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Time-onsisteny in managing a ommodity portfolio : a dynami riskmeasure approahH�elyette GEMAN Birkbek College, University of London and ESSEC Business ShoolSteve OHANA Birkbek College, University of London�Deember 2005
AbstratWe onsider the problem of the manager of a storable ommodity (e.g. hydro,oal) portfolio faingdemand risk while having aess to storage failities and illiquid spot and forward markets. In thissetting, we emphasize that a dynamially onsistent way of managing risk over time must be introdued.In partiular, we demonstrate the temporal inonsisteny of stati risk objetives based on �nal wealthand advoate the use of a new lass of reursive risk measures suh as those suggested by Epstein et al.(1989) and Wang (2000) for portfolio optimization and valuation. This type of risk measures not onlyprovide time-onsistent deision plannings but allow the portfolio manager to ontrol independently theourrene of ash-ows aross time and aross random states of nature. We illustrate the disussion in anempirial setion where the trade-o� between �nal wealth risk and bankrupty risk at an intermediate dateis analyzed and the synergy between the physial assets omposing a ommodity portfolio is assessed.

�The authors thank Paul Kleindorfer and Stanley Zin for helpful omments. They also are grateful to Olivier Bardou,Guillaume Leroy, David Game, and Jean-Jaques Ohana for useful suggestions.1



1 IntrodutionWe onsider the situation of a retailer, who is engaged in long-term sale ontrats, owns storage failitiesand an trade the ommodity in illiquid spot and forward markets. The retailer is faing a portfoliooptimization problem, that translates into deiding at eah time step whih quantity to injet in orwithdraw from her storage failities and trade in the spot and forward market, and a portfolio valuationproblem, that onsists in assessing the value of the global portfolio and of eah asset omposing it. Theoptimization and the valuation take plae in the ontext of two types of risk: the volume risk that arisesfrom the random demand of long-term ustomers and is related to exogenous non traded variables suhas weather, and the prie risk that is linked to the volatility of the ommodity prie.In this inomplete market setting, the value of the retailer's portfolio is not uniquely determined byarbitrage onsiderations and an integrated portfolio approah is needed to handle liquidity onstraints.The stohasti programming literature, on the one hand, has essentially treated situations where portfoliomanagement is analyzed through a mean-variane riterion applied to �nal or intermediate wealths, andfully de�ned at the �rst deision date. In partiular, the risks arising at intermediate deision datesare not taken into aount, leading to possible onits between deisions taken over time. Examplesof this approah are found in Unger (2002), where a CVaR onstraint on the �nal wealth is addressedthrough a Monte-Carlo approah, in Martinez-de-Albeniz et al. (2005), where mean-variane trade-o�sare onsidered and yield expliit solutions in a one-step framework, and in Kleindorfer et al. (2004), wherethe ase of a multi-period VaR onstraint on ash ows is examined.The literature on deision theory, on the other hand, has paid a deserved attention to the problem ofdynami hoie under unertainty. Originally, it was the problem of dynami onsumption planning thatwas analyzed by eonomists. In a seminal paper, Epstein et al. (1989) introdue a set of dynami utilities,de�ned reursively in a disrete time setting, and allowing one to separately aount for the issue ofsubstitution -ontrolling onsumption over time- and risk aversion -ontrolling onsumption aross randomstates of nature. In �nane, dynami risk measures were reently introdued to aount for the ourreneof a stream of random ash-ows over time. A general requirement for these risk measures is their time-onsisteny (see e.g., Artzner et al. (2002)) beause, as emphasized by Wang (2000), multi-period risksare reevaluated as new information beomes available, whih raises the issue of the ompatibility betweenonseutive deisions implied by the risk measure. 2



Our artile, to our knowledge, is the third attempt after Chen et al. (2004) and Eihhorn et al. (2005)and to use dynami risk objetives in inventory and ontrats portfolio problems. Eihhorn et al. (2005)use a restrition of the set of oherent dynami risk measures de�ned by Artzner et al. (2002) to solvean eletriity portfolio optimization problem but do not raise the problem of time onsisteny of optimalstrategies. Chen et al. (2004) de�ne their objetive funtion as an additive intertemporal utility of theonsumption proess of the portfolio manager. Instead, we hoose the Epstein et al. (1989) non additiveintertemporal utility objetive and apply it diretly to the ash ow proess. The impat of this hangeis signi�ant : in our setting, the initial wealth is not a state variable, the only state variables being theinventory level, and the umulative positions in the forward market for eah future delivery period; inaddition, the retailer's problem appears as a ash-ow stream management one rather than a onsumptionplanning one; lastly, the exibility of the non additive intertemporal utility allows the portfolio managerto separately ontrol the distribution of ash ows aross time periods and aross states of nature, whihis not allowed by an additive utility objetive on the onsumption proess1.The ontribution of this paper is twofold: i) on the methodologial side, we de�ne the onept of time-onsisteny of optimal strategies, show that the lassially used stati risk measures on �nal wealth arenot time-onsistent and advoate the use of reursive utilities as a time-onsistent and exible measure forportfolio risk management and valuation; ii) on the operational side, we provide a tratable framework todynamially manage physial assets under random demand and evolution of spot and forward ommoditypries, and show on a numerial example how the use of reursive utilities an help strike a trade-o�between �nal and intermediate wealth risk management and assess the synergy between the physialassets omposing a ommodity portfolio.The remainder of the paper is organized as follows. In setion 2, we de�ne the time-onsisteny of optimalstrategies and ompare two objetives with respet to the issues of time-onsisteny, and risk/substitutionpreferenes. In setion 3, we present the retailer's portfolio management problem and provide a priingformula and bid/ask pries for physial ommodity assets. Setion 4 presents a numerial illustration ofthe main �ndings. Setion 5 ontains onluding omments.1Note that our framework redues to the one of Chen et al.(2004) when substitution preferenes are ignored and when CARAutility funtions are used
3



