
 

 

MATHEMATICAL THINKING IN DIFFERENTIAL EQUATIONS THROUGH A 

COMPUTER ALGEBRA SYSTEM  

FERESHTEH ZEYNIVANNEZHAD 

A thesis submitted in fulfilment of the 

requirements for the award of the degree of 

Doctor of Philosophy (Mathematics Education) 

Faculty of Education 

Universiti Teknologi Malaysia 

OCTOBER  2014 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/199241733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


iii 

 

 

 

 

 

 

This thesis is dedicated to my family for their endless support and encouragement, 

and, specifically, to my mother, Kobra Fallah 

 



iv 

 

ACKNOWLEDGEMENTS  

First of all, praise is due to Almighty ALLAH for His compassion and 

mercifulness in allowing me to finalize this PhD project. I would like to express my 

heartfelt gratitude to my supervisor Dr. Zaleha binti Ismail for her constant support 

during my study at UTM. She inspired me greatly to work on this project. Her 

willingness to motivate me contributed tremendously to the project. My deep 

appreciation to Pr. John H. Mason for his continuous support, advice and active 

interest in the development, validation, implementation, and refinement of the 

worksheets and findings as well during the three years of my study. I am also 

thankful of Dr. Yudariah binti Mohammad Yusof for her great help and in answering 

my endless questions about the mathematical thinking process. Thanks to Dr. 

Roselainy Abdul Rahaman for all the debriefing sessions to review my work.  There 

are many people that helped me during my study including Pr. Chris Rasmussen, Dr. 

Zekeriya Karadag and Dr. Keith Nabb who filled in the validating forms of the 

design for the worksheets and interview coded transcriptions. I am grateful to Dr. 

Bambang Sumintono and Dr. Tim Guetterman, for guiding me in qualitative 

research. Thank you to my dearest friend and teacher Dr. Soheila Gholam Azad who 

encouraged me to start the PhD journey. I would also like to thank my friends at 

UTM who supported me spiritually during these three years. In addition, I would like 

to thank Universiti Teknologi Malaysia (UTM) for providing me with a good 

environment and facilities to complete this project. I would like to express my 

appreciation to the participants in this study for their enthusiasm in taking part in the 

interviews. I cannot finish without thanking my family. I warmly thank my parents as 

well as my brothers and, sisters, for providing assistance in numerous ways. 



v 

 

ABSTRACT 

This study is an effort to promote the mathematical thinking of students in 

differential equations through a computer algebra system. Mathematical thinking 

enhances the complexity of the mathematical ideas as an important goal of 

mathematics education which has not been widely achieved yet in mathematics 

instruction. This study was conducted in two parts comprising the teaching 

experiment in the main study and task based interviews in the follow up study. The 

experiment was conducted with an undergraduate class of differential equations with 

thirty-seven chemical engineering students in a public university in Malaysia. 

Maxima, an open source software, was the computer algebra system chosen to be 

used as a cognitive tool in the learning activities. The instruments included the 

worksheets designed by the researcher based on instrumental genesis, Three Worlds 

of Mathematics, and prompts and questions. Seventeen observation sessions and 

twelve semi-structured task based in-depth interviews with six students were 

conducted in the main study. In addition, eighteen interviews were carried out in the 

follow up study with the same six students. Qualitative analysis was used to classify 

the type of mathematical thinking powers as well as the mathematical structures. The 

findings showed that mathematical thinking powers to make sense of mathematical 

structures were interwoven and students used them in a non-sequential manner. The 

students applied specializing powers, imagining and expressing, changing, varying, 

comparing, sorting, and organizing, and checking the calculation in general to make 

sense of mathematical structures such as facts, techniques, and representations. In 

addition, the relationships among the main contributing factors that support this 

innovative approach were determined which include the type of tasks, the role of the 

teacher, class discourse, and the capabilities of technology. The approach can be 

incorporated not only in the mathematics curriculum at the tertiary level but could 

also be extended to schools. 
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ABSTRAK 

Kajian ini adalah satu usaha mempromosi pemikiran matematik para pelajar 

dalam persamaan pembezaan melalui sistem algebra komputer. Pemikiran matematik 

yang belum tercapai secara meluas meningkatkan kerumitan idea matematik sebagai 

satu matlamat penting pendidikan matematik. Kajian ini telah dijalankan dalam dua 

bahagian iaitu eksperimen pengajaran dalam kajian utama dan temubual berasaskan 

tugas dalam kajian susulan. Kajian dijalankan pada tiga puluh tujuh orang pelajar 

prasiswazah kejuruteraan kimia yang mengikuti kursus persamaan pembezaan di 

sebuah universiti awam di Malaysia. Maxima, adalah suatu perisian sumber terbuka 

bagi sistem algebra komputer yang digunakan sebagai alat kognitif dalam aktiviti 

pembelajaran. Instrumen yang digunakan adalah lembaran aktiviti yang disediakan 

oleh penyelidik berdasarkan genesis instrumen, Three Worlds of Mathematics, dan 

prompts and questions. Tujuh belas sesi pemerhatian dan dua belas tugasan semi-

struktur berdasarkan temubual mendalam dengan enam orang pelajar telah 

dilaksanakan dalam kajian utama. Seterusnya, dalam kajian susulan, lapan belas 

temubual dengan enam orang pelajar yang sama telah dilaksanakan. Analisis data 

kualitatif telah digunakan bagi mengklasifikasikan jenis daya pemikiran matematik 

dan juga struktur matematik. Dapatan menunjukkan daya pemikiran matematik telah 

digabungjalinkan dengan struktur matematik dan para pelajar menggunakannya 

dalam keadaan tidak berurutan. Pelajar mengaplikasikan daya pengkhususan, 

berimaginasi dan mengekspresi, menukar, mempelbagai, membanding dan 

menyusun serta menyemak pengiraan dalam usaha membina makna struktur 

matematik seperti fakta, teknik dan perwakilan. Seterusnya, hubungan antara 

beberapa faktor utama yang menyokong pendekatan berinovasi ini yang meliputi 

jenis tugasan, peranan guru, wacana kelas dan kemampuan teknologi dapat 

ditentukan. Pendekatan boleh diterapkan dalam kurikulum matematik bukan sahaja 

di peringkat pengajian tinggi malah boleh juga di gunakan di sekolah.   
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CHAPTER 1  

INTRODUCTION  

1.1 Introduction  

Mathematical thinking is one of the most critical aims of mathematics 

education and has an extremely crucial role in enhancing the conceptual learning 

(Stacey, 2006). However, only a few students leave the education system with 

mathematical success, while others display an inherent lack of mathematical thinking 

due to more emphasis being placed on content rather than process (Burton, 1984; 

Ferri, 2012).  

Mathematical thinking is one of the special features of ordinary thinking in 

that it has a particular language and includes pure mathematical features. If one is 

going to teach or evaluate mathematical thinking, one should first understand the 

definition of mathematical thinking. However, there are a number of views of 

mathematical thinking including psychometric (Carroll, 1996), cognitive-educational 

(Ginsburg, 1996), cognitive-information-processing (Mayer and Hegarty, 1996), 

cognitive-cultural (Miller and Paredes, 1996), and mathematical approaches (Dreyfus 

and Eisenberg, 1996). The nature of mathematical thinking process is interesting for 

psychologists, while computer scientists are interested in simulating mathematical 

thinking. For educators, teaching and testing mathematical thinking is important. 

How and why the quality of mathematical thinking differs across cultures has been 

investigated by anthropologists, and while philosophers have tried to realize the 

quantitative aspects of logical thinking, mathematical thinking is interesting for 

laypeople just to think mathematically to solve problems (Sternberg and Ben-Zeev, 

1996). From the point of view of mathematics educationalists, it is believed that 
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various mental activities – exemplifying, specializing, logical analysis, 

symbolization, completing, deleting, correcting, comparing, sorting, organizing, 

changing, varying, reversing, altering, generalizing, conjecturing, observation of 

patterns, explaining, justifying, verifying, convincing, and refuting – characterize 

mathematical thinking (Watson et al., 1998; Karadag, 2010). Therefore, 

mathematical thinking is a complex process that enables students to expand the 

complexities of their ideas (Mason et al., 2010).  

