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TECHNICAL REPORT R-83

A THEORETICAL STUDY OF THE ANGULAR MOTIONS OF SPINNING

BODIES IN SPACE

By JERROLL', H. _UI;,I}A'I'H

SUMMARY

A theoretical ,_'tu<t!l 'wa,_' made +!{ th,e al_gular

'm<>tion,,_'o.f ,_p,i_nin 9 bo<lie,_' in ,_'pace. The anal!t,_'is
wa.s, based on E+der',_, dynamic equatim+ ; which were

linearized and ,_'+dred an, al!/tlcally. The re._ull,s' qf

the ._'t'udy are directly applicable ,nly to ._pin-+'tabilized

vehicles with constaa_t mome_t,_ of inertia and an<is!at

di,s'placement,_ l_ot exceedbql ab,ut 15 °. Simpl_
analytical ea'pre,_'._ion,,_' were ,brained which +'dale

angu!ar motion,_ to spin-rate aml inertia diutributio_+u

for a 9ivan di,_lurbal_ee. ('ol_._'ideration was 9iren, to
the e.ffect+' produced by h(t,vb_.l artificial damping il_

the system. The ,_tudy illclu<led numerical eacample,_

aml e+m_pa]'i._,on._,qf an al!/tieal solutio J_,,_'with m achb_ e

soluti+m,_' of exact dyaamie equatiol_.s'.

The alml!!._is i_Mieated thai a_+gular moti+m,_, arc

sensitire to inertia di,_tribution. In eon,_ideri,g a

recta_+gular-pul,s,e pitchbtg moment, it 'wa,_'Jottnd thai
the re._idual mothm v,,a,_ vet9 ._'en,_'itive to the time at

which the moment was removed. Artifieial <tampin 9

due to a pelfl, et proporti+mal cont+'ol sy._'tem seemed to

be more advan,tageous t,> pencil-like configaration,_,

than to di.@-like co;_figuration,_'.

INTRODUCTION

O1)servations made in cotmection with ihe

Explorer and Vanguar<t satellite programs strawed

that several of the vehicles experietu'ed large

angular motions despite lhe fact that they were
spin-stabilized. The, various factors whic]_ can

contribute lo such motions have been considered

in dehtilcd studies exemplified by references 1 to 3.
However, a ffeneral knowle<lge of the fun(lanlonlal

principles of spin slabilization is not, rea(lily
obtained by considering such specialized sludies.

]n an efforl to at)lain an insight into the general

probhm_ <>f spin stabilization, a theoretical study

was conducted. Emphasis was placed <m isolatin_

the basic t>aramelers and qualit.ative]y investi-

gating l heir inthwnce on lit(' problem. In or(ler

t,o investigate the angulnr motions i)rotluced t)y

torques acting on a sl)innin_ body wilh conslant

mt>nwnls of inertia, Euler's dynamic e<tunlions
were linearized and solved analytically. In linear-

izing lhe e<lualiol_s ii. wns necessary to assume

ihat the spin rate was conslalll and that lhe

anFular <[ellc<'l.ions of lhe spin axis from a refer-
tin<'(, axis wouh[ never exceed about 1,5°. Numer-

ical examples were used 1o <'Omlmre the amtlylical
solutions with machine s()lulions of lhe exact

(,qua(ions of motion.

SYMBOLS

a=p,, " _-_, radians/sec

/"--/% radians/see
b=p,,

_L
C=--_;' 1)el' SOC

112 "-

d=po( l') ["i_, per

I

i

K

SOC

angular-momentum vector, slug-ft'/
soc

moments of inertia about the l)rinci-

pal t)od.v x-, y-, and z-axis,

respect ively, slug-ft _
transverse moment, of inertia wholl

L,= I_, slug-ft e

imagimtry numI)er, _,-r2-i"

unil, vectors along the prineipal

body z-, y-, and z-axis, respectively

cotm'ol sensit.ivity, slug-ft:
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inverse Laplace transformation
magnitude of disturbance monumt,

ft-lb

rolling, pitching, and yawing mo-
ment, respectively, in the principal
body-axis coor(linah, system, ft-lb

