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ABSTRAK 

Model-model regresi linear berganda (MLR) untuk anggaran pantas 

keberintangan sebenar subpermukaan daripada pengukuran keberintangan ketara telah 

dibangunkan dan dinilai dalam kajian ini. Tujuannya adalah untuk mengurangkan 

masa proses yang diperlukan untuk melaksanakan sonsang dengan algoritma 

konvensional. Susunatur yang dipertimbangkan adalah Wenner, Wenner-

Schlumberger dan Dipole-dipole. Parameter yang dikaji ialah keberintangan ketara (

a ), lokasi mendatar (x) dan kedalaman (z) sebagai pembolehubah bebas; sementara 

keberintangan sebenar ( t ) ialah pembolehubah bersandar. Untuk keberintangan 

subpermukaan tidak linear, set data terlebih dahulu diubah kepada skala logaritma 

untuk memenuhi andaian regresi asas; kenormalan, kelinearan, kekolinearan berganda, 

imbangan paksi, “heteroscedasticity” dan “outliers”. Empat model, setiap satu untuk 

tiga jenis susun atur, kemudiannya dibangunkan berdasarkan hierarki hubungan linear 

berganda antara pembolehubah bersandar dan pembolehubah bebas. Pekali MLR yang 

terhasil digunakan bagi menganggar t  untuk set data a , x dan z yang berbeza untuk 

pengesahan. Ketepatan model dinilai menggunakan pekali penentuan (R2), pekali 

penentuan yang diselaraskan (R2
adj), ralat punca min kuasa dua (RMSE) dan peratusan 

ralat min mutlak berpemberat (wMAPE). Nilai kalibrasi model, R2 telah didapati 

sebagai 0.75-0.76 untuk model-model susunatur Wenner, 0.63-0.71 untuk model-

model susunatur Wenner-Schlumberger dan 0.47-0.66 untuk model-model susunatur 
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Dipole-dipole. Begitu juga dengan RMSE dan wMAPE yang diperoleh untuk semua 

model yang dihasilkan adalah dalam julat 3-8 %. Satu model terbaik untuk setiap 

daripada tiga model dipilih berdasarkan penilaian ketepatan. Apabila dibandingkan 

dengan sonsangan kekangan piawai kuasa dua terkecil (SCLS) dan algoritma tidak 

lengkap Gauss-Newton (IGN), model-model MLR telah didapati berkurangan masa 

pemprosesan yang diperlukan sehingga 80-92 % untuk menjalankan sonsangan 

dengan algoritma SCLS. Akhir sekali, model terpilih telah digunakan untuk 

membangunkan satu templat untuk anggaran pantas keberintangan sebenar dalam 

platform Microsoft Excel. Ia dapat disimpulkan bahawa model-model MLR boleh 

menganggar t  dengan pantas untuk pelbagai susunatur dengan tepat. 
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MULTIPLE LINEAR REGRESSION MODELS FOR ESTIMATING TRUE 

SUBSURFACE RESISTIVITY FROM APPARENT RESISTIVITY 

MEASUREMENTS 

 

ABSTRACT 

Multiple linear regression (MLR) models for rapid estimation of true 

subsurface resistivity from apparent resistivity measurements are developed and 

assessed in this study. The objective is to minimize the processing time required to 

carry out inversion with conventional algorithms. The arrays considered are Wenner, 

Wenner-Schlumberger and Dipole-dipole. The parameters investigated are apparent 

resistivity ( a ), horizontal location (x) and depth (z) as independent variable; while 

true resistivity ( t ) is dependent variable. To address the nonlinearity in subsurface 

resistivity distribution, the datasets were first transformed into logarithmic scale to 

satisfy the basic regression assumptions; normality, linearity, multicollinearity, axis 

balance, heteroscedasticity and outliers. Four models, each for the three array types, 

were developed based on hierarchical multiple linear relationships between the 

dependent variable and the independent variables. The generated MLR coefficients 

were used to estimate t  for different a , x and z datasets for validation.  Accuracy 

of the models was assessed using coefficient of determination (R2), adjusted coefficient 

of determination (R2
adj), root-mean-square error (RMSE) and weighted mean absolute 

percentage error (wMAPE). The model calibration, R2 values were obtained as 0.75-

0.76 for Wenner array models, 0.63-0.71 for Wenner-Schlumberger array models and 

0.47-0.66 for Dipole-dipole array models. Similarly, the RMSE and wMAPE obtained 

for all the models developed were in the range of 3-8 %. One best model each for the 
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three arrays was thus selected based on the accuracy assessment. When compared with 

Standard Constraint Least-Squares (SCLS) inversion and Incomplete Gauss-Newton 

(IGN) algorithms, the MLR models have been found to reduce up to 80-92 % of the 

processing time required to carry out the inversion with the SCLS algorithm. Finally, 

the selected models were used to develop a template for fast estimation of the true 

resistivity on Microsoft Excel platform. It is concluded that the MLR models can 

rapidly estimate t  for the various arrays accurately. 



