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Abstract

A defining question of our age is how AI will influence the workplace of the future

and, thereby, the human condition. The dominant perspective is that the competition

between AI and humans will be won by either humans or machines. We argue that the

future workplace may not belong exclusively to humans or machines. Instead, it is better

to use AI together with humans by combining their unique characteristics and abilities.
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In three experimental studies, we let humans and a state of the art AI classify images

alone and together. As expected, the AI outperforms humans. Humans could improve by

delegating to the AI, but this combined effort still does not outperform AI itself. The most

effective scenario was inversion, where the AI delegated to a human when it was uncertain.

Humans could in theory outperform all other configurations if they delegated effectively

to the AI, but they did not. Human delegation suffered from wrong self-assessment and

lack of strategy. We show that humans are even bad at delegating if they put effort

in delegating well; the reason being that despite their best intentions, their perception

of task difficulty is often not aligned with the real task difficulty if the image is hard.

Humans did not know what they did not know. Because of this, they do not delegate the

right images to the AI. This result is novel and important for human-AI collaboration at

the workplace. We believe it has broad implications for the future of work, the design of

decision support systems, and management education in the age of AI.

Keywords: Future of work, Artificial Intelligence, Augmented Decision Environments, Deep

Learning, Human-AI Collaboration, Machine Learning, Intelligent Software Agents

1 Introduction and prior work

There are huge expectations, and there is a lot of uncertainty, about how AI will change the

workplace. Thought leaders, scientists and policy makers have come to see it as a general

purpose technology. Andrew Ng, co-founder of Coursera, calls AI a new type of electricity

(Knowledge@Wharton 2017) that fuels innovation on a broad scale and in diverse domains,

including medicine (Kononenko 2001, Peek et al. 2015, Esteva et al. 2017, Hosny et al. 2018),

transportation (Chen et al. 2015, Kahlen et al. 2018), trading markets (Bichler et al. 2010),

problem-solving, games and cognition (Schölkopf 2015, Silver et al. 2016, Moravč́ık et al. 2017),

and perceptional tasks, such as processing images, text, and speech (Hinton et al. 2012, Deng

and Yu 2013). The broad applicability of modern techniques like deep learning (LeCun et al.

2015, Schmidhuber 2015, Goodfellow et al. 2016) seems to imply a slow but sure redundancy of

human input in the future. In fact, the superiority of algorithmic results over human decision

making is not novel in certain fields (Grove et al. 2000, Russakovsky et al. 2014). With AI

becoming mainstream, a continual discussion is being held in the public sphere about how AI

will influence the future of work, and thereby, the human condition (Frey and Osborne 2017,

Williams 2017, Marlin 2018, Gray 2018).
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We, of course, agree with the general sentiment that AI will be embedded in day-to-day life

in the future, and that the performance of AI will improve further. This has an obvious and

important implication: AI will outperform humans in even more cognitive and perceptional

tasks. Therefore, research efforts that only consider direct comparisons between humans and

AI will rarely provide surprising answers. Put differently, if we approach questions about

employment with an “us versus them” mindset and ask questions like: “will the AI outperform

humans in this task, or will humans outperform the AI?”, the answer will ever more often be that

the AI outperforms humans. This line of arguments supports a grim outlook on employment,

and it emphasizes the frictions that can arise from accepting and adopting AI.

Contrary to this, computer scientists have recognized early on that humans and AI can

benefit from each other. They have coupled AI and humans in various ways, as parts of techni-

cal systems that outperform the AI alone, solve fuzzier problems or process unstructured data

(Maes 1994, Joshi et al. 2009, Branson et al. 2010, Nagar and Malone 2011, Holzinger 2013,

Attenberg et al. 2015, Russakovsky et al. 2015, Wang et al. 2017). For example, image classifi-

cation algorithms can put “humans in the loop” by asking them questions about the content of

an image and modeling on the basis of their answers (Branson et al. 2010). Other approaches

ask humans for labels if instances are considered hard (Joshi et al. 2009), or use human input to

identify extraordinary cases that the computational model gets wrong consistently (Attenberg

et al. 2015). The Re-Captcha project digitizes books using human input to the AI, and it

operates at scale since 2007.

Researchers without formal training in AI or machine learning, who are not trying to build

technical systems and who do not design algorithms, are more hesitant to study human-AI col-

laboration. Of course there are important exceptions, like the works by Dietvorst et al. (2016)

and Logg et al. (2018), who study the human decision makers’ attitude toward algorithms

(both the terms algorithm aversion and algorithm appreciation have been proposed). But our

overall impression is that human-AI collaboration is currently under-researched in Information

Systems, the social sciences and management. This is rather unfortunate. As AI is becoming

a mainstream technology, we need research that studies human-AI collaboration from a man-

agement perspective. Consistent with the call for research raised in Bichler et al. (2010), we

conclude that learning to collaborate with AI is the real challenge for the medium-term future

of work.

We explore fundamental mechanisms for collaboration and delegation between humans and

AI. The focal task is image classification. We have chosen image classification because humans

3



were traditionally highly capable at this and have only recently been outperformed by deep

learning-based AI (Szegedy et al. 2015). Image classification is not purely mathematical so

that the limits of human computing power do not play a major role (this is also the case for

most jobs that humans do at present). Image classification has important applications ranging

from the development of autonomous vehicles (Floreano and Wood 2015) to the detection of

skin cancer (Esteva et al. 2017). Central to our arguments is a rule for delegating work to the

human or the AI. This rule is independent of the image classification context. We thus believe

that our insights are generalizable.

Our central research questions are:

• Can delegation between humans and AI outperform humans or AI alone?

• Who delegates better, and why?