2 A omparison of dynami risk objetivesThe objetive of this setion is to present two examples dynami risk preferenes and assess their time-onsisteny properties, whih we view as an original ontribution of the paper.2.1 Stati risk measuresIn the ase of one period settings, a number of stati risk measures have been de�ned to express preferenesof risk averse agents (see e.g., Artzner et al. (2000) and Frittelli et al. (2002)). Mathematially, a (stati)risk measure is a funtion, here denoted �, assoiating to a ontingent laim X a real number �(X). �(X)represents the prie that it is aeptable to pay in order to purhaseX and ��(�X) represents the apitalthat must be provisioned in order to make a short position in X aeptable.2.2 Risk measure assoiated to a stream of ash ows2.2.1 Possible riteria for ash ow streams assessmentDe�ned on a �ltered probability spae (
;F ;P; (Ft)), the disrete-time stohasti proessG = (Gi)i=1;:::;T ,represents a sequene of random ash ows ourring at times (�i)i=1;:::;T . G is the set of all F�i-adaptedash ow proesses from i = 1 to i = T . We hoose F�1 = f;;
g (G1 is deterministi), and F�T = F , sothat full information is revealed at date �T .A dynami value measure V = (Vi)i=1;:::;T onsists of mappings Vi : G � 
 ! R that assoiate to eahash ow proess G 2 G and to eah ! 2 
 a real number Vi(G;!). The resulting stohasti proess(Vi) is F�i-adapted. Finanially, it represents the value of the sequene of ash ows (Gk)k=1;:::;T or theapital requirement to over the liabilities (�Gk)k=1;:::;T at date �i.Let us now propose two ategories of dynami values measures for streams of ash ows:1. The �rst ategory onsists of extensions of stati riteria depending on the wealth aumulatedbetween date �i and date �T : Wi;T := TX�=iG�Vi(G;!) = �(Wi;T jF�i) (1)In the above equation, � is a one-step risk measure and the notation �(:jF�i) refers to onditioningon the information available at date �i. 4



2. A seond ategory of riteria (proposed by Epstein et al. (1989) and Wang (2000)) are reursivelyonstruted from the end of the time period by de�ning:VT (G;!) = GTVi(G;!) = W (Gi; �(Vi+1jF�i)) 8i � T � 1 (2)In the above equation, � is a one-step ertainty equivalent2 and the mapping W : R2 ! R is alledan aggregator. In this framework, the date �i value is assessed reursively by aggregation of theurrent ash ow Gi and ertainty equivalent of Vi+1 seen from date �i. An important observationis that the proess (Vi) is F�i-adapted.2.3 Time onsistenyTime-onsisteny is a property whih guarantees that preferenes implied by a dynami value measure donot onit over time.2.3.1 Examples of time-inonsistenyConsider the two ash ow streams A and B, where all transition probabilities are supposed to equal 0:5:
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3 2(state u)
1(state d)

4(state uu)1(state ud)3(state du)1(state dd)BLet us evaluate stream A using the dynami value measure (1) with �(X) = u�1(E [u(X)℄), u(x) = ln(x):V2(A; u) = exp(E(ln(WA2;3ju))) = exp(0:5(ln(8) + ln(2))) = 4; V2(A; d) = exp(E(ln(WA2;3jd))) = p62We adopt Wang's de�nition of the ertainty equivalent, i.e., a stati measure � verifying the monotoniity property (whihinsures that if a random variable X is larger than Y in every state of the world, then �(X) � �(Y )) and redued to the identityon the spae of onstant random variables. 5



V1(A) = exp(E(ln(W1;3))) = exp(0:25(ln(11) + ln(5) + ln(9) + ln(4))) = (55� 36) 14Now evaluate stream B:V2(B; u) = exp(E(ln(WB2;3ju))) = exp(0:5(ln(6) + ln(3))) = p18; V2(B; d) = exp(E(ln(WB2;3jd))) = p8V1(B) = exp(E(ln(WB1;3))) = exp(0:25(ln(9) + ln(6) + ln(7) + ln(5))) = (54� 35) 14We thus have simultaneously the following inequalities:V2(A; u) < V2(B; u); V2(A; d) < V2(B; d); V1(A) > V1(B)As a result, the dynami value measure V de�ned in (1) quali�es B as preferable to A in all states of theworld at time 2 and A preferable to B at time 1, hene its time inonsisteny.Time onsisteny does not hold either if � is a mean-variane instead of an expeted utility riterionin equation (1). To see this, onsider the two following ash ow streams A (left) and B (right), withtransition probabilities being written on top of eah ar:
����������

�����HHHHH0 0 (state u)
0 (state d)

1 (state uu)0 (state ud)
0

1212
3414

A
����������0 0 (state u)

0 (state d)
0.5
0

1212
BLet us evaluate stream A using the dynami value measure (1) with �(X) = E(X) � V ar(X):V2(A; u) = E(WA2;3 ju))� V ar(WA2;3ju)) = 34 � (34 � 916) = 916V2(A; d) = E(WA2;3 jd))� V ar(WA2;3jd)) = 0V1(A) = E(WA1;3 ))� V ar(WA1;3)) = 12 � 34 � (38 � 964) = 964
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Now evaluate stream B:V2(B; u) = E(WB2;3 ju))� V ar(WB2;3ju)) = 12V2(B; d) = E(WB2;3 jd))� V ar(WB2;3jd)) = 0V1(B) = E(WB1;3 ))� V ar(WB1;3)) = 12 � 12 � (12 � 14 � 116) = 316 = 1264We thus have simultaneously the following inequalities:V2(A; u) > V2(B; u);V2(A; d) � V2(B; d);V1(A) < V1(B)2.3.2 De�nition of time onsisteny and omparison of the two riteriaWe assume that the ash ows depend on deisions that are made at eah date �i, using the informationavailable at this date. Deision at date �i is the result of the optimization of a dynami value measure ofthe type desribed above. This optimization not only yields the �rst deision at that date, but a wholedeision planning for all subsequent stages. The question we pose in this setion is the following: areoptimal plannings onsistent over time?Let us de�ne the problem formally: onsider a ash ow sequene (Gi)1�i�T , ourring at dates (�i)i�1,depending on deisions (qi)1�i�T and on a multi-dimensional random proess (�i)1�i�T : Gi := f(qi; �i).(�i) is assumed to be of the type �i+1 = g(�i; �i+1) for some reasonably behaved funtion g, and a whitenoise vetor proess (�i).We introdue the state variables xi on whih depend deisions at time �i and denote A(xi) the set ofadmissible strategies (qk)i�k�T at time �i. We suppose that, after deision qi is made at time �i, the statexi leads to xi+1 = h(xi; qi; �i+1; �i+1), where h is a deterministi funtion and (�i) a white noise vetorproess possibly orrelated with (�i). We denote (F�i) the �ltration generated by the proesses (�i; �i);(qi) is supposed to be an (F�i)-adapted proess.Lastly, we onsider the following optimization problem, related to a dynami value measure V :Ji(xi) := Max(qk)k�t2A(xi)Vi(G) (3)We denote (q�ik (xi))k�i the resulting (F�i)-adapted optimal strategy deided at date �i3. The question ofonsisteny of optimal strategies an be formulated in the following way:Is q�ii+1(xi; �i+1; �i+1) equal to (q�(i+1)i+1 (xi+1)), where xi+1 = h(xi; q�i(xi); �i+1; �i+1)?3We suppose throughout this setion that all enountered optimization problems have a unique solution7