1 

CHAPTER 1 

INTRODUCTION 

 

1.0 Background 

In a general context, geophysics may be defined as a subject that applies 

physics principles to investigate the Earth, Moon and other planets (Telford et al., 

1990). This is particularly achieved through conducting and interpreting 

measurements of the Earth’s physical properties to ascertain its subsurface conditions 

to realize a desired goal (Kearey et al., 2002). Exploration geophysics, on the other 

hand, is concerned with investigating the Earth's crust and its near surface to achieve 

practical and economic objectives. It covers wide range of applications such as 

experiments to determine the thickness of overburden or sediments, study of shallow 

structures for exploring minerals, groundwater and other economic resources. In 

addition, it is concerned with surveys to locate narrow mine shafts and other forms of 

buried structures such as pipes, cables and cavities, or mapping of archaeological 

remains (Reynolds, 1997). 

Detection of structures beneath the ground surface therefore depends upon 

those properties that distinguish them from the surrounding media. Different methods 

may thus be applied to wide range of investigations depending on their suitability to 

resolve the target structure in relation to its surrounding environment. For example, 

seismic method takes the advantage of contrast in velocity of acoustic waves as they 

propagate through the subsurface to distinguish between rocks and soils of varied 

materials (Moorkamp et al., 2013). Magnetic method is efficient only when magnetic 

susceptibility contrasts can be used to differentiate underground materials (Dalan et 
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al., 2017; Davey, 2017). Same goes to gravity when variations in density distribution 

are used to identify targets of interest (Saad et al., 2014; Wada et al., 2017). Ground 

Penetrating Radar (GPR) is also another powerful tool used for very shallow studies, 

particularly when subsurface structures are distinguishable by their conductivity or 

reflectivity to radar pulses (Ebrahimi et al., 2017). 

In the same manner, electrical resistivity method uses contrast in resistivity 

distribution to distinguish between subsurface materials (Yao et al., 2017). The 

method injects current into the ground using two current electrodes. Electric potential 

can then be measured using another set of electrodes in the neighbourhood of the 

current flow. Since the magnitude of current applied is usually known, it is therefore 

possible to calculate the effective underground resistivity. This particularly makes 

resistivity (theoretically) superior to all other electrical methods, as quantitative 

results are obtained through the application of a controlled current source of specific 

dimensions (Telford et al., 1990). However, despite the advantages, the potentialities 

of resistivity are still not fully maximized, probably due to its high sensitivity to 

minor variations in subsurface conductivity. 

Resistivity method has been applied to solve many practical problems such as 

in engineering and environment (Bery & Saad, 2012b; Abdulrahman et al., 2013; 

Syukri et al., 2013), hydrological investigations (Massoud et al., 2015), exploration 

of mineral deposits (Chambers et al., 2012), detection of buried metallic objects and 

cavities (Vachiratienchai & Siripunvaraporn, 2013a), and more recently in shallow 

archaeological investigations (Saad et al., 2014). It has equally been proved useful in 

hydrocarbon exploration and forensic studies (Reynolds, 1997); and in regional 

geological investigations (Ali et al., 2013) covering areas of hundreds of square 

kilometres or even more (Reynolds, 1997). This is achievable considering how the 
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method has progressively developed especially in data acquisition and processing 

techniques (Rucker et al., 2012; Loke et al., 2015; Anders et al., 2016; Ingeman-

Nielsen et al., 2016). Resistivity and electromagnetic methods are likely be the most 

applied among the other geophysical methods (Reynolds, 1997). 

Just like in the case of most other geophysical methods, apparent resistivity 

data acquired on site are not normally interpreted directly. Inversion is required to 

build true subsurface resistivity model from the measured apparent resistivity data 

(Narayan et al., 1999a; Loke et al., 2015a). Inversion algorithms based on different 

theoretical frameworks have been developed and are still being upgraded to 

accomplish this task (Kiflu et al., 2016). In conjunction with recommendations and 

gaps in literature, new multiple linear regression models are developed and assessed 

in this study, based on three physical parameters derived from subsurface apparent 

resistivity measurements. 