• How can humans learn to delegate to an AI? . . .

. . . and maybe most importantly:

• What does all this mean for the future of work?

We tackle these questions with three experimental studies. In the first study, we compare

the performance that arises from different forms of delegation: No delegation (the humans or

the AI performs all of the work alone), delegation (humans may delegate to AI), and inversion

(the AI may delegate to humans, as suggested in McAfee 2013). There are two main outcomes

of Study 1. (1) Inversion achieves by far the best performance. This might not be completely

novel (some computer science systems are using a similar approach to reach high performance).

It is nonetheless important for our arguments because the hierarchical shift induced by inversion

(the AI tells humans what to do, and when), may be undesirable in certain applications. In

these cases an alternative configuration is needed that performs good enough to be sustainable.

One such alternative can be humans delegating to the AI, because (2) humans who delegate to

the AI could in theory outperform inversion. However, they do not! It turns out that human

performance is inferior, and they delegate badly due to unrealistic self-evaluation and lack of

strategy.

In Study 2, we provide direct feedback to the subjects, so that they can learn what they

did wrong and right, and thereby improve their self-evaluation. This is a simple and intuitive

approach. However, it neither induced more delegation, nor did it lead to better performance.
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Because of this, we supported the human decision makers even more strongly in Study 3.

Here, we provided them with a good delegation strategy: They should delegate the image if

they were uncertain, and they should classify the image themselves if they were certain about

the correct result. We also let the humans report their certainty for every decision they made.

This intervention lead to considerably more delegation and to better performance. The humans

were now on par with the AI, but they sill could not beat it.

To understand this result, we study human delegation. Human delegation can be described

using two regimes of image difficulty; a high-error region containing images with above-average

difficulty, and a low-error region containing images with below-average difficulty. Humans

delegate images in the low-error region less often as they become easier. This is rational and

leads to high performance. However, we find no significant influence of image difficulty on

delegation rate in the high-error region. In other words, humans delegate randomly if images

are hard.

What might be even more interesting is that this separation into two regimes occurs on the

level of “objective difficutly”, but not on the level of “perceived difficutly”. Human delegations

are consistent with their personal perception of image difficulty, and they are reasonable as

well. Humans reliably delegated images that they considered hard, and they classified images

themselves that they considered easy. Unfortunately their perception of difficulty, and the

images’ true difficulty were often misaligned. Humans refused to delegate many hard images

and classified them wrongly, because they thought the image was easy. In other words, humans

did not know what they did not know.

We believe humans put real effort into delegating well, as they delegate consistently on

basis of their perceived difficulty. They eventually did not reach good performance due to their

misjudgment of task difficulty.

In the following, Section 2 describes the experimental designs and the results. Section 3

discusses the implications of the results for the future of work.

2 Experimental Studies

This section describes experimental designs and results of three experimental studies with a

total of 1,506 subjects. Study 1 “Delegation and Inversion” compares different possibilities of

delegation between humans and AI: AI alone, humans alone, humans who may delegate to AI

(delegation), and an AI that may delegate to humans (inversion). Study 2 “Self-evaluation
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and Delegation” explores the self-evaluation of humans and its effect on delegation. This study

employs a 2x2 factorial design with the dimensions delegation (yes/no) and feedback (yes/no).

Study 3 “Explaining and Enforcing a Delegation Strategy” analyzes the effect of providing

humans with a strategy on how to delegate. We compare three conditions: a baseline condition

similar to the delegation condition in Study 1, a condition where a strategy based on self-

evaluation is proposed, and a condition where this strategy is being enforced.

Please note that we followed the guidelines of Nosek et al. (2018) and pre-registered all

experiments at the Open Science Foundation (this included the recruitment and data collection

process, the initial hypotheses, and the statistical analysis).

2.1 Study 1: Delegation and Inversion

2.1.1 Experimental Design.

In all experiments, humans and/or AI classified images. Image classification is the task of

assigning a focal image to a class. A class can be thought of as a content group. A classification

is correct if the focal image is assigned to the right class (for example, a focal picture with the

ground truth of a poodle is assigned to the “poodle” class, not to the “huskie” or “cat” class).

We selected 100 focal images from the ImageNet database (Russakovsky et al. 2014). The

correct classes for the images are provided with the dataset. The performance measure was

classification accuracy: the percentage of correctly classified images.

We compare classification accuracy between four conditions. In the AI alone condition

(1), we used the GoogLeNet neural network (Szegedy et al. 2016). GoogLeNet is currently

among the best AIs for image classification. We obtained its classification accuracy by applying

GoogLeNet to the 100 images and by comparing its predictions to the actual classes. In the

humans alone condition (2), human subjects recruited via Amazon’s Mechanical Turk (MTurk)

classified the images without any support. Subjects in the delegation condition (3) could choose

for each image to either classify it themselves, or to delegate it to GoogLeNet. In an inversion

condition (4), the AI could choose for each image to classify it itself or to delegate it to the

humans.

We now describe the conditions in detail. In the AI alone condition (1) we used GoogLeNet

Inception v3 (Szegedy et al. 2016). Inception v3 was trained on the ImageNet database with

1,000 classes. GoogLeNet assigns a score to each class and the class with the highest score is

chosen as the answer.
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For conditions (2)-(4), we conducted between-treatment experiments with 449 subjects, via

MTurk, in August 2018. Each subject received a base fee of 50 cents, an additional 5 cents

for each correctly classified image, and a bonus of 1 dollar if she succeeded in estimating her

own accuracy after the experiment. Overall, subjects could get a maximum payment of $6.50.

Average pay was $4.45, which was slightly above average pay on MTurk in general (Hara et al.

2018). The average duration of the experiment was 57.7 minutes.

