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Contribution of epithelial-mesenchymal transitions to
organogenesis and cancer metastasis
Kyra Campbell1,2

The epithelial-to-mesenchymal transition (EMT) plays crucial

roles during development, and inappropriate activation of

EMTs are associated with tumor progression and promoting

metastasis. In recent years, increasing studies have identified

developmental contexts where cells undergo an EMT and

transition to a partial-state, downregulating just a subset of

epithelial characteristics and increasing only some

mesenchymal traits, such as invasive motility. In parallel, recent

studies have shown that EMTs are rarely fully activated in tumor

cells, generating a diverse array of transition states. As our

appreciation of the full spectrum of intermediate phenotypes

and the huge diversity in underlying mechanisms grows, cross-

disciplinary collaborations investigating developmental-EMTs

and cancer-EMTs will be fundamental in order to achieve a full

mechanistic understanding of this complex cell process.
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Introduction
The epithelial-to-mesenchymal transition (EMT)

describes a cellular process during which epithelial cells

transition to a mesenchymal cell state. A deceptively

simple term, first coined to describe a cell behaviour

observed by Elizabeth Hay during gastrulation (see

Box 1) in vertebrate embryos [1], it has generated many

heated debates over the years. Classically, EMT was

thought of as a binary decision, involving the transition

from a completely epithelial to a fully mesenchymal cell

[2], which forms only transient contacts with its neigh-

bours [3–5]. However, recent studies have pointed to a

much more fluid transition, where cells may adopt a

continuum of phenotypes between the ‘extreme’

epithelial and mesenchymal cell states (reviewed in [6–

8]). Our understanding of EMT as a single program has

also evolved, as we now know that there are many ways

for a cell to affect an EMT. For example, the molecular

mechanisms underlying developmental-EMTs varies

greatly, even between different tissues within the same

organism, as there is a context dependence of EMT

activation with input from both cell-intrinsic and extrinsic

factors. Here I will focus on key-concepts that are emerg-

ing from accumulative studies of developmental-EMTs,

and how these relate to the current debate on the role of

EMT in cancer.

A spectrum of EMTs occurs during
development
Considering a highly differentiated epithelial cell and an

individually migrating mesenchymal cell as extremes, the

accumulated loss or gain of various combinations of

epithelial and mesenchymal features leads to a whole

spectrum or continuum of intermediate EMT pheno-

types (Figure 1). There is a great morphological variation

in the initial epithelial phenotype prior to EMT

(reviewed in [9]), from cells which possess fully formed

junctions and an underlying basement membrane such as

epiblast cells (see Box 1) in amniotes [10,11], to the

primitive epithelial cells that give rise to the mesendo-

derm (see Box 1) in Xenopus and fish which possess just

apico-basal polarity and immature junctions (Figure 1,

[12]). A common feature of the transition to a mesenchy-

mal state is that cells lose apico-basal polarity and stable

junctions, but there is a similar continuum of mesenchy-

mal phenotypes that result from this transition. These

range from cells which migrate collectively and make

cadherin based cell–cell contacts, such as Drosophila

endoderm (see Box 1) cells and zebrafish and Xenopus

mesoderm (see Box 1) [13,14��,15,16], to cells which

migrate individually, and make only transient cell con-

tacts, such as the majority of migrating neural crest (see

Box 1) cells in chicks [17].

Given its potential role in cancer progression and other

diseases such as fibroses, there has been great emphasis

placed on defining an EMT according to the loss and gain

of molecular markers. However, cells that only transition

partway towards a mesenchymal state may not repress

epithelial markers such as E-Cadherin, nor activate mes-

enchymal genes such as vimentin or fibronectin. In fact,

there are very few features that are unique to an epithelial

or a mesenchymal cell type [7,10], and cells are often

found possessing a combination of so-called epithelial and
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mesenchymal markers [13,18�]. Thus, the classification of

an EMT according to markers can be misleading. For

example, while loss of apico-basal polarity and dissolution

of junctions can occur downstream of the transcriptional

repression of E-Cadherin (reviewed in [4]), it can also be

driven by alternative mechanisms during which E-Cad-

herin remains transcriptionally active [13]. This suggests

that it may be better to describe EMTs using morpho-

logical criteria, rather than molecular markers, and the

tissue type, cell morphology and biological context all

need to be taken into account.