 

1.1 Problem statements 

 Resistivity method is one of the few geophysical exploration tools applied to 

solve many exploration related problems such as groundwater (Saad et al., 2012a), 

mineral prospecting (Song et al., 2017) and investigating engineering construction 

sites (Dahlin at al., 2007; Bery and Saad, 2012b). However, resistivity data acquired  

on site are apparent (not true) and cannot therefore be used directly to characterize 

the subsurface materials (De Donno and Cardarelli, 2017). Inverse modelling of such 

apparent resistivity measurements is necessary if the true subsurface resistivity 

model is to be actualized. 
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 Many resistivity inversion techniques have been developed for many years 

and still being enhanced to curtail the problems associated with its speed and efficacy 

(Bergmann et al., 2014). The least squares optimization-based techniques are the 

most conventional but are particularly susceptible to problems such as emergence of 

false anomalies at intermediate and later iterations, consume a lot of time for the 

iterative computations to converge at minimum data misfit (Vachiratienchai and 

Siripunvaraporn, 2013) and difficulties in dealing with nonlinear relationships among 

the modelling parameters (Singh et al., 2010). Even more recently, Loke et al. (2015) 

demonstrated that variability in the true subsurface resistivity as explained by the 

apparent resistivity measurement parameters is not completely known. Thus, an 

additional independent variable is entered into inversion routine without adequate 

knowledge on how much it can contribute to the overall inversion accuracy. 

 To minimize the processing time required for inversion with conventional 

techniques, this research is focused to develop linear regression models for 

estimating true subsurface resistivity, based on measured apparent resistivity data. 

The models are also compared with results from Res2Dinv software for validation. 

 

1.2 Research objectives 

 The main aim of this research is to develop multiple linear regression models 

for rapidly estimating true subsurface resistivity from apparent resistivity 

measurements. The research has the following specific objectives specific which are; 

i. To develop and assess linear regression models for estimating true subsurface 

resistivity from apparent resistivity data 
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ii. To evaluate the contribution of apparent resistivity to the variability in true 

subsurface resistivity when other variables are not involved 

iii. To assess the efficacy of the linear regression models to reduce processing 

time as compared with other established techniques available in Res2Dinv 

software 

iv. To develop a template for fast estimation of the true resistivity on Microsoft 

Excel platform, using the selected models for each array 

 

1.3 Scope of the study 

 In this study, multiple linear regression models for estimating true subsurface 

resistivity from apparent resistivity measurements have been developed and assessed. 

Only three arrays configuration; Wenner, Wenner-Schlumberger and Dipole-dipole 

were considered, for they are the most commonly used of the arrays configuration 

available (Telford et al., 1990). The parameters used in developing the models were 

apparent resistivity (
a ), horizontal location (x) and depth (z) of measurements as 

the independent variables, with the true resistivity (
t ) being the dependent variable. 

The independent variables were not measured directly but are spontaneously 

computed from combinations of several other measurable parameters as 

measurements are being carried out and can thus provide adequate representation of 

the entire survey measurements. They are equally the end result of any 2-D 

resistivity measurement, and they together allow for the plotting the apparent 

resistivity pseudo section. Furthermore, the calibration data was acquired at 

Universiti Sains Malaysia, Pulau Pinang, Malaysia. The area is composed of residual 
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soil of uniform composition, making it suitable for the purpose of this study. The 

motivation to cautiously select a suitable area as a source of good data for the 

modelling cannot be overemphasized. The validation data was acquired at eight (8) 

arbitrary sites in various parts of Asia as well as in West Africa. This was done to 

ascertain the robustness of the models for accurate true resistivity estimation.  

 

1.4 Research significance and novelty 

 This research work seeks to develop linear regression models for estimating 

true subsurface resistivity from apparent resistivity measurements obtained using 

Wenner, Wenner-Schlumberger and Dipole-dipole arrays. The models produced 

reasonable true resistivity estimates when compared side by side with results 

obtained from Res2Dinv software, at much lesser time. The research has also 

managed to evaluate the contribution of apparent resistivity to the variability in true 

subsurface resistivity when other variables are not involved. 

