Chebyshev collocation computation of magneto-bioconvection nanofluid flow over a wedge with multiple slips and magnetic induction

Uddin, MJ, Kabir, MN, Beg, OA and Alginahi, Y

http://dx.doi.org/10.1177/2397791418809795

<table>
<thead>
<tr>
<th>Title</th>
<th>Chebyshev collocation computation of magneto-bioconvection nanofluid flow over a wedge with multiple slips and magnetic induction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authors</td>
<td>Uddin, MJ, Kabir, MN, Beg, OA and Alginahi, Y</td>
</tr>
<tr>
<td>Type</td>
<td>Article</td>
</tr>
<tr>
<td>URL</td>
<td>This version is available at: http://usir.salford.ac.uk/48527/</td>
</tr>
<tr>
<td>Published Date</td>
<td>2018</td>
</tr>
</tbody>
</table>

USIR is a digital collection of the research output of the University of Salford. Where copyright permits, full text material held in the repository is made freely available online and can be read, downloaded and copied for non-commercial private study or research purposes. Please check the manuscript for any further copyright restrictions.

For more information, including our policy and submission procedure, please contact the Repository Team at: usir@salford.ac.uk,
CHEBYSHEV COLLOCATION COMPUTATION OF MAGNETO-BIOCONVECTION NANOFUID FLOW OVER A WEDGE WITH MULTIPLE SLIPS AND MAGNETIC INDUCTION
M.J. Uddin, M.N. Kabir and O. Anwar Bég, Y. Alginahi

ABSTRACT:
In this paper the steady two dimensional stagnation point flow of a viscous incompressible electrically conducting bio-nanofuid over a stretching/shrinking wedge in the presence of passively control boundary condition, Stefan blowing and multiple slips is numerically investigated. Magnetic induction is also taken into account. The governing conservation equations are rendered into a system of ordinary differential equations via appropriate similarity transformations. The reduced system is solved using a fast, convergent Chebyshev collocation method. The influence of selected parameters on the dimensionless velocity, induced magnetic field, temperature, nanoparticle volume fraction and density of motile microorganisms as well as on the local skin friction, local Nusselt number, local Sherwood number and density of motile microorganism numbers are discussed and presented graphically. Validation with previously published results is performed and an excellent agreement is found. The study is relevant to electromagnetic manufacturing processes involving bio-nano-fluids.

KEYWORDS; Electromagnetic materials processing; nano-biofluid, slip; magnetic induction; Chebyshev collocation method; Stefan blowing

1. INTRODUCTION
The external boundary layer flow over a two dimensional wedge is a classical problem in viscous fluid dynamics which has considerable relevance to many areas of technology including materials processing operations. Early studies of this so-called “Falkner-Skan flows” have been summarized succinctly in the monograph of Rosenhead. These flows consider a wedge with included apex angle of $\pi \beta$ with an external pressure gradient associated with the inviscid external flow solution. Such flows introduce a “wedge parameter” which enables a number of physically viable special cases to be extracted including forward stagnation point flow, rear stagnation point flow, Blasius boundary layer flow etc. The fluids considered in Rosenhead’s book were Newtonian. Numerous investigations of momentum, heat and mass transfer from wedge geometries have been communicated subsequently for non-Newtonian fluids since these abound in chemical and biotechnology operations. In many applications multi-physical effects also arise simultaneously and these may include electrical fields, magnetic fields, multi-mode heat transfer (conduction, convection and radiation), non-isothermal behavior, entropy generation, thermal stratification etc. Atalik and Sönmezler
studied electrofluid boundary layer flow from a two-dimensional wedge with group theoretical methods. Abdul Gaffar et al. investigated numerically the coupled thermal and velocity boundary layer flow from a non-isothermal wedge geometry to magnetized Eyring-Powell non-Newtonian fluids. Rashad investigated hydromagnetic mixed convection slip flow of Cobalt-kerosene ferrofluid from a non-isothermal wedge under the radiative flux and wall slip effects using a influence of thermal radiation and partial slip. Olagunju analyzed the Falkner–Skan flow of a FENE-P viscoelastic fluid elaborating the influence of Weissenberg number and deriving a similarity solution for axisymmetric stagnation point flow. Rashidi et al. derived homotopy solutions for third grade differential Reiner-Rivlin convection boundary layer non-isothermal Falkner-Skan flow. Mansutti and Pontrelli considered non-similar solutions for Falkner-Skan flows of second grade rheological fluids. Yih obtained computational solutions for hydromagnetic forced convection non-isothermal Falkner-Skan flows.

In recent years, the global expansion in nanotechnology has led to a new type of fluid aimed largely at enhancing thermal engineering properties. Nanofluids constitute a significant advance in fluid dynamics technology and are synthesized by doping conventional base fluids (e.g. water, mineral oil, air, etc.) with carefully designed nano-particles. The resulting suspension achieves improved thermal conductivity and modified viscosity properties. The surface area per unit volume of nanoparticles is much larger (millions of times) than that of conventional microparticles. The number of surface atoms per unit of interior atoms of nanoparticles, is very large. These characteristics can be exploited in many complex systems including nuclear reactor cooling systems, hybrid solar power collectors, materials processing, lubrication (tribology) and medical agents. Nanofluids have infiltrated into many areas also of materials fabrication as they can be manipulated to yield more biologically friendly, sustainable and durable products. Although a considerable experimental thrust has driven nanofluid research and development, this has been reinforced with extensive theoretical and computational investigations. Nanofluid mechanics problems have been studied for steady-state, unsteady, one, two and three-dimensional configurations. A sub-set of these flows are known as similar flows which reduce the number of coordinates and often permit the reduction of non-linear coupled partial differential equations into systems of ordinary differential equations which are considerably easier to solve numerically. Jacob et al. studied steady nano fluid Falkner-Skan flow and heat transfer over a static/moving wedge with a prescribed surface heat flux, considering copper, alumina and titania as nanoparticles and water as the base fluid. They observed that heat transfer rate at the surface increases with the Falkner–Skan power law parameter and furthermore that dual solutions exist when the fluid and the solid surface move in opposite directions. Magnetohydrodynamic (MHD) nanofluid flows, which are of relevance to electromagnetic materials processing, also provide a rich arena for similarity models. Numerous investigations have been communicated in recent years with a variety of computational approaches including finite element methods, finite difference methods and symbolic codes for magnetic nanofluid flows. Farooq et al. used the Mathematica package BVPh 2.0 to analyze magnetohydrodynamic Falkner–Skan flow of nano-fluid past a fixed wedge in a semi-infinite domain. Rashidi et al. studied entropy generation for steady MHD flow past a rotating porous disk in a nanofluid. In a series of papers, various aspects of MHD flows were investigated by Sheikholeslami et al. and Ali et al.