We now turn to the time onsisteny of optimal strategies derived from the two dynami value measuresde�ned above.- First, let us onsider the �nal wealth objetive de�ned in equation (1) with �(X) = u�1(E [u(X)℄),i.e,Vi(G;!) = u�1 (E(u(Gi +Gi+1 + :::+GT )jF�i)))4:Ji(xi) : = Max(qk)k�i2A(xi)Vi(G)= u�1�Maxqi Max(qk)k�i+1E�i (E�i+1 (u(Gt +Gi+1 + :::+GT )))�= u�1�Maxqi E�i ( Max(qk)k�i+12A(xi+1)E�i+1 (u(Gi +Gi+1 + :::+GT )))�The date �i+1 implied problem Max(qk)k�i+1E�i+1 (u(Gi +Gi+1 + :::+GT ))) di�ers from the one derived fromthe dynami value measure (Vi), i.e., Max(qk)k�i+1Vi+1 = E�i+1 (u(Gi+1 +Gi+2 + ::: +GT )). As a result, theoptimal strategy deided at time i di�ers from the optimal strategy exhibited at time i+ 1.Time inonsisteny remains if we use a mean-variane objetive instead of an expeted utility. In orderto further investigate this issue, let us onsider a sequene of three ash ows (G1; G2; G3), depending onthe (F�i)-adapted proess (��i)i=1;2;3 and F�i-measurable deisions (qi)i=1;2;3, and let us deompose thevariane of the sum of these ash ows. As usual, we denote V ar�i(X) := V ar(X jF�i).V ar�1(G1 +G2 +G3) = V ar�1(G2 +G3) = E�1 [(G2 +G3)2℄� [E�1 (G2 +G3)℄2= E�1 [E�2 ((G2 +G3)2)℄� [E�1 (E�2 (G2 +G3))℄2= E�1 [E�2 ((G2 +G3)2)℄� E�1 ([E�2 (G2 +G3)℄2) + E�1 ([E�2 (G2 +G3)℄2)� [E�1 (E�2 (G2 +G3))℄2= E�1 [V ar�2(G2 +G3)℄ + V ar�1(E�2 (G2 +G3)) = E�1 [V ar�2(G3)℄ + V ar�1(G2 + E�2 (G3))The last equality illuminates why total variane is time inonsistent: the F�1-measurable term V ar�1(G2+E�2 (G3)) is ontrolled by both deisions q1 and q2, in ontrast to the term G1, whih depends only on thedeision q1. This fat ompromises the existene of any dynami programming equation linking optimalstrategies at dates �1 and �2:J1(x1) : = Max(qk)k=1;2;32A(x1) fE�1 (G1 +G2 +G3)� V ar�1(G1 +G2 +G3)g= Max(qk)k=1;2;3 fG1(q1)� V ar�1(G2 + E�2 (G3)) + E�1 (E�2 (G2 +G3)� V ar�2(G3))g6= Maxq1 �G1(q1)� V ar�1(G2 + E�2 (G3)) + E�1 ( Max(qk)k=2;32A(x2)E�2 (G2 +G3)� V ar�2(G3))�4From now on, we will denote E(X jF�i ) = E�i (X) 8



- We now turn to the dynami value measures desribed in equation (2).As a �rst observation, let us onsider the ase of a linear aggregatorW (x; y) = x+y. The date �i objetivederived from the value measure Vi de�ned by equation (2) is then:Ji(xi) : = Max(qk)k�i2A(xi)Vi(G)= Max(qk)k�i fGi(qi) + ��i(Vi+1)g= Maxqi �Gi(qi) + Max(qk)k�i+12A(xi+1)��i(Vi+1)�The question at this stage is to know whether permuting the operatorsMax and operator � is legitimatein the last equality, i.e., if the following property holds:Max(qk)k�i+1��i(Vi+1) ?= ��i( Max(qk)k�i+1Vi+1) (4)If the permutation is valid, then the optimal strategies will be time-onsistent sine the date �i+1 impliedproblem Max(qk)k�i+1Vi+1 will oinide with the optimization problem at stage i+1; otherwise, they will not.Let us try the aggregatorW (x; y) = ��1(�(x)+��(y)) and ertainty equivalent �(X) = u�1(E [u(X)℄),where u and � are inreasing funtions and � is a positive disounting fator5:Ji(xi) : = Max(qk)k�i2A(xi)Vi(G) = Max(qk)k�i2A(xi)��1(�(Gi(qi) + ��(��i(Vi+1)))= ��1 � Max(qk)k�i2A(xi) f�(Gi(qi)) + ��(��i(Vi+1))g�= ��1 �Maxqi ��(Gi(qi)) + ��( Max(qk)k�i+1��i(Vi+1))��The inversion between operators Max and � in the last equality is permitted asMax(qk)k�i+1��i(Vi+1) = Max(qk)k�i+1u�1 (E�i (u(Vi+1))) = u�1�E�i ( Max(qk)k�i+12A(xi+1)u(Vi+1))�= u�1�E�i (u( Max(qk)k�i+12A(xi+1)Vi+1))� = ��i( Max(qk)k�i+12A(xi+1)Vi+1)We an now present a general suÆient ondition of time onsisteny for optimal strategies:Property 2.1: If there exist non dereasing funtions a b, , and d and positive numbers �t suh thatVi(G) = a hfb(Gi(qi)) + �i [E i (d (Vi+1(G))℄gi (5)then the dynami value measure (Vi) leads to time-onsistent optimal strategies.For the reursive value proess de�ned by utility funtions � and u, equation (5) holds with a = ��1,5This partiular hoie for the aggregator and the ertainty equivalent was �rst suggested by Epstein and Zin (1989) andlater on extended by Wang (2000) to inorporate ambiguity aversion9



