TECHNICAL REPORT R-83

A THEORETICAL STUDY OF THE ANGULAR MOTIONS OF SPINNING BODIES IN SPACE

By JERROLD H. SUDDATH

Langley Research Center Langley Field, Va.

TECHNICAL REPORT R-83

A THEORETICAL STUDY OF THE ANGULAR MOTIONS OF SPINNING BODIES IN SPACE

Ry Jerrodd H. Suddath

SUMMARY

A theoretical study was made of the angular motions of spinning bodies in space. The analysis was based on Euler's dymamic equations which were linearized and solved analytically. The results of the study are directly applicable only to spin-stabilized vehicles with constant momentw of inertia and angu'ar displacements not exceecling about 15°. Simple analytical expressions were obtained which relate anyular motions to spin-rate and inertia distributions: for a given disturbance. Consideration was given to the effects produced by having artificial damping in the system. The study included numerical pxamples and comparisons of analytical solutions with machine solutions: of exact dynamic equations.

The analysis indicated that angular motions are sensitive to inertia distribution. In considering a rectangular-pulse pitching moment, it was found that the residual motion was very sensitive to the time at which the moment was removed. Artificial damping due to a perfect proportional control system seemed to be more advantageous to penci-like configurations. than to disk-like configurations.

INTRODUCTION

Observations made in connection with the Explorer and Vanguard satellite programs showed that several of the vehicles experienced large angular motions despite the fact that they were spin-stabilized. The various factors which am contribute to such motions have been considered in detailed studies exemplified by referenees 1 to 3 . However, a general knowledge of the fundamental principles of spin stabilization is not readily obtained by considering such specialized studies.

In an effort to obtain an insight into the general problem of spin stabilization, a theoretieal study
was conducted. Emphasis was placed on isolating the basic parameters and qualitatively investigating their influence on the problem. In order to investigate the angular motions produced by torques acting on a spimning body with constant moments of inertia, Euler's dynamic equations were linearized and solved analytically. In linearizing the equations it was necessary to assume that the spin rate was constant and that the angular deflections of the spin axis from a reference axis would never exceed about 15°. Numerical examples were used to compare the analytical solutions with machine solutions of the exact equations of motion.

SYMBOLS

$a=p_{o} \frac{I_{z}-I_{x}}{I_{y}}$, radians/sec
$b=p_{v} \frac{I_{u}-I_{z}}{I_{z}}$, radians/sec
$c=\frac{M_{0}}{I_{v} \Omega}$, per sec
$d=\frac{M_{0}}{p_{o}\left(I_{z}-I_{x}\right)}$, per sec
\vec{H}
angular-momentum vector, slug-ft ${ }^{2} /$ sec
$I_{r}, I_{y}, I_{z} \quad$ moments of inertia about the principal body x-, y-, and z-axis, respectively, slug- ft^{2}
$I \quad$ transverse moment of inertia when $I_{y}=I_{z}$, slug-ft ${ }^{2}$
$i \quad$ imaginary number, $\sqrt{-1}$
$\hat{i}, \hat{j}, \hat{k} \quad$ unit vectors along the principal body x-, y-, and z-axis, respectively
K
control sensitivity, slug-ft ${ }^{2}$

$\begin{aligned} & L^{-1}\{ \\ & M_{v} \end{aligned}$	inverse Laplace transformation magnitude of disturbance moment, $\mathrm{ft}-\mathrm{lb}$
M_{x}, M_{y}, M_{z}	rolling, pitching, and yawing moment, respectively, in the principal body-axis coordinate system, ft-lb
$M^{*}=\frac{M_{o}}{2\|1-\sigma\|}, \mathrm{ft}-\mathrm{lb}$	
P	period, see
p, q, r	angular velocities about the principal body x-, y-, and z-axis, respectively
s	Laplace transform variable, per see
T	spin kinetic cmergy, $\frac{1}{2} I_{r} p_{o}{ }^{2}$, ft-lb
t	time, sec
w	complex variable, $\psi+i \theta$
X, Y, Z	inertial-axis coordinates
x, y, z	principal body-axis coordinates
$\alpha=2 \sin \frac{\omega \tau}{2}$	
β	phase angle, $\tan ^{-1} \frac{\sqrt{1-\zeta^{2}}}{\zeta}$
$\delta_{\text {max }}$	maximum angular deflection of spin axis from reference axis, radians
ζ	ratio of actual damping to critical damping
η	ratio of magnitudes of angularmomentum vector components,
	$\frac{\mid \hat{j} I_{v} q+k I_{z} r}{\left\|\hat{i} I_{x} p_{o}\right\|}$
$\begin{aligned} & \theta, \phi, \psi \\ & \lambda, \xi \end{aligned}$	Euler angles, radians dummy variables of integration, sec
σ	ratio of moments of inertia, $\frac{I_{x}}{I}$
τ	time interval, see
Ω	natural frequency defined by $\sqrt{a b}$, radians/sec
ω	natural frequency when $I_{y}=I_{z}$, defined by $p_{o}\|1-\sigma\|$, radians/sec
Subscripts:	
c	center
$d s$	disturbed state
d	damped
$H T$	transverse momentum

\(\left.$$
\begin{array}{ll}k \\
m\end{array}
$$ \quad \begin{array}{l}control

response to unit step pitching

moment\end{array}\right\}\)| response to unit step yawing moment |
| :--- |
| n |
| 0 |\quad| initial value |
| :--- |
| s steady state |
| $s, 2$ |\quad| values of time interval |
| :--- |

A bar over a symbol indicates the Laplace transformation. Dots over symbols indicate differentiation with respect to time. A primed symbol indicates differentiation with respect to λ.

