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ABSTRACT 

 

 

 

Hemodialysis is one of the applied membrane technologies that is regarded as 

a life-saving therapy for patients with impaired kidneys. It purifies blood toxins outside 

of the patient’s body using a dialyzer as a kidney replacement. Synthetic materials such 

as polyethersulfone (PES) polymer are currently being used to fabricate the dialyzer 

membrane for hemodialysis. However, the blood compatibility or hemocompatibility 

of these materials are still inadequate and administration of an anticoagulant (heparin) 

is required throughout the dialysis procedure to avoid blood clotting. Therefore this 

study aimed at developing a biocompatibility membrane for hemodialysis application.  

In this study, poly (1,8-octanediol citrate) (POC) that synthesized through a simple 

polycondesation method was used to enhance membrane biocompatibility. Different 

compositions of POC (0-3%) were added into polyethersulfone (PES) dope solutions 

to fabricate modified biocompatible PES membranes via the phase-inversion 

technique. The biocompatibility of the modified PES membranes was evaluated by 

human serum fibrinogen (FBG) protein adsorption, platelet adhesion, activated partial 

thromboplastin time (APTT) and prothrombin time (PT), thrombin–antithrombin III 

(TAT), complement (C3a and C5a) activation and Ca2+ absorption on membrane. 

Results showed that higher POC wt.% caused a 31% reduction of FBG adsorption, less 

platelets adhesion, prolonged APTT (11.1 seconds) and PT (2.5 seconds), lower TAT 

activation, suppressed C5a and C3a activation and absorbed 35% more Ca2+ ion 

compared to pristine PES membrane. These results indicated that modified PES 

blended POC has good biocompatibility properties, suggesting potential application in 

the field of blood purification, especially in hemodialysis. 
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ABSTRAK 

 

 

 

 

Hemodialisis merupakan antara aplikasi dalam teknologi membran yang dapat 

menyelamatkan nyawa pesakit yang mengalami masalah buah pinggang. Ia 

membersihkan toksin darah diluar badan pesakit menggunakan dialiser sebagai 

pengganti kepada buah pinggang. Bahan sintetik seperti polimer polietersulfon (PES) 

digunakan sebagai bahan utama untuk membuat membran dialiser untuk hemodialisis. 

Walau bagaimanapun, keserasian antara darah dan bahan sintetik ini masih tidak 

mencukupi dan anti-beku darah (heparin) diperlukan sepanjang prosedur dialisis untuk 

mengelakkan pembekuan darah berlaku. Objektif kajian ini adalah bertujuan untuk 

membangunkan satu membran bioserasi yang baru bagi digunakan dalam aplikasi 

hemodialisis. Dalam kajian ini, poli(1,8-octanediol citrate) (POC) yang disintesis 

melalui kaedah polikondensasi mudah telah digunakan untuk meningkatkan 

bioserasian dengan membran. Komposisi POC yang berbeza (0-3%) telah ditambah 

pada larutan polimer PES untuk membuat membran PES yang diubahsuai melalui 

teknik fasa penyongsangan. Keserasian-bio membran PES yang diubahsuai telah 

dinilai dengan penjerapan protein fibrinogen serum (FBG), kebolelekatan platelet, 

masa separa-aktif tromboplastin (APTT) dan masa prothrombin (PT), pengaktifan 

thrombin-antithrombin III (TAT), pengaktifan komplimen (C3a dan C5a) dan 

penyerapan Ca2+ ion pada membran. Hasil kajian menunjukkan bahawa dengan wt.% 

POC yang tinggi, telah mengurangkan 31% penjerapan FBG, mengurangkan platelet 

melekat, memanjangkan  masa APTT (11.2 saat) dan PT (2.5 saat) lebih lama, 

pengaktifan TAT yang rendah,  mengurangkan  pengaktifan C5a dan C3a dan 

menyerap lebih 35% ion Ca2+ berbanding membrane asal. Dapatan kajian ini 

menunjukkan bahawa membran yang diubahsuai dengan campuran POC mempunyai 

kebioserasian yang lebih baik bagi menyediakan aplikasi membran yang lebih 

praktikal dalam bidang pembersihan darah, terutamanya bagi aplikasi hemodialisis. 
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CHAPTER 1  
 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of Research 