ft-lb

period, sec
angular veh)cities about the principa!
body x-, y-, and z-axis, respectively
]replace transform variat)le, per see

spin Idnetic energy, _ [:Po', ft-lb

time, see

complex variable, #+iO
inertial-axis coordinates

principal |)ody-axis coordimm,s

/ __ _-2

phase angle, tan- __'1 _"

maximmn angular deitection of spin
axis from reference axis, radians

ratio of actual damping to critical

daml)ing
ratio of m.tgnitu(tes of angular-

inonlenlllnl vector COlIlponellts_

])Ivq+kI;"

l: :pot

Euler angles, radians
dunmly variables of integration, see

ratio of mmnents of inertia, _
I

time interval, sec
natural frequenc.y defined by _a/a_,

radians/sec
natural frequency when Iv--I_, de-

tlned by Pol1-- at, radians/sec

center

distul'bed star#

damped
transverse momentum

k control
m response to unit step pitching

inolnent

'tt response to unit step yawing moment

o initial wllue

,_.s steady st'_te
1,2 values of time interval

A bar over a symbol indicates the Laplace
transformation. Dots over symbols indicate dif-
ferenl:.iation with resl)eet t,o time. A l)rimed

synlbol indicates different, iation with respect to X.

ANALYSIS

The analysis is based on Euler's dynamic
equa ions, which are given in reference 4. Figure
1 ilhstrates the coordinate system used, with x,

y, and z representing a set of l)rincipal body fixed
axes md X, ), "rod Z representing a set of inertial
axes. The orientation of the body is related to
the ilertial axes through the Euler angles shown
as _, 0, and ¢ in figure 1.

Fronl figure 2, the significance of considering a
¢--0 l)lane in discussing ill(, molten of a sl)inning
body can t)e seen. If the length of ()A is unity,
then AB=sin 0 and BC=cos 0 sin ¢. For small

valms of 0 and _, AB=0 and B('=_ so that the
coordinates of a I)oint on the trace of the motion

,(

X" _ q

//

FIGURE 1.--Orientation of x, y, and z body axes relative

to X, Y, and Z inertial axes. The relationship is

described by the Euler angles ¢, 0, and ¢. Positive

smse of angular rates about body axes is shown as p,

q, md r.
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Trace of the motion-.., __ ,'dcx

/
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z

FIGURE 2. Motion trace in ¢---0 plane.

are closely approximated 1)y (if, 0).

2. The angle 0 is small so llnit cos 0_1 and
sin # _ 0.

3. "Pile l)roduct _0 is small compared with the

spin rate p and may tie neglected in equation (4).

Under these assumptions, equations (1) to (6)

reduce to llie folh>wing forms :

%vhel'(_

and

p = po (7)

;_1. (s)
- at= G

bqq-t='- y] (9)
z

a= p"(I_-I_) (lO)

b= p°(l"-l_) (11)

EQUATIONS OF MOTION

Basic nonlinear equations of motion.--The anal-

ysis is restricted to cases with no coupling from the

force to the moment equations. The basic equa-
tioils to be used at'e t,tie nloinent equal.ions in the

principal body axes

L#+ (L-G) q,.=M= (l)

IvOq- (/=--I:)pr=-lG (2)

Ik+ (l,,--I,)pq 3Iz (3)

and the Euler angular rate equations

q;----p+¢, sin 0 (4)

O=q cos ¢--r sin _ (5)

,_ r cos ¢+q siti + (6)W cos 0

Under various assumptions analytical sohlt.ions lo

these nonlinear expressions have been oblained.

For exainple, the lnotion of it lorquc-h'ee body is
discussed in referent_e 5.

Linearized equations of mofion.--To consider

the nlotion with a torque l)resent, the equations
are linearized and solved analytically. The as-

suinptions employed in linearizing the equations
are as follows:

1. There is no rolling momelit and the spin rate

is constant, say p=po.

