and irradiance normalized result leads to a new range to 

consider. For specific rate (μmole/gcath) results the four article range is 1.86-5662.5 for 

CO, a range in magnitude of 103. The range of results for μmole/gcathmLmW now is 6.43 

x10-5 to 8.89 x10-3 and is, therefore, within 102 of each other. Obviously, this is not a 

large sample size and the comparison is limited by incomplete reporting to two articles. 

And this incomplete reporting is the same as what has been limiting benchmarking as 

discussed in section 1.4.1, with particularly the lack of data [81] continuing to be an issue.  

 



 

60 

Table 3.2 Results from articles in 2016 and 2017 giving reported results, and normalized results as a specific 

rate, and then normalizing for the volume of the reactor, the illuminated area of the catalyst (as distinct 

from specific surface area), and the incident irradiance. 

Reference Reported Result μmole/gcath (rate 

normalized by 

catalyst loading) 

μmole / gcat h mL mW (rate 

normalized by catalyst loading, 

volume of reactor, irradiance, 

and surface area of illuminated 

catalyst) 

[209] 290 μmole of carbon 

monoxide for Sr2KTa5O15 

58 for carbon 

monoxide 

Unable to calculate, no 

irradiance or illuminated area 

[62] 14.91 μmole/g of carbon 

monoxide, 3.98, 4.11 and 

0.41 of methane, ethane, 

and ethane respectively, 

for 5 wt% graphene oxide 

doped oxygen rich TiO2 

(UV and vis results) 

1.86, 0.49 for 

carbon monoxide 

and methane 

6.43 x10-5 for carbon monoxide 

and 1.72 x10-5 for methane 

[44] 3 μmole/g methanol for 

TiO2/Ti4O9/Cu2O 

0.6 for methanol No reactor volume or 

illuminated area 

[45] 11325, 97, 0.74, 2.94, 

15.97 and 8 μmole/g for 

carbon monoxide, 

methane, ethane, ethane, 

propene and propane for 

1%NiO-3.5% In2O3/TiO2 

5662.5 and 48.5 for 

carbon monoxide 

and methane 

0.00889 and 7.62 x10-5 for 

carbon monoxide and methane 

 

 Considering the utility of using specific rate, as discussed in section 2.8, it would 

be pertinent to discuss work with liquid phase photocatalysis that has been done 

considering reporting of rate results. Hugo de Lasa et al., argue for apparent reaction 

parameters to be corrected by either the irradiated volume, area or weight divided by the 

reactor volume [215]. This is based on calculations conducted in a previous article 

introducing those factors [216]. The reaction rate, in this case, is multiplied by a ratio 

characterizing a relationship of irradiated catalyst or space in the reactor. This allowed 

for the reaction rate that was characterized by the volume of the reactor to then be 

converted into units that characterized the amount of irradiated catalyst used or irradiated 

volume. This is simply a correlation to discount inactive portions of the photocatalyst. 

The challenge in utilizing this correlation for benchmarking is that it does not take into 
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account the desire to minimize catalyst used, or maximize the effectiveness of the catalyst. 

To take this into account the mass of catalyst or irradiated volume or area needs to be in 

the denominator. Therefore, the modifications prove more useful to the purposes of 

kinetics investigations and process parameters, not analysis of the material performance 

or benchmarking. 

 When used as a specific rate, product yield results can be considered in terms of 

the various parameters affecting photoreduction (as discussed in Chapter 2 section 2.8). 

Ideally input variables would be optimized and the results normalized to the reactor 

parameters to isolate material performance. Once the reaction modifications are 

understood and incorporated into the results though optimization and normalization then 

the work of understanding the materials modifications can be more directly accomplished 

(as discussed in with materials matrix, section 2.3.4). 

3.1.2 Product Selectivity 

Product selectivity can refer to the preferential production of one compound over another 

[217], and is defined as the amount of a specific product formed per reactant converted 

[84].   

 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑖𝑠)

=  
𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑓𝑜𝑟𝑚𝑒𝑑

𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡 𝑎𝑡 𝑠𝑡𝑎𝑟𝑡 − 𝑓𝑖𝑛𝑎𝑙 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡
 

 

Equation 

3.3 

When the conversion of the reactant gas is not measured, the results can vary more 

greatly due to uncertainty of measuring all gas products. Collado et al. reported product 

selectivity in photoreduction of CO2 as the moles of a specific product over the total moles 

of products [149]:  

 

𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝐶𝑂2 𝑝ℎ𝑜𝑡𝑜𝑟𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛)

=  
𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑓𝑜𝑟𝑚𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 𝑓𝑜𝑟𝑚𝑒𝑑
 

 

Equation 3.4 

Thus, selectivity is often reported in a way that is product dependent. There is a 

challenge to ensure all products are accounted for to ensure selectivity is as accurate as 

possible. Examples of selectivity in the literature include, Collado et al. reported the 

selectivity results for TiO2 anatase as 50.6% for H2 production, 42.9 % for CO and CH4, 

ethane (C2H6), ethane (C2H4), propane (C3H8), propene (C3H6), butane (C4H10), butene 
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(C4H8), and methanol (CH3OH) production selectivities between 3.2-0.1% [149]. This 

was compared to TiO2 with 3.0 weight percent silver loading giving a selectivity of 74.8% 

for H2, 6% for CO, and a range of 4.5-0.1% for production of CH4, C2H6, C2H4, C3H8, 

C3H6, C4H10, C4H8, and CH3OH separately [149]. Tahir et al. reported selectivity for CO 

(25.8%) and CH4 (69%) for a monolith reactor and then in comparing a monolith reactor 

with In doped TiO2 vs. undoped TiO2 selectivity was reported for CO (94.39% and 

34.87% respectively), CH4 (5.44% and 36.27% respectively), C2H4 (0.034% and 1.22% 

respectively), C2H6 (0.147% and 0.64% respectively), and C3H6 (effectively 0 for both) 

[145, 193]. Anpo compared tetrahedrally coordinated Ti-oxide single-site catalysts based 

on their CH3OH selectivity which ranged from 21-58% [39]. Although the measurement 

of product selectivity is rare, selectivity is important to compare CO2 reduction endeavors 

for producing solar fuels. 

 

3.1.3 Quantum Efficiency 

The quantum efficiency of a material is a dimensionless number that characterizes a 

material’s ability to absorb photons and then for those photons to be productive depending 

on the application. In the case of photovoltaic cells, the quantum efficiency is the success 

rate of a photon exciting an electron across the band-gap energy threshold. In the case of 

CO2 photoreduction, the electrons are productive when they contribute to CO2 reduction. 

Quantum efficiency is reported in photocatalysis as a function of the product formation 

rate or product yield. This is a direct consequence of limited reactants tracking, and 

instead only measuring products. Lee and colleagues report photoreduction quantum 

efficiency (PQE); using Equation 3.5 (units are shown in parenthesis) [194]. Equation 3.5 

is sometimes referred to as apparent quantum efficiency, and is equivalent to how 

quantum efficiency is used by Tahir and Amin [145]: 

 

𝑃𝑄𝐸 =  
𝑛𝑒  ×  𝑃𝑟𝑜𝑑𝑢𝑐𝑡 𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (

𝑛𝑚𝑜𝑙𝑒
ℎ

)

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝ℎ𝑜𝑡𝑜𝑛 𝑟𝑎𝑡𝑒 (
𝑛𝑚𝑜𝑙𝑒

ℎ
)

 

 

 

Equation 3.5 

 

The term 𝑛𝑒 is defined as the number of electrons needed to reduce the reactant 

to one product molecule. The numbers of electrons necessary for the formation of 

products, such as hydrogen, carbon monoxide and methanol, used to calculate PQE are 

presented in Table 3.3. For H2, the number of electrons is 2, methanol (CH3OH) would 
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use 6, and CO would require 2 [194]. In the supplementary information supplied by Singh 

et al., they detail many more species including CH4 formation with 8 electrons, ethane 

(C2H6) with 14, ethylene (C2H6) with 12 and to hexane (C6H14) needing 62 electrons to 

be formed with this information incorporated into Table 3.3 [33]. This is not indicative 

of how many CO2 molecules are consumed. These moles of electron values are calculated 

from electronic stoichiometry where the electronegativity of the molecules relative to 

their neutral state give the overall oxidation state which is then used to calculate electrons. 

For example, take ethanol (C2H6O; aCH3bCH2OH); in this case, the oxidation state of aC 

is -3, and bC is -1. To reduce the two CO2 molecules that have an oxidation state of +4, 7 

and 5 electrons are necessary respectively to form ethanol and, thus, 12 electrons total are 

needed.  

 

Table 3.3 Electrons used in formation of products [33, 109, 112, 194, 205]. 

Product Species Formula Electrons per molecule 

Hydrogen H2 2 

Carbon Monoxide CO 2 

Formic Acid HCOOH 2 

Formaldehyde HCHO 4 

Methanol CH₃OH 6 

Methane CH4 8 

Acetaldehyde C2H4O 10 

Ethylene C2H4 12 

Ethane C2H6 14 

Propylene C3H6 30 

Propane C3H8 32 

1-Butene C4H8 40 

Butane C4H10 42 

1-Pentene C5H10 50 

Pentane C5H12 52 

1-Hexene C6H12 60 

Hexane C6H14 62 

 

Some of the semi-reactions for the conversion of CO2 used to derive electrons 

used are equations 2.1-2.9 listed in section 2.3 in the context of redox potentials [81, 107]. 
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The incident photon rate is calculated by Equation 3.6: 

𝐼𝑛𝑐𝑖𝑑𝑒𝑛𝑡 𝑝ℎ𝑜𝑡𝑜𝑛 𝑟𝑎𝑡𝑒 =  
𝐼𝑖𝑛𝑡 (

𝑊
𝑚2) ×  𝐴𝑝𝑟𝑜𝑗(𝑚2)

ℎ𝑐
𝜆

(
𝐽

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠
)
 

 

Equation 3.6 

 

Where 𝐼𝑖𝑛𝑡 is the incident light irradiance, 𝐴𝑝𝑟𝑜𝑗 is the area of light irradiation, hc 

is Plank’s constant multiplied by the speed of light, and λ is the wavelength of light. The 

area of light irradiation is taken as the whole area projected onto the reactor. The light 

intensity, area of light irradiation, and the wavelength of light used are all considerations 

that need to be clearly reported.  The light used for testing could have a specific single 

wavelength or broad range wavelength spectra. If a wavelength spectrum is used, then 

these wavelengths may have different intensities, necessitating further integration to 

calculate the light intensity provided by a broad light spectrum. Reactors can also modify 

light intensity that reaches the photocatalyst. Variations in the incident photon rate 

calculated can cause an underestimate or overestimate the quantum efficiency calculated. 

Therefore, it is important to report clearly how incident photons are calculated, so they 

can be compared to the radiation spectrum used. 

In the case of quantum efficiency which is calculated using photons absorbed by 

the catalyst, terms used include quantum efficiency [218] or as Anpo calculated, quantum 

yield [39] (Equations 3.7 and 3.8, respectively).  

 

𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒

=  
𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 × 𝑛𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑
 × 100 

 

Equation 3.7 

𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝑦𝑖𝑒𝑙𝑑 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜 − 𝑓𝑜𝑟𝑚𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑
 

 

Equation 3.8 

Collado et al. report apparent quantum yield (AQY) for CO2 photoreduction studies by 

Equation 3.9 [149]: 

𝐴𝑄𝑌 =  
∑(𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 × 𝑛𝑒)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠
 Equation 3.9 

 

In this case, the sum of products represent the successful conversion of incoming 

photons, and acknowledgment of limits on product detection analysis needs to be stated. 
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Conversion is measured with products as a proxy relative to conversion, as seen before 

in section 3.1.1 based on reactants concentration. This term is then used to calculate 

Quantum Yield Index (QYI) that attempts to quantify the impact of metal doping (the 

doping metal was silver in this case) in quantum yield performance (Equation 3.10) [149]. 

By calculating the quantum efficiency as a function of products without full mechanism 

analysis the products detected could limit the efficiency calculated. 

 

𝑄𝑌𝐼 =  
𝐴𝑄𝑌 𝐴𝑔/𝑠𝑒𝑚𝑖𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟

𝐴𝑄𝑌 𝑠𝑒𝑚𝑖𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑜𝑟
 Equation 3.10 

 

 

Table 3.4 presents values found in current research for the variety of quantum 

terms described above. The variations in quantum efficiency presented in Table 3.4 show 

the lack of consensus on quantum efficiency measured from indexing results to internal 

or external quantum efficiency used. The quantum efficiencies measured are mostly 

small, as can be seen in Table 3.4; the efficiency is wide ranging from 0.0051% PQE to 

20% internal quantum efficiency (IQE), and varied widely compared to the 4.6-6% 

efficiency of photosynthesis [35]. 

 

Table 3.4 Different examples of how photon performance or quantum results values are reported. 

Reference Reported term Baseline comparison Best result from article 

[149] Quantum Yield Index Anatase TiO2 with low 

sulfate content (<0.8%) 

obtained from 

Millenium Co. used as 

benchmark performance, 

set to 1 QYI 

 

2.7 QYI for a 3.0 weight 

percent Ag loaded TiO2 

through wet impregnation 

method 

[145] Quantum Efficiency     

for CO 

Cell type photoreactor with 

TiO2 0.0005% QE 

Monolith with TiO2 0.0042% 

QE, monolith with In 10 

weight percent loading on 

TiO2 0.10% QE 

 

[145] Quantum Efficiency     

for CH4 

Cell type photoreactor with 

TiO2 0.0028% QE 

Monolith with TiO2 0.0301% 

QE, monolith with In 10 

weight percent loading on 

TiO2 0.022% QE 
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Reference Reported term Baseline comparison Best result from article 

[149] Quantum Yield Index Anatase TiO2 with low 

sulfate content (<0.8%) 

obtained from 

Millenium Co. used as 

benchmark performance, 

set to 1 QYI 

 

2.7 QYI for a 3.0 weight 

percent Ag loaded TiO2 

through wet impregnation 

method 

[194] Photoreduction 

Quantum Efficiency 

Single photocatalyst system 

Pt loaded CuAlGaO4 (H2 

generation and CO2 

reduction) 0.0019% PQE 

Dual photocatalyst system 

utilizing Pt loaded 

CuAlGaO4 for CO2 reduction 

and Pt loaded SrTiO3:Rh for 

H2 generation and WO3 for 

O2  generation 0.0051% 

PQE  

 

[218] Quantum Efficiency Slurry batch annular reactor 

with 1 weight percent Pd 

and 0.01 weight percent Rh 

loaded TiO2 0.002% QE for 

methane 

Internally illuminated 

monolith reactor 1 weight 

percent Pd and 0.01 weight 

percent Rh loaded TiO2 

0.015% QE methanol 

0.047% QE acetaldehyde 

 

[39] Quantum Yield None 0.3% QY for highly 

dispersed Ti-oxide catalysts 

 

[33] Internal Quantum 

Efficiency  

varied solar irradiance Over 20 % IQE with 

platinum doped TiO2 and 1 

solar irradiance used 

 

3.1.4 Turnover Frequency 

Turnover frequency (TOF) is a term used to measure the performance of a catalyst. It 

refers to the number of product molecules that can be produced by a catalyst in a specified 

amount of time, or the number of catalytic cycles performed in a certain amount of time, 

equation 3.17 [219]. It is recommended, however, that TOF is appropriate for use on 

continuous reactions, and not for batch catalytic reaction, as TOF is concentration 

dependent, and batch reactions need either to vary initial concentration or length to 

calculate a rate [84]. They argue batch reactions can be utilized, however with great care 

to vary initial concentrations of all species, and that to report an average from a single 
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data point does not constitute a rate. Where continuous reactions are possible, the main 

challenge in calculating TOF for CO2 photoreduction is the identification of active sites. 

In the case of metal doping sites, metal dispersion (the number of metal atoms on the 

surface with respect to the total amount,) has been used to calculate the TOF for catalytic 

reactions [118, 119]. However, in this case, the metal is only a promoter that slows 

electron hole recombination; therefore, it is of limited utility. Because semiconductors 

are being used, it may be useful to consider specific surface area when calculating TOF. 

However, this makes modifications such as metal doping difficult to compare. Serpone 

and Emeline argued that catalytically active sites need to be defined in the ground state 

and not excited state [101]. In this way, the TOF value would contain information on the 

photon uptake and product formation. This is challenging due to lack of consensus on 

what constitutes a photo catalytic site, and thus, active site identification remains a barrier 

[100].   

 

𝑇𝑂𝐹 =  
𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑟𝑎𝑡𝑒 𝑜𝑓 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑠𝑖𝑡𝑒𝑠/𝑣𝑜𝑙𝑢𝑚𝑒

=  
𝑚𝑜𝑙𝑒𝑠 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑡𝑖𝑚𝑒 𝑚𝑜𝑙𝑒𝑠 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡
 𝑢𝑛𝑖𝑡𝑠: 1/𝑡𝑖𝑚𝑒

=  
𝑟𝐶

𝑛𝑎𝑐𝑡 𝑠𝑖𝑡𝑒𝑠
𝑉⁄

=  
𝑛𝑃

𝑡 ∙ 𝑛𝑐𝑎𝑡
 

Equation 3.11 

 

Attempts have been made at calculating catalytic performance by identifying or 

approximating active sites, as presented in Table 3.5. Presenting articles ranging from 

catalysis for CO2 reduction to photocatalysis, Table 3.5 gives the best results found in 

each article. The range of results is broad from 1.04 x 10-3 s-1 TOF of CH4 to 9.12 x 10-27 

s-1 TOF of CO [118, 220]. Most importantly, Table 3.5 identifies active sites used for 

calculations, and thus, gives options tried for calculation of TOF. 

Photocatalytic turnover numbers (TON) have been calculated (equation 3.12) for 

a liquid catalyst used in CO2 reduction, however, in this case individual catalyst sites were 

identified by added supramolecules, namely two kinds of Ru(II) complexes [221]. Eaton 

et al. estimated active sites for a photocatalyst through phenyl-phosphonic acid titration, 

testing the reactivity by photooxidizing benzyl alcohol [222]. This provides information 

on accessible surface sites.  

An insightful review of catalytic measures of photocatalysis for water splitting 

has been conducted finding surface area or photoactive surface site normalized results to 

provide insights into bulk and surface variations in photoactivity [223]. This was an 
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improvement on mass normalized results. This supports the glossary suggestion to use 

specific surface area when calculating TOF as an improvement to approximate active 

sites in TOF results [89]. 

 

𝑇𝑂𝑁 = 𝑇𝑂𝐹 × 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡 (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠) Equation 3.12 

 

Table 3.5 Examples of results from tests reporting catalytic measurements (TOF and TON) 

Reference Test conducted Best result from 

reference 

Material and active site 

[118] Catalytic 

hydrogenation of 

CO2 to CH4 

(methanation) 

1.04 x 10-3 s-1 TOF of 

CH4 at 120°C 

Photohole-oxidation-assisted 

fabricated ultra-small Ru clusters 

(~1.5 nm) on TiO2 loading 

density roughly 1017 m-2. Active 

site determined based on metal 

dispersion. 

 

[119] Catalytic 

methanation 

2.14 x 10-3 s-1 TOF of 

CH4 at 200°C 

Ni nanoparticles immobilized on 

TiO2 (4.89 weight percent Ni), Ni 

dispersion 43%. Active site 

determined based on metal 

dispersion. 

 

[220] Catalytic CO2 

hydrogenation 

64.8 x 10-25 h-1 for 

alcohols and 328.2 x 

10-25 h-1  for CO TOF at 

200 °C and 275 °C 

respectively 

3 weight percent Fe and 10 weight 

percent Cu loaded on bimodal 

MCM-41 mesoporous silica 

supports. Active site moles 

surface metal atoms. 

 

    

[222] Benzyl alcohol 

photooxidation 

2.1 h-1 TOF mole 

product per mole 

phenylphosphonic acid 

bound 

 

TiO2 anatase.  Assumed one 

catalytic active site per titrated 

site. 

[221] CO2 

photoreduction 

562 TON of HCOOH 

(produced 

HCOOH/added 

supramolecule) 

Photocatalyst made of 

supramolecular complexes 

consisting of 2 photosensitizer 

units [Ru(dmb)n(BL)3-n]2+ [dmb = 

1,2-bis(4’-methyl-[2,2’-

bipyridin]-4-yl)ethane] and 1 

catalyst unit [Ru(dmb)m(BL)2-

m(CO)2]2+. Each added 

supramolecule as active site. 

 

 An interesting term developed has been turn over productivity (TOP, equation 

3.13) [58]. This appears to be trying to work towards including process parameters in the 

assessment, however, it focuses more on the photonic response and does not enable a 
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calculation of reaction rate. The formulation given is for the whole reactor, which 

effectively multiplies by one simplifying to equating the TOP with the quantum yield (as 

it is well established that the ideal gas law is PV = nRT). It is true that for the photocatalyst 

surface the ideal gas law would not hold, however over the bulk of the reactor in a batch 

reaction it would. 

 

𝑇𝑂𝑃 (%) = 𝑄𝑌 ×
𝑃𝑉

𝑛𝑅𝑇
 

Equation 3.13 

 

 It is an intriguing question to consider how to incorporate the reaction parameters 

such as volume, pressure, and temperature in the analysis. Unfortunately, this is not 

necessarily accomplished with the TOP term.  

3.1.5 Summary of Conversion Measurements 

Table 3.6 summarizes the various conversion terms reviewed in this section, with 

example values from the literature or how these terms are used and the advantages and 

disadvantages of these terms. Most importantly, it is clear that the terms are not 

standardized. It can be seen that there are many products to be reported. Product results 

are then consolidated into the quantum efficiency term that tries to identify the product 

formation relative to the light input. Lastly, there is the TOF which is not reported 

currently in CO2 reduction and thus the example comes from catalysis, but is nonetheless 

important as a term to be reported in the future for benchmarking. Therefore, it can be 

observed that results all depend on product results and that there is no clear indicator that 

testing is tailored to assess particular performance. It should be noted that the examples 

presented in Table 3.6 are picked as typical results ranges found in the literature.  
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Table 3.6 Advantages and Disadvantages of Terms used to report Conversion 

Conversion Term 

Reported 

Example Advantages Disadvantages 

Product Yield 1500 µmole/(g*h) of 

H2, 110-140  

µmole/(g*h) of CO, 

and 5-10  

µmole/(g*h) of CH4 

[152] 

 Widely reported 
 Can use 

commercial 
benchmark 

 Limited comparability  
 Lack of information 
 Lack of normalization 

 

Product Selectivity 

 

For CH4 3.2-8.1% 

[149] 

 

 Focus on 
particular product 
aids comparison 

 

 Lack of consensus on 
products to compare 

 Often calculated from 
products detected 

 

Quantum Efficiency 

 

Monolith with 10 

weight percent of In 

loaded on TiO2, 

0.022% QE [145] 

 

 Greater 
normalization for 
products 

 Comparing results 
quantifying 
photon success 
rate 

 

 Not often calculated the 
same way across 
research 

 Lack of normalization for 
testing procedure 

 Often calculated from 
products detected 

 

Turnover 

Frequency 

 

1.04 x 10-3 s-1 TOF of 

CH4 at 120°C for 

catalytic 

hydrogenation of 

CO2 to CH4 on 

photohole-oxidation- 

assisted fabricated 

ultra-small Ru 

clusters loaded on 

TiO2 [118] 

 

 Quantifies 
catalytic 
performance 

 

 Challenge in active site 
identification  

 

 

Product yield measurements with units per time can be considered as a specific 

rate and used to analyze catalytic performance. Experiments used to report selectivity 

should clarify all products detected and acknowledge the limitations to selectivity when 

considering results. Photocatalytic quantum efficiency needs to be standardized to 

express a consistent measurement [89]. For TOF measurements, active sites need to be 

identified when CO2 reduction mechanisms are understood to a greater extent, or it may 

be possible to utilize illuminated surface area. Addressing these points would enable 

wider comparison across research. This is not to exclude other terms that could prove to 

be useful in the future such as carbon fraction utilization, waste to products ratios, avoided 

CO2, or energy consumption ratios [224]. Most importantly, these reviewed terms are not 
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standardized and should not necessarily be used for future work. For future terminology 

usage, glossaries are recommended such as the IUPAC Glossary of Terms [89] (discussed 

in Chapter 2), or the list of terms in section 3.2. 

3.2 Terminology Recommendations 

This section lists terms and definitions to clarify terminology and units independently of 

section 3.1. Here they are presented together as the recommended definitions of terms to 

be used to report photocatalytic results for CO2 reduction. In many ways, this section is 

about realigning CO2 photoreduction work with catalysis norms and reintroducing 

recommended terms because these standard terms enable wider applicability and 

collaboration. The terms defined here are reaction rate, quantum yield, photonic yield, 

photonic efficiency, conversion, yield, selectivity, product distribution, turn over 

frequency, and unitary production, unitary productivity, and conversion molar balance. 

This may appear repetitive, however, this is to collect terms and clear up confusion that 

may linger from the literature review section of this chapter (section 3.1). It should also 

be noted that the goal is larger still. As Bligaard et al. point out, the metric goals for 

benchmarking, or what is “relevant in every study” when discussing catalysis include 

“reactant scope, rate, yield, selectivity, reaction mechanism, [and] deactivation behavior” 

[84]. These are relevant to photocatalysis as well, and here the rate, yield, selectivity and 

photonic results are discussed in terms of a discussion of how to facilitate benchmarking.  

A reaction controlled by the chemical regime is a necessary condition to calculate 

reaction rate rC, defined in Equation 3.14: 

𝑟𝐶 = −
𝑑[𝐴]

𝑑𝑡
 

Equation 3.14 

 

 

where [A] is limiting reagent concentration and t is reaction time; it can also be expressed 

as in Equation 3.15:  

𝑟𝐶 = 𝑘𝐶 ∙ [𝐴]𝑛 Equation 3.15 

 

where kc is the kinetic constant for the chemical reaction and n is reaction order.  

Turning now to mass based metrics, conversion is the amount of limiting reactant 

that is consumed during the reaction divided by the amount of reactant fed into the system 

[200].  Conversion, X, (of the limiting reactant) is defined as:  

 

Equation 3.16 
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𝑋𝐶𝑂2
=  

𝑛𝐶𝑂2(0)
− 𝑛𝐶𝑂2

𝑛𝐶𝑂2(0)

= 1 −  
𝑛𝐶𝑂2

𝑛𝐶𝑂2(0)

 

 

Where 𝑛𝐶𝑂2(0)
 is the initial amount of CO2, and 𝑛𝐶𝑂2

 is the final measured 

amount of CO2, assuming CO2 is the limiting reactant which is certainly true in the 

case of liquid phase reactors. The conversion metric is best suited to the 

quantification of CO2 utilization.  

 In the case of batch reactions, where the volume does not change the 

concentration can be used, however, the n designates number molar. 

If water is the limiting reactant, which is most likely the case in gas phase 

reactors, such as those used in this thesis work, the conversion is defined as: 

 

𝑋𝐻2𝑂 =  
𝑛𝐻2𝑂(0)

−  𝑛𝐻2𝑂

𝑛𝐻2𝑂(0)

= 1 −  
𝑛𝐻2𝑂

𝑛𝐻2𝑂(0)

 Equation 3.17 

 

There are multiple definitions of yield in the literature. Also, yields can be 

instantaneous (expressed in rates) or global (expressed in amounts). Instantaneous 

yields can be derived by dividing by time, thus converting amounts to rates. The most 

common definition is that yield (𝑦𝑝) is the amount of product P formed per amount 

of product that could be formed (Equation 3.18). 

  

If A is the limiting reactant, and P is the desired product:  

 

𝑦𝑝 =
𝑛𝑝

𝑛𝐴,(0)
|
𝜈𝐴

𝜈𝑝
| , (𝑛𝑝

𝑚𝑎𝑥 = 𝑛𝐴,(0)

𝜈𝑝

𝜈𝐴
) Equation 3.18 

 

Where, the number of moles P measured, (𝑛𝑝), over the initial number of 

moles limiting reactant, (𝑛𝐴,(0)), are multiplied by the stoichiometric ratio of reactants 

and products, |
𝜈𝐴

𝜈𝑝
|. 