Flows in which the boundary is stretched/contracted or moving are also pertinent to materials manufacturing. Extrusion processes, calendaring, roll coating and polymeric sheet technologies feature such flows. This assists in customizing material constitution for different applications. Su et al. investigated the hydromagnetic radiative flow of Newtonian fluids from a stretching wedge with surface suction. Rashidi et al. used a hybrid differential transform-Padé technique to compute the entropy generation in magnetic Von Karman swirling flow from a stretching rotating disk. Several investigations of nanofluid dynamics from stretching bodies have also been presented. Ullah et al. studied the effects of chemical reaction and hydrodynamic slip on unsteady MHD flow of Casson nanofluid due to wedge moving. Dogonchi and Ganji investigated the MHD nanofluid flow between two stretchable or shrinkable walls with thermal radiation flux, presenting semi-numerical solutions with Duan–Rach Approach (DRA) by modifying the standard Adomian Decomposition Method (ADM).
Stagnation-point flows also constitute an interesting branch of fluid dynamics analysis. They feature in numerous situations including polymer sheet processing, rotating convection flows, vortex flows, wake cylinder flows etc. Mahapatra and Gupta\(^{32}\) presented a numerical solution for steady two-dimensional stagnation point Newtonian flow from a flat deformable sheet. Gupta et al.\(^{33}\) employed a variational Galerkin method to simulate the MHD micropolar stagnation point flow from a permeable stretching sheet with prescribed skin friction. Khan et al.\(^{34}\) analyzed the stagnation-point flow of Powell–Eyring fluid with variable thermal conductivity from a stretching cylinder with a modified by homotopy analysis method. Khan et al.\(^{35}\) investigated stagnation-point flow of a ferrofluid from an extending sheet. Several investigations of nanofluid stagnation flows have been reported in recent years. Bég et al.\(^{36}\) investigated the transient nanofluid flow at the stagnation point on a rotating sphere using Adomian and homotopy method. Gireesha et al.\(^{37}\) used the Runge–Kutta–Fehlberg method to compute solutions for steady 2-D hydromagnetic stagnation-point flow of an electrically-conducting nanofluid from a stretching surface with induced magnetic field, melting effect and heat generation/absorption.

The above studies did not consider bioconvection phenomena. Modern developments in intelligent materials are exploring the use of swimming micro-organisms embedded in nanofluids and also nanosolids. Certain micro-organisms move via bioconvection which is a pattern formation in suspensions of microorganisms, such as bacteria and algae, due to up-swimming of the microorganisms towards a specific direction of light, gravity, chemicals, magnetic fields, oxygen etc. Gyrotactic bioconvection involves the response to a torque as the taxis. Motion is generated by a dynamic instability due to internal and mechanical energy input. The combination of nanofluids and bioconvection offers some potential in developing more biocompatible and adaptive materials for engineering systems. Different nano-particles combined with different free-swimming organisms such as ciliates and flagellates may achieve enhanced efficiencies. Nanofluid bioconvection flows have been examined by Begum et al.\(^{38}\) for variable thermal conductivity, by Das et al.\(^{39}\) for reactive gyro tactic flow in porous media and Shaw et al.\(^{40}\) for oxytactic porous media systems. Slip effects are also relevant to certain materials operations and have been addressed in the context of nano-bioconvection boundary layer flows by Uddin et al.\(^{41}\) with wall injection. Further studies include Basir et al.\(^{42}\) who considered transient nanofluid bioconvection boundary layer enrobing flow from a stretching cylinder. The majority of these studies have emphasized the nanoscale effects of Brownian motion and thermophoresis. Kuznetsov\(^{43}\), and Kuznetsov and Nield\(^{44}\)examined the problem of natural convective boundary layer flow of nanofluid from a vertical plate and produced a formulation which renders the nanofluid particle fraction on the boundary as passively controlled. This results in a more physically realistic model for actual industrial systems. The aim of the present study is to extend the problem of Kuznetsov and Nield to the generalized Falkner-Skan wedge flow and simultaneously incorporate magnetohydrodynamic body force, magnetic induction, gyro tactic bioconvection, multiple slips (hydrodynamic, thermal, species and miro-organism) and wall injection (Stefan blowing) effects. The Buongiorno nanofluid model which utilizes Brownian and thermophoretic diffusivities is applied. The normalized ordinary differential boundary layer equations are solved with a versatile Chebyshev collocation method. Validation with published works is included. The simulations reported are of interest in electromagnetic nanofluid materials processing.

2. MATHEMATICAL FORMULATION
We consider steady two-dimensional stagnation-point flow of viscous incompressible electrically-conducting water-based nanofluids over a stretching/shrinking wedge with multiple slips and passively control boundary conditions. The effect of the induced magnetic field is also taken into account. The coordinates system is selected such that the \(\overline{x} – \) axis is along the wedge face and the \(\overline{y} – \) axis is perpendicular to it. At the wedge surface with \(\overline{y} = 0\), the temperature, \(T\) and nanoparticle volume fraction, \(C\) are prescribed as constant values of \(T_n\), \(C_n\) respectively. The ambient values \((\overline{y} \rightarrow \infty)\) for temperature and nanoparticle volume fraction respectively, are \(T_e\), \(C_e\). It is assumed that the velocity of the wedge surface is \(\overline{u}_n = \lambda \sqrt{\text{Re}} \left(\frac{\nu}{L} \right) \left(\frac{\overline{x}}{L} \right)^m\), where
\(\lambda \) is a constant. It is further assumed that the velocity of the external flow \(\bar{u}_e = \sqrt{Re} \left(\frac{\nu}{L} \right) \left(\frac{x}{L} \right)^m \), where \(L \) is the characteristic length. A magnetic field of strength \(H_0 \) is applied in the direction parallel to the surface of the body (i.e., along the \(x \)– axis outside the boundary layer). The effects of viscous dissipation, Joule heating and Hall effect are neglected. The electric field \(E \) is assumed to be negligible. The electrical current in the fluid gives rise to an induced magnetic field. We assume that the normal component of the induced magnetic field \(H_2 \) vanishes at the wall and the parallel component \(H_1 \) approaches its given value \(H_0 \). The physical flow model and coordinate system are shown in Fig. 1.

Fig. 1: Physical model and coordinate system

Under these above mentioned assumptions and boundary layer approximations, the governing equations related to the conservation of mass, induced magnetic field, momentum, energy, nano-particle concentration and micro-organism species can be written as:

\[
\frac{\partial \bar{u}}{\partial x} + \frac{\partial \bar{v}}{\partial y} = 0, \quad (1)
\]

\[
\frac{\partial \bar{H}_1}{\partial x} + \frac{\partial \bar{H}_2}{\partial y} = 0, \quad (2)
\]

\[
\bar{u} \frac{\partial \bar{u}}{\partial x} + \bar{v} \frac{\partial \bar{u}}{\partial y} - \frac{\mu_m}{4\pi \rho_f} \left(\bar{H}_1 \frac{\partial \bar{H}_1}{\partial x} + \bar{H}_2 \frac{\partial \bar{H}_1}{\partial y} \right) = K \left(\bar{u}_e \frac{d\bar{u}_e}{dx} - \frac{\mu_m \bar{H}_e}{4\pi \rho_f} \frac{d\bar{H}_e}{dx} \right) + \nu \frac{\partial^2 \bar{u}}{\partial y^2}, \quad (3)
\]

\[
\bar{u} \frac{\partial \bar{H}_1}{\partial x} + \bar{v} \frac{\partial \bar{H}_1}{\partial y} - \bar{H}_1 \frac{\partial \bar{u}}{\partial x} - \bar{H}_2 \frac{\partial \bar{u}}{\partial y} = \zeta \frac{\partial^2 \bar{H}_1}{\partial y^2}, \quad (4)
\]
\[\frac{\partial T}{\partial x} + \nu \frac{\partial T}{\partial y} = \alpha \frac{\partial^2 T}{\partial y^2} + \tau \frac{\partial}{\partial y} \left(\frac{D_T}{T} \right) \left(\frac{\partial T}{\partial y} \right)^2, \]
(5)

\[\frac{\partial T}{\partial x} + \nu \frac{\partial C}{\partial y} = D_b \frac{\partial^2 C}{\partial y^2} + \left(\frac{D_T}{T} \right) \frac{\partial^2 T}{\partial y^2}, \]
(6)

\[\frac{\partial n}{\partial x} + \nu \frac{\partial n}{\partial y} + \frac{\partial}{\partial y} (n \nu) = D_n \frac{\partial^2 n}{\partial y^2}. \]
(7)