Molecular mechanisms underlying
developmental EMTs
The transcriptional repression of E-Cadherin has long

been considered a critical step in, and even a landmark

for, EMT [3,[14��],19]. A key component of adherens

junctions, E-Cadherin plays a highly conserved role in

maintaining tight adherence between epithelial cells,

with transcriptional downregulation of E-Cadherin push-

ing cells towards a mesenchymal phenotype [20,21].

However, a number of recent findings suggest that the

relationship between E-Cadherin and the mesenchymal

state may be more complex. First, a number of embryonic

cell types such as endoderm [13,14��], mesendoderm

[12,22] and a subset of neural crest cells, cranial neural

crest (see Box 1) [23], have been found to adopt many

mesenchymal features, including migration, while

actively transcribing E-Cadherin. Second, while
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Box 1 Glossary

Epiblast

The epiblast forms one of two distinct layers arising from the inner-

most cells in pre-gastrulation amniote embryos, and gives rise to the

embryo proper.

Gastrulation

Gastrulation is the process during embryonic development that

changes the embryo from a blastula with a single layer of cells to a

gastrula containing multiple layers of cells. It is during this stage that

the three germ layers, the ectoderm, mesoderm and endoderm are

formed.

Endoderm and mesoderm

The mesoderm and endoderm are two of the intitial three germ cell

layers (mesoderm, endoderm and ectoderm) and are formed by the

process of gastrulation.

Mesendoderm

An embryonic tissue layer which differentiates into both endoderm

and mesoderm.

Neural crest cells

A group of cells unique to vertebrates that arise from the embryonic

ectoderm cell layer, migrate through the embryo and give rise to

diverse cell lineages, including melanocytes, craniofacial cartilage

and bone, smooth muscle, and peripheral and enteric neurons and

glia.

Cranial neural crest

A subset of neural crest cells derived from the anterior-most part of

the neural tube, and contribute to the development of most cranio-

facial structures in vertebrates.

Figure 1

Epithelial features Mesenchymal features

- regular columnar morphology - irregular rounded or elongate morphology

- loss of apico-basal polarity

- front-back polarity

- dynamic adhesions

- lamellipodia and filopodia

- cells highly motile

- high degree of cell adhesion

- cell-cell junctions (eg. adherens/gap/tight junctions)

- specialised apical membrane (eg. brush border)

- underlying basement membrane

- cells relatively static

Current Opinion in Cell Biology

The ‘spectrum’ model for Developmental-EMTs. Almost no cell feature is unique for an epithelial, nor for a mesencyhmal cell. Instead a spectrum

of cell phenotypes are seen between more differentiated epithelial and mesenchymal cell states. The accumulated loss or gain of epithelial/

mesenchymal features results in a graded spectrum of cell behaviours that cells can adopt in a fluid and reversible manner. The brown junctions

represent mature adherens junctions, green delineates immature junctions, and yellow show dynamic adhesions.
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expression of so-called EMT-transcription factors such as

Twist, Snail and Slug leads to a downregulation of E-

Cadherin transcription in gastrulating embryos, after

internalisation actively migrating cells retain E-Cadherin

protein for much longer than previously thought

[18�,24,25]. Third, E-Cadherin overexpression is not suf-

ficient to block EMT in many cell contexts, including

mesoderm [18�,26], neural crest [23,27��] or MDCK cells

[28]. Finally, E-Cadherin has been found to play an active

role in the migration of mesenchymal cells, mediating

their cohesion through dynamic cell adhesion [14��].

Consistently, there is an increasing number of cases in

which downregulation of E-Cadherin in migrating cells

leads to a complete block in their migration [12,22,23,29–

32]. Taken together these data suggest that rather than

being a marker of epithelial versus mesenchymal state,

the level of E-Cadherin in a mesenchymal cell is likely to

correlate with the degree to which the cells are migrating

collectively or not.

Loss of apico-basal polarity and dissolution of junctions

are universal morphological features of EMT, and while

this can be achieved in part through transcriptional

repression of E-Cadherin, many developmental systems

point to alternative mechanisms. In the Drosophila endo-

derm, the GATA transcription factor Serpent drives

EMT through the direct repression of the key apical

polarity protein crumbs, which induces a loss of polarity

and junctional disassembly [13]. In contrast, in the Dro-

sophila mesoderm, recent studies point to an important

role for posttranslational modifications of junctional pro-

teins [33��,34]. In other organisms the underlying base-

ment membrane needs to be broken down for EMT to

take place. In gastrulating chick embryos, for example, a

downregulation of basally localized RhoA activity dis-

rupts microtubule stability, causing basement membrane

breakdown and facilitating EMT [25].