The definition of selectivity (SP) is the total amount of desired product formed 

per total amount of limiting reactant consumed, alternatively Fogler defines this as 

yield [200]: 

𝑆𝑃  =  
𝑛𝑃

𝑛𝐴,(0) − 𝑛𝐴
∙ |

𝜈𝐴

𝜈𝑃
| Equation 3.19 
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A benchmarking recommendation from Bligaard et al. for supported and 

unsupported molecular catalysis, that is equally relevant to photocatalysis is the reminder 

that “selectivity must be reported with the corresponding conversion” giving the 

challenge to more accurately track CO2 photoreduction reactants [84]. Another definition 

from Fogler of selectivity is the moles of desired product, 𝑛𝑃, per moles of undesired 

product, 𝑛𝑢 [200], which would be more appropriate for full scale continuous production: 

  

𝑆𝑃/𝑢  =  
𝑛𝑃

𝑛𝑢
 Equation 3.20 

 

Importantly product selectivity should be distinct from product distribution. 

Product distribution $ is defined as: 

 

$𝑃 =  
𝑛𝑃

Σ𝑛𝑃,𝑖
 Equation 3.21 

 

In the case of turnover number (TON) and TOF (as discussed in section 3.1.4), 

new terms may be more utilitarian, particularly if the CO2 photocatalytic experimental 

work is not conducted with a continuous flow process.  Where the moles of catalyst or 

number of active sites are difficult to define or quantify, the recommendation is to use 

these terms with clarity and appropriate caution respectively;  

 

Unitary production, Up, defined as: 

 

𝑈𝑝 =
𝑛𝑃

𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡 𝑎𝑚𝑜𝑢𝑛𝑡 (𝑔)
 Equation 3.22 

 

Unitary productivity, 𝑈̇𝑝, defined as: 

 

𝑈̇𝑝 =
𝑛𝑃

𝐶𝑎𝑡𝑎𝑙𝑦𝑠𝑡 𝑎𝑚𝑜𝑢𝑛𝑡 (𝑔) ∙ 𝑡𝑖𝑚𝑒 (ℎ)
 Equation 3.23 

 

These unitary production and productivity rates could also be calculated using 

specific surface area multiplied by amount of catalyst used, instead of only grams of 

catalyst used, to better reflect available active sites. The units utilized need to be clearly 

expressed. The emphasis with this “unitary” term is a shift to clearly indicate units. 

Therefore, this collection of terms are referred to as unitary product formation. 
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As the comparisons of terms has unfolded, terms from Fogler have been included 

in this summary of definitions even though they are more suitable to large scale, chemical 

engineering processes. This highlights the importance of awareness of terms available 

alongside process realities, and it enables a recognition of the wider context 

photocatalysis resides in within reaction engineering and catalysis. When possible CO2 

photoreduction research should identify definitions utilized to enable collaboration and 

understanding in a wider context. In the current case of photocatalysis, the experimental 

work and research so far has been accomplished as a small scale process, and therefore, 

it may make more sense to have a conversion molar balance defined as: 

 

𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑚𝑜𝑙𝑎𝑟 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 =  
𝑛𝑃

𝑛𝐶𝑂2,(0) − 𝑛𝐶𝑂2

 × 100 Equation 3.24 

 

Currently, 𝑐𝑎𝑟𝑏𝑜𝑛 𝑚𝑜𝑙𝑎𝑟 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 =  
𝑛𝑃+𝑛𝐶𝑂2

𝑛𝐶𝑂2,(0)
 , but since 𝑛𝐶𝑂2,(0) is almost equal 

to 𝑛𝐶𝑂2
, the metric does not show a significant change with extremely low conversions. 

As a conversion molar balance the term allows for scrutiny of the loss of products or 

CO2, even at a ppm level, however it should be acknowledged that there are limitations 

to analytical techniques as follows. Due to the significance of the error relative to the 

accuracy of the analytical technique, and inherent limitations therein, a 100% molar 

balance should not be expected. This means a conversion molar balance would give a 

better indication of the adequacy of the analytics by comparing it with error margins.  

3.3 A phenomena inclusive photocatalytic diagram 

A schematic for photocatalysis which includes the complexities found in experimental 

work is depicted in Figure 3.1. This figure covers internal and external phenomena at the 

photocatalytic surface, each characterized by different rates and physical laws. Here TiO2 

is considered, as it is the most widely studied material in the discipline. Starting with the 

external phenomena, A and D are the reactant concentrations in the bulk of the electron 

acceptor and electron donors, respectively, and R and O are the products concentrations 

in the bulk (the ad subscript, such as Aad, indicates adsorption on the photocatalytic 

surface).  The coinciding external behavior has to do with the light transport to the 

photocatalytic surface and then absorption. 
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Figure 3.1 Schematic of the photocatalytic process including external (right side) and internal (left side) 

phenomena relevant to photocatalytic experimental testing on a TiO2 photocatalyst material. Figure made 

by Dr. Eva Sanchez Fernandez. 

  

Internally, considering titanium dioxide electronic structure, the valence band [VB] 

is fully occupied by electrons [e-] in ground state. When excited by a photon, electrons 

can be promoted to the conduction band [CB].  This promotion to an excited state occurs 

only if the energy [hν] from the absorbed (a superscript) photon (p subscript at a specific 

wavelength subscript λ) flux [qa
p.λ] is greater than or equal to the band gap of the semi-

conductive material. The excited electrons that did not recombine [e- + h+ → hνI, e- + 

h+ → hνII] with holes (h+), or get trapped [e-
tr, h

+
tr], would then be available to migrate to 

the surface and react, forming Ti+3 and *OH [107]. Once the electron has 

reached the surface catalytic site, it is available to reduce adsorbed CO2 [a redox reaction, 

with rate r, Aad (acceptor) to Rad (reduced)], while the hole is available to an oxidation 

reaction with H2O [Dad (donor) to Oad (oxidized)].   

 

In summary the phenomena covered in Figure 3.1 are: 

 Light transfer from the emission source to the catalyst surface  
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 Reactor transmission 

 Material absorption 

 Electron transfer processes  

 charge separation  

 electron with hole recombination (dotted blue line) 

 electron and hole trapping in the bulk (dotted blue line) 

 electron migration to the surface (solid blue line) 

 Surface redox reactions  

 Mass transport  

 Reactants mass transport from bulk to photocatalytic surface and 

adsorption  

 Products desorption and mass transport to bulk  

 

3.4 Carbon dioxide photoreduction quantified by the terms 

This section seeks to clarify how the experimental phenomena interact with results 

reporting. There are currently limitations bounding photocatalytic experimental work 

alongside limitations in reporting experimental work. However, there needs to be an 

acknowledgment of the utility to be gained from current terminology. Or put another way, 

what are the bounds on the current terminology. The information gathered from 

experimental work is mostly reported in terms of unitary or photonic performance (and 

by photonic performance it is meant the group of terms: quantum yield, quantum 

efficiency, photonic yield and photonic efficiency, section 3.2). Therefore, this section 

works to link terms with the phenomena quantified to identify what parts of the material 

performance and the experimental conditions are quantified. Because of the unique 

importance of the specific rate and the photonic performance in reporting these terms will 

be focused on for in depth discussion. These photonic performance terms will be 

discussed as a group, representing a body of terms (section 3.2). 

3.4.1 Dual Term Problem 

As discussed in Chapter 1, section 1.4.1, there are articulated concerns about the 

comparability and utility of CO2 photoreduction results. One focus of this concern is on 

evaluating both the rate of the reaction and the effective use of photons. For Kondratenko 

et al. measuring the efficiency of photons to chemical energy was crucial [27], and for 

Chen et al. the concern was the lack of a singular parameter that can be used for 
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benchmarking [83], possibly an issue of defining a figure of merit; and for discussion 

purposes it will be referred to as the dual term problem. Put simply, the dual term problem 

is generated because photocatalysis relies on photons for energy input and this needs to 

be accounted for in the results. Whereas in catalysis the rate of performance of a catalyst 

is often benchmarked based on temperature, for photocatalysis there needs to be a logical 

incorporation of photon behavior into the analysis, even when considering the rate of the 

reaction. 

A first option to the dual term challenge is to accept and report the two terms: 

quantification of the rate and quantification of the photonic performance. Further options 

include normalizing the rate by the photonic input, which is distinctly different from 

current photonic measures that first convert products into their respective numerical 

electron equivalents; or accept the rate as dependent on the photon flux (and as long as 

the irradiance is reported), take it on board as an irradiance specific rate measure. To 

widen the understanding of the implications of these options the current dual terms of 

photon performance and catalytic performance will be mapped out alongside the 

comprehensive reaction diagram and practicalities of experimental work. 

3.4.2 Mapping out the equation of photo performance 

Light is presented to photocatalytic reactors in a directional manner for the most part. Due 

to the rig containment some light is reflected, or due to the angle of incidence less light 

may be exciting electrons in the semiconductor photocatalytic material. When excitons 

are generated they can recombine or electrons can be trapped, however some encounter 

and promote redox reactions to convert CO2 and H2O into a vast array of products based 

on the photocatalytic material and energy levels of the various material interfaces. And 

all this activity is measured by a bulk reactant and product concentration. The photonic 

measure of this process is developed from taking the products that can be measured and 

converting them into the representation of the electrons that had been formed by photons 

and comparing that to the photons provided to the process.  

This performance measure encompasses both the reactor’s facilitation of light 

entering the reactor and transport to the photocatalytic surface alongside the mass 

transport in the reactor and back to the bulk. Within that context is the materials 

performance and the effective conversion of CO2.  

To focus more intently on the material performance utilizing photons only, 

absorbed photons would be considered, which would also accompany techniques to 
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identify reactants and products on the surface. This requires a sophisticated monitoring 

and measuring system. 

Relating to the full photocatalytic diagram, and considering the bulk measurement 

experimental work, the equation of photonic performance encapsulates the light and mass 

transport characteristics of the reactor rig and the material conversion. In the case of 

photonic performance, the time dimension of the process is encapsulated in the amounts 

of electrons and photons, divided by the relationship of rate and flux. Understanding the 

development of the photonic performance over the length of the reaction becomes an 

important goal for reporting, and could be used as a way to quantify deactivation 

behavior.  

3.4.3 Mapping out the equation of catalytic performance 

In the case of reaction rate, the reactants must travel from the bulk to the photocatalyst 

surface and be adsorbed. Then the rare, but statistically possible, promoted electron 

engages to form a product, or any such collection of complex reaction mechanism 

sequences must occur with the available electron input. These products then must desorb 

from the surface, travel back to the bulk and then be detected. The electron availability 

and behavior becomes bulk quantified with the adsorption and desorption of reactants and 

products and total photocatalytic performance alongside the mass transport of the reactor. 

All of this behavior is quantified as a rate of the bulk concentrations. The reaction rate 

thus, quantifies the photocatalytic material usage of electrons, interactions with reactants, 

and the reactor mass transport properties. There is no assessment of the usage of the 

energy source or power provided to the reaction to provide electrons to the process. With 

the catalytic performance, the electron is a given part of the rate, making reporting of 

irradiance and illuminated area necessary for efficiency quantification. 

In catalysis multiple variables can improve reaction rate. These include increased 

catalyst surface area, reaction temperature, the pressure in gaseous reactions, and the 

reactant concentrations. With photocatalysis we add the variable of irradiance. Therefore, 

as catalysis can be benchmarked by tabulating temperatures utilized to achieve certain 

rates of performance (or the length of the half-life relative to a specific temperature [225]), 

so too could photocatalysts be benchmarked by tabulating the power (irradiance 

multiplied by illuminated surface area) necessary to achieve a rate of performance. 

And as shown in Chapter 2 section 2.7, rate measurements are ideal for exploring 

the many variables that can affect or improve reaction rate. However, the main point to 

make here is that specific rate is not encompassing of energy efficiency. 
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3.4.4 Normalization for reactor as compared to normalization for material 

Inherent in both the assessments of the photocatalytic performance is the accurate 

assessment of products. Beyond that, there are many aspects of the reactor that modify 

the bulk measurements. In particular, the light transport and mass transport within the 

reactor modify the performance [226]. With current identical experimental condition 

benchmarking it is assumed that the impacts of these behaviors can be ignored as they are 

assumed constant across the various materials present. However, even as they may not 

impact the material comparisons being made, they do have substantial impacts on 

benchmarking and on reactor characterization. 

Therefore, it becomes important to separate the impacts of the materials 

modifications from the reactor characteristics. To map out normalization for the reactor 

vs. normalization for the material, the reactor needs to be quantified. It also becomes 

important to think about the ways in which the material choice can shape the light and 

mass transport. For example, the photocatalytic material reflectiveness and the macro 

porosity are ways in which the material has a larger impact on reactor transport. To focus 

the discussion on the properties of the reactor and interacting photocatalytic material 

properties refer to Table 3.7. This table presents the conditions and properties in 

interlinking groups, suggesting what to report and guiding linkages in discussion. For 

example, the band gap energy of a material is linked to the wavelength of the reactor light 

provided, and the mass transfer of the reactor is linked to the flow rate.  

 

 

Table 3.7 Interacting influences in experimental reaction rate and what these properties or conditions 

characterize (such as the reaction, reactor, or material).  

Reaction Condition Reactor Photocatalyst 

Light: irradiance, 

wavelength(s) 

Illuminated surface area, 

transparency (or 

transmission of light 

windows), distances of 

light travel 

Light absorption spectrum, 

band gap energy, 

crystallinity 

Flow rate, pressure Mass transfer, volume Specific surface area, 

porosity 

Temperature, reactant 

concentrations 

Isothermal, Flow/batch, 

Product removal 

Adsorption, desorption of 

reactants and products 
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 Previously in section 3.1.1, extended normalization was used to assess the range of 

data presented, and the variation in the results reported. In that case, the typical grams of 

catalyst and length of the experiment were accompanied by the volume of the reactor, the 

irradiance and the illuminated surface area. This incorporates important aspects of the 

reaction conditions and the reactor geometry (as shown in Table 3.7). While being unable 

to quantify the full range of parameters, it can incorporate some element of efficiency. 

However, this is a bit misleading. Note that the photonic term converts the products into 

representational electrons (section 3.4.2), and this extended normalization does not. It 

relies on interpretation, either of selecting and focusing on a single product, a 

representation of the carbon (and the embodied CO2) in multiple products, or a measure 

of conversion of reactants. In the spirit of a wider conversation about “how can the 

benchmarking tools themselves be assessed and improved [84]” this discussion will be 

returned to in Chapter 7. The result here is to reiterate a need for intentional benchmarking 

action when reporting experimental work.  

3.5 Experimental context necessary for benchmarking 

Developing an agreed benchmarking metric and method for a singular benchmark will 

require further academic discussion [84]. Hopefully, based on the discussion of 

parameters affecting conversion in section 2.8 and terms reported in section 3.1, it has 

become clear that the reporting of results needs to be more complex to match the 

complexity of the process.  

 

At minimum, the information necessary for benchmarking CO2 photoreduction includes: 

 Temperature 

 Pressure  

 Time 

 Amount of photocatalyst used for experiment 

 Irradiance preferably at the material surface, or specifics of where measured and 

how, and light wavelength(s) 

 Illuminated surface area (characterized by the boundary of light contact with the 

photocatalyst, can be surface area of catalyst if two dimensional layer, or surface 

area boundary of a three dimensional space based on where light is exposed to 

catalyst) 

 Volume of the reactor 
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 Reactant concentrations, and reactant based conversion measurements (where 

possible) 

 If a flow reactor then flow rates should be included 

 Full disclosure of bounds on product detection, such as if the analytical equipment 

was unable to track specific products 

 If it is a liquid phase reaction, pH 

 

Additional information to this list include reaction parameters, photocatalyst aging 

and contamination investigations. If possible, evidence of understanding of parameter 

effects, either optimization or a wide experimental range that then gets focused, are 

important ways to observe and report photocatalystic investigations. These pieces of 

information will enable catalyst concentration or catalyst to substrate ratio to be 

calculated, the specific rate and appropriate light quantification to be determined. The 

intention is that this list makes more concrete and specific the kinds of suggestions Buriak, 

Kamat and Schanze espouse [90] and expands on conclusions from Nahar et al. [205]. 

Evidence of life time performance of a photocatalytic material (including the designation 

of fresh samples, relative to repeat use, cycling, and regenerated samples) is possibly a 

longer-term goal for benchmarking. Nahar et al. and Bligaard et al. include activity decay 

in the metric goals for the catalytic subfields of computational catalysis, electrocatalysis, 

molecular catalysis, and heterogeneous catalysis [84, 205].  Contamination or cleaning 

procedure evidence could be considered. Grigioni et al. show the presence of 

carbonaceous impurities from a blank experiment without CO2 and, therefore, develop a 

protocol for cleaning their photocatalyst [227].  

 

Reflecting on section 2.8 many reaction condition variables can be varied and optimized: 

 Catalyst loading (even experimental work with dispersion has been 

conducted [228]) 

 Reaction time if it is a batch reaction 

 Reactant concentrations, including relative to each other (humidity) 

 Temperature of the reaction 

 Irradiance 

 Pressure is an option with impact on gas phase reactions, and an impact 

on the amount of dissolved CO2 in liquid phase 
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It is important to remember that the materials modifications are separate. There 

are examples of materials properties being optimized for improved performance, for 

example the varying of drying temperature and time of photocatalysts [187].  

Obviously there are reasons to not vary certain reaction conditions, as they would 

increase energy use. Examples would be utilizing room temperature, or employing a 

solar standard for irradiance, or running experiments at atmospheric pressure. These 

are decidedly appropriate decisions to be made, however, this should be clearly stated 

when reporting results as there is no common practice assumptions to be relied on.  

 After reviewing the complexity of terms being reported within CO2 

photoreduction (section 3.1), recommending future trends in wider or broader 

terminology usage might be beneficial. For example, titles often include larger terms, 

such as solar fuels and CO2 utilization. Even terms such as efficiency have been 

challenging to interpret in article titles.  

Terminology should be indicative of terms reported, for example CO2 utilization 

best describes results of conversion based in measuring CO2 reactant concentrations. 

And solar fuels best describe yield and product results. This would improve the title 

accuracy and meaning of papers. And when approaching the term efficiency, it is 

recommended to be more explicit with the photonic performance term that is 

applicable to the experimental work conducted. If the full analysis of the energy 

utilized to power the CO2 photoreduction process is calculated and used to calculate 

the efficiency as compared to energy encapsulated in the products, then system 

efficiency is an appropriate term. This, it can be argued, should be considered first in 

terms of actual energy utilized in the experimental condition, and then again in terms 

of the light provided in case that same light could be provided from a renewable 

source. These kinds of calculations are more in line with energy consumption ratios 

that require further analysis [224]. Coridan et al. go further in the 

photoelectrochemical field creating the term energy-conversion efficiency as the key 

metric and recognizing that the comparison across solar fuels research requires a 

component and system level comparison of performance [229]. Moving forward from 

literature and recommended terms, what those terms encompass, and necessary 

reporting for benchmarking, the thesis now turns to experimental work.  
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4. CHAPTER 4 – EXPLORATION OF BENCHMARKING 

UTILIZING IDENTICAL EXPERIMENTAL CONDITIONS AND 

MULTIPLE MATERIALS 

In this chapter, commercial and modified photocatalytic samples are assessed with 

identical experimental conditions. This is the standard form of benchmarking in CO2 

photoreduction. Initially, the experimental set up is described along with the materials 

and analytical equipment (section 4.1). Then the current benchmark of P25 is discussed 

with the range of literature results (section 4.2), followed by the commercial samples 

benchmark testing (section 4.3). Then modified TiO2 materials results are presented 

(section 4.4). Then a discussion of gold doping in the literature is conducted for 

comparison with the modified samples (section 4.5). This enables an exploration of P25 

as a benchmark of the reactor and reaction parameters relative to material modifications. 

The identical experimental conditions and multiple materials work is then summarized 

(section 4.6). 

4.1 Experimental Set Up 

The set up used for experimental work consisted of a gas phase reactor, a vessel for 

calibration, and recirculation loops to aid in product collection with a Hiden Analytic 

Mass Spectrometer. The gas phase reactor consisted of two stainless steel lids and a 

cylindrical pyrex vessel (as seen below in Figure 4.1, left). The vessel was sealed with O-

rings and four stainless steel rods secured with wing nuts. Internally a support of a quartz 

plate, angled by a Teflon ring, were the support for the catalyst. This reactor can, however, 

be used with various supports, interchanged within the cylinder, and in the past this has 

included honeycomb ceramic monoliths threaded with optical fibers [218]. In Figure 4.1 

(left) the stand and reactor can be seen with a catalyst mounted on a quartz plate inside. 

The other photoreactor used in the rig is also shown in Figure 4.1 (right). This one was 

used during calibration as a reservoir, to enable the calibration to have the same pressure 

as the product gases. These reactors were developed during previous PhD study [230, 

231].  
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Figure 4.1 Gas phase photocatalytic reactor set up for testing (left). And a liquid phase reactor in this case 

used as a calibration gas vessel (right). 

 

The internal radius of the cylindrical pyrex reactor is 2.5cm, with a height of 

11cm, giving an internal volume of roughly 216 cm3 or mL (as 216 ≈ π(2.52)(11) and 1 

cm3 = 1 mL). Within the reactor the angle of the quartz plate is 9.46 degrees to the 

horizontal. The internal volume of the reactor used as a calibration vessel is 353.85 mL. 

These reactors were connected together and incorporated into the rig as depicted 

in Figure 4.2. Gas lines were attached to the rig with a bubbler in line with the CO2 and 

the helium (He), with an option to bypass the reactor to clear out the line by the analytical 

intake. Calibration gas was connected to the calibration liquid phase reactor vessel in a 

loop, with venting, and the option to flush with helium. To connect components of the 

rig, stainless steel tubing was used with HAM-LET, Parker and Swagelok valves, except 

for the connections of the bubbler which were in plastic. 

Work to prepare the rig for testing most intensely focused on forming an airtight 

rig and results reproducibility. To improve the rig the replacement of previous plastic 

tubing to metal for photocatalytic testing was conducted with an expected significant 

effect. Whereas it was uncertain the exact type of tubing previously being used, it can be 

assumed the tubing was most likely Nylon, Polyurethane or PTFE. The performance of 

the types of tubing in terms of permeability, operating temperature, and chemical 

resistance to weak acids (due to small amounts of CO2 reacting with water to form 

carbonic acid) is tabulated in Table 4.1. The level of permeability is disconcerting as 

calculated below.  
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Table 4.1 Excerpt from Tubing selection Guide from Cole-Parmer giving chemical resistance and 

permeability data for various plastic and the 316 stainless steel tubing, [232]. 

Formulation Operating 
Temperature 

Chemical 
resistance 
to weak 
acids* 

Permeability (approximately at 
25°C) Units: {cc-mmsec-cm2-
cm Hg} x 10-10 

CO2 H2 O2 N2 

Nylon -51 to 93°C A 20 19 5.4 1.1 

Polyurethane 
(clear, aqua-
tint) 

-40 to 82°C B 395 66 10.5 17.1 

PTFE -240 to 

260°C 

A 6.8 - - 1 

Stainless 
steel, 316 

-53 to 289°C A - - - - 

*Chemical resistance classifications: A – No damage after 30 days of constant exposure, 

B- Little or no damage after 30 days of constant exposure. 

 

Even in the most stringent case, looking at the performance of PTFE, when 

considering the gas loading and testing conditions there is significant gas transfer 

occurring. 

The volume of gas that permeates the tubing during loading are roughly 0.17 cc 

and 0.03cc for CO2 and N2 , and during testing 3.7x10-2 cc and 5.4x10-3 cc respectively. 

Calculation (units in parentheses):  

 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑐𝑐) =

  
10−10 

𝑐𝑐−𝑚𝑚

𝑠𝑒𝑐−𝑐𝑚2−𝑐𝑚𝐻𝑔
 ×𝑡𝑖𝑚𝑒 (𝑠𝑒𝑐)×𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑎𝑟𝑒𝑎 (𝑐𝑚2)× 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 (𝑐𝑚𝐻𝑔)

𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 (𝑚𝑚)
 

 

Where surface area refers to the outer surface area of the tubing (permeable 

surface area); pressure difference refers to the difference in pressure across the tubing; 

and thickness refers to the wall thickness of the tubing. For the calculation: the pressure 

difference across the tubing is 0.5 bar (37.5 cmHg); loading gases takes 30 min (1800 

sec), through a length of tubing 3 m long. Considering all the tubing connected to the 

reactor, to pressure gauges and connections to valves, is 80 cm collectively, with the 

length of the test being 4 hours (14400 sec). The tubing has an outer diameter of 1/8th 

inches, giving a circumference of 1cm, and has a wall thickness of .8mm. 

In considering the choice of stainless steel tubing it was important to consider how 

the products would react with the surface of the metal. Acids can degrade stainless steel. 
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Acid products observed before include acetic acid (CH3COOH) and ethanedioic acid 

(common name oxalic acid, COOH-COOH) have been observed as products [156] and 

formic acid (HCOOH) is another possible product. Due to the low concentration of 

products, 316 stainless steel was chosen for its high corrosion resistance [232, 233].  

The metal piped pressurized rig was left overnight with valves v2E, v2F, v2H, 

v2M open, V3B towards V3A and V3A towards the recirculation, and all other valves 

closed, and the improvement in permeability was confirmed by the observation of no drop 

in pressure. When each new sample was added, this required opening and closing the 

tubing, and therefore the pressurized rig was observed for an hour to confirm no change 

in pressure. This pressure test was in addition to bubble leak tests at the two main reactor 

connections upon rig reassembly. 

The angle of the sample was created by the use of an o-ring to increase the light 

available to the sample. In this case, the angle formed was 9.46 degrees to the horizontal 

plane and was kept constant by two markings to align the quartz plate and the o-ring. 

 

 

Figure 4.2 Testing Rig showing tubing, and connectors including T-pieces (t#) and valves (v2, being a two 

way valve, and V3 being a three way valve and further distinctions designated with letters), pressure gauges 

(P#, in circles), the mass flow controller (MFC), sites of temperature measurement (T# in triangles), site of 
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light irradiance measurement (Lirr), and the gases used along with reactors, light source, gas bubbler for 

CO2 humidification, and mass spectrometer (not to scale).  

 

The analytical system used to determine product gases was a Hiden Analytic Mass 

Spectrometer (MS), HPR-20 QIC system. The samples were delivered to the MS through 

a 1.5 meter heated capillary line. A pressure gauge was used to determine the pressure 

within the reactor during testing with two decimal points of accuracy on a digital readout 

(P1 in Figure 4.2). The mass flow controller had an upper limit of 8 ml/min of flow. The 

glass bubbler was filled with deionized water. Bubbler and reactor temperature were 

monitored by means of two glass ethanol thermometers just at the outer surface of each 

(T1 and T2 in Figure 4.2), error margin of  0.5 C. At room temperature and 8 ml/min 

flow of CO2 (𝑄𝐶𝑂2
) this provided a ratio of 40 mL CO2 to 1 mL H2O. Water vapor flow 

rate was calculated using the flow rate of CO2 multiplied by the vapor pressure of water 

(𝑝𝐻2𝑂, 0.03 atm at room temperature, measured to be 22-23°C) divided by the total 

pressure (𝑝𝑇) minus the vapor pressure of water (Equation 4.1). The pressure used for all 

the experiments was 0.5 bar gauge pressure. (When using Equation 4.1 with a carrier gas 

it is necessary to adjust the concentration of CO2, then sum the two flows, therefore  𝑄𝐶𝑂2
 

becomes 𝑄𝑇𝑜𝑡𝑎𝑙.)  

 

𝑄𝐻2𝑂 =  𝑄𝐶𝑂2
 ×  

𝑝𝐻2𝑂

𝑝𝑇 − 𝑝𝐻2𝑂
 

 

Equation 4.1 

 

The temperature measured was of the bulk after conduction through the quartz 

reactor. If the light input were not to be converted to electrons and instead the energy 

were dissipated as heat there would be a substantial heating effect. For example, 

considering either a 1 hour or 4 hour experiment with a 278 mW/cm2 irradiance input (the 

highest used experimentally) the expected temperature increase would be 553 and 2215 

K respectively. This is considering the 216 mL volume, filled with CO2 and H2O at a ratio 

of 40:1, and respective heat capacities of 0.846 and 1.996 J/gK.  This scale of heating 

does not occur, however, because of the semiconductor photocatalytic material. On a 

fraction of that scale, such as a tenth of the incoming light, there would be 55 K of heating 

per hour that would then dissipate within the reactor. This possible lamp-heating effect 

and unmeasured temperature gain at the photocatalyst surface would have been 

unobservable in the bulk at the outer edge of the reactor. Therefore, the temperature gain 
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at the photocatalyst surface should be more closely observed, possibly with a 

thermocouple or optical thermal sensor. 

 Gas from the photocatalytic reactor was recirculated from the MS intake during 

sampling, to limit loss of product gases. This recirculation loop of tubing going from the 

reactor, past the sample inlet, then returning to the reactor is labeled recirculation loop in 

Figure 4.2. The recirculation line was ineffective in this case, and will need to be 

developed further with a recirculation pump. 