b = �,  = �Æu�1, and d = u. In the ase of lassial expetation maximization (risk-neutrality), equation(5) holds with a = b =  = d = Id.2.4 Risk and substitutionWe have mentioned earlier that the problem of dynami optimization under unertainty involves twodimensions, one with respet to the distribution of ash ows aross states of nature, the other over on-seutive time periods. The �rst dimension has an e�et on the �nal wealth distribution while the seondone impats the likelihood of bankrupty within the time period.Dynami value measures de�ned in equations (1) are not appropriate to apture the risk attahed to in-termediate ash ows sine they are based on �nal wealth. By ontrast, reursive dynami value measuresallows one to disentangle randomness and time omponents, via the ertainty equivalent � and the ag-gregator W (respetively aounting for the risk aversion and the substitution preferenes of the deisionmaker). For instane, in the ase of reursive dynami value measures based on utility funtions, theonavity of the funtions u and � leads to the smoothing of ash ows distributions in both dimensionsand in turn to a joint ontrol of the �nal wealth risk and bankrupty risk.Remark: The hoie u = � in reursive value measures derived from utility funtions u and � leads to thelassial objetive: Vi(G) = u�1(E�i (PTk=i ��k��iu(Gk))), whih has been widely used in onsumptionand portfolio hoie problems in �nane (e.g., onsumption-based CAPM). Of ourse, this objetive istime onsistent and aptures both risk aversion and substitution; its drawbak is that it does not o�eras muh exibility as a more general reursive value measure sine risk aversion and substitution arerepresented by the same funtion u.As a onlusion of this setion, we an state that reursive dynami value measures with utility typeaggregator and ertainty equivalent are satisfatory in regard to time onsisteny of optimal strategiesand inter-temporal risk management.
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3 The retailer's portfolio problem3.1 The modelWe adopt a disrete time setting, with a �nite horizon. The deision periods are denoted (pi), i = 1; :::; T(typially months or quarters). The dates (�i) are de�ning the periods (pi). -date 1 date 2 ... date T�1 �2 �Tperiod 1 period 2 ... period TWe assume from now on that the retailer's portfolio is omposed of one sale ontrat and one storagereservoir. In addition, the ommodity is supposed to be traded, stored, and onsumed in the sameloation (in order to avoid transmission osts and onstraints). The problem an be represented in astylized diagram:
-66??retailerstorage

market lient
Lmax is the maximal level of storage, Lmin is the minimal level of storage (at any date), Linit is theinitial storage level, Lend is the minimal storage level at the end of the horizon. Li represents the storagelevel at the end of period pi. Qinji denotes maximal injetion in period pi, Qdrawi maximal withdrawal; wesuppose there are no injetion/withdrawal osts nor holding ost. di denotes the lient's random demandin period pi, Ksi is the �xed selling prie of the ommodity for period i.Only forward ontrats are onsidered; ash ows due to forward ontrating are settled at maturityof the ontrat and ounterparty risk ignored. We denote by F (i; j) the forward prie of the ommodityquoted during pi for delivery in period pj6 (j � i) and Si the spot prie of the ommodity, whereSi := F (i; i).Remarks:6Here, F (i; j) an be onsidered as the average prie over all the quotation dates belonging to period pi of all forwardontrats for delivery in period pj 11



1. In our model, trading is only authorized at deision dates2. Even in the ase of illiquid markets, the retailer is assumed to be a prie-taker, meaning that hertrading deisions will have no impat on market priesStorage deision variables orresponding to period pi are subjet to the following onstraints:0 � qinji � Qinji ; 0 � qdrawi � Qdrawi i � 1 (6)L0 := Linit; Li+1 = Li + qinji � qdrawi 0 � i � T (7)Lmin � Li � Lmax 8i = 1; :::; T ; LT � Lend (8)n(i; j) denotes the net number of forward ontrats bought during period pi for delivery in period pj(j � i), the ase i = j being a spot transation. N(i; j) represents the total forward position at the endof period pi for delivery in period pj and satis�es the onditions:N(0; j) := 0 8j � 1; N(i; j) = N(i� 1; j) + n(i; j) 8 1 � i � j (9)We model the sequene of events and deisions in the following way: during period pi, the retailer disoversthe lient's demand and deides on date �i whih quantities n(i; j) to buy on the spot and forward marketand qinji or qdrawi to injet in or withdraw from storage, respeting the physial balane of ommodityows during period pi i.e., N(i; i) + qdrawi � qinji = di 8 1 � i � T (10)Equation (10) expresses that market and storage are the two ways to serve demand at period pi.We de�ne the disrete set of states of nature 
. Eah ! 2 
 represents a realization of the proess�i = (di; F (i; j)j�i), i = 1:::T . We denote by (F�i) the �ltration generated by (�i). Throughout thepaper, we assume the absene of arbitrage opportunities in the ommodity spot and forward markets. On(
;F ;F�i), we de�ne a risk-neutral probability measure P, under whih forward pries are martingales7.We de�ne the set A of admissible strategies as:A := n(qi)i�1 = (qdrawi ; qinji ; n(i; j)j�i)i�1 F�i �measurable and verifying onstraints (6) to (10)o7We hoose here to work under a risk-neutral probability measure P to rule out a speulative use of the spot and forwardmarkets; indeed, if forward pries were not martingales under P, the trading deisions implied by our model ould be inuenedby possible spreads between forward pries and P-expeted values of spot pries, a feature whih is not relevant in the retailer'sontext 12



