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REKABENTUK DAN FABRIKASI FANTOM TIROID BERCETAK 3D UNTUK 

DOSIMETRI SINARAN  

 
 

ABSTRAK 

 
Penganggaran dos radiasi dalaman dan luaran daripada prosedur SPECT/CT amat 

bergantung pada kaedah pengiraan Dos Radiasi Dalaman Perubatan. Pada masa ini, tiada 

fantom tiroid dinamik dengan bentuk geometri yang tepat yang boleh mensimulasikan 

biokinetik radiofarmaseutis di dalam tiroid. Kajian ini bertujuan untuk mereka bentuk dan 

membuat fantom tiroid dinamik tiga dimensi (3D) untuk mendapatkan kualiti imej dan 

dosimetri yang tepat. Mesin Spektroskopi Tenaga Serakan X-ray (SEM-EDS) digunakan 

untuk mendapatkan pecahan unsur jisim untuk mengevaluasi sembilan bahan bercetak 3D. 

Hasil yang didapati digunakan dalam pangkalan data keratan rentas foton XCOM versi 

dalam talian untuk memperoleh nilai pengecilan jisim bagi setiap bahan. Dua teknik CT 

yang berbeza (pengimejan tenaga tunggal dan pengimejan dwitenaga) digunakan untuk 

meneliti ciri-ciri pelemahan bagi setiap bahan dengan mengukur angka CT. Hasil daripada 

semua kaedah dibandingkan dengan nilai pelemahan tiroid. Hasil kajian menunjukkan 

bahan polikarbonat boleh digunakan sebagai bahan yang menyerupai tisu tiroid manusia. 

Fantom leher-tiroid bercetak 3D direka bentuk dengan menggunakan teknologi cetakan 

3D. Fantom tiroid jenis pepejal dan berongga direka dengan menggunakan perisian 3D 

Max. Dimensi tiroid yang digunakan diperoleh daripada sorotan kajian. Kedua-dua 

fantom mempunyai dua lubang pada setiap lobus untuk pemasangan dosimeter radiasi 

(contohnya dosimeter pendarcahaya rangsangan optik dan termopendarcahaya). Fantom 

tiroid mengambil masa selama 30 minit untuk menghasilkan cetakan berbanding dengan 
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kaedah konvensional yang memakan masa lebih lama. Pam picagari infusi digunakan 

untuk mensimulasikan data biokinetik Tc-99m daripada sorotan kajian bagi dosimetri 

dalaman semasa pengimejan SPECT/CT. Tujuh peratus daripada isi padu 370 MBq dan 

74 MBq masing-masing dimasukkan ke dalam fantom tiroid orang dewasa dan kanak-

kanak berumur 10 tahun. Hasil yang diperoleh dibandingkan dengan nilai Suruhanjaya 

Antarabangsa bagi Perlindungan Radiologi (ICRP) dan perisian Pemodelan 

Eksponen/Penilaian Dos Dalaman Aras Organ (OLINDA/EXM). Keputusan 

menunjukkan perbezaan yang agak kecil berbanding dengan hasil dosimeter ICRP (7.43 

% untuk orang dewasa dan 20.37% untuk kanak-kanak). Ini boleh dirujuk kepada data 

pembersihan ginjal teknetium dan taburannya dalam badan dengan menggunakan data 

eksperimen yang dijalankan terhadap manusia dan haiwan pada tahun 1960-an. 

Perbezaaan peratus antara perisian OLINDA/EXM dengan dos purata daripada kajian 

dosimetri menunjukkan perbezaan yang ketara (84.11 % untuk orang dewasa dan 107.45 

% untuk kanak-kanak). Hal ini kerana perisian OLINDA/EXM bergantung pada 

pengiraan nilai eksponen dan input model kinetik dalam pengiraan dos radiasi dalaman. 

Hasil kajian menunjukkan teknik biokinetik ini boleh digunakan untuk mendapatkan dos 

terserap sebagai alternatif dan kaedah yang praktikal bagi pendekatan dosimetri individu 

berbanding dengan pengiraan atau perisian simulasi. Kesimpulannya, kajian ini 

menunjukkan bahawa pengkuantitian dos radiasi dalaman dan luaran bagi tiroid boleh 

diperoleh dengan menggunakan fantom leher-tiroid bercetak 3D rekaan. 
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DESIGN AND FABRICATION OF A 3D PRINTED THYROID PHANTOM FOR 

RADIATION DOSIMETRY 

 
 

ABSTRACT 

 
Estimation of internal and external radiation dose from SPECT/CT procedures 

depends mainly on calculations of Medical Internal Radiation Dose (MIRD) methods.  