Gases used for experimental work were of high purity; CO2 (99.999%) and He 

(99.9999%) gases were purchased from BOC Industrial Gases. Calibration gas was 100 

ppm each of hydrogen (H2), oxygen (O2), methane (CH4), methanol (CH3OH), ethane 

(C2H6), ethylene (C2H4), acetaldehyde (CH₃CHO), and ethanol (C2H6O) with the 

remainder being CO2, purchased from Scientific and Technical Gases Ltd.  This mixture 

is used to represent a range of expected products from the photocatalytic reaction [156, 

234]. 

The lamp used was a 200 W mercury lamp, OmniCure Series 2000, with a 365 

nm filter, Lumen Dynamics, which had an output range of 6 to 618 mW/cm2 irradiance. 

The light irradiance was measured with the accompanying UV/vis OmniCure R2000 

Radiometer after the optical fiber light guide, but before the optical lens that was located 

at the quartz window of the reactor (Lirr in Figure 4.2). This radiometer was calibrated 4 

months before experimentation, with experiments lasting 11 months.  

4.1.1 Materials and methods of synthesis 

There were three commercial and three lab-produced samples used for CO2 photocatalytic 

reduction. The commercial samples used were a 99% pure anatase TiO2 purchased from 

ACROS Organics, a high specific surface area anatase TiO2 (Mirkat 211) from Euro 

Support, and P25 an anatase and rutile mix purchased from Aldrich Chemistry. The 

modified samples included TiO2 made by evaporation induced self assembly (EISA), an 

EISA sample that was then heated at 500ºC with a hydrogen atmosphere (EISA H2), and 

a gold doped TiO2 photocatalyst (AuTiO2). The EISA samples were synthesized by the 

author, and the AuTiO2 synthesized by Alberto Olivo [235]. The commercial samples 

give a range of standard samples with specific surface area and crystal phase 

modifications, and then the lab synthesized samples cover a range of modifications 

including specific surface area, calcination in modified atmosphere and doping. 

Synthesis of TiO2 can be performed through a variety of methods with the sol-gel 

technique being the most widely used in CO2 reduction. Other methods include 



 

89 

microemulsion, precipitation, hydrothermal or solvothermal, electrochemical, and even 

biological synthesis, all described in more detail in a review [236]. 

The sol-gel process starts with the hydrolysis of the precursors (breaking of bonds 

through reaction with water). Alcohol can be used as a solvent, and an acid or base can 

be used to improve hydrolysis by increasing the charge of the solution and thereby 

increasing ion formation in solution. This is followed by polycondensation reaction, the 

condensation of the solution to form a gel. After gel formation, the solvent is removed by 

drying at a relatively low temperature (80-100C) and then calcined (heating in the 

presence of oxygen or air).  Calcination removes the volatile fraction, promotes thermal 

decomposition, and drives the phase transition from amorphous to crystalline TiO2 [236]. 

The popularity of the sol-gel method is due to the economical and energy efficiency 

advantages of ambient temperature sol preparation and gel processing, homogeneity, and 

size tuning of the particles [236, 237].  

The development of EISA is perhaps best understood as a specialization within 

the sol-gel process. Therefore, EISA has less exploration history in the field of 

photocatalytic reduction of CO2. Simply, the EISA process uses a template in the 

hydrolysis that nucleates organized mesostructures, or complex semi ordered structures 

[238]. These mesostructures allow for the formation of greater specific surface area. In 

this case the synthesis route mimics that used for SBA-15 silica, a popular mesoporous 

high surface area silica [239], however, with P123 (ALDRICH Chemistry), a symmetric 

triblock copolymer PEG-PPG-PEG, as the template in hydrochloric acid suspension as 

reported previously [240]. Another sample was developed by modifying an EISA TiO2 

by heating to 500C in a hydrogen atmosphere [240]. More specifically the template P123 

is a material formed from poly-ethylene oxide (PEO) and polypropylene oxide (PPO) 

[241] in the proportions PEO21PPO65PEO21 (P123). In more detail pure TiO2 from EISA 

titanium (IV) n-butoxide (6.915 mL, ACROS Organics) was drop added and then 

thoroughly mixed with 20 mL hydrochloric acid 1N (ACROS Organics), which was then 

slowly added to a P-123 ethanol mixture of 1.383 g P-123 with 10 mL ethanol (Fisher 

Chemical). This was then stirred for 3 hours followed by oven drying and heating in oven 

at 40°C for 6 hours, and then 150°C for 2 hours, and finally 500°C for 1 hour, all done 

with a ramp of 1°C/min. Thermal pre-treatment was conducted on some of the EISA 

photocatalyst sample using ChemBET instrumentation to flow 10 ml/min of H2 through 

the photocatalytic powder sample at 800 °C. This treatment was conducted at the set 

temperature for 1 hour. A heating rate of 10°C/min was used for reaching a temperature 

of 800°C.  



 

90 

And lastly a sample with gold doping (AuTiO2) has been used. AuTiO2 was 

synthesized by precipitation from sulphate salt in sodium hydroxide using nitrogen [70]. 

The TiO2 was synthesized through precipitation of TiOSO4 salt with the base NaOH, 

forming Ti(OH)4 which was then calcinated at 400 °C to form TiO2. Then Au was added 

using deposition precipitation [242]. Reiterated briefly the AuTiO2 synthesis method 

utilized 1.2 M titanyl sulphate solution, prepared by dissolving 34.55 g of TiOSO4 

(Sigma-Aldrich Ti assay > 29 wt. %) in 100 mL of deionized water. Using 36 g of NaOH, 

Carlo Erba assay > 97 wt. %, in 100 mL of deionized water a 9.0 M NaOH solution is 

prepared (in an ice bath to overcome extreme exothermicity). In order to keep a neutral 

pH, both solutions were added concurrently drop wise to 200 mL of distilled water under 

vigorous stirring (500 rpm), in order to keep a neutral pH, which was monitored with a 

Metrohm 691 pH meter. The Ti(OH)4 suspension was kept at 60 °C for 20 hours. Then 

the suspension was filtered and washed with deionized water to remove sulphate ions 

from the precipitated solid. This was then dried overnight at 110 °C and calcined at 400 

°C (with a heating rate 2 °C∙min-1) for 4 hours in air flow (30 mL∙min-1) to obtain TiO2. 

This sample is labeled as TiO2-PREC in the corresponding thesis [235]. For gold 

deposition TiO2 was suspended in an aqueous solution at 60 °C of HAuCl4∙3H2O, whose 

pH is below 2. This pH was then raised by the addition of 0.5 M NaOH (assay > 97% 

Carlo Erba) and sodium hydroxide solution such that the pH was maintained at 8.6 for 3 

hours. The sample was washed with deionized water. The sample was then dried 

overnight at 35 °C and calcined at 400 °C in air for 1 h. This sample is labelled as Au-

TiO2-PREC in the corresponding thesis [235]. 

When considering materials synthesis within the challenge of comparing different 

studies difficulties arise from the variation in production methods. As the sol-gel and 

EISA processes each require mixing of precursors, followed by time to react and then be 

dried at elevated temperatures to drive out organic components of the precursors, which 

also drives crystal structure, there is a wide variety in the process. There is also no 

consistency in washing or washing procedure of catalysts before testing. Thus, the most 

commonly used benchmark catalysts are commercially available catalysts. In lab sol-gel 

produced catalysts are used as benchmarks as well, however, lab produced benchmarks 

provide less of a standardized reference. Therefore, the usage of both commercial and lab 

produced samples were used for testing comparison.  
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4.1.2 Materials Characterization 

The commercial anatase and Mirkat samples are anatase crystals. P25 is a mix of anatase 

and rutile crystals. The EISA samples have a mix of anatase and rutile crystals, as assessed 

by x-ray diffraction [240], while the AuTiO2 is anatase. The commercial anatase is 99% 

pure, the Mirkat is 85% TiO2, 35-40% anatase and then the remainder is amorphous. Au-

TiO2 is anatase, and 0.2 wt% gold. The commercial anatase sample has a specific surface 

area of 7.52 m2/g [240]. P25 has a specific surface area of 50 m2/g, and Mirkat one of 217 

m2/g. The TiO2 EISA sample has a specific surface area of 66.9 m2/g, with the H2 calcined 

EISA sample having a specific surface area of 63.2 m2/g. Au-TiO2 has a specific surface 

area of 110 m2/g. A summary of the specific surface area, band-gap energy, and crystal 

phase for the samples can be found in Table 4.2 below. Previous work, by the author, has 

included further characterization including x-ray photoelectron spectroscopy and specific 

surface analysis [240].  

 

Table 4.2 Specific surface area and band-gap energy of commercial. 

 
Specific Surface 

Area (m2/g) 

Band-Gap 

Energy (eV) 

Crystal Phase 

Anatase 

TiO2 

7.5 3.19 anatase 

P25 50 3.21 anatase and rutile 

Mirkat 

211 

217 3.34 anatase 

EISA 66.9 3.16 anatase and rutile 

EISA H2 63.2 3.10 anatase and rutile 

Au TiO2 110 - anatase 

 

The Anatase TiO2 was found to have a crystal size of 23.25 nm [240]. The P25 

has a 21-nm particle size and contains 0.5% or less trace metals. Mirkat 211 has a 

variation in pore size suggesting macro and meso-pores mainly at 4nm and 25nm. Mirkat 

211 has a pore volume or 0.27 cc/g with N2 at 77K. TiO2 (wt%) 85 and sulphur content 

is 1.5%, with 15% made from hydroxide. P25 was calculated to have a band gap energy 

of 3.21 eV, compared to 3.38 found in the literature [228].  
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4.1.3 Experimental methodology 

The experimental procedure for the identical experimental conditions testing were as 

follows: 

To load the photocatalyst on the quartz plate support, 0.02 g photocatalyst was 

suspended in 2mL isopropanol and then mixed in an ultrasonic bath for an hour. Then the 

solution was dripped onto a heated quartz plate at 110°C, followed by baking in an oven 

at 110°C for at minimum an hour to remove the solvent completely. For catalyst loading 

a template system was adopted (Figure 4.3). The template area loaded with catalyst was 

12cm2 (2 cm by 6 cm). This template was placed under the quartz plate during loading as 

a guide for distribution of the solution. 

 

 

 

Figure 4.3 Template development showing foil template (left) and in use beneath transparent photocatalyst 

loaded quartz plate (right). 

 

Background values were obtained by running helium overnight, to clear MS lines 

and limit background, through the reactor at 1 ml/min, taking readings the next morning 

before the test. Calibration was conducted right after the background values were 

obtained. This was done by purging the liquid phase reactor vessel with calibration gas. 

Then the vessel was brought up to pressure of 0.5 bar gauge. Then the gas was analyzed 

with the MS, also in a loop or recirculation configuration. The irradiance of the lab was 

measured at the end of the optical fiber light guide after the calibration. 

The reactor was purged with an 8mL/min flow of CO2 bubbled through water for 

45 min, followed by that continued flow as the reactor was brought up to 0.5 bar gauge 

pressure. Then an initial reading was taken of the contents of the reactor through MS 
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analysis, then the pressure was brought to 0.5 bar gauge and the light turned on to begin 

the experiment. Final results were taken and then the initial contents subtracted to 

determine conversion. The analysis with the MS was always taken at twenty minutes, 

which lead to a 0.45 bar final pressure reading. 

Blank tests were conducted to verify the photocatalytic behavior and included: (1) 

blank tests without light that verify the presence of a light driven process; (2) blank tests 

without catalyst that demonstrate a catalytic enhancement of reaction rates or enabling of 

the reaction; (3) blank tests with no CO2, which prove that the resultant gases originate 

from the CO2 and (4) blank experiments without water to confirm hydrogen source. 

 

4.1.3.1 Considerations in experimental work for solvent drying in catalyst loading and 

the use of foil during experiments along with irradiance calculations 

While conducting this experimental work the solvent removal, residual from catalyst 

loading, became an important factor to consider. Solvent removal is vital, as seen from 

Figure 4.4 showing the results of baking the 80mg loaded sample for 1 vs 2 hours. Baking 

after two hours left no detectable smell or scent, and this accompanies a drop observed 

for carbon based products as shown in Figure 4.4, coinciding with the effective removal 

of solvent. For lesser quantities of catalyst, the 1 hour drying results were not outside of 

the experimental error margin. 

 

 



 

94 

 

Figure 4.4 Isopropanol drying times from plating catalyst and impact on products. Experiments conducted 

at room temperature with 0.08g of Mirkat catalyst, for 4 hours, and a light intensity of 278 mW/cm2. 

 

The practice in the lab was to wrap the reactor in aluminum foil to prevent 

exposure to UV light; however it also was a reflective surface, enhancing light utilization 

in the reactor. To investigate the light irradiance impact of the foil experiments were 

conducted with and without foil with the results as shown in Figure 4.5. The use of foil 

clearly improves the light transfer in the reactor as seen in the increased unitary 

production. The increased products come from the foil reflecting some of the photons that 

then assist in more reactions, as these photons would otherwise escape. 
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Figure 4.5 Product variation due to the intensity change of reactions with and without foil. Experiments 

conducted at room temperature with 0.04g of AuTiO2 catalyst, for 2 hours, and a light intensity of 278 

mW/cm2. 

 

The irradiance measured (with the UV/vis OmniCure R2000 Radiometer) was the 

incident irradiance. Due to the angle of the quartz plate, of 9.46 degrees to the horizontal, 

the light that reached the surface was reduced; and in the case of the screening 

experiments the 186 mW/cm2 irradiance would have been 31 mW/cm2, correcting for the 

angle of incidence based on trigonometry. Considering this is UV light, and only 4% of 

the solar spectrum, as discussed in section 2.5.1.1, and using 1000W/m2 as the irradiance 

of the sun on the earth’s surface, then 31 mW/cm2 (310W/m2) is equivalent to 7.75 the 

expected solar UV irradiation (40 W/m2 or 4 mW/cm2). 

 

4.1.4 Quadrople Mass Spectrometer analytical background and technique 

Mass spectrometry can be used to quantify elemental composition, amount, and even 

aspects of molecular structure of materials that can be excited into gas phase ions [243]. 

The quadrupole mass spectrometer works by ionizing sample gases through electron 

impact, magnetically separating the ions and sending then to a detector to quantify the 
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change in signal for the various mass charge ratios. A simple schematic for this process 

can be seen in Figure 4.6. Samples enter and are charged and then pass through a magnet 

where too light and too heavy molecules fall away into the magnet leaving a single mass 

charge to strike the detector. 

 

Figure 4.6 Drawing of a single focusing mass spectrometer showing key features, from Davis and Frearson 

[244].  

 For the analysis the magnet used was a quadrupole (Figure 4.7). The 

analytical system used to determine product gases was a Hiden Analytic Mass 

Spectrometer (MS), HPR-20 quartz inert capillary (QIC) system utilized with the 

accompanying MASsoft 7 Professional software. Detector readings can be displayed as 

tables and graphs of the partial pressures of the molecules by time (referred to as multiple 

ion detection (MID) mode in manufacturer’s literature) or as positions of different mass 

charge peaks by partial pressure in Torr or % (referred to as Bar Mode). Analysis for 

experiments were conducted in MID mode.  
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Figure 4.7 Drawing of the quadrople magnetic filter for the ion separation in a mass spectrometer from 

Sparkman et al. [245]. 

 

The MS has a faraday detector and a secondary electron multiplier (SEM) 

detector. The faraday detector has a detection limit of 10-11 and a maximum operating 

pressure of 1 x 10-4 Torr and gives results as a percentage of total pressure. SEM detector 

has a detection limit of down to 10-14-10-13 Torr and a maximum operating pressure of 1 

x 10-6 Torr and can give results of less than 1% giving parts per million (ppm). 

The samples were delivered to the MS through a 1.5 meter heated capillary line. 

The MS tracked specific mass charge ratios to allow for quantitative analysis. The MS 

tracked the relative pressure of H2 at the mass/charge peak of 2, CH4 at the mass peak of 

15, C2 based compounds at mass peak 26, CH3OH with mass peak 31, O2 at mass peak 

32, Ar with mass peak 40, and CO2 with mass peak 44. All mass peaks were tracked with 

the SEM detector except for the CO2 at 44. The only values that were converted into ppm 

values, by means of calibration, are the H2, CH4, C2 compounds, CH3OH and O2. The 

MASsoft programing for this calibration and experimental test work can be seen in screen 

shots given in Appendix C. The mass spectrometer was chosen for the ability to give 

highly accurate results at the low detection necessary for photocatalysis for CO2 

reduction. 

In the case of the Quadrupole MS, the CO peak was not tracked due to overlaps 

with the other product peaks. This is due to fragmentation of the molecule. The MS ion 

source is an Appearance Potential Soft Ionization (APSI), and ion generation is by 

electron bombardment, which gives the molecules charge, but also fragments them. This 
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means that the gas is subjected to an electron beam to charge the gas molecules and then 

ions of specific mass to charge ratios are directed by magnetism to the detectors. As seen 

in Appendix A, Table A.1, much of the available literature utilizes a gas chromatograph 

(GC) with a flame ionization detector. The GC is able to separate molecules through 

diffusion and adsorption/desorption along a packed column. A GC-MS with the capacity 

to separate molecules and then quantify them individually would limit the challenges of 

overlapping molecule fragments greatly by separating the gas presented to the MS. As 

CO is often considered an initial product at the start of the reduction process this limits 

results to detection of further developed products, however this was acceptable as the 

detection of solar fuel production was the goal of experimental work.  

To minimize error, calibrations were performed within hours of the experiment as 

part of the experimental preparation. This is in accordance with the recommendation to 

complete frequent calibration as MS detectors are sensitive to previous exposures and 

fluctuation in temperature and pressure and humidity [246, 247].  Thus, the use of 

overnight flows through the MS and experimental pressures held constant at 0.5 bar gauge 

were also done. Error analysis was done through calculating the standard deviation 

divided by the square root of the number of experimental runs, from experimental results 

done in triplicate for all screened photocatalysts in a singular test (error margins are 

tabulated by product in Table 4.3 for Mirkat and AuTiO2) [248].  The conditions of the 

Mirkat error experiments were 0.04 g photocatalyst loading, 4 hour experiment length 

and 278 mW/cm2. The conditions of the AuTiO2 error experiments were decided by the 

design of experiment structure midpoint, and were 0.03 g photocatalyst loading, an 

experimental length of 2 hours and a light intensity of 124 mW/cm2.  

 

Table 4.3 Error margins for Mass Spectrometer detection experiments done in triplicate with Mirkat and 

AuTiO2 samples for unitary product formation (μmol/gh). 

Product Mirkat error (μmol/gh) AuTiO2 error (μmol/gh) 

H2 0.14 2.17 

CH4 0.28 0.03 

C2 products 0.22 0.02 

CH3OH 0.08 - 
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4.1.5 Results calculations demonstrated  

Due to the importance of units and calculations for benchmarking, and to this thesis work, 

here is included examples of results calculation utilized in the following experimental 

chapters: 

The method by which all results were converted from the output of the MS, which was 

ppm’s, into μmole values (that are then used to calculate all other terms) is presented here 

with an example. If the MS reading was 8 ppm CH4 with the reactor at 0.45 bar guage (1 

bar ≈ 1 atm), due to time and pressure loss with MS reading, room temp 25°C. Reactor 

volume is 216 ml. 

1 𝑝𝑝𝑚 =  
1 𝑔𝑎𝑠 𝑣𝑜𝑙𝑢𝑚𝑒

106 ℎ𝑒𝑎𝑑𝑠𝑝𝑎𝑐𝑒 𝑣𝑜𝑙𝑢𝑚𝑒

=  
1 𝜇𝑚𝑜𝑙𝑒 𝑔𝑎𝑠

1 𝑚𝑜𝑙𝑒 ℎ𝑒𝑎𝑑𝑠𝑝𝑎𝑐𝑒 𝑔𝑎𝑠
 

Equation 4.2 

 

Utilizing the Ideal gas law: 

𝑛 =  
𝑃𝑉

𝑅𝑇
=

1.5𝑎𝑡𝑚 × 0.216𝑙

0.08206 
𝑙 ∙ 𝑎𝑡𝑚

𝑚𝑜𝑙𝑒 ∙ 𝐾
× 298.15 𝐾

= 0.01324 𝑚𝑜𝑙𝑒 
Equation 4.3 

8 𝑝𝑝𝑚 𝐶𝐻4 =  
8 𝜇𝑚𝑜𝑙𝑒 𝐶𝐻4

1 𝑚𝑜𝑙𝑒 ℎ𝑒𝑎𝑑𝑠𝑝𝑎𝑐𝑒 𝑔𝑎𝑠
 

× 0.01324 𝑚𝑜𝑙𝑒 ℎ𝑒𝑎𝑑𝑠𝑝𝑎𝑐𝑒 𝑔𝑎𝑠

= 0.10594 𝜇𝑚𝑜𝑙𝑒 

Equation 4.4 

0.10594 𝜇𝑚𝑜𝑙𝑒

0.02 𝑔𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡  × 4 ℎ𝑟
= 1.324 

𝜇𝑚𝑜𝑙𝑒

𝑔 ∙ ℎ
 𝐶𝐻4 

Equation 4.5 

 

 For the calculation of 
𝜇𝑚𝑜𝑙𝑒

𝑔∙ℎ∙𝑚𝐿∙𝑚𝑊
 results the unitary product formation (

𝜇𝑚𝑜𝑙𝑒

𝑔∙ℎ
) was 

divided by the volume of the reactor (216 mL), the irradiance (mW/cm2), and the 

illuminated surface area (12 cm2). 

 For the calculation of photonic yield moles were converted into elections per time, 

and the light irradiance converted to photons per time. For example: 
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𝑝ℎ𝑜𝑡𝑜𝑛𝑖𝑐 𝑦𝑖𝑒𝑙𝑑

=  

𝑠𝑢𝑚𝑚𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 (𝜇𝑚𝑜𝑙𝑒 ∙ 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠)
𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡 (ℎ, 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑 𝑡𝑜 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 ∗ 3600)

𝑖𝑟𝑟𝑎𝑑𝑖𝑎𝑛𝑐𝑒 (
𝑊
𝑚2) × 𝑎𝑟𝑒𝑎 × 𝑡𝑖𝑚𝑒 × 𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ (𝑚)

ℎ (6.626𝐸 − 34 
𝑗𝑜𝑢𝑙𝑒

𝑠 ) × 𝑐 (300000000 
𝑚
𝑠 ) × 𝑁𝐴  (6.022𝐸 + 23 

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒𝑠
𝑚𝑜𝑙𝑒

)

 

(Equation 4.6) 

 Where h is Plank’s constant, c is the speed of light, and 𝑁𝐴 is Avogadro’s number. 

As discussed in section 3.1.3, H2 molecules correspond to 2 electrons, CH4 with 8 

electrons, CH3OH with 6, and the C2 compounds (C2H6 with 14 electrons, C2H4 with 12 

electrons, CH3CHO with 10 electrons, and C2H6O with 12 electrons) are analyzed 

together, therefore, the electron equivalents are averaged to 12. The wavelength is 365 

nm, and therefore 0.000000365 m. 

 

4.2 P25 and the current “fuzzy” benchmark 

To start to analyze the significance of the results comparison by identical test conditions, 

which is current common practice, first P25 results for CO2 photoreduction from literature 

are investigated. This provides a context of other P25 results to initially assess whether 

the experimentally found results match the literature. Comparing P25 results also allows 

an exploration of the experimental conditions influence on the results. The literature 

reviewed includes 14 articles [60, 61, 66-69, 71, 78, 80, 183, 184, 186, 187, 228, 249, 

250]. To compare the articles, it was chosen to focus on CH4 results, as product based 

detection is most common. From the literature, the range of CH4 specific rate or unitary 

product formation results is 0.019-1.106 µmol/gh [61, 66-69, 71, 78, 80, 183, 184, 186, 

228, 249, 250]. Because of the variation in reporting some results could not be directly 

compared in this way, such as results reported in percentage of relative products  [60], 

and ppm results without enough context to be converted into moles [187].  Table 4.4 

presents a summary of literature results and then the given or calculated specific rate for 

articles where the CH4 results enabled comparison. It is most crucial to realize that the 

material utilized in these comparisons is identical. There are no modifications to P25. 

Therefore, the variation in results observed is all due to the reactor and experimental 

parameters. 

Based on the data given, and the principles of photocatalysis, the expected 

behavior would be that the results of all products are proportional to irradiance. This can 

be confounded however, by light distribution in the reactor. Ideally, the data provided 
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would be more complete when assessing the comparison photonic performance. When 

irradiation is not measured, or included in reporting, this hinders the ability to investigate 

these larger anticipated trends. The irradiance, however, only gets the comparison process 

so far. In this case, comparison is also hindered by the lack of characterization of the 

illuminated surface area. The irradiance measurement is power per square centimeter, so 

this information would have to be included for comparison. Only Fang et al. report the 

illuminated surface area, 3.14 cm2, such that a calculation of the specific rate can be 

normalized by the power provided [78]. Therefore, 0.23 µmol/gh divided by 62.8 mW 

gives an extended rate normalization of 0.0037 µmol/ghmW. 

  

Table 4.4 Results as reported for articles where a specific rate normalized by time and amount of catalyst 

can be calculated. (NA – not available) 

Article Length of 

Experiment 

(hours) 

Catalyst 

loading 

(grams) 

Light 

irradiation 

(mW/cm2) 

CH4 

result 

units CH4 

µmol/gh 

[69] 8 0.5 1.7 2 µmol/g 0.25 

[249] 20 0.1 NA 0.264 µmole 0.132 

[183] 6 NA 8.5 0.129 µmol/g 0.0215 

[228] 24 0.1 NA 11 µmol/g 0.46 

[184],[185] 1 NA 8.5 0.025 µmol/gh 0.025 

[80] NA NA NA 0.019 µmol/gh 0.019 

[66] 16 0.1 NA 10 µmol/g 0.625 

[78] 24 0.01 20 0.23 µmol/gh 0.23 

[67] 5 0.04 NA 0.5 µmol/g 0.1 

[68] 1 0.1 50 1 µmol/gh 1 

[186] 8 NA NA 8.85 µmol/g 1.106 

[250] 22 NA NA 3 µmol/g 0.14 

 

 P25 results were collected experimentally under the conditions of 0.02 grams 

catalyst loading, for 2 hours experimental time, and 185 mW/cm2 irradiance. The results 

were 0.2323 µmol/gh. This falls within the results range from literature. As the 

illuminated area was 12 cm2, the specific rate normalized for power can be calculated and 

is 0.00011 µmol/ghmW. This result, while being within the range of results from literature 

and providing an acceptable benchmark, demonstrates drastically different performance 
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than that found by Fang et al., when compared in terms of power utilization (extended 

normalization). This presents a situation where experimental procedure and reporting 

must become more sophisticated. Where it is possible to normalize for irradiance the 

range of results for this literature set becomes 0.0025-0.02 (µmol cm2/g h mW) meaning 

the magnitudes in the range of results becomes 10, which does appear to be more unified 

as opposed to the 102 range for the unitary product formation results range (µmol/gh). 

The implications of normalizing for irradiance alone is unclear. This result range variation 

must come from the experimental parameters and the reactor modifications of light and 

mass transport. 

To consider comparing between rigs based on the P25 results, Table 4.5 was 

compiled including all products. The variation in the P25 results should be based in the 

reaction conditions of the experiment, the geometry of the reactor including illuminated 

surface area, distance of light source to catalyst, and volume, and the analytical detection 

capabilities of products. Key observations from Table 4.5 is the lack of reporting of key 

influences such as reactor geometry. This compounds the problem of reaction parameters 

reporting on discussing results across the literature. The ranges of products vary 

throughout Table 4.5. The hydrogen unitary product results range spans from 0.386-217.6 

µmol/gh. An extended normalization can be applied to the experimental and [78] 

hydrogen results giving 0.098 and 0.0126 µmol/ghmW respectively. However even with 

this level of detail it is not possible to probe the reactor geometries. Could the product 

distributions have a relationship to the reactor geometry? The sense from the data is so 

much is untold and there is so much to discuss; a larger three-dimensional discussion that 

has been limited and confounded. The benchmark is often left without context, showing 

a range of results, and therefore with limited meaning, can thus be called “fuzzy”. 

 

Table 4.5 P25 results of various products detected from articles and experimental work (Exper.), conducted 

for this thesis, giving the reaction parameters of experimental length, catalyst loading and light irradiation, 

alongside reactor geometries such as illuminated surface area and reactor volume. 

Article Length of 

Exper. 