3.2 Deomposition results in two partiular asesIn this setion, it is assumed that there are neither onstraints nor osts assoiated to trading in theforward market. The risk-free interest rate r is supposed onstant. The goal here is to present two aseswhere the priing issues and management of the portfolio are partiularly simple:- the �rst ase is the one of a liquid market and deterministi demand- the seond ase inludes unertain demand but assumes risk-neutrality of the retailer, hene the use ofa riterion of expeted pro�t maximizationIn both ases, a full deomposition of the portfolio value and management is possible.The total ash ow during period pi is denoted as Gi and may be written as:Gi = diKsi � TXj=i e�r(�j��i)F (i; j)n(i; j) (11)Remark: Cash ows due to forward trading are in this paper registered at transation date and disountedfrom delivery date at the risk free interest rate r. We adopt this unusual rule beause we want ashows at dates �i to depend only on date �i deisions and not on previous ones8, as would be the aseif ash ows from forward transation had been registered at delivery date. Sine interest rates areonsidered deterministi, this representation has no onsequenes on the �nal wealth but may have someon intermediate wealths9.Assuming liquid spot markets, the oupling onstraint (10) an be treated as an impliit one and we faea fully deomposable problem, with onstraints only on individual assets.Deriving from (9) and (10) the volume n(i; i) of spot transations, equation (11) beomes:Gi = diKsi � n(i; i)Si � TXj=i+1 e�r(�j��i)n(i; j)F (i; j)= qdrawi Si � qinji Si + di(Ksi � Si) +N(i� 1; i)Si � TXj=i+1 e�r(�j��i)n(i; j)F (i; j)In this form, Gi appears like the sum of three omponents:1. qdrawi Si � qinji Si = period pi payo� from the storage faility. Storage deisions taken over time areinter-dependent due to the apaity onstraints expressed in equation (6)2. di(Ksi �Si) = period pi payo� from the sale ontrat devoided of any optionality, whih is in fat a8in aordane with the setting de�ned in setion 2.3.29we thus assume here that the retailer provisions in advane all the future gains or liabilities at the signature of a forwardontrat 13



strip of swaps exhanging the sale ontrat prie Ksi for the spot prie Si. The volume involved atperiod pi is either �xed (deterministi demand) or random (unknown demand)3. N(i� 1; i)Si �PTj=i+1 e�r(�j��i)n(i; j)F (i; j) = period pi ash ow from forward ontratsUnder this form, the portfolio appears as a ombination of various options written on the ommodityspot prie while the forward market appears as a way to hedge the spot prie risk. The above splittingof ash ows suggests a deomposition of the portfolio's value. In fat, the latter will only be possible intwo partiular ases:� Portfolio deomposition in a omplete market setting: here, we assume that the demand proess (di)is deterministi (e.g., the ontrat sets a �xed volume to be delivered in all future periods). Then,the arbitrage prie of the portfolio is the sum of maximal expeted ash ows under the (unique)risk-neutral probability measure; this value is the sum of the arbitrage pries of storage and saleontrat. In this framework, the obvious strategy for the portfolio manager onsists in optimizingindependently the storage faility against the spot market under the risk-neutral measure, andhedging spot prie risk using the forward market.� Portfolio deomposition for a risk-neutral retailer in a liquid market: we assume here that the retailerfaes both demand and prie risks but is risk-neutral, i.e.,she only tries to maximize her expetedpro�t. Under the assumption that the physial measure is a risk-neutral measure, the optimalstrategy for the risk-neutral retailer onsists again in optimizing independently the storage failityagainst the spot market and doing no trade in the forward market. Moreover, under deterministidemand, the optimum of the risk-neutral retailer's objetive orresponds to the arbitrage prie ofthe portfolio.3.3 The retailer problem in an inomplete/illiquid marketIlliquidity is modeled by deterministi volume onstraints on spot and forward trading, of the form:nb(i; i+ �) � nmaxb (i; �); ns(i; i+ �) � nmaxs (i; �) (12)where nb(i; j) and ns(i; j) stand for the number of bought and sold forward ontrats during period pifor delivery in period pj (with n(i; j) = nb(i; j)� ns(i; j)).
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We de�ne the set of admissible strategies from state xi:A(xi) := n(qk)k�i = (qdrawk ; qinjk ; n(k; j)j�k)k�i Fk �measurable verifying admissibility onstraintso(13)and the analogous set of illiquid market admissible strategies Aliq(xi). The restritions of the previousdeision sets to date t, de�ning the admissibility sets for deisions qt only, will be denoted by At(xt) andAliqt (xt).We an now formulate the retailer's optimization problem as:Ji(xi) := Max(qk)k�i2Aliq(xi)Vi(G) (14)where the state xi is de�ned by xi = (Li; N(i; :); �i), G by (11) and Vi(G) by the reursive equation (2),with aggregator W and ertainty equivalent � derived from onave inreasing funtions � and u andpositive disount fators (�i):W (x; y) = ��1(�(x) + �i�(y)); �(X) = u�1(E [u(X)℄)We denote suh a dynami value measure as V �;ut (G).The optimal value Ji(xi) satis�es the dynami programming equation:Ji(xi) = ��1( Maxqi2Aliqi (xi)��(Gi(qi)) + �i� Æ u�1(E i (u(Ji+1(xi+1))))	) (15)where the state xi+1 is given by the transition equation xi+1 = (Li+qinji �qdrawi ; N(i; :)+n(i; :); g(�i; �i+1)).The existene of equation (15) guarantees the time onsisteny of optimal strategies, as shown in theprevious setion.3.4 A onavity property for JiProposition 3.4.1:Choosing CARA type utilities �(x) = �e��x and u(x) = �e��x suh that 0 < � � �, for all dates t, and allstates xt suh that Aliqt (xt) 6= ;, the maximization problem Maxqt2Aliqt (xt)��(Gt(qt)) + �t� Æ u�1(E t (u(Jt+1(xt+1))))	is onave with respet to deisions qt. Moreover, the deision set Aliqt (xt) is onvex. The result also holdsfor � = Id and u of CARA type.The proof is available from the authors on request.15