We randomly assigned subjects to one of the conditions humans alone (149 subjects), del-

egation (154 subjects), and inversion (146 subjects). They received instructions, had to pass

a short quiz so that we could exclude robots, and they completed an example classification to

ensure that they understood the task. They then had to classify the 100 images in randomized

order. Afterward, they were asked how many images they think they classified correctly (they

could earn 1 dollar if this estimation did not differ from the actual number by more than five

images), and they answered a short questionnaire.

In all cases, subjects were presented a focal image and ten classes as possible answers. Only

one class was correct, the correct class being the ground truth from the ImageNet database.

Like Russakovsky et al. (2014) we illustrated each answer class by its name and by showing 13

example images.1

The humans alone and inversion conditions were identical. In the delegation condition, we

added a button labeled “Delegate this question to the AI”. The button was placed randomly

between the answer categories. If a subject clicked on it, she would not classify the image

herself, but delegate it to the AI. She would not see the AI’s answer, but the AI’s choice would

be considered hers, and she would receive her payment accordingly. Thus, it was made clear

that a subject is paid for each correct classification regardless of whether the AI or the human

performed the task. Subjects in the delegation condition were informed about the AI and

its accuracy at the beginning of the experiment. Figure 1 shows a screenshot of the humans

alone/inversion and delegation conditions.

1Example: The focal picture contained a dog. The correct image class was “poodle”. We showed 10 possible
answers, including poodle, German shepherds, bulldogs, boxers, Siberian huskies, and others. For each of the
10 classes, we showed 13 examples; 13 pictures of poodles, 13 pictures of boxers, 13 pictures of huskies and so
on. The subject had to find out that the focal picture was a poodle. She had to click somewhere on the 13
poodle pictures. She could then click on a button labeled “Next image”. The answer was recorded, the screen
refreshed and the next image was shown.
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Figure 1: Screenshot of the humans alone/inversion condition (left) and the delegation condi-
tion (right)

2.1.2 Results.

We constructed the results for the inversion condition (4) after the experiment. In this condi-

tion, the AI would classify images or delegate them to humans based on a simple rule: if the

score of the potential answer was below a certain threshold, then the AI delegated this image to

the humans. Otherwise, GoogLeNet classified by itself. To simulate this mechanism, we paired

the AI with all subjects from the inversion condition, which lead to 146 pairs. We used 0.717

as the threshold, which was the average human accuracy from the humans alone condition.

The rationale was that the AI should delegate images where the likelihood of being correct was

below the average accuracy of human workers, i.e., humans could know better. We did this

for every image and thereby generated classification accuracies for each of the 146 AI-human

pairs. Please note that to avoid biases, all subjects in the inversion condition had to classify

the same 100 images as the subjects in the other conditions.

Descriptive statistics (Table 1) and visual evidence (Figure 2) suggest that the ability to

delegate affects classification accuracy. On average, accuracy is highest in the inversion con-

dition (87.0%), followed by the the delegation condition (74.0%) and humans alone (71.7%).

By itself, the accuracy of the AI is 77% (the vertical dashed line in Figure 2.2 The standard

2We report Top1 accuracy values, which is the accuracy for choosing the top class correctly. In the AI
literature, the Top5 error rate is sometimes reported, which is how often the true class is not within the top
five classes. In our case, the Top1 error rate of the AI is 23%, the Top5 error rate is 6%. This is in line with

8



Table 1: Summary statistics for accuracy (Study 1).

Summary statistic

Dep. Var.: Treatment N Min. Mean Max. St. Dev. Pctl(25) Median Pctl(75)

Accuracy
Delegation 154 0.25 0.74 0.99 0.10 0.70 0.76 0.80
Humans 149 0.31 0.72 1.00 0.13 0.65 0.74 0.81
Inversion 146 0.71 0.87 0.98 0.04 0.85 0.87 0.90

Humans

Delegation to AI

Inversion

20 40 60 80 100
Accuracy

Tr
ea

tm
en

t

Figure 2: Distribution plots for accuracy per experimental condition in study 1. The vertical
dashed line is the AI classification accuracy of 77%.
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deviation of accuracy (in number of images) is highest when humans are working alone (13.2),

smaller when humans can delegate (10.1) and smallest when the AI delegates to humans (4.2).

The variance of accuracy is significantly different across experimental conditions (Levene

test, F(2, 446) = 36.752, p < .001; Hartleys Fmax test, Fmax = 9.962 > critical value), and the

means are significantly different as well (ANOVA with heterogeneous variances, F(2, 245.05)

= 178.41, p < .001, η2 = .315, which represents a large effect). Post-hoc tests with Tanhames

T2 statistic for multiple comparisons show that most pair-wise mean differences are significant.

Humans in the delegation condition seem to outperform humans alone. However, this difference

(2.37 percentage points) is not significant (p = .120) and represents a relatively small effect (d =

.20). Inversion clearly outperforms humans alone. This difference (15.38 percentage points)

is significant (p < .001) and represents a large effect (d = 1.67). Inversion also outperforms

the delegation condition. This difference (13 percentage points) is significant (p < .001) and

represents a large effect (d = 1.56).

Mean accuracies for the humans alone, delegation and inversion conditions are significantly

different from AI alone (p < .001), and except for inversion, are all lower than AI alone. In

the inversion condition, the performance is significantly higher than that of AI working alone,

suggesting that human workers can significantly improve the performance of an AI by providing

their input. Not only is inversion on average better than the other settings, we also notice that

the AI profits from almost all humans. Only three out of the 146 AI-human pairs generated a

performance below AI accuracy (77%), and the 25th accuracy percentile of inversion (85%) lies

already far above AI accuracy. This suggests that the AI can even profit from collaborations

with low-performing human workers. Collaboration and delegation between humans and AI can

thus produce results that outperform humans or AI alone. Importantly, inversion was highly

effective while delegation was not.