(hours) 

Catalyst 

loading 

(grams) 

Light 

irradiation 

(mW/cm2) 

Illum. 

surface 

area 

(cm2) 

Reactor 

Volume 

(mL) 

Product 

result 

units 

[69] 8 0.5 1.7 NA 500 CH4 2 µmol/g 

 8 0.5 1.7 NA 500 CH3OH 9 µmol/g 

 8 0.5 1.7 NA 500 HCHO 4 µmol/g 
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Article Length of 

Exper. 

(hours) 

Catalyst 

loading 

(grams) 

Light 

irradiation 

(mW/cm2) 

Illum. 

surface 

area 

(cm2) 

Reactor 

Volume 

(mL) 

Product 

result 

units 

[249] 20 0.1 NA 20 NA CH4 0.264 µmole 

 20 0.1 NA 20 NA CO 1.4 µmole 

[183] 6 NA 8.5 NA NA CH4 0.129 µmol/g 

[228] 24 0.1 NA NA NA CH4 11 µmol/g 

 24 0.1 NA NA NA H2 100.9 µmol/g 

 24 0.1 NA NA NA CO 2.5 µmol/g 

[184], 

[185] 

1 NA 8.5 NA NA CH4 0.025 µmol/gh 

[80] NA NA NA NA NA CH4 0.019 µmol/gh 

 NA NA NA NA NA CO 0.24 µmol/gh 
[66] 16 0.1 NA NA 100 CH4 10 µmol/g 

 20 0.1 NA NA 100 H2 170 µmol/g 

[78] 24 0.01 20 3.14 11 CH4 0.23 µmol/gh 
 24 0.01 20 3.14 11 H2 0.79 µmol/gh 

 24 0.01 20 3.14 11 CO 1.99 µmol/gh 
[67] 5 0.04 NA NA NA CH4 0.5 µmol/g 
 5 0.04 NA NA NA H2 1.93 µmol/g 
 5 0.04 NA NA NA CO 1.1 µmol/g 
 5 0.04 NA NA NA CO2 

conv.1.6 
µmol/g 

[61] 5 0.04 10 NA NA CO; UV 18 µmol/g 

 5 0.04 NA NA NA CO; vis 3 µmol/g 

[68] 1 0.1 50 NA 70 CH4 1 µmol/gh 
 3 0.1 50 NA 70 CH4 1.5 µmol/g 
[71] 5 0.05 420 NA NA CO 10 µmol/g 
 5 0.05 420 NA NA CO 550 µmol/ 

cm2 
[186] 8 NA NA NA NA CH4 8.85 µmol/g 
[250] 22 NA NA NA NA CH4 3 µmol/g 

 22 NA NA NA NA H2 42 µmol/g 
Exper. 2 0.02 185 12 216 CH4 

0.00929 
µmol 

 2 0.02 185 12 216 H2 8.704 µmol 
 2 0.02 185 12 216 C2 

0.00039 
µmol 

[69] 8 0.5 1.7 NA 500 CH4 2 µmol/g 

 

 Before moving on it is pertinent to note that it can be argued that P25 is an 

ineffective benchmark. Focusing specifically on the production of CH4 for example, Li et 

al. state that “Under either UV or UV-vis illumination, P25 TiO2 exhibited insignificant 
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catalytic activity for methanation of CO2, with CH4 production rate lower than 1 µmol/gh” 

[68]. They are working with CO2 and H2O vapor as many of the articles are. And Li et al. 

cite Xie et al. and Zhai et al. as reaching the same conclusion [251, 252]. Based on the 

threshold Li et al. put forward, very few of the results from the literature are significant. 

This provides a wonderful opportunity for the kind of academic discussion and 

assessment questioning that Bligaard et al. encourage [84]. The perspective of this thesis 

is a benchmarking material is better than no benchmarking material. However, there is 

room to propose a new commercial photocatalytic material to take P25’s place. 

 

4.3 Experimental context for benchmarking, discussion of the current practice of 

single experiment comparison with commercial samples  

The various commercial materials utilized in this experimental work included Anatase 

TiO2, P25, and Mirkat 211. The Anatse TiO2 is similar to laboratory produced samples 

with no modification, often used for comparison to observe the improvement due to 

modification. P25 is a commonly utilized benchmark, and the Mirkat photocatalyst has a 

very high surface area. To benchmark the commercial materials performance these three 

samples were screened all at 0.02 g catalyst loading, for 2 hours, and 185 mW/cm2 

irradiance. These settings represented a relatively low catalyst loading, a moderate length 

of experiment, and a relatively high light intensity, all chosen to increase product 

formation.  

The results of the commercial sample benchmarking are shown in Figure 4.8, 

which shows the unitary product formation of CH4, C2 products, and H2. The behavior of 

the Mirkat sample appears to be more similar to the behavior of the anatase sample, with 

P25 favoring CH4 and H2 production. This is to be expected as both the Anatase TiO2 and 

the Mirkat samples used contain the anatase crystal phase of TiO2, whereas P25 is a 

mixture of both anatase and rutile. In the literature, anatase TiO2 has been reported to 

produce CH₃OH, however, this was not observed [253]. The P25 results are less than 

other CH4 results reported, however in the case of Tu et al. and Huo et al. they also 

reported CO, and Huo’s work confirms the much larger H2 to CH4 ratio [228, 254, 255]. 

Mirkat results are unlike those found in literature, with the results gathered here being 

lower values; however, it does show similar trends. For example, Olivo et al. found the 

Mirkat 211 to produce more CH4 than H2 that was also observed here; however, there was 
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no report of C2 compounds [70]. Crystal phase appears to be the most significant influence 

for the results under these reaction conditions. 

 

Figure 4.8 Carbon based products detected for commercial samples P25 and Mirkat 211 compared to 

commercial anatase TiO2 (left axis). Hydrogen results for commercial samples (right axis). These 

experiments were conducted with 0.02 g of catalyst for 2 hours with 185 mW/cm2 irradiance. 

When comparing the P25 results products distributions and proportions from the 

experimental results to the literature results reviewed in section 4.2, there are a surprising 

number of articles that report CH4 and or CO production [60, 61, 66-69, 71, 78, 80, 183, 

184, 186, 187, 228, 249, 250]. Matejova et al. however, report CH4 and H2 results giving 

a similar trend of greater H2 production that CH4 production as seen with the experimental 

results here, however the scale of improvement of the H2 production over the CH4 

production is only roughly 17 fold as opposed to these experimental results where the H2 

production is significantly better being well over 800 fold [250].  

Clearly, the materials properties can be used to normalize the rate. Also, the 

volume of the reactor could be appropriate to assist comparison between labs as shown 

below in Table 4.6. In this case, the specific surface area revises the trend in performance 

seen in the product formation. A greater than 5 fold increase in specific surface area, from 

P25 to Mirkat, can produce a roughly 3 fold improvement in product formation when 

normalized for illuminated surface area, whereas an initial roughly 10 fold increase in 

specific surface area from anatase TiO2 to P25 had minimal effect. Therefore, there 

appears to be no relation between specific surface area and product results.  
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Table 4.6 Rate results from commercial samples benchmarking experiments conducted at room temperature 

for 2 hours with 0.02g catalyst and a light intensity of 185 mW/cm2 for all carbon products. 

 
μmole 
carbon 

Unitary Product 
Formation 
μmole/gh 

μmole/m2h 
using specific 
surface area 

μmole/gm2h 
using illuminated 

surface area 

Anatase TiO2 0.011 0.282 0.038 235 
P25 0.010 0.252 0.005 210 
Mirkat 211 0.029 0.717 0.003 598 

  

 From the commercial photocatalytic samples performance considering CO2 

reduction, it can be observed ( 

Figure 4.8) that P25 produces the most CH4, however the error margins of all three 

samples overlap. In contrast, Mirkat produces the most C2 products even considering the 

error. Due to the higher CO2 embodied in the C2 products further testing was conducted 

with Mirkat as described in Chapter 6. 

4.4 Experimental context for benchmarking, discussion of the current practice of 

single experiment comparison with modified samples  

Tests were conducted with modified samples. These samples included EISA produced 

samples, one of which was further treated with a H2 atmosphere at elevated temperatures 

after calcination, and an Au doped anatase TiO2. These samples were all tested at 0.02 g 

catalyst loading, for 2 hours, and 185 mW/cm2 irradiance. The results of the 

benchmarking experiments are shown in Figure 4.9. The experimental results in Figure 

4.9 show that these samples vary greatly in their selectivity toward hydrogen or methane, 

however not significantly in their production of C2 products. The H2 heat treated EISA 

sample has a significant increase in CH4 unitary product formation relative with 

unmodified EISA. Mirkat, here included for comparison, is outperformed by the AuTiO2. 

EISA CO2 photoreduction results with TiO2 based materials are rare. An example with a 

TiO2 – SiO2 composite made by EISA, with a ratio of Ti to Si of 6:4, gives a roughly 0.05 

μmole/gh unitary product formation [256]. This is similar to the experimentally found 

EISA result, however in the literature the comparison is with the composite with a Ti to 

Si ratio of 8:2, unitary product formation of 0.25 μmole/gh that was very likely due to 

improved mass transfer as the 8:2 material had a larger mean pore size [256].   

Comparing the Au modified samples from literature, there are no examples with 

the same low weight percent of 0.2 for the experimental sample, but the rates found for 

CH4 unitary product formation (μmole/gh) include 0.18 for 0.4 wt% Au [250], 0.28 for 

an unknown wt% of Au (reported with CO results, but no H2 ) [72], 1.5 for 0.5 wt% Au 
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(with no corresponding H2 products) [186], and 8 for 0.29 wt% Au [257].  The H2 unitary 

product formation was higher in the literature, 2.27 μmole/gh for 0.4 wt% Au [250], and 

9.5 μmole/gh for 0.29 wt% Au [257]. From these results the experimental AuTiO2 

performance appears to be within, as is the case with the CH4 results, or near to, as is the 

case with H2 results, these literature benchmarks. A wider range of Au modified samples 

from literature are discussed in more detail below in section 4.5 based on CH4 product 

formation. 

 

Figure 4.9 Mirkat 211 results as compared to modified TiO2 samples and their detected carbon products 

(left axis). And Hydrogen results from modified TiO2 samples (right axis). Experiments conducted at room 

temperature with 0.02 g catalyst, for 2 hours at 185 mW/cm2 irradiance. 

 The CO2 conversion performance of the samples and the experimental and reactor 

context results are tabulated below (Table 4.7). All the carbon based products have been 

summed based on their representative utilization of CO2 and the specific rate is compared 

to normalization based on the specific surface area of the photocatalytic material and then 

compared to the reactor illuminated surface area. As compared to the commercial 

samples, these modified samples have a much more consistent performance proportional 

to the specific surface area of the material. The defect generation of the H2 atmospheric 

treatment and the gold doping show slight improvements in performance when specific 

surface area is controlled for. These kinds of normalizing procedures help identify if 

modifications have a cumulative impact on performance or if the various modifications 

impact on the reaction mechanisms involved and limit each other. 
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Table 4.7 Specific rate results from modified samples benchmarking experiments conducted at room 

temperature for 2 hours with 0.02g catalyst and a light intensity of 185 mW/cm2 for all carbon products. 

 
μmole 
carbon 

Unitary Product 
Formation 
μmole/gh 

μmole/m2h 
using specific 
surface area 

μmole/gm2h 
using illuminated 

surface area 

Mirkat 211 0.029 0.717 0.003 597 

EISA 0.017 0.421 0.006 351 

EISA H2 0.023 0.567 0.009 473 

AuTiO2 0.032 0.800 0.007 666 

  

From the modified samples results, in terms of CO2 reduction, it can be observed 

(Figure 4.9) that while the Mirkat is still highest in C2 based products, the CH4 unitary 

product formation for the Au doped TiO2 is the highest. Therefore, the AuTiO2 sample 

was chosen for further experimental work in chapter 5. 

4.5 Experimental context for benchmarking, discussion of gold doped TiO2 samples 

from the literature 

Modifications utilizing gold are a common way to improve catalytic and photocatalytic 

performance. The literature reviewed includes 7 articles [58, 72, 79, 186, 187, 250, 257]. 

Considering a wide range of articles utilizing Au/TiO2 materials they can be compared 

based on CH4 production, (Table 4.8) [58, 72, 79, 186, 250, 257, 258]. The unitary 

product formation results for CH4 production give a range of 0.18-58 mole/gh. The 103 

range of the results is inexplicable due to incomplete reporting. With these gold TiO2 

material results the influencing factors challenging benchmarking include modifications 

to the materials, the reaction parameters, and the reactor geometries. Additionally 

comparisons of  photocatalytic structure including the nanotube arrays, 58.47 CH4 

µmol/gh [79], as relative to nanowires 30 CH4 µmol/gh [58] become challenging even as 

they appear similar and comparable in quantity. 
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Table 4.8 AuTiO2 materials and their CH4 results where specific rate can be calculated. Various pieces of 

data were not available (NA). 

Article Time 

(hour) 

Catalyst 

loading 

(grams) 

Light 

irradiation 

(mW/cm2) 

CH4 result units CH4 µmol/gh 

[79] 8 NA 100 58.47 µmol/gh 58 

[72] 5 NA NA Anatase 0.28 µmol/gh 0.28 

[72] 2-5 NA NA Rutile 0.27 µmol/gh 0.27 

[186] 8 NA NA 23.1 µmol/g 2.9 

[257] 4.5 0.1 71.7 UV 8 µmol/gh 8 

[250] 22 NA NA 4 µmol/g 0.18 

[58] NA 0.01 NA 30 µmol/gh 30 

 

Three of the articles, [186, 187, 250] include both P25 results and a modified Au 

TiO2 sample results. The results and experimental results are presented below in Table 

4.9. These three articles enable a benchmarked comparison allowing for identical 

laboratory conditions to be assumed to be enumerated in the P25 result. Both the reactor 

geometries and the experimental conditions are constant for comparing across the gain 

from modifications. Ideally, the P25 would be a gauge of the reactor conditions, and then 

the modified photocatalytic material performance would be attributable to the 

modification alone resolving the relations discussed in Section 3.4.3. Therefore, to assess 

this material improvement, the gain of the modification performance is divided by the 

P25 performance. This should remove the effects of reaction parameters and reactor 

geometries. 
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Table 4.9 P25 and AuTiO2 samples and their CH4 results from the articles with P25 benchmarking, 

including experimental results (Exper.). The gold modified materials include doped samples and a three 

dimensionally ordered macroporous photocatalyst with 6.6 wt. % Au (3DOM Au8/TiO2).  

Article Catalyst Specific 
Surface 
Area 
(m2/g) 

Illuminated 
surface 
area (cm2) 

Light 
irradiation 
(mW/cm2) 

Product 
result 

units CH4 

µmol/gh 

[186] P25 -- NA NA CH4 8.85 µmol/g 1.10625 

[186] 3DOM 
Au8/ 
TiO2 

36 NA NA CH4 23.1 µmol/g 2.8875 

[250] P25 50 NA NA CH4 3 µmol/g 0.1364 

 
 50 NA NA H2 42 µmol/g - 

[250] AuTiO2 
0.4 wt 
% 

84 NA NA CH4 4 µmol/g 0.1818 

 
 84 NA NA H2 60 µmol/g - 

[187] P25 50 NA NA CH4 90 ppm 
 

 
 50 NA NA CH4 135 ppm 

 

[187] 1.5 
mol% 
Au/TiO2 

--  NA NA CH4 503 ppm 
 

Exper. P25 50 12 185 CH4 
0.00929 

µmol 0.2323 

  50 12 185 H2 8.704 µmol  

  50 12 185 C2 0.00039 µmol  

Exper. AuTiO2 

0.2 wt 
% 

110 12 185 CH4 
0.02005 

µmol 0.5013 

  110 12 185 H2 0.021 µmol  

  110 12 185 C2 0.00597 µmol  

 

The gain in performance from the benchmark P25 to the gold enhanced 

photocatalytic material is inconsistent. The gains between the two photocatalytic 

materials are roughly 2.6 [186], 1.3 [250], and 5.3 [187] for the gold modified 

performance over the P25 results. The gain for the experimental results is 2.16. In terms 

of materials modifications there are varying amounts of gold loading and specific surface 

areas used, as shown below (Table 4.10). It can be observed in Table 4.10 that there is no 

meaningful relationship between the gold content and the results. It appears that 

normalizing by specific surface area may have more significance, but it is a small set of 
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results for comparison. Insights from gain normalized for gold will be nuanced as any 

dopant can increase activity or block irradiation, decrease surface area or act as 

recombination centers [259]. 

 

Table 4.10 Gain in product results for articles containing both P25 benchmarks and gold modified samples 

with examples of normalizing the gain. 

Article Amount of 

gold  

Specific 
Surface 
Area 
(m2/g) 

Gain in 

performance 

Gain 

normalized 

for gold 

Gain 

normalized 

for specific 

surface 

area 

[186] 6.6 wt% 36 2.6 0.4 0.07 

[250] 0.4 wt% 84 1.3 3.25 0.02 

[187] 1.5 mol% NA 5.3 3.53 NA 

Exper. 0.2 wt% 110 2.16 10.8 0.02 

 

Challenges to this type of benchmarking may occur if it can be proven that the 

reactor set up and parameters have unique interactions with the material that influence 

performance. An example would be a material modification changing the mass transport 

in the reactor. With a wider set of compete data each modification or parameter could be 

used to comprehensively rank the effects. Unfortunately, with current literature the cause 

of the variation, this cannot be investigated due to incomplete reporting.  

 

4.6 Benchmarking reactors and photocatalytic materials 

Chapter 4 has reviewed and discussed identical experimental benchmarking, presenting 

opportunities for normalization that can be expanded, the limited literature comparisons, 

and the importance of reporting comprehensive data sets. The experimental results show 

similar trends as literature, including that crystal phase and specific surface area appear 

to be important material characteristics when comparing across modifications. P25 may 

be a limited benchmark, however it is better than no benchmark. The literature range for 

unitary product formation results for CH4 production using P25 as the photocatalyst is 

0.019-1.106 µmol/gh. The range of unitary product formation results for the Au modified 

samples was 0.18-58.47 µmol/gh of CH4. Of the commercial samples Mirkat 211 had the 

largest CO2 reduction results and, therefore, is used for further exploratory testing varying 
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experimental parameters. Of the modified samples the Au TiO2 had the largest CO2 

reduction results, thus, it is investigated further with design of experiments analysis. A 

way to use benchmark materials to assess materials modifications improvements by 

scaling across different reactors is shown, and may be promising especially when results 

are normalized for specific surface area, however very few publications have enough 

information to enable this kind of comparison. Most crucially, the conclusion can be made 

that all three areas of the experimental work; the reactor geometries, reaction parameters 

and materials characterization, need to be comprehensively reported.  

Starting from this discussion of photocatalytic comparisons, this thesis will now move 

into single material explorations. Further testing presented in Chapters 5 and 6 detailing 

Mirkat and Au doped TiO2 photocatalytic performance with a single rig will enable a 

wide scope of discussion for the benchmarking challenge. Au doped TiO2 will be 

investigated implementing the design of experiments and proposed regime tools utilized 

with Mirkat to focus experimental work. Therefore, a new opportunity will be created 

where a singular experimental rig and investigation will generate a range of results from 

modifying reaction parameters. This will allow for a comparison of the range of results 

from a single rig with the variability across multiple rigs, a comparison of which reaction 

parameters have the largest impacts on results, a more nuanced discussion of the dual 

term challenge, and an attempt to quantify the effectiveness of current “fuzzy” 

benchmarking. 
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5. CHAPTER 5 – UTILIZING THE DESIGN OF EXPERIMENTS; 

EXPERIMENTS WITH GOLD DOPED TITANIUM DIOXIDE  

 

Here the results from modified AuTiO2 sample are presented. These results include those 

from the design of experiments (DoE) investigations. Experimental set up is covered in 

section 5.1. The variables investigated within the photoreduction system three factor DoE 

are the catalyst loading, light irradiance, and length of experiment (section 5.2). A two 

factor DoE, varying reaction length and a wider irradiance range, was also investigated 

(section 5.3). The output responses investigated were CH4 unitary product formation 

results (µmole/gh), photonic yield, and extended rate normalization; And CO2 unitary 

product formation calculated from the sum of carbon containing products measured, the 

photonic yield of the total products, and the extended normalization of carbon summed 

products. Insights from this analysis is discussed in section 5.4 in terms of maximum 

results (section 5.4.1), interaction effects (section 5.4.2), and variation in results terms 

(section 5.4.3). 

5.1 Experimental methodology and materials for design of experiments 

The experimental plan and material used for the DoE are described in detail below. 

5.1.1 Experimental method for design of experiments 

In the experimental work for the testing AuTiO2 for the design of experiments, the 

procedures were changed slightly from the procedure described in chapter 4, section 

4.1.3. AuTiO2 was chosen as the modification for intense experimental investigation by 

design of experiments because of the increased CH4 production compared to the other 

modified materials tested (Chapter 4, section 4.4). In this case, catalyst loading was done 

with 1mL suspension. The other significant change to the previously reported 

methodology was in this case the overnight flow and background readings were done 

using CO2 bubbled in water instead of helium. These changes were implemented due to 

better adherence of the catalyst to the quartz plate surface as observed visually, and an 

improvement in the analytical procedure for products quantification through a reduction 

in variation in calibration values.  

In this case, because a batch reactor is being utilized, there is already a need for 

many experiments to explore performance to map out a time response, particularly in the 

investigation of kinetics. To limit the number of experiments a two level factorial was 

utilized. In particular, the two level factorial is appropriate for understanding the behavior 
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of the system [260]. Surface response designs assist with further optimizations [208], 

[260]. This limits the analysis because this type of factorial is best suited to linear 

behavior. Using a two level factorial is acceptable for this PhD work because it is utilized 

to gather a reasonable data set from lab variations from AuTiO2 for a benchmarking 

assessment, it broadens the CO2 photoreduction discussion into DoE experiments further, 

and it highlights interaction effects in experimental work. In the future, exploration of 

kinetics would be more expediently conducted with flow reactions, which would allow 

the complexity of the DoE to increase without extending experimental time drastically. 

Experiments done following a DoE for this thesis, used an experimental layout 

generated using Minitab 17, for a three factor, two level, full factorial; high and low with 

a three-measurement midpoint, and experiments randomized. It is used to investigate the 

effect of factors on the response. The midpoint triplicate enables error analysis. The 

significance of factors to be measured comes from the comparison of the regressed linear 

function and the p-values. The design matrix of the experiments can be seen in Table 5.1, 

where the randomized run order and various high (1), low (-1) and midpoint (0), 

designations can be observed.  

 

Table 5.1 The coded design matrix of experiments using the Au doped TiO2.  

Standard Order Run Order Catalyst 

Loading (g) 

Light Intensity  

(irradiance, 

mW/cm2) 

Length of 

Experiment 

(hours) 

1 11 -1 -1 -1 

2 1 1 -1 -1 

3 10 -1 1 -1 

4 6 1 1 -1 

5 8 -1 -1 1 

6 3 1 -1 1 

7 4 -1 1 1 

8 5 1 1 1 

9 (midpoint) 2 0 0 0 

10 (midpoint) 9 0 0 0 

11 (midpoint) 7 0 0 0 
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 The high and low settings were set to 0.04 and 0.02 g of photocatalyst, 3 and 1 

hours, and then 185 and 62 mW/cm2 irradiance. Thus, the midpoints were 0.03 g catalyst 

loading, 2 hours reaction time, and 124 mW/cm2 irradiance. Settings were based on 

results from prior testing. In particular, the length of experiment were shortened due to 

higher products observed at lower times, the catalyst loading varied around what appears 

to be an optically thicker catalyst layer and thinner layer however all are visible, and lastly 

light intensity was chosen for a range to enable investigation of the irradiance influence 

on the unitary product formation.  

 An extended DoE was also conducted to explore the factor ranges further relative 

to anticipated main effects, and as a two factor extension of the initial DoE utilizing the 

midpoints. This enabled a wider range of light intensities to be investigated. For these 

experiments, 0.03 g catalyst loading was used, varying the length of experiment and the 

reaction time as shown (Table 5.2), along with the experimental randomized run order. 

The high low values chosen were 3 and 1 hours reaction time, and 241 and 6 mW/cm2 

irradiance, giving a much wider range in power provided to the CO2 photoreduction 

reactions.  

 

Table 5.2 The coded design matrix of the design of experiments for the extended two variable investigation. 

Standard Order Run Order Light Intensity  

(irradiance, 

mW/cm2) 

Length of Experiment 

(hours) 

1 4 -1 -1 

2 3 1 -1 

3 1 -1 1 

4 2 1 1 

 

 As there is a triplicate midpoint an error term can be generated. This is used in the 

production of Pareto charts, as the error term is used to calculate the confidence level 

minimum as 1-α/2. The significance level, α, is set at 0.05 and sets the probability of 

rejecting the null hypothesis, if it is true. The models generate a p value which is the 

probability of obtaining data if the null hypothesis is true, with the discrimination of 

results significance being that the p value is less than α. 
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5.1.2 Material review of AuTiO2 as material used in the design of experiments testing 

AuTiO2 was synthesized by precipitation from sulphate salt in sodium hydroxide using 

nitrogen [70]. The TiO2 was synthesized through precipitation of TiOSO4 salt with the 

base NaOH, forming Ti(OH)4 which was then calcinated at 400°C to form TiO2. Then Au 

was added using deposition precipitation [242]. AuTiO2 was measured to have a band 

gap of 3.21 eV, and at roughly 560 nm surface plasmon resonance was observed. AuTiO2 

also has a specific surface area of 110 m2/g and anatase crystallinity.  

5.2 Design of experiments investigating Au TiO2 product formation as influenced by 

light intensity, catalyst loading and length of experiment; three factor design 

of experiments 

To optimize the reaction response for the experimental parameters or factors a DoE is a 

significant tool to find optimum conditions and investigation of interactions. The MS is 

calibrated to give ppm results. These results were then used to calculate specific rate of 

unitary product formation, photonic yield and an extended normalization of the unitary 

product formation. This is because the response should be understood relevant to reaction 

parameters which were all observed relative to a specific rate response in Chapter 2, 

section 2.8.  

The model from the DoE is presented below in three parts including the Pareto 

Chart of standardized effects, main effects plots and interactions plots. The Pareto Chart 

is significant in that if the effect of a factor is not greater than the reference line it is not 

a significant factor and is not an important contributing factor to the result analyzed. The 

main effect plots show the variable effect between high and low points along with the 

center point. The interaction plots show this variable effect in relation to another factor. 

Perpendicular lines indicate a strong interaction. These plots do not include error margins 

instead relying on the p value determination to assess significance.  

 In this case, two responses have been considered, including the CH4 and the 

representation of CO2 as calculated from summing product contributions, both in 

µmole/gcath units. The experimental layout is given here with the CH4 unitary product 

formation (µmole/gh) results from the three variable DoE (Table 5.3).  
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Table 5.3 The experimental layout with µmole/gh results of the three factor design of experiments using 

the Au doped TiO2. 

Standard Order Catalyst 

Loading (g) 

Light Intensity  

(irradiance, 

mW/cm2) 

Time 

(hours) 

CH4 Unitary product 

formation 

(µmole/gh) 

1 0.02 62 1 0.6307 

2 0.04 62 1 0.2357 

3 0.02 185 1 0.2655 

4 0.04 185 1 0.0763 

5 0.02 62 3 0.0885 

6 0.04 62 3 0.0011 

7 0.02 185 3 0.1659 

8 0.04 185 3 0.1117 

9 (midpoint) 0.03 124 2 0.0331 

10 (midpoint) 0.03 124 2 0.0951 

11 (midpoint) 0.03 124 2 0.0088 

 

 The Pareto chart red dashed line is the reference line of significance. This Pareto 

chart, Figure 5.1, shows the length of experiment, catalyst loading and the interaction of 

the irradiation and time to be the significant effects. This model includes the effects of 

catalyst loading, irradiance, reaction time, and the interaction of irradiance and reaction 

time. Investigations and analysis done previously using ppm results had only shown one 

effect to be statically significant. Normalizing appears to highlight the importance of a 

parameter to the process as more factors have become significant in the model.  

