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TECHNICAL REPORT R-83

A THEORETICAL STUDY OF THE ANGULAR MOTIONS OF SPINNING
BODIES IN SPACE

By Jerroup H. StppaTH

SUMMARY

A theoretical study was made of the angular
motions of spinning bodies in space.  The analysis
was based on Iuler's dynamic equations which were
binearized and solved analytically.  The results of
the study are directly applicable only to spin-stabilized
vehicles with constant moments of tnertia and anguiar
displacements  not  ereceding about 15°.  Simple
analytical erpressions were obtained which relate
angular motions to spin-rate and tnertia distributions
for a given disturbance. Consideration was given to
the effects produced by having artificial damping in
the system.  The study ineluded numerical examples
and comparisons of analytical solutions with machine
solutions of exact dynamic equations,

The analysis indicated that angular motions are
senxitive to inertia distribution.  In considering a
rectangular-pulse pitching moment, it was found that
the restdual motion was very sensitive to the time at
which the moment was removed.  Artifictal damping
due to a perfect proportional control system seemed to
be more advantageous to pencil-like configurations
than to disk-like configurations.

INTRODUCTION

Observations made in  connection with the
Explorer and Vanguard satellite programs showed
that several of the vehicles experienced large
angular motions despite the fact that thev were
spin-stabilized. The various factors which enn
contribute to such motions have been considered
in detuiled studies exemplified by references 1 to 3.
However, a general knowledge of the fundamental
principles of spin stubilization is not readily
obtained by considering such specialized studies.

In an effort to obtain an insight into the general
problem of spin stabilization, a theoretical study

was conducted.  Emphasis was placed on isolating
the basic parameters and qualitatively investi-
gating their influence on the problem. In order
to investigute the angular motions produced by
torques acting on a spinning body with constant
moments of inertin, Euler’s dynamic equations
were linearized and solved analvtically.  In linear-
izing the equations it was necessary to assume
that the spin rate was constant and that the
angular deflections of the spin axis from a refer-
ence axis would never exceed about 15°.  Numer-
ical examples were used to compare the analytical
solutions with machine solutions ol the exact
equations of motion.

SYMBOLS
I.—1, .
a=p, ,;T_I » radians/sec
v
I,—1 .
b=p, f"[ %, radians/sec
2

‘ M,
== Per sece
2P

M, i
d:P:(—lz—:ft)y per sec
-
H angular-momentum vector, slug-ft?/
sec
11,1, moments of inertia about the princi-

pal body =z, y-, and z-axis,
respectively, slug-fi?
I transverse moment of inertia when

=1, slug-ft?

i imaginary number, y-1

7,7,k unit vectors along the principal
body -, -, and z-axis, respectively

K control sensitivity, slug-ft*
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L7} inverse Laplace transformation k control

M, magnitude of disturbance moment,  m response to unit step pitching
ft-1b moment

M M, M, volling, pitching, and yawing mo- = response to unit step yawing moment
ment, respectively, in the principal o initial value
body-axis coordinate system, {t-lb steady state

T 1,2 vulues of time Interval
M*——"  ft-lb A bar over a symbol indicates the Laplace
21—l transformation. Dots over symbols indicate dif-
r period, sece ferentiation with respect to time. A primed
Do, angular velocities about the principal  symbol indicates differentiation with respect to A.
body -, y-, a.nd z—uxi.s, respectively ANALYSIS
8 Laplace transform variable, per sec

The analysis is based on Euler’s dynamic

e 1 \ equa.ions, which are given in reference 4. Figure
T spin kinetie energy, & Ip,?, {t-1b . ’ = .
I &Y, g laley 1 illustrates the coordinate system used, with ,
. y. anid z representing a set of principal body fixed
t time, sec A . . . .
. . axes and X, Y, and Z representing a set of inertial
w complex variable, y--18 ' : . .
SN . . . . axes. The orientation of the body is related to
X, Y, Z inertial-axis coordinates X . .
o . . the iaertial axes through the Euler angles shown
2,2 prineipal body-axis coordinates as ¥, 6, and ¢ in figure 1.
[ wr| From figure 2, the significance of considering a
- () " \ . . \ . \ . . . - .
a=— < S 7 — 6 plane in discussing the motion of a spinning