Currently, there is no dynamic thyroid phantom with a precise geometrical shape which 

can simulate the biokinetics of the radiopharmaceuticals in the thyroid. The goal of this 

study was to design and fabricate a three-dimensional (3D) dynamic thyroid phantom for 

dosimetry and image quality evaluation. Nine 3D printing materials were evaluated in 

terms of elemental composition, mass attenuation coefficients, CT numbers and mass 

density, where The Energy Dispersive X-ray Spectroscopy (SEM-EDS) machine, CT 

scanner of two different CT modes (single-energy and dual-energy imaging) and online 

version of the XCOM photon cross-section database were used. The results were 

compared with the attenuation values of the thyroid, where polycarbonate (PC) material 

shows a good match and can be used as a tissue-equivalent material for human thyroid to 

3D print the thyroid phantom in this study. Hollow and solid thyroid phantoms were 

designed using 3D Max software. Both thyroid models have two holes on each lobe for 

installation of radiation dosimeters (i.e. thermoluminescence and optically stimulated 

luminescence dosimeters). The infusion syringe pump was used to simulate the biokinetics 

data of Tc-99m for internal dosimetry during SPECT/CT imaging. Seven percent of 370 

MBq and 74 MBq were administered into the thyroid phantoms of adult and paediatric of 

10 years old, respectively. The results were compared with International Commission on 
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Radiological Protection (ICRP) values and Organ Level Internal Dose 

Assessment/Exponential Modelling (OLINDA/EXM) software. The results showed 

slightly lower difference from dosimeters than ICRP results (7.43 % and 20.37% for adult 

and children, respectively). The percentage differences between the OLINDA/EXM 

dosimetry study showed a significant difference (84.11 % and 107.45 % for adult and 

paediatric, respectively). The close results from ICRP may refer to that the ICRP using 

the experimental data on humans or animals that was published in the 1960s, while 

OLINDA/EXM software applies complicated calculations using hypothetical and 

standardised phantoms and models of the human body with simple geometry shapes. The 

biokinetics procedure results reveal that the technique applied can be used to quantify 

internal and external radiation dose to thyroid as an alternative and practical method for 

an individualised dosimetric approach other than using calculations or simulation 

software.  
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CHAPTER 1 INTRODUCTION 

 
1.1 Introduction  

Since the discovery of X-rays by Rontgen in 1895 and decay of radioactivity by Becquerel 

in 1896, many tools and instruments used in diagnostic radiology and nuclear medicine 

have evolved. In general, nuclear medicine studies the function of the body, using different 

imaging techniques, such as producing a 3-dimensional image using single-photon 

emission computed tomography (SPECT), which shows better detection of lesions than 

with planar imaging.  

Although it is weak in showing the anatomical details which can lead to uncertain 

interpretations due to a lack of localisation information of the lesion (Jacene et al., 2008). 

Many software tools have been used to integrate the function of images from nuclear 

medicine with the anatomical images from computed tomography (CT), and this enhances 

the patient care and management decisions. This is called hybrid imaging. 

Computed tomography can be utilised in nuclear medicine for three major different 

purposes: attenuation correction, radiopharmaceutical's anatomical localisation and for 

diagnostic examination (STUK - Radiation and Nuclear Safety Authority, 2012). Further 

work on this technique continues to enhance the sensitivity of the camera, spatial 

resolution and image reconstructions. In these hybrid imaging techniques, radiation 

exposure catches more attention due to the increase of dose level from CT and high 

effective dose from radionuclides in nuclear medicine. Attention is now leading towards 

reducing the patient absorbed dose especially in paediatric imaging, besides keeping a 

high-quality image. This indicates the importance of in vivo radiation dose measurement 

of radiosensitive organs like the thyroid during a clinical procedure. 
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The right choice of radionuclides and suitable activity are essential to assess the internal 

dosimetry for different organs. This will assist to optimise the quality of images as well 

(Chaichana and Tocharoenchai, 2016). The injection, inhalation or oral intake of these 

radioisotopes to patients are considered as the primary contents of nuclear medicine 

practice, whether for diagnostic, therapeutic or research purposes.  

Thus, new procedures and strategies are improved side by side with presenting of new 

radiopharmaceuticals (ICRP, 2015). It has also helped to discover new types of 

radiopharmaceuticals, develop the production of the radioisotopes and to innovate new 

techniques, which have enhanced the quality of patient care with a clear understanding of 

the nature of radioactive materials and how they are detected (IAEA, 2015). 