¢=pot+¢o (12)

0 q cos +--r sin + (13)

_=r cos +-t-q sin ¢ (14)

GENERAL SOLUTIONS

Solulions for q and ]1lis funclions of time can tie

ol)taine(| fronl equations IS) and (9) wiicn ._[v and

]Iz ltro kllOWll t'unclions of time. These sohitions,

along with the ext)ression for ¢ given in equation

(12), can 1)c substituted into the equations for
£7 an<l _ which ('an then be integrated directly to

give 0 and _b its fun(,l ions of tinle.
The l_aplace irluiM'oi'nialions of equal ions (8)

all(l 19) are

My t

sq-a,,=7/± +, (15)

b_ t Mz

q±sT=7] +,'o (16)

Solving equations (15) an(I (16) foI' _7and 7 gives

(_,+ bD L,.+ (3Z +L,'o)L_
= l_,l_(._2+<tb)

(17)

7 (.'iT.+Id'o)I,x--(.'_,,÷I_qo)I..b (iS)
1,J:(s2+ab)

The characteristic equ_ttion of the system is
s24-ab=O (19)
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so that a necessary condition for non(livergem

solutions for q and r is

ab > O (20a)

O1"

p,?(L-L)(L-L) >o (2ol))
I_I,

either Y_I_,L or l_I_,I_. For convenience
take. tile initial conditions to be

p(0) -po

qo-- ro=Oo=C/o =epo =O

The Laplaee transformation of the disturbing
moment is

This relationship defines the stal)ility criteria as
fi)llows:

1. When [_ is the intermediate moment of in-

ertia, that is, [_1,_ I_ or [z_ [_ lu, then ab_O

and lhere is a posilive real root of e(tualion (19)

which corresponds to inslability.

2. When I_ is the grealest or smallest moment

of inertia, lhai is l,_I,,Iz or I_I_,I_, then ab>0

atnd the system ll____tsan undamped oscillation with
a frequency of _ ab.

3. When I, is equal to either or both ly and 1,,

the system has neutral stability.

Since _ -_c-_ L i{7}, lhe generalq--L ,_q_ and r=
solulions for 0 and _bare

0---= [L tq: cos (pot+Oo)

--L-_{7} sin (pot+cho)]dt+Oo (21)

,b i"
= [,,.,,[L-_,IT} cos (PJ+4_o)

+L '{_} sin (pot+4,o)]dt+_o (22)

These solutions del)end on the existence of the

Laplace transformations of file disturbing mo-
ments 3I V and il[:. In the appendix, solutions

for 0 and _ are t)resented in terms or Duhamel

integrals; thus, the solulions depend on the dif-

feremiability of 3[_ and 31_. The form of the

dislurl)an('e should make it apparenl which solu-

lions are move apt)li('at)le to a specific l)rot)hqn.

DISCUSSION

CANE OF A REC'rAN(;ULAR-PULSE PITCHING MOMENT IN

BOI)Y-AXmSYSTEM

Solution of the linearized equations for a partic-

ular disturbance.-As an examl)le , ('onsider the

case where the vet,Me is dislurt)ed by a t)itching

nlotllenI in the I)o(ly-axis coordinate system, l_ei,

the t)itching illOlllellt I)e _t rectangular l)ulse de-
lined t)v

M =Mo
- b-0

and lel 3L=3L=0.

(o__< )(t>__,-) (23)

hnpose the condition that

i-_----- M,,( I --e- "_) (24)
8

From equation (17),

- Mo(1--e-'9

From equation (18),

(25)

Now lefine

Then

Mo
q=] -fi [sin

Mo
,'=-La{1

7= 31°b(1--e-'_)
Ls(s2_4_ab ) (26)

ft =-x"ab (27)

whorl

.qt--u(t-r)sin a(t--r)l (28)

--cos _tt,--u(t--r)[1--cos f2(t--r)]}

(29)

u(t--r) =--0 (t<r) "_

u(t--r)=--I (t>r)) (30)

By making the al)l)rOl)riale substitutions into
equations (21) and (22) an(l integrating to some

t_r, _xl)ressions are obtained for 0 and _ when

the (isturbance is I)resem. These exl)ressions
are:

',--d c+d
0=2(2o.4__t ) [l--cos(po+ft)t] 2(po_(2) [1

-- cos(po-- ft)t ]+d (1--cos pot)
Po

(31)

_+d c--d
¢=2(po--_P ) sin (po--_t)t 2(po+.q) sin (po+fl)t

d
-- '" sin pot (32)

P,
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where

an(t

Mo
c=_ (aa)

d = P.( 1:--/_) (34)

To obtain expressions for 0 and ¢ after the nlo-

nlent is removed, equations (21) an([ (22) are

integrated fl'om t--v to some tier, whi('h gives:

0 =Po+_ sm {

--sin (P"_7 7 ) r } ' c÷ d l " _r]±po-f*ils:'' G2 (sinE(P°

I2 9r-1 . .q"
--)t+_-J--,m(p,,--_)r}+O(r) (35)

20r

i

16_

12_

8

4

0

8, deg

-4

-8

-12

-16.

