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Recent breakthroughs in forward error correction, in the form of low-density parity-check

(LDPC) and turbo codes, have seen near Shannon limit performances especially for point-

to-point channels. The construction of capacity-achieving codes in relay channels, for

LDPC codes in particular, is currently the subject of intense interest in the research

and development community. This thesis adds to this field, developing methods and

supporting theory in designing capacity-achieving LDPC codes for decode-and-forward

(DF) schemes in relay channels.

In the first part of the thesis, new theoretical results toward optimizing the achievable

rate of DF scheme in half-duplex relay channels under simplified and pragmatic conditions

(equal power or equal time allocation) are developed. We derive the closed-form solutions

for the optimum parameters (time or power) that maximize the achievable rates of the

DF scheme in the half-duplex relay channel. We also derive the closed-form expression

for the DF achievable rates under these simplified and pragmatic conditions.

The second part of the thesis is dedicated to study the problem of designing several classes

of capacity-achieving LDPC codes in relay channels. First, a new ensemble of LDPC codes,

termed multi-edge-type bilayer-expurgated LDPC (MET-BE-LDPC) codes, is introduced

to closely approach the theoretical limit of the DF scheme in the relay channel. We pro-

pose two design strategies for optimizing MET-BE-LDPC codes; the bilayer approach and

the bilayer approach with intermediate rates. Second, we address the issue of constructing

capacity-achieving distributed LDPC codes in the multiple-access and two-way relay chan-

nels, with broadcast transmissions and time-division multiple accesses. We propose a new



vi

methodology to asymptotically optimize the code’s degree distribution when different seg-

ments within the distributed codeword have been transmitted through separate channels

and experienced distinct signal-to-noise ratio in the relay system. Third, we investigate

the use of LDPC codes under the soft-decode-and forward (SDF) scheme in the half-duplex

relay channel. We introduce the concept of a K-layer doping matrix that enables one to

design the rate-compatible (RC) LDPC code with a lower triangular parity-check matrix,

subsequently allowing the additional parity bits to be linearly and systematically encoded

at the relay. We then present the soft-decoding and soft-re-encoding algorithms for the

designed RC-LDPC code so that the relay can forward soft messages to the destination

when the relay fails to decode the source’s messages. Special attention is given to the

detection problem of the SDF scheme. We propose a novel method, which we refer to as

soft fading, to compute the log-likelihood ratio of the received signal at the destination

for the SDF scheme.
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Chapter 1
Introduction

1.1 Motivation

The fields of channel coding, source coding and information theory were founded by Claude

Shannon in his most celebrated 1948 paper, “A Mathematical Theory of Communication”

[1]. In this paper, Shannon presented his famous channel coding theorem that governs

how rapidly information can be reliably transmitted through a noisy channel. Shannon’s

channel coding theorem proved the existence of channel codes, which ensure reliable com-

munication between a transmitter and a receiver even in the presence of noise, provided

that the information rate for a given code did not exceed the so-called capacity of the

channel. Unfortunately Shannon did not explicitly show how such a code can be con-

structed to approach the capacity limits. As a result, in the first 45 years after Shannon

published his channel coding theorem, a large number of ingenious and effective coding

systems has been devised, e.g. Hamming code [2], BCH code [3] [4], convolutional code

[5], Reed Solomon code [6], and concatenated code [7]. The approach to construct these

earliest codes has been overwhelmingly algebraic in nature. Codewords are formed from

strings of symbols chosen from a finite field with the best possible distance distribution
1
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and the maximum likelihood decoding is performed, where the valid codeword which is

the closest to the corrupted received vector from the channel is chosen. The downside

of these early coding systems is that none of these codes had been demonstrated, in a

practical settings, to closely approach Shannon’s theoretical limit.

The breakthrough came in 1993 with the discovery of turbo codes by Berrou, Glavieux

and Thitimajshima. This discovery heralded a fundamental departure from algebraic

approaches to code design [8] [9]. Through the use of parallel concatenation of simple

constituent codes and a pseudo random block interleaver, turbo codes are able to operate

near the capacity limits promised by Shannon with practical and manageable complexity

of iterative decoder. The second codes with near Shannon limit performances came in

1996 with the rediscovery of low-density parity-check (LDPC) codes [10]. This rediscovery

is established when the coding research community recognized the importance of iterative

algorithms operating on codes defined on graphs [11].