To further understand what may be driving the inferior human performance in the delegation

condition, we investigate the pattern of delegation by humans. In Figure 3 and Figure 4 the

difficulty of an image is depicted on the horizontal axis. Image difficulty is indicated by accuracy

in the humans alone experimental condition, e.g., an .2 difficulty/ accuracy means that 20% of

the subjects classified the image correctly. The vertical axis in both figures shows the delegation

rate, i.e., the ratio of subjects who have decided to not classify the image but to delegate it to

the AI.

If we consider the entire dataset (Figure 3), a weak overall trend can be detected where

the literature.
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Figure 3: Scatter plot of accuracy per image (horizontal axis) against delegation rate per image
(vertical axis). The regression line is estimated from all images.
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Figure 4: Scatter plot of accuracy per image (horizontal axis) against delegation rate per image
(vertical axis). The two regression lines are estimated from two partitions of the data (only
significant parameters considered). A high-error region contains images with above-average
difficulty (accuracy per image < 70%). A low-error region contains images with below-average
difficulty (accuracy per image ≥ 70%.)
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images with higher accuracy (lower difficulty) are delegated less often and vice versa. This

is encouraging because it shows that humans were acting quite rationally by delegating more

difficult images more often. However, partitioning the data into images that have less than 70%

accuracy (these images are harder than average, recall that overall human accuracy is around

70%), and above 70% accuracy (these images are easier than average), the true trend can be

detected. As Figure 4 depicts, human delegation is quite random when accuracy is low (the

images are hard) and it follows a more rational delegation pattern beyond the threshold (when

images are easy).

Table 2: Regression results for delegation (Study 1).

Dependent variable: delegation rate

< 70% Accuracy ≥ 70% Accuracy

Accuracy 0.029 −0.535∗∗∗

(0.104) (0.067)

Constant 0.169∗∗∗ 0.557∗∗∗

(0.052) (0.059)

Observations 41 59
R2 0.002 0.529
Adjusted R2 -0.024 0.521
Residual Std. Error 0.090 (df = 39) 0.038 (df = 57)
F Statistic 0.080 (df = 1; 39) 64.138∗∗∗ (df = 1; 57)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors in parentheses

This can be verified statistically by running two simple regressions on the partitioned data.

We show the effect sizes and significance levels in Table 2. It becomes clear that there is no

significant relationship between accuracy and delegation rate (dependent variable) below the

70% accuracy threshold (insignificant coefficient Accuracy), but there exists a strongly negative

and significant relationship above 70% accuracy.

While humans seem have difficulties in delegation when classifying difficult images, they

delegate quite rationally when dealing with images that are easy to classify (i.e., they delegate

more when dealing with relatively difficult images and vice versa in this regime).

As discussed earlier, the collaboration between humans and AI has potential to significantly

improve classification performance compared to either of them alone. However, while the AI is
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able to delegate effectively applying a simple rule, humans are not able to perform as well. This

can be due to several reasons. First, it is well known that humans are reluctant to delegate

decisions, possibly due to a form of distrust towards machines (Dietvorst et al. 2015). Second,

given the results from the partitioned data above, we wondered whether it is possible for humans

to come up with an effective delegation strategy at all. What hinders them to delegate well?

We conducted the following two experiments to see whether we can instruct individuals on how

to delegate, and thereby improve their performance.

2.2 Study 2: Self-evaluation and Delegation

2.2.1 Experimental Design.

In this set of experiments, our goal was to educate humans about their errors and thereby help

them make better delegation decisions. The simple idea was to take the subjects through the

same set of images that were used in the first experiment, but for the first 50 images provide

them feedback on whether they classified the images correctly or not. The experimental design

builds on Study 1. We split the 100 images into two sets of 50 images with comparable human

and AI accuracies.

We implemented a 2x2 factorial design by manipulating two factors. First, we did (or did

not) provide feedback during the first 50 images. If subjects received feedback, then they could

see whether they were correct or not after each image; we also showed them the right answer.

Second, we allowed (or did not allow) delegation to the AI during the second 50 images.

The resulting four experimental conditions were run using a between-subjects design with

604 subjects recruited via MTurk. Each subject received a base fee of 1 dollar, an additional

5 cents for each correctly classified image, and a bonus of 1 dollar each if she succeeded in

estimation her accuracy for both sets of images after classification. Average pay was $5.43,

the average duration was 58.0 minutes. The assignment process and experimental protocol was

equivalent to Study 1.

2.2.2 Results.

In the following we consider accuracy and delegation rate for the second 50 images. Table 3

shows summary statistics for the accuracy and delegation rates. From the table, the results

seem similar to the previous experiment. While delegation improves performance, feedback does
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not seem to have a significant effect.

Table 3: Summary statistics for accuracy and delegation rate (Study 2).