 

 

Since the breakthrough in 1978 by french cleric, J. Abbé Nollet, membrane 

technology was only being studied by scientist in 1960s for its commercialization in 

industrial application (Fane et al., 2011).  In 1960s, Loeb and Sourirajan developed 

asymmetric membrane for industrial applications (Kołtuniewicz, 2005). Then in 1980s, 

techniques such as reverse osmosis, ultrafiltration, microfiltration and electrodialysis 

resulted in worldwide membrane commercialize applications in large scale plants 

(Baker, 2012; Fane et al., 2011). After years of rapid development of the membrane 

technology, the applications of membranes was used in the development of membranes 

for medical separation processes, in particular, the artificial kidney (hemodialysis) 

(Baker, 2012). 

 

Kidney is a vital organ in human composed of millions unit of filter which 

remove excess waste products and fluid out of the body. This function is essential for 

normal homeostasis in maintaining body fluid and chemical composition inside the 

body. Damage to the kidney may lead to the reduction in its performance. 

Subsequently, the damage result in build-up of toxins and excess fluid that may affect 

health.  A therapy called renal replacement therapy (RRT) or commonly known as 

hemodialysis is required to overcome the problem. 

 

Hemodialysis is highly successful lifesaving and life sustaining therapy for 

renal failure patient (Vilar & Farrington, 2011). In 2012, there were 28,590 patients 

receiving dialysis in Malaysia, and vast majority (92%) of these patients are on 
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hemodialysis (Lim et al., 2013). According to Datuk Seri Dr. Hasan Abdul Rahman 

Malaysian Health director-general, every year a patient in average had to spend about 

RM 33,000.00 for dialysis treatment and more than RM 700 million for total dialysis 

patients (Arukesamy, 2011). However, 60% of the cost was government subsidized. 

Therefore, Malaysian government spent almost RM 420 million for dialysis 

operational cost only (include staff salaries, consumables e.g., dialyser reuse 3 times, 

blood lines, CAPD system and dialysate), equipment maintenance and utilities) which 

do not include associate medical cost (RM 270/patient), capital cost and general 

hospital cost (RM 360/patient) (Lim et al., 1999). 

 

In general, the process of dialysis involve two way movement of molecules 

across a semipermeable membrane. Clinically, this movement takes place in and out 

of blood, across a semipermeable membrane. The blood is exposed to an artificial 

membrane outside of the body, the process is called hemodialysis (HD) or 

hemofiltration (HF) (Ahmad, 2009). The dialyzer made of dialysis membrane is the 

most critical and important part of dialysis set up form separate adjacent paths for 

blood and dialysate, which flow on opposite sides of the membrane in opposite 

directions to maximize diffusion gradients. According to Malaysian Hemodilaysis 

Quality and Standard (2012) published by Ministry of Health Malaysia a dialyzers 

should be made from biocompatible membrane and approved by regulatory authorities 

in USA, Europe, Japan or local equivalent. 

 

In selecting the material for hemodialysis, benchmarks such as 

biocompatibility towards white blood cell and complement system, impermeability 

toward dialysate impurities, adsorption capacity and pore size must be considered 

(Boure, 2004). The success of hemodialysis is highly dependent on the membrane used 

(Gautham et al., 2013). The earlier type of material used in the making of dialysis 

membrane was the cellulose based membrane (e.g.; cuprophane). Later, due to certain 

undesired effect such as immunological reaction, the cellulose was substituted by other 

material like mixed-cellulosic synthetic membrane (e.g.; Hemophan). Currently, the 

synthetic membrane (e.g; polyethersulfone (PES), polysulfone (PS), polyacrylonitrile 

(PAN), polycarbonate, polymethylmethacrylate (PMMA), and polyamide) is the latest 

type of material commonly used to produce dialysis membrane (Ahmad, 2009). 