 This research also owes it originality to the fact that it is the first of its kind to 

provide alternative means for rapidly estimating true subsurface resistivity using a 

simple template constructed from linear regression coefficients derived from 

apparent resistivity field measurements, without recourse to complex inversion 

algorithms. It is also the first to quantify the contributions of measured apparent 

resistivity to variability in true resistivity by empirical means. The same method can 

be adopted to examine other arrays and parameters that have not been investigated in 

this study. 
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1.5 Thesis layout 

 This thesis is itemized into five distinct chapters. Chapter one is the 

introductory chapter, in which the background to the study is first presented. The 

next section discussed the problem statement which is a consequence of the 

knowledge gap discovered from literature. To address the problems, specific 

objectives are thus outlined in the subsequent section. Lastly, significance of the 

research is discussed, and emphasis is made on its novel contributions to knowledge. 

 Chapter two presents review of related literature, particularly on resistivity 

inversion. The chapter discussed and summarized previous research works aimed at 

addressing inversion related problems. In the process gaps were identified, which 

formed the basis for this study. 

 Chapter three discussed the resistivity method generally, with emphasis on its 

fundamental theoretical framework. Data acquisition methods for the arrays under 

investigation are also highlighted. Concept of multiple linear regression is then 

discussed, both in theory and application. The methodology designed to achieve the 

objectives of this research is explained and illustrated. Emphasis is also made on data 

processing, modelling and validation procedures. Finally, geology of the study is also 

described. 

 Chapter four presents result of the research. It demonstrates the performance 

of data transformation to achieving linearity and normality in resistivity datasets. It 

also presents the resistivity models developed and showcases their robustness and 

efficacy to estimating the true resistivity. This is evident when apparent resistivity 

data along eighteen (18) at eight (8) arbitrary sites in various parts of Asia and in 

West Africa were acquired and processed using both the linear regression models of 
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this study and Res2Dinv software for comparison. The RMSE and wMAPE of the 

estimates computed show that the errors occurred were generally less than 13 %, 

which is far below the 26 % signifying poor convergence for resistivity inversion 

which becomes high when it reaches 40 % (Wilkinson et al., 2012). The percentage 

contributions of apparent resistivity to the variations in true resistivity have also been 

quantified and presented in the chapter. Comparisons are also made between the 

three arrays investigated as well as with other established techniques. A template for 

fast estimation of the true resistivity has finally been developed and tested on 

Microsoft Excel platform. 

 Chapter five concludes the major findings of this study and provides 

recommendations for future research. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.0 Introduction 

 This chapter presents review of previous work relevant to this study. 

Theoretical framework of resistivity method and arrays configuration are first 

discussed to provide general background and basic understanding for the research 

subject. A brief account of Res2Dinv software, as famous tool for resistivity data 

inversion, is also provided. Review of related literature is then presented to appraise 

the contributions made by previous researchers and to identify gap to be filled by the 

present study. Summary and comments are finally given with emphasis on the merits 

and demerits of the major techniques. 

 

2.1 Fundamentals of resistivity method 

 Resistivity method injects an artificially generated current into the ground, 

most commonly through point electrodes. Electric potential is then measured using 

pair of electrode near the current flow. It is therefore possible to calculate the 

underground effective or apparent resistivity since the magnitude of current applied 

is usually known. True resistivity estimated from the measurements is related to 

several other geological parameters or factors such as mineral content, porosity, pore 

fluid type and degree of saturation to identify geological features. It is important to 

note that resistivity of varied materials vary in a wider range depending on these 

factors. Metallic ores, for example, can have resistivity values of 10–5 Ωm compared 
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to about 108 Ωm obtained in dry marble. Resistivity of most other common materials 

fall between these extreme values (Table 2.1). Resistivity survey therefore takes 

advantage of the large contrast to easily locate a low resistivity orebody in a high 

resistivity host rock (Telford et al., 1990). 

Table 2.1: Resistivity of some common rocks and soil materials (Reynolds, 1997; 

Lowrie, 2007) 

Material Resistivity, ρ (Ωm) 

Granite 3 x 102 – 106 

Granite (weathered) 3 x 10 – 5 x 102 

 
Schist (calcareous and mica) 20 – 104 

Quartzite 103 – 105 

Basalt 1 – 105  

Graphite 10–4 – 10–2 

Graphitic Schist 10–1 – 50 

Sandstone 1 – 7.4 x 108 

Limestone 10 – 107 

Clay 1 – 102 

Alluvium 1 – 103 

Consolidated shale 20 – 2 x 103 

Sand and gravel 10 – 104 

  

The fundamental physics principle governing resistivity method is the one 

established by German scientist; Georg Simon Ohm in 1827, that electric current, I in 

a conducting medium is directly proportional to potential difference, V across the 

conductor. This is called Ohm’s Law and expressed by Equation 2.1 

IRV =        (2.1) 