Another early step driving the escape of epithelial cells

from their tissue of origin are fluctuations in actomyosin

contractility, which generates anisotropic increases in

tension. For example, in the early Drosophila ectodermal

epithelium neural stem cells delaminate as single cells to

give rise to the nervous system. A recent study showed

that cell-autonomous myosin-driven anisotropic junction

loss and apical constriction drives the internalization of

these cells [35]. Similarly, actomyosin contractility acts in

concert with disruption of adhesions to drive delamina-

tion and EMT in chick neural crest cells, with contraction

at the apical side of the cell coupled with loss of apical

adhesions [36]. Anisotropic levels of myosin IIB are also

seen during the stochastic ingression of presumptive

mesendoderm cells in gastrulating mouse embryos. How-

ever, in this case the levels of myosin IIB correlate

inversely with the ingressing cell, suggesting that these

cells are extruded from the epiblast by neighbouring cells

with high levels of apical myosin [11]. Interestingly, in

Crumbs2 mutants where myosin IIB anisotropy is lost,

basement membrane breakdown occurs, but the cells are

stuck in the epiblast layer and do not undergo EMT,

suggesting that basement membrane breakdown alone is

not sufficient for EMT to occur. Taken together, devel-

opmental-EMTs suggest that EMT is achieved through

the combined activation of multiple different cell beha-

viours, in a highly cell context dependent manner.

Cadherin switching during developmental-
EMTs
Cells undergoing EMT often display cadherin switching,

where they downregulate one cadherin and induce

expression of another, for example from E-Cadherin to

N-Cadherin. This so-called ‘cadherin switch’ alters the

cell–cell adhesion molecules relative to those of its tissue

of origin and has been proposed to be required for a cell

undergoing EMT to separate from its neighbours [37].

Interestingly, in Lamprey, a jawless vertebrate, neural

crest migration is Snail-dependent, but has been shown to

occur without a differential shift in cadherin expression,

indicating that differential regulation of classical cadherin

expression is not required to initiate neural crest migra-

tion in basal vertebrates [38]. Recent studies have inves-

tigated the functional requirement for cadherin switching

during EMT in gastrulating Drosophila and chick embryos

and Xenopus cranial neural crest cells, by modulating

either E-Cadherin levels so that they cannot be switched

off, or N-Cadherin, so that it cannot be switched on.

These studies have elegantly proven that cadherin

switching is not required for the segregation or dispersal

of the mesodermal germ layer in Drosophila [26] or chicks

[18�], nor in cranial neural crest cells in xenopus [23].

Thus, accumulating studies of developmental-EMTs

suggest that a ‘cadherin switch’ is not required for cells

undergoing EMT to separate from their tissue of origin.

Interestingly, an alternative functional role for E-cad-

herin to N-cadherin switch was recently identified during

neural crest migration in Xenopus and zebrafish [27��].

After EMT and delamination from the neural tube,

neural crest cells migrate extensively and differentiate

into numerous cell lineages including melanocytes, neu-

rons, glia, cartilage and bone. Central to neural crest cell

migration is the ability of these cell to undergo contact

inhibition of locomotion (CiL), whereby cells move away

from each other after cell–cell contact [39,40]. When

migrating cells contact each other, they initially down-

regulate their protrusions and form cell–cell contacts, and

then generate a dominant lamellipodium away from the

point of contact and detach. This causes mesenchymal

cells to reorient their migration, typically moving in the

direction away from their point of contact. By comparing

premigratory and migratory neural crest cells, Scarpa et al.

show that the switch from E-cadherin to N-cadherin is

required for CiL. Overexpression of E-Cadherin in migra-

tory neural crest cells impairs CiL through loss of

32 Differentiation and disease
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protrusion formation, and cell–cell contacts are stabilised

after collision. In contrast, when N-Cadherin alone is

present, cell–cell contacts are only transiently formed,

and traction forces driven by protrusion formation at the

opposite edges are sufficient to pull the cells apart

[27��,41]. These results are intriguing, as they suggest

that migrating mesenchymal cells will respond differently

to cell–cell contact, depending on the type of cadherin

they express. Thus, mesenchymal cells which express E-

Cadherin may form dynamic cell–cell contacts that favour

a more cohesive migration such as in the Drosophila

endoderm [14��], whereas cells with N-Cadherin will

undergo CiL driving a more dispersed collective migra-

tion. However, it is likely that this is again highly cell type

and context dependent.