Pareto charts of both the photonic yield and extended normalization for the CH4 

results are presented together in Figure 5.1, middle and bottom. Here the results have 

been calculated in terms of efficiency of the use of photons to produce products with the 

products being represented by their necessary constituent electrons, and a power 

normalization of products. As recommended by IUPAC, the term photonic yield for 

incident light with a singular wavelength, is utilized for experimental work (Chapter 2, 

section 2.5.2). Here, the extended normalization discussed and implemented in section 

3.1 is revisited utilizing the DoE. 
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Figure 5.1 Pareto Chart of the standardized effects of the CH4 response for the three factor design of 

experiments calculated in terms of unitary product formation (µmole/gh), where α = 0.05 (top). Pareto chart 

of the standardized effects of the photonic yield response of the CH4 for the three factor design of 

experiments (middle). Pareto chart of the standardized effects of the extended normalization (µmole/ghLW) 

CH4 results for the three factor design of experiments (bottom). 

 

The Pareto charts, Figure 5.1, shows that in both cases the reaction time is the 

most significant factor, followed by the interaction of irradiance and reaction time, then 
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the irradiance. When observing the photonic performance and the extended normalization 

performance, in this case, the photocatalyst loading is not statistically significant. It could 

be that the amount of photocatalyst utilized for the reaction were all within the light 

saturated range (Chapter 2, section 2.8.1). This behavior is not what was seen with the 

three factor CH4 specific rate results (Figure 5.1, top), where the irradiance had not been 

statistically significant, however the catalyst loading had.  

 The main effects are plotted in Figure 5.2. The main effects plot shows the 

response at the low and high conditions, blue dots, and then fitting a linear model line 

between the results, and giving the midpoint response with a red square. Here the main 

effects are showing that a lower loading, lower irradiance, and lower reaction time 

correspond to higher CH4 µmole/gh results. This is unexpected. Therefore, the extended 

DoE is revisited as it gives a wider irradiation range. Note that in this case, the rate is 

normalized for the catalyst loading. Therefore, the observation is of whether the further 

increase of time or photocatalyst leads to further increases in product formation, which it 

is observed that it does not.  

The main effects plot, Figure 5.2, shows that increasing the parameters of 

irradiance and reaction time lowered the CH4 photonic yield and extended normalization. 

This is the same as was observed for the CH4 unitary product formation results. This could 

be due to a high catalyst loading that light is unable to access the whole mass. 
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Figure 5.2 Main effects plot for CH4 unitary product formation results (µmole/gh) for the three variable 

design of experiments (top). Main effects plots of the CH4 photonic yield from the three factor design of 

experiments (middle). Main effects from the extended normalization CH4 results for the three factor design 

of experiments (bottom). 

The interaction effect can be seen in Figure 5.3, which plots one variable along 

the x-axis, and another is represented by each line. Therefore, in Figure 5.3, the x-axis 
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shows the low and high values of irradiance, and the blue line represents the low value 

for the length of the experiment as 1 hour, and the green line the results for the high value 

for the length of the experiment at 3 hours. At a low irradiance and low reaction time the 

largest unitary product formation (µmol/gh) of CH4 was observed. In this case, the 

interaction plots are showing a moderate interaction, as the lines are clearly not parallel, 

however they are not perpendicular either. Interestingly, the high irradiance in both time 

conditions gives very similar unitary product formation results. This is contrary to the 

expectation that triple the amount of irradiation (the high relative to the low irradiance 

condition) when at a one hour condition would be roughly equivalent, at least energy 

input wise to the low irradiance for three hours. Interestingly at one hour, higher 

irradiance does not increase the product formation, however for the three hour experiment 

length it does.  

The interaction plot for CH4 photonic yield and the extended normalization, 

Figure 5.3 middle and bottom, shows a limited interaction effect. What is observed is that 

the level of irradiance appears to have no influence at the three hour reaction time (green 

dotted line), and the low reaction time with low irradiance result in a high photonic yield.  

At the lower reaction time, fewer photons can be utilized more effectively than the higher 

irradiance flux with more photons. But at the three hour time period the proportionalities 

are constant, the incoming photons appear proportional to the product embodied 

electrons. This response could be due to photocatalytic degradation occurring causing a 

steady maximum [261]. It appears that normalizing with the irradiance and illuminated 

surface area can provide similar information to the photonic efficiency quantification. 
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Figure 5.3 Interaction plot for three factor DoE CH4 unitary product formation (µmole/gh) results, of 

irradiance and time (top). Interaction plot of the CH4 photonic yield response from the three factor design 

of experiments (middle). Interaction plot of the extended normalization CH4 results for the three factor 

design of experiments (bottom). 
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Comparing the specific rate (mole/gh) response to the photonic yield response in 

terms of the dual term problem we can compare the CH4 results, for the three factor DoE. 

The main effects and interaction is relatively similar and shows the same general trends. 

The largest difference between the terms is what factors are deemed significant. The 

reaction time is the most significant factor in every case. Then they start to diverge, with 

the interaction of irradiance and reaction time being significant to the photonic yield and 

extended normalization, and photocatalyst loading for unitary product formation. And 

finally, they differ on the last significant factor, with the interaction of irradiance and 

reaction time being significant for the unitary product formation, which is normalized by 

catalyst loading, and then the irradiance being significant for the photonic yield and the 

extended rate normalization. The photocatalyst loading relationship to irradiance (Ch. 2 

section 2.5.1.1) may be coming across in different ways depending on the result term.   

The three factor DoE was also analyzed considering multiple product summed 

results. The Pareto charts of all carbon products analyzed in terms of unitary product 

formation, all the products for the photonic yield performance, and all products in terms 

of the extended normalization in the three factor design are given in Figure 5.4. It can be 

seen, that the length of the experiment is significant in all cases. The interaction of the 

catalyst loading and irradiance is a significant effect for the unitary product formation and 

extended normalization results. The interaction of irradiance and reaction length and 

irradiance alone are significant factors to the photonic yield results (Figure 5.4, middle). 

Then the extended normalization has the greatest number of significant factors including 

irradiance and photocatalyst loading (Figure 5.4, bottom center). This is interesting as the 

photocatalyst loading had not played a significant role in the CH4 unitary product 

formation results case, and is now seen to have an interaction influence.  

The main effects again show decreasing results for increasing catalyst loading, 

irradiance and reaction time (Figure 5.5) for all combined product results. The 

incorporation of more of the factors into the units appears to highlight this behavior, in 

fact the extended normalization highlights this the most with all factors being significant 

(Figure 5.4), and shown at a large slope in the main effects plot (Figure 5.5) as the 

additional catalyst loading, provided irradiance, and reaction time do not lead to 

proportional gains in the extended normalization results. The increased total carbon 

products, representing CO2, corresponds to low loading and decreased time as shown in 

the main effects plot (Figure 5.5, top). The influence of irradiance is clearly minimal from 

the main effects plots explaining the low position in the Pareto chart (Figure 5.5, top). 
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The irradiance is showing minimal impact, even though it is the source of photons to 

power the reaction. This ends up being one of the more striking main effects plots.  

 

Figure 5.4 Pareto chart (top) of the standardized effects of the unitary product formation (µmole/gh) 

response of CO2 as calculated from summing contributions of carbon products for the three variable design 

of experiments, α = 0.05. Pareto chart of the standardized effects of the photonic yield calculated for all 

detected products from the three factor design of experiments (middle). Pareto chart of the extended 

normalization results from summing all products from the three factor design of experiments (bottom). 
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Figure 5.5 Main effects plot for combined products in terms of the unitary product formation (µmole/gh) 

response of CO2 as calculated from summing carbon product contributions for the three variable design of 

experiments (top). Main effects plot of the photonic yield calculated for all detected products from the three 

factor design of experiments (middle). Main effects plot of the extended normalization results from 

summing all products from the three factor design of experiments (bottom). 

The interaction effects plots for the summed products three factor DoE are shown 

in Figure 5.6. It can be observed that the interactions shown are diverse with the unitary 
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product formation and extended normalization both having significant interactions of 

loading and irradiance, but with different trends. The interaction of two variables is shown 

by the relative angles of the loading and irradiance, and irradiance and reaction time 

interaction lines for the various results for the carbon or all products (Figure 5.6, bottom). 

Because there were two interactions included in the DoE model for the extended 

normalization specific rate carbon products this interaction plot has two graphs (Figure 

5.6, bottom). However, the only statistically significant one is the interaction of the 

photocatalyst loading and the irradiance. 
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Figure 5.6 Interaction plot (top) for the unitary product formation (µmole/gh) response of CO2 as calculated 

from summing carbon product contributions for the three variable design of experiments. Interaction plot 

(middle) of the photonic yield calculated for all detected products from the three factor design of 

experiments. Interaction plots (bottom) from the extended normalization response calculated from 

summing all products from the three factor design of experiments. 

 



 

128 

The three factor DoE has shown increasing significance of parameters with 

increasing normalization or results sophistication. And the extended normalization 

appears to nicely bridge the dual term challenge with the CH4 results, however, it behaves 

more uniquely when a sum of products is analyzed.  

 

5.3 Design of experiments investigating Au TiO2 product formation as influenced by 

light intensity and length of experiment; two factor design of experiments 

 

Here the influence of the factors on the response of CH4 and C products results are 

assessed. The CH4 unitary product formation results and experimental conditions of the 

two factor DoE are given in Table 5.4. Again the results were analyzed with linear 

models, which may be inappropriate in this wide of an irradiance range (Ch. 2, section 

2.5.2). This can be seen in the lack of significant factors.  

 

Table 5.4 The experimental layout of the design of experiments for the extended two variable investigation 

with µmole/gh responses. 

Standard 

Order 

Run 

Order 

Light Intensity  

(irradiance, 

mW/cm2) 

Length of 

Experiment 

(hours) 

CH4 

µmole/gh 

1 4 6 1 0.0044 

2 3 241 1 0.3054 

3 1 6 3 0.0236 

4 2 241 3 0.0914 

midpoint  124 2 0.0331 

midpoint  124 2 0.0951 

midpoint  124 2 0.0088 

 

 The CH4 unitary product formation, photonic yield, and extended normalization 

Pareto charts are given in Figure 5.7. The CH4 µmole/gh results do not have a statistically 

significant influence from reaction length or irradiance (Figure 5.7, top). Before, in the 

three factor DoE, time and then loading was shown to have the largest impact, followed 

by an interaction of irradiance and time. Removing a variable and extending the range of 

light intensity has made these unitary product formation results unable to produce a 

statistically significant model. Interestingly, the ppm results, or non-normalized results, 
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were influenced by the interaction of intensity and reaction time. This could be due to the 

nonlinear behavior that is anticipated in Chapter 2, section 2.7 from experimental 

mechanisms. For the large irradiance, there is an expected shift in photonic yield response 

(Figure 5.7, middle) as this is additional photons or energy input in to the process. As 

shown in the Pareto chart (Figure 5.7, middle and bottom), the CH4 the photonic yield 

and extended normalization of the rate give only the interaction of the reaction time and 

the irradiance as a statistically significant parameter. 

It is important to note that the range taken for the extended DoE was an intensity of 

6 mW/cm2 to 300 mW/cm2 as compared to the previous range of 60 to 185 mW/cm2. The 

result is does not obviously follow the relationship predicted [96]. With the wide range, 

the impact of intensity should be obvious. It could be that the linear model fit is unsuited 

this irradiance range. 

The significant interaction effects of the CH4 photonic yield and extended 

normalization are plotted in Figure 5.8. The highest results in both cases are for the one 

hour and low irradiance condition. Normalizing for photon or power shifts the plots, with 

the photonic yield (Figure 5.8, top) favoring a longer reaction time, whereas for the 

extended normalization (Figure 5.8, bottom) there is a larger ‘penalty’ for the higher 

irradiance.  
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Figure 5.7 Pareto chart of the standardized effects from the analysis of CH4 results in terms of unitary 

product formation (µmole/gh) for the two variable design of experiments, α = 0.05 (top). Pareto chart of 

the standardized effects of the CH4 photonic yield response from the two factor design of experiments 

(middle). Pareto chart showing the CH4 extended normalization response for the two factor design of 

experiments (bottom). 
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Figure 5.8 Interaction plot of the CH4 photonic yield response from the two factor design of experiments 

(top). Interaction effects from the CH4 extended normalization response for the two factor design of 

experiments (bottom). 

 

 

When investigating the reaction length and irradiance, particularly with a wider 

irradiance range, the CH4 photonic yield response shows that the statistically significant 

factor is the interaction of reaction time and irradiance Figure 5.7, middle. This differs 

from the three factor photonic yield results in that the independent reaction length and 

irradiance had been significant within the more limited irradiance range. The Pareto chart, 

Figure 5.9 (top, bottom), shows no statistically significant factors for both the unitary 

product formation and extended normalization results for the sum of carbon products. 

The photonic yield of all products (Figure 5.9, middle) shows the interaction of irradiance 

with reaction time, along with the irradiance, and reaction time, are all significant factors.  
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Figure 5.9 Pareto Chart of the standardized effects of the unitary product formation results (µmol/gh) for 

the carbon product results interpretation of the two variable design of experiments (top). Pareto chart of the 

standardized effects of the photonic yield as calculated for all detected products from the two factor design 

of experiments (middle). Pareto chart of the standardized effects of the carbon product extended 

normalization response from the two factor design of experiments (bottom). 

 

 The main effects (Figure 5.10, top) do not resemble the previous three factor 

response for photonic yield results of increasing factors resulting in decreases in the 
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photonic yield. Instead, the increased irradiance increases photonic yield. The increase in 

the reaction time, however, decreases photonic yield. Here the expected relationship with 

irradiance is observed. 

 

 

Figure 5.10 Main effects plot for the photonic yield as calculated for all detected products from the two 

factor design of experiments (top). Interaction plot of the photonic yield as calculated for all detected 

products from the two factor design of experiments (bottom). 

 

The interaction response plot for the two factor DoE investigating photonic yield 

for all carbon containing products is also contained in Figure 5.10 (bottom). The 

interaction plot shows that the low irradiance does not vary the response of the photonic 

yield as the reaction time is increased. And then the high irradiance appears to 

significantly decreased photonic yield at the three hour reaction time.  

 Comparing the two factor DoE to the three factor results, the CH4 photonic yield 

and extended normalization all show the interaction of irradiance and reaction time as 

significant in relatively similar patterns. Except for the two factor DoE where the one 

hour results are higher than typical. It also appears that in the photonic yield all products 

interaction effects plot that the extended irradiance range reverses the one hour preference 

for lower radiation and 241 mW/cm2 becomes the high result.  
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5.4 Observations from the design of experiment 

The use of the DoE enables the systematic understanding of the importance of 

experimental factor effects, any variable interactions, and comparisons of results terms 

within CO2 photoreduction. Here key findings of what conditions give the highest results 

overall, of interaction implications, and of normalization considerations for the AuTiO2 

DoE results are discussed.  

5.4.1 Design of experiments and the conditions of the maximum results 

The maximum results for the three factor DoE when observing all products (both CH4 

and summed products) were found under the conditions of 0.02 g loading, 62 mW/cm2 

irradiance, and one hour reaction time. These maximum results were 0.6307 CH4 unitary 

product formation (µmol/gh), 0.0033 for CH4 photonic yield, and 3.925 CH4 extended 

normalization.  The maximum results found for both DoE experimental sets and all results 

terms are given in Table 5.5. The maximum dual term results (unitary product formation 

and photonic yield) for the two factor DoE were found under the different reaction 

conditions of 0.03 g photocatalyst loading, and one hour reaction time, however the 

unitary product formation results favored 241 mW/cm2 irradiance, and the photonic yield 

favored 6 mW/cm2 irradiance. When it comes to the CH4 results of the extended 

normalization of the 2 factor DoE the maximum result aligns with the maximum results 

conditions of the photonic yield. However, when comparing the summed product terms 

of the two factor DoE none of the results terms conditions align. This is a unique case 

where the extended normalization does not align with either dual term. 

 

Table 5.5 Maximum results for the three results terms for the three and two factor DoE and the 

corresponding reaction conditions. 

  DoE    Product Catalyst 

loading 

(g) 

Irradiance 

(mW/cm2) 

Reaction 

Length 

(hours) 

Maximum 

result 

  Three 

Factor 

  CH4 (µmol/gh) 0.02 62 1 0.6307 

     CH4 photonic 

yield 

0.02 62 1 0.0033 

     CH4 extended 

normalization 

(µmol/ghLW) 

0.02 62 1 3.925 

     C products 

(µmol/gh) 

0.02 62 1 1.2549 
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  DoE    Product Catalyst 

loading 

(g) 

Irradiance 

(mW/cm2) 

Reaction 

Length 

(hours) 

Maximum 

result 

     Photonic yield 

(all detected 

products) 

0.02 62 1 0.0410 

     C products 

extended 

normalization 

(µmol/ghLW) 

0.02 62 1 7.809 

  Two 

Factor 

  CH4 (µmol/gh) 

 

0.03 241 1 0.3054 

     CH4 photonic 

yield 

0.03 6 3 0.00064 

     CH4 extended 

normalization 

(µmol/ghLW) 

0.03 6 3 1.518 

     C products 

(µmol/gh) 

0.03 241 1 0.3054 

     Photonic yield 

(all detected 

products) 

0.03 6 1 0.38557 

     C products 

extended 

normalization 

(µmol/ghLW) 

 

0.03 6 3 1.518 

 

Interestingly for the DoE, the reaction time, which was a function of being a batch 

reaction, was the overwhelmingly most significant factor in all the DoE analysis. Then 

the irradiance was the next most significant, which is appropriate as it is the energy 

source. Then would come catalyst loading. It is also crucial to see that the overall trend 

for the three factor DoE was that for increasing units of time, photocatalyst and irradiance, 

there was not a proportional increase in product formation. It is in the wider irradiance 

range of the two factor DoE that the irradiance or reaction time is increasing the extended 

rate normalization, but not in a directly statistically significant way, instead it is in the 

interaction of these effects when observing the CH4 results behavior. 
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While the DoE analysis does show variation in how the results interact with the 

data, there is a great amount of overlap and congruence. Further DoE work with a range 

of experiments at a lower irradiance range, photocatalyst loading, and reaction time would 

be interesting to investigate if this unity of maximum results continues to align for the 

dual terms. These unitary product formation results can be compared to the parameter 

effects that are expected as discussed in Chapter 2, section 2.8. For example, catalyst 

loading behavior appears to be irradiance dependent. And the low catalyst loading 

behavior relative to irradiance appears to be a saturated response, possibly where 

photoreforming was occurring. The high photocatalyst loading behavior relative to 

irradiance, showed an unsaturated response with increased response to increasing 

irradiance.  

5.4.2 Design of experiments results considering interaction effects 

The most common statistically significant interaction was of the irradiance and reaction 

time, being significant for the CH4 products in all results term cases and in both the three 

and two factor DoEs, except for the two factor DoE case of the unitary product formation 

result in which no factor was significant. The reaction time and irradiance interaction was 

also significant for the photonic yield results for the carbon-based products in both the 

two and three factor DoEs. Then the next significant interaction was catalyst loading with 

irradiance. This interaction was significant in the case of the unitary product formation 

and extended normalization for the carbon-based products from the three factor DoE.  

The interaction effects can be explained through the relationships of the factors. 

For example, with the irradiance and reaction time, as irradiance is a measure of all 

incoming photons and this is occurring over the time of the reaction, perhaps what is 

observed by the DoE is that interaction of photon flux and reaction progression. It appears 

that there is a stabilizing effect where the rate of product formation levels out by three 

hours particularly observed for the CH4 three factor DoE main effects interaction plots. 

As the other example, there is the irradiance and catalyst loading, where the photocatalyst 

availability to incident light is a key interaction that could be generating the observed 

interaction effects. The two factor DoE is also an opportunity to observe the extreme 

behavior of the irradiance. Interestingly, some of the terms to quantify the results were 

ineffective at these wider ranges of irradiance, including the CH4 and C products specific 

rate (mole/gh). In the CH4 products case, the photonic yield and extended normalization 

had a statistically significant response, for the interaction of irradiance and reaction time. 
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Then for all summed products photonic yield was the only term to ‘make sense of’ or 

produce significant factors.  

5.4.3 Design of experiments results considering normalization and results terms 

It is also important to observe how the normalization of the parameters affects 

interpretation. The DoE is such an interesting tool to utilize in a benchmarking exercise 

because it allows for a wider range of terms to be easily visualized and compared. So, 

when unitary product formation is used the only term not being normalized for in the 

results analysis is the irradiance. This can then be compared to the extended normalization 

in which all varied parameters are being normalized in the analysis. So, there is a shift 

from just observing a growth in the product relative to catalyst loading and reaction time, 

to assessing if irradiance inputs produce gains beyond the initial product output found for 

the lowest input conditions. It is a way of interrogating the use of energy resources when 

normalization is utilized. In the experimental work conducted for the three factor DoE the 

additional catalyst loading, irradiance, and time did not increase upon the low level 

conditions performance in most cases. However, with the wider irradiance range of the 

two factor DoE the high irradiance condition leads to a higher unitary product formation, 

and the lower irradiance leads to a higher photonic yield and extended normalization 

result. 

How these shifts in data processing affected the analysis is interesting. One case 

is the significance of photocatalyst loading. The photocatalytic loading was a statistically 

significant factor in the CH4 unitary product formation response for the three factor DoE 

and for the carbon products in the extended normalization of rate for the three factor DoE 

(Figure 5.1 (top) and Figure 5.4 (bottom) respectively). Then the photocatalytic loading 

was statistically significant for the interaction with irradiance in the case of the carbon 

products unitary product formation and the carbon products extended normalization 

response of the three variable design of experiments (Figure 5.4). This influence appears 

to be lost when further normalization is introduced to the CH4 measure. This influence 

appears to be more observable in terms of the interaction with irradiance in the case of 

the sum of all carbon products extended normalization. For the most part increasing 

normalization preserves or highlights trends and is only confounded in the summed 

products two factor DoE case.  

The extended normalization results relative to the dual terms challenge gives an 

interesting third option. In the case of CH4 results, the three factor DoE based on the 

extended normalization gave the similar main effects and interaction as the previous two, 
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as in general they were alike, with the same significant factors as the photonic yield. This 

appears to be a good compromise between the terms. For the two factor DoE the CH4 

extended normalization the wider irradiance trends relative to the CH4 photonic yield 

response both give the statistically significant factor of the interaction of irradiance and 

reaction time. This did not hold with summed product analysis where for the three factor 

DoE the interaction of photocatalyst loading and irradiance was shared by unitary product 

formation and extended normalization. Thus the extended rate normalization appears to 

be an appropriate ‘straddling’ of the dual term divide.  

While it is challenging to unpack the density of DoE information provided, it is 

clear that the factors can be ranked in terms of significance; reaction time, irradiance, then 

photocatalytic loading. It is also clear that interaction effects are present between 

irradiation and reaction time and between irradiation and photocatalyst loading. And 

lastly, while the extended normalization may uniquely quantify the CO2 photoreduction 

process varying whether catalytic or photonic trends are being shown, in smaller 

irradiance ranges it holds close to dual term trends.  
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6. CHAPTER 6 – TESTING REGIMES AND SINGLE VARIABLE 

VARIANCE EXPERIMENTS WITH MIRKAT SAMPLES 

 

In this chapter results from the commercial sample Mirkat 211 are considered. The regime 

framework is proposed (section 6.1) and used for testing. Inspiration for the regime 

approach to CO2 photoreduction has come from photovoltaics (section 6.1.1) and 

catalysis (section 6.1.2). An explanation of the regimes is given in section 6.1.3. 

Therefore, single variable variance experiments are conducted to identify testing regime 

and reaction rate information for Mirkat 211. Experimental methodology and material is 

reviewed in section 6.2. The single variable experiments include variation in catalyst 

loading (section 6.3), length of experiment (section 6.4), and light intensity (section 6.5). 

For further results terms analysis beyond unitary product formation (section 6.6) the 

Mirkat regime data is then converted to photonic yield (section 6.6.1) and extended rate 

normalization (section 6.6.2). The chapter ends with a discussion of benchmarking Mirkat 

results and the conditions of maximum results, in section 6.7.   

6.1 Testing Regimes Proposed 

As shown in section 3.1.1 and chapter 4, the context of reactions are not generally given 

in the current literature, and focus is not placed on comparing rates, or investigating 

operational parameters effect on rates of conversion. Reporting that enable these 

endeavors are necessary to benchmarking across multiple labs and reactor setups. To 

facilitate the consideration of experimental work that benchmarking requires, here 

inspiration from photovoltaics and catalysis are discussed. These considerations were 

fundamental to structuring the testing regime framework addressing operational 

parameters and metrics, that is proposed in this section. 

6.1.1 Considering photovoltaics and light 

In photovoltaics, separate tests are run to either determine the efficiency of the 

device or identify the quantum efficiency of the photovoltaic material alone [262].  This 

acknowledges a need for multiple experimental strategies to compare performance.  

Quantum efficiency (QE) is a figure of merit in photovoltaics. In photovoltaics, 

quantum efficiency is measured in two different ways. As they are conceptually similar 

they are sometimes both called quantum efficiency; however, in photovoltaic practice 

spectral response (Equation 6.1) and quantum efficiency (Equation 3.37) are distinct. 
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𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒

=   

𝑐𝑢𝑟𝑟𝑒𝑛𝑡
𝑐ℎ𝑎𝑟𝑔𝑒 𝑜𝑓 𝑜𝑛𝑒 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛⁄

𝑡𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠
𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑜𝑛𝑒 𝑝ℎ𝑜𝑡𝑜𝑛⁄

=  
𝑞𝜆

ℎ𝑐
𝑄𝐸 

 

Equation 6.1 

 

Where q is the radiant energy at the wavelength (or the total from summing various 

wavelengths), h is the Planck constant, λ is the wavelength (or range of wavelengths), and 

c is the speed of radiation in a vacuum. 

 

𝑄𝑢𝑎𝑛𝑡𝑢𝑚 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑠

𝑠𝑒𝑐𝑜𝑛𝑑⁄

𝑝ℎ𝑜𝑡𝑜𝑛𝑠
𝑠𝑒𝑐𝑜𝑛𝑑

⁄
 

Equation 6.2 

 

Firstly, spectral response is measured in the lab with varying single wavelength of light 

provided (roughly 0.02 to 1.2 µm), with quantum efficiency being calculated from the 

spectral response, as shown in Equation 6.1. This can also be discussed as Incident Photon 

to Charge Carrier Efficiency (IPCE) of the device. This suggests that in photocatalysis 

the quantum efficiency measurements would benefit from being tested in the linear range 

of flux of irradiation (as previously explained in Chapter 2, section 2.5.2), and should be 

reported relative to the wavelengths of irradiation used as this would ensure maximum 

photon utilization and appropriate energy measures. This forms the basis for establishing 

the catalyst light performance regime in Table 6.1. 

Quantum efficiency measurements are distinctly separated from the efficiency of 

the device as a whole unit. To enable measurement of the entire device, energy output 

relative to the input energy from the sun (to enable comparability), different tests are run. 

In photovoltaics, there are strict standards keeping the testing spectrum, intensity and 

temperature the same across different lab tests, namely AM 1.5, 298.15 K (25°C). The 

input power for the efficiency calculation is 1 kW/m2 or 100 mW/cm2. Applying a similar 

concept to photocatalysis would result in tests performed in the standardized conditions 

reactor performance regime in photocatalysis with an asterisk (*) indicating that 

temperature and pressure would be standardized at 298.15 K and 1 atmosphere to 

minimize energy input.  
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6.1.2 Considering catalysis and transport phenomena  

As discussed in section 2.5.3, there are a variety of reactor options affecting flow and 

mass transport. These choices impact the photocatalytic performance and are highlighted 

in the testing regimes to enable testing improvements. Here, reactor performance in 

catalysis is discussed in more detail to explain why consideration of mass transport and 

CO2 photoreduction results are needed. 

In catalysis, the Damkӧler number is used in reactor design to characterize reactor 

performance. This dimensionless number is derived to ensure that the mass transport in 

the reactor is more than sufficient to provide reactants to the catalyst and then remove 

products (Equation 6.3).  

𝐷𝑎𝑚𝑘ӧ𝑙𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 =  
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒

𝑚𝑎𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑟𝑎𝑡𝑒

=  
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (𝑝ℎ𝑜𝑡𝑜𝑐𝑎𝑡𝑎𝑙𝑦𝑠𝑡)

𝑚𝑎𝑠𝑠 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑟𝑎𝑡𝑒 (𝑟𝑒𝑎𝑐𝑡𝑜𝑟)
 

Equation 6.3 

 

When the Damköler number is significantly lower than one, the reaction is limited 

by the performance of the catalyst and not the mass transport of the reactor. 

Mass transport is influenced by many factors including properties of the gases, 

such as diffusivities or viscosity of liquids, but it can be managed through reactor design. 