body can be seen.  If the length of OA is unity,
then AB=xsin 8 and BC=cous 8 sin . For small
values of 8 and ¢, AB =8 and B('=y so that the
coordinates of a point on the trace of the motion

i} phase angle, tan

S nar maximum angular defleetion of spin
axis from reference axis, radians

¢ ratio of actual damping to critical
damping

] ratio of magnitudes of angular-

monentum vecelor components,

iLat kL
li]rp,,‘
8,0,y Euler angles, radians
N & dummy variables of integration, sec
. . A
¢ ratio of moments of inertia, 7
T time interval, sec
Q natural frequency defined by Vab,
radians/sec
w natural frequency when f,=1,, de-
fined by p,l1—¢|, radians/sec
Subscripts:
¢ center Ficure 1.—Orientation of z, y, and z body axes relative
. to X, Y, and Z inertial axes. The relationship is
ds disturbed state I

described by the Euler angles ¢, 8, and ¢. Positive
d damped ser:se of angular rates about body axes is shown as p,
HT transverse momentum g, wnd 7.

'
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Trace of the motion-._

¥ - 8 plane

Ficure 2.-—DMlotion trace in y—~6 plane.

are closely approximated by (¢, 6).
EQUATIONS OF MOTION

Basic nonlinear equations of motion.—The anal-
ysis is restricted to cases with no coupling from the
force to the moment equations. The basic equa-
tions to be used are the moment equations in the
principal body axes

Lg+(,—1,)pr=>»M, (2)
[zi"f"([)/_]z)]'q:i‘lz (3)

and the Euler angular rate equations

p=pt+y sin § 4)
f=gq cos ¢p—r sin ¢ (5)
.7 Cos d)—f—rq”ﬂl}_;()
¥= cos 8 (6)

Under various assumptions analytical solutions to
these nonlinear expressions have been obtained.
For example, the motion of a torque-free body is
discussed in reference 5.

Linearized equations of motion.—To consider
the motion with a torque present, the equations
are linearized and solved analytically. The uas-
sumptions employed in linearizing the ecquations
are as follows:

1. There is no rolling moment and the spin rate
is constant, say p=7,.

2. The angle 8 is small so that cos =1 and
sin §~4.

3. The product ¥6 is small compared with the
spin rate p and may be neglected in equation (4).

Under these assumptions, equations (1) to (6)
reduce to the following forms:

P=" (7)
. M, ,
gar=- (8)
bqw:i% (9)
where
_plli—1y)
a= I, (10)
and
=1
b=L (11)
o=pol+e, (12)
f=q cos p—r sin ¢ (13)
Y=r cos ¢-+¢q sin ¢ (14)

GENERAL SOLUTIONS

Solutions for ¢ und r as funetions of time can be
obtained from equations (8) and (9) when M, and
M, are known functions of time. These solutions,
along with the expression for ¢ given in equation
(12), can be substituted into the equations for
6 and ¢ which can then be integrated directly to
give # and ¢ as functions of time.

The Laplace transformations of equations (8)
and (9) are

sq— a7=3—[q+ 7. (15)
1y
b F= o, (16)
Solving equations (15) and (16) for § and 7 gives

g:@ﬁf!y‘lf),),IZ'“+ (M A1) (17)

L

1,1,(s*Fab)
72_(:—— L) L — (M 1ig,) L (1%)
1, .(s*+ab) -
The characteristic equation of the system 1s
s?+ab=0 (19)
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so that a necessary condition for nondivergent
solutions for ¢ and » is

ab>0 (208)
or
poI =1, —1)
P >0 (20b)

This relationship defines the stability criteria as
follows:

1. When 7, is the intermediate moment of in-
ertia, that is, I,<1.<1, or I.<I,<[I,, then a¢b<{0
and there is a positive real root of equation (19)
which corresponds to instability.

2. When [, is the greatest or smallest moment
of inertin, thatis, /,<I,, I, or I,>>1,,1,, then ab >0
and the system has an undamped oscillation with
a [requency of yab.