The procedural-formalist paradigm (PFP) is related to the traditional models 

for mathematics education and comprises an objective set of facts, skills, and 

procedures that are rationally organized and are apart from human experience (Ellis 

and Berry, 2005). A paradigm shift in mathematics education was started in the mid 

to late 1980s when many documents were published about the tendency to use more 

technology in mathematics due to the poor performance of American students. Thus, 

in the new paradigm, the cognitive-cultural paradigm (CCP) considers mathematics 

as a set of concepts that are derived from human experience, thought, and interaction, 

which are logically organized and interconnected. Hence, flexibility in teaching 

strategies is needed. Mathematical learning, which emphasizes mathematical 

thinking is a significant shift in mathematics education (Pea, 1987). The focus of 

process-oriented instruction (In the CCP paradigm) is on teaching the strategies of 

thinking and domain-specific knowledge in coherence with one another (Vermunt, 

1995). There has been difficulty in separating the process from the content in the 

classroom. Mastering both new mathematical content and mathematical process, 

such as mathematical thinking, is crucial (Breen and O’Shea, 2011).  

All the concepts in advanced mathematics are related to the abstraction of 

definitions and deduction. One of the most distinctive aspects between elementary 

and advanced mathematical thinking is the complexity and how it is dealt with 

(Dreyfus, 1991). Considerable effort was made by the Working Group of the 

Advanced Mathematical Thinking of the International Group for the Psychology of 

Mathematics Education to describe the advanced mathematical thinking, of which 

the most important discussion was the distinction between the process and object that 

occurs in mathematics learning (Confrey and Costa, 1996; Selden and Selden, 2005).  
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Mathematical thinking is considered as four central powers including 

specializing, generalizing, conjecturing, and convincing in the mathematics 

classroom (Burton, 1984; Mason et al., 2010). Although every human being 

possesses these powers, whether they are employed is another matter, they are also 

processes because they take place in time. Therefore, they can be seen as processes 

to be initiated or undertaken and as powers to be activated, more or less skillfully. 

Specializing is about physical manifestations or ideas. The identification of pattern is 

related to generalization, which helps learners to develop the meaning of data. 

Generalizing will be tested for convincing the learner and the public. The question 

now is: can mathematical thinking be taught? Creating an atmosphere is the key to 

recognizing and using mathematical thinking, which builds the confidence to 

question, challenge, and reflect. Therefore, posing questions, making conjectures, 

justifying and providing convincing arguments are acknowledged as essential aspects 

(Burton, 1984). For instance, Mason and Johnston-Wilder (2006) believe that the 

questions posed for exemplifying, specializing, completing, deleting, correcting, 

comparing, sorting, organizing, changing, varying, reversing, altering, generalizing, 

conjecturing, explaining, justifying, verifying, convincing, refuting are processes and 

actions that mathematicians do when attempting mathematical problems.  

The current educational environment is rarely supportive of the way in which 

mathematical thinking can be enhanced, in that the lecture is still the main format to 

teach mathematics at the undergraduate level (Bergsten, 2007). Studies have shown 

that students are passive listeners rather than active learners during lectures (Fritze 

and Nordkvelle, 2003); therefore, mathematics education cannot be viewed as a 

human social activity that can be colored by creativity (Alsina, 2002; Weber, 2004), 

great effort, and other emotional aspects including in mathematics activities; and 

students learn much less from traditional lectures as students are not stimulating 

higher-order thinking effectively (Leron and Dubinsky, 1995; Paraskakis, 2003; 

Breen and O’Shea, 2011). 

Using computers is one of the different ways to develop advanced 

mathematical thinking due to certain possibilities and constraints. There are 

computer packages to use general applications; for example, computer algebra 
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systems (CASs) can manipulate both symbolic and numerical computations. A CAS 

or symbol manipulation system refers to a computer program that carries out 

mathematical operations in symbolic ways (Cohen, 2003). However, symbolic 

manipulators have not been widely used in educational activities. It is hypothesized 

that using a computer is successful in education if the computer is applied for explicit 

conceptual purposes. This hypothesis is based on the development of new software 

capabilities and programming that support both teaching mathematics and research in 

the area of mathematics. However, it is not successful when it is attached to the 

mathematics curriculum without a specific objective in mind. (Dubinsky and Tall, 

2002). Mathematical concepts can be constructed using programming (Maat and 

Zakaria, 2011; Salleh and Zakaria, 2011; Marshall, 2012). 

The advent of powerful technologies in education, such as CASs, has led to a 

transformation in the teaching and learning of mathematics concepts. However, the 

integration these kinds of technologies in the curriculum at the university level has 

been much slower than was predicted in the late 1980s (Lavicza, 2010). It has been 

proven that computers are useful at any stage of mathematical thinking, especially in 

conjecturing. In the final level of mathematical thinking, formal proof, computers 

can be applied to investigate algorithmically a question when it is divided into 

various questions (Dubinsky and Tall, 2002).  

The computer algebra system is a tool that can provide data to discover 

mathematical relationships (Krantz, 1999). Using a CAS in some courses like 

differential equations is undeniable due to the facilities provided for the calculation 

and visualization of solutions. Differential equations (DEs) play an important role in 

the  courses for undergraduates in Science and Engineering majors.  However, some 

people are strongly opposed to using computer algebra systems in mathematics 

education. The biggest objection is programming to learn mathematics. However, the 

syntax of the programming languages today is simple and engineering students use 

them in their courses (Gieschke and Serafin, 2014, Young and Mohlenkamp, 2011). 

This study involves integrating a CAS in teaching differential equations to identify 

the extent of mathematical thinking powers.  
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1.2 Background of the Problem  

There is a high discrepancy between the applications for DEs and the current 

situation in teaching and learning DEs. The current situation of differential equations 

involves the blind manipulation of formulae to obtain the solution. Reviewing the 

research in DEs, the background is divided several parts including mathematical 

thinking in differential equations, students understanding of differential equations, 

issues in teaching and learning differential equations, visualization, and learning 

environment. 

1.2.1 Mathematical Thinking in Differential Equations   

In most cases, the teaching of differential equations is done in a very 

procedural manner (Paraskakis, 2003; Zeynivandnezhad et al., 2013). Thus, recently, 

DEs have attracted interest from researchers. However, a few studies have been 

conducted to promote mathematical thinking in differential equations using a CAS. 

Keene et al. (2011) proposed a framework to categorize the conceptual thinking for 

applying in solving ordinary differential equations, but the framework was not for a 

technological environment. Instead of the procedural skill for solving the equations, 

the framework included knowing why procedures work, what to expect from a 

solution, how to read graphical representations, and how to check answers. The 

framework included the categories of concepts that students require to know to 

develop the understanding for solving a differential equation; for example, students 

can anticipate the output of carrying out the procedures and they can identify the 

appropriate time to use the specific procedures, which include identifying the type of 

equation for identifying the procedure. Additionally, the framework showed that 

students understood the reasons why the procedures work overall. Moreover, the 

framework consisted of verifying the solution symbolically and graphically and the 

students could connect three representations – symbolic, graphical and numeric. The 

differential equation concepts investigated in this framework comprised three 

techniques – first order differential equations, separation of variables, and the Euler 

method.   



6 

 Advanced mathematical thinking from Tall’s point of view (1992) comprised 

two components including the specification of mathematics concepts by precise 

definitions, and the logical deductions of theorem based on these definitions and the 

statements of axioms. Therefore, he believed that to take students toward advanced 

mathematical thinking, it should be considered that the formalization and 

systematization of mathematics is the final stage of mathematical thinking, and not 

the whole activity. According to this belief, Rasmussen et al. (2005) offered an 

alternative characterization of advanced mathematical thinking, which emphasizes 

important mathematical practices and qualitatively various kinds of activities within 

these mathematical practices. Advancing mathematical activity refers to advanced 

mathematical thinking and is not limited to a specific grade or content level in their 

characterization.   