The magnetic induction formulation follows Sutton and Sherman.\(^{45}\) The boundary conditions\(^{46-47}\) imposed at the wedge surface and the edge of the boundary layer are:

\[\text{\(\vec{u} = \vec{u}_w(N)\)} + \vec{u}_{\text{slip}}, \quad \text{\(\vec{v} = -\frac{D_b}{1-C_w} \frac{\partial C}{\partial y}\)}, \quad \vec{H}_2 = 0, \quad \frac{\partial H_1}{\partial y} = 0, \quad \text{\(T = T_w + T_{\text{slip}}\)}, \]

\[\frac{D_b}{T_w} \frac{\partial C}{\partial y} + \frac{D_T}{T_w} \frac{\partial T}{\partial y} = 0, \quad \text{\(n = n_w + n_{\text{slip}}\)} \quad \text{at \(\vec{y} = 0\),} \]

\[\text{\(\vec{u} = \vec{u}_\epsilon(N)\)} \rightarrow \sqrt{\text{Re}} K \left(\frac{\vec{x}}{L} \right)^m, \quad \vec{H} = \vec{H}_\epsilon(N) \rightarrow K \sqrt{\text{Re}} \vec{H}_0 \left(\frac{\vec{x}}{L} \right)^m, \]

\[T \rightarrow T_w, \quad C \rightarrow C_w, \quad n \rightarrow 0 \quad \text{as \(\vec{y} \rightarrow \infty\)}, \]

where \(\tau = \frac{(\rho C)^p}{(\rho C)_f}\) is the ratio of nanoparticle heat capacity to the base fluid heat capacity, \(\alpha\) is the thermal diffusivity, \(\zeta = \frac{1}{4\pi\sigma}\) is magnetic diffusivity, \(\rho_f\) is density of the fluid, \(\mu_m\) is magnetic permeability, \(D_b\) is the Brownian diffusion coefficient, \(D_T\) is thermophoretic diffusion, \(\lambda\) is constant with \(\lambda > 0\) for a stretching wedge and \(\lambda < 0\) for shrinking wedge, respectively, \(\vec{H}_0\) is the value of the uniform magnetic field at infinity (upstream), \(\vec{u}_\epsilon(N)\) and \(\vec{H}_\epsilon(N)\) are the \(\vec{x}\) – velocity and \(\vec{x}\) – magnetic field at the edge of the boundary layer.

\(\vec{u}_{\text{slip}} = N_1(\vec{x}/L)\nu\frac{\partial \vec{u}}{\partial y}\), where \(N_1(\vec{x}/L)\) is the slip factor, \(T_{\text{slip}} = D_1(\vec{x}/L)\frac{\partial T}{\partial y}\), is the thermal slip, \(D_1\) is the thermal slip factor, \(n_{\text{slip}} = E_1(\vec{x}/L)\frac{\partial n}{\partial y}\), is the micro-organism slip, \(E_1(\vec{x}/L)\) is the microorganism slip factor and \(\vec{v} = \vec{b}_W \frac{\partial C}{\Delta C \frac{\partial y}{\partial y}}\).

3. NORMALIZATION OF THE GOVERNING EQUATIONS

The following dimensionless variables are introduced to transform Eqns. (1)-(8) into dimensionless form.

\[x = \frac{x}{L}, \quad y = \frac{y}{L}, \quad u = \frac{u N}{L}, \quad u_\epsilon = \frac{u_\epsilon N}{L}, \quad v = \frac{v N}{L}, \quad \theta = \frac{T - T_w}{T_w - T_\infty}, \]

\[\phi = \frac{C - C_w}{C_w}, \quad \chi = \frac{n}{n_w}, \quad H_1 = \frac{H_1}{\sqrt{\text{Re}}}, \quad H_\epsilon = \frac{H_\epsilon}{\sqrt{\text{Re}}}, \quad H_2 = \frac{H_2}{\sqrt{\text{Re}}}, \]

We introduced the fluid stream function, \(\psi\) defined as \(u = \frac{\partial \psi}{\partial y}\), \(v = -\frac{\partial \psi}{\partial x}\) and magnetic stream function, \(\Phi\),

defined as \(H_1 = \frac{\partial \Phi}{\partial y}\), \(H_2 = -\frac{\partial \Phi}{\partial x}\). Substitution into Eqns.(3)-(8) yields:
\[
\begin{align*}
\frac{\partial^2 \psi}{\partial y^2} - \frac{\partial \psi}{\partial y} \frac{\partial^2 \psi}{\partial y^2} - M \left(\frac{\partial \Phi}{\partial y} \frac{\partial^2 \Phi}{\partial y^2} - \frac{\partial \Phi}{\partial x} \frac{\partial^2 \Phi}{\partial x^2} \right) - Ku \frac{du}{dx} + M \left(K H \frac{dH}{dx} \right) - \frac{\partial^3 \psi}{\partial y^3} = 0, \\
\frac{\partial^2 \Phi}{\partial y^2} - \frac{\partial \Phi}{\partial y} \frac{\partial^2 \Phi}{\partial y^2} - \frac{\partial \Phi}{\partial x} \frac{\partial^2 \Phi}{\partial x^2} + \frac{\partial^2 \Phi}{\partial y^2} - \gamma \frac{\partial^3 \Phi}{\partial y^3} = 0, \\
\frac{\partial \psi}{\partial y} \frac{\partial \theta}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial \theta}{\partial y} - \frac{1}{Pr} \frac{\partial^2 \theta}{\partial y^2} - \frac{Nt \frac{\partial \Phi}{\partial y} \frac{\partial^2 \theta}{\partial y} \frac{\partial \Phi}{\partial y} \frac{\partial^2 \theta}{\partial y^2}}{Pr} = 0, \\
\frac{\partial \psi}{\partial y} \frac{\partial \phi}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial \phi}{\partial y} - \frac{1}{Sc} \frac{\partial^2 \phi}{\partial y^2} - \frac{Nt \frac{\partial \Phi}{\partial y} \frac{\partial^2 \phi}{\partial y} \frac{\partial \Phi}{\partial y} \frac{\partial^2 \phi}{\partial y^2}}{Sc Nb} = 0, \\
\left[\frac{\partial \psi}{\partial y} \frac{\partial \chi}{\partial x} - \frac{\partial \psi}{\partial x} \frac{\partial \chi}{\partial y} \right] + \frac{Pe \frac{\partial \phi}{\partial y}}{Lb} \left[\frac{\partial \phi}{\partial y} \frac{\partial \chi}{\partial y} \right] - \frac{1}{Lb} \frac{\partial^2 \chi}{\partial y^2} = 0.
\end{align*}
\]