3. When I, is cqual to either or both 7, and 1,
the system has neutral stability.

Since ¢=L7'{7} and r=L"{7F},
solutions for 6 and ¢ are

the general

t
o= [ 11T cos (nt+a)
) — LT} sin (p,t+e)dt+6, (21)

y— f LT cos (pot+ o)
LLHT) sin (et d0)ldtbve (22)

These solutions depend on the existence of the
Laplace transformations of the disturbing mo-
ments M, and A,. In the appendix, solutions
for 6 und ¢ are presented in terms of Duhamel
integrals; thus, the solutions depend on the dif-
ferentiability of M, and M,. The form of the
disturbanee should make it apparent which solu-
tions are more applicable to a specific problem.

DISCUSSION

CASE OF A RECTANGULAR-PULSE PITCHING MOMENT IN
BODY-AXIS SYSTEM

Solution of the linearized equations for a partic-
ular disturbance. -As an example, consider the
case where the vehiele is disturbed by a pitching
moment in the body-axis coordinate system. let
the pitching moment be a rectangular pulse de-
fined by

M, =M, 0=t
v ( <T) (23)
M,=0 (t=z7)
and let M,=)/,=0. Impose the condition that

cither I.<I, I, or I,>1,1I,. For
take the mitial conditions to be
p0)=
QO:’.0:002¢02¢0:0
The Laplace transformation of the disturbing
moment is

convenience

7, Ml =) o1
From equation (17),
"._‘7\/["(1:,6 o f) =
Y=T (2T ab) (25)
From equation (18),
o M)
"= Ls(s*+ab) (26)
Now lefine
QE\J"&% (27)

Then

:Qﬁ [sin Qf—u(t—r)sin Q(t—r)] (28)

1,0
r= —%ﬁ {1—cos Qt—u{t—r7)[l—cos Q(t—1)]}
(29)
where
u(t—r)=0 (t<7) .
w(t—ry=1  (tz7) (30)

By muking the appropriate substitutions into
equations (21) and (22) and integrating to some
t< 7, oxpressions are obtained for 6 and ¢ when
the disturbance is present.  These expressions
are:
c+d

—cos(p,+ Q)t]— 2 p—0) )[1

9)z1+}7 (1—eos p,t) (31)

—d
=2t @

—“305(270_

1
Y= 9(/)+( )sm (po—t— +Q)sm(pa—{-9)t

~—l% sin p,t (32)
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where
n'[o o
c= 7.0 (33)
and
M
j—— o 34
RN ) (34)

To obtain expressions for # and ¢ after the mo-
ment is removed, equations (21) and (22) are
integrated from ¢=17 to some t>7, which gives:

c—d

=gl m—~’{\m|:(p +Q)t—— ]
. Q . Qr .
—sm(1)0—#2)7}4—))'0_»9}5‘11 o sml:(p,,

5 }+0(‘r (35)

U= 71%“ 11’{(0%[(1} +Q)f— —I_‘0*<1’<'
4 g)T} 27 {(‘OHI:(])"_Q)t
+g—221:|—cos<[),,—§~>‘r}+‘/f(ﬂ (36)

Equations (35) and (36) have been checked for
several cases against solutions of the nonlinear
equations (egs. (1) to (6)) made on the IBM 704
electronic data processing machine and have been
found to be in good agreement. This fact is
illustrated in figure 3, where solutions based on the
data of table I are plotted.

In the case where r=7,=>5.004, the curve begins
at the origin and looks like a little more than half
a circle whose center would be at about (0, —8).
The moment is removed and the residual motion is
represented by the curve which looks like a
relatively large cirele with center at about (3, —1).
In the case where 7= 7,=15.044, the residual motion
18 represented by the curve which looks like a
relatively small civcle with center at about (—1.5,
—15.5). These examples were selected from a
number of cases, and were chosen to illustrate the
sensitivity of the residual motion to the value of 7.