Using ionising radiation is essential for all diagnostic procedures, and this involves the 

risk of cancer development later in life. The thyroid is considered as a radiosensitive 

organ, and is exposed to a direct beam during neck examination in a CT scan, which 

increases the lifetime risk of inducing cancer, especially for paediatric patients. 

For the dosimetry purposes, the external exposure of a radiation beam can be directly 

measured using many real-time dosimetric tools such as skin dose or dose area product to 

evaluate the patient's dose. 

Estimation of absorbed dose from internal exposure involves complicated procedures, and 

it depends on the dose calculation that is usually performed using Medical Internal 

Radiation Dose (MIRD) methods based on measurement of the biokinetic data of different 

organs. The manual calculation is time-consuming and highly operator-dependent, which 

leads to the development of software tools including the Organ Level INternal Dose 

Assessment/EXponential Modeling (OLINDA/EXM) software to ease these 

calculations. Evaluating the dose using phantoms provides many advantages over the 
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mathematical methods since the irradiation geometry and the energy spectrum of the 

photon are always changing and need to be considered when calculating the dose. 

Numerous studies have developed many cumulative dose assumptions and theoretical 

hypotheses, where each radionuclide has its characteristic in the body. Although many of 

these studies and assumptions applied the calculations of the MIRD model, their 

assessments and results have varied widely over the years. Performing practical studies is 

rare, and the results could conflict with the theoretical studies, which may lead to incorrect 

research evaluations (Chu et al., 2012). 

There are several factors and difficulties in internal dosimetry compared to external 

dosimetry such as the absence of a direct method to measure the internal radiation dose to 

a patient, the distribution of the radioactive substances inside the body or inside the organ 

itself as it is not homogeneous, and each radiopharmaceutical has its own biokinetics 

inside the body. Besides that, the internal dose is complicated and takes a prolonged period 

since nuclear medicine examination takes a somewhat lengthy time as well.  

Anthropomorphic phantoms are constructed from various tissue substitute materials, 

which have been used widely for radiation dosimetry purposes. These phantoms consider 

the attenuation properties and the actual physical shape and size of the organ which mainly 

affects the results of the adsorbed dose. In commercially available anthropomorphic 

phantoms, there is no specific geometry of thyroid and it is considered as a homogenous 

organ with the same tissue substitute with soft tissue, which cannot be a precise 

representative of an actual thyroid gland. 

In general, phantoms can be classified into two categories; imaging or dosimetric 

phantoms based on their applications in diagnostic radiology (White, 1993; Jones et al., 

2006). To assess image quality for optimizing acquisition procedures, the imaging 
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phantoms are used as a primary tool to fit this need, where this will lead to radiation dose 

reduction for the patients. In contrast, dosimetric phantoms are used to evaluate the dose 

in a patient’s organs during a clinical procedure.  

Generally, the dosimetric phantoms are designed using different tissue equivalent 

materials, based on a patient’s body characteristics such as, size, weight and gender. 

Different tissue compositions, such as water, protein and lipids are changed with age for 

both males and females (White, 1993). This has revealed the importance of considering 

age in designing and fabricating phantoms for dosimetric purposes. Several 

anthropomorphic phantoms are fabricated to simulate the anatomical structure of human 

organs based on age and gender, and have similar attenuation properties for radiation 

dosimetry studies. 

During the clinical procedure, computational simulation methods become very 

complicated. This provides the advantage for using anthropomorphic phantoms over 

mathematical methods. Currently, there are no dynamic anthropomorphic thyroid 

phantom, which can simulate the injection and retention of the radioactive material. The 

fabrication of such dynamic phantom is important to measure the absorbed dose directly 

to the human thyroid gland from SPECT/CT. 

In CT scan procedures, several dose reduction techniques can considerably lower the dose, 

such as automatic current modulation, low kVp and with the use of post-reconstruction 

algorithms.  

It is important to consider the variation of acquired dose in CT due to various types of CT 

scanner, scanning protocols and the divergence of scan length selected. Therefore, a 

standard recommendation regarding good practice in CT scans especially for paediatric 

patients should be taken into account, especially as the use of CT is still increasing. 
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The understanding of the biological effect in the future has not matured yet, particularly 

when a series of CT tests may apply, and the possibility of having cancer risk later in life 

may increase as well. Therefore, assessment of cancer induction risk allows for choosing 

of more efficient CT protocols to decrease the dose. 