ANALYSIS

The analysis is based on Euler's dynamic equa ions, which are given in reference 4. Figure 1 illustrates the coordinate system used, with x, y : and z representing a set of principal body fixed axes and X, Y, and Z representing a set of inertial axes. The orientation of the body is related to the inertial axes through the Euler angles shown as ψ, θ, and ϕ in figure 1 .

From figure 2, the significance of considering a $\psi-\theta$ plane in discussing the motion of a spinning body can be seen. If the length of OA is unity, then $\mathrm{AB}=\sin \theta$ and $\mathrm{BC}=\cos \theta \sin \psi$. For small values of θ and $\psi, \mathrm{AB} \approx \theta$ and $\mathrm{BC}: \psi$ so that the coortinates of a point on the trace of the motion

Figere 1.-Orientation of x, y, and z body axes relative to X, Y, and Z inertial axes. The relationship is deseribed by the Euler angles ψ, θ, and ϕ. Positive setse of angular rates about body axes is shown as p, q, and r.

Fignte 2.- Motion trace in $\psi-\theta$ plame.
are closely approximated by (ψ, θ).

EQUATIONS OF MOTION

Basic nonlinear equations of motion.-The analysis is restricted to cases with no coupling from the force to the moment equations. The basic equations to be used are the moment equations in the principal body axes

$$
\begin{align*}
& I_{x} \dot{p}+\left(I_{z}-I_{y}\right) q r=M_{x} \tag{1}\\
& I_{y} \dot{q}+\left(I_{x}-I_{z}\right) p r=M_{y} \tag{2}\\
& I_{z} \dot{r}+\left(I_{y}-I_{x}\right) p q=M_{z} \tag{3}
\end{align*}
$$

and the Euler angular rate equations

$$
\begin{gather*}
\dot{\phi}=p+\dot{\psi} \sin \theta \tag{4}\\
\dot{\theta}=q \cos \phi-r \sin \phi \tag{5}\\
\dot{\psi}=\frac{r \cos \phi+q \sin \phi}{\cos \theta} \tag{6}
\end{gather*}
$$

Under various assumptions analytical solutions to these nonlinear expressions have been obtained. For example, the motion of a torque-free body is discussed in reference 5 .

Linearized equations of motion.-To consider the motion with a torque present, the equations are linearized and solved analytically. The assumptions employed in linearizing the equations are as follows:

1. There is no rolling moment and the spin rate is constant, say $p=p_{0}$.
2. The angle θ is small so that $\cos \theta \approx 1$ and $\sin \theta \approx \theta$.
3. The product $\dot{\psi} \theta$ is small compared with the spin rate p and may be neglected in equation (4).

Under these assumptions, equations (1) to (6) reduce to the following forms:

$$
\begin{gather*}
p=p_{\theta} \tag{7}\\
\dot{q}-a r=\frac{M_{y}}{I_{y}} \tag{8}\\
b q+\dot{r}=\frac{M_{z}}{I_{z}} \tag{9}
\end{gather*}
$$

where

$$
\begin{equation*}
a=\frac{p_{n}\left(I_{2}-I_{x}\right)}{I_{y}} \tag{10}
\end{equation*}
$$

and

$$
\begin{gather*}
b=\frac{p_{o}\left(I_{y}-I_{x}\right)}{I_{2}} \tag{11}\\
\phi=p_{o} t+\phi_{o} \tag{12}\\
\dot{\theta}=q \cos \phi-r \sin \phi \tag{13}\\
\dot{\psi}=r \cos \phi+q \sin \phi \tag{14}\\
\text { GENERAL SOLUTIONS }
\end{gather*}
$$

Solutions for q and r as functions of time can be obtained from equations (8) and (9) when M_{y} and M_{z} are known functions of time. These solutions, along with the expression for ϕ given in equation (12), can be substituted into the equations for $\dot{\theta}$ and $\dot{\psi}$ which can then be integrated direetly to give θ and ψ as functions of time.

The Laplace transformations of equations (8) and (9) are

$$
\begin{align*}
& s \bar{q}-a \bar{r}=\frac{\bar{M}_{y}}{I_{y}}+q_{v} \tag{15}\\
& b \bar{q}+s \bar{r}=\frac{\bar{M}_{z}}{\bar{I}_{z}}+r_{v} \tag{16}
\end{align*}
$$

Solving equations (15) and (16) for \bar{q} and \bar{r} gives

$$
\begin{align*}
& \bar{q}=\frac{\left(\bar{M}_{y}+I_{u} q_{o}\right) I_{z^{*}}+\left(\bar{M}_{z}+I_{z} r_{v}\right) I_{u} a}{I_{y} I_{z}\left(s^{2}+a b\right)} \tag{17}\\
& \bar{r}=\frac{\left(\bar{M}_{z}+I_{z} r_{o}\right) I_{y}{ }^{*}-\left(\bar{M}_{y}+I_{u} q_{o}\right) I_{z} b}{I_{y} I_{z}\left(k^{2}+a b\right)} \tag{1s}
\end{align*}
$$

The characteristic equation of the system is

$$
\begin{equation*}
s^{2}+a b=0 \tag{19}
\end{equation*}
$$

so that a necessary condition for nondivergent solutions for q and r is

$$
\begin{equation*}
a b>0 \tag{20a}
\end{equation*}
$$

Or°

$$
\begin{equation*}
\frac{p_{v}^{2}\left(I_{z}-I_{x}\right)\left(I_{y}-I_{x}\right)}{I_{\nu} I_{z}}>0 \tag{20~b}
\end{equation*}
$$

This relationship defines the stability criteria as follows:

1. When I_{x} is the intermediate moment of inertia, that is, $I_{\nu}<I_{x}<I_{z}$ or $I_{z}<I_{x}<I_{y}$, then $a b<0$ and there is a positive real root of equation (19) which corresponds to instability.
2. When I_{x} is the greatest or smallest moment of inertia, that is, $I_{r}<I_{y}, I_{z}$ or $I_{x}>I_{y}, I_{z}$, then $a \mathrm{~b}>0$ and the system has an undamped oscillation with a frequency of $\sqrt{a b}$.
3. When I_{r} is equal to either or both I_{y} and I_{2}, the system has neutral stability.