-20

-24 i

/j//I II

<
[ 1 ! ..._

IBM $olulion

: Anelytical solution

X\N

] l l L
-20 -16 -12 -8 -4 0 4 8 12 t6 20

9, deg

FIGt:RE 3.--(:omparison of "malyiieal results wilh IBM

solu! ,(ms of gener,.fl equ,tlions of tool ion for I wo cas('s.

d,, c--d? . _,r[( [ gar]=----{Slll -9 i (]'°-V('_)t-- 2 0
COS -- (tOS )o

""' Ed p,,-£1" 2' cos (p,,-_)t

_2r " I1
+_-]-- COS(p,,-- _)r ) +l//(r) (a(_)

Equations (35) and (36) have been ehe(q:ed for

several eases ag'finst solutions of the nonlinear

equations (eqs. (1) to (6)) made on the IBM 704

electronic data processing machine a:M have been

found to be in good ._greement. This fact is
illustrated in figure 3, where solutions based on the

data of table I are plotted.

In the ease where r=r_=5.004, the curve begins

at the origin and looks like _ little inore t.h,m half

a (4rcle whose eenter would 1)e at about (0, -8).
The nloIllellt is removed and the residual motion is

represented by the curve which looks like a
relatively large circle with center at about (3, -1).

In the ease where r = r_--5.044, the residual motion

is rel)resented 1)y lhe curve whi(,h looks like a

relatively small <',role with center at about (--1.5,

--15.5). These examples were selected from a

mimber of e'Jses, and were chosen to illustrate the

sensitivity of the residual motion to the value of r.

The large differences in the behavior of these

examples for small changes in duration of torque

TABIA.] I

VAI, UI,]S OF 1)ARAMICI'I,;RS USEI) F()I{

NUM I,;I{ICAI, EXAM I'I,I':S

l_, slug-ft 2 ...... O. [)38

[,, slug-ft 2 ....................... 4. 0

1_, slug-ft -_ ......... 4. 2

M=, ft-lb ..................... 0

My, ft-lb ....................... 30

+11,, ft-lb ................................... 0

Po, s ec-I ............ 24w

rl, see ................... 5. 004

r2, see ........... 5. I)44

result, from having a (:hange in torque duration

,q)l)roxintately equal 1o one-half the l)eriod of the

transverse momentmn oscillation. In these cases,

this oscillation h,d _ period of approxim,tely
0.08 second.

The physical significance of the various param-

el,ors of the prot)lem is not ol)vious from equa-

tions (31), (32), (35), and (36). These equ,ttions
reduce to a more un(lerstandat)le fornI when the

speei,l case of I,,--L--I is considere(I. From

equations (I0) amt (11),

_lV}l(q'(_

a=b=Po(Ii- L)=p,,( l --_) (37)

L
:-7 (as)
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From equation (27),

.q=po] 1 --a[--o_ (39)

From equalions (33) and (34),

c=d=')_ (40)

Making 1he appropriate substitutions into equa-
tions (31) and (32) gives

Al*[cosapot_l+a(l_eospot)] (t_T) (41)0=_,-

_b _11"
_--_- (sin _p,,t--(r sin pot) (l_z) (42)

Equations (35) and (36) reduce and combine

to give

_,V]lel'e
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(44)

(45)

(46)

(47)

(48)

M*= Me
'211-_1

• 1
T= 6 Idle _

I col-

a 2[sin -_

Mo
')T sin pot

O -MO
_--2T (cos pov--1)

Another simplitication can be made whMt lea(ts

to a simple description of motions of the type

shown in figure 3. Consider equations (41) and

(42) for the case where ¢_1. Then

.llo
0 _,5- T (cos apot--1) (t<T) (49)

Mo
=2T sin apot (t<r) (50)

which coral)the to give

2 /0 il["k2 I'1[°\2
d/-4-(-]-2T)-_(2T) (t<G(r<<l) (51)

Equa ion (51) represenls _, circle in the ¢,--0 l)lane

which approximates the mot ion while the moment
is ap[ lied and will be referred to its the (listurbed-
state ,'irele.