Treatment Summary statistic

Dep. Var.: Delegation Feedback N Min. Mean Max. St. Dev. Pctl(25) Median Pctl(75)

Accuracy
No No 159 0.08 0.71 0.90 0.12 0.66 0.74 0.78
No Yes 151 0.08 0.71 0.92 0.12 0.66 0.74 0.78
Yes No 150 0.42 0.76 0.92 0.09 0.74 0.78 0.82
Yes Yes 144 0.34 0.77 0.94 0.08 0.74 0.78 0.82

Delegation rate
No No 159 0.00 0.00 0.00 0.00 0.00 0.00 0.00
No Yes 151 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Yes No 150 0.00 0.19 1.00 0.21 0.06 0.12 0.24
Yes Yes 144 0.00 0.20 1.00 0.23 0.04 0.14 0.28

Table 4: Regression results (Study 2)

Dependent variable:

Accuracy Delegation rate

Delegation 0.054∗∗∗

(0.012)

Feedback 0.002 0.015
(0.012) (0.026)

Delegation × Feedback 0.004
(0.017)

Constant 0.711∗∗∗ 0.187∗∗∗

(0.008) (0.018)

Observations 604 294
R2 0.071 0.001
Adjusted R2 0.066 -0.002
Residual Std. Error 0.102 (df = 600) 0.222 (df = 292)
F Statistic 15.213∗∗∗ (df = 3; 600) 0.325 (df = 1; 292)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors in parentheses

To analyze the causal effects of the experimental conditions on accuracy and delegation
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rates, we estimate linear models. The dependent variable is accuracy of the second 50 images

per subject. Independent variables are two dummy variables modeling whether the subject had

the ability to delegate (variable Delegation =1: yes, 0: no), and whether we provided feedback

when she classified the first 50 images (variable Feedback =1: yes, 0: no). The regression

results in Table 4 confirm that the performance feedback provided did not increase accuracy,

and it did not make the subjects delegate more images (insignificant coefficients Feedback in

both models). However, the results show that our proposition from Study 1 apparently holds:

having the ability to delegate to an AI has a significant positive influence on performance.

It is somewhat disappointing that providing feedback - a common and most intuitive ap-

proach – did not create significantly better delegation. But it may be that simply providing

feedback is not enough. Instead, we may need to provide active guidance on the delegation

strategy.

To test this proposition, we designed another set of experiments. Recall that for the in-

version condition in our first study, the machine follows two steps: it first assesses its own

certainty about the classification, and then it delegates to humans if its certainty is below av-

erage human performance. There may be other strategies that yield the same, or even slightly

better, performance but that is not the point. We do not try to maximize accuracy. Instead,

we explore whether humans can detect and deploy an effective delegation strategy at all. Fur-

ther, we want to explore what impediments exist, such that humans may eventually improve.

Therefore, in a third set of experiments, we actively provide delegation strategy guidance to

the human subjects.

2.3 Study 3: Explaining and Enforcing a Delegation Strategy

2.3.1 Experimental Design.

In this experiment we studied if teaching a delegation strategy, or enforcing it, helped human

decision makers to better realize the potential of delegating to the AI. The experimental design

was a between-subjects group comparison with three experimental conditions based on the

delegation condition of Study 1. The first condition, baseline, was set up in analogy to the

delegation condition of Study 1. Here, human decision makers classified 100 images and could

delegate to the AI. We only made a small addition: the subjects had to report their level of

certainty for each image on a scale from 1 (uncertain) to 4 (certain). The second condition,

strategy explained, added a short text that describes and recommends a delegation strategy.

15



We told the subjects that they should delegate all images for which they were not certain (all

images with certainty levels between 1 and 3). If certainty was high (certainty level 4), we

advised them not to delegate. In the third condition, strategy enforced, subjects could not

delegate actively. However, we informed them before the classification task that images will be

delegated automatically if their self-reported certainty score was between 1 and 3. The human

answer was only used if the reported certainty score was 4.

We recruited 453 subjects via MTurk, and randomly assigned them to experimental con-

ditions. Each subject received a base fee of 1 dollar, an additional 5 cents for each correctly

classified image, and a bonus of 1 dollar if she succeeded in estimating her own accuracy after

the experiment. The average pay was $5.19, and the average duration of the experiment was

56.2 minutes. The assignment process and experimental protocol was equivalent to Study 1.

2.3.2 Results.

Table 5 shows summary statistics for accuracy and delegation rates. While the accuracy rates

improved marginally, the delegation rates increased strongly when the strategy was explained

or enforced. In fact, the delegation rate with strategy enforced looks similar to that of strategy

explained, where humans made the delegation decisions themselves. Thus, humans follow the

guidelines for delegation quite successfully. The standard deviations of accuracy were similar

in the three groups (.09 for strategy enforcement and .1 for explaining the strategy and for not

considering it all).

Table 5: Summary statistics for accuracy and delegation rate (Study 3).

Summary statistic

Dep. Var.: Treatment N Min. Mean Max. St. Dev. Pctl(25) Median Pctl(75)

Accuracy
Baseline 150 0.16 0.75 0.90 0.10 0.72 0.77 0.81
Strategy explained 157 0.24 0.77 0.88 0.10 0.75 0.80 0.82
Strategy enforced 146 0.14 0.78 0.90 0.09 0.75 0.79 0.82

Delegation rate
Baseline 150 0.00 0.13 0.68 0.15 0.01 0.08 0.20
Strategy explained 157 0.00 0.34 0.95 0.20 0.19 0.33 0.47
Strategy enforced 146 0.01 0.33 0.96 0.18 0.19 0.32 0.46

This is supported by statistical analysis. A Levene test reveals no significant differences
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between the variances across experimental conditions (F(2, 450)=.849, p = .429), but the means

are different (ANOVA, F(2, 450)=2.97, p = .052, η2 = .13 which represents a medium effect).

Tukey’s significance test shows that humans in the strategy enforced condition outperform

humans in the baseline condition. This difference (2.714 percentage points) is significant (p =

0.048) and represents a small to moderate effect (d=.281). Mean accuracy in the strategy

explained condition is similar to that in the strategy enforced condition (p = .761). Also, the

difference between the strategy explained group and the baseline group (1.913 percentage points)

is not significant (p = .207). It would represent a small effect (d=.185). We have then compared

the condition’s accuracies with AI performance. The baseline condition shows a significantly

lower performance (two-sided T-test, p = .010), but there is no significant difference between

AI, the strategy explained (p = .727), and the strategy enforced condition (p = .484).