Since $q=L^{-1}\{\bar{q}\}$ and $r=L^{-1}\{\bar{r}\}$, the general solutions for θ and ψ are

$$
\begin{align*}
& \theta=\int_{0}^{t}\left[L^{-1}\{\bar{q}\} \cos \left(p_{0} t+\phi_{0}\right)\right. \\
& \left.\quad-L^{-1}\{\bar{r}\} \sin \left(p_{0} t+\phi_{o}\right)\right] d t+\theta_{o}
\end{align*} \begin{array}{r}
\psi=\int_{0}^{t}\left[L^{-1}\{\bar{r}\} \cos \left(p_{0} t+\phi_{0}\right)\right. \tag{21}\\
\left.\quad+L^{-1}\{\bar{q}\} \sin \left(p_{0} t+\phi_{\theta}\right)\right] d t+\psi_{0}
\end{array}
$$

These solutions depend on the existence of the Laplace transformations of the disturbing moments M_{y} and M_{z}. In the appendix, solutions for θ und ψ are presented in terms of Duhamel integrals; thus, the solutions depend on the differentiability of M_{y} and M_{z}. The form of the disturbance should make it apparent which solutions are more applicable to a specifie problem.

DISCUSSION

CASE OF A RECTANGULAR-PULSE PITCHING MOMENT IN BODY-AXIS SYSTEM
Solution of the linearized equations for a particular disturbance. - - s an example, consider the case where the vehicle is disturbed by a pitching moment in the body-axis coordinate system. Let the pitehing moment be a rectangular pulse defined by

$$
\left.\begin{array}{ll}
M_{y}=M_{o} & (0 \leqq t<\tau) \tag{23}\\
M_{y}=0 & (t \geqq \tau)
\end{array}\right\}
$$

and let $M_{x}=M_{z}=0$. Impose the condition that
either $I_{x}<I_{y}, I_{z}$ or $I_{x}>I_{y}, I_{z}$. For convenience take the initial conditions to be

$$
\begin{gathered}
p(0)=p_{o} \\
q_{o}=r_{o}=\theta_{o}=\psi_{o}=\phi_{o}=0
\end{gathered}
$$

The Laplace transformation of the disturbing moment is

$$
\begin{equation*}
\bar{M}_{v}=\frac{M_{o}\left(1-e^{-\tau s}\right)}{s} \tag{24}
\end{equation*}
$$

From equation (17),

$$
\begin{equation*}
\bar{q}=\frac{M_{0}\left(1-e^{-\tau s}\right)}{I_{v}\left(s^{2}+a b\right)} \tag{25}
\end{equation*}
$$

From equation (18),

$$
\begin{equation*}
\bar{r}=-\frac{M_{o} b\left(1-e^{-r s}\right)}{I_{u} s\left(s^{2}+a b\right)} \tag{26}
\end{equation*}
$$

Now lefine

$$
\begin{equation*}
\Omega \equiv \sqrt{a b} \tag{27}
\end{equation*}
$$

Then

$$
\begin{gather*}
q=\frac{M_{o}}{I_{y} \Omega}[\sin \Omega t-u(t-\tau) \sin \Omega(t-\tau)] \tag{28}\\
r=-\frac{M_{o}}{I_{y} a}\{1-\cos \Omega \mathrm{t}-u(t-\tau)[1-\cos \Omega(t-\tau)]\} \tag{29}
\end{gather*}
$$

where

$$
\left.\begin{array}{ll}
u(t-\tau) \equiv 0 & (t<\tau) \\
u(t-\tau) \equiv 1 & (t \geqq \tau) \tag{30}
\end{array}\right\}
$$

By making the appropriate substitutions into equations (21) and (22) and integrating to some $t<\tau$, expressions are obtained for θ and ψ when the isturbance is present. These expressions are:

$$
\begin{align*}
\theta=\frac{:-d}{2(} \frac{1}{\left.?_{o}+\Omega\right)}[& \left.-\cos \left(p_{o}+\Omega\right) t\right]-\frac{c+d}{2\left(p_{o}-\Omega\right)}[1 \\
& \left.-\cos \left(p_{o}-\Omega\right) t\right]+\frac{d}{p_{o}}\left(1-\cos p_{o} t\right) \tag{31}
\end{align*}
$$

$$
\begin{array}{r}
\psi=\frac{\frac{1+d}{2\left(p_{o}-\Omega\right)} \sin \left(p_{o}-\Omega\right) t-\frac{c-d}{2\left(p_{o}+\Omega\right)}}{\sin \left(p_{o}+\Omega\right) t} \\
-\frac{d}{p_{o}} \sin p_{o} t \tag{32}
\end{array}
$$

where

$$
\begin{equation*}
c=\frac{M_{0}}{I_{y} \Omega} \tag{3:3}
\end{equation*}
$$

and

$$
\begin{equation*}
d=\frac{M_{o}}{p_{o}\left(I_{z}-I_{x}\right)} \tag{34}
\end{equation*}
$$