Where; 

R is resistance of medium (Ohm, Ω). 
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The reciprocal of resistance is conductance, G with unit as inverse Ohm (Ω–1) 

or simply Siemens (S). It has been established from experiments that for a uniform 

material, its resistance is found to be directly proportional to its length, L and 

inversely proportional to an area of cross section, A (Figure 2.1). This can be 

expressed mathematically as Equation 2.2 

  

Figure 2.1: Electric current, I flowing through a cylinder of uniform material, with 

resistivity, ρ, cross-sectional, A and length, L produces a potential difference, V 

(Modified from Lowrie, 2007) 

 

A

L
R =        (2.2) 

Where; 

 is proportionality constant, known as resistivity of the material. 

Resistivity is defined as the physical property of the material which dictates 

its ability to oppose the flow of electric current with the units Ωm. Just like the 

resistance, reciprocal of resistivity is called conductivity, σ and expressed in Ω–1.m–1 

(Kearey et al., 2002). 

A 
I 

L 

ρ 

V 
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Suppose that Equation 2.2 is substituted in Equation 2.1 and rearranged, 

Equation 2.3 will thus emerge 

  
A

I

L

V
=        (2.3) 

The ratio of AI  in the right hand side of the Equation denotes the current density, J 

defined as current per unit area. The ratio, LV in the left hand side also corresponds 

to electric field, E. Equation 2.3 can therefore be rewritten as Equation 2.4 

JE =        (2.4) 

The form of equation expressed by Equation 2.4 is particularly useful for 

resistivity computations in resistivity survey, even though the physical quantities, V 

and I are still measured and recorded in the survey (Lowrie, 2007). 

 Suppose that current is supplied to the surface of a uniform half space via an 

electrode, the contact point serves as current source, from which the current radiates 

outward. The electric flux is parallel to the direction of flow of current and 

perpendicular to the equipotential surface (Figure 2.2). 

Current flow

Equipotential

surface

I

ρ
r

 

Figure 2.2: Current flow through an electrode (Modified from Lowrie, 2007) 
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Since current density, J is given by, AI  where A is defined as 22 r for 

hemisphere of radius, r, the electric field, E at a distance, r from the electrode can be 

modified from Equation 2.4 as Equation 2.5 

  
22 r

I
JE


 ==       (2.5) 

But, potential difference, V across a hemispherical shell of thickness, r is 

defined as rE−  or as expressed in Equation 2.6 

  
22 r

I
E

r

V


−=−=




      (2.6) 

Thus, the potential difference, V at a distance, r from the current source 

(given by Equation 2.7) is obtained by integrating both sides of Equation 2.6 

r

I
V




2
=        (2.7) 

Figure 2.7 shows that an electric flux around a source electrode which injects 

current into the ground is radially outwards, while in the case of a sink electrode 

through which current flows out of the subsurface, the flux is radially directed 

inwards. Hemispherical equipotential surfaces are thus observed beneath the source 

and sink electrodes if the two electrodes are regarded in isolation. Around the source, 

the potential is positive and thus decreases as distance increases. At sink however, 

the sign of I is negative and so, V is also negative. Increasing distance will therefore 

increase the magnitude of V since it becomes less negative (Equation 2.7). These 

hypothesis can therefore be used to compute potential difference between another 

pair of electrodes placed at specific distances from the current electrode (Lowrie, 

2007). 
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Figure 2.3: Cross-section of current and equipotential lines produced between a 

current source and sink (Modified from Reynolds, 1997) 

 

2.2 Four electrodes method for measuring subsurface resistivity 

 Figure 2.4 depicts an arrangement consisting pairs of current and potential 

electrodes. The electrodes labelled A and B indicate the source and sink respectively. 

The potential due to the source, A at the detection electrode, C is 
1

2 rI + , whereas 

the potential due to sink, B at the same detection electrode, C is 
3

2 rI − . The 

resultant potential at C is therefore given as Equation 2.8 

  









−=

31

11

2 rr

I
VC




      (2.8) 

 Similarly, the effective potential due to the same source and sink at the 

detection electrode, D can be formulated as Equation 2.9 

  







−=

42

11

2 rr

I
VD




      (2.9) 
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Figure 2.4: Four-point electrode configuration for resistivity measurement (Modified 

from Kearey et al., 2002) 

 

 The potential difference measured by a receiver connected across C and D is 

thus given as Equation 2.10 

  