3.5 Ji as the arbitrage prie of the portfolio in omplete marketsIn this setion, we show that, in omplete markets, Jt is the arbitrage prie of the portfolio under thetwo onditons: �(x) = x (no preferene for smooth versus irregular ash ows in time dimension) and�i = e�r(�i+1��i) (one period disount fator). These two assumptions will hold throughout setion 3.5.Property 3.5.1:Ji(xi) = Max(qk)k�i2Aliq(xi)V Id;ui (G) is never greater than the risk-neutral objetive Jrni (xi) = Max(qk)k�i2Aliq(xi)V Id;Idi (G)Proof : The onavity of u implies that for all random variables X :u�1(E [u(X)℄) � E(X) (16)It results, by a simple reursion, that:8G 2 G; 8i 2 T ; V Id;ui (G) = Gi + �iu�1(E�i (u(V Id;ut+1 ))) � Gt + �iE�i (V Id;Idi+1 ) = V Id;Idi (G)and the property holds. �Property 3.5.2: When onditional values Vk+1 omputed at stages k (k = i; ::; T �1) are non stohasti,then V Id;ui is the sum of disounted ash ows from stage i to stage TProof : In this ase, u�1(E�i (u(V Id;uk+1 ))) = V Id;uk+1 for all k = i; :::; T � 1, and, therefore, V Id;ui (G) =Gi + �iV Id;ui+1 =PTk=i e�r(�k��i)Gk, by a simple reursion.�The onsequene is that, in a omplete market setting (i.e., deterministi demand and no liquidity on-straints), Ji is at least equal to the arbitrage prie of the portfolio.Property 3.5.3: In a situation of market ompleteness, Ji(xi) is equal to the arbitrage prie of theportfolio Japi (xi) = Max(qk)k�i2A(xi)EQ�i (PTk=i e�r(�k��i)Gk), where Q is the (unique) risk-neutral measureProof : This property is derived from the following observations:- Ji(xi) � Max(qk)k�i2A(xi)V Id;Idi (G), as exhibited in property 3.5.1- Max(qk)k�i2A(xi)V Id;Idi (G) = Japi (xi), beause the optimal value of the risk-neutral retailer's portfolio isequal to its arbitrage prie.- Ji(xi) � Japi (xi), as shown in property 3.5.2.�Property 3.5.4: If markets are omplete and u stritly onave, then the risk of the optimal strat-egy (q�k)k�i is null. 16



Proof : The equality between Ji(xi) and Jrni (xi) implies an equality in equation (16) for eah X = Vi+1,and, beause the fontion u is strily onave, the equality is possible only if unertainty on all Vt is null.�Consequently, we obtain the satisfatory property that the optimization programme also provides a hedg-ing strategy.To onlude this paragraph, we an note that the question of estimating the ask and bid pries of aphysial asset or �nanial ontrat in inomplete markets remains to be solved. As often done in theliterature , we de�ne the ask (bid) prie as the di�erene of the values of Ji, with and without the bought(sold) asset. Under this de�nition, the bid and ask pries of an asset depend not only on the risk aversionof the manager but also on her initial portfolio, a lassial property in a situation of inompleteness.3.6 A model for the evolution of the forward urve and demandWe assume a lassial one-fator evolution model for the market forward urve F (i; j):F (i; j) = F (i� 1; j)Mi;jexp(e�ki(�j��i)Xi) 8j � i8i � 2 (17)where (Xi)i�2 is a disrete-time stohasti proess omposed of independent variables with lawN(0; (�Xi )2),(ki) are positive parameters, and (Mi;j)j�i are positive onstants ensuring that F (i; j)i�j are martingaleproesses. In this model, only one type of shok is allowed for the forward urve, namely translations,with an amplitude vanishing with time to delivery.Regarding the demand proess (di)i�2, we assume that it is driven by a disrete-time stohasti pro-ess (Yi) (typially the temperature), omposed of independent variables with law N(0; (�Yi )2) positivelyorrelated with the prie proess with orrelation oeÆients (�i):di = max(fi; �di + Yi) (18)where (fi) are positive oors ensuring that the demand proess is positive, and ( �di) are the averagedemands at eah period.As a onlusion, to simulate the joint evolution of forward urve and demand at periods (pi), we onlyneed to jointly simulate the random variables (Xi) and (Yi) for i = 1; :::; T and then use formulas (17)and (18).
17



4 Numerial results4.1 The event treeWe use here a standard stohasti programming tehnique to solve the problem. The set of realizations ofthe demand and the forward urve is represented on an event tree with nodes n 2 N , the deisions q(t; !)are indexed on the nodes of the tree, and the time-1 objetive is maximized numerially with respet toall deisions (qn)n2N using a large sale non linear solver.To build the event tree, we use a two-dimensional lattie (see Webber (1997)), repliating exatly the �rsttwo moments of the proess (X;Y ) at eah time step.The four vertexes of the unit square �rst provide the equiprobable joint realizations of a vetor ~Z = ( ~X; ~Y )of two unorrelated zero mean unit variane random variables:
-

6 Æ
Æ

Æ
Æ

(1; 1)
(1;�1)