The term advancing is preferred rather than to advanced because they 

concentrate on the students’ progress of total activity rather than the final stage 

addressed by Tall. Therefore, this shift presents aspects of students’ reasoning 

evolution and progression in relation to their previous activity. It is worth noting that 

this shift confines the evaluative nature that comes with the term advanced. In 

particular, they avoided characterizing individuals as “advanced” or “not advanced”. 

Since this classification minimizes the learners’ potential to progress in their 

mathematics sophistication at any level not just for undergraduate courses. Although 

the term thinking is used by psychologists to describe mathematical growth, they 

used the term activity rather than thinking. This shift reveals the characterization of 

students’ mathematical thinking progress in terms of the participants’ actions in a 

variety of socially or culturally situated mathematical practices including 

symbolizing, algorithmatizing, and defining activities. These three activities cover 

both doing and thinking. 

 The term activity from their point of view presents mathematics as first and 

foremost a human activity in which doing and thinking are dualities situated within 

particular social or cultural practices (Rasmussen et al., 2005). They developed the 

advancing mathematical activity based on the adaption and modification of the 

horizontal (e.g., conjecturing, experimenting, and other informal ways o f knowing) and 
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vertical mathematization (e.g., formalizing, justifying, generalizing, and extrapolating) of 

Tereffer (1987). In addition, they elaborated on the horizontal and vertical 

mathematizing activities within the practices of symbolizing, algorithmatizing and 

defining, for example, in a differential equation.  The conflict between horizontal and 

vertical mathematizing provides a way to characterize both the student's activity and 

the progression of the activity. The three activities mentioned facilitate progression 

of the mathematization, generalization, and the development of new mathematics 

realities. However, this characterization of mathematical thinking has not been 

converted to the teaching and learning process. Furthermore, the explanations and 

justifications in the differential equation classrooms is an emerging area of interest 

illustrating both teaching and research pertaining to how undergraduate students can 

learn mathematics with understanding. Therefore, many instructors at the university 

level are increasing the ability of the students to communicate their thinking and 

reasoning (Stephan and Rasmussen, 2002; Rasmussen et al., 2004). Research 

findings have shown that the significant role of explanation and justification is a 

normal part of discussion in differential equation classrooms. 

1.2.2 Students Understanding of Differential Equations   

 Arslan (2010 a) conducted a study because of the limited studies on students 

understanding and conceptions of DEs and their foundation concepts. He also 

undertook research to reveal the students' understanding, difficulties, and weaknesses 

concerning the concepts of DEs and their solutions. His findings showed that those 

students who showed proficiency in algebraic solutions did not fully understand the 

related concepts, and they had serious difficulties in relation to these concepts. In 

addition, he explored the students' nature of learning in traditional courses on DEs. 

He also clarified the relationship between procedural and conceptual in respect of 

students' learning. The findings suggested that in the context of traditional instruction 

and content the participants’ learning was primarily procedural. In addition, 

procedural knowledge did not lead them to develop the conceptual knowledge, which 

is required for interpreting new situations properly and to help them produce new 

ideas beyond the ones they have memorized. Therefore, based upon the student’s 
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levels in both procedural and conceptual learning, it was concluded that conceptual 

learning supports and generates procedural learning but that procedural learning does 

not support conceptual learning. Arslan's research concerned the relationship 

between the conceptual and procedural understanding in the DE classroom. The 

interdependence of procedural and conceptual knowledge is complex in which it is 

claimed that while procedural knowledge is necessary for conceptual knowledge, it is 

neither sufficient nor necessary (Engelbrecht et al., 2009).  Although there are rich 

bodies of research that investigate procedural and conceptual knowledge in 

mathematics education, few studies proposed an alternative to support conceptual 

knowledge.  

Raychaudhuri (2008) developed a framework to make explicit the dynamic 

structure of certain mathematical definitions by means of the four facets of context, 

entity, process, and object. Thus, these facets and their interrelations were used to 

obtain and describe specific aspects of students' constructions of solution concepts in 

first order differential equations. The initial findings from interviews showed that the 

context was considered as a symbolic representation of facts, a relation to connect 

two or more variables, and mathematics expression involving variables. The solution 

as an entity was regarded as without a proper context. For example, they are given 

x=2, y=0 as a solution to the system x+y=2, x-y=2, a student mentioned that the 

solution is the line not a point. Students used that solution as the entity satisfying the 

equation as the defining process to portray the meaning of the solution and to 

validate it. Although there were some language differences applied to define an 

object, a solution, students realized that the solution is something that would make 

the equation hold, therefore, they used the process of defining (solution is something 

that satisfies in the equation). It explored the four mentioned aspects in the DE 

classroom under study to create a framework to analyze students’ construction of the 

solution concept in a first order differential equation. 

Upton (2004) probed the understanding of undergraduate students in two 

concepts of differential equations, slope fields and equilibrium solutions, in solving 

complex problems in mathematical and non-mathematical contexts. In the research, 

the term complex problem meant a problem that needs to consider the concepts of 
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both slope fields and equilibrium solutions. In addition, problems in a mathematical 

context are those problems described purely in mathematical terms. In contrast, a 

non- mathematical context problem refers to real-world applications settings. A 

simple problem only refers to problems in mathematical context. She investigated 

students’ performance on complex problems in different contexts (mathematical, 

non-mathematical).  

Moreover, on the one hand, it aimed to investigate whether those participants 

who responded to the problem in one context correctly were more likely to answer 

the corresponding problem in another context. On the other hand, Upton tried to 

predict students’ performance on complex problems from simple problems. 

Therefore, in order to answer these three research questions, a written test was 

designed. This included four complex problems of which two were in the 

mathematical context for each of which there was one corresponding problem in a 

non-mathematical context, six simple problems, three pertaining to slope fields, and 

three pertaining to equilibrium solutions. The data obtained from this test for 91 

participants and the interviews with 13 people showed that students performed 

significantly better on complex problems in non-mathematical contexts than on 

complex problems in mathematical contexts. The difference between performance on 

a problem in a mathematical context and performance on an isolated problem in the 

context of population growth was significant. In contrast, there was no significant 

difference between a different pair of isomorphic problems, one in a mathematical 

context and the other in the context of learning. However, the participants presented 

a preference for algebraic rather than geometric methods, even though a geometric 

approach was a more appropriate method to solve all the complex problems. The 

performance on simple problems was not a strong predictor of performance on 

complex problems. However, the simple problem elicited the students’ difficulties 

with aspects of slope fields and equilibrium solutions. For instance, students over-

generalized that the equilibrium solutions are any straight line and as existing at all 

values where a differential equation equals zero. The use of a CAS was suggested as 

an alternative to promote conceptual understanding due to the capabilities of this 

kind of software package, such as visualization. 
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1.2.3 Issues in Teaching and Learning Differential Equations   

  Furthermore, studies have addressed the issues in teaching and learning 

differential equations, which show a lack of conceptual knowledge (Upton, 2004; 

Habre and Abboud, 2006; Rasmussen and Kwon, 2007). For example, visualization 

of the slope fields is important to see the behavior of the general solutions as well as 

a particular solution for a specific point; however, students just manipulate DEs 

symbolically without any image of the behavior of the solution, which plays a role in 

the  interpretation of the solutions. Habre (2000) conducted a study with several 

objectives including examining solving first-order ordinary differential equations 

(ODEs) using slope (or direction) fields; studying students' reading information from 

the slope fields; and investigating the abilities of students to convert symbolic 

information into graphical and vice-versa. He concluded that students need more 

time to assimilate the idea of thinking visually. Although some students have learned 

how to think visually, they have not shown that they have achieved it. Ideally, 

students should understand that an improvement in visualization skills is necessary to 

acquire a broader picture of the problems in mathematics. In addition, he mentioned 

that the study cannot be completed without an evaluation of the role of computers in 

the learning process. The visualization tools can engage students effectively and 

explore non-trivial concepts in mathematics (Liang and Sedig, 2010). Integrating 

software programs has not always been a complete success. This research was the 

pioneer in investigating the slope fields of the solutions of a given differential 

equation.  