To obtain expressions for θ and ψ after the moment is removed, equations (21) and (22) are integrated from $t=\tau$ to some $t>\tau$, which gives:

$$
\begin{align*}
& \theta= \frac{c-d}{p_{o}+\Omega}\left|\sin \frac{\Omega \tau}{2}\right|\left\{\sin \left[\left(p_{o}+\Omega\right) t-\frac{\Omega \tau}{2}\right]\right. \\
&\left.-\sin \left(p_{o}+\frac{\Omega}{2}\right) \tau\right\}+\frac{c+d}{p_{\theta}-\Omega}\left|\sin \frac{\Omega \tau}{2}\right|\left\{\operatorname { s i n } \left[\left(p_{o}\right.\right.\right. \\
&\left.\left.-\Omega) t+\frac{\Omega \tau}{2}\right]-\sin \left(p_{o}-\frac{\Omega}{2}\right) \tau\right\}+\theta(\tau) \tag{35}\\
& \begin{aligned}
\psi= & \frac{c-d}{p_{o}+\Omega} \sin \frac{\Omega \tau}{2}\left\{\cos \left[\left(p_{o}+\Omega\right) t-\frac{\Omega \tau}{2}\right]-\cos \left(p_{o}\right.\right. \\
& \left.\left.+\frac{\Omega}{2}\right) \tau\right\}-\frac{c+d}{p_{\theta}-\Omega} \left\lvert\, \sin \frac{\Omega \tau}{2}\left\{\operatorname { c o s } \left[\left(p_{\theta}-\Omega\right) t\right.\right.\right. \\
& \left.\left.+\frac{\Omega \tau}{2}\right]-\cos \left(p_{o}-\frac{\Omega}{2}\right) \tau\right\}+\psi(\tau)
\end{aligned}
\end{align*}
$$

Equations (35) and (36) have been checked for several cases against solutions of the nonlinear equations (eqs. (1) to (6)) made on the IBM 704 electronic data processing machine and have been found to be in good agreement. This fact is illustrated in figure 3 , where solutions based on the data of table I are plotted.

In the case where $\tau=\tau_{1}=5.004$, the curve begins at the origin and looks like a little more than half a circle whose center would be at about $(0,-8)$. The moment is removed and the residual motion is represented by the curve which looks like a relatively large circle with center at about ($3,-1$). In the case where $\tau=\tau_{2}=5.044$, the residual motion is represented by the curve which looks like a relatively small circle with center at about (-1.5 , -15.5). These examples were selected from a number of cases, and were chosen to illustrate the sensitivity of the residual motion to the value of τ.

The large differences in the behavior of these examples for small changes in duration of torque

Figlere 3.-Comparison of analytical results with IBM solations of general equations of motion for two eases.

TABLE I

Values of paramberers used for

NUMERICAI. ENAMPIES

result from having a change in torque duration approximately equal to one-half the period of the transverse momentum oscillation. In these cases, this oscillation had a period of approximately 0.08 second.

The physical significance of the various parameters of the problem is not obvious from equations (31), (32), (35), and (36). These equations reduce to a more understandable form when the special case of $I_{u}=I_{z}=I$ is considered. From equations (10) and (11).

$$
\begin{equation*}
a=b=\frac{p_{o}\left(I-I_{x}\right)}{I}=p_{n}(1-\sigma) \tag{37}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma \equiv \frac{I_{x}}{I} \tag{38}
\end{equation*}
$$

From equation (27),

$$
\begin{equation*}
\Omega=p_{o}|1-\sigma|=\omega \tag{39}
\end{equation*}
$$

From equations (33) and (34),

$$
\begin{equation*}
c=d=\frac{M_{0}}{I \omega} \tag{40}
\end{equation*}
$$

Making the appropriate substitutions into equations (31) and (32) gives

$$
\begin{array}{rr}
\theta=\frac{M^{*}}{T}\left[\cos \sigma p_{a} t-1+\sigma\left(1-\cos p_{a} t\right)\right] & (t<\tau) \\
\psi=\frac{M^{*}}{T^{-}}\left(\sin \sigma p_{a} t-\sigma \sin p_{a} t\right) & (t<\tau) \tag{42}
\end{array}
$$

Equations (35) and (36) reduce and combine to give

$$
\begin{equation*}
\left(\psi-\psi_{c}\right)^{2}+\left(\theta-\theta_{c}\right)^{2}=\left(\frac{M^{*} \alpha}{T}\right)^{2} \quad(t>t) \tag{43}
\end{equation*}
$$

where

$$
\begin{gather*}
M^{*}=\frac{M_{o}}{2|1-\sigma|} \tag{44}\\
T=\frac{1}{2} I_{x} p_{o}^{2} \tag{45}\\
\alpha=2\left|\sin \frac{\omega \tau}{2}\right| \tag{46}\\
\psi_{c}=\frac{M_{o}}{2} \sin p_{o} \tau \tag{47}\\
\theta_{c}=\frac{M_{o}}{2 T}\left(\cos p_{o} \tau-1\right) \tag{48}
\end{gather*}
$$

Another simplification can be made which leads to a simple deseription of motions of the type shown in figure 3 . Consider equations (41) and (42) for the case where $\sigma \ll 1$. Then

$$
\begin{array}{cc}
\theta \approx \frac{M_{o}}{2 T}\left(\cos \sigma p_{o} t-1\right) & (t<\tau) \\
\psi \approx \approx_{2 T}^{M} \sin \sigma p_{o} t & (t<\tau) \tag{50}
\end{array}
$$

which combine to give

$$
\begin{equation*}
\psi^{2}+\left(\theta+\frac{M_{o}}{2 T}\right)^{2}=\left(\frac{M_{o}}{2 T}\right)^{2} \quad(t<\tau ; \sigma \ll 1) \tag{51}
\end{equation*}
$$