The combination of hybrid imaging with SPECT/CT is commonly increasing, where 

stand-alone SPECT in many applications being replaced with this new scanning technique  

(Fahey, Treves, and Adelstein, 2012). SPECT/CT provides useful information about 

cellular functions and the anatomical structures of the human body. However, the use of 

such sources of radiation contributes to a high dose to the radiosensitive organs under test 

as well as increasing the effective dose to the patient. This requires investigations to assess 

these kinds of diagnostic procedures especially in children. 

Thus, this study focused on fabrication of a dynamic 3D printed thyroid-neck phantom to 

evaluate the absorbed dose to the thyroid gland in SPECT/CT imaging.  

 

1.2 Problem statement 

Generally, the importance of dosimetry of patients comes from estimating the radiation 

absorbed by different types of tissues and organs in the body. By estimating the dose 

received by organs, the protocols applied can be enhanced to lower the dose especially for 

paediatric patients (Hranitzky and Stadtmann, 2011). 

For diagnosis and therapy purposes in nuclear medicine, the internal dosimetry is crucial, 

where usually, MIRD method is used to assess the internal radiation dose in nuclear 

medicine. This approach depends on the biokinetic organ model and the kind of 

radiopharmaceuticals used. Several commercial software programs have been developed 

to help calculate the radiation dose to different organs, where the manual calculations are 
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time-consuming and highly operator dependent (ICRP, 2015; Chaichana and 

Tocharoenchai, 2016). 

Notwithstanding, the literature on previous researches (Hranitzky and Stadtmann, 2011; 

Aw-Zoretic et al., 2014; Spampinato et al., 2015; Fahey et al., 2017) indicate that, 

although the importance of patients’ radiation safety in nuclear medicine procedures has 

been stressed, only limited studies have directly measured the radiation dose received by 

the patients’ thyroid during diagnosis procedures.  

Many phantoms were fabricated for image quality in scintigraphy images or SPECT-CT 

images, but only a few static phantoms were designed for internal dosimetry in the thyroid. 

Application of the thyroid’s pharmacokinetics data of each radionuclide for accurate 

internal dose measurements is considered as a challenge. Currently, there is no dynamic 

thyroid phantom with a precise geometrical shape which can simulate the biokinetics 

information, and which can mimic the injection, retention and the excretion of the 

radiopharmaceuticals in the thyroid. 

These concerns emphasise the problems of a patient’s thyroid dose during regular 

scintigraphy procedures or during utilisation of the CT in the SPECT proceedings and the 

lack of knowledge about the contribution of exposure parameters on a patient’s dose. 

The current in vivo dose evaluation methods are used as a post evaluation of the internal 

dose and do not provide any real-time measurements for the thyroid during the diagnostic 

or therapeutic procedures in nuclear medicine.  

The current commercial anthropomorphic phantoms mainly simulate the human thyroid 

as a homogenous organ with basic geometrical shapes like small cylinders, which does 

not precisely represent the actual human thyroid. This may cause inaccuracy in the 

radiation dose to the patient’s thyroid, and in particular for different group ages. 
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In this project, we aimed to design and fabricate an affordable and dynamic 3-dimensional 

thyroid phantom, which simulates the real shape of thyroid gland. The phantom can fit 

different ages and genders as it has the feature of fast fabrication and dimension alternation 

using the 3D printing technology and commercially available material. 

 

1.3 Research objectives 

The main objective of this study was to fabricate a cost-effective 3-dimensional dynamic 

thyroid phantom for evaluation of radiation dosimetry and image quality.  

The specific objectives of this study are listed as follows: 

1. To evaluate different 3D printing materials as a thyroid tissue substitute using a new 

and a conventional method. 

2. To design and fabricate a cost-effective, dynamic anthropomorphic thyroid phantom 

by using the 3D printing technology. 

3. To evaluate biokinetics data of technetium pertechnetate for internal dosimetry in 

SPECT/CT imaging. 

4. To evaluate the radiation dose to the thyroid for adult and paediatric SPECT/CT 

examinations. 

 

1.4 Research scope 

This research would introduce nine different types of 3D printing materials (i.e. PLA, 

ABS, PC, PETG, TPE, TPU, HIPS, PA and Wood-like) for evaluation as equivalent to 

human tissues in terms of elemental compositions, CT numbers and mass attenuation 

coefficients. Two different method will be used to evaluate the mass attenuation 

coefficients of the 3D printing materials using Scanning Electron Microscope - Energy 