−





−









−=

4231

1111

2 rrrr

I
V




    (2.10) 

 Since all parameters in Equation 2.10 can be measured directly on site apart 

from resistivity, the resistivity can thus be calculated when Equation 2.10 is 

rearranged to form Equation 2.11 

  

1

4321

1111
2

−











+−−=

rrrrI

V
     (2.11) 

 Equation 2.1 is inserted into Equation 2.11 to yield Equation 2.12 as 

  kR=        (2.12) 

where the geometrical parameter, k given by Equation 2.13 is defined for various 

arrays configuration. The apparent resistivity value will thus depend on the geometry 

of the electrode array used to measure it (Kearey et al., 2002). 
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1

4321

1111
2

−











+−−=

rrrr
k       (2.13) 

 The general resistivity formula is given by Equation 2.11, for certain special 

configurations of current and potential electrodes. Of the configurations available, 

the most commonly used are Wenner, Schlumberger and Dipole-dipole or Double-

dipole (Telford et al., 1990). In this study however, a modified form of Schlumberger 

array, called Wenner-Schlumberger array is used together with Wenner and Dipole-

dipole. This is because standard arrays are required to acquire data with a digital 

multi-electrode system with electrodes arranged at uniform spacing. In each of the 

configurations, all the four electrodes are collinear, but the major differences are in 

spacing and geometry. 

 

2.2.1 Wenner array 

 Wenner array configuration applies all four the electrodes spaced uniformly 

in line, in such a way that both current and potential electrode pairs are having 

common mid-point (Figure 2.5). Therefore, arr == 41  and arr 232 == (Figure 2.4). 

Inserting the notation into Equation 2.13 will return, ak 2= . The apparent 

resistivity in Equation 2.12 can now be rewritten as Equation 2.14 for Wenner array. 

  aR 2=        (2.14) 
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C1 P1 P2 C2

a a a

 

Figure 2.5: Current and potential electrodes geometry for Wenner array (Modified 

from Telford et al., 1990) 

 

For vertical sounding work using Wenner spread, electrodes are extended 

about the mid-point by increasing the spacing, a in steps until a desired depth of 

investigation is reached, since array length is proportional to depth. In the case of 

lateral exploration however, spacing between the electrodes is kept constant, but all 

the four electrodes are shifted horizontally in line until the survey line is completed. 

For both cases, the apparent resistivity value measured is plotted against the spread 

centre, specified by horizonal location and depth. For two-dimensional survey, the 

two methods are combined in one system and measurements are carried out 

simultaneously (Milsom, 2003). 

 

2.2.2 Wenner-Schlumberger array 

 As the name implies, Wenner-Schlumberger array arises from combination of 

Wenner and Schlumberger arrays to carryout survey works using the nowadays 

digital multi-electrode systems with electrodes arranged at constant spacing (Figure 

2.6). A factor, n defines a ratio of the spacing between C1 and P1 (or C2 and P2) to the 

distance between P1 and P2. Similar analysis from Figure 2.4 provides, narr == 41  

and )(32 anarr +== . Substituting the notation into Equation 2.13 returns, 
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annk )1( +=  . The apparent resistivity from Equation 2.12 can then be formulated 

as Equation 2.15 for Wenner-Schlumberger array  (Loke, 2016). 

 aRnn )1( +=        (2.15) 

C1 P1 P2 C2

na a na

 

Figure 2.6: Current and potential electrodes geometry for Wenner-Schlumberger 

array (Modified from Telford et al., 1990) 

 

2.2.3 Dipole-dipole array 

 Dipole-dipole array is arranged in such a way that the distance, a between 

both current (C1 and C2) and potential (P1 and P2) electrodes pairs is relatively small 

compared to the distance between the two pairs (or between C1 and P1). A factor, n 

which indicates integral multiple of the spacing, a is also defined for the array 

(Figure 2.7). Referring to Figure 2.4; nar =1 , )(32 anarr +==  and )2(4 anar += , 

and substitute into Equation 2.13 will provide, annnk )2)(1( ++=  . The apparent 

resistivity formula for Dipole-dipole array can thus be written as Equation 2.16 

(Lowrie, 2007). 

 aRnnn )2)(1( ++=        (2.16) 
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C2 C1 P1 P2

a na a

 

Figure 2.7: Current and potential electrodes geometry for Dipole-dipole array 

(Modified from Telford et al., 1990) 

 