For high-performance applications, LDPC codes are seen as serious contenders to turbo

codes due to several reasons. First, LDPC codes are capable of outperforming turbo codes

for block lengths greater than around 105, and the error floors of LDPC codes at bit error

rates below about 10−5 are typically much less pronounced than those of turbo codes.

For example, the best known error-correction performance on the additive white Gaus-

sian noise (AWGN) channel has been achieved with an LDPC code, albeit one with an

impractically long block length and high implementation complexity [12]. Second, the ab-

sence of an explicit interleaver, such as those required by their turbo counterparts, leads to

highly parallel (and therefore low latency) decoder implementations in application-specific

integrated circuits [13]. Third, LDPC codes are also capable of exceptional performance

on channels where data is not just corrupted but may be lost entirely, so-called erasure

channels. This opens the way to new application domains such as reliable Internet multi-

casting where whole packets of lost data are reconstructed without the network overhead

of retransmission [14]. While there are some advantages of adopting LDPC codes mainly

due to their low complexity iterative decoders, turbo codes have also been widely applied

in the communication systems thanks to their low encoding complexity, which is one of

the shortcoming of LDPC codes.
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For point-to-point channels, the design of LDPC codes is now quite mature as the codes

have been rediscovered over a decade ago. The capacity-achieving LDPC codes can be

designed using an elegant asymptotic analysis technique (where the analysis assumed that

the block length of the code goes to infinity), so-called density evolution. This technique

helps in guiding code designers to tune the degree distribution of LDPC codes into well-

performing (finite-length) irregular LDPC codes. A remarkable progress has also been

made in the point-to-point wireless communication technology, not only in the construc-

tion of capacity-achieving codes, but also in other forms of technology such as the orthog-

onal frequency-division multiplexing (OFDM) [15] [16] and code-division multiple access

(CDMA) [17] [18]. Communications have even moved beyond the dimensions of time and

frequency, e.g., the spatial dimension of multiple-input multiple-output (MIMO) system

[19] [20], to deliver higher data rates to the user. Even though there are advancements

made in point-to-point communications, technology is still falling behind in the race with

the growing demands. To cope with these increased demands, one of the future genera-

tion wireless communications that has attracted a significant amount of attention in the

research and development community is the relay systems. Currently, almost all modern

communication standards provision relaying in one way or another to improve the system’s

performance, e.g., the 3GPP LTE-Advanced standard [21], and IEEE 802.16j (WiMax)

[22]. Moreover, adopting relays also appear to be a promising technique to achieve higher

throughput at the cell edge, where path loss and interference significantly degrade the

performance [23] [24] [25].

In this thesis, the main idea behind the studied LDPC codes applied for relay channels is

that the relay forwards additional parity-check bits to the destination. This idea is known

as a parity-forwarding scheme [26], which can be thought of as a generalization of Cover

and El Gamal’s well-known decode-and-forward strategy for the classic three-terminal

relay channel. The main advantages of designing LDPC codes under the parity-forwarding

scheme is that not only it achieves the theoretical limit of decode-and-forward strategy

for the classic three-terminal relay channel but also the scheme is very flexible and can

be easily applied to networks with complex topologies. These two advantages make the

parity-forwarding scheme suitable for future application, e.g. the future wireless sensor

networks and cellular networks.
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1.2 Problem statement

One of the most interesting and challenging research problem is the design of capacity-

achieving LDPC codes that are able to operate near the theoretical limits of the coding

strategy in relay systems. Traditionally for point-to-point communications, LDPC codes

have been pseudo-randomly defined according to their degree distribution, which has

proven to be very effective in producing well-performing LDPC codes, particularly for very

long codes. However, a set of new constraints arises to devise LDPC codes with sufficient

flexibility to cope with the myriad of applications opening up in the relay systems. The

first constraint of devising new LDPC codes in relay channels is that the code structures

are no longer pseudo random because of the distributed nature of the coding scheme at

the source and the relay nodes. Due to this distributed nature, the LDPC codes have

to satisfy a predefined structure, which needs to be taken into account when designing

the codes. The second constraint is that these new LDPC codes, in general, have to

operate at two different rates; the first operating rate is to ensure that the relay can

successfully decode the source’s LDPC codeword, while the second operating rate is to

ensure a successful decoding of the source’s LDPC codeword at the destination with the

help from the relay. These two constraints have made it a challenge to optimize the

degree distribution of LDPC codes into well-performing codes for the application in relay

channels. In addition, in many cases, the standard methodology to design LDPC codes

for point-to-point communications cannot be applied for relay channels.