Moreover, a framework was offered to interpret students’ difficulties and 

understanding of mathematical ideas according to new directions in differential 

equations by Rasmussen (2001). These new directions tried to guide students into a 

more interpretive form of thinking and to develop their ability to graphically and 

numerically analyze differential equations. He proposed two major themes in his 

framework – the function-as-solution dilemma theme and students’ intuition and 

image theme (Rasmussen and Kwon, 2007). This framework was suggested based on 

previous research done at the secondary school and collegiate level in the differential 

equations domain. In addition, it revealed the increased recognition of analysis of the 
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students' learning situation within the students’ learning environment (Rasmussen, 

2001).  

Another issue, students’ retention in knowledge and skills in differential 

equations concepts was studied by Kown et al.  (2005),  who concluded that students 

retained conceptual knowledge in the inquiry oriented class in modeling problems, 

and maintained equal proficiency in procedural problems compared with students in 

the traditionally taught classes. The findings of this research support the claim that 

teaching for conceptual understanding can lead to longer retention of mathematical 

concepts. 

1.2.4 Learning Environment in Differential Equations Classrooms  

According to the use of a CAS in the differential equation classroom to 

promote conceptual understanding, Maat and Zakaria (2011) conducted a study to 

explore the understanding of students in ordinary differential equations (ODEs) using 

a traditional method as well as a computer algebraic system, such as Maple. Their 

findings revealed that the Maple environment could help students in understanding 

the differential equation concepts, specifically in excluding tedious calculations as 

well as producing interactive activities while learning mathematics. Generally, 

students were able to understand the relationship between mathematical 

understanding and engineering applications in real-life. Additionally, Zaleha (2008) 

found that the use of a cognitive tool may develop the relational and conceptual 

understanding. For the effectiveness of CASs in differential equations, Klein (1993) 

conducted a study to determine the effects of a computer algebra system on  

students’ achievement in solving differential equations. Data for analysis were 

collected from 110 students in four sections of ordinary differential equations classes 

at a large private university. A common posttest was given to all students in four 

groups, along with questionnaires and interviews with students in the CAS classes. 

Klein found no significant difference in the ability of students to solve ordinary 

differential equations. This finding may not be surprising due to the fact that the 

power of a CAS may not be related to the development of paper and pen and pencil 
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skills that are necessary to solve ordinary differential equations analytically 

(Rasmussen and Whitehead, 2003). 

In brief, visualization, modeling and interpretation of solutions symbolically 

and graphically are the most important issues in differential equations. Some of the 

extant descriptions of mathematical thinking concentrate on problem-solving 

heuristics while others relate more directly to the development of conceptual 

understanding in mathematics (Watson, 2001). Therefore, these issues in differential 

equations may originate from the lack of a mathematical thinking process, such as 

specializing, generalizing, conjecturing, and convincing.  However, promoting 

mathematical thinking faces several challenges (Yudariah and Tall, 1998; Sam and 

Yong, 2006; Roselainy et al., 2012a; Roselainy et al., 2012b). According to Sam and 

Yong (2006), resources such as a framework and the role of the cognitive technology 

such as CASs are two important challenges to promote students' mathematical 

thinking. However, no framework has been provided to consider the factors that help 

to promote mathematical thinking in differential equations using a computer algebra 

system, such as Maxima. This is because of the lack of studies investigating how 

students use their mathematical thinking powers in a computer algebra system. 

Symbolic-software packages help student to make appropriate connection amongst 

graphical, symbolic, and numerical representations of mathematical concepts, which 

in turn amplifying their understanding (Nasari, 2008). Since DEs have a crucial role 

in engineering courses to model the natural phenomena; CAS capabilities can 

support conceptual understanding in differential equations; and the study of students’ 

conceptual understanding cannot be complete without an evaluation of the role of 

technology, such as computers in the learning process, this study intends to integrate 

a CAS, with appropriate discourse to promote the mathematical thinking process in 

DEs. The problem statement will explain the problem that is clearly based on the 

studies. 
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1.3 Statement of the Problem 

 Advances in computer algebra systems and the interest of mathematicians in 

dynamical systems are currently promoting some changes in the course on 

differential equations at the undergraduate level. In the differential equations 

classrooms, conventional approaches emphasize analytic techniques, which seek to 

find closed form expressions for solution functions. However, the current reform 

efforts stress the graphical and numerical approaches to analyze and understand the 

behavior of solution functions (Stephan and Rasmussen, 2002). The research 

findings indicate that the approach to teaching differential equations can be 

transformed to focus on a more student centered and more technology rich 

curriculum (Artigue, 1992; Rasmussen, 2001; Habre, 2003).   

Studies have addressed differential equations in several areas including the 

understanding of the solutions to differential equations, such as understanding 

equilibrium solution functions (Stephan and Rasmussen, 2002; Rasmussen et al., 

2004); student thinking about differential equation systems in the context of the 

reasoning of students for solutions to differential equations (Artigue, 1992; Zandieh 

and McDonald, 1999; Rasmussen, 2001; Rasmussen et al., 2004); the differential 

equations classroom itself and learning in a social environment (Artigue, 1992; 

Rasmussen, 1999; Trigueros, 2000; Allen, 2006); and technology in differential 

equations (Rasmussen and Blumenfeld, 2007; Maat and Zakaria, 2011). The findings 

of the research are crucial to ascertain the current situation in the differential 

equations classrooms. However, no studies have explored to what extent 

mathematical thinking in differential equations can be developed using a computer 

algebra system. Although Hubbard (1994) investigated the equations studied in 

Habre’s research to emphasize the role of technology to solve differential equations 

that cannot be solved using the usual numerical or symbolic strategies, there are a 

few studies that investigated the role of technology in the development of students 

understanding in respect of differential equations. For example, Zaleha (2008) 

showed that the active learning environment incorporating the use of a cognitive tool 

may develop the relational and conceptual understanding. Playing a role of 

visualization in differential equations, Habre’s research findings push the researchers 
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of mathematics education, particularly in differential equations to probe more about 

the difficulties of slope fields among undergraduate students. In addition, the role of 

technology has not been found to overcome this problem. Rasmussen’s framework 

for students’ difficulties in differential equations is comprehensive, which is essential 

for subsequent research. Nevertheless, the research was not conducted in naturalistic 

situations. Students’ difficulties in differential equations include other points that 

have not been considered in the research to date with or without technology. In 

general, the role of a computer algebra system as well as its syntax has not been 

explored for enhancing mathematical thinking or the retention of differential 

equations. 

The research shows the low use of mathematical thinking in DE courses as 

one of the most important credits for undergraduates in Science and Engineering 

majors (Zeynivandnezhad et al., 2013). The entire teaching relates to the symbolic 

modes of solving specific differential equations in DE classrooms. This means that 

the ways differential equations are taught is so procedural or symbolic that the staff 

and students rarely have a clue as to how to do anything other than teach procedures 

to solve specific types of equation (Habre, 2003; Arslan, 2010b). The studies have 

shown the difficulties of students in understanding a DE including the abilities of 

students in converting symbolic information into graphical, and also the 

understanding of students in ordinary differential equations by using traditional and 

computer assisted environments  (Rasmussen, 2001; Habre, 2003; Kwon et al., 2005; 

Arslan, 2010b; Arslan, 2010a). However, few studies have been done to integrate 

mathematical thinking in differential equations within or without a computer algebra 

system (Rasmussen et al., 2005, Raychaudhuri, 2008). Mathematical thinking is 

considered as certain mental activities such as representing, operating, conjecturing, 

and convincing, which are required in the interpreting of solutions and their graphs in 

differential equations. Therefore, integrating technology, particularly computer 

algebra systems in teaching and learning differential equations, which reduces 

tedious computations, as well as plays a role in the visualization of mathematics 

concepts, can improve the link between procedural and conceptual knowledge in 

DEs. Studies indicate that applying a CAS in mathematics teaching and learning may 

enhance mathematical thinking. Since existing software packages, such as CASs, 

have many more capabilities than before; for example, a CAS manipulates 
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mathematics concepts in symbolic and graphical representations, which can enhance 

mental activities in mathematics, such as visualization (Gibson, 2008; Marshall et al., 

2012).  