The large differences in the behavior of these
examples for small changes in duration of torque

—Q)H—~~ —-\m

c—i—d
](,—SZ

20 ~I1BM solutien
.-, Analytical solution

_20 -

_24| l L | ! ! ) I
-20 -6 -2 -8 -4 0 4 8 12 16 20
v, deg

Fiaure 3.—Comparison of analytical results with TBM
solutions of general equations of motion for two cases.

TABLE I
VALUES OF PARAMETERS USED FOR
NUMERICAL ENAMPLES

Jooslug-ft2 _______ __ L _ Lo o..- 0038
I, <lug-ft2____ __ . oo .. 4.0
I, stug-ft2______ ___ . ___ - .. 4, 2
Myft-lb___ . e - 0
M, ft-lb___________ e . - 30
M, ft-lb__ - - - I _ 0
PorSCCTV___ - e - 24x
T SCC_ ... 5. 004
Ta SCC__ ... 5. 044

result from having a change in torque duration
approximately equal to one-half the period of the
transverse momentum oscillation.  In these cases,
this oscillation had a period of approximateiy
0.08 sccond.

The physical significance of the various param-
elers of the problem is not obvious from equa-
tions (31), (32), (35), and (36). These equations
reduce to a more understandable form when the

special case of I,=1,—=1 is considered. IFrom
equations (10) and (11),
a:b:p"(«[il_lfé p(1—0) (37)
where
szjf (38)
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From equation (27),
Q=p,|1 —o|=w (39)

From equations (33) and (34),

c= l~7; (40)

Making the appropriate substitutions into equa-
ttons (31) and (32) gives

3
0= M [cos ap,t—1+a(l—cos p,t)|  (t<7) (41)

1‘
AM* .
Y= N (sin op,t—a sin p,t) (<) (42)

Equations (35) and (36) reduce and combine

to give
W—por+ (01— “)

(t>7)  (43)

where
A,
* 0
M S1—o] (44)
1
[’:‘; ]_21)02 (45)
|
az?[sin a::—{ (46)
Y= ‘; SIN p,r (47)
0(:‘%;[[3 (cos p,r—1) (48)

Another simplification can be made which leads
to a simple deseription of motions of the type
shown in figure 3. Consider cquations (41) and
(42) for the case where o<<1. Then

8 z%!]‘: (cos opt—1) (t<1) (49)

(t<r) (50)

ybz:ﬁ, siN @ p,t

which combine to give

v+(oriy=(30)  e<mec< G

Equa ion (51) represents a circele in the ¢ —6 plane
which approximates the motion while the moment
is apr lied and will be referred to as the disturbed-
state rircle.

The equation which deseribes the motion after
the moment is removed (eq. (43)) is repeated:

M*a\?
(‘/’—‘I’C)Q_{"(e—‘oc)?: 71{?) ({>T)
This equation represents a circle in the ¢—8 plane
whicl: will be referred to as the equilibrium-state
cirele.
Combining equations (47) and (48) gives

MN: (M
¢c2+(ec+2T - §’T>

This cirele deseribes the path traversed by the
center of the equilibrium-state cirele while the
moment is applied and will be referred to as the
center cirele.

Th e are two important differences between
the cisturbed-state circle and the center ecircle
despi e the identical forms of equations (51) and
(52). First, equation (51) is an approximation
based on the assumption that ¢<<1, whereas
equation (52) holds for any value of ¢ consistent
with the analysis.  Second, the period associated
with the disturbed-state cirele is different from
that of the center cirele.  Specifically, if I’ is the
period of the center cirele and /%, is the period of
the disturbed-state cirele, then

(52)

])c:UI)ds (53)

and { small values of ¢, the center of the possible
equilibrium-state cirele is moving very fast com-
parec with the actual motion during the disturbed
state

Thse points are illustrated in figure 4. The
distu-bed-state und center-cirele curves are de-
notec by S;. Point D corresponds to point A
of fignre 2. Points (!; and (; represent two possi-
ble positions which the center of the equilibrium-
state cirele could have if the moment were re-
moved when the motion trace was at point D.
The correspondence between D points and C
points is not unique; that is to say, the C corre-
sponding to a specific point D of the disturbed-
state circle may be different each time the dis-
turbed-state circle is traversed. To illustrate,
two ¢ points have been drawn. Point C; could
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S RN