Moreover, aside from having better performance in removing middle molecule (500-
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15000 Da) and β2-microglobulin, the synthetic membranes also comprise higher 

biocompatibility properties (Kerr & Huang, 2010; Macleod et al., 2005). 

 

Here, in this study PES is used as a material to fabricate dialysis membrane. 

The PES membranes are widely employed in biomedical fields such as artificial organs 

and medical devices used for blood purification, e.g., hemodialysis, hemodiafiltration, 

hemofiltration, plasmapheresis and plasma collection (Su et al., 2011). In order to 

achieve the production of high biocompatibility dialysis membrane a citric acid 

derived biodegradable elastomers (CABEs) was added as additive. This new class of 

biomaterials is all synthesized with non-toxic monomers using simple and cost 

effective procedures. These materials share one common monomer named citric acid, 

which is a non-toxic metabolic product of the Krebs cycle. In addition to the sodium 

form of citric acid, sodium citrate, is an anticoagulant currently used in hospitals. Thus, 

CABEs may also possess suitable hemocompatibility for blood contacting applications 

(Tran et al., 2009).  

 

A novel biodegradable elastomer, poly (1, 8-octanediol-co-citrate) (POC) is 

synthesized and used as biocompatible additives to produce biocompatible modified 

PES flat-sheet membranes. The fabricated membranes are characterized for its 

physical and chemical properties. The dialysis performance of the modified membrane 

also been evaluated. The biocompatibility of the modified membranes are analyzed by 

studying the membrane blood compatible properties. 

   

 

 

 

1.2 Problem Statement 

  

 

In blood-contacting membrane application such as hemodialysis, the protein 

adsorption on the membrane surface cause some serious problem to membrane 

performance. The adsorption of protein on membrane surface eventually lead to 

membrane fouling resulting in flux declining and reduction of membrane selectivity. 

Furthermore, the adsorbed proteins plugged membrane pores affecting efficacy, by 

decreasing the pore size of the membrane and prevent transmembrane crossing for 

waste and solutes. Membrane protein adsorption may be caused by few factors such 
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as the membrane surface chemistry, morphology, hydrophilicity and also the adsorbed 

protein size, charge, shape, pH value, and so on. Besides causing membrane fouling 

that affect membrane performance, adsorption of protein also leads to membrane 

biocompatibility problems (Sun et al., 2003). 

 

Biocompatibility of the membrane is one of the important aspect in developing 

a membrane for hemodialysis. It is the biological reaction between dialysis membrane 

and the blood. Exposure of dialysis membrane to blood leads to normal physiological 

response of blood components such as activation of platelets, inflammatory response, 

complement blood cells, and complement cascade (Ahmad, 2009; Gawaz et al., 1999) 

which may cause adverse effect to the dialysis patient. Activation and adhesion of the 

platelet on the membrane surface cause coagulation of blood (Sperling et al., 2009). 

Therefore, to avoid coagulation an anticoagulant such as heparin is used in the dialysis 

system. Yet, the usage of heparin causes several complication to dialysis patient like 

heparin-induced thrombocytopenia (HIT) Type II and bleeding that might lead to 

severe morbidity and mortality (Suranyi & Chow, 2010). Therefore, effective 

membrane with higher biocompatibility to perform sufficient hemodialysis is an 

important key to cope with the rising demands from kidney failure patient. 