This has significant implications for photocatalysis for the reduction of CO2. In the case 

of photocatalysis, there are two inputs that limit the catalytic reaction rate, namely 

consideration of mass transport and reactants access to the catalysts, and the light 

transport or access to the catalyst. Clearly, the reaction rate performance of the catalytic 

material, required to determine performance quantified by catalyst site performance such 

as turn over frequency, needs to be measured without mass or light transport limiting the 

materials performance. Testing conducted considering sufficient mass transport and an 

excess supply of light for the catalyst used would give the catalyst kinetic performance, 

as stated below in Table 6.1. 

6.1.3 Testing Regimes 

Table 6.1 summarizes novel testing regimes based on the identification of the rate 

determining process (either mass transport or photocatalytic reaction), their dependence 

on experimental parameters, and the intent of the experimental work. The proposed 

testing regimes also suggest metrics for each regime. For these testing regimes it is 

assumed that tests are run at relatively low pressures near 1 bar, and room temperature. 

The six regimes presented in Table 6.1 vary depending on the light provided, the amount 
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of catalyst used, and the mass transport within the reactor. To understand the proposed 

regimes it can be useful to review the parameters affecting CO2 photoreduction from 

Chapter 2, section 2.5. 

 

Table 6.1 Proposed testing regimes based on mass transport and light conditions, and light interactions with 

photocatalytic loading, with accompanying results terms recommended for analysis.  

Testing Regimes Mass transport Light Intensity Catalyst Loading Measurement 
with IUPAC 
Glossary Term 
[89]  

 
Efficiency of Light 
Harvesting Regime 

 

Greater than 

reaction rate 

 

Fixed value in the 

range of 

intensities where 

reaction rate is 

proportional to 

radiance flux 

 

Linear range (where 

varying amount of 

catalyst used 

linearly changes 

reaction rate) 

 

Quantum yield, 

quantum 

efficiency, 

photonic yield or 

photonic 

efficiency, and 

TON or TOF  

 
Catalyst Loading 
Optimized 
Performance 
Regime 

 

Greater than 

reaction rate 

 

Varied ranges 

 

Fixed 

unstandardized light 

source with mass of 

catalyst used 

optimized to light 

provided 

 

Unitary product 

formation, 

photocatalytic 

efficiency, 

effective 

radiation 

catalytic activity, 

or radiation-

chemical yield  

Catalyst Kinetic 
Performance 
Regime 

 

Greater than 

reaction rate 

 

Fixed in the range 

where reaction 

rate proportional 

to the square root 

of radiance flux  

 

Saturated (where 

varying amount of 

catalyst used does 

not change reaction 

rate) 

 

Reaction rate 

(catalyst) 

 

 
Mass transport 
Regime 

 

Less than reaction 

rate 

 

Optimized where  

surface reaction 

rate is 

proportional to the 

square root of 

radiance flux 

 

Saturated (where 

varying amount of 

catalyst used does 

not change 

conversion) 

 

Mass transport 

rate (reactor) and 

Damköler 

number 

 
Standardized 
Conditions Reactor 
Performance 

 

Known (can use 

information from 

Mass transport 

Characterization or 

calculated value) 

 

Solar Standard 1.5 

AM* 

 

Mass of catalyst 

used optimized 

 

Device 

performance that 

is comparable to 

other devices 

measuring 

efficiency 

 
Model Validation 
Conditions 

 

Chosen ranges 

(limits to validate 

models) 

 

Chosen ranges 

 

Chosen ranges 

 

Device 

performance as a 

function of light 

provided 

measuring 

efficiency 
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The first three regimes (light harvesting, loading optimized, and catalyst kinetic) 

consider different experimental parameters affecting surface photocatalytic CO2 

photoreduction; the fourth considers mass transport; the fifth (reactor performance) 

represents comparison between results from different experimental testing setups while 

the sixth regime (model validation) represents testing conditions in which a device 

response to modeling is sought and it is not necessary to investigate separately a single 

parameter of the whole process. 

The regimes or conditions of testing determine what metric should be used based on 

what inputs are limiting the photocatalytic process and what the goal of experimental 

work is.  

 

As presented in Table 6.1 the regimes can be explained further: 

 Efficiency of Light harvesting regime isolates the catalyst performance through 

measurement of quantum efficiency and is conducted when mass transport on the 

reactor does not limit the reaction rate, the light intensity varies proportionally to 

rate, and the light provided is less than required for all superficial sites’ 

photoactivation. In this way, all photons are available for surface reaction. These 

measurements should be taken at equilibrium: in this way reactant adsorption on 

the surface and light absorption have already reached steady-state. As this is useful 

for quantum yield determination, it won’t provide a faithful determination of 

reaction kinetic dependence on light. Also, catalyst loading should not affect the 

reaction rate. 

 Catalyst loading optimized performance testing regime identifies the catalyst 

performance through product terms and is conducted when the mass of the catalyst 

used for testing is optimized to the light provided in the reactor, the light intensity 

is varied, and the mass transport is sufficiently great so as not to control the 

reaction rate. These measurements should be taken at equilibrium. 

 Catalyst kinetic performance testing regime provides information on the catalyst 

performance through the reaction rate and is conducted when the mass transport 

within the reactor is adequate to allow the reaction rate to be catalytically 

controlled, the rate varies proportionally to the square root of light intensity, and 

the light provided is more than sufficient for the amount of catalyst used.  

 Mass transport regime measures the reactor performance through assessing mass 

transport within the reactor and is conducted when the mass transport on the 

reactor limits the reaction rate, the rate is optimized with respect to irradiance 
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intensity, and the light provided is more than sufficient for the amount of catalyst 

used.  

 Standardized reactor performance testing condition finds information on the 

device performance through overall efficiency and is conducted when the mass 

transport is unknown, the mass of catalyst is optimized, and the light provided is 

standardized to 1.5 air mass coefficient (AM), as used in photovoltaic standard 

measures [262]. Efficiency here is the useful energy delivered or bound over the 

energy supplied [89]. These measurements should be taken at equilibrium, when 

the conversion has plateaued, and possibly maintaining irradiance. This is an 

important way to benchmark reaction systems as devices. 

 Model validation testing condition provides information on the device 

performance through the overall efficiency and is conducted when the mass 

transport and light provided are either specified or not quantified and ranges of 

irradiance are selected. These measurements should be taken at equilibrium. 

These experiments can be used for model verification. 

 

A way to work though regimes and conditions would be to go through them one by 

one to assess the material and the reactor and develop models to then be verified 

experimentally, as described here. The assumption is that to start photoreduction 

experiments something about mass transport is known, whether it be derived from a 

model or experimentally found. 

Firstly, catalysts would be compared by testing them in the regime for efficiency of 

light harvesting. Thereby, allowing the best performing material to be selected. Then the 

catalyst loading optimized performance experiments would give the best conditions of 

experimental testing for a given irradiation intensity, being a good regime to look at the 

dependence of the reaction rate on irradiance. Therefore, the mass of catalyst used is 

optimized relative to the light provided in the photoreactor [188] and this is essential if 

trying to calculate quantum efficiency. In this way light intensity then mass of 

photocatalyst is optimized.  

Next experiments in the catalyst kinetic performance regime would be conducted to 

measure kinetics, ideally to explore the dependence of the reaction rate on reactant 

concentration. Next the mass transport regime or standard conditions reactor performance 

experiments can be conducted for benchmarking the overall process. And lastly, 

experiments in model validation conditions would be conducted to compare experimental 

results with various theoretical predictions. 
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The most significant aspect of the testing regimes and conditions is that they separate 

measurement of the photocatalytic material from reactor and experimental conditions 

through intentional regime choice. The only two regimes that measure the material alone 

are the catalyst kinetic performance and the efficiency of light harvesting. Catalyst 

loading optimized performance is optimized to the reactor. Then standardized conditions 

reactor performance and model validation conditions are clearly reactor modified 

performance.  

Building upon testing regimes, a wider materials screening process would be 

useful. For example, intentionally testing within the efficiency of light harvesting regime 

would give metrics capable of assessing that either light absorption or charge carrier 

lifetimes have been increased. Catalyst kinetic performance regime would provide 

assessment of the hydrophilic behavior, which could be verified by Fourier transform 

infrared spectroscopy (FTIR). When these testing and results are used to identify material 

performance and compared to anticipated modification improvement it will be apparent 

if the modification was successful in its aim. An important component of this will be 

identifying where the material fits into the matrix given in Table 2.2. 

The regimes proposed are general for use in a wider context within photocatalytic 

CO2 reduction. For the context of this thesis engagement with approaching Mirkat 

experimental work initiates at the first two testing regimes and, due to batch reactions, an 

exploration of time. The terms investigated associated with the regimes are unitary 

product formation and photonic yield. The priority is to focus on methane results for the 

purpose of forming solar fuels. 

6.2 Materials and Experimental Methodology for CO2 photoreduction testing 

Experiments varying single parameters (such as length of experiment, catalyst loading, 

and light intensity) were conducted with Mirkat 211 TiO2 purchased from Euro Support 

Manufacturing. This material was chosen for its high specific surface area and anatase 

phase, and higher CO2 reduction for the commercial samples (Ch. 4, section 4.3). 

The procedures used were changed slightly from the procedure described in 

Chapter 4, section 4.1.3. In this case, catalyst loading was done with 1mL suspension. 

The other significant change to the previously reported methodology was the use of CO2 

bubbled in water for overnight flow and background readings instead of helium. These 

changes were implemented due to better adherence of the catalyst to the quartz plate 

surface and an improvement in the analytical procedure for products quantification. These 

modifications in experimental procedure were also in place at the time of the low light 
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intensity experiments that were conducted with the Mirkat and AuTiO2 samples (results 

in the Appendix C). 

6.3 Regime exploration by varying catalyst loading 

Figure 6.1 shows the results from the experiments varying loading of the catalyst using 

loadings of 0.01, 0.02, 0.04 and 0.08 grams of Mirkat 211. For these experiments the light 

intensity used was 278 mW/cm2 and length of the experiment was 4 hours. These settings 

were chosen for experiments based on prior expertise [230]. Figure 6.1 gives the specific 

rate, or unitary product formation response. A catalyst loading of 0.02 g shows a 

significant increase in H2 formation, however this declines at higher loadings. As 

discussed previously in section 2.5.1.1, with catalyst loading the behavior expected is a 

leveling off of reaction rate with increased loading over a saturated level. The behavior is 

not observed for H2 nor CH3OH where a drop in the unitary product formation is found 

above a catalyst loading of 0.02 g. The behavior of CH2 and C2 compounds is more similar 

to the expected behavior. 

 

Figure 6.1 All products detected with varying catalyst loading between 0.01, 0.02, 0.04, and 0.08 g. 

Experiments were conducted at room temperature, for 4 hours with an incident light intensity of 278 

mW/cm2.  

The plot in Figure 6.2 gives the results for CH4 and C2 compounds relative to 

catalyst loading. This has been shown along with the CO2 utilized, calculated from 

summing the proportional contribution of the CH4 and C2 product formation results.  The 

results show a relative increase of carbon based products between a loading of 0.01 g and 
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0.02 g and would suggest and optimum loading of 0.02 g. The expectation is for a 

saturated amount of catalyst loading to be reached where the production varying by 

loaded catalyst reaches a plateau which is observed in this case for CH4 [96, 215].  

 

 

Figure 6.2 Results from varying catalyst loading between 0.01, 0.02, 0.04, and 0.08 g, showing CH4 and C2 

products, along with the approximation of CO2 utilized. CO2 total was calculated by adding the moles of 

CH4 to double the C2 moles. Experiments were conducted at room temperature, for 4 hours with an incident 

light intensity of 278 mW/cm2. 

 

As shown in Figure 6.2 the CH4 behavior nicely fits the expected parameter 

behavior. Figure 6.2 shows that the majority of the results are in the saturated range where 

varying the amount of catalyst does not vary the rate of reaction, as relating to the testing 

regimes (Table 6.1). What this means for the regimes of testing is that the 0.02 g of 

catalyst loading can be used for Mirkat as saturated, and it indicates that 0.01 g can be 

considered in the linear range (Table 6.1). However, when considering all the results 

collected experimentally for Mirkat CH4 the highest unitary product formation was found 

for a sample loading of 0.04 g. Therefore, the sample loading was revisited with a model 

fit to the data.  

The Langmuir Hinshelwood model is applied, as in the technical report [91] 

(Equation 13 a), reproduced here as equation 6.1: 
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𝑅in =
𝐴 [TiO2]

(1 + 𝐵[TiO2])
 

Equation 6.1 

 

Where 𝑅in is the initial rate of substrate disappearance, and A and B are constants, 

and [TiO2] is the concentration of TiO2 in g/L. In this case, the model will be applied to 

the amount of CH4 produced. 

As shown below, in Figure 6.3, the experimental results fit the model even as the 

data points are within the plateau. When the model is applied the optimum photocatalyst 

loading mass (mopt) is 0.04 g. More would need to be done to assess whether mopt is 

irradiance dependent, and it may be prudent to investigate the linear range of the 

performance more thoroughly. 

 

Figure 6.3 CH4 products, varying catalyst loading with inclusion of Langmuir Hinshelwood model, shown 

by a dashed line. Experiments were conducted at room temperature, for 4 hours with an incident light 

intensity of 278 mW/cm2. A = 490 µmole/g2h, and B = 440 1/g, with the R2 error being 0.0067. 

 The 0.04 g optimum mass, as shown in Figure 6.3, means that 0.04 g photocatalyst 

loading and above would then be considered saturated, and again 0.01 g would be in the 

linear range.  
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6.4 Varying length of experiment investigation reaction rate 

In the length of the experiment investigation the experiments were varied from 1-8 hours. 

For these experiments the catalyst loading was always 0.04g and the light intensity was 

maintained at 278 mW/cm2. Results can be seen in Figure 6.4 which shows the unitary 

product formation, or specific rate, measured for each experiment. The results show a 

significant increase in unitary product formation at 2 hours. This is similar to behavior 

others have observed [80]. 

 

 

Figure 6.4 All product results as detected with the MS for Mirkat 211 at various experimental lengths of 1, 

2, 4, 6 and 8 hours. Experiments were conducted at room temperature with a 0.04g catalyst loading and 278 

mW/cm2 incident irradiance. 

The two hour experiment was conducted twice to verify product results and 

increased unitary product formation at that time. This trend suggests a threshold 

concentration from which hydrocarbons and electrons are then available to oxidation or 

photoreforming [263, 264], or a set of subsequent reactions (Section 2.4). This could 

indicate any number of reaction mechanisms. Otherwise a steady state behavior would 

have been observed where unitary production would have leveled off and remained 

steady. For the purposes of investigating variation in time for optimum rate response, two 

hours has the best methane unitary product formation result. 
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6.5 Regime investigation through varying light intensity 

Two sets of experiment for varying only light intensity were conducted. Presented here 

are the three experiments that were conducted with a length of experiment of 2 hours and 

the catalyst loading was 0.04 g. To see the results from the other set of three experiments 

refer to appendix C. In the case presented here, light intensity ranged from 92.7-278 

mW/cm2 the results of the varied light intensity are shown in Figure 6.5 for all products 

detected. In Figure 6.5 the expected increase with increasing light intensity can be seen 

with the CH4 and C2 compounds, however the trend is not maintained as strongly with H2 

production.  

 

 

 

Figure 6.5 All MS detected products varying light intensity between 92.7, 185.3, and 278 mW/cm2. 

Experiments were conducted at room temperature for 2 hours with a catalyst loading of 0.04 g. 

 

The light intensity behavior is assessed for similarity to Herrman’s figure, as 

discussed in Chapter 2, and thus the methane results are analyzed more closely [96]. 

Either the relationship is proportional to irradiance, or proportional to the square root of 

light irradiation (to the power of ½). The relationship is between the reaction rate and the 

light intensity, however in this case, unitary production is used as an appropriate proxy 

for reaction rate. For irradiance ranging from 92.7-278 mW/cm2 the relationship found is 
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shown below in Figure 6.6 using a simple model of R=A(irr1/2). At these intensities in the 

relationship is demonstrated a proportionality to the square root of irradiance as shown in 

the fitted curve [92]. It is not quite a fit to the data as the error margins on the 278 irr data 

point do not encompass the model. This means that when it comes to the testing regimes 

(Table 6.1), that the light intensity is possibly within the range corresponding to catalyst 

kinetic performance regime, however further experimentation and data points would be 

necessary to ensure this were true.  

 

 

Figure 6.6 Methane production at varying light intensity between 92.7, 185.3, and 278 mW/cm2 with curve 

fit as a function of the square root of irradiance. Experiments were conducted at room temperature for 2 

hours with a catalyst loading of 0.04 g. A = 0.2499 and the error was 0.015. 

Further investigations at lower irradiance (Appendix C) were conducted at 6.2, 18.5 

and 30.9 irradiance mW/cm2, for one hour with 0.03 g photocatalyst loading for both the 

Mirkat and the AuTiO2 samples. However, a clear linear trend was not observed in the 

Mirkat case. Therefore, further irradiance investigation would need to be conducted to 

establish if Mirkat lower irradiance behavior aligns with expected behavior.  

 

6.6 Further results terminology exploration with Mirkat regime data 

To enable discussion of the dual term problem and observe the impact of the extended 

normalization within Mirkat results photonic yield and extended rate normalization were 



 

152 

calculated and presented here. The photonic yield adjusts the results from varying reaction 

length and irradiance. The extended normalization only adds additional information in 

terms of the experiments varying irradiance.  

6.6.1 Photonic yield and Mirkat results in terms of electrons and photons 

Relative to the design of experiments plots in Chapter 5, where the variables have 

individual plotted expressions, it is challenging to plot a three variable input to the 

photonic yield. This is because the length of the experiment and irradiance impact the 

incoming photons and the catalyst loading enabled multiple product observations for 

similar photonic input. To plot photonic yield results generated with three input variables, 

the photonic yield was plotted as a ratio of rates; the denominator for the x-axis and the 

numerator as the z-axis, therefore the product electrons/time by incident photons/time 

(Figure 6.7). The y-axis being photocatalyst loading. 

Considering first constant catalyst loading and varying incident photons the 

response to incident photons can be observed. Incoming photons increase the rate of 

product production up until roughly the 0.10 photons/sec point, at which a higher 

incoming photon rate does not increase product formation rate with results lowering and 

roughly plateauing at 0.15 photons/sec incident light. Then considering the catalyst 

loading varying with respect to a constant incident photon rate, it is also observable that 

the increase in photocatalytic loading increases the product electron rate. The summed 

carbon product results can be compared to the results of all carbon containing products 

(Figure 6.8), giving similar trends in behavior. 
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Figure 6.7 CH4 and summed carbon products photonic yield plotted by electron rate found at various photon 

rates, with catalyst loading and black error bars. Colored drop lines are provided to anchor the rate within 

the incident photon rate and catalyst loading; gray for the carbon products, and purple for CH4 results. 

 To compare the influence of including all the products with the CH4 results, Figure 

6.8 includes the photonic yield rates for all products summed. The widest uncertainty or 

change in results is displayed along the electrons and catalyst loading plane within the 

low irradiance conditions where the high hydrogen results make the blue drop line visible. 

Considering constant catalyst loading and varying incident photons the trends for CH4 

appear to hold for further products. The ability to observe hydrogen in Figure 6.8 is 

distinctly an observation of the larger photocatalytic reduction process, and not the CO2 

conversion alone. Most of the gains are minimal, but in the low photon rate case the 

hydrogen gains are substantial. The 0.02 g of photocatalyst loading case does appear to 

be an unusual response, particularly at the 0.05 incident photon rate, and at the 0.15 

incident photon rate line this 0.02g high result makes for a jagged pattern along the 

incident light rate for all products, but an increasing curve for carbon products as observed 

before (Figure 6.2, in terms of unitary product formation). It becomes clear that the 

additional catalyst increased the products, when considering constant incident photons 

and varying catalyst loading, because the phonic yield is not normalized for photocatalyst 

loading, therefore it is interesting to compare to Figure 6.1 of the unitary product 
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formation results for the detected products. This comparison is made however at 0.15 

incident photonic rate and varying loading from 0.01 to 0.08 g photocatalyst, and the 

trend is found generally to be the same. In terms of following the 0.04 g catalyst loading 

line there is a sense for the results given from varying the length of the reaction.  

 

 

Figure 6.8 Carbon products and all products photonic yield plotted by electron rate found at various photon 

rates, with catalyst loading and black error bars. The blue colored drop lines correspond to the green all 

products data, and grey the black carbon products data with many drop lines overlapping. 

 

 To compare the photonic yield from catalyst loading and varying time the 

photonic yield has also been plotted simply as a function of these varied variables. In the 

case of varying catalyst loading a linear behavior appears characterized by y = 0.016x, 

and a R2 value of 0.99895 as shown in Figure 6.9. This is distinctly different from the 

saturated behavior observed with unitary product formation or specific rate (µmol/gh) in 

section 6.3. And therefore, also highlights the dual term challenge. The extended 

normalization of the specific rate would not have the photonic perspective on the results 
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as the experimental conditions were constant and it would only proportionally shift the 

original unitary product formation result. 

 

Figure 6.9 The CH4 photonic yield results for varied catalyst loading between 0.01, 0.02, 0.04, and 0.08 g. 

Experiments were conducted at room temperature, for 4 hours with an incident light intensity of 278 

mW/cm2. 

 

 The photonic yield is plotted by varying reaction time in Figure 6.10. In this case, 

the behavior is rather similar to the unitary product formation results in Figure 6.4. The 

general trends line up with one exception of the one hour reaction time having a much 

higher photonic response than catalytic response. The photonic yield and catalytic unitary 

product formation rate are in alignment in their general trend, particularly at higher 

reaction times (which would also agree with the extended normalization that would be a 

proportional shift of the unitary product formation). 
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Figure 6.10 CH4 photonic yield varying reaction time for experiments conducted at room temperature with 

a 0.04g catalyst loading and 278 mW/cm2 irradiance. 

The photonic yield plotted by varying irradiance is presented in Figure 6.11. It 

shows decreasing product embodied electrons per increased photon flux. This signifies a 

larger penalty for increasing irradiance than unitary product formation results analysis in 

Figure 6.6.  

 



 

157 

 

Figure 6.11 Photonic yield CH4 results for the experiments with varying light irradiance, conducted with at 

room temperature, for 2 hours, with a catalyst loading of 0.04 g and irradiances of 92.7, 185.3, and 278 

mW/cm2. 

 Photonic yield results analysis has allowed a wider range of information to be 

processed together through the conversion of products into their respective electrons. It 

enables a system wide consideration of the data and makes it possible to compare low and 

high irradiance results across the variation in reaction length.  

6.6.2 Further normalization of Mirkat regime results 

As discussed in Chapter 3 normalization by volume of reactor, light intensity and the 

surface area of the incoming light on the catalyst and extended normalization can provide 

more information from a singular result. The extended normalization calculation for the 

varying experimental irradiance is plotted (Figure 6.12). 
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Figure 6.12 Extended normalization of results for varying light intensities, for the experiments conducted 

with at room temperature, for 2 hours, with a catalyst loading of 0.04g and irradiances of 92.7, 185.3, and 

278 mW/cm2. 

 In converting the result to the extended normalization the error is significant. 

When the irradiance energy input is considered within normalization of specific rate 

results, it is clear in Figure 6.12 that the additional energy is not furthering product 

formation, particularly in the case of CH4 production, however to be certain of this trend 

further experimental work would need to be conducted. To compare the photonic yield 

consider Figure 6.11 where the trend is almost identical. This behavior is also unlike that 

of the unitary product formation in Figure 6.7, with the square root of the irradiance being 

proportional to unitary product formation. Instead we are seeing this inverted trend which 

agrees with the decrease seen in photonic yield. 

The three cases of parameter variance showed different aspects of the extended rate 

normalization. With varying photocatalyst loading the extended normalization agreed 

with the unitary product formation response. In the experiments varying reaction length 

all 3 terms were in basic agreement in trends. Then in the case of varied irradiance the 

extended normalization was in agreement with the photonic yield trends. Thus, there was 

a balance in how the extended normalization analyzed results. This result is an argument 

that extended normalization could bridge the gap in normalizing the photocatalytic 

response across the dual terms. 
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6.7 Mirkat 211 Benchmarking Experimental Results and Analysis 

When considering the regime for these experiments, mass flow is constrained by diffusion 

as the experiments are conducted in batch. This means that for the reaction the mass 

transport is characterized by the  diffusion of H2O in CO2, which is 0.138 cm2/s [265]. 

Ranges of performance in terms of catalyst loading and light intensity were identified, 

with 0.04 g catalyst loading and above being saturated, and the light intensity in the square 

root range.   

The regime approach to photocatalytic experiments is straight forward. It is easy 

to get kinetic data by varying the initial concentration of reactants or the measurement 

from various times during the reaction process. The usefulness of the regime analysis and 

varying single experimental parameters is limited by the lack of data on the interaction 

effects. To investigate the interaction effects with the single variable variance, it would 

be necessary to intentionally study two factors together as demonstrated by Delavari and 

Amin, particularly in the supplementary materials [208]. In this case, they present Fig. 

S6. giving the photocatalyst loading and time and find no interaction effect for CO2 

conversion. Further experiments such as these exploring a wider range of parameters 

would enable interaction effects to be investigated. However this would require more 

experiments than a DoE. 

The maximum results found for the unitary product formation, photonic yield, and 

extended rate normalization are given for CH4 and C products in Table 6.2. There is an 

agreement on 0.04 g photocatalyst loading for maximum results. And in general an 

agreement amongst the results terms for a lower reaction length, one or two hours. The 

irradiance range shift in maximum results is the most notable. For CH4 products the 

Mirkat results agree in terms of photonic yield and extended normalization. For the sum 

of all carbon products the extended normalization does not agree with the dual terms. This 

could be because the second highest photonic yield for the sum of carbon products 

occurred in the conditions the extended normalization is highest for. The extended rate 

normalization appears to be slightly more strongly weighted to irradiance efficiency than 

even the photon metric.  
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Table 6.2 Maximum results for the three results terms for the Mirkat experiments and the corresponding 

reaction conditions. 

Product Catalyst 

loading (g) 

Irradiance 

(mW/cm2) 

Reaction 

Length (hours) 

Maximum 

result 

CH4 (µmol/gh) 0.04 278 2 3.998 

CH4 photonic 

yield 

0.04 92.7 2 0.0088 

CH4 extended 

normalization 

(µmole/ghLW) 

0.04 92.7 2 10.09 

C products 

(µmol/gh) 

0.04 278 1 13.25 

Carbon 

products 

photonic yield 

 

0.04 278 1 0.0256 

C products 

extended 

normalization 

(µmole/ghLW) 

0.04 92.7 2 32.27 

 

In the case of comparing trends across the single variable variance experiments, 

the dual terms were in disagreement, twice where the extended rate normalization was 

balanced, matching the catalytic trend in varying photocatalyst loading, and then 

matching the photonic trend with varied irradiance. Then with varied reaction time the 

three terms were in agreement. Thus the extended normalization may be an appropriate 

bridge between the dual terms with unclear overall implications due to the significant 

error.                              
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7. CHAPTER 7 – GOLD DOPED TITANUIM DIOXIDE AND 

MIRKAT PERFORMANCE; DISCUSSION OF APPLICABILITY 

AND PROCEDURE LIMITATIONS 

 

This chapter builds upon the previous literature and results comparisons, discussing the 

results from the AuTiO2 and Mirkat in relation to each other, thereby facilitating a 

quantification and comparison of the fuzziness of the benchmarking. The dual term 

challenge, and the appropriateness of the extended normalization are discussed in terms 

of figure of merit in Section 7.1. This is separated into Mikat results discussion (section 

7.1.1), AuTiO2 results discussion (section 7.1.2) and then a combined discussion (section 

7.1.3). Then the current benchmarking is quantified in Section 7.2. A wider discussion of 

experimental procedure in Section 7.3, is followed by a brief consideration of reaction 

rate in Section 7.4. The chapter concludes with Section 7.5 covering the main insights 

from the experimental work.  

7.1. Results applicability and terms 

In Chapter 3 there was a developing understanding of challenges with benchmarking. In 

particular, the challenge of the dual term problem and a possibility for a combined figure 

of merit. This was developed by reviewing the reporting of results (section 3.1), the 

recommended standardized terminology options (section 3.2), and by giving a fuller 

picture of what photoreduction within the experimental process looks like (section 3.3). 