Cell-intrinsic and extrinsic influence of
mechanical cues on the timing of an EMT
Accumulating studies suggest the EMT is highly cell-

context dependent. Simply providing epithelial cells with

cocktails of EMT-inducing signalling proteins does not

necessarily result in induction of EMT in those cells.

Developing tissues often express EMT-inducing tran-

scription factors well before EMT takes place and recent

studies have demonstrated an important role for mechan-

ical cues in determining the timing of an EMT during

normal development. For example, in Drosophila, the

EMT-inducing transcription factor Snail is expressed in

presumptive mesoderm cells well before EMT takes

place. The timing of EMT is tightly controlled and only

occurs after the mesoderm has been internalized [42]. A

recent study showed that during invagination, increases in

actomyosin contractility strengthens the junctions, and

this overrides Snail-dependent junctional disassembly

[33��]. EMT only occurs once cells are internalised and

the actomyosin tension is released. Interestingly, ectopic

expression of Snail in ectodermal epithelial cells was

sufficient to drive EMT, but junctional disassembly is

blocked by simultaneously inducing myosin contractility

[33��]. Cell-extrinsic mechanical cues have also recently

been implicated in influencing the timing of EMT.

Neural crest cells express EMT-inducing transcription

factors well in advance of the onset of migration [43��].

Expression of these transcription factors is not sufficient

for EMT, an external trigger is required, which is pro-

vided by the stiffening of the underlying tissue, the head

mesoderm. To detect changes in their mechanical envi-

ronment, neural crest cells use mechanosensation medi-

ated by the integrin-vinculin-talin complex [43��]. Taken

together these studies suggest that cells integrate both

molecular cues and tissue mechanics to coordinate EMT

and tissue morphogenesis.

Significance of emerging developmental-EMT
concepts for the cancer field
Over the past years, the prevalent view in the cancer field

has been that tumor cells undergo an EMT during the

early stages of the metastatic cascade, increasing their

motility and invasive capacities [44–48]. However, recent

studies have suggested that EMT is not necessary for the

generation of metastases [49,50], raising an intense

debate on the importance of EMT in cancer [51–54].

These studies lineage-traced a selection of mesenchymal

markers in mouse models for metastatic cancer, in an

attempt to track cancer cells that have undergone EMT

activation [49,50]. They found that these markers were

not expressed in metastases, leading the authors to sug-

gest that cancer cells metastasise without activating

EMT. An alternative view is that similar to many cells

during development, cancer cells may only activate a

partial-EMT en-route to forming metastases, and thus

may not activate markers associated with a more extreme

mesenchymal phenotype. In line with this, recent in vivo

evidence has demonstrated the existence of multiple

tumor subpopulations associated with many different

EMT states, from epithelial to completely mesenchymal,

passing through numerous intermediate hybrid states

[55��]. Future studies using more sensitive and robust

permanent tracing systems using markers derived from

these intermediate hybrid states should help to illuminate

the importance of EMT in cancer progression. Intrigu-

ingly, these intermediate states displayed differences in

cellular plasticity, invasiveness and metastatic potential

[55��]. It will be important in the future to understand

how these differences in terms of markers relate back to

cell morphological features, and the ability to migrate

cohesively, as cell clusters are increasingly recognised as

potent drivers of metastasis [56].

Recent studies also attempted to block EMT through the

deletion of EMT-inducing transcription factors Snail1

and Twist1 or activation of miR-200, a putative suppres-

sor of EMT. However, this failed to supress metastasis,

suggesting that similar to developmental contexts, the

roles of EMT-transcription factors in cancer cells are non-

redundant as well as tissue-specific. For example, it was

demonstrated that Snail triggers metastasis in breast

cancer [57], whereas it has no effect on metastasis in a

pancreatic cancer model [50]. However, in contrast to

Snail, Zeb1 favours metastasis in pancreatic cancer [58].