The boundary conditions Eqn. (8) become:

\[
\begin{align*}
\frac{\partial \psi}{\partial y} = \lambda x^m + \frac{N_f(x) Re^{14}}{L} \frac{\partial^2 \psi}{\partial y^2}, \\
\frac{\partial \psi}{\partial y} = s \frac{\partial \phi}{\partial x} \frac{\partial \Phi}{\partial x} = 0, \\
\frac{\partial \Phi}{\partial x} = 0, \\
\theta = 1 + \frac{D_f(x) Re^{14}}{L} \frac{\partial \theta}{\partial y}, \\
N_b \frac{\partial \phi}{\partial y} + N_t \frac{\partial \theta}{\partial y} = 0, \\
\chi = 1 + \frac{E_f(x) Re^{14}}{L} \frac{\partial \chi}{\partial y} \text{ at } y = 0, \\
\frac{\partial \psi}{\partial y} = K x^m, \\
\frac{\partial \Phi}{\partial y} = K x^n, \\
\phi \to 0, \\
\chi \to 0 \text{ as } y \to \infty.
\end{align*}
\]

To further simplify the boundary value problem the following coordinate transformations are developed using Lie group analysis:

\[
\eta = x^m y, \quad \psi = x^m f(\eta), \quad \Phi = x^m h(\eta), \quad \theta = \theta(\eta), \quad \phi = \phi(\eta), \quad \chi = \chi(\eta)
\]

(16)

Here \(\eta \) is the similarity independent variable and \(f(\eta), h(\eta), \theta(\eta), \phi(\eta) \) and \(\chi(\eta) \) are similarity dependent variables for stream function, magnetic stream function, temperature, nano-particle concentration and micro-organism density function, respectively. Using the similarity transformations of Eqn. (16) in Eqns. (9)-(12), we obtain the following coupled system of nonlinear ordinary differential equations:

\[
\begin{align*}
f'' + \frac{m+1}{2} \left[f f'' - M h h'' \right] + m \left(K - f'' h^2 \right) - m M \left(K - h'' \right) = 0, \\
\gamma h'' + \frac{m+1}{2} \left[f h'' - f'' h \right] = 0, \\
\theta'' + \left(\frac{m+1}{2} \right) \frac{Pr}{f} f \theta' + Nb \theta' \phi' + N_t \theta'' = 0, \\
\phi'' + \left(\frac{m+1}{2} \right) \frac{Sc}{f} f \phi' + \frac{N_t}{Nb} \phi'' = 0, \\
\chi'' - Pe \left(\phi' \chi' + \chi \phi'' \right) + \left(\frac{m+1}{2} \right) Lb f \chi' = 0.
\end{align*}
\]

(17) (18) (19) (20) (21)

The transformed boundary conditions now become:
\[f'(0) = \frac{2s}{(m+1)Sc}, \quad f''(0) = \lambda + a f''(0), \quad h(0) = h''(0) = 0, \quad \theta(0) = 1 + b \theta'(0), \]

\[Nb \phi'(0) + Nt \theta'(0) = 0, \quad \chi(0) = 1 + d \chi'(0) \]

\[f'(+\infty) - K = h'(+\infty) - K = \theta(+\infty) = \phi(+\infty) = \chi(+\infty). \quad (22) \]

The dimensionless parameters in Eqns. (17)-(22) are defined as:

- \(\text{Pr} = \frac{\nu}{\alpha} \) (Prandtl number), \(M = \frac{HmH_0^2 L^2}{4\pi \rho \nu^2} \) (magnetic field), \(\gamma = \frac{L}{\nu} \) (reciprocal of magnetic Prandtl number), \(Nb = \frac{\tau D_b C_w}{\alpha} \) (Brownian motion), \(Nt = \frac{\tau D_r (T_w - T_e)}{\alpha T_e} \) (thermophoresis), \(Sc = \frac{\nu}{D_B} \) (bioconvective Schmidt number), \(s = \frac{C_w}{1 - C_w} \) (Stefan blowing), \(a = \frac{Re^{1/4}}{L} N_i(x) x^{m-1} \) (velocity slip), \(b = \frac{D_i(x) Re^{1/4}}{L} x^{m-1} \) (thermal slip), \(d = \frac{E_i(x) Re^{1/4}}{L} x^{m-1} \) (microorganism slip), \(Pe \) is bioconvective Peclet number, \(Lb = \frac{\nu}{D_n} \) (bioconvective Lewis number), \(Sc = \frac{\nu}{D_B} \) Schmidt number and \(m = \beta /[2 - \beta] \) is the Hartree wedge power-law parameter.

Engineering gradient quantities of interest are the skin friction coefficient \(C_f \), the local Nusselt number \(Nu_e \), the local Sherwood number \(Sh_e \), and local micro-organism mass transfer rate, \(Nn_e \), which take the following definitions:

\[C_f = \frac{2\mu}{\rho \bar{u}^3} \left(\frac{\partial \bar{u}}{\partial y} \right)_{y=0}, \quad Nu_e = -\frac{\bar{x}}{T_w - T_e} \left(\frac{\partial T}{\partial y} \right)_{y=0}, \quad Sh_e = -\frac{\bar{x}}{C_w - C_\infty} \left(\frac{\partial C}{\partial y} \right)_{y=0}, \quad Nn_e = -\frac{\bar{x}}{n_w} \left(\frac{\partial n}{\partial y} \right)_{y=0}. \quad (23) \]

By using non-dimensionless variables in Eqn.(9) and Eqn.(23), we obtain:

\[Re_x^{1/2} C_f = f''(0), \quad Re_x^{-1/2} Nu_e = -\theta'(0), \quad Re_x^{-1/2} Sh_e = -\phi'(0), \quad Re_x^{-1/2} Nn_e = -\chi'(0) \quad (24) \]

where \(Re_x = \frac{\bar{u} x}{\nu} \) is the local Reynolds number based on free stream velocity.

4. COMPUTATIONAL SOLUTION WITH CHEBYSHEV COLLOCATION

Transformation of the original boundary value problem from partial differential to ordinary differential form defined by Eqns. (17)–(21) with the boundary conditions (22) reduces the complexity of the problem significantly, although nonlinearity is still retained. This allows a variety of different computational techniques to be employed including successive linearization, Keller box finite differences, cubic splines, finite elements and other algorithms. Here we elect to apply the Chebyshev collocation method which is available in MATLAB symbolic software and has very high accuracy and convergence characteristics. It can be used to solve the nonlinear ordinary differential equations (ODEs) efficiently. To proceed with Chebyshev collocation method, the ODEs which are of higher order are first transformed into second order ODEs as follows. Suppose that \(F_1 = f, F_2 = f', F_3 = h, F_4 = h', F_5 = \theta, F_6 = \phi, F_7 = \chi \). The ODEs Eqns. (17)–(21) can be formulated as the following system of ODEs with these new variables:
\[
\begin{bmatrix}
F_1''
F_2''
F_3''
F_4''
F_5''
F_6''
F_7''
\end{bmatrix}
\begin{bmatrix}
F'_2
\frac{mM(K - F'_1^2) - m(K - F'_2^2) - \left(\frac{m+1}{2}\right)(F'_1F'_2 - F'_3F'_4)}{F'_4}
\frac{-\left(\frac{m+1}{2}\right)F'_3F'_4 - F'_1F'_2}{2y}
\frac{-\left(\frac{m+1}{2}\right)PrF'_1F'_5 - NbF'_1F'_6 - NtF'_5^2}{F'_6}
\frac{\frac{Nt}{Nb}\left(\frac{m+1}{2}\right)PrF'_1F'_4 + NbF'_1F'_6 + NtF'_5^2 - \left(\frac{m+1}{2}\right)ScF'_1F'_6}{F'_7}
\frac{PeF'_2\left[\frac{Nt}{Nb}\left(\frac{m+1}{2}\right)PrF'_1F'_4 + NbF'_1F'_6 + NtF'_5^2 - \left(\frac{m+1}{2}\right)ScF'_1F'_6 + PeF'_1F'_7 - \left(\frac{m+1}{2}\right)\frac{LbF'_1F'_7}{y}\right]}{\left(\eta, F, F'\right)}
\end{bmatrix}
\]