A serious shortcoming of LDPC codes is their potentially high encoding complexity, which

is in general quadratic in code length. Due to the distributed nature of the coding scheme

at the source and the relay nodes, the task of encoding LDPC codes is even more chal-

lenging in relay channels. This is because the LDPC codes adopted for relay systems, e.g.

the rate-compatible LDPC (RC-LDPC) codes, form a nested sequence of code bits where

the parity bits of higher rate codes for the source-to-relay channel are embedded in those

of lower rate codes for the source-to-destination. As a result, the encoder at the relay

must be systematic. Unfortunately, this systematic encoder cannot be obtained by means

of a standard Gaussian elimination method, as there is a predefined structure that must
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be satisfied by the RC-LDPC codes for the application in relay channels. This predefined

structure disallows the column permutation operation of the Gaussian elimination.

The detection of the transmitted data has always been a complex problem in relay systems.

This is due to the fact that in many cases the relay performs non-linear processing on the

received signal before re-transmitting it to the destination node. For the integration of

coding in relay transmissions, the general approach requires the relay to firstly decode the

source’s transmitted signals before any processing can be performed. However, this perfect

decoding condition cannot always be guaranteed in practice. Additionally, in designing

relay coding systems, the detection of the transmitted signals becomes even a tougher

problem to tackle given the issue of erroneous decoding at the relay.

Another significant challenge on relaying is the resource allocation problem between the

nodes, which maximizes the throughput of the systems. In theory, the maximum through-

put can be achieved by tuning all systems parameters, such as the power constraint, the

time allocation between nodes, and the source and relay signal correlations. In practice,

tuning all these system parameters to achieve the best possible throughput promised by

the theory may require a complex and expensive relay system. From a practical perspec-

tive, the most attractive schemes when actually deploying real communication networks

are those that achieve the optimum (or near optimum) performance with minimal process-

ing complexity at all terminals. There are other considerations for minimizing complexity

in the design of the practical system like the location of relays for the purpose of mainte-

nance and most importantly the cost in constructing such relay networks.

With this background in mind the main problem considered in this thesis is the design

of low-density parity-check codes for use with sum-product decoding in relay channels.

The central idea of this thesis is to apply the framework of multi-edge type (MET) LDPC

ensemble to the design of new LDPC codes in relay channels. The potential benefit

of considering the code design under the MET framework is that the exact asymptotic

analysis predicting the performance of new LDPC codes in the relay channels can be

carried out. In addition, the distributed nature of the coding scheme at the source and

the relay nodes can also be easily captured under the MET framework. Apart from

the main problem of designing LDPC codes, this thesis will also be devoted to tackle
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the detection problem when erroneous decoding occurs at the relay, and the resource

allocation problem under realistic conditions in relay communications systems.

In the first part of this thesis, the focus is on the resource allocation problem of the

sub-optimal relay system under simplified and pragmatic conditions. An achievable rate

analysis has been performed, where the closed-form solution of the optimum system pa-

rameter that maximizes the achievable rate of relay channels is derived.

The second part of the thesis is dedicated to the design of three LDPC codes in relay chan-

nels. Each LDPC code has its own unique code structure that needs to be incorporated

in the code design. First, we design the bilayer-expurgated LDPC codes [27]. This code

is unique in the sense that it disallows the check node degrees to be concentrated, as a

consequence, making it difficult to optimize its degree distribution. We propose two novel

design strategies; the bilayer approach and the bilayer with intermediate approach, to op-

timize this code so that it achieves the rate limits of decode-and-forward (DF) schemes

for a wide range of channel settings. Second, we design the distributed LDPC codes

[28] for use over the multiple-access and two-way relay channels. The main challenge

of designing this code is its non-standard code design settings, where different segments

within the distributed codeword have been transmitted through different channels and

experienced distinct SNRs. We show that this non-standard code design setting can be

easily formulated under the framework of MET-LDPC codes, subsequently the asymp-

totic analysis that predict the performance of distributed LDPC codes can be performed.

This asymptotic analysis enables us to optimize the degree distribution of distributed

LDPC codes into a well-performing codes in the multiple-access and the two-way relay

channels. Third, we design the RC-LDPC codes [29] for the use under an advanced soft

decode-and-forward (SDF) scheme in half-duplex relay channels. While the SDF scheme

is initially proposed to mitigate the problem of error propagation due to the erroneous

decoding at the relay [30] [31], the best method in the literature to detect the received

signal at the destination node relies on the assumption that the soft-errors at the relay is a

Gaussian noise [31], which is not valid in general. Here, we make two main contributions.