The results suggest that explaining the strategy, and enforcing it, can improve performance

when delegating to an AI. Delegation alone did not create performance values that could com-

pete with the AI. Explaining a good delegation strategy or enforcing it can however create

delegation behavior that results in performance that is en par with AI. Still, humans could still

not outperform it.

We now study the causal effect of the experimental variation on the delegation rate. Descrip-

tive statistics suggest that explaining the strategy produced slightly higher average delegation

rates than enforcing it (34.2% versus 32.5%). Subjects in the baseline condition delegated con-

siderably fewer images (13.1%). A Levene test for homogeneity of variances shows that the

variances are different across experimental conditions (F(2, 450)=7.5972, p < .001). According

to an ANOVA with heterogeneous variances, means are also different (F(2, 296.14)=77.772,

p < .001, η2 = .227, which represents a medium to large effect).

Additional post-hoc tests with Tanhames T2 statistic for multiple comparisons show that

explaining the strategy increases the delegation rate significantly (21.11 percentage points in-

crease, p < .001, which represents a large effect (d=1.175)). Enforcing the strategy does not

lead to a significantly different delegation rate from explaining it (p = .750). Enforcing the

strategy leads to a significantly higher number of delegations than not considering the strategy

at all (a 20.35 percentage point increase, p < .001, which represents a large effect (d=1.213)).

We felt perplexed that despite so much more delegation, the accuracy did not go up in

similar amounts. Therefore, we explored the nature of delegation further. Figures 5, 6 and

7 present the delegation trends in Study 3. Like in Section 2.2.2, the horizontal axis depicts

image difficulty (i.e., average accuracy of image classification by humans) and the vertical axis
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depicts delegation rates. Figure 5 considers the baseline condition, Figures 6 and 7 consider

the strategy explained and strategy enforced conditions. It is interesting to see that consistent

with the aforementioned tests, humans delegate more when strategy is explained. However,

the delegation trend for difficult images is still random – the randomness just centers around a

higher average delegation rate compared to the baseline condition.
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Figure 5: Scatter plot of accuracy per image (horizontal axis) against delegation rate per image
(vertical axis) for the baseline condition in study 3. The two regression lines are estimated from
the two partitions of the data (only significant parameters considered).

We ran regressions on partitioned data. Table 6 shows the statistical results which support

the initial visual impression. It appears that the modest gains in performance come from

the fact that human delegation, while it increases significantly on average with explaining or

enforcing a strategy, is still is prone to somewhat random fluctuations for difficult images.

To explore this perplexing outcome further, we study whether humans are able to assess

their own ability to classify images. Remember that subjects evaluated their certainty of their

choices on a scale between 1 (uncertain) and 4 (certain). We ran a regression where the level

of certainty was the dependent variable, and accuracy the independent variable. This model

shows us whether the subjective assessment depends on the objective difficulty of an image. The

regression results in Table 7 show that humans are good at assessing their own ability, i.e., how

difficult the images are to classify, for simpler images (where accuracy of image classification

was above 70%), but they are not able to do this for difficult images. The values seem to

differ slightly for the strategy enforced condition. An explanation is that humans reported
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Figure 6: Scatter plot of accuracy per image (horizontal axis) against delegation rate per image
(vertical axis) for the strategy explained condition in study 3. The two regression lines are
estimated from the two partitions of the data (only significant parameters considered).
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Figure 7: Scatter plot of accuracy per image (horizontal axis) against delegation rate per image
(vertical axis) for the strategy enforced condition in study 3. The two regression lines are
estimated from the two partitions of the data (only significant parameters considered).
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Table 6: Regressions per experimental condition (Study 3). The dependent variable is the
images’ delegation rate. The data is partitioned into two regions.

Experimental condition

Baseline Strategy explained Strategy enforced

Dependent variable: Delegation rate for images with accuracy of
< 70% ≥ 70% < 70% ≥ 70% < 70% ≥ 70%

Accuracy -0.113 -0.631∗∗∗ -0.337 -1.710∗∗∗ -0.211 -1.535∗∗∗

(0.121) (0.055) (0.178) (0.124) (0.180) (0.110)
Constant 0.268∗∗∗ 0.636∗∗∗ 0.698∗∗∗ 1.731∗∗∗ 0.617∗∗∗ 1.578∗∗∗

(0.058) (0.049) (0.086) (0.110) (0.086) (0.098)

Observations 40 60 40 60 40 60
R2 0.023 0.695 0.086 0.768 0.035 0.771
Adjusted R2 -0.003 0.689 0.062 0.764 0.010 0.767
Residual Sd. Error 0.104 0.033 0.154 0.075 0.155 0.066
F Statistic 0.885 131.912∗∗∗ 3.586∗ 191.564∗∗∗ 1.377 195.449∗∗∗

Note: * p< .1; ** p< .05; *** p< .01
Standard errors in parentheses

higher certainty levels to avoid delegation to the AI (remember that any image with a reported

certainty level of less than 4 is automatically delegated).

Therefore, it appears that while humans delegate quite rationally once the delegation process

is explained, their own assessment of what they can do exhibits a high amount of uncertainty

for relatively difficult tasks. It also suggests that although human decisions are often misaligned

with real problem difficulty, they are not misaligned with perceived problem difficulty. This

becomes clear from the raw data plots in Figure 8 (please find a summary of all plots of Study

3 in the Appendix). We believe that the subjects put real efforts into delegating well. But their

cognitive limitations hindered them in delegating the right images.