where \(F'' \) can be considered as a function of \(\eta \), \(F := [F_1, F_2, F_3, F_4, F_5, F_6, F_7]^T \) and \(F' \). Using the new set of variables, the boundary conditions in Eqn. (22) can also be transformed to:

\[
\begin{align*}
F_1(0) &= \frac{2x}{(m+1)Sc} F_0(0) \\
F_2(0) &= \lambda + a \quad F_2(0) \\
F_3(0) &= 0 \\
F_4(0) &= 0 \\
F_5(0) &= 1 + dF'_5(0) \\
F'_5(0) &= -\frac{Nt}{Nb} F'_5(0) \\
F'_6(0) &= K \\
F'_6(\infty) &= K \\
F'_7(0) &= 0 \\
F'_7(\infty) &= 0
\end{align*}
\]

The domain of ODEs is discretized with \(n \)-Chebyshev collocation points \(x_j \) in the Chebyshev domain \([-1, 1]\) where \(x_j = \cos(j\pi/n) \). The derivative of \(F \) can be computed using Chebyshev derivative \(DF \) where \(D \) is an \((n+1) \times (n+1)\) matrix with:

\[
\begin{align*}
D_{00} &= \frac{2n^2+1}{6} \\
D_{nn} &= \frac{-2n^2+1}{6} \\
D_{jj} &= -\frac{x_j}{2(1-x_j)} & \text{for } j = 1, \ldots, n-1 \\
D_{ij} &= \left(\frac{x_i}{x_j}\right)^{\text{ceil}(i+j)} & \text{for } i \neq j, i, j = 1, \ldots, n-1
\end{align*}
\]

The second derivative of \(F \) is approximated by \(D^2F \) with \(D^2 = D \times D \). Using Chebyshev collocation on Eqn. (25), a system of \(7(n+1) \) nonlinear equations can be deduced. We note that the actual physical range \(\eta \) is \([0, \infty]\). It is found that \(\eta = 10 \) makes a sufficient representation of the upper boundary \(\eta = \infty \). The Chebyshev collocation domain \([-1, 1]\) needs to be mapped on the physical domain \([0, 10]\) where mapping is performed according to:

\[
\chi = \frac{\eta-5}{5}
\]

Eqn. (25) is finally formulated in the Chebyshev domain as:

\[
\begin{align*}
D^2F_2 &= \frac{mM(K - F'_1^2) - m(K - F'_2^2) - \left(\frac{m+1}{2}\right)(F'_1F'_2 - F'_3F'_4)}{D^2F_4} \\
D^2F_4 &= \frac{-\left(\frac{m+1}{2}\right)(F'_3F'_4 - F'_1F'_2)}{2y} \\
D^2F_5 &= \frac{-\left(\frac{m+1}{2}\right)PrF'_1F'_5 - NbF'_1F'_6 - NtF'_5^2}{D^2F_6} \\
D^2F_6 &= \frac{\frac{Nt}{Nb}\left(\frac{m+1}{2}\right)PrF'_1F'_4 + NbF'_1F'_6 + NtF'_5^2 - \left(\frac{m+1}{2}\right)ScF'_1F'_6}{D^2F_7} \\
D^2F_7 &= \frac{PeF'_2\left[\frac{Nt}{Nb}\left(\frac{m+1}{2}\right)PrF'_1F'_4 + NbF'_1F'_6 + NtF'_5^2 - \left(\frac{m+1}{2}\right)ScF'_1F'_6 + PeF'_1F'_7 - \left(\frac{m+1}{2}\right)\frac{LbF'_1F'_7}{y}\right]}{\left(\eta, F, F'\right)}
\end{align*}
\]
The boundary conditions are derived as

\[
\begin{aligned}
F_1(0) &= \frac{2s}{(m+1)Sc} F_6(0) \\
F_2(0) &= \lambda + 0.2aDF_2(0) \\
F_3(0) &= 0 \\
DF_4(0) &= 0 \\
F_5(0) &= 1 + 0.2dDF_5(0) \\
DF_6(0) &= -\frac{NDF_4(0)}{N_b} \\
F_2(n) &= K \\
F_4(n) &= K \\
F_6(n) &= 0 \\
F_7(n) &= 0
\end{aligned}
\]

(30)

The first equation of Eq. (29) can be expanded as:

\[
D^2 F_1 = \begin{bmatrix}
D^2_{00} & D^2_{01} & \cdots & D^2_{0n} \\
D^2_{10} & D^2_{11} & \cdots & D^2_{1n} \\
\vdots & \vdots & \ddots & \vdots \\
D^2_{m0} & D^2_{m1} & \cdots & D^2_{mn}
\end{bmatrix} \begin{bmatrix}
F_{1,0} \\
F_{1,1} \\
\vdots \\
F_{1,n}
\end{bmatrix} = \begin{bmatrix}
D_{00} F_{2,0} + D_{01} F_{2,1} + \cdots + D_{0n} F_{2,n} \\
D_{10} F_{2,0} + D_{11} F_{2,1} + \cdots + D_{1n} F_{2,n} \\
\vdots \\
D_{m0} F_{2,0} + D_{m1} F_{2,1} + \cdots + D_{mn} F_{2,n}
\end{bmatrix}
\]

(31)

This can be re-written as

\[
\begin{bmatrix}
D^2_{00} & D^2_{01} & \cdots & D^2_{0n} & F_{1,0} \\
D^2_{10} & D^2_{11} & \cdots & D^2_{1n} & F_{1,1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
D^2_{m0} & D^2_{m1} & \cdots & D^2_{mn} & F_{1,n}
\end{bmatrix} = \begin{bmatrix}
D_{00} F_{2,0} + D_{01} F_{2,1} + \cdots + D_{0n} F_{2,n} \\
D_{10} F_{2,0} + D_{11} F_{2,1} + \cdots + D_{1n} F_{2,n} \\
\vdots \\
D_{m0} F_{2,0} + D_{m1} F_{2,1} + \cdots + D_{mn} F_{2,n}
\end{bmatrix}
\]

(32)

Moreover, the boundary conditions in Eqn. (30) need to be incorporated into the matrix set in the equations. We place the boundary conditions at the appropriate (boundary) positions by substituting corresponding discretized equations in Eqn. (29). For Eqn. (32), the first equation is replaced by the corresponding boundary equation in Eq. (29):

\[
\begin{bmatrix}
1 & 0 & \cdots & 0 & F_{1,0} \\
D^2_{00} & D^2_{01} & \cdots & D^2_{0n} & F_{1,1} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
D^2_{m0} & D^2_{m1} & \cdots & D^2_{mn} & F_{1,n}
\end{bmatrix} = \begin{bmatrix}
\frac{2s}{(m+1)Sc} F_{6,0} \\
D_{10} F_{2,0} + D_{11} F_{2,1} + \cdots + D_{1n} F_{2,n} \\
\vdots \\
D_{m0} F_{2,0} + D_{m1} F_{2,1} + \cdots + D_{mn} F_{2,n}
\end{bmatrix}
\]