Equa ion (51) represents a circle in the $\psi-\theta$ plane which approximates the motion while the moment is applied and will be referred to as the disturbedstate ,ircle.
The: equation which describes the motion after the noment is removed (eq. (43)) is repeated:

$$
\left(\psi-\psi_{c}\right)^{2}+\left(\theta-\theta_{c}\right)^{2}=\left(\frac{M^{*} \alpha}{T}\right)^{2} \quad(t>\tau)
$$

This equation represents a circle in the $\psi-\theta$ plane whicl will be referred to as the equilibrium-state circle.

Combining equations (47) and (48) gives

$$
\begin{equation*}
\psi_{c}^{2}+\left(\theta_{c}+\frac{M_{o}}{2 T}\right)^{2}=\left(\frac{M_{o}}{2 T}\right)^{2} \tag{52}
\end{equation*}
$$

This circle describes the path traversed by the center of the equilibrium-state circle while the moment is applied and will be referred to as the center circle.

Th se are two important differences between the cisturbed-state circle and the center circle despi e the identical forms of equations (is1) and (52). First, equation (51) is an approximation based on the assumption that $\sigma \ll 1$, whereas equation (52) holds for any value of σ consistent with the analysis. Second, the period associated with the disturbed-state circle is different from that of the center circle. Specifically, if P_{c} is the period of the center circle and $P_{d s}$ is the period of the disturbed-state circle, then

$$
\begin{equation*}
P_{c}=\sigma I_{d s} \tag{53}
\end{equation*}
$$

and $\mathrm{f} r$ small values of σ, the center of the possible equilibrium-state circle is moving very fast comparec with the actual motion during the dist urbed state

Thase points are illustrated in figure 4. The distu bed-state and center-circle curves are denotec by S_{0}. Point D corresponds to point A of figtre 2. Points C_{1} and C_{2} represent two possible positions which the center of the equilibriumstate circle could have if the moment were removed when the motion trace was at point D. The correspondence between D points and C point; is not unique; that is to say, the C corresponding to a specific point D of the disturbedstate circle may be different cach time the dis-turbed-state circle is traversed. To illustrate, two a points have been drawn. Point C_{1} could

Figure: 4.-Variation of equilibrium-state motions, curves; S_{1} and S_{2}, with variation of the disturbance duration.
correspond to D at some time $\tau=t_{1}$, whereas at some other time $\tau=t_{2}$ the corresponding point might be C_{2}. Also, the point C moves much faster than the point D so that (might be considered to move from C_{1} to C_{2} while D) hardly moves at all. ('omparison of equilibrium-state circles S_{1} and S_{2} shows that the position and radius of the equilibrium-state cirele depend strongly on the time when the moment is removed. Specifically, if the spin axis is very nearly alined with the total angular momentum vector when the moment is removed, the residual motions will be small. Conversely, if the alinement is poor, the residual motions will be large. Thus, figure 3 shows one case ($\tau_{1}=5.004$) where the alinement of the spin axis with the angular momentum vector is relatively poor when the disturbance is removed, and a second case ($\tau_{2}=5.044$) where the alinement is relatively good.

A measure of the misalinement of the spin axis with the angular momentum vector \vec{H} can be obtained by considering η, the ratio of the magnitude of the component of \vec{I} normal to the spin axis to the magnitude of the component of $\overrightarrow{I I}$
along the spin axis. In the principal body-axis coordinate system the angular momentum vector is given by

$$
\begin{equation*}
\vec{I}=\hat{i} I_{x} p_{o}+\hat{j} I_{u} q+\hat{k} I_{z} r \tag{54}
\end{equation*}
$$

so that

$$
\begin{equation*}
\eta=\frac{\left|\hat{j} I_{u} q+\hat{k} I_{z} r\right|}{\left|\hat{i} I_{x} p_{u}\right|} \tag{55}
\end{equation*}
$$

Evaluating η at $t=\tau$ for the case of the rectangu-lar-pulse disturbance and $I_{y}=I_{z}=I$ gives

$$
\begin{equation*}
\eta=\frac{M_{o}}{I_{x} p_{o} \omega} \sqrt{2(1-\cos \omega \tau)}=\frac{M^{*} \alpha}{T} \tag{56}
\end{equation*}
$$

The period of η is the period of the transverse momentum and is given by

$$
\begin{equation*}
I_{H T}^{\prime}=\frac{2 \pi}{\omega} \tag{57}
\end{equation*}
$$

Effect of inertia distribution.-For $I_{y} \neq I_{z}$, equations (31), (32), (35), and (36) show that the solutions for θ and ψ contain three oscillatory terms while the moment is applied, and two oscillatory terms after the moment is removed. For $I_{y}=I_{2}$, equations (41), (42), and (43) show that the solutions for θ and ψ contain two oscillatory terms while the moment is applied and one oscillatory term after the moment is removed. Obviously then, an asymmetrical inertia distribution gives rise 10 an additional oscillatory term in both the disturbed and equilibrium states.

For the case where $I_{y}=I_{2}$, the parameter σ is important. As σ approaches zero, one of the oscillatory terms in the disturbed state becomes relatively insignificant, whereas if σ approaches 2 , the same term becomes the predominant one.