'l'h,, equation witich descrit)es the motion after

the n,oment is reInoved (eq. (43)) is repeated:

• . : /3I*a\:
=[ T-)

This equation represents a circle in the _b--0 plane
whiel will be referred to as the equilibrium-state
circle

Co_nbining equations (47) and (48) gives

[ . 3IoN 2 /._'IoV
(52)

This circle deseril)es the path traversed 1)y the

center of the equilibrium-stab' circle while the

nlom, qlt is aI)l)lied and will t)e referred to as the
center circle.

Th _'re are two iml)ovlant differences t)etween
the (isturbed-statc circle and the center eir('le

despi e the identical forms of equations (51) and

(52). First, equation (51) is an approximation
I)ased on the assumt)tion that ¢_1, whereas

equation (52) hohls for any wdue of ¢ consistent
with ,Jle analysis. Second, the 1)eriod associated
with the disturbed-state circle is different from

that ,,f the center circle. Specifi(.ally, if P, is the

perio, I of the center circle and l',t_ is the 1)eriod of

the d,sturl)ed-st,de eir('le, then

1'_= _1% (53)

and f )r small values of z, the cent er of the possible

equilibrium-state circle is moving very fast com-

pare( with the actual motion during the (list url)ed
state

Th2se points are illustrated in tlgure 4. The
distu.bed-state and center-circle curves are de-

note( by So. Point D corresponds to point A

of figlre 2. Point, s (_, and C2 represent two possi-
ble positions which the centcr of tim equilibrium-
state circle could have if the moincnt were re-

mov(d when the motion trace was at point D.

The correspondence between D points and C

poinl_ is not unique; that is to say, the C corre-

sponding to a specific point D of the disturbed-

state circle may be different each time the dis-
turb(d-state circle is traversed. To illustrate,

two (_ points have been drawn. Point Ct couhl
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s,/q

FI_u_: 4.--Variation of equilibrium-state motions, curves

St rind $2, with variation of the disturbance duration.

correspond tO D at seine lime r--_tl, Whel'elis at

sonic other linie r=/,> lhe correspondhig poil/l,

might be C> Also, lhe point (_ nloves lnl.i(.]l

fast, er t.han file point. D so that (! mighl be eoll-

sidered to lnove from (_i 10 (-_2 while i) hardly
Inoves at all. (!olnplu'ison of e(iuilil)riunl-state

circles _1 and _,, shows t,]ilit l]ie posil.ion lin(l

radius of the equilit)riunl-statc ('h'clo (tepend
strongly Oil the i.iliie when the inOilleni, is re-

n/oved. Specificillly, if the sl)in axis is very

llearlv nlined with the lolal angular nlOliieil-

tUlii vector _}len the liioliien{ is reliiove(I, the

residual motions will 1)e small Conversely, if
the alinenient is poor, the residulil nloiions will

be large. Thus, figure 3 shows one case (r, = 5.004)

where the alinement of the spin axis with the

angular nionll, iitulii vector is relatively l)oor

witch the (tist.m'bllll('e is reniove(I, iill(l ll. se('olld

case (r2=5.044) wIiere tim lililielilent, is relatively

good.