(33)

With this procedure, we set all the boundary conditions for \(D^2 F_2, D^2 F_3, \ldots, D^2 F_7\) in Eqn. (29) which in turn, produces a large nonlinear system of \(7(n+1)\) equations with \(7(n+1)\) unknowns. The system can be solved by an iterative method. In our case, the system has been solved using the MATLAB trust-region-reflective algorithm \textit{fsolve}. Finally the solution is transformed back to the physical domain by the relation:

\[
\eta = 5x + 5
\]

(34)

5. VALIDATION, COMPUTATIONAL RESULTS AND DISCUSSION

In order to obtain clear insights into the general nonlinear model developed, computational tests were conducted using different values of the emerging parameters. In the simulations, we consider a water-based
nanofluid with the following prescribed parametric values: \(Pr=6.8 \) (water), \(Sc=K=1, Lb=Pe = 2, Nt = 0.1 \) and \(\gamma = M = 0.5 \). The other default values are \(a = b = d = \lambda = m = 0.5 \) unless otherwise mentioned. Figs. 2-11 are provided to illustrate the results. The dimensionless velocity \(f'(\eta) \), induced magnetic field \(h'(\eta) \), temperature \(\theta(\eta) \), nanoparticle volume fraction (concentration) \(\phi(\eta) \) and motile micro-organism density function \(\chi(\eta) \) are plotted against transverse similarity coordinate, \(\eta \). These solutions are especially interesting because \(f'(\eta) \rightarrow K, h'(\eta) \rightarrow K, \theta(\eta) \rightarrow 0, \phi(\eta) \rightarrow 0 \) and \(\chi(\eta) \rightarrow 0 \) as \(\eta \rightarrow \infty \), which were described by Eqn. (22) implies that \(f'(\eta), h'(\eta), \theta(\eta), \phi(\eta) \) and \(\chi(\eta) \) tend towards zero when \(\eta \rightarrow 10 \) (i.e., \(\eta \) is large enough) which can be established by the figures as a plausible demonstration of the model verification and specification of a sufficiently large infinity boundary condition in the computational domain. Our solutions \(f''(\eta), f'(\eta), h'(\eta), \theta(\eta), \phi(\eta) \) and \(\chi(\eta) \) at \(\eta=10 \) have the accuracy of the order of \(O(10^{-10}) \). Table 1 shows the present collocation results and the previous results obtained by Jafar et al. for \(m=1 \) i.e. forward stagnation point flow adjacent to a vertical plate. Table 2 provides the comparison of the present collocation results with previous results obtained by Kuo for \(m=1 \). For both cases, excellent correlation is achieved. Table 3 is provided to show the different values of \(f''(\eta), -\theta'(0), -\phi'(0)/\phi(0) \) and \(-\chi'(0) \) for different values of \(a, b, d, \lambda \) and \(m \). This data may also provide a benchmark for verification of the new general model solutions in future studies with alternative numerical methods.

Table 1: Comparison of the value of the friction factor \(f''(0) \).

<table>
<thead>
<tr>
<th>(m)</th>
<th>Jafar et al. ([\text{Keller Box Method}])</th>
<th>Present ([\text{Collocation method}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.2326</td>
<td>1.232587662</td>
</tr>
</tbody>
</table>

Table 2: Comparison of the value of the friction factor \(-\theta'(0)\).

<table>
<thead>
<tr>
<th>(m)</th>
<th>Kuo ([\text{DTM}])</th>
<th>Present ([\text{Collocation method}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.1147</td>
<td>1.1138</td>
</tr>
</tbody>
</table>

Table 3: Values of \(f''(0), -\theta'(0), -\phi'(0)/\phi(0) \) and \(-\chi'(0) \) for different values of \(a, b, d, \lambda \) and \(m \)

<table>
<thead>
<tr>
<th>(s)</th>
<th>(a)</th>
<th>(b)</th>
<th>(d)</th>
<th>(\lambda)</th>
<th>(m)</th>
<th>(f''(0))</th>
<th>(-\theta'(0))</th>
<th>(-\phi'(0)/\phi(0))</th>
<th>(-\chi'(0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.2828</td>
<td>0.3144</td>
<td>0.3714</td>
<td>0.4112</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.8208</td>
<td>1.8473</td>
<td>-0.2894</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.1062</td>
<td>91.053</td>
<td>0.2617</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.1824</td>
<td>0.3471</td>
<td>0.4214</td>
<td>0.4256</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2287</td>
<td>2.1577</td>
<td>-0.3274</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.348</td>
<td>82.2943</td>
<td>0.325</td>
</tr>
<tr>
<td>-1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.218600</td>
<td>0.352300</td>
<td>0.361000</td>
<td>0.456800</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.291400</td>
<td>2.047600</td>
<td>-1.114300</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.813400</td>
<td>8.530100</td>
<td>6056.90</td>
</tr>
<tr>
<td>-1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1</td>
<td>0.227100</td>
<td>0.311800</td>
<td>0.460600</td>
<td>0.382000</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.291400</td>
<td>2.049600</td>
<td>0.028900</td>
</tr>
</tbody>
</table>
Fig. 2: Profile variation of \(f'(\eta) \) and \(h'(\eta) \) with different values of \(a \) and \(s \).
Fig. 3: Profile variation of $\theta(\eta)$, $\phi(\eta)$ and $\chi(\eta)$ with different values of a and s.

Fig. 4: Profile variation of $f'(\eta)$ and $h'(\eta)$ with different values of b and s
Fig. 5: Profile variation of $\theta(\eta)$, $\phi(\eta)$ and $\chi(\eta)$ with different values of b and s.

Fig. 6: Profile variation of $\theta(\eta)$, $\phi(\eta)$ and $\chi(\eta)$ with different values of d and s.
Fig. 7: Profile variation of $f'(\eta)$ and $h'(\eta)$ with different values of λ and s.

Fig. 8: Profile variation of $f'(\eta)$ and $h'(\eta)$ with different values of m and s.
Fig. 9: Profile variation of $\theta(\eta)$, $\phi(\eta)$ and $\chi(\eta)$ due to different values of m and s.

Figs. 2(a)-(b) depict the influence of wedge surface suction/blowing parameter, s (i.e. lateral mass flux effect) on the dimensionless velocity and induced magnetic field (magnetic stream function gradient). Figs. 2(a)-(b) clearly demonstrate that both dimensionless velocity and induced magnetic field are boosted with greater Stefan blowing ($s > 0$) whereas they are suppressed in magnitude with greater suction ($s < 0$). Physically with suction at the wall ($s < 0$), nanofluid is drawn through the wall via perforations. This destroys momentum, increases adherence of the boundary layer to the wall and hence decelerates the flow which leads to a reduction in momentum (hydrodynamic) boundary layer thickness. With greater injection at the wall ($s > 0$), the opposite effect is generated with a significant acceleration of the flow and thinning in the velocity boundary layer thickness. This manifests in a depletion in temperature with stronger suction and an elevation in temperature with stronger injection (blowing). Magnetic induction is indirectly influenced due to coupling of the momentum eqn. (17) and induction eqn. (18) via a number of terms featuring fluid stream function (and its gradient functions) in the latter and several terms featuring magnetic stream function (and its gradient functions) in the former. With greater momentum slip at the wedge surface ($a > 0$) both velocity and magnetic stream function gradient are enhanced. Therefore the momentum and magnetic induction boundary layer thickness are respectively reduced and increased with enhanced wall hydrodynamic slip. Asymptotically smooth convergence of both sets of profiles is attained in the free stream testifying to the prescription of adequately large infinity boundary condition in the computations. Magnitudes of velocity and magnetic stream function gradient are consistently positive indicating that there is never flow reversal or reverse magnetic flux generated in the boundary layer irrespective of wall slip or transpiration condition.