This story of benchmarking terms, or figure of merit, ended with the acknowledgment of 

the dual term challenge, an explanation of what the terms mean, and presenting the option 

for extended rate normalization (section 3.4). Since that discussion, many results have 

been investigated. These included the benchmarking of P25, identical experimental 

conditions within literature and experimental results (Chapter 4), the design of 

experiments results of the Au doped TiO2 (Chapter 5), and the single variable variance 

Mirkat results inspired by proposed regimes that are intended to assist in considering 

intent before initiating experimental direction and parameters (Chapter 6). Here this dual 

term, or figure of merit, discussion is returned to in light of the experimental results 

gathered.  
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7.1.1 Mirkat results considering figure of merit 

The experimental conditions range for the Mirkat testing was 0.01 to 0.08 grams of 

photocatalyst, 6.2 to 278 mW/cm2 irradiance, and 1 to 8 hours. The highest and lowest 

unitary product formation for methane: 3.998 µmole/gh was obtained at 0.04 g catalyst 

loading, 278 mW/cm2 and 2 hours; and 0.00885 µmole/gh was obtained at 0.03 g catalyst 

loading, 6.2 mW/cm2 and 1 hour respectively. The optimum unitary product formation 

conditions are at a much higher irradiance than the optimum photonic yield conditions.  

The highest and lowest photonic yield for CH4; 0.0088 electrons/photon was obtained at 

0.04 g catalyst loading, 92.7 mW/cm2 and 2 hours; and 0.00009 electrons/photon was 

obtained at 0.02 g catalyst loading, 185 mW/cm2 and 2 hours respectively. The photonic 

yield maximum and minimum results align with those of the extended normalization. The 

highest and lowest extended normalization results for CH4; 10.09 µmole/ghLW were 

obtained at 0.04g catalyst loading, 92.7 mW/cm2 and 2 hours; and 0.207 µmole/ghLW 

was obtained at 0.02 g catalyst loading, 185 mW/cm2 and 2 hours. This shows the 

extended normalization term agreeing with photonic yield conclusions. The maximum 

and minimum results from the Mirkat results terms are tabulated below for clarity (Table 

7.1). When the results term ranges, as evidence of the extended normalization agreeing 

with photonic yield are considered, the extended normalization appears as a photon 

dependent figure of merit in results conclusions. 

 

Table 7.1 Presents the maximum and minimum for all results from Mirkat experiments. 

 Catalyst 

loading (g) 

Irradiance 

(mW/cm2) 

Reaction 

Length (hours) 

Result 

Maximum CH4 

(µmol/gh) 

0.04 278 2 3.998 

Minimum CH4 

(µmol/gh) 

0.03 6.2 1 0.00885 

Maximum CH4 

photonic yield 

0.04 92.7 2 0.0088 

Minimum CH4 

photonic yield 

0.02 185 2 0.00009 
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 Catalyst 

loading (g) 

Irradiance 

(mW/cm2) 

Reaction 

Length (hours) 

Result 

Maximum CH4 

extended 

normalization 

(µmole/ghmLmW) 

0.04 92.7 2 10.09 

Minimum CH4 

extended 

normalization 

(µmole/ghmLmW) 

0.02 185 2 0.207 

 

 

In this case, the modeled mopt of 0.04 g photocatalytic loading and the 2 hour 

optimum length of experiment do give the highest unitary product formation result. The 

highest unitary product formation result comes from the conditions of being proportional 

the square root of irradiance and the mass of catalyst loading being saturated. 

Interestingly, the photonic yield that is highest does come from the linear range of 

irradiance, however it also comes from the mass saturated range of catalyst loading, and 

therefore could potentially be improved, however the photonic performance metric does 

not encompasses photocatalytic loading.  

The Mikat work covered the widest ranges for the experimental work. Even as it 

appears that the extended normalization may make an appropriate figure of merit for 

benchmarking, it remains true that the results also argue for separate terms for separate 

experimental regimes, as they highlight different conclusions, as exemplified by separate 

trends in Chapter 6 results. 

7.1.2 Gold doped Titanium Dioxide results considering figure of merit 

The experimental conditions range for the AuTiO2 testing was 0.02 to 0.04 g of 

photocatalyst, 6.2 to 241 mW/cm2 irradiance, and 1 to 3 hours. The maximum and 

minimum of all the results terms with their corresponding reaction conditions are 

tabulated. As can be seen in Table 7.2 the highest and lowest unitary product formation 

for methane: 0.7503 µmole/gh was obtained at 0.02 g catalyst loading, 62 mW/cm2 and 

1 hour; and 0.0011 µmole/gh was obtained at 0.04 g catalyst loading, 62 mW/cm2 and 3 

hours. Relative to the Mirkat CH4 unitary product formation results this range is smaller 

and shows a much clearer penalty of additional photocatalyst loading and time. The 
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highest and lowest photonic yield for CH4: 0.0039 electrons/photon was obtained at 0.02 

g catalyst loading, 62 mW/cm2 and 1 hour; and 0.000004 electrons/photon was obtained 

at 0.04 g catalyst loading, 62 mW/cm2 and 3 hours (the same conditions for the high and 

low unitary product formation). The highest and lowest extended normalization results 

for CH4: 4.6x10-5 µmole/ghmLmW was obtained at 0.02 g catalyst loading, 62 mW/cm2 

and 1 hour; and 6.9x10-9 µmole/ghmLmW was obtained at 0.04g catalyst loading, 62 

mW/cm2 and 3 hours. Again the conditions are the same as each other showing dual term 

agreement. This is uniquely unified relative to the Mirkat results that show a dual term 

problem where the unitary product formation and the photonic yield highest output results 

do not align.  

 

Table 7.2 Presents the maximum and minimum for all results from Au TiO2 experiments. 

 Catalyst 

loading (g) 

Irradiance 

(mW/cm2) 

Reaction 

Length (hours) 

Result 

Maximum CH4 

(µmol/gh) 

0.02 62 1 0.7503 

Minimum CH4 

(µmol/gh) 

0.04 62 3 0.0011 

Maximum CH4 

photonic yield 

0.02 62 1 0.0039 

Minimum CH4 

photonic yield 

0.04 62 3 4x10-6 

Maximum CH4 

extended 

normalization 

(µmole/ghLW) 

0.02 62 1 4.66 

Minimum CH4 

extended 

normalization 

(µmole/ghLW) 

0.04 62 3 0.006 

 

Based on significant interaction and main effects plots from the AuTiO2 DoE 

experiments in Chapter 5, the extended normalization appeared to be able to cover the 

same main effects in the three factor DoE considering CH4 results. This was a smaller 
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range in irradiance had more agreement between the results terms as they all shared main 

effects. With the two factor DoE the wider irradiance range the CH4 extended 

normalization results aligned with the photonic yield. However with the summed products 

the extended normalization model was confounded and no significant effects were 

present. Therefore, as a figure of merit, the extended normalization is observed to be 

usually appropriate, however occasionally emphasizing other conclusions. 

 Because the range of experimental work for the AuTiO2 was smaller, there was 

not as noticeable variation in the results based on different terms. The DoE also does not 

facilitate regime analysis. It was observable that there are interaction affect to be 

investigated within the CO2 photoreduction process, namely between irradiance and 

reaction length, and irradiance with photocatalyst loading. 

7.1.3 Performance and Characterization, exploring the material surface and the 

performance of Mirkat and AuTiO2  

Considering the Mirkat and AuTiO2 results all together, the dual term challenge is visible 

as the catalytic and photonic aspects of the process are characterized differently. In many 

of these cases the extended rate normalization was able to incorporate further information 

so as to bridge the terms, showing both catalytic and photonic analysis trends. Do to the 

limits of the analysis the extended rate normalization is recommended for further 

investigation as a possible figure of merit for the CO2 photoreduction process.  

 To compare the performance of the samples relative to each other based on their 

physical properties discussion now turns to investigating their performance relative to 

their characterization. As both samples were anatase and experiments were conducted 

with the same illuminated surface area the substantial shifts between these materials are 

mainly through the specific surface area and the Au doping. In this case, the results are 

normalized for the specific surface area of the photocatalyst (Table 7.3). It is clear that a 

substantial portion of the performance of increase of the Mirkat sample over the Au TiO2 

sample is due to the almost twice as great specific surface area of Mirkat. The further 

difference in the results for CH4 is likely due to the increased hydrophilicity of Au TiO2 

observed by FTIR as discussed elsewhere [235]. 
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Table 7.3 Specific surface area normalized results for Mirkat and Au TiO2 samples and their maximum 

unitary product formation, photonic yield, and extended normalization results. 

 
 CH4 

(µmol/gh) 

 CH4 

(µmol/hm2) 

CH4 

photonic 

yield 

CH4 

photonic 

yield by 

surface 

area of the 

sample (m-

2) 

CH4 extended 

normalization 

(µmole/ghmLmW) 

CH4 extended 

normalization 

including specific 

surface area 

(µmole/hmLmWm2) 

Mirkat 3.998 0.0184 0.0088 0.0010 10.09 0.0465 

Au 

TiO2 

0.7503 0.0068 0.0039 0.0009 4.66 0.0424 

 

 It is important to remember that the variation in the unitary product formation 

comes both from reaction conditions and materials variation. As the photonic yield and 

the extended normalization incorporate more of the experimental conditions in the 

quantification, the results differences observed can be most attributable to the materials 

modifications. It may be more clear to consider Table 7.4 giving the unitary product 

formation results with the experimental conditions pointing out the substantially higher 

irradiance utilized and higher proportion of photocatalyst and reaction time. It becomes 

clear the Au doping generates only a small shift in the performance overall. 

 

Table 7.4 Maximum CH4 specific surface area normalized unitary product formation results for Mirkat and 

Au TiO2 samples with experimental conditions. 

 
Catalyst 

loading 

(g) 

Irradiance 

(mW/cm2) 

Reaction 

Length 

(hours) 

 CH4 

(µmol/gh) 

 CH4 (µmol/hm2) 

Mirkat 0.04 278 2 3.998 0.018423963 

Au TiO2 0.02 62 1 0.7503 0.006820909 

 

  

7.2 Benchmarking quantified from experimental results and literature comparisons 

Current benchmarking will be assessed through comparing the literature variations with 

the experimental variations explored in this thesis. This will be done considering P25 as 

representative of literature ranges and the variation due to experimental parameters and 
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reactor geometries. The experimental results for Mirkat and AuTiO2 represent variation 

due to experimental parameters. And the literature results ranges in Au/TiO2 based 

materials encompass the experimental parameters and reactor geometries and materials 

modifications variation. 

As discussed in Chapter 4, P25 is demonstrated to have a “fuzzy” benchmark 

(0.019 to 1.106 µmole/gh of CH4) due to the variance in experimental setups and reaction 

conditions. The Au range from literature is 0.18-58.47 mole/gh of CH4 quantifying both 

the variation between experimental work and the materials modifications. This however 

was of limited insight across the four P25 to Au samples gain examples avalible (Chapter 

4, section 4.5). The Mirkat unitary product formation results range of 0.00885-3.998 and 

AuTiO2 range of 0.0011-0.7503 µmole/gh of CH4, are based in varying reaction 

parameters. The range of Mirkat results is larger than the P25 range by more than double. 

Mirkat results are also well above the 1 µmole/gh threshold of significance [68]. The limit 

of P25 as a benchmark appears clear, irrespective of if only the best P25 results are being 

used, and therefore shrinking the results range. According to this comparison Mirkat has 

a wider ability or range of performance to represent the experimental variation than P25 

and may be able to be used to scale performance against modifications more effectively. 

For the Au samples the literature range is wider at 103 and the experimental range 

observed is smaller at 102. This could be accounted for as variation from materials 

modification. The suggestion from the experimental results is that the materials perform 

differently within the same reactor system based on experimental parameters. And this 

should be investigated more systematically.  

Just based on reactor conditions the relative performance of materials can change. 

The initial experimental comparison from 0.02 grams of catalyst loading, 185 mW/cm2 

and a 2 hour reaction time the results of the µmole/gh of CH4 results for Mirkat and 

AuTiO2 were 0.0995 and 0.5013 respectively (Ch. 4). This can be compared to the Mirkat 

result at 0.04 g photocatalyst loading, 185 mW/cm2 irradiance and 2 hours giving 3.5 

µmole/gh of CH4 relative to the 0.1117 or 0.076 µmol/gh for the 0.04 g catalyst loading, 

185 irradiance and 3 or 1 hour reaction time. In this case, the observed performance has 

shifted with the Mirkat outperforming the Au doped catalyst. Therefore, the experimental 

parameters can be found to alter the benchmarking conclusion, even when all else is 

equal. 

This then becomes impetus to be clear about the benchmarking conditions and use 

options such as the standardized conditions reactor performance (Table 6.1) regime to 

identify a common goal in the benchmarking requirement, such as solar light utilization 
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to drive the significance of the results. Another option is to utilize optimization and a 

commercial benchmark to isolate peak performance. 

 

7.3 Experimental procedure and the regime and design of experiment tools 

A preferable approach to further experimental work would initiate experiments with 

regime testing. This regime testing would then be followed by DoE work in specific 

ranges of behavior to explore interaction effects. One particular delineator would be the 

linear and square root ranges of irradiance. If these ranges were identified and then used 

to formulate a DoE the significance of the DoE insights would be improved. Particularly 

if a considering a model based DoE, allowing for the optimization and interaction effects 

in a regime space to be clarified and not conflated. 

The complexity of light as a parameter in a reaction is clear from the discussion 

in Chapter 3, and remains an important consideration.  In this thesis, work was constrained 

to 365 nm as discussed in Chapter 4. Therefore, considering results in terms of band gap 

energy relative to utilized photons was not appropriate. The quantum efficiency relative 

to the band gap provides an assessment of the effectiveness of any band gap variations. 

However, if experiments are conducted with a range of wavelengths then reactants and 

products could be assessed for if they directly absorb those wavelength energies enabling 

photoreforming. 

In Chapter 6, section 6.1.2, the choice of what to optimize first was presented as 

part of regime testing optimizing first for irradiance then mass. However, the interplay of 

irradiance and catalyst loading are not fully explored yet. In trying to simplify the testing 

it would be nice to rely on a parameter like the optimum mass of catalyst and to use it in 

all experiments. To enable this it is necessary to know if the optimum mass is irradiation 

dependent. To visualize this comparison Figure 7.1 presents a singular optimum mass to 

the left, and a varying optimum photocatalyst mass loading to the right. Currently it is 

unknown which is the case, and it could possibly be explored for multiple photocatalysts 

to also observe if it is material dependent, before definitive agreement is found. 
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Figure 7.1 Possible challenges to optimizing the mass of a material in a photocatalytic reactor includes the 

consideration of optimum mass as irradiation dependent. Left drawing depicts varying irradiation (a, b and 

c) has no effect on optimum mass of catalyst used. Right drawing depicts optimum masses for specific 

irradiation (d,e and f). 

For the experimental work presented the main goal was to enable a benchmarking 

discussion. Therefore, this possible functional dependence of mopt, was not explored 

further. However, it may be pertinent depending on the experimental plan.  

7.4 Considering reaction rate 

Much of this work utilizes unitary product formation for results analysis and 

benchmarking discussion. It is accepted that a normalized rate is appropriate for 

benchmarking. However, for reactor scale up research into characterizing the CO2 

photoreduction process with a rate equation would be more likely. There are some current 

proposals as to what are the important factors to include in the reaction rate 

characterization. For example, de Lasa et al. propose the following equation, reproduced 

here as Equation 7.1.  When looking at the equation proposed by de Lasa et al., reaction 

rate in photoconversion they indicate three variables upon which it depends [215]: 

𝑟𝑖,𝑖𝑛
′′′ = 𝑓1(𝐶𝑖,𝑖𝑛)𝑓2(𝐶𝐶)𝑓3(𝑃𝑎) Equation 7.1 

 

In this equation 𝑟𝑖,𝑖𝑛
′′′  is the overall apparent initial reaction rate,  𝑓1(𝐶𝑖,𝑖𝑛) is the 

function of the initial concentration of the chemical species, 𝑓2(𝐶𝐶) is the function of the 

catalyst concentration, and 𝑓3(𝑃𝑎) is the function of the rate of absorbed photons 

indicating information about the catalyst photon performance.   

When considering this equation in terms of the results gathered it can be observed 

that the light intensity most likely is the single most important function and contributor 

to the reaction rate, modified both by catalyst loading and photon absorption. This was 
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particularly clear with the DoE results highlighting the interactions of irradiance with 

reaction time, and irradiance with photocatalyst loading. 

 Interactions integrated into the function require that it be rewritten as in Equation 

7.2: 

𝑟 = 𝑓(𝐶)(𝑚)(𝐼) Equation 7.2 

 

C stands for concentration of reactants, m is the mass of the catalyst and I, 

irradiance. Unfortunately, at this stage how to formulate the equation is not obvious from 

this thesis work. Instead, the DoE has highlighted that interactions are occurring. 

Hopefully this benchmarking discussion has been a small stepping stone to enable a 

stronger rate discussion for gas phase CO2 photoreduction in particular. 

 

7.5 Insights from experimental work  

Mirkat is a possible future commercial benchmark for CO2 photoreduction experiments 

as the performance clearly adjusts to reaction conditions and has significant results. The 

dual term challenge has been observed with different trends and significant factors 

highlighted by unitary product formation compared to photonic yield. The extended 

normalization acts as a unique bridge between the terms highlighting aspects of both, and 

in some cases forming independent conclusions. In retrospect, regime testing insights, 

followed by DoE analysis would be a beneficial method to approach a singular 

photocatalytic material. Caution is suggested when approaching optimization of 

photocatalyst loading in gas phase CO2 photoreduction as the optimum mass may be 

irradiance dependent. And this work suggests a rate function of multiple interacting 

variables. 
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8. CHAPTER 8 – CONCLUSIONS AND FUTURE WORK 

 

This thesis identifies the parameters influencing CO2 photoreduction results, 

contextualizes the results reported and resolves issues in benchmarking through a testing 

regime framework, proposed results term, and insights from experimental procedure. 

Conclusions in Section 8.1 include what is necessary for benchmarking (section 8.1.1), 

major conclusions from experimental work (section 8.1.2), and finally the conclusions 

from the dual term challenge and benchmarking quantification (section 8.1.3). Future 

work is proposed from conceptual discussions of how best to benchmark materials 

modifications, and for specific experimental rig improvements for this unique set up 

(section 8.2).  

8.1. Conclusions 

The complexity of the CO2 photoreduction process and unique experimental set ups may 

mean that there will be limited benchmarking, however, thorough clear reporting the 

ability to assess causes of performance improvements will improve. What this thesis has 

presented is a myriad of ways to engage more thoughtfully with the CO2 photoreduction 

testing procedure to embrace and acknowledge more fully the system parameters and 

conditions that are relevant to producing research that facilitates benchmarking. Thus the 

first objective to understand and assess current practice has led to a description of what 

benchmarking, or really reporting, need to entail going forward.  

The second objective, to quantify current benchmarking, has led to experimental work 

focused on varying parameters which are incorporated in important quantifications of the 

photoreduction process, such as irradiance and reaction time. This experimental work has 

included the DoE analysis, and single variable variance. This has culminated in regime 

proposals for testing, and the comparisons of the range of results in literature with that 

which can be generated in one lab for the purpose of proposing a new benchmark material. 

8.1.1 What Benchmarking entails going forward 

A main conclusion has been that more needs to be disclosed about the experimental work 

for benchmarking to occur. It is essential to consider and report the material 

characterization, the reactor rig geometries, and the experimental parameters for CO2 

photoreduction. To review what this entails, a list of the considerations for the 

experimental parameters and reactor geometry are given in Chapter 3, section 3.6.  
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It can be agreed that benchmarking is a major concern for CO2 photoreduction as 

improvements to the reactor systems, photocatalytic materials, and even ideal reaction 

parameters are unclear. Thus, for materials it is important to link modifications and 

outcomes, ensuring that appropriate care is taken to explore the photocatalytic reaction. 

Experimental exploration will allow reaction mechanisms to be more widely understood, 

and requires an acknowledgment of the detection limitations on the products observed. 

Reaction parameters been proven to have a wider influence through producing a wider 

range of results with Mirkat than P25 results observed in the literature. Experimental 

parameters were also was used to alter which material is observed to have higher results 

between Mirkat and Au TiO2 experimentally. Thus Mirkat may prove to be a more 

significant benchmark with the ability to encompasses variations in experimental 

conditions and set up. 

As well as considering the surface photocatalytic reaction, to develop 

experimental tests on CO2 photoreduction other physical processes need to be considered 

as they happen at the same time in the photocatalytic system (i.e. mass and light transfer). 

Consideration of regimes testing can assist with this approach. With comprehensive 

disclosure there is an opportunity to optimize the conditions and the photocatalytic 

materials. This is because using the reaction rate allows for the influence of experimental 

conditions and materials modifications to be explored and ‘benchmarking’ will improve 

in meaning.  

8.1.2. Testing Regimes and multivariable work conclusions from experimental work 

In many ways, the DoE results prove that the work has only begun in understanding the 

interaction of the reaction parameters. The main interactions observed were reaction time 

with irradiance, and photocatalyst loading with irradiance. This would be interesting to 

investigate with multiple materials, particularly if there is observed to be a stronger 

material dependence on optimum performance. The factors varied can be ranked based 

on level of significance to the DoE analysis. Time was found to be the most significant 

factor, followed by irradiance, and lastly photocatalyst loading. The rankings signify a 

large effect in using batch reactions, an appropriate acknowledgement of the essential 

nature of irradiance to the reaction, and the relationship of irradiance with photocatalyst 

loading. 

 The regimes are provided to enable discussion and hopefully wider collaboration 

from incorporating key concepts from photovoltaics and catalysis. In CO2 utilization, 

there are many related fields and the insights can be more widely articulated and shared 
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if appropriate terminology, such as the recommended terms (section 3.2), are worked 

with. This use of regimes and recommended terminology would assist in overcoming the 

current limitations of benchmarking. 

8.1.3. Dual term challenge and quantified benchmarking 

There is also the challenge of results terms. It is clear from this work that experimental 

work needs to be designed to enable both the photonic and catalytic performance by both 

varying the rate, either by varying reaction length or initial concentration in a batch 

reaction, and by also varying photons provided through varying irradiance. Even as 

various terms are appropriate for various experimental conditions, it is also a challenge 

for benchmarking to find a singular figure of merit. Arguably a possible candidate is the 

extended normalization of unitary product formation or specific rate (Section 3.1.1). This 

term incorporates reactor geometry in the form of reactor volume and illuminated surface 

area, and reaction parameters such as irradiance and catalyst loading. It has been found 

to hold a middle ground with the Mirkat single variable variance experiments.  The 

extended normalization term agreed with both the photon and catalytic quantification 

when reaction length was varied. And then the observed trends sided with unitary product 

formation in relation to varying photocatalyst loading, and then with photonic yield when 

irradiance was varied. In terms of the DoE analysis the interactions were more nuanced 

with more trends aligning with photonic yield. However, in the three factor DoE 

observing CH4 results the main effects were of the same trends for all three terms. Due to 

the extent to which the terms were bridged by the further normalization and the 

opportunity to incorporate important reaction parameters into the result the extended rate 

normalization is recommended for further investigation as to its appropriateness as a 

figure of merit for CO2 photoreduction benchmarking. 

8.2. Future Work 

Here recommendations for future work are presented, considering both larger parameters 

to be investigated and more effective testing utilizing the rig and set up from this thesis 

work: 

 Rig improvements for future work include: 

 Incident light angle would be improved by ensuring it is perpendicular to 

the photocatalytic surface. This could possibly be achieved by catalyst 

loading on membrane or mesh. 

 Control of CO2 concentration with adding to inlet gas inert carrier gas; The 

recommendation for the current set up is to attach He to a mass flow 
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controller in tandem with the CO2 coming from the bubbler, at the inlet of 

the reactor. 

 Analysis Improvements to track the CO2 with the more analytically sensitive SEM 

detector to enable analysis of CO2 reduction through conversion using 22 mass 

per charge peek (more detail in Appendix E). 

 Continuous reactions would shorten the time necessary to assess kinetics. With a 

flow based reaction system, it would be practical to integrate model based DoE 

analysis that can quantify the various influences on reaction rate. Considering the 

number of factors necessary to investigate and marching it to the appropriate DoE 

design is important and challenging. Jones, Schoen and Montgomery discuss the 

options for four to six two-level factor options [266].  

 Investigate if the optimum mass loading for gas phase reactors is irradiance 

dependent. 

 Utilize the regime testing procedure to fully quantify a reactor system and 

photocatalyst. Then employ the DoE experimental work in specific ranges. The 

results can then be used to identify optimum results within appropriate regimes, 

thereby verifying proposed regimes (Table 6.1). Use results to explore the 

extended rate normalization.  

 Comprehensively report findings using Section 3.5 as a checklist.  
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A. APPENDIX A: Supporting table from Chapter 3  

Table A.1 presents a sample of typical product yield results from articles testing 

modified TiO2 catalysts for CO2 photocatalytic reduction. The product formation results 

illustrate the variation in units, as well as covering a wide range of values. As can be seen 

in Table A.1, the product yield results are not normalized for the experimental conditions. 

For example, the results cannot accommodate the use of variations in participant species, 

distinction in light source, and change of reactor type.  

 

Table A.1 Summary of representative articles on CO2 photocatalytic reduction emphasizing different 

reporting of product yield results. 

 

 

 

 

Reference Rector Catalyst 
Modifications 

Photocatalyst Light source Reductant Product 
analysis 

Product Yield 
reported 

[149] gas phase 

on glass 

microfib-

er filter 

metal doping, 

silver 

TiO2, Ag Philips 

Actinic BL 

TL 8W 

water gas 

chromatograph 

with thermal 

conductivity 

detector, flame 

ionization 

detector and 

methanizer 

~98µmole/gcat of 

hydrogen, ~10-40 

µmole/gcat 

carbon monoxide, 

~10-20 

µmole/gcat of all 

hydrocarbons 

tracking methane, 

ethane, ethene, 

propane, propene, 

butane, butene, 

and methanol 

[194] liquid 

phase twin 

reactors 

two catalysts 

metal 

loading, 

platinum 

Pt/CuAlGaO4 

for CO2 

reduction and 

Pt/SrTiO3:Rh 

for Hydrogen 

(H2) 

generation 

300 W 

Xenon lamp 

water gas 

chromatograph 

with thermal 

conductivity 

detector, flame 

ionization 

detector and 

methanizer 

1-2.5 µmole/g of 

hydrogen and 17-

22 µmole/g of 

methanol plotted 

against time in 

hours 

[152] gas phase 

on glass 

fiber 

metal 

incorporation

, silver 

Ag/TiO2 150 W solar 

simulator 

Oriel 

water and 

methanol 

gas 

chromatograph 

with thermal 

conductivity 

detector and 

flame 

ionization 

detector 

1500 µmole/(g*h) 

of hydrogen, 110-

140  µmole/(g*h) 

of carbon 

monoxide, and 5-

10  µmole/(g*h) 

of methane 

 

[132] gas phase 

catalyst 

support 

unspecif-

ied 

carbon 

nanotubes 

grown on 

surface 

carbon 

nanotubes on 

Ni/TiO2 

75 W visible 

daylight 

lamp 

water gas 

chromatograph 

with flame 

ionization 

detector 

0.1-0.145  

µmole/(g*h) of 

methane plotted 

against time in 

hours 
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Reference Rector Catalyst 
Modifications 

Photocatalyst Light source Reductant Product 
analysis 

Product Yield 
reported 

[145] gas phase 

on 

monolith 

metal doping, 

indium 

In/TiO2 220W 

mercury UV 

lamp 

water gas 

chromatograph 

with thermal 

conductivity 

detector and 

flame 

ionization 

detector 

 

100-1150  

µmole/g of carbon 

monoxide and 

150-325 µmole/g 

of methane 

[129] gas phase 

on 

stainless 

steel 

composite mesoporous 

CeO-TiO2 

300 W 

Xenon lamp 

water gas 

chromatograph 

40-70 mmole/g of 

carbon monoxide 

and 9-11 mmole/g 

of methane 

 

[148] gas phase 

on Teflon 

holder 

composite MgO/Pt-TiO2 100 W 

Xenon lamp 

water gas 

chromatograph 

with flame 

ionization 

detector 

 

0.25-0.4 µmole of 

carbon monoxide 

and 1.0-2.2 µmole 

of methane 

[151] gas phase 

on glass 

reactor 

crystal facet 

surface 

control 

anatase TiO2 

nanosheets 

with 95% 

{100} facets 

300 W 

Xenon lamp 

water gas 

chromatograph 

with flame 

ionization 

detector and 

methanizer 

2250 µmole of 

hydrogen and 35 

ppm/g of methane 

[147] gas phase 

on glass-

fiber filter 

bicrystalline 

phase 

anatase-

brookite TiO2 

150 W solar 

simulator 

Oriel 

water gas 

chromatograph 

with thermal 

conductivity 

detector and 

flame 

ionization 

detector 

0.075-0.22 

µmole/h of carbon 

monoxide 
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B. APPENDIX B: Band Gap Energy Calculations  

Band gap energy was utilized to assess the aging of samples and has been included in the 

appendix due to experimental work utilizing only the 365 nm wavelength and, therefore, 

the band gap energy is not directly relevant to results analysis. 