.-~ Disturbed - state
and center circle

--~Equilbriun - state
. circles

My

le—
2r

—

Frcure 4.—Variation of equilibrium-stute motions, curves
S and S, with variation of the disturbance duration.

correspond to D at some time 7=#;, whereas at
some other time =i, the corresponding point
might be C,. Also, the point (! moves much
faster than the point D so that (' might be con-
sidered to move from €, to C, while D hardly
moves at all. Comparison of equilibrium-state
circles S, and 8, shows that the position and
radius of the equilibrium-state circle depend
strongly on the time when the moment is re-
moved.  Specifically, if the spin axis is very
nearly alined with the total angular momen-
tum vector when the moment is removed, the
residual motions will be small. Conversely, if
the alinement is poor, the residual motions will
be large. Thus, figure 3 shows one case (r,=>5.004)
where the alinement of the spin axis with the
angular momentum vector is relatively poor
when the disturbance is removed, and a second
case (r3==5.044) where the alinement is relatively
good.

A measure of the misalinement of the spin axis

iR

with the angular momentum vector 77 can be

obtained by considering 7, the ratio of the mag-
-

nitude of the component of 77 normal to the spin

N
axis to the magnitude of the component of 77

along the spin axis. In the principal body-axis
coordinate system the angular momentum vector
1s given by

H=lp 4 g+ M (54)

so that

n:i.;lﬂq_*“lg!ﬂ:
i1,

Evaluating » at =17 for the case of the rectangu-
lar-pulse disturbance and I,=1,=1 gives

M*a

T

M,
n_II])ow

~2(1 —cos wr) = (56)

The period of 5 is the period of the transverse
momentum and is given by

])Hrzzir (57)
w

Effect of inertia distribution.—For 7,5 7,, equa-
tions (31), (32), (35), and (36) show that the solu-
tions for ¢ and ¢ contain three oscillatory terms
while the moment is applied, and two oscillatory
terms after the moment is removed. For 1,=1,,
equations (41), (42), and (43) show that the solu-
tions for 8 and ¢ contain two oscillatory terms
while the moment is applied and one oscillatory
term after the moment is removed. Obviously
then, an asymmetrical inertia distribution gives
rise 1o an additional oseillatory term in both the
disturbed and equilibrium states.

For the ease where I,=1,, the parameter o is
important. As ¢ approaches zero, one of the
oscillatory terms in the disturbed state becomes
relatively insignificant, whereas if ¢ approaches
2, the same term becomes the predominant one.

Another effect of ¢ is in the value of A*. The
term Af* can be thought of as an “apparent
moment” since it differs from A, through the
definition (eq. (44)):

M,

T 2[1—d]

A+
A1 31 - 1 3
1*01‘5 Lo M*>M,. For cither 65 o0r o>

'6}
M*<M,. Depending on the value of o, the applied
moment may in effect be increased, decreased,
or unchanged.



8 TECHNICAL REPORT R—83--NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Maximum angular deflection in the ¢—¢
plane.—For small deflections, the angular dis-
placement of the spin axis from the reference axis
is given by 8, where § is defined as

§= 6 (58)

The maximum deflections will oceur when the
center of the equilibrium-state circle 1s as far
away from the origin as possible and the radius
of the equilibrium-state cirele has the maximum
value. From equations (43) and (46) it is seen
that the radius of the equilibrium-state cirele is
greatest when =2 or when

Mra M,

"]v,:71 ‘_—d—l (59)

The center of the equilibrium-state cirele, a point
on the & curve in figure 4, is farthest from the
origin when

'ﬁc:(]

M,
9[:'— *T’

and

By considering figure 4 it is seen that
Smar= (Diameter of center circle)
+ (Maximum radius of
cquilibrivm-state circle)

or
M, M, M=ot
b= T g ()
which for o <118
M,2—¢ .
ama.r: Yv' lv_; (bl)
and for ¢ > 11s
M, ¢ g
‘Smux— - _/[7’ ;r”_i’ (62)