A measure of the nfisalinement of i/ie spin axis

with tile aligli]lir illonlelll.tlnt vector 1/7 can be

obtained by considering 7/, the raI0io of the inag-

nit ude o[' the eomponeni, of /I llOl'nli/1 t,o the spin

axis to l,he magnilu(le of the conlpoli(,nt of /r/

along the spin axis. In the principal body-axis
coor(linate system the angular monientum vector

is given by

H=,_ I:p,,+,iLq+ kLr (54)

SO i,]ia|

16 A

1.7I.q+ kl=r]

' 1;%,ol (55)

Evaluat.ing ll at t=r for the ease of t.he root, angu-

lar-pulse disl.urbance llll(i Iv= Iz= I gives

Me , M*a (56)
_7=_i2(1--eos <_r)--_ T

The period of _ is the period of the transverse

momentum and is given by

271-

I'HT-- (57)
(.0

Effect of inertia distribution.--For Iu _ I_, eqllli-
tions (31), (32), (35), and (36) show tiiltt, the sohi-

lions for 0 an(1 g, contain three oscillatory lernls

while t,ile lllOlllent, is applied, and two oscilliitory

t.erms after the moment is removed. For 1_--I:,

equations (41), (42), alid (43) show thal, the solu-

tions for 0 and _/, contain two oscillatory lerms

while the moment is applied and one oscillatory

term after the moment, is removed. Obviously
t.ileli, an lisynunelri(ml inert.ia disi.ril)ution gives

rise lo illi a(tdiiional oscillatory l.erin in both tim

disiurt)ed and equilil)rhun st.iltes.

For tile ease where Iu=Iz, the paritnleter a is

iniporlant. A_s _ approaches zero, one of tim

oscillatory ternis in tile disturbed state becomes

relatively insignificant, whereas if a approaches
2, the s,mle i erm be<:omes I tie 1)redomin'lnt one.

Another efl'ect of a is in the value of ,1I*. Till;

term ,1I* can be thought, of its all "apparent

inollienb" since it differs fronl -][o througii lhe

definition (e( 1. (44)):

_1I*= :1Io__
2li-.l

l_or_a_"1 3,.11.>31o. For (,iiher a< _l or a> _,3

.ll*_Mo. Del)ending on the vahte of a, the applied

moment may in effect be increased, decreased,

or unchanged.
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Maximum angular deflection in the _/, 0

plane.--For small deflections, the angular dis-
IIlaceInent of the sl)in axis from tile reference axis

is given I)y 5, where 5 is defined as

- _,,,,'_TOs (ss)

The maxinnnn detlections will occur when the

center of the equilibriInn-state circle is as far

away from the origin as possil)le and the radius
of the equilit)rium-state circle has ilia maximum

vahte. From equations (43) aini (46) it is seen

that the radius of the equilibriuin-state circle is

greatest when a=2 or when

M* o_ Me - (59)
T --Tit--<

The center of the equilil)rium-state circle, a point,

on the So curve in figure 4, is farthest from the

origin when

and
M,

0:-=--i,

By considering figure 4 it is seen that

&,::= (Diameter of center circle)
+ (Maxinmm radius of

equilil)riuIn-St ate circle)
or

3L 3L _:/L1+I --_
/t..... =_T+Tli-at T ll--_q

(6o)

which for a _ 1 is

3/0 2--a
,,az: T 1--0"

(61)

and fora > 1is

._/o o" (62)

T_max

A ph)t (>f -M'o against a is shown in figure 5.

If a and =11o are known, this plot shows the spin

kinetic energy required t(> kee I) the maximum

angular displacement in the equilibrium state

beh)w any preassigned value of _...... The figure

also shows that for eflicien_ spin stal)ilizali(m a

body should have a configui'alioll such lhat either

9

8

7

rSma.....__.__ 6

,% 5
4

3

I

I I t
0 .5 1.5 2

Cr

FmuR_: 5. Chart for delermining the re(tuired spin

kinetic energy or the maximum .ulgular deflection in

the ,,quilibrium slate for a sl)in-stabilize(t st)ace vehicle.

ai)t)maches 0 or _ apl)roaches 2.