Considering the studies mentioned in section 1.2, the main problem in 

teaching and learning DEs is a lack of mathematical thinking to model, solve, and 

interpret the solutions. Promoting mathematical thinking in the classes faces various 

issues and challenges (Roselainy et al., 2012a; Roselainy et al., 2012b; Yudariah and 

Tall, 1998), such as no clear understanding of mathematical thinking, examination 

oriented culture and the syndrome of finishing the syllabus, lack of appropriate 

assessment instrument, lack of resources and know-how in promoting mathematical 

thinking, and the role of technology in promoting mathematical thinking (Sam and 

Yong, 2006). Within the CASs learning environment students have more time to 

enhance other mathematical powers, such as mathematical thinking. CASs, such as 

Maxima, the language of which is close to that of mathematics in differential 

equations, and which is also free, can be applied to promote mathematical thinking. 

The capabilities of Maxima are similar to other CASs, such as Maple and 

Mathematica, for solving differential equation problems and drawing the graph of the 

functions. This research intends to take advantage of the high-speed calculation and 

visualization in the Maxima environment to enhance mathematical thinking. This 

study intends to integrate CASs, such as Maxima, into differential equations 

instruction to identify to what extent students use mathematical thinking powers to 

solve a differential equation in first order differential equations, second differential 

equations with constant coefficients, and Laplace transforms. This identification 

applies to identify the factors to enhance mathematical thinking powers in 

differential equations using computer algebra systems. 

1.4 Objectives of the Study  

This study has identified the following objectives: 
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1. To identify how students use the mathematical thinking powers to make 

sense of mathematical structures in differential equations through a 

computer algebra system. 

2. To identify the enhancement of the mathematical thinking powers in 

learning differential equations through a computer algebra system.  

3. To identify the factors for developing the mathematical thinking powers of 

students in learning differential equations through a computer algebra 

system.  

1.5 Research Questions  

This research is conducted to answer the following questions:   

   

1. To what extent do students use mathematical thinking powers to make 

sense of basic concepts of differential equations?  

2. To what extent are mathematical thinking powers fostered while students 

work with a CAS in differential equations? 

3. What are the proper factors to support students’ mathematical thinking 

powers in differential equations through a computer algebra system? 

1.6 Theoretical Framework 

The theoretical framework is defined as any empirical or quasi-empirical 

theory of social and psychological processes that can be used for understanding 

phenomena (Anfara and Mertz, 2006). Certainly, a theoretical framework is required 

in order to design the teaching, understanding, learning, and improving mathematics 

education (Arslan, 2010b; Drijvers et al., 2010). When a researcher accepts a 

particular theory to apply in a theoretical framework of the research, the researcher is 

trying to match to the accepted conventions of argumentation and experimentation 
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associated with the theory. This conformation facilitates communication, encourages 

systematic research programs, and demonstrates progress among scholars with like 

mind working on the same research problem (Lester, 2010). For developing 

mathematical thinking in learning differential equations through a computer algebra 

system, it is suggested to have a theoretical framework including instrumental 

genesis (Rabardel and Bourmaud, 2003) and the Three Worlds of Mathematics (Tall, 

2008), which consists of constructivism. The Three Worlds of Mathematics includes 

the APOS Theory (Cornu and Dubinsky, 1989) to construct mathematics knowledge 

by students. The Three Worlds of Mathematics is a mature theory that includes the 

APOS Theory(Action-process-object-schema); however, the APOS Theory focuses 

almost exclusively on symbolic compression and not on visual insight. Instrumental 

genesis facilitates this shortcoming. 

1.6.1 APOS Theory: a Constructivist Theory of Learning Mathematics   

The common constructivist belief reflects that mathematics can be 

constructed by the autonomous minds of students, and, in reality, there is not much 

difference between their struggle with mathematics and that of mathematicians and 

scientists (Czarnocha and Maj, 2006). Constructivism is the theory of the acquisition 

of the knowledge in which pupils construct their knowledge using interactions, 

conflicts and re-equilibrations consisting of mathematical concepts, other students, 

and problems. Teachers manage the interactions as the fundamental choice (Tall, 

1991).   

Reflective abstraction is a powerful tool to study the mathematical thinking, 

which explains the construction of mathematical knowledge by a person during the 

cognitive development process. Originally, it was introduced by Piaget (Dubinsky, 

1991) who noted that it was important for higher mathematics and that it was related 

to the construction of the mental objects and mental actions concerning those objects. 

The APOS theory was an attempt to realize the mechanism of reflective abstraction, 

which tries to explain a child's development of logical thinking and extend it to 

advanced concepts in mathematics (Holton, 2001). The response to mathematical 
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problems is considered as the student’s mathematical knowledge through reflecting 

on mathematical problems and their solutions in a social context and through 

constructing or re-constructing mathematical actions, processes, and objects and 

organizing these into schemas to deal with the situations (Asiala et al., 1996). 

Based on the APOS Theory, an action is considered to be a physical or 

mental change of objects to construct other objects, which may be a multi-step 

response to an external stimulus that the individual perceives. The individual may 

establish conscious control concerning the responses, which is called interiorized 

action and will become a process. Therefore, a process is a transformation of objects, 

which, by the individual reflections, will become an object. Consequently, the 

encapsulation of a process leads to the construction of an object when the individual 

is becoming aware of the process (Cottrill et al., 1996). A set of objects and 

processes is considered as a schema. An individual’s subject plays a critical role in 

promoting a schema to understand a perceived situation, which forms an individual 

mathematics concept. Therefore, a person has various kinds of schemas; for example, 

number, arithmetic, function, and proof by induction (Dubinsky, 1991).  

The organization of a schema is shown in Figure 1.1. Some internal 

constructions, interiorized action, are developed in relation to an action. Thus, an 

interiorized action is a process that allows one to be conscious of an action and 

combine it to other actions. Reversing is another way to work with an existing 

process to form new ones. If two or more processes are combined, then a new 

process will be formed (Tall, 1991). These four components have been presented in 

an ordered list; in some sense, each concept in the list must be constructed before the 

next step is possible. However, in reality the construction of a concept is not actually 

in such a linear manner (Dubinsky and Mcdonald, 2002).  

The teaching and learning process, particularly in differential equations, 

cannot be improved automatically using a computer in differential equations. It is 

necessary to have a cognitive theory as an inseparable part of the design using a 

computer in teaching and learning mathematics. Mathematics knowledge is 

responding to a problematic situation through construction or reconstruction 
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processes, in which the object explains the main aspect of mathematical 

epistemology. Additionally, the time of reconstruction could be different due to the 

requirements of the particular situation. 

 

 

 

 

Figure 1.1 Encapsulation of Mathematics Knowledge (Dubinsky, 1991:33) 

On one side, within the APOS Theory, teachers help learners to construct 

appropriate mathematical mental structures. Moreover, students are guided to 

construct their conceptual understanding of mathematics using the structures. On the 

other side, learning is assisted if the student’s mental structures are appropriate to a 

given concept of mathematics. They discuss the results that they found and listen to 

explanations of fellow students or the lecturer, which are about the meaning of the 

mathematical concepts that they are working on (Dubinsky and Mcdonald, 2002). A 

genetic decomposition assumes the particular actions, processes, and objects that 

have an important role in constructing a mental schema for dealing with a given 

mathematical situation.  