Tumours are extremely heterogenous, and these emerg-

ing data demonstrate a context dependence to EMT in

cancer cells, and suggest a huge diversity in underlying

cellular mechanisms. A difficulty moving forward will be

to identify definitive sets of markers for EMT, as it will

likely require a different set for each tissue or even tumor

type. Achieving a full-mechanistic understanding of

EMT will be even more challenging, but as this diversity

is also seen in embryos, cross-disciplinary studies drawing

comparisons between developmental-EMTs and cancer-

EMTs should drive this field forward.
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discussions, and to Eric Théveneau, Guojun Sheng and Andreu Casali for
comments on the manuscript. This work was supported by a Wellcome
Trust/Royal Society Sir Henry Dale Award (Grant number R/148777-11-1).

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as

� of special interest
�� of outstanding interest

1. Trelstad RL, Hay ED, Revel JD: Cell contact during early
morphogenesis in the chick embryo. Dev Biol 1967, 16:78-106.

2. Hay ED: The mesenchymal cell, its role in the embryo, and the
remarkable signaling mechanisms that create it. Dev Dyn 2005,
233:706-720.

3. Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA:
Epithelial-mesenchymal transitions: the importance of
changing cell state in development and disease. J Clin Invest
2009, 119:1438-1449.

4. Nieto MA: The ins and outs of the epithelial to mesenchymal
transition in health and disease. Annu Rev Cell Dev Biol 2011,
27:347-376.

5. Hay ED: An overview of epithelio-mesenchymal
transformation. Acta Anat (Basel) 1995, 154:8-20.

6. Nieto MA, Huang RY, Jackson RA, Thiery JP: Emt: 2016. Cell
2016, 166:21-45.

7. Campbell K, Casanova J: A common framework for EMT and
collective cell migration. Development 2016, 143:4291-4300.

8. Brabletz T, Kalluri R, Nieto MA, Weinberg RA: EMT in cancer. Nat
Rev Cancer 2018, 18:128-134.

9. Shook D, Keller R: Mechanisms, mechanics and function of
epithelial-mesenchymal transitions in early development.
Mech Dev 2003, 120:1351-1383.

10. Nakaya Y, Sheng G: Epithelial to mesenchymal transition
during gastrulation: an embryological view. Dev Growth Differ
2008, 50:755-766.

11. Ramkumar N, Omelchenko T, Silva-Gagliardi NF, McGlade CJ,
Wijnholds J, Anderson KV: Crumbs2 promotes cell ingression
during the epithelial-to-mesenchymal transition at
gastrulation. Nat Cell Biol 2016, 18:1281-1291.

12. Montero JA, Carvalho L, Wilsch-Brauninger M, Kilian B, Mustafa C,
Heisenberg CP: Shield formation at the onset of zebrafish
gastrulation. Development 2005, 132:1187-1198.

13. Campbell K, Whissell G, Franch-Marro X, Batlle E, Casanova J:
Specific GATA factors act as conserved inducers of an
endodermal-EMT. Dev Cell 2011, 21:1051-1061.

14.
��

Campbell K, Casanova J: A role for E-cadherin in ensuring
cohesive migration of a heterogeneous population of non-
epithelial cells. Nat Commun 2015, 6:7998.

Using real-time imaging of migrating endoderm cells, combined with cell
tracking and quantitative analysis of migratory parameters, for the first
time this study identified a role for E-Cadherin in migrating mesenchymal
cells. This study showed that E-Cadherin is required to coordinate the
migration of mesenchymal cells both with themselves and with neigh-
bouring epithelial-like cells.

15. Ulrich F, Krieg M, Schotz EM, Link V, Castanon I, Schnabel V,
Taubenberger A, Mueller D, Puech PH, Heisenberg CP: Wnt11
functions in gastrulation by controlling cell cohesion through
Rab5c and E-cadherin. Dev Cell 2005, 9:555-564.

16. Weber GF, Bjerke MA, DeSimone DW: A mechanoresponsive
cadherin-keratin complex directs polarized protrusive
behavior and collective cell migration. Dev Cell 2012, 22:104-
115.

17. Theveneau E, Mayor R: Neural crest delamination and
migration: from epithelium-to-mesenchyme transition to
collective cell migration. Dev Biol 2012, 366:34-54.