ARTIFICIAL DAMPING

Th,, foregoing discussion shows that the motion

of a symmetrical sl)in-stabilized t)o(ly in sl)ace,
subjected to a constant I)itching Inonlent in the

body-axis syslem, is dout)ly periodic. One mo(te
of os,_illation is the natural mode; the other is

due _o the forcing lure'.lion. The significance
ot' (,itmr mode relative to the other is goveI'ned

l)y l,]m inertia ratio a. After the moment is
remo"ed, the residual motion consists of the

natural nmde of oscillation only. Since daint)ing

a dynamic systeln generally ascribes a transient
natm'e to the natural modes of oscilhdion, it

seeim; reasonable to assume lhat augInenting spin

sl al)il:zalion wit h art ificial daInping shouhl result

in ha"ing no resi<hlal oscilhttion in the equilibrium
stale. The remaining <tueslion is: ttow does the

addil on o1' artificial (hulq)ing affecl lhe molten

while the Inoment is al)l)licd? This question
will _tow 1)e answered for l he case of a t)ody

spinnng al)out an axis of symlnclry with a

1)arli_ ular i ype of art ificial (lamping.

Fo siml)licity, the disturt)anee considered is a

('onsl:mt I)itching nlonlenl in the body-axis sys-
rein, md the damping is regarded as the result of

a l)e:fect prol)ortiomd control system. Other

types of daInping have I)cen considered in studies
SllCh IS l'eflq'ell('(' 6.

lel'_,m equations (15) and (16) it. can 1)e seen l hat_

artifi'ial damping ('an t)e inlro(lu('ed by 'M(liug

any ,,he, or a comt)imttion, of ihe following con-

lrol l,mments: (1) pitching moinent t)rol)ot'tiomd

to q, (2) yawing momen! pl'oporti(mal lo r, (3)
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pitching moment proportional to ?, an(1 (4) yaw-

ing moment proportiomd to _). Adding a com-

bination of these controls simply compli(,ates the

analysis without appreciably (,hanging tile phys-
ical properties of the problem. The case Hmsen

to illustrate artiticial damping is as folh)ws:

L,=I_-- I

3[_--.lIo+ AIk

3I_.- -± 16:

.I[_--AI_--O

att=0, q=r=¢_--0--¢=0, andp--p,,. With these

conditions the Laplace transformations of equa-
tions (8) and (9) are

' /,_ (6:0

-t w)'+s7--0 (64)

The 4- sign is used since w=po[1--al, whereas in

equations (8) and (9) a--b--po(1--a). The char-
acteristic equation is

,d+ 2bo,_÷ ,o" 0 (6_)

where f is the damping ratio and is given by

K
_'---21 (66)

Solving equations (63) and (64) for q and r gives

Mo
q= fwa e-r_'t sin _oat (67)

5l° ri__ fe-r=' ]_=-1_ H--i-2_ _in (_t+_) (6s)

vi/}ler0

tLlld

Now define:

where

¢oa=c%,..1_ g-2

/3: tan_l%" 1 -- _ 2
i"

i2= -- 1

9

From equations (13) and (14),

iL,= e- _+(r+ iq) (70)

By writing q and r in terms of comph, x exponentials

and making the appropriate substitutions, equa-

tion (70) can l)e easily integrated. Integrating
equation (70)in this mamwr and dropt)ing tran-

sient terms to obtain the steady-state solution for

t he (tistm'l)e(I-sl at e tool|on gives

;Mo I-
w._-- /(1 - e - ,.o,)

" --]poW L.

a(2-- a) 2+4_'2(1 -- a)2+ 2i_-(1 -- a)_(2-- a) -]
@ j

(71)

Sin('e, by (lefinitiom

$,_ = R. l'.w_

lli1(1

0_ = I.P.'w,

the steady-state motion of the disturbed state

with tile damping is the (qrcle in the real ¢--0

l)hme which is described l)y the (,Xl)ression

[ _?l/* 2p(1 __(_)2(2__a)-]2

r 0 M/* 41-_)(2-_) _ 7 _ (M,/*'_
+L *'+ 7_ o-2(2z_--_)2J =\ T--/

(72)
If _1, equation (721) reduces to

o_Uf'/-\ .... -T- _T?/=\-_'-/

(73)

('omparison of equations (73) an(l (;51) shows that

the ratio of tile r,,ulius of tim steady-slate dis-

t ul)ed-stale (qrcle (for |he case with damping) to
tile radius of the. (listm'l)e(l-siate eir('h, (for tile

case without (laml)ing) is just a, wlfich by hypoth-

esis is negligil)le ('omt)are(l with unity. I! seems

aI)I)rot)riate to 1)oint out that, as a l)e('omes very
small, for constant spin energy either Po or I must

tll,('ome very large.