1.6.2 Three Worlds of Mathematics  

The recent work of Tall (2008) is about the transition in thinking from school 

mathematics to formal mathematics at the university level, which is formulated as the 

framework of the Three Worlds of Mathematics. Within the framework, 

mathematical thinking develops in three different ways including conceptual 
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embodiment, operational symbolism, and axiomatic formalism. The conceptual 

embodied world includes the perception of mathematics concepts, mathematical 

action and thought, while the proceptual symbolic world comprises the calculations 

based on mathematical symbols, and axiomatic-formal world including mathematical 

abstraction and proofs.  

Gray and Tall (2001) explained three (or possibly four) critical different types 

of object. Empirical abstraction, which is the intended study of objects to discover 

their properties, the pseudo-empirical abstraction that emphasizes actions, which are 

symbolized and mentally understood as concepts. The last one is found in the 

modern formalist approach to mathematics, which is formulated reflective 

abstraction based on Piaget’s belief. This can be seen as a refined version of pseudo-

empirical abstraction, which is the action on mental objects processed at a higher 

level. The set-before refers to the mental structure that one was born with, for 

example, the biological system to recognize a small number, up, down, and social 

ability to interact with others. It can be classified set-befores into three parts that 

mathematical development is based on them, including recognition of patterns, 

similarities and differences; repetition of sequences of actions until they become 

automatic; and the language for explaining and refining the way of thinking about 

things (Tall, 2008). While personal development is based on previous experiences 

that have been met before. A met-before is a structure that we have in our brains now 

as a consequence of experiences that have been met before, such as prior knowledge, 

the current knowledge in mathematics, and our expectation of learning mathematics 

(Tall, 2013).  

Sometimes a met-before, the current mental facility, based on an individual’s 

previous experiences, are consistent with a new situation that can be supportive in a 

new situation, and sometimes inconsistent, which causes mental confusion that 

hinders the learning process of new concepts (Tall, 2008). Conceptual embodiment 

develops as the individual matures constructing from objects perception, description, 

and through construction and definition, for example, the definition and order of a 

differential equation. Other embodied concepts, such as a graph, follow next. It is 

only when the systems are axiomatised and the properties deduced solely from the 
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axioms using set-theoretic formal proof that the cognitive development of a concept 

moves fully to a formal-axiomatic approach. Therefore, conceptual embodiment 

refers not only to how thinking is embodied, but more particularly to proceptual 

representations of mathematical concepts, as shown in Figure 1.2.  Three worlds 

describe movement form  

 

Figure 1.2 Three Worlds of Mathematics in learning differential equations (Tall, 

1992:8) 

multiple representation in mathematics. The use of symbols that arise from 

performing an action schema is referred to as proceptual symbolism; for example, 

counting is a thinkable concept, such as numbers. For example, 3+2 shows the 

process to become a thinkable concept generated by that process. Symbol, process, 

and concept are combined through constructing the process, which is called an 

elementary procept; a collection of elementary procepts with the same output concept 

is called a procept. As mentioned above, process-object encapsulation was explained 
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by Dubinsky in the APOS Theory based on the theory of Piaget and was used in 

programming mathematical constructions in a symbolic development (Dubinsky and 

Mcdonald, 2002). Axiomatic formalism considers the formalism of Hilbert, which is 

beyond the formal operations of Piaget (Tall, 2008). 

The main distinction between the elementary mathematics of embodiment 

and symbolism is that the definitions in elementary mathematics come from 

experience with objects whose properties are described and used as definitions, while 

formal presentations in formal mathematics start with set-theoretic definitions and 

deduce other properties using formal proof (Tall, 2013). Students do not cope with 

moving into the Three Worlds of Mathematics in the same manner. For example, 

some operate procedurally within the world of operational symbolism. However, 

they may be less proficient in dealing with symbols as manipulatable concepts. 

While some students may build naturally from embodied and symbolic experience, 

others may build naturally based on written definitions. Other students may try to 

pass examinations by learning proofs procedurally in an axiomatic formal world 

(Kaput, 1992). 

1.6.3 Instrumental Genesis  

Before the advent of the computer, the teaching philosophy was based on the 

French “didactic triangle”, which showed the relationship between the pupil, the 

teacher and mathematics. The introduction of the computer adds a new dimension 

into the learning situation. Now, there are four components, which may form a 

tetrahedron in an appropriate educational context (student-teacher-mathematics-

learner). It is assumed that the computer has appropriate software that represents 

mathematics and makes it as explicit as possible. It shows the processes of the 

mathematics as well as the final results of any calculation (Tall, 1986b).  

In respect of using ICT, seven out of nine papers that were submitted to ICMI 

Study 17 offered an instrumental approach as the main part of the theoretical 

framework (Drijvers et al., 2010). In the early nineties, constructivism approaches 
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were used in research including CASs or educational studies linked to computer 

technologies. However, they tended to be somewhat distant from the constructivism 

approaches. They believed that anthropological socio-cultural approaches were more 

sensitive to the role that instruments play in mathematical activities and rehabilitate 

in technical work (Artigue, 2002). The theoretical underpinnings of the instrumental 

approach to use tools consist of elements from both the anthropological theory of 

didactics (Bosh and Chevallard, 1999) and cognitive ergonomics (Verillon and 

Rabardel, 1995). There are two directions within instrumental genesis that are linked 

with these two frameworks. Along the line of the cognitive ergonomic framework, 

the development of schemes is central for instrumental genesis, which is related to 

the cognitive and psychological perspectives. Researchers in the line with an 

anthropological focus on the techniques by which users develop during use 

technological tools and in social interaction (Artigue, 2002). Chevallard’s (1999) 

anthropological approach has been viewed by French CAS researchers, Artigue 

(2002) and Lagrange (1999), in mathematical activities and practices in which 

techniques have found wider meaning in that the practices are described in terms of 

tasks, techniques, technology and theory. These Ts can be categorized into two sets: 

technology and theory are referred to as knowledge itself; and task and technique, 

which focuses on “know-how” related to a specific theory and technology 

(Monaghan, 2007). Therefore, they believe that the technique refers to the manner 

for solving a task including a complex assembly of reasoning and routine action 

(Drijvers et al., 2010). 

Clearly, the use of a tool does not happen in a vacuum, in that tools are 

applied in an act, practice or a context. However, how individuals look at activities 

and practices is very important. Instrumental genesis is formed through duality 

between the instrumentalization and instrumentation processes. The former is 

directed toward the artifact and the latter is directed toward the behavior of the 

subject (See Figure 1.3). Precisely, an instrument can be regarded as an extension of 

two components. First, the body, which is a functional organ formed of an artifact 

component, such as an artifact or part of an artifact organized in the activity, and, 

second, the psychological component, made up of this organ called instrumental 

genesis, which is a complex process related to the characteristics of the artifact, such 

as potentialities and its constraints to the activity, and knowledge of subject and 
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former method of working. The psychological component is referred to as a scheme, 

which is as invariant organization of behavior in a situation.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 Instrumentation of two instrumentations and instrumentalization 

(Trouche, 2004:144) 

 A scheme has some main functions: a pragmatic function, which allows the 

agent to do something; a heuristic function that allows the agent to anticipate and 

plan actions; and an epistemic function, which allows the agent to understand what 

they are doing (Trouche, 2004). A scheme has a purpose and an aim, which 

constitutes a dynamic functional entity (see Figure 1.4). These function and 

dynamics can be understood through considering all of the components, such as the 

goal and the anticipation, the rule of action, of gathering information, of control 

taking and the operative invariants. 