A plot of Z:\%""—z against o is shown in figure 5.
¥4

If ¢ and 3, are known, this plot shows the spin
kinetic energy required to keep the maximum
angular displacement in the equilibrium state
below any preassigned value of 8,q,. The figure
also shows that for efficient spin stabilization a
body should have a configuration such that ecither

1

S

-
o
3
=

NW RN W

I | —
0 5 | 1.5 2

o

Ficurs 5.~ Chart for determining the required spin
kinetic energy or the maximum angunlar deflection in
the equilibrium state for a spin-stabilized space vehicle.

o approaches 0 or ¢ approaches 2.
ARTIFICTAL DAMPING

The foregoing discussion shows that the motion
of a symmetrical spin-stabilized body in space,
subjected to a constant pitching moment in the
body-axis system, is doubly periodic.  One mode
of oscillation is the natural mode; the other is
due to the forcing function. The significance
ol ecitier mode relative to the other is governed
by the inertin ratio o¢. After the moment is
remo e, the residual motion consists of the
natural mode of oscillation only. Since damping
a dynamic system generally ascribes a transient
nature to the natural modes of oscillation, 1t
seems reasonable to assume that augmenting spin
stabil zation with artificial damping should result
in having no residual oscillation in the equilibrium
state.  The remaining question is: How does the
addit on of artificial damping affeet the motion
while the moment is applied? This question
will 1low be answered for the ease ol a body
spinn'ng about an axis of svmmetry with a
particular tvpe of artificinl damping.

Fo - simplicity, the disturbance considered is a
constant pitching moment in the body-axis sys-
tem, and the damping is regarded as the result of
a perfeet proportional control system.  Other
types of damping have been considered in studies
such s reference 6.

From equations (15) and (16) it can be seen that
artifi-ial damping can be introduced by adding
any one, or a combination, of the following con-
trol monmtents: (1) pitching moment proportional
to ¢. (2) vawing moment proportional to r, (3)
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pitching moment proportional to 7, and (4) yuw-
ing moment proportional to ¢. Adding a com-
bination of these controls simply complicates the
analysis without appreciably changing the phys-
ical properties of the problem. The case chosen
to illustrate artificial damping is as follows:

I,=I=1
M,=M,+ M,
M=+ Ki
M= M, =0

al =0, g=r=9¢=>0=y¢=0, and p=p,. With these
conditions the Laplace transformations of equa-
tions (8) and (9) are

ﬁ—-(:t? 8:&:0:) 7:‘?“[{:’ (63)

4 wj+sT=0 (64)

The =+ sign is used since w=p,|1-—q|, whereas in
equations (8) and (9) a=b=p,(1—a). The char-
acteristic equation is

2+ 20ws +Hw'=0 (65)
where ¢ is the damping ratio and is given by
_K
£=57 (66)

Solving equations (63) and (64) for ¢ and » gives

M,
20 el g i
=T e 8in w,t (67)
M, fu
r=—7- _f)l“g’ sin (wdf+ﬁ)] (68)
where
wd:w\s“]i_;:?
and

1—¢

=tan ST
A ¢
Now define:
w=y-+if (69)
where

= —1

From equations (13) and (14),
w=e *(r+iq) (70)

By writing ¢ and 7 in terms of complex exponentials
and making the appropriate substitutions, equa-
tion (70) can be casily integrated. Integrating
equation (70) in this manner and dropping tran-
sient terms to obtain the steady-state solution for
the disturbed-state motion gives

W= ? ‘[ [(1 —Ipar)

Ipg

_0(2—0)+4¢¥(1—0)*4 2i¢(1 —0)*(2—0)
o 2—0)24-4{H1—0)?

(71)
Since, by definition.
Yes = R.P .y,

and

Oss=1.P.10y,
the steady-state motion of the disturbed state
with the damping is the cirele in the real ¢—8
plane which is described by the expression

e e
T 22— o)t 4 (1 —g)?

M*  g(1—g)(2—0)? oM™
+[0“+ TS (2—a) 4y 1—0)2] ( )

(72)

reduces to

) ()
(73)

Comparison of equations (73) and (51) shows that
the ratio of the radius of the steady-state dis-
tubed-state cirele (for the ease with damping) to
the radius of the disturbed-state cirele (for the
case without damping) is just ¢, which by hypoth-
esis 1s negligible compared with unity. Tt seems
appropriate to point out that, as ¢ becomes very
small, for constant spin energy either p, or 7 must
become very large.