2.3 Inversion of resistivity data 

 The objective is this study to provide an alternative technique for processing 

apparent resistivity data to produce true resistivity, especially when processing time 

with conventional inversion algorithms, embedded in commercial software packages, 

is of primary concern. Some of the software packages available in the market are 

AIG EarthImager, ZondRes2d, Aarhusinv (Auken et al., 2015; Fiandaca et al., 2013), 

BERT (Rucker et al., 2006; Gunther et al., 2006) and Res2Dinv (Loke et al., 1996; 

Loke et al., 2003) among others. Of all these commercial software packages, 

Res2Dinv is the most prominent and widely accepted (Dahlin at al., 2007; Bery & 

Saad, 2012a; Saad et al., 2012a; Saad et al., 2012b;  Abdulrahman et al., 2013; 

Syukri et al., 2013).  

The software has inversion algorithms that seek to find a true resistivity 

model that gives a response similar to the actual measured apparent resistivity data. 

The model is an idealized mathematical representation of a section of the earth. The 

model is specified by a set of model parameters which are the physical quantities we 

want to estimate from the measured data. The model response is the synthetic data 

that can be calculated from the mathematical relationships defining the model for a 

given set of model parameters. The inversion algorithm essentially tries to determine 
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a model for the subsurface whose response agrees with the measured data subject to 

certain restrictions and within acceptable limits. An initial model is modified in an 

iterative manner so that the difference between the model response and the measured 

data values is reduced. The measure of this difference is given by root-mean-squared 

error (RMSE) or mean absolute percentage error (MAPE). In the cell-based method 

used by the Res2Dinv programs, the model parameters are the resistivity values of 

the model cells, while the data is the measured apparent resistivity values. The 

mathematical link between the model parameters and the model response for the 2-D 

resistivity models is provided by the finite-difference or finite-element methods 

(Loke, 2016). 

 

2.4 Previous works 

 Today, resistivity survey plays significant role in many large-scale sites 

characterization (Dahlin at al., 2007; Bery and Saad, 2012b), groundwater 

exploration (Saad et al., 2012a) and mineral prospecting (Saad et al., 2012c; Song et 

al., 2017). Unfortunately, the measured apparent resistivity data from such surveys 

cannot be used directly to describe the subsurface (De Donno and Cardarelli, 2017). 

There is, therefore, a need to develop resistivity models that can portray the true 

subsurface conditions based on the apparent resistivity measurements. The act of 

building such models is an inversion problem. Inverse modelling can be performed 

within certain allowable error limits (Narayan et al., 1999). 

 Resistivity inversion has received enormous attention from various 

researchers over the years. Investigations are still ongoing to further mitigate the 

problems associated its speed and efficacy. In this section, review of related previous 
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research works aimed to address these problems, is carried out. They are presented in 

accordance with the underlying theoretical frameworks upon which they were based. 

Prominent among such approaches are the least squares optimization, artificial neural 

network (ANN) and joint inversion. A few other approaches are also used but are 

generally less popular. 

 The readiness of apparent resistivity data inversion to build true subsurface 

resistivity model of a given 2-D geologic structure was assessed by Olayinka and 

Yaramanci (2000a) based on a smoothness constrained nonlinear least squares 

optimization technique using Wenner array. The assessment was carried out using 

synthetic apparent resistivity data derived from vertical fault, horizontal layered, up 

faulted basement block overlain by a conductive overburden and low resistivity infill 

over high resistivity basement models. The resistivity inversion models obtained 

were generally much sharper than the models built directly from the synthetic data 

over the vertical structure models. However, the inversion models had lower 

resistivity values than the lowest and higher values than the highest (extreme) values 

of the actual resistivity models. This has shown that only an approximate guide to the 

true geometry of a given formation can be achieved from the smooth inversion 

technique. 

 Olayinka and Yaramanci (2000b) again investigated the capability of a block 

inversion scheme to determining the geometry and true resistivity of subsurface 

structures and proposed a simple strategy for formulating the starting (initial) model. 

The strategy was based on plane layered Earth model to define layers and bodies of 

equal resistivity. The block inversion was also compared to the cell based smooth 

inversion scheme using synthetic and field examples. The results indicated that the 

smooth inversion can produce sharp images for resolving structural geometry but 
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could only provide rough estimates of true resistivity values due to the smearing 

effects. However, in the presence of sharp resistivity discontinuities, block inversion 

can resolve the subsurface geometry and resistivity more precisely. 