 The implicit knowledge within the schemes are referred to as the operative 

invariants, on the other hand, theorem-in-action, which are related to the concepts, 

are believed to be implicitly relevant and supposed to be true (Trouche, 2003). The 

utilization schemes have two levels: the usage scheme of an artifact, which refers to 

the management of the artifact, such as turning on a calculator, adjusting the screen 

contrast, choosing a particular key; and the instrumented action scheme, which is 

related to carrying out a specific task or is oriented by activity (Verillon and 

Rabardel, 1995; Trouche, 2004), such as computing a function’s limit. Some parts of 

Instrumental genesis (Rabardel and Baurmaud, 2003) 
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the formation of schemes are visible; for example, a gesture is an elementary 

behavior of students, 

 

 

 

 

 

 

 

  

 

 

 

 

Figure 1.4 Instrumental genesis process including all parts 

 which may be observed in usage schemes, moreover, instrumented technique 
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1.6.4 Using CASs to Promote Mathematical Thinking in Differential 

Equations  

How can computers help one to learn to think mathematically? Computers 

can operate with numbers and symbols, which are the most important aspects of 

human thought. Additionally, computers are universal machines to store and 

manipulate symbols dynamically. There is a rich body of research claiming that 

computer algebra systems lead to enhanced mathematical thinking processes among 

students in mathematical concepts such as differential equations (Pea, 1987; 

Dubinsky and Tall, 2002; Artigue, 2005; Maat and Zakaria, 2011). Considering 

differential equations as a core credit for students in Science and Engineering majors 

and lack of mathematical thinking, students would make sense mathematically in 

differential equations to model, solve, and  to interpret of the phenomena 

(Zeynivandnezhad, 2013).  

Artigue (2002) expressed two major ways that can lead to the development of 

mathematical knowledge using a CAS. The first, instrumented technique 

development, instrumenting graphic and symbolic reasoning through integrating 

CASs, affects the range and form of the tasks and techniques experienced by 

learners. Therefore, the resources are applied for more explicit codification and 

theorization of such reasoning. The second contribution related to CASs, is the 

means to facilitate and extend experimentation with a mathematical system, such as 

generalization. Students can develop operational facilities through mastering and 

elaborating instrumented activity with critical components of the conceptual system 

(Ruthven, 2002). Well-designed tasks can help students to demonstrate their 

mathematical thinking as they can develop and interpret situations (Serrano, 2012). 

Therefore, promoting the mathematical thinking process can be used to solve 

unfamiliar problems in other areas. 

Moreover, Artique (2002) explained two types of value – pragmatic value 

and epistemic value – that techniques offer to solve tasks using digital technologies. 

The first focuses on the productive potential, such as efficiency, cost, and validity, 

while the latter emphasizes contributing to the understanding of the objects that they 
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involve, thus techniques are a source of questions about mathematical knowledge. In 

addition, computers based on elaborating the psychological idea of cognitive tools in 

education have the power to both amplify and reorganize mathematical thinking 

(Pea, 1987). He proposed the heuristic taxonomy whose integration into educational 

technologies may enhance thinking mathematically. It included two kinds of function 

– purpose functions and process functions. Purpose functions emphasize constructs, 

such as ownership, self-worth, and motivational context, which engage students to 

think mathematically. On the one hand, purpose functions can be integrated into 

mathematically oriented educational technologies in many ways to help students to 

become a thinking subject. Therefore, benefiting from the purpose function, students 

are no longer considered as storage bins for the execution of mathematics by 

someone else. The implication of purpose functions for the use of technology in 

mathematics education is that tools should promote the student’s self-perception as a 

mathematical agent, as a subject or creator of mathematics concepts (Papert, 1980). 

On the other hand, the process functions support students in doing mental 

activities. Promoting mathematical thinking including the process purpose function is 

thus a complementary approach, taking as a starting point the root or foundational 

psychological processes embodied in software that engages mathematical thinking. 

Therefore, according to Pea, cognitive tools can be applied for exploring 

mathematical concepts, integrating different representations in mathematics, learning 

how to learn and for learning problem solving methods. Mathematical thinking 

occurs when one is resourceful, flexible, and efficient in the ability to deal with new 

mathematical problems (Schoenfeld, 1985). Considering the points of view 

mentioned by Artigue and Pea helps to develop the theoretical framework for 

mathematical thinking in differential equations through the computer algebra system, 

as shown in Figure 1.5. As can be seen, the possibilities and constraints of CASs are 

applied to move students’ Three Worlds of Mathematics. However, the axiomatic 

formal world is not considered in differential equation classrooms in engineering. 

APOS theory is applied to explain the development of proceptual symbolic to do 

mathematical action by students in this research. To do this, students were assisted 

and guided to create the utilization schemes during the intervention sessions. 
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Figure 1.5 Theoretical framework for mathematical thinking in DEs through a CAS 
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 To sum up, any helpful medium can reduce the limitations of the mind in 

thinking, learning, and solving the problem. Cognitive technologies have had 

significant effects on the different kinds of intelligence, the functions of human 

thinking, and past intellectual achievements, inasmuch as they include writing 

systems, logics, mathematical notation systems, models, and symbolic computer 

languages. A common aspect among all these cognitive technologies is that they 

make external the intermediate products of thinking, which can then be discussed and 

analyzed and reflected, such as a result of the steps in solving a complex algebraic 

equation (Pea, 1987). The historical roots of Vygotsky’s works suggest that mankind 

is reshaped through a dialectic or conversation. What he realized was that the 

“mental process” only involves action in the environment. Computer algebra 

systems, through dynamic and interactive capabilities, make gaining an intuitive 

understanding of the interrelationships equation, graph, and pictorial representations 

accessible to the user. Thus, the door to mathematical thinking will be opened 

through which more people may enter.  Others will not increase without a richer 

environment for fostering mathematical thinking. Programming languages, symbolic 

calculators, and simulation modeling languages can be central to thinking 

mathematically.  

1.7 Conceptual Framework 

Special attention is paid to the conceptual framework to guide the research 

and to the value of recognizing the philosophical stance to consider what counts as 

evidence (Lester, 2005). The conceptual framework  (See Figure 1.6) shows an 

argument in which the concepts are chosen for investigation and interpretation, and 

any anticipated relationship among them will be appropriate and useful to the given 

research problem under investigation (Eisenhart, 1991).  

Like the theoretical framework, the conceptual framework is based on 

previous search and literature, however, the conceptual framework, as shown in 

Figure 1.6, is developed based on an array of current and possible sources. 
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Figure 1.6 Conceptual framework of the research 
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shown in Appendix E. The prompts and questions, were put in the box separately or 

embedded in the written and lab computer activities. These kinds of worksheets 

helped to explicate the mathematical thinking powers that students use while solving 

a differential equations. 

Furthermore, students would construct schemes to do mathematical action in 

a CAS environment. This process can be explained though instrumental genesis. The 

instrumentation process is the emergence and evolution of the schemes of a subject 

for the execution of a specific task. Instrumental genesis has two directions. The first 

direction, instrumentation, tries to shape the thinking by the tool and its integration 

into the learner’s own cognitive structure, which helps to construct schemes of 

instrumented actions. The second, instrumentalization, tries to shape the tool and 

how the functionalities of the tool are adjusted and transformed for a particular use. 

Concisely, instrumentation is the process by which an artifact prints its mark on the 

subject; it allows one to develop an activity within several constraints of the artifact. 

This instrumentation obviously happens in every computer learning environment due 

to the constraints and possibilities of the software packages (Trouche, 2004). For 

example, the constraints related to the computational transposition, which is working 

on knowledge and its symbolic representation, and implementation are handled by 

the user of a CAS (Balacheff, 1994). Moreover, a verified version of this conceptual 

framework is presented in chapter five in the discussion, which provides the factors 

to promote mathematical thinking powers in differential equations using a computer 

algebra system, such as Maxima. 

1.8 Significance of the Study  

Information about the current situation of differential equations can help 

researchers, policymakers, and curriculum designers to provide opportunities to solve 

the problem of teaching and learning differential equations. Moreover, how students 

use their mathematical thinking powers can benefit the mathematical education 

community, such as researchers, educators, policymakers, and curriculum 

developers. Some aspects of mathematical thinking concentrate on problem solving 
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and others relate more to the development of conceptual understanding in 

mathematics. Consequently, promoting student's mathematical thinking powers 

enhances conceptual understanding in mathematics.   