The first contribution is that we propose a methodology to design linear and systematic

LDPC codes in order to enable a systematic encoder for the additional parity bits at

the relay. This allows us to derive the soft-decoding and soft-re-encoding algorithms for
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the designed RC-LDPC code, which facilitates the relay to forward soft messages to the

destination when the relay fails to decode the source’s message. The second contribution

is that we propose a novel method, known as the soft fading, that deals with the detection

problem under the SDF scheme.

1.3 Outline of the thesis

In general terms, the main scope of this thesis is designing low-density parity-check codes

for the decode-and-forward scheme in relay channels. In particular, we consider three

different structures of LDPC codes. These codes are the bilayer-expurgated LDPC codes,

the distributed LDPC codes, and the rate-compatible LDPC codes. In addition of de-

signing LDPC codes for the DF scheme in relay channels, this thesis also investigates

the resource allocation problem in determining the achievable rate of the DF scheme in

half-duplex relay channels. Furthermore, the detection problem of the SDF scheme is also

studied.

The outline of each of the chapters is as follows:

Chapter 1 presents the problem statement and the motivation of this thesis. It also

presents the outline and lists the contributions of this thesis.

Chapter 2 - This chapter provides the background material of the relay channels and

the LDPC codes that will be used extensively throughout this thesis. An introduction to

LDPC codes is presented, including an overview of a special class of LDPC codes known

as the multi-edge-type LDPC codes. The aim of this chapter is to create a foundation for

the reader to have a good understanding about the relay channels and the LDPC codes.

Chapter 3 - This chapter deals with the pragmatic issue of sub-optimal relay systems,

where we can only optimize either on the time allocation, or on the power allocation.

In particular, an achievable rate analysis for this sub-optimal relay system is performed.

We derive the closed-form solutions for the optimum parameters (time or power) that

maximize the achievable rates of DF strategy in the half-duplex relay system. We also

derive the closed-form expression for the DF achievable rates under these simplified and
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pragmatic conditions.

Chapter 4 - In this chapter we focus on the design of bilayer-expurgated low-density

parity-check (BE-LDPC) codes as part of a DF strategy for use over the relay channel.

A new ensemble of codes, termed multi-edge-type bilayer-expurgated LDPC (MET-BE-

LDPC) codes, is introduced where the BE-LDPC code design problem is transformed

into the problem of optimizing the multinomials of a multi-edge-type LDPC code. We

propose two novel design strategies for optimizing MET-BE-LDPC codes; the bilayer

approach is preferred when the difference in SNR between the source-to-relay and the

source-to-destination channels is small, while the bilayer approach with intermediate rates

is preferred when this difference is large.

Chapter 5 - Here we study the problem of finding the optimum degree distribution for the

distributed LDPC codes in the time-division multiple-access relay channels (TD-MARC)

and time-division two-way relay channels (TD-TWRC). We introduce a new ensemble of

codes, called distributed multi-edge-type LDPC (DMET-LDPC) codes and a correspond-

ing design methodology to asymptotically optimize the code’s ensemble when different

segments within the distributed codeword have been transmitted through separate chan-

nels and experienced distinct SNRs. This chapter presents a complete framework for the

code design of the proposed DMET-LDPC codes; starting with the code design formu-

lation; the detail explanation related to the code structure; the code design strategies

and optimization procedure; and finally the numerical results exemplifying the gain of

adopting our new code design.

Chapter 6 - In this chapter we investigate the use of rate-compatible low-density parity-

check (RC-LDPC) codes as part of a soft decode-and-forward (SDF) strategy over the

half-duplex relay channel. We introduce the concept of a K-layer doping matrix that en-

ables one to design the rate-compatible LDPC code with a lower triangular parity-check

matrix, subsequently allowing the additional parity bits to be linearly and systematically

encoded at the relay. As a result of our concept, the asymptotic performance of RC-

LDPC codes can be analyzed and predicted using the multi-edge-type density evolution.

Then, we developed the soft-decoding and soft-re-encoding algorithms for the designed

RC-LDPC codes, which allows the relay to forward soft messages to the destination when

the relay fails to decode the source’s message. A special attention is given to the problem



1.4 Research contributions 9

of modeling the soft-errors, which can lead to poor performance if it is not done properly.

We propose a novel method, called soft fading, to deal with this problem.

Chapter 7 - Here we conclude the thesis and provide some key points for future research.