Another effect of σ is in the value of M^{*}. The term M^{*} aan be thought of as an "apparent moment" since it differs from M_{o} through the definition (eq. (44)):

$$
M^{*}=\frac{M_{o}}{2|1-\sigma|}
$$

For $\frac{1}{2}<\sigma<\frac{3}{2}, M^{*}>M_{o}$. For cither $\sigma<\frac{1}{2}$ or $\sigma>\frac{3}{2}$,
$M^{*}<M_{o}$. Depending on the value of σ, the applied moment may in effect be increased, decreased, or unchanged.

Maximum angular deflection in the $\psi-\theta$ plane.-For small deflections, the angular displacement of the spin axis from the reference axis is given by δ, where δ is defined as

$$
\begin{equation*}
\delta \equiv \sqrt{\psi^{2}+\theta^{2}} \tag{58}
\end{equation*}
$$

The maximum deflections will oceur when the center of the equilibrium-state circle is as far away from the origin as possible and the radius of the equilibrium-state circle has the maximum value. From equations (43) and (46) it is seen that the radius of the equilibrium-state cirele is greatest when $\alpha=2$ or when

$$
\begin{equation*}
\frac{M^{*} \alpha}{T}=\frac{M_{o}}{T|1-\sigma|} \tag{59}
\end{equation*}
$$

The center of the equilibrium-state circle, a point on the S_{0} curve in figure 4 , is farthest from the origin when

$$
\psi_{c}=0
$$

and

$$
\theta_{r}=-\frac{M_{0}}{T}
$$

By considering figure 4 it is seen that
$\delta_{\max }=$ (Diameter of center circle)

+ (Maximum radius of equilibrium-state circle)
or

$$
\begin{equation*}
\delta_{\max }=\frac{M_{o}}{T}+\frac{M_{o}}{T \left\lvert\, \frac{1-\sigma \mid}{}\right.}=\frac{M_{0} 1+|1-\sigma|}{T} \frac{1-\sigma \mid}{\mid 1-\sigma} \tag{60}
\end{equation*}
$$

which for $\sigma<1$ is

$$
\begin{equation*}
\delta_{m a x}=\frac{M_{o} 2-\sigma}{T} \frac{1-\sigma}{1-\sigma} \tag{61}
\end{equation*}
$$

and for $\sigma>1$ is

$$
\begin{equation*}
\delta_{\max }=\frac{M_{o} \sigma}{T \sigma-1} \tag{62}
\end{equation*}
$$

A plot of $\frac{T \delta_{\text {max }}}{M_{o}}$ against σ is shown in figure 5 . If σ and M_{0} are known, this plot shows the spin kinetie energy required to keep the maximum angular displacement in the equilibrium state below any preassigned value of $\delta_{\max }$. The figure also shows that for efficient spin stabilization a body should have a configuration such that cither

Figure $\mathrm{E}^{-\quad \text { Chart for determining the required spin }}$ kinetic energy or the maximum angular deflection in the equilibrimu state for a spin-stabilized space vehicle.
σ approaches 0 or σ upproaches 2 .

ARTIFICIAL DAMPING

The foregoing discussion shows that the motion of a symmetrical spin-stabilized body in space, subjected to a constant pitching moment in the body-axis system, is doubly periodic. One mode of oseillation is the natural mode; the other is due to the forcing function. The significance of eitier mode relative to the other is governed by the inertia ratio σ. After the moment is remored, the residual motion consists of the natural mode of oscillation only. Since damping a dynamic system generally ascribes a transient nature to the natural modes of oscillation, it seems reasonable to assume that augmenting spin stabil zation with artificial damping should result in having no residual oseillation in the equilibrium state. The remaining question is: How does the additon ol artificial damping affect the motion while the moment is applied? This question will now be answered for the ease of a body spinning about an axis of symmetry with a partio ular type of artificial damping.

Fo simplicity, the disturbance considered is a constant pitching moment in the body-axis system, and the damping is regarded as the result of a pefect proportional control system. Other types of damping have been considered in studies such is reference 6 .

From equations (15) and (16) it can be seen that artifi ial damping can be introduced by adding any one, or a combination, of the following control moments: (1) pitching moment proportional to q, (2) rawing moment proportional to r, (3)
pitching moment proportional to \dot{r}, and (4) yawing moment proportional to \dot{q}. Adding a combination of these controls simply complicates the analysis without appreciably changing the physical properties of the problem. The case chosen to illustrate artificial damping is as follows:

$$
\begin{gathered}
I_{y}=I_{z}=I \\
M_{y}=M_{y}+M_{k} \\
M_{k}= \pm K i \\
M_{z}=M_{z}=0
\end{gathered}
$$

at $t=0, q=r=\phi=\theta=\psi=0$, and $p=p_{g}$. With these conditions the Laplace transformations of equations (8) and (9) are

$$
\begin{gather*}
s \bar{q}-\left(\pm \frac{K}{I} \& \pm \omega\right) \bar{r}=\frac{M_{o}}{I s} \tag{6:3}\\
\pm \omega \bar{q}+s \bar{r}=0 \tag{64}
\end{gather*}
$$