if (_ al)t)roa(,hes 2, equation (72) redu('es to
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Equations (.72), (73), and (74) show that for

a al)I)roaching 0 the, radius of the disturbed-state

circle approaches zero; for _ approaching 1 lhe

rail|us approaches infinity; for (_ approaching 2 the

radius approaches A[o/2'. Therefore, this analysis
indicates that the type of artificial damping con-

sidered herein is more adwmtageous for' pencil-

like configurations than for disk-like configura-

tions.

it should 1)e pointed out that in (.ases where

rotatiomd em, rgy is lost and angular momentmn
is eonserw'd, lhe axis of nmximum moment of

inertia is the stable spin axis. The reader who
is not familiar with this property of spinning

bodies is referred to reference 7.

CONCLUSIONS

A theoretical study was nlade of the angular

motions of spinning bodies in space. Only spin-
stabilized vehieh's with constant moments of

inertia were tons|tiered. The basic equations of

mot io_l were linearized and simple expressions

were obtained which relate angular motions to

spin-rate and inertia distributions for a given
distmbance. The amtlysis in(licaled tit(', fl)llowing

eonchisions :

1. The angular motions were sensitive to
inert|it distribution.

'2. In considering a re('tangular-pulse pitching

moment, it. was found that the residual motion

was very sensitive to the time at which the
rllOlllent WIIS rornoved.

3. krtifieial damping which results from a

perfect proporiional-contI'ol system seems to be
more advantageous for" pencil-like configurations

than for" disk-like configurations.

4. Analytical expressions were in good _gree-
ment with machine solutions of the exact equations

over l l_c region of interest.

LANGLEY ]{ESEARCH CENTER,

NA" IONAL AERONAUTICS AND _PACE ADMINISTRATION)

L_.NGLEY FIEI,I), Vx., June 21, 1960.



APPENDIX

DERIVATION OF ALTERNATE EXPRESSIONS FOR 0 AND ¢

This appendix is dew)ted to obtaining generM
expressions for 0 and + when the disturbance is

any arbitrary pitching and/or yawing moment.
The conditions imposed are:

1. At t=0,

q r=0=_=4,=0

2. 3[_ and .].I_, the pitching and 3"_twing mo-

ments, respectively, are differentiable functions

of time given by 3I_=3I_(t) and 3[,=-lI_(t).
The assumptions are:

1. The spin rtae is constant (p=po).
2. cos 0_1 and siti 0=0.

3. The product _0 is negligil)le compared with

the spin rate p.

Solving equations (8) and (9) for lhe transfer

functions of ff aml r gives

}7 s

q a 1

_1-7_ I_ s2+.q 2

r 8

il--7/_ I/:+ft 2)

F b 1

if-?, /_ :+a _

where

_2_ab

Now take M_ and 3[_ to be unit step inputs and

define the responses of q to _llv and 3[= as q_(t)

and ff_(t), respectiw,ly. Define the responses of r

to 21I_ and 3I_ as rm(t) and r,(t), respectively. This
procedure yields

q, (t)=ii b (1--cos at)

r.,(t)=--fa (l--cos at)

!

r,(t)=lzg, sin at

Now (/ and r can t)e written as functions of any
arbitrary (differentiable) functions .l[y(t) and

31:(t) 1)y using Duhamel integr.fls. Since 4)--
]_,,t, the apl)rol)riate substitutions can be made and

cqua|ions (13) and (14) c_m be integraIed (o_'give:

O= tlt (cos p,( ( q,_(Okl/O)+q_((),ll/O)

+ }

--sin P,,5 (r,,/_).lL(O) +r,,(_)35(0)

+ f,_[r,,(_--X).ll((X)+r_(_--X)Jl/ (X)]dX } )d_

_b=L' (sin p.( ( q.d_)3I_(O)+q.(()3l..(o)

+ }

+cos po_ ( r,,_(OM_(O) +r,,(OM/O)

+ f_ [rm (_--X)._'I_' (X)+r, (_-- X)_'I_' (X)] dX })d_

q.,(t)=+ sin ftt
where _ and X are dummy variables of integration
and prilnes denote differentiation with respect to X.

lI
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