In the following, we discuss the implications of our finding for the future of human work

with AI, algorithms and other intelligent machines.
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Table 7: Regressions per experimental condition (Study 3). The dependent variable is the
subjects’ certainty per image. The data is partitioned into two regions.

Experimental condition

Baseline Strategy explained Strategy enforced

Dependent variable: Certainty, where images have accuracy of...
< 70% ≥ 70% < 70% ≥ 70% < 70% ≥ 70%

Accuracy 0.402 3.612∗∗∗ 0.666 3.750∗∗∗ 0.329 2.438∗∗∗

(0.381) (0.271) (0.461) (0.277) (0.384) (0.184)
Constant 2.640∗∗∗ 0.273 2.538∗∗∗ 0.201 3.054∗∗∗ 1.519∗∗∗

(0.183) (0.243) (0.222) (0.247) (0.185) (0.165)

Observations 40 60 40 60 40 60
R2 0.029 0.753 0.052 0.760 0.019 0.751
Adjusted R2 0.003 0.749 0.027 0.756 -0.007 0.747
Residual Sd. Error 0.329 0.164 0.399 0.167 0.332 0.111
F Statistic 1.116 177.148∗∗∗ 2.085 183.367∗∗∗ 0.732 174.959∗∗∗

Note: * p< .1; ** p< .05; *** p< .01
Standard errors in parentheses
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Figure 8: Scatter plots of certainty against delegation rate per image and per experimental
conditions in study 3.
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3 Discussion

Collaboration and delegation between humans and AI can produce results that outperform

humans or AI alone. Humans and AI were working on the same task and they were shifting

the workload through delegation. The best-performing scenario is inversion, where the AI is

responsible, but delegates when it is uncertain. In this scenario, both the AI and the humans are

contributing to the result. This sets our study apart from works where AI outperforms humans,

and the complete substitution of human workers by AI is seen as the logical consequence.

Humans could increase their performance through delegation, but the gains were not big enough

to outperform even the AI alone.

The dominance of inversion and the inability of humans to work effectively with AI raise

important questions that we try to address in the following.

3.1 Implications for Augmented Decision Environments

Inversion is the most productive scenario in our study, but it is not what academia and practice

consider decision support. Most published research and the available software tools model the

interaction between humans and AI exactly the other way around: the human is the user. She

is responsible for answering a question or for solving a problem, and she may use a computer, a

tool, an algorithm, an AI. Our results corroborate previous findings that this can improve human

performance, but it may not improve it beyond the performance of the AI. Put differently: using

an AI for decision support might not save humans their jobs.

If research would follow the inversion paradigm, the literature on decision support systems

(DSS) would have to adapt. There are multiple ways in which inversion can change the design

principles for a DSS: humans could deliver input for the algorithm, humans could be asked to

complete a partial task, or they could be asked to work on a task and submit their result. In

all these cases, the AI would be the boss. How should we design such systems algorithmically

and formally, how should we evaluate them, and how do they perform? Rethinking DSS for

inversion could also lead to the integration of new goal functions, new constraints, or new

solution algorithms.
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3.2 Inversion and the Future of Work

Inversion is not a completely novel scenario, but a discussion of its impact on the future of

work is still needed. The implications of implementing inversion are easily explained when

considering a situation where performance comparisons between human workers and an AI are

made to justify decisions about employment and task allocation. Assume we had to assign

the task of image classification to a group of humans or to an AI. The AI clearly outperforms

humans on average. Consequently, one would allocate this task to the AI; the humans would be

unemployed. This is in concordance with expectations. Image recognition is an area in which

humans were traditionally successful, and have recently been outperformed by deep learning-

based AI. Our results, however, question whether the assignment of image recognition to an

AI is actually the best choice. If the workload could be split between an AI and humans,

and if the AI would be the responsible unit which would delegate to humans, then several

interesting things would happen. First, the resulting performance would be higher than that

of the AI alone. This makes collaboration and delegation economically desirable. Second,

because the AI delegates to humans, humans would do some of the work. They contribute to

the superior result; without them, we would not reach it. Put differently, the human would

not be unemployed. However, the result is bittersweet as the inversion scenario comes with a

loss of control. The AI decides about the delegations, it asks the human for support only if it

is required. This means that the company using inversion has to agree with an AI organizing

human work; and humans have to accept as well that they are below the AI in the hierarchy.

Are humans then buying themselves employment by moving down the hierarchy?

Actually, the answer is not so clear and the situation not so dire. Let us propose an op-

timistic statement: inversion can improve human work perspectives. From research in human

motivation, we know that humans are more motivated when working in a stimulating envi-

ronment (Pink 2009). The classification of easily identifiable images is perhaps a routine and

boring task, whereas the classification of difficult images could be seen as a challenge. Inversion

might enable humans to spend less time on mundane tasks and more time on challenging tasks,

thereby creating a more fulfilling workplace. Thus, receiving assignments from a machine could

be interpreted not as a delegation to humans, but more as freeing humans from boring tasks.

The AI would not be the humans’ boss, but rather an assistant who swipes away distractions

from the real work. On top of this, if inversion creates free time, workers could use it to educate

themselves in tasks that are not prone to automation. In this manner, inversion could create a
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win-win situation.

3.3 Delegation to AI is a skill that should be taught

Splitting the workload between humans and AI by delegation can outperform humans or AI

working alone if two requirements are met. First, humans and AI have to have complementary

skills for the task at hand. This was clearly the case in our experiment. An optimal combination

of the AI and the human workers from the inversion condition would lead to an accuracy of

89.9%. This is considerably higher than the accuracy levels of 77.0% for AI alone and 71.7%

for humans alone. Thus, there are images that the AI can classify and humans get wrong, and

vice versa.