 

   

 

 

1.3 Objectives of Study 

 

 

Based on the problem statement, the aim of this study was to reduce the incidence 

of membrane compatible reaction and membrane fouling in the dialyzer. Therefore, 

this study sought to produce a new biocompatible synthetic polymer membrane to 

perform sufficient hemodialysis and to cope with the rising demands from kidney 

failure patient in Malaysia. The objectives of this research are: 

 

1. To synthesize poly(1,8-octanediol citrate) (POC) as additive to improve PES 

membrane biocompatibility 

2. To fabricate and characterize physical and chemical properties of the modified 

PES flat-sheet membrane with different POC wt.% loading (0-3%). 
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3. To evaluate the biocompatibility of the modified PES/POC flat-sheet 

membranes different POC wt.% loading (0-3%) for hemodialysis applications. 

 

 

 

 

1.4 Scope of Study 

 

 

1. Preparation of poly(1,8-octane citrate) (POC) via simple polycondensation 

method. 

2. Characterization of the POC with Attenuated Total Reflectance-Fourier 

Transform Infrared Spectroscopy (ATR-FTIR), proton Nucleus Magnetic 

Resonance (1H NMR), Matrix-Assisted Laser Desorption Ionization-Time of 

Flight Mass Spectrometry (MALDI-TOF). 

3. Dope preparation for different wt.% loading (0-3%) concentration of POC 

blend PES membranes. 

4. Fabrication of modified PES membranes via liquid-liquid phase inversion 

method. 

5. Characterization of modified PES membranes by ATR-FTIR, scanning 

electron microscope (SEM), atomic-force microscopy (AFM), 

Thermogravimetric Analysis (TGA), zeta-potential, membrane wettability, 

membrane porosity and pore size. 

6. Evaluation of the modified membranes’ performance for pure water flux, 

solute rejection and uremic toxins clearance. 

7. Evaluation of the modified membranes biocompatibility through protein 

adsorption, platelet adhesion, plasma coagulation time, calcium ion absorption 

and coagulation and complement activation. 
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1.5 Significance of Study 

 

 

The number of dialysis patient in Malaysia is rapidly increasing each and every 

year. Data from 22nd Report of the Malaysian Dialysis 2015 and Transplant Registry 

by the National Renal Registry showed the number of dialysis patient in Malaysia was 

steeply increase for the last 10 years from 13000 in 2004 and at least 35000 people in 

2015. Each year the amount of  new dialysis patient increase with 6107 new people 

need dialysis in 2014 (Goh & Ong, 2015). Herein Malaysia, there are few researchers 

that currently doing research on dialysis membrane but not to be commercialize. None 

of them focuses on improving biocompatibility of hemodialysis membrane and only 

study on membrane performances. Nowadays, local dialysis center and hospital still 

use an imported dialyzer which can be costly. Therefore, this study aims to produce 

locally produced high performance biocompatible hemodialysis membrane which 

eventually can reduce current dialyzer cost in Malaysia. 

 

Dialyzer or artificial kidney is the heart of the dialysis which contain a semi-

permeable membrane that function as kidney replacement. Nowadays, synthetic 

polymer such as polyethersulfone (PES) is being used to make dialysis membrane due 

to excellent physical and chemical properties. However, the hydrophobic nature of the 

polymer tends to adsorb protein and cause membrane bio-incompatibility that lead to 

thrombosis. Several modification have been made to improve membrane 

biocompatibility with anti-coagulant properties, for example by using a heparin (anti-

coagulant) to modified membrane through coating (AN69ST) or grafting it on 

membrane surface (Morena et al., 2010; Tang et al., 2012). These modified membrane 

allows heparin-free dialysis which can reduce adverse events from prolong usage of 

heparin such as heparin induced thrombocytopenia (HIT). 

 

The significance of this current research is by studying the development of 

modified PES dialysis membranes that blended with POC to improve it 

biocompatibility. Previous study had found that POC exhibit a biocompatible 

properties for blood contacting application, hence modification of the PES dialysis 

membrane with POC can improve biocompatibility of membrane and prevent 
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thrombosis formation on membrane surface. Therefore, by using this PES blend POC 

dialysis membrane, an anticoagulant free dialysis can be perform. 
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