The \pm sign is used since $\omega=p_{0}|1-\sigma|$, whereas in equations (8) and (9) $a=b=p_{o}(1-\sigma)$. The characteristic equation is

$$
\begin{equation*}
s^{2}+2 \zeta \omega,+\omega^{2}=0 \tag{65}
\end{equation*}
$$

where ζ is the damping ratio and is given by

$$
\begin{equation*}
\zeta \equiv \frac{K}{2 I} \tag{66}
\end{equation*}
$$

Solving equations (63) and (64) for q and r gives

$$
\begin{gather*}
q=\frac{M_{o}}{I \omega_{d}} e^{-\zeta \omega t} \sin \omega_{d} t \tag{67}\\
r=-\frac{M_{o}}{I \omega}\left[1-\frac{e^{-\zeta \omega t}}{\sqrt{1-\zeta^{2}}} \sin \left(\omega_{d} t+\beta\right)\right] \tag{6N}
\end{gather*}
$$

where

$$
\omega_{d}=\omega \sqrt{1-\zeta^{2}}
$$

and

$$
\beta=\tan ^{-1} \frac{\sqrt{1-\zeta^{2}}}{\zeta}
$$

Now define:

$$
\begin{equation*}
\dot{w} \equiv \dot{\psi}+i \dot{\theta} \tag{69}
\end{equation*}
$$

where

$$
i^{2}=-1
$$

From equations (13) and (14),

$$
\begin{equation*}
\dot{w}=e^{-i \phi}(r+i q) \tag{70}
\end{equation*}
$$

By writing q and r in terms of complex exponentials and making the appropriate substitutions, equation (70) can be easily integrated. Integrating equation (70) in this manner and dropping transient terms to obtain the steady-state solution for the disturbed-state motion gives

$$
\begin{align*}
w_{s,}= & \frac{i M_{0}}{I p_{o} \omega}\left[\left(1-e^{-i p_{0} t}\right)\right. \\
& \left.-\frac{\sigma(2-\sigma)^{2}+4 \zeta^{2}(1-\sigma)^{2}+2 i \zeta(1-\sigma)^{2}(2-\sigma)}{\sigma^{2}(2-\sigma)^{2}+4 \zeta^{2}(1-\sigma)^{2}}\right] \tag{71}
\end{align*}
$$

Since, by definition.

$$
\psi_{s s}=\mathrm{R} . \mathrm{P} \cdot w_{s s}
$$

and

$$
\theta_{s s}=\mathrm{J} . \mathrm{P} . w_{s s}
$$

the steady-state motion of the disturbed state with the damping is the circle in the real $\psi-\theta$ plane which is described by the expression

$$
\begin{align*}
& {\left[\psi_{s k}-\frac{\sigma M^{*}}{T} \frac{2 \zeta(1-\sigma)^{2}(2-\sigma)}{\sigma^{2}(2-\sigma)^{2}+4 \zeta^{2}(1-\sigma)^{2}}\right]^{2}} \\
& \quad+\left[\theta_{s s}+\frac{\sigma M^{*}}{T} \frac{\sigma(1-\sigma)(2-\sigma)^{2}}{\sigma^{2}(2-\sigma)^{2}+4 \zeta^{2}(1-\sigma)^{2}}\right]^{2}=\left(\frac{\sigma M^{*}}{T}\right)^{2} \tag{72}
\end{align*}
$$

If $\sigma \ll 1$, equation (72) reduces to

$$
\begin{equation*}
\left(\psi_{s s}=\frac{M^{*}}{T^{\top}} \frac{\sigma \zeta}{\sigma^{2}+\zeta^{2}}\right)^{2}+\left(\theta_{s s}+\frac{M^{*}}{T^{-}} \frac{\sigma^{2}}{\sigma^{2}+\zeta^{2}}\right)^{2}=\left(\frac{\sigma M^{*}}{T}\right)^{2} \tag{73}
\end{equation*}
$$

(Comparison of equations (73) and (51) shows that the ratio of the radius of the stendy-state dis-tubed-state circle (for the case with damping) to the radius of the disturbed-state circle (for the (ase without damping) is just σ, which by hypothesis is negligible compared with unity. Tt seems appropriate to point out that, as σ becomes very small, for constant spin energy either ρ_{0} or I must. become very large.

If σ approaches 2 , equation (72) reduces to

$$
\begin{equation*}
\psi_{\mathrm{ss}}{ }^{2}+\theta_{s s}{ }^{2}=\left(\frac{M_{n}}{T}\right)^{2} \tag{74}
\end{equation*}
$$

Equations (72), (73), and (74) show that for σ approaching 0 the radius of the disturbed-state circle approaches zero; for σ approaching 1 the radius upproaches infinity; for σ approaching 2 the radius approaches M_{o} / T. Therefore, this analysis indicates that the type of artificial damping considered herein is more advantageous for pencillike configurations than for disk-like configurations.

It should be pointed out that in cases where rotational energy is lost and angular momentum is conserved, the axis of maximum moment of inertia is the stable spin axis. The reader who is not familiar with this property of spimning bodies is referred to reference 7 .

CONCLUSIONS

A theoretienl study was made of the angular motions of spinning bodies in space. Only spinstabilized vehicles with constant moments of inertia were considered. The basie equations of
motion were linearized and simple expressions were obtained which relate angular motions to spin-rate and inertia distributions for a given disturbance. The analysis indicated the following conclusions:

1. The angular motions were sensitive to inertia distribution.
2. In considering a reetangular-pulse pitching moment, it was found that the residual motion was very sensitive to the time at which the moment was removed.
3. Artificial damping which results from a perfect proportional-control system seems to be more advantageous for pencil-like configurations than for clisk-like configurations.
4. Analytical expressions were in good agreement with machine solutions of the exact equations over the region of interest.
[^0]
APPENDIX

DERIVATION OF ALTERNATE EXPRESSIONS FOR θ AND ψ

This appendix is devoted to obtaining general expressions for θ and ψ when the disturbance is any arbitrary pitching and/or yawing moment. The conditions imposed are:

1. At $t=0$,

$$
q=r=\theta=\psi=\phi=0
$$

2. M_{y} and M_{z}, the pitching and yawing moments, respectively, are differentiable functions of time given by $M_{y}=M_{y}(t)$ and $M_{2}=M_{z}(t)$.
The assumptions are:
3. The spin rate is constant $\left(p=p_{o}\right)$.
4. $\cos \theta \approx 1$ and $\sin \theta \approx \theta$.
5. The product $\dot{\psi} \theta$ is negligible compared with the spin rate p.