The researchers can also use the instruments to investigate the nature of the 

mathematical thinking at the undergraduate level. The instruments, including the test 

and worksheets, can also be used to enhance the quality of the teaching and learning 

at the undergraduate level. Additionally, curriculum developers can consider the 

activities to integrate CASs in mathematical concepts. 

This study identifies the factors for enhancing mathematical thinking through 

a computer algebra system. It can help to develop mathematical thinking and give 

direction to mathematics education at the undergraduate level with cognitive 

technology, such as CASs. These factors can be used in other mathematics education 

research that integrates a CAS in mathematics topics, such as calculus. The factors 

can help researchers who are investigating mathematical thinking growth, 

particularly in the CAS environment at the undergraduate level, as well as 

researchers at the high school level.   

 The identify the factors of promoting mathematical thinking can be applied 

to enhance the quality of the current situation in teaching mathematics courses at the 

undergraduate level in engineering majors as well as science. Moreover, it has its 

potential to enhance mathematical thinking in learning differential equations and it 

can be used as a guideline by mathematics’ educators in teaching and learning 

mathematical thinking, interpreting and modeling the natural phenomenon in 

differential equations and calculus. The factors emphasize promoting mathematical 

thinking, which is important for scientists and engineers; moreover, this powerful 

skill is transferable to other learning situations as well as the workplace.  
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1.9 Scope of the Study 

In this research, mathematical thinking powers were given attention including 

specializing and generalizing; conjecturing and convincing; imagining and 

expressing; stressing and ignoring; extending and restricting; classifying and 

characterizing; changing, varying, reversing and altering; and selecting, comparing, 

sorting and organizing. The distinct effects of a computer algebra system on the 

development of mathematical knowledge in differential equations are highlighted 

through the use of  mathematical thinking powers that are not commonly used in the 

pen and paper environment, such as changing, comparing, sorting, organizing and 

imagining the graphs. The mathematics used in a computer algebra system is 

different mathematics to that which is available with pen and paper algorithms. 

Differential equations at the undergraduate level which includes topics on first order 

differential equations, second differential equations with constant coefficients, and 

Laplace transforms (see Appendix I). Maxima is a CAS that is open source software 

without any limitations to install on many computers. It is free and the language used 

is close to the language of mathematics. The population was chosen from one public 

university in Malaysia and the participants were chosen from the Faculty of 

Chemical Engineering because the lecturer was familiar with the research and 

objectives of teaching experiment methodology. The demographic characteristics of 

the participants in  the intervention sessions and interviews were not considered in 

this research. The intervention sessions were conducted over 11 weeks in one 

academic semester to cover the first order and second order differential equations 

with constant coefficients, and Laplace transforms. The same examination for all the 

engineering students in differential equations, SSCE1793, is the biggest limitation in 

this research.  

1.10 Definition of Terms 

i. Computer algebra system (CAS):  A CAS is a type of software package that 

is utilized for the manipulation of mathematical formulas. It is capable of 

simplifying mathematical expressions, computing symbolic derivatives and 
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integrals, plotting graphs, solving complex equations and systems of 

equations, and manipulating matrices (Kerber et al., 1998).  

ii. Differential equations (DEs): The differential equations course presented at 

the undergraduate level for all Science and Engineering courses includes first 

order differential equations, second differential equations with constant 

coefficients, and Laplace transforms.  

iii. Mathematical thinking : On the basis of Mason’s approach of mathematical 

thinking (Mason et al., 2010), it is a dynamic process that enables people to 

increase the complexity of their ideas. Therefore, they can handle and expand 

their understanding. He identifies mathematical thinking into powers and 

structures.  

iv. Mathematical thinking powers: Mason (2010) believes that people use 

mathematical thinking powers, such as specializing and generalizing; 

conjecturing and convincing; imagining and expressing; stressing and 

ignoring, extending and restricting; classifying and characterizing; changing, 

varying, reversing and altering; and selecting, comparing, sorting and 

organizing to make sense of mathematical structure including definition, 

facts, theorem and properties, examples, counter-examples, techniques and 

instruction, conjectures and problems, representation and notations, 

explanations, justification, proofs and reasoning, links, representation and 

connections. 

v. Maxima software: An open source symbolic-based mathematical software 

that can provide a number of functions for algebraic manipulation, calculus 

operations, matrix and linear algebra, and other mathematical calculations 

(Rand, 2005).  

1.11 Summary   

The introduction in section 1.1 started with the importance of mathematical 

thinking in mathematics education. It continued with the features of mathematical 

thinking from psychologists and mathematical approaches, and, in the final part, it 

presented the mental mathematical activities by Mason. It emphasized the current 
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situations in differential equations at the undergraduate level focusing on procedural 

learning. However, existing software packages with at least commands to 

programming can be used. More relevant research was mentioned in section 1.2.  

Precisely, they have been classified into various categories. However, little research 

has been reported in terms of using CASs and mathematical thinking or 

understanding. In section 1.3, the problem is stated based on previous research. It 

was mentioned that hardly any study has been put forward to incorporate 

mathematical thinking in differential equations with or without a CAS. This 

integration was followed by the reasons and importance for its use and the many 

difficulties studied by Rasmussen. The theoretical framework was proposed to 

achieve the objectives in section 1.6. First, the most used theories were introduced in 

terms of how they are applicable; for example, APOS Theory, Three Worlds of 

Mathematics, instrumental genesis. Then, the relationships between theories were 

explained in detail to produce the theoretical framework. The relationship between 

concepts and components of the research were presented in section 1.7. The next 

chapter will discuss the relevant literature review of mathematical thinking in 

differential equations using a computer algebra system. 
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enhance procedural mathematical knowledge, even though procedural knowledge 

plays a role in real life problems among engineers.  

Affect has a role in the mathematical thinking process to avoid failure which 

was not measured in this research due to the extension of the topic. Research can be 

conducted to investigate the role based on the findings of this research. The Three 

worlds of mathematics, Mason's frameworks of mathematical thinking are based on 

the emotion to avoid student failure. Using a CAS gives the student a feeling of 

success, which was not measured in this study. However, it was sensed during the 

interviews, thus, the role of affect in enhancing mathematical thinking powers using 

a CAS can be investigated.  

Students argued in a CAS environment according to the solutions that they 

found. How Maxima can promote communication in the mathematics classroom can 

be explored in future research. This communication can be investigated based on the 

anthropological aspect of instrumental genesis to enhance conceptual understanding. 

In this research Maxima was used, which is open source software that needs 

commands to be written. To promote mathematical thinking processes in other 

software package environments, such as Maple, the opportunities are different and 

can be investigated and compared to determine which is more applicable for teaching 

and learning mathematics, in general, and differential equations, particularly. The 

emergence of new technologies and improvements in other software packages can 

provide opportunities to promote mathematical thinking. However, how these new 

tools can be applied in teaching and learning mathematical thinking powers requires 

further studies according to the findings of this research. Students’ actions in solving 

real life problems was different to that in the differential equations classroom. The 

use of technology to reduce the computation can be investigated in the context of the 

teaching and learning of the differential equation curriculum.  
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5.7 Summary  

The summary of the findings was presented in the section 5.2 and it was 

followed by the discussion on the findings according the research questions. The 

research question 1 posed about using of mathematical thinking powers to make 

sense of the mathematical structures in differential equation through a computer 

algebra system. The meaning of the result was mentioned and compared to previous 

research. However, some parts of the findings confirmed previous research such as 

high level of technical knowledge helps students to use their mathematical thinking 

powers in a CAS environment. Additionally, the limitations of the research was 

explained in section 5.5. The recommendation for further study according the 

findings and limitation were suggested in section 5.6. The role of the teacher to 

orchestrate the class to help students to construct the instrumented action schemes 

was one of the recommendation which can help to enhance the mathematical 

thinking powers in mathematical concepts using a CAS such as Maxima.  
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