If ¢ approaches 2, equation (72

If ¢« <1, equation (72)

M o0 O\ M*
(\&vx—_jv“ m) +< \v+ Zv

) reduces to

vrt0.2=(rr) (74)
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Equations (72), (73), and (74) show that for
o approaching 0 the radius of the disturbed-state
circle approaches zero; for ¢ approaching 1 the
radius approaches infinity; for o approaching 2 the
radius approaches M,/T. Therefore, this analysis
indicates that the type of artificial damping con-
sidered herein is more advantageous for peneil-
like configurations than for disk-like configura-
tions,

1t should be pointed out that in cases where
rotational energy is lost and angular momentum
is conserved, the axis of maximum moment of
inertia is the stable spin axis. The reader who
is not familiar with this property of spinning
bodies is referred to reference 7.

CONCLUSIONS

A theoretical study was made of the angular
motions of spinning bodies in space. Only spin-
stabilized vehicles with constant moments of
inertin were considered. The basic equations of

motion were linearized and simple expressions
were obtained which relate angular motions to
spin-rate and inertia distributions for a given
disturbance. The analysis indicated the following
conelusions:

1. The angular motions were scusitive to
inertia distribution.

2. In considering a rectangular-pulse pitching
moment, it was found that the residual motion
was very sensitive to the time at which the
moment. was removed.,

3. Artificial damping which results from a
perfect proportional-control system seems to be
more advantageous for pencil-like configurations
than for disk-like configurations.

4. Analytical expressions were in good agree-
ment with machine solutions of the exact equations
over the region of interest.

LancLEY ReseEaRcH CENTER,
N A" [IONAL AERONAUTICS AND SPACE ADMINISTRATION,
LancLeEY Fienp, Va., June 21, 1960.



APPENDIX

DERIVATION OF ALTERNATE EXPRESSIONS FOR 6 AND y

This appendix is devoted to obtaining general
expressions for 6 and ¢ when the disturbance is
any arbitrary pitching andjor yawing moment.
The conditions imposed are:

1. At ¢=0,

g=r=0=y=¢=0

2. M, and M,, the pitching and yawing mo-
ments, respectively, are differentiable functions
of time given by M, =AM, () and M,=M, ().

The assumptions are:

1. The spin rate is constant (p=p,).

2. cos f=1 and sin §=4,

3. The product ¢ is negligible compared with
the spin rate p.

Solving equations (8) and (9) for the trausfer
functions of ¢ and » gives

q 8
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where

Q=ab

Now take M, and M, to be unit step inputs and
define the responses of ¢ to M, and M, as g,(t)
and ¢,(t), respectively.  Define the responses of 7
to M, and M, as r,(¢) and r,(t), respectively. This
procedure yields

qm(t)=1%9 sin Q¢

Gn (t)=j}5 (1—cos Q)

7'm(f)=—']1'5 (I—COS Qt)
A

.
1'”(1‘):—( sin Q¢

Pt

Now ¢ and » can be written as functions of any
arbitrary (differentiable) functions A,(t) and
M.(t) by wusing Dubamel integrals. Since ¢=
o, the appropriate substitutions can be made and
equations (13) and (14) can be integrated to]give:

= f (cos s {flm(é)lfym)+qn(s)‘mm)
£
+], [‘Z"‘@_*)Mv'“)+qn<é—A>M;(x>]dx}
—sin p.¢ { Pn(E) M, (0) +1,(£) M, (0)

+ [0+ 0 0 e

v=[(sin nt {qm<s>Mu<o>+qn(_s>Mz (o)
+f ‘{q,n(s—x)My'(x)+qn<s—x>M;<x>1dx}
eos pui { P (M, (0) +7 (&) M.(0)

+ f [ =N ) 7 (=N L )] })ds

where £ and X are dummy variables of integration
and primes denote differentiation withrespect to X.
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