(�1; 1)
(�1;�1)Figure 1: Senarios for two unorrelated random variablesThe extension to two orrelated variables is straightforward: onsidering a vetor of two unorre-lated unit variane variables ~Z = ( ~X; ~Y ), the vetor of random variables Z = (X;Y ) = A ~Z withA = 0BB� �x 0��y p1� �2�y 1CCA have zero mean and ovariane matrix � = 0BB� (�x)2 ��x�y��x�y (�y)2 1CCA.Therefore, we proeed in the following way to build the event tree on the prie/demand proess:- �rst, using the matrix M = 0BB� 1 1 �1 �11 �1 1 �1 1CCA, whose olumns represent the four joint realiza-tions of a vetor ( ~X; ~Y ) of two unorrelated zero mean, unit variane variables, we form the 2� 4 matrixN = AM , whose olumns are the realizations of the vetor (X1; Y1), representing the prie/demand nodesat time 1- then, we attah to eah node of period 1 the son nodes given by the matrix N = AM , and so on, until18



(a) Realizations of the forward urve (e/MWh) (b) Realizations of demand (TWh)

() Two-dimensional representation of the prie anddemand proesses (X;Y ) at eah time step: the re-alizations of the prie proess X an be read on thex-axis Figure 2: Event treethe last period- �nally, we apply formulas (17) and (18) to get the forward urve and the demand at eah node, the termMi;j being determined by the martingale ondition at node n:Fn(i� 1; j) = En (Fm(i; j)) = Xm2S(n) 14Fm(i; j) (19)where S(n) is the set of sons of node n, whih gives:Mi;j = 1Pm2S(n) 14 exp(e�ki(�j��i)Xmi ) (20)It is important to point out here that the term M depends only on i and j and not of node n beausethe variables (Xi; Yi) are independent of (Xi�1; Yi�1), hene the sets fXmi ; m 2 S(n)g are the same forevery node n of date �i�1.We obtain 4T�1 di�erent senarios from period 1 to period T .19



4.2 The settingWe assume the following setting:- the retailer is trading an energy produt, whose prie is expressed in e/MWh- there are �ve periods of one quarter eah: during the �rst quarter, the retailer faes no demand andreplenishes her storage faility using the spot market in order to meet the unknown lient's demand inthe following year- the storage has an initial level at 20 TWh, a maximal withdrawalinjetion/withdrawal per period of 10TWh, a maximal (resp. minimal) storage level of 50 TWh (resp. 0), and a minimal end level of 20 TWh- the forward prie dynamis are represented by the model desribed in equation (17) with parameterski = 2 years�1 and volatility �Xi = 0:2 8i � 2; the initial forward urve is supposed to be at at the level20 e/MWh; in partiular, the initial spot prie equals 20 e/MWh- the maximal allowed traded volume in the market dereases withtime-to-delivery: it equals 30 TWh forontrats delivering in the present quarter ("spot" transation), 10 TWh for ontrats delivering in thenext quarter, 5 TWh for ontrats delivering in two quarters, and 0 TWh for ontrats delivering in thefollowing periods- the selling prie on the sale ontrat is 21 e/MWh (hene a margin of 5% with respet to the averagemarket forward prie); regarding the demand harateristis, we suppose that d1 = 0, and 8i � 2: �Yi = 10TWh, �di = 20 TWh, fi = �di3 , and �i = 0:5. The realizations of (X;Y ) at eah time step are representedon �gure (2()): we note that there are four di�erent realizations for the demand proess and two onlyfor the prie proess- we adopt CARA utility funtions u(x) = �e��x and �(x) = �e��x to represent risk aversion andsubstitution preferenes, with varying risk aversion and substitution parameters � and �; interest ratesare set to 0.Figures (2(a)) and (2(b)) show the forward urve and demand senarios. The mean-reverting nature ofthe spot prie is visible.
20



4.3 E�et of optimal strategies on the �nal and minimal wealthsFigure (3(a)) shows the mean variane trade-o� in the �nal wealth obtained when risk aversion varies andthe funtion � remains equal to identity. When the risk is de�ned as the Conditional Value at Risk10 onthe �nal wealth WT 11: CV aRq(W ) = E(�WT j �WT > V aRq(W )) (21)the expeted mean is an inreasing funtion of risk, as shown in �gure (3(a)). For example, a derease ofthe 0.5% (resp. 5%) CVaR on �nal wealth from 611 (resp. 505) to 371 (resp. 291) Me implies a dereaseof the expeted �nal wealth from 67 to 15 Me. Figure (3(b)) represents the trade-o� between the risksof the �nal wealth and temporal minimal wealth12. Figure (3(b)) shows that it is possible to exhangebankrupty risk for �nal wealth risk by dereasing the ratio of parameter � to parameter �. For example,to ut the 0.5% (resp. 5%) CVaR on temporal minimal wealth from 1059 to 545 (resp. 473) Me, onehas to aept a rise of the 0.5% (resp. 5%) CVaR on �nal wealth from 365 (resp. 296) to 516 (resp. 458)Me. However, the exhange of bankrupty risk for �nal wealth risk has limits: Figure (3(b)) shows inpartiular that it is not possible to bring down the 0.5% (resp. 5%) CVaR on temporal minimal wealthbelow a ertain threshold, orresponding to the pair (� = 0:1; � = 0:001) (resp. (� = 0:01; � = 0:0005)).Figures (4(a)) shows the umulative funtion of the �nal wealth over the 256 tree senarios used inthe optimization proedure under di�erent values of risk aversion. In �gure (4(a)), we observe that arisk aversion of 0:02 allows to signi�antly redue the left tail up to 5% of the distribution obtainedunder a risk-neutral strategy. The ost of a higher risk aversion is that the main part of the �nal wealthdistribution (to the right of the 10% quantile) is signi�antly moved upright. Figure (4(b)) shows thedistribution of the minimal wealth over time: we see that a more onave funtion � signi�antly reduesthe likelihood of a very negative minimal temporal wealth, whih is a onsequene of the smoothingof ash ows in the time dimension. However, as shown by �gure (4(a)), if the ratio �� beomes toohigh (e.g.(� = 0:01; � = 0:0005)), the �nal wealth distribution exhibits a large left tail. If the portfoliomanager seeks to strike a balane between �nal wealth and bankrupty risk management, he may hoose(� = 0:1; � = 0:001) or (� = 0:01; � = 0:0001). Figure (5) represents the intermediate wealths obtained10V aRq(W ) is the well-known Value-at-Risk assoiated to quantile q11the wealth Wi at the end of period pi is de�ned as the umulative sum of ash ows from period p1 to period pi12Temporal minimal wealth is de�ned as mini2f1;2;3;4;5gWi; the temporal minimal wealth distribution is thus diretly linkedto bankrupty risk 21