Solving equations (8) and (9) for the transfer functions of q and r gives

$$
\begin{aligned}
& \frac{\bar{q}}{\bar{M}_{y}}=\frac{s}{I_{y}\left(s^{2}+\Omega^{2}\right)} \\
& \frac{q}{\bar{M}_{z}}=\frac{a}{I_{z}} \frac{1}{s^{2}+\Omega^{2}} \\
& \frac{\bar{r}}{\bar{M}_{z}}=\frac{s}{I_{z}\left(s^{2}+\Omega^{2}\right)} \\
& \frac{\bar{r}}{\bar{M}_{y}}=-\frac{b}{\bar{I}_{y} s^{2}+\Omega^{2}}
\end{aligned}
$$

where

$$
\Omega^{2}=a b
$$

Now take M_{y} and M_{z} to be unit step inputs and define the responses of q to M_{y} and M_{z} as $q_{m}(t)$ and $q_{n}(t)$, respectively. Define the responses of r to M_{u} and M_{z} as $r_{m}(t)$ and $r_{n}(t)$, respectively. This procedure yields

$$
q_{m}(t)=\frac{1}{I_{\nu} \Omega} \sin \Omega t
$$

$$
\begin{gathered}
q_{n}(t)=\frac{1}{I_{z} b}(1-\cos \Omega t) \\
r_{m}(t)=-\frac{1}{I_{u} a}(1-\cos \Omega t) \\
r_{n}(t)=\frac{1}{I_{z} \Omega} \sin \Omega t
\end{gathered}
$$

Now q and r can be written as functions of any arbitrary (differentiable) functions $M_{y}(t)$ and $M_{z}(t)$ by using Duhamel integrals. Since $\phi=$ $p_{0} t$, the appropriate substitutions can be made and equations (13) and (14) can be integrated to.give:

$$
\begin{aligned}
\theta= & \int_{0}^{t}\left(\operatorname { c o s } p _ { 0 } \xi \left\{q_{m}(\xi) M_{y}(0)+q_{n}(\xi) M_{z}(0)\right.\right. \\
& \left.+\int_{0}^{\xi}\left[q_{m}(\xi-\lambda) M_{y}^{\prime}(\lambda)+q_{n}(\xi-\lambda) M_{z}^{\prime}(\lambda)\right] d \lambda\right\} \\
& -\sin p_{n} \xi\left\{r_{m}(\xi) M_{y}(0)+r_{n}(\xi) M_{z}(0)\right. \\
& \left.\left.+\int_{0}^{\xi}\left[r_{m}(\xi-\lambda) M_{y}^{\prime}(\lambda)+r_{n}(\xi-\lambda) M_{z}^{\prime}(\lambda)\right] d \lambda\right\}\right) d \xi \\
\psi= & \int_{0}^{t}\left(\operatorname { s i n } p _ { v } \xi \left\{q_{m}(\xi) M_{y}(0)+q_{n}(\xi) M_{z}(0)\right.\right. \\
& \left.+\int_{0}^{\xi}\left[q_{m}(\xi-\lambda) M_{y}^{\prime}(\lambda)+q_{n}(\xi-\lambda) M_{z}^{\prime}(\lambda)\right] d \lambda\right\} \\
& +\cos p_{0} \xi\left\{r_{m}(\xi) M_{y}(0)+r_{n}(\xi) M_{z}(0)\right. \\
& \left.\left.+\int_{0}^{\xi}\left[r_{m}(\xi-\lambda) M_{y}^{\prime}(\lambda)+r_{n}(\xi-\lambda) M_{z}^{\prime}(\lambda)\right] d \lambda\right\}\right) d \xi
\end{aligned}
$$

where ξ and λ are dummy variables of integration and primes denote differentiation with respect to λ.

REFERENCES

1. Vinti, John P.: Theory of the Spin of a Conducting Satellite in the Magnetic Field of the Earth. Rep. No. 1020, Batlistic Res. Labs., Aberdeen Proving (iround, July 1957.
2. Jarmolow, Fenneth: Bynamies of a Spinning Rocket With Varying Inertiat and Applied Moment. Jour. Appl. Phys.. vol. 28, no. 3, Mar. 1957, pp. 308-313.
3. Nicolatese, John D.: On the Free Flight Motion of Missiles Having Slight Configurational Asymmetries. Rep. No. 858, Ballistic Res. Iaths., Aberdeen Proving (iround, June 195:3.
4. Becher, Robert A.: Introduction to Theoretical Meehanie: MeGraw-Hill Book (o., Inc., 1954, pp. 291-297.
5. Whitaker, L. T.: A Treatise on the Analytical Isyamies of Particles and lagid Bodies. Fourth ed., I oover P blications (New York), 1944.
6. Perlel, Harold: Spatee Vehicle Attitude l'roblems. A lvances in Astronatutical seiences. Proc. of the Ffth Annual Meeting, AAS—Nov. 1958. Plenum Press (New York), 1959, pp. 173-192.
7. Page, Leigh: Introduction to Theoretical Plyysies. Second ed., 1). Van Nostrand Co., Ine., 1935.

[^0]: Langley Research Center,
 Na ional Aeronautics and Space Administration,
 Lingley Fiflin, Va., June 21, 1960.