 Loke and Dahlin (2002) examined the strength and weakness of smoothness 

constrained least squares method for the inversion of 2-D and 3-D apparent 

resistivity datasets. In this approach, Jacobian matrix for a homogeneous earth model 

is utilized for the first iteration, and the matrix elements are subsequently adjusted in 

later iterations. Least squares equation is solved by applying the Gauss-Newton 

equation that recalculates the Jacobian matrix of partial derivatives. Time involved in 

the iterative computations of many dataset is minimized with the help of the quasi-

Newton method. The authors further proposed an intermediate technique as a 

combination of Gauss-Newton and quasi-Newton methods, in which the partial 

derivatives are directly calculated for the first few iterations, and then updated by a 

quasi-Newton technique for subsequent iterations. Three inversion techniques were 

simultaneously tested with apparent resistivity data from synthetic model and test 

site. All the techniques performed roughly the same way for areas with moderate 

resistivity contrasts. However, with increasing resistivity contrasts, the quasi-Newton 

technique performed least. The Gauss-Newton was relatively better than combined 

method, but the combined method was considerably faster especially in dealing with 

many datasets. 

 Pain et al. (2002) developed a multidimensional resistivity inversion 

technique based on finite element, to represent electric potentials of each source 

problem and conductivities describing the model. Least squares approach was chosen 

to solve the inverse problem for the fact that quadratic terms to be optimized can be 

treated implicitly, making it possible to attain a near minimum after a single iteration. 
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Linear preconditioned conjugate gradients were used to solve both potential field 

source and least squares problems. Since the electrical inverse problem is ill-

conditioned, model covariance matrices and data weighting were used to aid the 

inversion process to reach an appreciable result. The model covariance used 

permitted preferential model regularization in arbitrary directions and the application 

of spatially varying regularization. Two approaches for improving model resolution 

away from sources and receivers were demonstrated. The first approach investigated 

the practicality of applying smoothness constraints that depend on depth and change 

in direction. The second approach preferentially updates the data with additional 

weights containing extra information of poorly resolved areas. When tested with 

numerical and site examples, both methods improve the inversion model and aid the 

reconstruction algorithm to create model structure at depth. 

 In a similar attempt, Loke et al. (2003) reviewed the merits and demerits of 

smooth and blocky inversion techniques for 2-D resistivity inverse modelling, and 

summarized thus: the regularized (smooth) least squares optimization approach (with 

a cell based model) that seeks to minimize the squares sum of the spatial changes in 

the model resistivity is frequently applied for the inversion of resistivity data if 

structures with random resistivity distributions are to be sufficiently resolved. Hence, 

the inversion model produced has a smooth change in the resistivity values. 

However, for cases in which the subsurface constitute a few zones with roughly 

uniform internal resistivity distribution, but are separated by sharp boundaries, the 

smooth inversion technique tends to smear out the boundaries and produce too low or 

too high resistivity values. The blocky optimization method can then provide 

solutions to such problems by way of minimizing the sum of the absolute values of 

the spatial changes in the model resistivity. Based on a number of synthetic and field 
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tests on both approaches, it was concluded that the smooth inversion technique can 

perform better when applied in areas with gradual subsurface resistivity variations, 

while the blocky inversion approach produces better results for areas with sharp 

boundaries. 

 Pain et al. (2003) formulated a 3-D electrical imaging inversion method in 

anisotropic media with inhomogeneous conductivity distribution. In this method, the 

conductivity distribution is discretized using finite elements and is described by a 

second order tensor at each finite element node. The inversion approach was defined 

as a functional optimization in which data misfit and model covariance are measured 

by an error term using smoothness, anisotropy and deviation from a given starting 

model. The error function is minimized with the aid of an iterative preconditioned 

conjugate gradient solver as a Levenberg-Marquardt type method to bypass the 

actual computation of the Jacobian matrix. For each inversion, penalty parameters 

were chosen to gauge the level of model covariance information imposed. When 

tested with 2-D and 3-D synthetic model data, the inversion process was found to be 

highly nonlinear. The images obtained approximately reproduced the prominent 

features of the model. However, the magnitudes and directions of anisotropy 

anomalies were generally underestimated, with the inversion images blurred with 

sharp edges smoothed. 

 In another research, Loke and Lane (2004) modified the smoothness 

constrained least squares inversion technique for interpretation of resistivity data 

from land surveys to fit water bottom topography. This was done by using a distorted 

finite-element grid to estimate apparent resistivity values for inverse model. The first 

few rows of element grid were dedicated for modelling the water layer, and 

subsequent elements were used for the sub bottom resistivity distribution. The water 