(a) Expeted �nal wealth in terms of CVaR (in Me); eah urveorresponds to a di�erent CVaR quantile and is onstrutedwith � taking the values f0; 0:001; 0:005; 0:01; 0:02g

(b) CVaR of the temporal minimal wealth in terms of CVaR ofthe �nal wealth (in Me); eah urve orresponds to a di�erentCVaR quantile and is onstruted with (�; �) taking the values(0:1; 0); (0:05; 0:0001); (0:02; 0:0001); (0:01; 0:0001); (0:1; 0:001); (0:01; 0:005);(0:01; 0:001); (0:001; 0:0001)Figure 3: Trade-o�s between expeted wealth/�nal wealth risk and �nal wealth risk/bankrupty risk
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(a) Final wealth umulative funtion (in Me); the ase� = 0 (resp. � = 0) orresponds to a funtion u (resp.�) equal to identity

(b) Temporal minimal wealth (in Me) umulative fun-tion in inomplete markets; the ase � = 0 (resp. � = 0)orresponds to a funtion u (resp. �) equal to identityFigure 4: Final and temporal minimal wealth umulative funtions for di�erent risk aversion and substitutionparametersat the di�erent nodes of the event tree for di�erent ouples of (�; �) and on�rms the above onlusions:hoosing (� = 0:01; � = 0:0005) allows one to ontrol the intermediate wealth risk but implies a greatdispersion of the �nal wealth; onversely, hoosing (� = 0:02; � = 0) o�ers a very narrow range of �nalwealths but with a high bankrupty risk at the end of the seond period; the hoie (� = 0:01; � = 0:0001)represents a trade-o� between and �nal and intermediate wealth risks.
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(a) Wealth pro�le in the ase (0,0) (b) Wealth pro�le in the ase (0.02,0)
() Wealth pro�le in the ase (0.01,0.0001) (d) Wealth pro�le in the ase (0.01,0.0005)Figure 5: Cumulative wealths (in Me) in the di�erent nodes of the event tree for di�erent pairs (�; �)4.4 Portfolio valueFigure (6(a)) represents the portfolio value de�ned in setion 3.5 for di�erent risk aversion parameters.The portfolio value is a dereasing funtion of the risk aversion parameter. The spread between therisk-neutral and positive risk aversion values an be interpreted as a risk premium, whose value inreaseslogially with the risk aversion parameter.The value of the sale ontrat, obtained by setting the storage exibility to zero in the original portfolio13,behaves similarly. The storage value, obtained by setting the lient's demand to zero in the retailer'sportfolio, does not depend on the risk aversion parameter: this is due to the fat that, under the liquidityassumptions made in setion 4.2, the storage faility has a unique arbitrage value (here 55.26 Me) whihan be seured by appropriate forward transations; in this ontext, the optimum J1 of the storagemanagement problem redues to the storage arbitrage value, as explained in setion 3.4. The synergyvalue whih is de�ned as the spread between the portfolio value, on the one hand, and the sum of the sale13Setting the storage exibility to zero may ause the problem to be infeasible in the ase of illiquid markets and non-interruptible lients; estimating the sale ontrat value may thus require in some situations the introdution of arti�ial inter-ruption/emergeny supply osts to relax the possibly too restritive volume onstraints; in our example, the lients' demandould be met in every senario only with the illiquid market 24



(a) Deomposition of portfolio value for di�erent risk aversionparameters (b) Synergy value in term of risk aversion parameter for dif-ferent demand volatilities �Figure 6: Deomposition of J1(x1) = Max(qk)k�12Aliq(x1)V Id;u1 (G) (in Me) and synergy value for di�erent riskaversion parameters and di�erent demand volatilitiesontrat and storage separate values14, on the other hand, is null for a risk-neutral retailer and inreaseswith the risk aversion parameter, whih expresses the fat that the synergy between sale ontrat andstorage faility is in term of risk management rather than in term of expeted return.Figure (6(b)) represents the synergy value in term of the risk aversion parameter under di�erent demandvolatilities. It is observed that the synergy value inreases with demand volatility, whih means that thestorage faility's value-added in the retailer's portfolio inreases with the demand unertainty. Figure (7)shows that the storage's value added beomes null in a ontext of high forward market liquidity, even inthe presene of volume unertainty: the synergy e�et arises only under an illiquid forward market. Inaddition, the portfolio value varies from �89 to 37 Me, depending on the forward market liquidity, whihpoints out the importane of liquidity assumption for portfolio valuation.

14the synergy value also equals the spread between the storage portfolio value de�ned in setion 3.5 and the storage arbitragevalue 25



Figure 7: Portfolio and synergy values (in Me) for the di�erent settings of forward market liquidity desribedin table (1) (with � = 0:01 and demand volatility � = 10 TWh)Q0 Q1 Q2 Q3 Q4low liquidity setting 30 10 5 0 0medium liquidity setting 30 10 10 10 10high liquidity setting 30 30 30 30 30Table 1: Desription of the three liquidity settings: Q0 represents the maximal volume of "spot" transations,Q1 the maximal volume for delivery in the next quarter, Q2 the maximal volume for delivery in the nextfollowing quarter...
5 ConlusionWe have developed in this paper a tratable model to introdue time-onsisteny in managing a ommodityportfolio. In this order, we assessed two di�erent types of risk objetives: only the reursive dynamivalue measure based on a utility-type aggregator and ertainty equivalent was found to be time-onsistent.Moreover, this form of dynami value measure has the appealing feature of disentangling the omponentsof risk aross states of nature and temporal substitution and making them transparent to the deisionmaker. These properties are illustrated on a numerial example. The use of the model signi�antlyredues the left tail in the �nal wealth distribution, and leads to a satisfatory trade-o� between �nalwealth risk and expeted wealth when risk is represented by Conditional Value at Risk. Lastly, the model26
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