Note that the chapters with original contributions are Chapters 3, 4, 5 and 6.

1.4 Research contributions

To a certain extent, the chapters in this thesis are self contained and can be read inde-

pendently. The main contributions of this thesis are:

• The achievable rate analysis of DF strategy in the half-duplex relay channels under

simplified and pragmatic conditions (equal power or equal time allocation).

• A new ensemble of codes, called multi-edge-type bilayer-expurgated LDPC codes

and its corresponding design methodology.

• The design of distributed LDPC codes in time-division multiple-access relay channel

and time-division two-way relay channel.

• The design of LDPC codes with systematic and linear encoding complexity.

• Detection of transmitted data under the soft decode-and-forward scheme in the

half-duplex relay channels.

In the following, a detailed list of the research contributions in each chapter is presented.

Chapter 3

The main results of this chapter deal with the problem of finding the closed-form ex-

pression for the achievable rate of DF strategy in the half-duplex relay channel under

simplified and pragmatic conditions. These results have been accepted for publication in

a conference paper.
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• M.H. Azmi, J. Li, R. Malaney, and J. Yuan, “Optimization for Pragmatic Half-

Duplex Relay Network,” accepted for publication in Proc. IEEE Global Telecom-

munications Conference (GLOBECOM), Houston, Texas, USA, December 2011.

Chapter 4

The main results of this chapter deal with the design of bilayer-expurgated LDPC codes

for DF strategy in the relay channels. These results have been published in one conference

paper and have been accepted for publication in a journal.

• M. H. Azmi, and J. Yuan, “Design of multi-edge type bilayer-expurgated LDPC

codes,” in Proc. IEEE International Symposium on Information Theory (ISIT),

Seoul, Korea, July 2009.

• M.H. Azmi, J. Yuan, G. Lechner, and L.K. Rasmussen, “Design of Multi-Edge-

Type Bilayer-Expurgated LDPC Codes for Decode-and-Forward in Relay Channels,”

accepted for publication in IEEE Transactions on Communications, August 2011.

Chapter 5

The main results of this chapter deal with the design of distributed LDPC codes in time-

division multiple-access relay channel and time-division two-way relay channels. These

results have been published in two conference papers and a journal is in the stage of

preparation for submission.

• M.H. Azmi, J. Li, J. Yuan, and R. Malaney, “Design of Distributed Multi-Edge

Type LDPC Codes for Multiple-Access Relay Channels,” in Proc. Australian Com-

munications Theory Workshop (AusCTW), Melbourne, Australia, February 2011.

• M.H. Azmi, J. Li, J. Yuan, and R. Malaney, “Design of Distributed Multi-Edge

Type LDPC Codes for Two-Way Relay Channels,” in Proc. IEEE International

Conference on Communications (ICC), Kyoto, Japan, June 2011.

• M.H. Azmi, J. Li, J. Yuan, and R. Malaney, “Design of Distributed Multi-Edge

Type LDPC Codes for Relay Networks,” in preparation.
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Chapter 6

The main results of this chapter deal with the design of rate-compatible LDPC codes for

soft decode-and-forward in half-duplex relay channels. These results have been published

in one conference paper and have been submitted for publication in a journal.

• M.H. Azmi, J. Li, J. Yuan, and R. Malaney, “Soft Decode-and-Forward using LDPC

coding in Half-Duplex Relay Channels,” in Proc. IEEE International Symposium

on Information Theory (ISIT), Saint Petersburg, Russia, August 2011.

• M.H. Azmi, J. Li, J. Yuan, and R. Malaney, “LDPC codes for Soft Decode-and-

Forward in Half-Duplex Relay Channels,” submitted to IEEE Journal on Selected

Areas in Communications, August 2011.

Other contributions not presented in this thesis

• M. H. Azmi, and J. Yuan, “Improved bilayer LDPC codes using irregular check

node degree distribution,” in Proc. IEEE International Symposium on Information

Theory (ISIT), Toronto, Canada, July 2008.

• M. H. Azmi, and J. Yuan, “Performance of bilayer-lengthened LDPC codes under

joint decoding,” in Proc. IEEE Information Theory Workshop (ITW), Taormina,

Sicily, Italy, October 2009.

• D. Duyck, M. Moeneclaey, M. H. Azmi, J. Yuan, and J. Boutros,“Universal LDPC

codes for Cooperative Communications,” in Proceedings of the 6th International

Symposium on Turbo codes and iterative processing, France, September 2010.
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