Second, delegation has to move a task to the party that is better at it. Under perfect

information, a simple rule always leads to this result: if the other actor is able to do task and

you are not, then delegate. Otherwise, do it yourself. Obviously, knowing what you can and

cannot do is the tricky part – both for humans and the AI. We made the AI work with such a rule

without emotions. Images were delegated if the likelihood that the AI’s choice is expected to

be correct was below average human accuracy. Humans experienced severe problems applying

such a rule and generally could not outperform the AI when working with it.

The AI seems to be much better at estimating its own accuracy. Modeling the likelihood

of class membership from a large database of examples is the core technical challenge that

AI engineers face when they are building an AI for classification. The success of the AI rests

largely on how well it can estimate such likelihoods. In our example, the average likelihood

of the top class being the correct one was 0.766, and 77 out of the 100 images were correctly

classified. As a consequence, the AI was very good at deciding which images to delegate and

which images to classify by itself. The average accuracy for non-delegated images was 98.6%.

Humans, by contrast, overestimated the number of correctly classified images by 8.0% with a

mean absolute percentage error of 21.3%. The average accuracy of images that they classified

themselves was just 74.9%. Thus, humans classified many images themselves that they should

have delegated to the machine.

In other words, humans did not delegate correctly. Given the results from prior studies that

demonstrate aversion to working with algorithms, we tested whether the lack of delegation is

due to an aversion to working with machines or due to not being aware of how best to use

an algorithm or, in other words, not being aware of when to delegate. Our second and third
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set of experiments reveal that humans do not necessarily have an aversion to using algorithms

in economically motivated environments. Providing feedback as well as consciously assessing

the difficulty of the classification task can motivate humans to delegate at a much higher rate,

which indicates the willingness to work with the machine.

However, even with greater delegation rates, humans do not automatically achieve the

performance that the AI can achieve in the inversion condition. An exploration of the causal

effect for this unfortunate outcome revealed that the inferior performance is due to humans not

being able to judge the complexity of relatively difficult tasks as well as that of relatively easy

tasks (see Table 7).

We believe that this is not covered entirely by our bounded rationality. As the concept

of bounded rationality (Simon 1955) argues, humans tend to make decisions that satisfice

rather than decisions that are optimal. However, bounded rationality does not address whether

humans have the ability to judge how difficult a task is, and whether the decision to satisfice is

therefore engaged appropriately. Our rule for satisficing in collaboration with a machine, i.e.,

“if the other actor is able to do task and you are not, then delegate; otherwise, do it yourself”

works well for the machine. It does not work well for humans because they are not good at

judging their own abilities. This is a significant finding that, to our knowledge, is novel in the

area of AI-human collaboration. It provides interesting insights for designing effective work

arrangements, the future of work and workforce education.

In the short term we see significant economic benefits and potential performance enhance-

ment due to AI. This is why we consider it likely that humans will often be involved in inversion-

like conditions. Computer algorithms will allocate work that the algorithm does not have a

strong confidence in, so that humans are engaged in tasks that leverage human abilities and

that are hard to codify.

However, there may be situations where inversion is currently not an option, for example in

critical medical decisions that for cultural and ethical reasons require a human to be responsible.

In this case, the human will likely be supported by AI, but the AI will not make the decision

with the help of a human. These contexts will profit from better delegations.

Even in contexts were inversion is currently not an option, researchers might have an obli-

gation to figure out how humans make better delegations. Cultural biases towards human

decision makers may not prevail forever. If humans delegate badly, but AI continues to become

better and better at the focal task, then the human might eventually be attacked for his poor

results and the work arrangement might eventually be “inverted”. In an age of AI coworkers
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it might be just essential to delegate well. Researching collaboration and delegation becomes

an important committment to the survival of humans in the workforce.

Finally, as educators we share a responsibility to teach future students how to develop the

ability to self-assess their abilities honestly and effectively. Delegation is a leadership trait that

humans have excelled at. The invention of machines themselves is a prime example. Leadership

is an essential skill that management schools purport to teach, however, we simply do not see

the challenges arising from leading machines as part of our curriculum, yet. We strongly believe

that delegation is a skill that can and should be taught. Doing so may not just improve our

students’ carreers, but it may also enhance their ability to learn and grow.

3.4 Limitations and future research

It may appear that an obvious area of future research will be to replicate our experiments in

different contexts. However, in our opinion, given the general logic-based rule for delegation

that we used in inversion and tried to teach the humans, a more fruitful area of research would

be to understand various directional complementaries that exist between humans and machines

in tasks that are in danger of being automated by AI.

We see this work as a first step in the analysis of more complex human-machine relationships.

It opens up two complementary research streams: Improving human capabilities in delegating

tasks to a machine, and creating fruitful working environments using inversion. We believe that

humans could be strong in delegation - but what needs to be done to unleash this ability? How

do systems need to be set up, how do humans need to be trained, how do interfaces between

systems and humans have to be designed?

Regarding the second question: how would an inversion scenario have to be set up? Can

people improve in more challenging tasks if an AI relieves them of boring work? How should

the communication between AI and humans be designed? The central challenge will be to

understand in which situations which style of collaboration between humans and AI should be

striven for. It is also unclear what inversion will do to innovation. Can firms with and without

inversion coexist in a market?

We believe that all these are fascinating issues that researchers need to focus on, rather

than focusing simply on the planned obsolescence of humans at the workplace.
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Figure 9: Scatter plots for delegation rate, accuracy and certainty of Study 3. The figure shows
all three experimental treatments. Top row (images A, B, C): no strategy explained. Middle
row (images D, E, F): strategy explained. Bottom row (images G, H, I): strategy enforced.
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