B.1 Ultraviolet-visible spectroscopy analysis 

Optical spectroscopy is based on the relationship of light with energy as it allows for 

the electronic states of molecules to be investigated based on electron excitation [267]. The 

Bohr-Einstein frequency relationship (∆E = hν, ν being the frequency of electromagnetic 

radiation) simplifies to E = hc/ λ (plank’s constant multiplied by the speed of light over 

wavelength). The ultraviolet and visible light spectrum is significant as a probe because it 

corresponds to the electronic states of atoms and molecules and enables chemical 

investigation [267]. 

Light can be reflected, absorbed or transmitted through a sample that is in solution, 

gas phase or crystal form. In the case of solid powder samples the reflected and absorbed 

light is analyzed as transmission is greatly reduced [268]. The ultraviolet and visible light 

radiation is directed at the sample in monochromatic increments while the resulting 

reflected light is detected. Due to the reflection, refraction and diffraction of light in a 

solid powder, heterogeneous catalyst are analyzed in this thesis as a densely packed 

powder and the Schuster-Kubelka-Munk radiative transfer theory is applied (also referred 

to as the Kubelka-Munk Function) [268].  

 

Kubelka-Munk Function [268]: 𝐹(𝑅∞) =  
(1−𝑅∞)2

2𝑅∞
=

𝐾

𝑆
  Equation B.1 

 

 Where 𝑅∞ is the diffuse reflection of a sample that satisfies the condition of being 

infinitely thick, and K is the apparent absorption, and S is the apparent scattering 

coefficient. 

UV-vis analysis was conducted with a Jasco V-670 Spectrometer, used previously 

[240]. This ISN-723 model contained a 60 mm integrating sphere, used a quarts plate 

sample holder, and was calibrated using a barium sulphate standard. Approximately 0.05 

g of sample was packed into the sample holder, compressed against the quarts plate 

window. Analysis was taken with the accompanying manufacturers software. 

Analysis of the UV-vis data were conducted utilizing the Kubelka-Munk function 

for a new calculation of band-gap energy. Previously the intersection of the main trend 

lines was used [240]. With the Kubelka-Munk function (equation B.1) the procedure is 



 

178 

instead to find the intersection of the main trend line with the light wavelength (x) axis. 

Using the Bohr-Einstein relationship the band gap energy can be calculated from: Eg = 

1240/λ, energy in eV at a particular wavelength in nm.  

B.2 The calculation of band gap energy for a photocatalyst 

UV-vis analysis is important as decreasing the band-gap of a catalyst is a key way 

to improve the efficiency of a photocatalyst (as discussed in section 2.5.2). The 

assumption is that by increasing the range of wavelengths of light that promote an electron 

to the CB the photocatalytic performance will improve. This is, of course, if the VB and 

the CB are still sufficiently oxidizing or reductive, respectively. 

There are two types of band-gap energy discussed in the literature and a small bit 

of confusion around energy gaps [269]. One occurs when the photon has enough energy 

to form an exciton, however, not enough to maintain the separation of the electron and 

hole pair. The band gap observed at this energy is called the optical band-gap energy. In 

the typical case, where the photon excites an electron to a higher energy state, the energy 

level necessary is called the electronic band-gap energy, also referred to as apparent band-

gap. This energy gap between the valence band and the conduction band is the electronic 

band-gap. 

Band-gap energy of a catalyst is often estimated using UV-vis spectrum data. 

These data are analyzed either by introducing trend lines with, or without, being 

mathematically transposed into a different plot to estimate band-gap energy.  Reflectance 

data is used in the Kubelka Munk function to approximate optical absorbance. To identify 

the band gap energy then the Kubelka Munk function, as an approximation of the 

absorption coefficient, is multiplied by the photon energy and then treated to a power 

function depending on the transition energy of the semiconductor. With the UV-vis 

spectrum five ways of interpreting the band-gap energy has been found [47, 270, 271].  

The first example using two trend lines has been used by Park and colleagues and 

[270] Zhang and associates [271]. This method uses the raw UV-vis data to estimate the 

band-gap energy. This method can be contrasted with a single trend line using raw data 

(called absorption extinction), translations done using the Tauc and Kubelka-Munk 

functions that also utilize a single trend line. (Kubelka-Munk function as shown above, 

equation B.1, is a function of reflectance.) Ohtani, however, is concerned as he points out 

that Tauc plots assume single transition mode of direct or indirect, which can be 

misleading in multicrystal phase materials [47]. With indirect semiconductors an 

exponent of ½ is used and with direct semiconductors an exponent of 2 is used. Another 
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method is to find the band gap from an inversion of diffuse reflectance measurements 

[272].  

Tauc plots have developed based on the relationship [273]:  

 

 (𝛼ℎ𝜈)𝑛 = 𝐴(ℎ𝜈 − 𝐸𝑔)    Equation B.2 

 

Where the absorption coefficient (α) multiplied by the by the energy of the photon 

calculated by Plank’s constant (h) and the photon frequency (ν) is then raised to n which 

depends on the energy transition of the band gap. This is equivalent to a proportionality 

constant multiplied by the photon energy minus the band gap energy (Eg). The Tauc 

method has recently been evaluated and recommendations given to improve the accuracy 

to around ±0.033 eV for single crystal phases [273]. 

A direct band gap semiconductor has the highest energy of the conduction band 

and the lowest energy state of the valance band in the same k space (or k vector in Figure 

B.1 below). Indirect semiconductors have different k values for the energy states for their 

electrons at the conduction and valance band. This can be seen in Figure B.1 by observing 

where the energy gap is lowest between the conduction and valence band, highlighted in 

yellow, and whether this energy maximum and minimum align in k space.  TiO2 in the 

anatase phase is an indirect semiconductor and rutile and brookite phases are direct [274]. 

For mixed crystal phases determining whether the sample has a direct or indirect band 

gap is a further challenge to using the Tauc method. 

 

Figure B.1 The calculated band structure of TiO2 in various crystal phases with regards to the Fermi level 

EF, from Reyes-Coronado et al. [274]. 
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Another method is to find the band gap from an inversion of diffuse reflectance 

measurements [272].  

Herrmann argues the need for establishing experimentally the band-gap energy by 

using monochromatic light and varying the wavelength with an experiment and no longer 

relying on calculations from UV-vis analysis. However, for this to be successful a rapid 

and simple reaction would be necessary [92]. An example of the kind of results curve 

Herrmann desires, giving band-gap energy of EG, is shown below in Figure B.2. With  

band-gap energy calculations discrepancies, this request for experimental determination 

appears justified. 

 

Figure B.2 Expected plot of the rate of reaction as a function of light irradiation wavelength, modified from 

Herrmann [96]. 

Toyoda and Tsuboya determined the band-gap energy using a photoacoustic 

signal [275]. They identified the scattering of TiO2 as a barrier in adequately assessing 

band-gap energy, and thus, used a signal less sensitive to scattering effects. However, the 

data are processed similarly as the UV-vis spectra in that results can vary due to human 

choice in which data points should be included.  

 The complexity surrounding band-gap energy brings to light a possible need for 

consensus on processes to identify band-gap energy. It is also a reminder of caution when 

comparing results. To remove this complexity this thesis works with a single wavelength, 

thereby not enabling discussion of the improvement of bandgap energy to the photon 

efficiency performance of the material. 

B.3 Ultraviolet and visible spectroscopy analysis and band gap energies of 

photocatalytic samples 

Because some of these samples were produced during the author’s MSc thesis, 

UV-vis analysis was conducted to verify that samples were not aging. Therefore, results 

are compared with previous work [240], indicating no variation in band-gap energy when 
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calculated with the identical line intersection method. The results of the band-gap energy 

calculations that were done with the same method as the master’s dissertation, by 

intersecting trend lines, are compared alongside calculations done using the KM function 

and a single trend line intersection. These results can be seen in Table B.1. The band-gap 

energies found using the KM function are all higher than the previous found band-gap 

energies reinforcing the concern over a need to standardize methods to enable 

comparisons across the literature. 

Table B.1 Band-gap energies of modified samples in eV. Error margin of ±0.05 eV. 

 
Calculated KM band 

gap energy 

Intersecting trend 

lines 

Repeated trend line 

calculation with new 

UV-vis 

Mirkat 211 3.34 - - 

Commercial 

Anatase TiO2 

3.27 3.19 3.15 

EISA 3.16 3.05 2.96 

EISA500H2 3.10 3.05 2.99 
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C. APPENDIX C: Tables of Results and supporting information 

C.1 Tables of experimental results presented in this thesis:  

 

Table C.1 Mirkat 211 results from experiments conducted at room temperature and 0.5 bar gauge pressure. 

Reaction parameters are given in bold. Photonic yield is calculated for the sum of all product electrons. 

Catalyst 

loading 

(g) 

Irradiance 

(mW/cm2) 

time 

(h) 

H2 

(µmole) 

CH4 

(µmole) 

C2 

(µmole) 

CH3OH 

(µmole) 

photonic 

yield 

0.01 278 4 0.197 0.03493 0.00903 - 0.00037 

0.02 278 4 1.036 0.08519 0.10146 0.12277 0.00223 

0.04 278 4 0.256 0.16965 0.13466 - 0.00165 

0.08 278 4 0.597 0.33505 0.31612 0.00452 0.00364 

0.03 6.2 1 0.488 0.00026 - - 0.33297 

0.03 18.5 1 1.799 0.00066 - - 0.41082 

0.03 31 1 0.058 0.00225 - - 0.00922 

0.04 92.7 2 0.441 0.19401 0.20875 0.00889 0.02840 

0.04 185.3 2 0.488 0.28099 0.24872 - 0.01766 

0.04 278 2 0.413 0.31984 0.29222 0.01109 0.01319 

0.04 278 1 0.183 0.09747 0.19268 0.04727 0.02838 

0.04 278 4 0.256 0.16964 0.13465 - 0.00165 

0.04 278 6 0.502 0.19746 0.18511 0.05657 0.00108 

0.04 278 8 0.475 0.28338 0.20928 - 0.00067 

0.02 185 2 0.080 0.00398 0.01235 - 0.00097 

 

Table C.2 AuTiO2 results from experiments conducted at room temperature and 0.5 bar gauge pressure. 

Reaction parameters are given in bold. Photonic yield is calculated for the sum of all product electrons. 

Catalyst 

loading 

(g) 

Irradiance 

(mW/cm2) 

time 

(h) 

H2 

(µmole) 

CH4 

(µmole) 

C2 

(µmole) 

CH3OH 

(µmole) 

photonic 

yield 

0.04 62 1 0.395 0.00942 0.00318 - 0.02958 

0.03 124 2 0.405 0.00199 0.00345 - 0.00354 
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0.04 62 3 0.122 0.00013 0.00106 - 0.00094 

0.02 185 3 0.705 0.00995 0.00225 - 0.00184 

0.04 185 3 0.155 0.01341 0.01009 0.00637 0.00070 

0.04 185 1 0.294 0.00305 0.01460 - 0.00897 

0.03 124 2 0.103 0.00053 0.00995 - 0.00140 

0.02 62 3 0.018 0.00531 0.00783 - 0.00065 

0.03 124 2 0.544 0.00571 0.00185 - 0.00491 

0.02 185 1 0.109 0.00531 0.00318 - 0.00341 

0.02 62 1 0.514 0.01261 0.00624 - 0.04099 

0.02 62 1 0.121 0.01500 0.00451 - 0.01418 

0.03 6 3 4.928 0.00212 - - 0.38557 

0.03 241 3 0.835 0.00823 - - 0.00168 

0.03 241 1 0.264 0.00916 - - 0.00526 

0.03 6 1 0.006 0.00013 - - 0.00513 

0.02 185 2 0.021 0.02005 0.00597 - 0.00078 

0.03 18.5 1 0.013 0.00172 0.00225 - 0.00763 

0.03 31 1 0.309 0.00358 0.00093 - 0.04502 

 

 

 

Table C.3 Commercial samples experimental results tabulated for experiments conducted at room 

temperature and 0.5 bar gauge pressure, with 0.02 g of catalyst, 185 mW/cm2 irradiation, for 2 hours. 

Photonic yield is calculated for the sum of all product electrons. 

Sample H2 

(µmole) 

CH4 

(µmole) 

C2 

(µmole) 

CH4 

(µmole/gh) 

CH4 

(
µ𝒎𝒐𝒍𝒆

𝒈∙𝒉∙𝒎𝑳∙𝒎𝑾
) 

photonic 

yield 

Commercial 

Anatase  

 

0.195 

 

0.00438 

 

0.00345 

 

0.1095 

 

2.28x10-7 

 

0.00777 

P25 8.704 0.00929 0.00039 0.2323 4.84x10-7 0.29124 

Mirkat 211 0.080 0.00398 0.01235 0.0995 2.07x10-7 0.00567 

 

Table C.4 Modified samples experimental results tabulated for experiments conducted at room temperature 

and 0.5 bar gauge pressure, with 0.02 g of catalyst, 185 mW/cm2 irradiation, for 2 hours. Photonic yield is 
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calculated for the sum of all product electrons. Numbers in parenthesis refer to sample number 

corresponding with previous work [240]. 

Sample H2 

(µmole) 

CH4 

(µmole) 

C2 

(µmole) 

CH3OH 

(µmole) 

CH4 

(µmole/gh) 

CH4 

(
µ𝒎𝒐𝒍𝒆

𝒈∙𝒉∙𝒎𝑳∙𝒎𝑾
) 

photonic 

yield 

Au TiO2 0.021 0.02005 0.00597 - 0.5013 1.04x10-6 0.00078 

EISA (6) 1.054 0.00185 0.00544 0.00411 0.0464  9.69x10-8 0.00630 

EISA500H2 

(21) 

1.775 0.01128 0.00571 - 0.2821 5.88x10-7 0.01057 

 

C.2 Low intensity results from Mirkat experimental work: 

Lower irradiance experiments using Mirkat with catalyst loading of 0.03 g, and 

length of experiment of 1 hour are shown in Figure C.1. Here the anticipated linear 

behavior of a proportional relationship is not obvious. While the behavior of the CH4 

results seen in Figure C.1 do not lend themselves to curve fitting of a linear or square root 

function, error margins (repeat experiments) could be investigated further to observe if a 

linear behavior would result. When a linear curve fit is calculated the R2 value is 0.8924, 

which is not a good fit, as the fit should be much closer to 1. 

 

Figure C.1 Methane production from Mirkat at varied intensities of 6.2, 18.5 and 30.9 mW/cm2. 

Experiments conducted at room temperature for 1 hour with 0.03 g catalyst.  

Low light intensity experiments were conducted using AuTiO2. These low intensity 

experiments were performed with a catalyst loading of 0.03 g, and length of experiment 
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of 1 hour. The results are shown below in Figure C.2. As opposed to the results for Mirkat 

from section 6.6.1, these results show a strongly linear behavior. Therefore, these results 

more obviously fit in to the proportional behavior for light intensity in the regime 

structure. 

 

Figure C.2 Low intensity methane production for AuTiO2 varying light intensity from 6.2, 18.5 and 30.9 

mW/cm2. Experiments conducted at room temperature with 0.03 g of catalyst, for 1 hour.   
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C.3 Mass Spectrometer MASsoft 7 Calibration and experimental test program 

instructions 

Calibration: 
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Experimental: 
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D. APPENDIX D: Design of experiments models and P values  
 

To accompany the plots in Chapter 6, here the models generated and their respective P 

values are included. Note that the p-values bigger than 0.05 were not included in the 

model.  

 

Three factor DoE 

CH4 (µmole/gh) response 

Coded Coefficients 

 

Term                                     Effect     Coef  SE Coef  T-Value  P-

Value   VIF 

Constant                                          0.1970   0.0314     6.28    

0.002 

Loading (g)                             -0.1815  -0.0907   0.0314    -2.89    

0.034  1.00 

Irradiance  (mW/cm2)                    -0.0841  -0.0421   0.0314    -1.34    

0.238  1.00 

Reaction Time (h)                       -0.2103  -0.1051   0.0314    -3.35    

0.020  1.00 

Irradiance  (mW/cm2)*Reaction Time (h)   0.1782   0.0891   0.0314     2.84    

0.036  1.00 

Ct Pt                                            -0.1509   0.0600    -2.51    

0.054  1.00 

 

 

Regression Equation in Uncoded Units 

 

CH4 (μmole/gh) = 1.122 - 9.07 Loading (g) - 0.00358 Irradiance  (mW/cm2) 

- 0.2840 Reaction Time (h) 

+ 0.001449 Irradiance  (mW/cm2)*Reaction Time (h) - 0.1509 Ct Pt 

 

Three factor DoE 

CO2 from summed products (µmole/gh) response 

 

Coded Coefficients 

 

Term                               Effect     Coef  SE Coef  T-Value  P-Value   

VIF 

Constant                                    0.4913   0.0555     8.85    0.000 

Loading (g)                       -0.2324  -0.1162   0.0555    -2.09    0.090  

1.00 

Irradiance  (mW/cm2)              -0.0266  -0.0133   0.0555    -0.24    0.820  

1.00 

Reaction Time (h)                 -0.5378  -0.2689   0.0555    -4.85    0.005  

1.00 

Loading (g)*Irradiance  (mW/cm2)   0.3630   0.1815   0.0555     3.27    0.022  

1.00 

Ct Pt                                       -0.276    0.106    -2.60    0.049  

1.00 

 

 

Regression Equation in Uncoded Units 

 

CO2 products (μmole/gh) = 2.498 - 48.1 Loading (g) 

- 0.00907 Irradiance  (mW/cm2) 

                          - 0.2689 Reaction Time (h) + 0.2951 Loading (g) 

                          *Irradiance  (mW/cm2) - 0.276 Ct Pt 

 



 

189 

 

Three factor DoE 

CH4 photonic yield response 

 

Coded Coefficients 

 

Term                            Effect       Coef   SE Coef  T-Value  P-Value 

Constant                                  0.000860  0.000076    11.37    0.000 

Loading (g)                   -0.000287  -0.000143  0.000076    -1.90    0.116 

Irradiance  (mW/cm2)          -0.001240  -0.000620  0.000076    -8.19    0.000 

Reaction Time (h)             -0.001527  -0.000764  0.000076   -10.09    0.000 

Irradiance(mW/cm2)*Reaction Time(h) 0.001275   0.000637  0.000076    8.42    0.000 

Ct Pt                                    -0.000765  0.000145    -5.28    0.003 

 

Regression Equation in Uncoded Units 

 

CH4 photonic yield = 0.006622 - 0.01434 Loading (g) 

- 0.000031 Irradiance  (mW/cm2) - 0.002043 Reaction Time (h) 

+ 0.000010 Irradiance  (mW/cm2) *Reaction Time (h) - 0.000765 Ct Pt 

 

Three factor DoE 

All products photonic yield response 

 

Coded Coefficients 

 

Term                                      Effect      Coef  SE Coef  T-Value  P-

Value   VIF 

Constant                                           0.01089  0.00143     7.61    

0.001 

Loading (g)                             -0.00168  -0.00084  0.00143    -0.59    

0.584  1.00 

Irradiance  (mW/cm2)                    -0.01431  -0.00715  0.00143    -5.00    

0.004  1.00 

Reaction Time (h)                       -0.01970  -0.00985  0.00143    -6.88    

0.001  1.00 

Irradiance  (mW/cm2)*Reaction Time (h)   0.01478   0.00739  0.00143     5.16    

0.004  1.00 

Ct Pt                                             -0.00754  0.00274    -2.75    

0.040  1.00 

 

 

Regression Equation in Uncoded Units 

 

All products photonic yield = 0.07716 - 0.084 Loading (g) 

- 0.000357 Irradiance  (mW/cm2) 

                              - 0.02470 Reaction Time (h) 

+ 0.000120 Irradiance  (mW/cm2) 

                              *Reaction Time (h) - 0.00754 Ct Pt 

 

Three factor DoE 

CH4 extended normalization response 

 

Coded Coefficients 

 

Term                                    Effect    Coef  SE Coef  T-Value  P-

Value   VIF 

Constant                                         0.905    0.209     4.33    0.008 

Loading (g)                             -0.878  -0.439    0.209    -2.10    0.090  

1.00 
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Irradiance  (mW/cm2)                    -1.164  -0.582    0.209    -2.78    0.039  

1.00 

Reaction Time (h)                       -1.242  -0.621    0.209    -2.97    0.031  

1.00 

Irradiance  (mW/cm2)*Reaction Time (h)   1.175   0.588    0.209     2.81    0.038  

1.00 

Ct Pt                                           -0.758    0.401    -1.89    0.117  

1.00 

 

 

Regression Equation in Uncoded Units 

 

CH4 (μmole/ghLW) = 6.99 - 43.9 Loading (g) - 0.02857 Irradiance  (mW/cm2) 

                   - 1.801 Reaction Time (h) 

+ 0.00955 Irradiance  (mW/cm2)*Reaction Time (h) 

                   - 0.758 Ct Pt 

 

Three factor DoE 

All C products extended normalization response 

 

Coded Coefficients 

 

Term                                    Effect    Coef  SE Coef  T-Value  P-

Value   VIF 

Constant                                         2.082    0.304     6.85    0.002 

Loading (g)                             -1.689  -0.844    0.304    -2.78    0.050  

1.00 

Irradiance  (mW/cm2)                    -2.115  -1.058    0.304    -3.48    0.025  

1.00 

Reaction Time (h)                       -2.419  -1.210    0.304    -3.98    0.016  

1.00 

Loading (g)*Irradiance  (mW/cm2)         2.016   1.008    0.304     3.32    0.029  

1.00 

Irradiance  (mW/cm2)*Reaction Time (h)   1.568   0.784    0.304     2.58    0.061  

1.00 

Ct Pt                                           -1.404    0.582    -2.41    0.073  

1.00 

 

 

Regression Equation in Uncoded Units 

 

All C products (μmole/ghLW) = 18.38 - 286.9 Loading (g) 

- 0.0919 Irradiance  (mW/cm2) 

                              - 2.784 Reaction Time (h) + 1.639 Loading (g) 

                              *Irradiance  (mW/cm2) 

+ 0.01275 Irradiance  (mW/cm2) 

                              *Reaction Time (h) - 1.404 Ct Pt 

 

 

Two factor DoE 

CH4 (µmole/gh) response 

 

Coded Coefficients 

 

Term                                     Effect     Coef  SE Coef  T-Value  P-

Value   VIF 

Constant                                          0.1062   0.0225     4.71    

0.042 

Irradiance  (mW/cm2)                     0.1842   0.0921   0.0225     4.08    

0.055  1.00 

Reaction Time (h)                       -0.0974  -0.0487   0.0225    -2.16    

0.163  1.00 
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Irradiance  (mW/cm2)*Reaction Time (h)  -0.1166  -0.0583   0.0225    -2.58    

0.123  1.00 

Ct Pt                                            -0.0610   0.0344    -1.77    

0.219  1.00 

 

 

Regression Equation in Uncoded Units 

 

CH4 (μmole/gh) = -0.0157 + 0.001776 Irradiance  (mW/cm2) 

+ 0.0126 Reaction Time (h) 

                 - 0.000496 Irradiance  (mW/cm2)*Reaction Time (h) 

- 0.0610 Ct Pt 

 

Two factor DoE 

CH4, as part of the all carbon products (µmole/gh) response 

 

Coded Coefficients 

 

Term                                     Effect     Coef  SE Coef  T-Value  P-

Value   VIF 

Constant                                          0.1062   0.0538     1.97    

0.187 

Irradiance  (mW/cm2)                     0.1854   0.0927   0.0538     1.72    

0.227  1.00 

Reaction Time (h)                       -0.0974  -0.0487   0.0538    -0.90    

0.461  1.00 

Irradiance  (mW/cm2)*Reaction Time (h)  -0.1166  -0.0583   0.0538    -1.08    

0.392  1.00 

Ct Pt                                             0.1089   0.0823     1.32    

0.317  1.00 

 

 

Regression Equation in Uncoded Units 

 

All C Products (μmole/gh) = -0.016 + 0.00178 Irradiance  (mW/cm2) 

+ 0.0126 Reaction Time (h) 

                            - 0.000496 Irradiance  (mW/cm2)*Reaction Time (h) 

+ 0.1089 Ct Pt 

 

Two factor DoE 

CH4 photonic yield response 

 

Coded Coefficients 

 

Term                                       Effect       Coef   SE Coef  T-

Value  P-Value 

Constant                                            0.000418  0.000043     

9.64    0.011 

Irradiance  (mW/cm2)                    -0.000138  -0.000069  0.000043    -

1.59    0.252 

Reaction Time (h)                       -0.000159  -0.000080  0.000043    -

1.84    0.208 

Irradiance  (mW/cm2)*Reaction Time (h)  -0.000417  -0.000208  0.000043    -

4.80    0.041 

Ct Pt                                              -0.000328  0.000066    -

4.95    0.038 

 

Term                                     VIF 

Constant 

Irradiance  (mW/cm2)                    1.00 

Reaction Time (h)                       1.00 

Irradiance  (mW/cm2)*Reaction Time (h)  1.00 

Ct Pt                                   1.00 
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Regression Equation in Uncoded Units 

 

CH4 photonic yield = 0.000212 + 0.000003 Irradiance  (mW/cm2) 

+ 0.000139 Reaction Time (h) 

                     - 0.000002 Irradiance  (mW/cm2)*Reaction Time (h) 

- 0.000328 Ct Pt 

 

Two factor DoE 

All carbon products photonic yield 

 

Coded Coefficients 

 

Term                                      Effect      Coef  SE Coef  T-Value  

P-Value   VIF 

Constant                                           0.09942  0.00128    77.79    

0.000 

Irradiance  (mW/cm2)                     0.18841   0.09420  0.00128    73.71    

0.000  1.00 

Reaction Time (h)                       -0.19188  -0.09594  0.00128   -75.07    

0.000  1.00 

Irradiance  (mW/cm2)*Reaction Time (h)  -0.19201  -0.09601  0.00128   -75.12    

0.000  1.00 

Ct Pt                                             -0.09661  0.00195   -49.49    

0.000  1.00 

 

 

Regression Equation in Uncoded Units 

 

All products photonic yield = -0.00954 + 0.002436 Irradiance  (mW/cm2) 

                              + 0.00497 Reaction Time (h) 

- 0.000817 Irradiance  (mW/cm2) 

                              *Reaction Time (h) - 0.09661 Ct Pt 

 

 

Two factor DoE 

CH4 extended normalization response 

 

Coded Coefficients 

 

Term                                     Effect     Coef  SE Coef  T-Value  P-

Value   VIF 

Constant                                          0.6095   0.0683     8.92    

0.012 

Irradiance  (mW/cm2)                    -0.5845  -0.2922   0.0683    -4.28    

0.051  1.00 

Reaction Time (h)                        0.4454   0.2227   0.0683     3.26    

0.083  1.00 

Irradiance  (mW/cm2)*Reaction Time (h)  -0.7879  -0.3940   0.0683    -5.77    

0.029  1.00 

Ct Pt                                             -0.466    0.104    -4.46    

0.047  1.00 

 

 

Regression Equation in Uncoded Units 

 

CH4 (μmole/ghLW) = -0.357 + 0.00422 Irradiance  (mW/cm2) 

+ 0.6368 Reaction Time (h) 

                   - 0.003353 Irradiance  (mW/cm2)*Reaction Time (h) 

- 0.466 Ct Pt 
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Two factor DoE 

All C products extended normalization response 

 

Coded Coefficients 

 

Term                                    Effect    Coef  SE Coef  T-Value  P-

Value   VIF 

Constant                                         0.610    0.170     3.58    

0.070 

Irradiance  (mW/cm2)                    -0.581  -0.290    0.170    -1.70    

0.231  1.00 

Reaction Time (h)                        0.445   0.223    0.170     1.31    

0.321  1.00 

Irradiance  (mW/cm2)*Reaction Time (h)  -0.788  -0.394    0.170    -2.31    

0.147  1.00 

Ct Pt                                            0.062    0.260     0.24    

0.833  1.00 

 

 

Regression Equation in Uncoded Units 

 

All C products (μmole/ghLW) = -0.359 + 0.00424 Irradiance  (mW/cm2) 

+ 0.637 Reaction Time (h) 

                              - 0.00335 Irradiance  (mW/cm2)*Reaction Time (h) 

+ 0.062 Ct Pt 
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