18.
�

Moly PK, Cooley JR, Zeltzer SL, Yatskievych TA, Antin PB:
Gastrulation EMT Is Independent of P-Cadherin
Downregulation. PLOS ONE 2016, 11:e0153591.

The first demonstration in a vertebrate embryo that downregulation of
epithelial cadherins does not play a central role in driving EMT in
gastrulating mesendoderm cells.

19. Huber MA, Kraut N, Beug H: Molecular requirements for
epithelial-mesenchymal transition during tumor progression.
Curr Opin Cell Biol 2005, 17:548-558.

20. Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J,
Garcia De Herreros A: The transcription factor snail is a
repressor of E-cadherin gene expression in epithelial tumour
cells. Nat Cell Biol 2000, 2:84-89.

21. Cano A, Nieto MA: Non-coding RNAs take centre stage in
epithelial-to-mesenchymal transition. Trends Cell Biol 2008,
18:357-359.

22. Dumortier JG, Martin S, Meyer D, Rosa FM, David NB: Collective
mesendoderm migration relies on an intrinsic directionality
signal transmitted through cell contacts. Proc Natl Acad Sci U S
A 2012, 109:16945-16950.

23. Huang C, Kratzer MC, Wedlich D, Kashef J: E-cadherin is
required for cranial neural crest migration in Xenopus laevis.
Dev Biol 2016, 411:159-171.

24. Clark IB, Muha V, Klingseisen A, Leptin M, Muller HA: Fibroblast
growth factor signalling controls successive cell behaviours
during mesoderm layer formation in Drosophila. Development
2011, 138:2705-2715.

25. Nakaya Y, Sukowati EW, Wu Y, Sheng G: RhoA and microtubule
dynamics control cell-basement membrane interaction in
EMT during gastrulation. Nat Cell Biol 2008, 10:765-775.

26. Schafer G, Narasimha M, Vogelsang E, Leptin M: Cadherin
switching during the formation and differentiation of the
Drosophila mesoderm – implications for epithelial-to-
mesenchymal transitions. J Cell Sci 2014, 127:1511-1522.

27.
��

Scarpa E, Szabo A, Bibonne A, Theveneau E, Parsons M, Mayor R:
Cadherin switch during EMT in neural crest cells leads to
contact inhibition of locomotion via repolarization of forces.
Dev Cell 2015, 34:421-434.

This study identified a functional role for the E-cadherin to N-cadherin
switch in migrating neural crest cells in Xenopus and zebrafish. It showed
that the switch from E-cadherin to N-cadherin is required for contact
inhibition of locomotion in migrating neural crest cells.

28. Ohkubo T, Ozawa M: The transcription factor Snail
downregulates the tight junction components independently
of E-cadherin downregulation. J Cell Sci 2004, 117:1675-1685.

29. Cai D, Chen SC, Prasad M, He L, Wang X, Choesmel-Cadamuro V,
Sawyer JK, Danuser G, Montell DJ: Mechanical feedback
through E-cadherin promotes direction sensing during
collective cell migration. Cell 2014, 157:1146-1159.

30. Kardash E, Reichman-Fried M, Maitre JL, Boldajipour B,
Papusheva E, Messerschmidt EM, Heisenberg CP, Raz E: A role
for Rho GTPases and cell–cell adhesion in single-cell motility
in vivo. Nat Cell Biol 2010, 12:47-53 sup pp. 1–11.

31. Niewiadomska P, Godt D, Tepass U: DE-Cadherin is required for
intercellular motility during Drosophila oogenesis. J Cell Biol
1999, 144:533-547.

32. Shamir ER, Pappalardo E, Jorgens DM, Coutinho K, Tsai WT,
Aziz K, Auer M, Tran PT, Bader JS, Ewald AJ: Twist1-induced
dissemination preserves epithelial identity and requires E-
cadherin. J Cell Biol 2014, 204:839-856.

33.
��

Weng M, Wieschaus E: Myosin-dependent remodeling of
adherens junctions protects junctions from Snail-dependent
disassembly. J Cell Biol 2016, 212:219-229.