Figs. 3(a)-(c) reveal the effects of wall transpiration (s) and hydrodynamic slip (a) on the temperature, nanoparticle volume fraction and microorganism density functions. It is found that temperature and density of motile microorganism is depressed with an increase in wall blowing ($s > 0$) whereas the nano-particle concentration is enhanced. The reverse trends are generated with wall suction ($s < 0$). Generally positive values of temperature and micro-organism density function are achieved at all locations transverse to the wedge surface. However, only with strong blowing is there positive magnitude present for the nano-particle concentration. Thermal boundary layer thickness is elevated with suction as is micro-organism boundary layer thickness. However, nanoparticle concentration boundary layer thickness is depleted with suction. Increasing
hydrodynamic slip is also observed to weakly decrease both temperatures and micro-organism density function and the associated boundary layer thicknesses. However greater hydrodynamic slip results in a marked elevation in nano-particle species boundary layer thickness.

Figs. 4(a)-(b) depict the influence of thermal slip \((b)\) and wall transpiration \((s)\) on the dimensionless velocity and induced magnetic field functions. With blowing at the wedge surface \((s<0)\), significant deceleration is generated \(\text{i.e. increasing momentum boundary layer thickness}\) for strong thermal slip \((b=1)\). However with suction at the wedge, a weak acceleration is caused with greater thermal slip. With blowing present, magnetic stream function gradient is noticeably reduced as thermal slip increases. However this is only sustained for a short distance into the boundary layer transverse to the wedge face; thereafter the influence of thermal jump is eliminated. Conversely with suction and thermal slip present, magnetic stream function gradient is clearly elevated. With very low thermal slip \((b=0.1)\) the magnetic stream function gradient remains invariant with transverse coordinate, irrespective of surface blowing. Effectively the influence of thermal slip is dependent on the wedge surface transpiration condition. For the case of a solid \(\text{non-porous}\) wedge surface there is no tangible alteration in either velocity field or magnetic induction field with thermal jump \((\text{slip})\).

Figs. 5(a)-(c) reveals the response of temperature, nanoparticle volume fraction and density of motile microorganism to thermal slip \((b)\) and wall suction/blowing \((s)\). It is found that temperature and motile microorganism density function are suppressed with an increase in thermal slip. However there is a general elevation in nano-particle concentration with greater thermal slip. These trends are achieved for the case of a porous wedge surface and with either strong blowing or suction at the wall. Therefore \textit{weak thermal slip} is associated with an increase in thermal and micro-organisms species boundary layer thicknesses whereas it results in a decrease in nano-particle boundary layer thickness.

Figs. 6(a)-(c) depicts the influence of micro-organism slip \((d)\) on the temperature, nanoparticle volume fraction and density of motile microorganism. Temperature and nano-particle concentration functions are insignificantly influenced by the micro-organism slip effect. However motile microorganism density function is substantially decreased with greater micro-organism slip for suction \((s<0)\) or a solid surface of the wedge, whereas it is enhanced with injection \(\text{Stefan blowing, } s>0\) present at the wedge. Again temperature and micro-organism magnitudes are invariably positive and a maximum at the wedge surface, although there is a weak micro-organism density overshoot with strong blowing regardless of whether thermal slip is imposed or not. Overshoots in nano-particle concentration are also present for all cases of wedge transpiration, although they are progressively displaced closer to the wedge surface as we progress from the suction case to the solid case and then the blowing case. Profiles are also ound to converge asymptotically in the free stream later for the micro-organism density field compared with the temperature and nano-particle concentration fields.

Figs. 7(a)-(b) depict the combined influence of streaking/shrinking parameter \((\lambda)\) and wall transpiration \((s)\) on the dimensionless velocity and induced magnetic field distributions. The case of a static wedge \((\lambda=0)\) has been considered elsewhere and is omitted. With stretching of the wedge \((\lambda>0)\), greater momentum is imparted to the boundary layer and this serves to accelerate the flow i.e. increase velocity. This also assists in magnetic flux diffusion and enhances the magnetic stream function gradient. Vorticity diffusion and magnetic diffusion are therefore very closely linked in induction flows, although the former is controlled by the Reynolds number and the latter by the magnetic Reynolds number. With contraction of the wedge surface \((\lambda<0)\), momentum is depleted and the external boundary layer flow is impeded. This damps the velocity field and increases momentum \(\text{hydrodynamic boundary layer thickness}\). The magnetic induction field is also adversely affected and magnetic boundary layer thickness is reduced. These patterns of behavior are enforced for both solid and porous wedges i.e. irrespective of whether blowing or suction are present or both are absent.

Figs. 8(a)-(b) depict the influence of the wedge power-law parameter, \(m\), on the dimensionless velocity and induced magnetic field. Two physically viable cases are considered namely for \(m=0\) \(\text{ laminar boundary layer flow from a semi-infinite horizontal surface (Blasius flat plate) and } m=1\) \(\text{forward stagnation point flow adjacent to a vertical plate – note, this is also equivalent to the scenario wherein there is linear free stream velocity variation with streamwise distance}\). The case of a generalized wedge flow, \(m>0\) and \(m\neq 1\) is considered in a companion article as is rear stagnation-point flow \(m=-1/3\). The generalized wedge boundary
layer equations therefore reduce in complexity. In particular in the case \(m = 0 \), many terms are eliminated in the momentum boundary layer eqn. (17) i.e. \(m(K-f^2)-mM(K-h^2) \). For \(m = 1 \) these terms are retained. A considerable elevation is both velocity and magnetic stream function gradient is caused with an increase in \(m \) from 0 to 1. The forward stagnation case \(m=1 \) therefore achieves strong acceleration and enhancement in the magnetic induction field. Momentum boundary layer thickness is therefore decreased and magnetic boundary layer thickness is enhanced as we progress from the Blasius flat plate case to the vertical plate forward stagnation point case. These responses are sustained whether blowing, a solid wedge surface or suction are imposed.

Figs. 9(a)-(c) depict the influence of wedge power-law parameter \((m) \) on the temperature, nano-particle concentration and motile microorganism density functions. For the vertical plate forward stagnation point case \((m=1) \) both temperature and micro-organism density function are depressed sizeably whereas the nano-particle concentration is elevated. Nano-particle diffusion is therefore assisted for the vertical plate (i.e. nano-species boundary layer thickness is increased) whereas thermal diffusion and micro-organism propulsion is inhibited (with associated reductions in the temperature and micro-organisms boundary layer thicknesses). This behaviour is observed for the solid wall (no transpiration) and suction cases. However the opposite effect is induced with injection at the wall. Nano-particle concentrations are found to assume both negative and positive values whereas micro-organism density function magnitudes are consistently positive.