The EMT transcription factor Snail is expressed in Drosophila mesoderm
long before EMT takes place. This study demonstrated that the acto-
myosin contractility can strengthen junctions and counteract Snail-
mediated junction disassembly. Additionally, it points to a role for

34 Differentiation and disease

Current Opinion in Cell Biology 2018, 55:30–35 www.sciencedirect.com

http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0005
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0005
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0010
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0010
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0010
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0015
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0015
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0015
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0015
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0020
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0020
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0020
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0025
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0025
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0030
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0030
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0035
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0035
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0040
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0040
https://doi.org/10.1016/j.ceb.2018.06.008
https://doi.org/10.1016/j.ceb.2018.06.008
https://doi.org/10.1016/j.ceb.2018.06.008
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0050
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0050
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0050
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0055
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0055
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0055
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0055
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0060
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0060
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0060
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0065
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0065
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0065
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0070
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0070
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0070
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0075
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0075
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0075
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0075
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0080
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0080
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0080
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0080
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0085
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0085
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0085
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0090
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0090
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0090
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0095
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0095
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0095
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0100
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0100
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0100
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0100
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0105
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0105
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0105
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0110
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0110
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0110
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0110
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0115
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0115
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0115
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0120
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0120
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0120
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0120
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0125
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0125
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0125
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0130
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0130
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0130
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0130
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0135
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0135
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0135
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0135
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0140
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0140
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0140
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0145
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0145
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0145
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0145
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0150
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0150
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0150
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0150
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0155
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0155
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0155
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0160
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0160
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0160
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0160
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0165
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0165
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0165


posttranslational modifications of E-Cadherin and Par3 in junctional
disassembly downstream of Snail.

34. Weng M, Wieschaus E: Polarity protein Par3/Bazooka follows
myosin-dependent junction repositioning. Dev Biol 2017,
422:125-134.

35. Simoes S, Oh Y, Wang MFZ, Fernandez-Gonzalez R, Tepass U:
Myosin II promotes the anisotropic loss of the apical domain
during Drosophila neuroblast ingression. J Cell Biol 2017,
216:1387-1404.

36. Clay MR, Halloran MC: Rho activation is apically restricted by
Arhgap1 in neural crest cells and drives epithelial-to-
mesenchymal transition. Development 2013, 140:3198-3209.

37. Taneyhill LA: To adhere or not to adhere: the role of Cadherins
in neural crest development. Cell Adh Migr 2008, 2:223-230.

38. York JR, Yuan T, Zehnder K, McCauley DW: Lamprey neural
crest migration is Snail-dependent and occurs without a
differential shift in cadherin expression. Dev Biol 2017, 428:176-
187.

39. Carmona-Fontaine C, Matthews HK, Kuriyama S, Moreno M,
Dunn GA, Parsons M, Stern CD, Mayor R: Contact inhibition of
locomotion in vivo controls neural crest directional migration.
Nature 2008, 456:957-961.

40. Theveneau E, Marchant L, Kuriyama S, Gull M, Moepps B,
Parsons M, Mayor R: Collective chemotaxis requires contact-
dependent cell polarity. Dev Cell 2010, 19:39-53.

41. Theveneau E, Steventon B, Scarpa E, Garcia S, Trepat X, Streit A,
Mayor R: Chase-and-run between adjacent cell populations
promotes directional collective migration. Nat Cell Biol 2013,
15:763-772.

42. Leptin M, Grunewald B: Cell shape changes during gastrulation
in Drosophila. Development 1990, 110:73-84.

43.
��

Barriga EH, Franze K, Charras G, Mayor R: Tissue stiffening
coordinates morphogenesis by triggering collective cell
migration in vivo. Nature 2018, 554:523-527.

This study demonstrated a role for cell-extrinisic mechanical cues in
determinating the timing of EMT in neural crest cells. Neural crest cells
express EMT-inducing transcription factors well in advance of migration.
EMT and migration is not initiated in these cells, an external trigger,
stiffening of the underlying head mesoderm is required.

44. Kalluri R, Weinberg RA: The basics of epithelial-mesenchymal
transition. J Clin Invest 2009, 119:1420-1428.

45. Yang J, Weinberg RA: Epithelial-mesenchymal transition: at the
crossroads of development and tumor metastasis. Dev Cell
2008, 14:818-829.

46. Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA,
Williams ED, Thompson EW: Epithelial–mesenchymal and

mesenchymal–epithelial transitions in carcinoma
progression. J Cell Physiol 2007, 213:374-383.

47. De Craene B, Berx G: Regulatory networks defining EMT during
cancer initiation and progression. Nat Rev Cancer 2013, 13:97-
110.

48. Chaffer CL, San Juan BP, Lim E, Weinberg RA: EMT, cell
plasticity and metastasis. Cancer Metastasis Rev 2016, 35:645-
654.

49. Fischer KR, Durrans A, Lee S, Sheng J, Li F, Wong ST, Choi H, El
Rayes T, Ryu S, Troeger J et al.: Epithelial-to-mesenchymal
transition is not required for lung metastasis but contributes
to chemoresistance. Nature 2015, 527:472-476.

50. Zheng X, Carstens JL, Kim J, Scheible M, Kaye J, Sugimoto H,
Wu CC, LeBleu VS, Kalluri R: Epithelial-to-mesenchymal
transition is dispensable for metastasis but induces
chemoresistance in pancreatic cancer. Nature 2015, 527:525-
530.

51. Aiello NM, Brabletz T, Kang Y, Nieto MA, Weinberg RA,
Stanger BZ: Upholding a role for EMT in pancreatic cancer
metastasis. Nature 2017, 547:E7-E8.

52. Ye X, Brabletz T, Kang Y, Longmore GD, Nieto MA, Stanger BZ,
Yang J, Weinberg RA: Upholding a role for EMT in breast cancer
metastasis. Nature 2017, 547:E1-E3.

53. Fischer KR, Altorki NK, Mittal V, Gao D: Fischer et al. reply. Nature
2017, 547:E5-E6.

54. Mittal V: Epithelial mesenchymal transition in tumor
metastasis. Annu Rev Pathol 2018, 13:395-412.

55.
��

Pastushenko I, Brisebarre A, Sifrim A, Fioramonti M, Revenco T,
Boumahdi S, Van Keymeulen A, Brown D, Moers V, Lemaire S
et al.: Identification of the tumour transition states occurring
during EMT. Nature 2018, 556:463-468.

This study used cell surface markers to screen skin and mammary
tumours and identified the existence of multiple tumour subpopulations
associated with different EMT stages, from epithelial to completely
mesenchymal, with many intermediate hybrid states. They demonstrated
that EMT subpopulations displayed differences in cellular plasticity,
invasiveness and metastatic potential.

56. Cheung KJ, Ewald AJ: A collective route to metastasis: Seeding
by tumor cell clusters. Science 2016, 352:167-169.

57. Tran HD, Luitel K, Kim M, Zhang K, Longmore GD, Tran DD:
Transient SNAIL1 expression is necessary for metastatic
competence in breast cancer. Cancer Res 2014, 74:6330-6340.

58. Krebs AM, Mitschke J, Lasierra Losada M, Schmalhofer O,
Boerries M, Busch H, Boettcher M, Mougiakakos D, Reichardt W,
Bronsert P et al.: The EMT-activator Zeb1 is a key factor for cell
plasticity and promotes metastasis in pancreatic cancer. Nat
Cell Biol 2017, 19:518-529.

Contribution of EMTs to development and disease Campbell 35

www.sciencedirect.com Current Opinion in Cell Biology 2018, 55:30–35

http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0170
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0170
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0170
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0175
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0175
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0175
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0175
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0180
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0180
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0180
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0185
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0185
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0190
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0190
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0190
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0190
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0195
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0195
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0195
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0195
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0200
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0200
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0200
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0205
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0205
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0205
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0205
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0210
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0210
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0215
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0215
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0215
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0220
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0220
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0225
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0225
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0225
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0230
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0230
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0230
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0230
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0235
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0235
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0235
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0240
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0240
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0240
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0245
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0245
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0245
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0245
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0250
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0250
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0250
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0250
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0250
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0255
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0255
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0255
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0260
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0260
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0260
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0265
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0265
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0270
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0270
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0275
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0275
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0275
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0275
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0280
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0280
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0285
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0285
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0285
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0290
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0290
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0290
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0290
http://refhub.elsevier.com/S0955-0674(18)30067-X/sbref0290

	Contribution of epithelial-mesenchymal transitions to organogenesis and cancer metastasis
	Introduction
	A spectrum of EMTs occurs during development
	Molecular mechanisms underlying developmental EMTs
	Cadherin switching during developmental-EMTs
	Cell-intrinsic and extrinsic influence of mechanical cues on the timing of an EMT
	Significance of emerging developmental-EMT concepts for the cancer field
	Conflict of interest statement
	References and recommended reading
	Acknowledgements