6. CONCLUSIONS
Motivated by magnetic nano-materials processing systems, a mathematical model has been developed for magnetohydrodynamic steady two-dimensional bioconvection flow of nanofluids containing gyrotactic micro-organisms over a wedge with velocity slip, thermal jump, zero mass flux and microorganism slip. The Buongiorno nanofluid formulation is adopted. Stefan blowing is taken into account at the wall and magnetic induction effects included. The momentum, induced magnetic field, nano-particle concentration, energy and micro-organism density conservation equations have been transformed into ordinary differential equations (ODEs) by similarity transformations with appropriate boundary conditions. These ODEs constitute a nonlinear coupled boundary-value problem which has been numerically solved with a Chebyshev collocation method using MATLAB software. Details of the numerical calculation are included. Validation with previous special cases from the literature is also performed. A parametric study is conducted to find the influence of slip factors, nanoscale parameters and wedge power-law parameter on the momentum, induced magnetic field, heat, nano-particle and micro-organisms transport phenomena. The computations demonstrate that:
(I)The flow is accelerated with increasing blowing, stretching of the wedge surface, increasing power-law wedge parameter, greater momentum slip whereas it is decelerated with greater thermal slip, contracting of the wedge surface and is invariant to micro-organism slip parameter.
(II) Magnetic induction is elevated with stronger blowing, stretching of the wedge surface, increasing power-law wedge parameter, greater momentum slip whereas it is damped with higher thermal slip, wedge contraction and is also unaffected by micro-organism slip parameter.
(III) Temperature is decreased with greater suction, higher power-law wedge parameter, rising thermal slip parameter and momentum slip parameter and is not modified by micro-organism slip parameter.
(IV) Nano-particle concentration is enhanced with greater momentum slip with suction at the wedge and for a solid wedge although it is not influenced tangibly with blowing at the wall. It is also generally increased with greater thermal slip parameter and power-law wedge parameter but not responsive to micro-organism slip effect.
(V) Micro-organism density function is suppressed with increasing power-law wedge parameter, and micro-organism slip (for a solid wedge and suction cases) whereas it is enhanced with micro-organism slip when surface injection is present. However, increasing hydrodynamic and thermal slip both reduce the micro-organism density function magnitudes i.e. they reduce the micro-organism species boundary layer thickness.
The current analysis has presented some insight into hydromagnetic induction and slip effects in Falkner-Skan nanofluid bioconvection boundary layer flow. Future investigations will address rheological (e.g. viscoelastic) nanofluids and unsteadiness and will be communicated imminently.

Nomenclature

\(a \)	velocity slip parameter [-]	\(s \)	Stefan blowing parameter []
\(b \)	thermal slip parameter [-]	\(\text{Sc} \)	Schmidt number [-]
\(\tilde{b} \)	chemotaxis constant [m]		
\(C \)	nanoparticle volume fraction [-]	\(Sh_{x} \)	the local Sherwood number [-]
\(d \)	microorganism slip parameter [-]	\(T \)	nanofluid temperature [K]
\(D_{b} \)	Brownian diffusion coefficient[m\(^2\)s\(^{-1}\)]		
\(D_{n} \)	diffusivity of microorganisms[m\(^2\)s\(^{-1}\)]	\(\tilde{u}, \tilde{v} \)	velocity components along axes [m s\(^{-1}\)]
		\(\tilde{x}, \tilde{y} \)	Cartesian coordinates along and normal to the plate (m)
\(D_{t} \)	thermal slip factor [m]		
\(D_{t} \)	thermophoretic diffusion coefficient [m\(^2\)s\(^{-1}\)]	\(\bar{u}, \bar{v} \)	average swimming velocity of microorganisms along axes [m s\(^{-1}\)]
\(E_{f} \)	microorganism slip factor [m]	\(W_{c} \)	maximum cell swimming speed [m s\(^{-1}\)]
\(f(\eta) \)	dimensionless stream function[-]		

Greek symbols

<p>| (\mathbf{j}) | vector flux of microorganism [kgm(^{-2})s(^{-1})] | (\alpha_{m}) | effective thermal diffusivity [m(^2)s(^{-1})] |
| (k) | thermal conductivity [m(^2)s(^{-1})] | (\phi(\eta)) | rescaled nanoparticle volume fraction [-] |
| (h) | magnetic stream function [-] | | |
| (H_{1}) | induced magnetic field component along x- direction (\frac{A}{m}) | | |
| (H_{2}) | induced magnetic field component along y- direction (\frac{A}{m}) | (\gamma) | reciprocal of magnetic Prandtl number[-] |</p>
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_e</td>
<td>Magnetic field at the boundary layer edge $\left(\frac{A}{m} \right)$</td>
</tr>
<tr>
<td>χ</td>
<td>Dimensionless density of motile microorganisms ($-$)</td>
</tr>
<tr>
<td>L</td>
<td>Characteristic length [m]</td>
</tr>
<tr>
<td>$\theta(\eta)$</td>
<td>Dimensionless temperature [-]</td>
</tr>
<tr>
<td>Lb</td>
<td>Bioconvection Lewis number [-]</td>
</tr>
<tr>
<td>ν</td>
<td>Kinematic viscosity of the fluid $[m^2 s^{-1}]$</td>
</tr>
<tr>
<td>Le</td>
<td>Lewis number [-]</td>
</tr>
<tr>
<td>ρ_f</td>
<td>Fluid density $[kg m^{-3}]$</td>
</tr>
<tr>
<td>M</td>
<td>Magnetic body force parameter [-]</td>
</tr>
<tr>
<td>m</td>
<td>Wedge parameter [-]</td>
</tr>
<tr>
<td>n</td>
<td>Volume fraction of motile microorganisms [-]</td>
</tr>
<tr>
<td>N_1</td>
<td>Velocity slip factor $[s/m]$</td>
</tr>
<tr>
<td>Nb</td>
<td>Brownian motion parameter [-]</td>
</tr>
<tr>
<td>$(\rho c)_f$</td>
<td>Heat capacity of the fluid $[J kg^{-3} K^{-1}]$</td>
</tr>
<tr>
<td>Nb</td>
<td>Brownian motion parameter [-]</td>
</tr>
<tr>
<td>$(\rho c)_p$</td>
<td>Heat capacity of the nanoparticle material $[J kg^{-3} K^{-1}]$</td>
</tr>
<tr>
<td>Nn_τ</td>
<td>Local density number of the motile microorganisms [-]</td>
</tr>
<tr>
<td>τ</td>
<td>Ratio between the effective heat capacity of the nanoparticle material and heat capacity of the fluid [-]</td>
</tr>
<tr>
<td>Nt</td>
<td>Thermophoresis parameter [-]</td>
</tr>
<tr>
<td>Nu_τ</td>
<td>Local Nusselt number [-]</td>
</tr>
<tr>
<td>ψ</td>
<td>Stream function [-]</td>
</tr>
<tr>
<td>ζ</td>
<td>Magnetic diffusivity $[m^2/s]$</td>
</tr>
<tr>
<td>Pe</td>
<td>Bioconvective Péclet number [-]</td>
</tr>
<tr>
<td>Pr</td>
<td>Prandtl number [-]</td>
</tr>
<tr>
<td>ρ</td>
<td>Pressure $[Pa]$</td>
</tr>
<tr>
<td>∞</td>
<td>Free stream condition</td>
</tr>
<tr>
<td>Re, Re_τ</td>
<td>Reynolds, local Reynolds number [-]</td>
</tr>
<tr>
<td>$'$</td>
<td>Differentiation with respect to η</td>
</tr>
</tbody>
</table>

ACKNOWLEDGEMENTS

This work is supported by RDU project No. 150391 from University Malaysia Pahang.

REFERENCES

